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Abstract

Humans and animals are able to store and recall information about past experiences
across a variety of time scales. This process is accomplished by memory, which is
implemented in the neuronal systems of the brain. These neuronal systems consist
of a large number of electrically excitable cells, called neurons, which interact via
contact points called synapses. The transmission efficacies of these synapses can be
adapted by processes summarized as synaptic plasticity.

Working memory (WM) describes the ability to store and to process information
on time scales from seconds up to a minute and is important in many cognitive
processes. The neuronal mechanisms underlying WM are still not understood. Some
experimental and theoretical studies suggest that the neuronal system which imple-
ments WM stores information in the form of persistent activity of specific groups of
neurons. These stable activity configurations are called attractor states. Other studies
suggest that the information is stored in the form of complex temporal sequences
of various activity patterns, so called transient trajectories. In this thesis, we show
that the neuronal system implementing WM actually depends on both transient
neuronal activity as well as distinct attractor states. Furthermore, we demonstrate
that these attractor states may emerge in a self-organized way in the neuronal system
implementing long-term memory (LTM) that stores information on time scales from
hours to years. Finally, we develop a mechanism that may allow transient neuronal
activity in the WM system to control long-lasting time-dependent output signals.

First, we show that, different from human subjects, a model of a neuronal system
which solely operates on transient activity dynamics is not able to solve a typical
WM task with unpredictable temporal structure. Remarkably, the performance of
this system is restored by introducing distinct attractor states into the system dy-
namics. Still, the transient trajectories in between these attractor states are required
to enable non-linear time-dependent processing. Thus, the neuronal system which
implements WM requires both transient dynamics and distinct attractor states. Sec-
ond, we demonstrate that these attractor states can be created by groups of strongly
interconnected neurons, so called cell assemblies (CAs), formed in the neuronal sys-
tem implementing LTM. We show that CAs may be reliably formed and allocated
to different stimuli by an interplay of two synaptic plasticity processes. Hence, the
attractor states required by the WM system may emerge in a self-organized way in the
LTM system. Third, we present a mechanism which enables a short transient signal
to adapt the autonomously produced periodic output signal of neuronal systems
called central pattern generators (CPGs). This mechanism allows to fast and precisely
adapt the frequency of general oscillatory systems in a self-organized way based on
the frequency of a short periodic stimulation. Thus, it enables short-lasting transient
trajectories in the WM system to evoke long-lasting time-dependent neuronal signals.

In summary, we show that to allow for WM that is robust with respect to un-
predictable temporal structure and can perform complex non-linear processing, the
underlying neuronal system has to rely on a combination of transient trajectories and
distinct attractor states. These attractor states may emerge in a self-organized way in
the LTM system and in CPGs.
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Chapter 1

Introduction

Humans and animals expose a large variety of complex behaviors. Importantly, in
order to survive in a continuously changing environment, a subject has to be able to
adapt its behavior based on current stimuli and past experiences. The latter requires
the neuronal systems, which control the behavior of a subject, to store information
about past experiences, i.e., to build up memories. There are different types of
memories which are built and maintained across various different time scales. The
ability to store and to process information on short time scales from seconds up to a
minute is referred to as working memory (WM; Baddeley and Hitch, 1974). Working
memory plays an important role in mental reasoning, planing and, for instance, also
calculating (Diamond, 2014). Despite of the central importance of WM, it is not clear
which kind of dynamics underlies the neuronal system that implements WM.

Ultimately, all kinds of memory are related to the neuronal substrate by which
they are implemented in the human or animal brain. This neuronal substrate consists
of excitable nerve cells, the neurons, which exchange electrochemical signals via
so called synapses (Kandel et al., 2000). WM is assumed to be implemented in the
neuronal system of the prefrontal cortex (PFC) of the brain (Fuster and Alexander,
1971; Goldman-Rakic, 1995; Riley and Constantinidis, 2016). In many experiments, it
is found that during storing of information in WM, specific neurons in the PFC encode
the maintained information in form of persistent activity (Curtis and D’Esposito,
2003; Sreenivasan et al., 2014; Riley and Constantinidis, 2016). This implies that
information in WM is represented by self-sustaining activity states, so called attractor
states. Other studies, however, find pieces of evidence for a different mechanism to
store information in WM. These experiments find that the information is represented
in complex sequences of different activity patterns, so called transient trajectories
(Jun et al., 2010; Hussar and Pasternak, 2012). Based on these observations, it is
proposed that WM might rely on an attractor-less transient flow of activity triggered
by the incoming stimuli (Stokes et al., 2013; Barak and Tsodyks, 2014). It is not clear
which of these two seemingly contradictory types of neuronal dynamics, attractor-
dominated dynamics and purely transient dynamics, actually underlies the neuronal
implementation of WM.

In this thesis, we propose a possible solution to this problem: We evaluate the
hypothesis that complex and robust WM operation is enabled by the interaction of transient
neuronal dynamics with self-organized attractor states in other neuronal memory systems.
Here, by complex WM operation, we refer to the ability to produce non-linear time-
dependent signals based on the information stored in WM, i.e., to perform complex
computations. Robust WM operation, on the other hand, requires that both the stor-
age of the information in WM as well as the ability to perform complex computations
are stable against different kinds of noise in the stimuli received by the WM system,
in particular temporal unpredictability. This hypothesis is based on the observation
that WM does not operate in isolation but is continuously exchanging signals with



2 Chapter 1. Introduction

other memory systems, for instance the long-term memory (LTM; Baddeley et al.,
1988; Hulme et al., 1991; Ranganath et al., 2005; Poirier et al., 2011; Kamiński, 2017).
Thus, even if the dynamics of the WM system does not explicitly rely on attractor
states, it might still profit from such dynamical structures in other memory systems.
More explicitly, we claim that the level of computational power and robustness ob-
served in human WM can only be achieved when exploiting both the robustness of
attractor dominated dynamics and the computational power of transient dynamics.
Here, these attractor states may also be given by periodic attractors which allow
to stably produce ongoing periodic signals as required, for instance, in the control
of locomotion. Hence, we propose that the interaction between transient dynamics
and attractor states enables the robust storage of information in WM as well as the
generation of different long-lasting time-dependent output signals.

In order to verify the main hypothesis, we derive three necessary sub-hypothesis
(Figure 1.1). After an overview of the relevant theoretical concepts and experimen-
tal results in Chapter 2, the sequential evaluation of these three sub-hypotheses
determines the structure of this thesis.

The first sub-hypothesis states that WM requires both transient neuronal dynamics
as well as distinct attractor states for robust information storage and complex computation.
Note that this sub-hypothesis excludes the possibility that WM might rely solely on
transient dynamics or solely on attractor states. It does not require, however, that
these attractor states are actually part of the systems mainly implementing WM. To
evaluate this sub-hypothesis, in Chapter 3, we study a recurrent network model
which relies on transient dynamics (Jaeger, 2001; Maass et al., 2002; Sussillo and
Abbott, 2009). In particular, we investigate the robustness of the performance of
this model in solving an established WM task (Kirchner, 1958; Baddeley, 2003) with
respect to unpredictable stimulus timing. We compare this robustness with the level
of robustness observed for human subjects performing the same WM task (Koppe
et al., 2014). We find that the purely transient network model is significantly more
vulnerable to unpredictable stimulus timing than a human subject. Based on this
finding, we propose a method to overcome this qualitative difference and show that
this method is effectively introducing additional attractor states into the network
dynamics. Based on further analyses, we propose a functional separation of the dy-
namics underlying WM: Transient dynamics allow the production of complex output
signals and attractor states are responsible for the robust storage of information.

According to our main hypothesis, the attractor states enabling robust WM opera-
tion are formed in a self-organized way in other memory systems. The mechanism
underlying the formation of these attractor states are defined by our second sub-
hypothesis. It states that attractor states may be formed and assigned in a self-organized
way by the interplay of two synaptic plasticity processes, namely Hebbian plasticity and
synaptic scaling, in the LTM system. Synaptic plasticity refers to activity-dependent
modifications of the transmission efficacies of synapses in a neuronal network (Abbott
and Nelson, 2000). It is assumed that neuronal networks store long-term memories
by ways of synaptic plasticity processes (Martin et al., 2000; Takeuchi et al., 2013).
Two special forms of synaptic plasticity are Hebbian plasticity (Hebb, 1949) and
synaptic scaling (Turrigiano, 2008). Their interaction has been shown to enable the
self-organized emergence of attractor states in recurrent networks (Tetzlaff et al.,
2013). These attractor states emerge due to the formation of Hebbian cell assemblies
(CAs; Hebb, 1949) in the network. A CA is given by a strongly interconnected group
of neurons that tend to fire simultaneously. Up to now, there is no model available
that explains how these attractor states may be simultaneously formed and also
correctly assigned to different stimuli. In Chapter 4, we derive such a model. We
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Sub-Hypothesis 1
WM operation depends on
both transient dynamics
and attractor states for
robust information storage
and complex computation.

Attractor states represen-
ting different stimuli can
be formed and assigned
in a self-organized way by
Hebbian plasticity and sy-
naptic scaling in the LTM
system.

Sub-Hypothesis 2
Transient signals can fast
and precisely adapt the
frequency of periodic
attractors of CPGs in a
self-organized way.

Sub-Hypothesis 3

Complex and robust WM operation is enabled by the interaction of transient neuronal
dynamics with self-organized attractor states in other neuronal memory systems.

Hypothesis

Chapter 3 Chapter 4 Chapter 5

Figure 1.1: Hypothesis and sub-hypotheses addressed in this thesis. From the main hypothesis
of this thesis (blue), we derive three necessary sub-hypotheses (orange). Every sub-hypothesis is
evaluated in a dedicated chapter. The abbreviations denote the working memory (WM) and the long-term
memory (LTM) and central pattern generators (CPGs). See the main text for details.

show that these CAs constitute input dependent attractors of the network dynamics
and thus verify the second sub-hypothesis.

Given that our first sub-hypothesis states that complex computations in WM
depend on transient dynamics, the question arises how these rather short-lasting
transient dynamics may be used to produce long-lasting neuronal signals. In partic-
ular, we investigate the case of long-lasting periodic output signals with different
frequencies as they are required, for instance, in the control of locomotion. Our third
sub-hypothesis states that transient signals can fast and precisely adapt the frequency of
periodic attractors of central pattern generators (CPGs) in a self-organized way. CPGs are
specific neuronal circuits which are able to produce periodic neuronal signals without
the requirement for any periodic input signal (Hooper, 2001; Ijspeert, 2008). The peri-
odic neuronal signal emerges due to a periodic attractor within these circuits. Thus,
in an abstract sense, CPGs are nonlinear oscillatory systems or simply oscillators.
If such an oscillator is supposed to transform a transient periodic input signal into
a long-lasting periodic output signal with the same frequency, there needs to be a
mechanism which allows the oscillator to adapt its intrinsic oscillation frequency in
a self-organized way. While such a mechanism has been developed (Righetti et al.,
2006), in Chapter 5, we show that this mechanism suffers from a frequency-specific
trade-off between fast adaptation and precise adaptation. Therefore, we develop a
new adaptation mechanism which allows for fast and precise adaptations within
a wide range of oscillation frequencies. This new mechanism provides a possible
explanation for the processes that allow to transform short-lasting transient signals
from the WM system into long-lasting time-dependent motor control signals.

After evaluating the different sub-hypotheses, in Chapter 6, we discuss our results
in the context of our main hypothesis. We evaluate in how far this hypothesis could
be validated by this thesis and explain what remains to be done for a final evaluation.
Finally, we list possible future work and describe an experimental setup to test a
behavioral prediction arising from our theoretical results.
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Chapter 2

Experimental and Theoretical
Background

The ability to store information about past experiences and events, i.e., to form
memories, is an indispensable presupposition for adaptive and intelligent behavior of
an individual. It allows to transfer acquired knowledge of the past to future situations
and to react accordingly. Ultimately, all kinds of memory are related to the neuronal
systems that underly behavioral control in humans and animals in the brain (Section
2.1). The basic ideas of how these neuronal systems are able to build up memory date
back to Hebb, (1949) and are summarized as the Hebbian postulates (Section 2.2).
Actually, the term memory refers to different phenomena occurring on very different
time scales and involving different neuronal systems (Nadel and Hardt, 2011). On
the one hand, animals and humans are able to store information that is maintained
for very long time scales ranging from days over years to life-long. This kind of
memory is referred to as long-term memory (LTM, Section 2.3). On the other hand,
there is working memory (WM) which allows to store information of recent events
and sensory inputs on short-time scales and to manipulate and process this stored
information (Section 2.4). Apart from these two main types of memory, there are also
other mechanism in the human brain which employ different types of memory. For
instance, there are mechanisms which allow specific neuronal circuits to produce
long-lasting rhythmic output signals at a certain memorized frequency (Section 2.5).
In the following, we summarize the experimental and theoretical foundations of these
concepts and mechanisms.

2.1 Neuronal Networks of the Brain

The brain is the center of the nervous system in humans and most animals. It com-
prises a large number of electrically excitable cells which are called neurons. These
neurons exchange electrochemical signals with other neurons at specific locations
called synapses. Thus, the neurons form an interacting neuronal network. Every
synapse in this network is characterized by a certain transmission efficacy. Impor-
tantly, these efficacies may be adapted, for instance, based on neuronal activity. This
phenomenon is referred to as synaptic plasticity. It is widely assumed that synaptic
plasticity processes are the cellular basis of learning and memory in the brain (Martin
et al., 2000).

Neurons

While their is a vast amount of different kinds of neurons, most of them share a basic
common structure (Figure 2.1; Kandel et al., 2000). This structure is composed of the
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Figure 2.1: Structure of a neuron. Most neurons in the vertebrate neuronal system share the basic
structure depicted here. A neuron receives signals via synaptic contacts either directly at its cell body,
which contains the nucleus, or the dendrites. Apical dendrites emerge at the apex of the cell body, basal
dendrites directly from the cell body. Both types of dendrites transmit the synaptic signals to the cell
body where they modify the membrane potential of the cell. If this potential crosses a certain threshold,
an action potential is generated at the axon hillock and transmitted along the axon. The axon is insulated
from the surrounding environment by a myelin sheath. This sheath has regular gaps, the so called nodes
of Ranvier at which the traveling action potential is regenerated. The axon terminals form synapses with
the dendrites or cell bodies of other neurons. At a chemical synapse as depicted here, the presynaptic
neuron transmits signals to the postsynaptic neuron by releasing neurotransmitters into the synaptic cleft.
Depending on the type of neurotransmitter, these signal may either increase the membrane potential
within the postsynaptic neuron (excitatory synapse) or decrease it (inhibitory synapse). Figure adapted
with permission from E. R. Kandel, J. H. Schwartz, and T. M. Jessel: Principles of Neural Science
© 2000 McGraw-Hill Education.

cell body, which contains the nucleus, the dendrites and the axon. The dendrites are
tree-like extensions which originate from the cell body. At various locations of the
dendrites, there are synapses via which the neuron receives electrochemical signals
from other neurons. The dendrites integrate these signals and transmit them to the
cell body. A neuron may also receive synaptic signals directly at the cell body. In
either case, the integrated signals influence the membrane potential of the cell, i.e.,
the voltage difference between the inside of the cell and its outside environment.
Once the membrane potential of the cell reaches a certain threshold, a short rapid
rise and decay of the membrane potential is initialized at the axon hillock of the cell
body (Stuart et al., 1997). These stereotypic peaks of the membrane potential are
called action potentials or spikes (Barnett and Larkman, 2007). They are generated by
the opening of voltage dependent ion channels in the cell membrane. A generated
action potential propagates along the axon away from the cell body. The axon is a
long and thin projection of the neuron which originates at the axon hillock. Most
axons are covered by sheaths of myelin which insulate the axon from its environment.
At regular spatial intervals, the myelin sheath is interrupted by so called nodes of
Ranvier which support the transmission of the signal along the axon (Kandel et al.,
2000). At the end of the axon are the axon terminals. These terminals form synapses
with the dendrites or cell bodies of other neurons.
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Figure 2.2: Synaptic transmission at a chemical synapse. The transmission of electrochemical
signals at a chemical synapse is initiated when an action potential arrives at a presynaptic terminal of an
axon. Due to the increased membrane potential, voltage dependent Ca2+ channels open and Ca2+ ions
enter the cell. This causes vesicles containing neurotransmitters to fuse with the membrane and thereby
release the neurotransmitter into the synaptic cleft. The neurotransmitter molecules bind to receptors in
the postsynaptic membrane which causes different ion channels of the postsynaptic membrane to open
(or close). For instance, these open channels may allow Na+ to enter the postsynaptic cell which results
in a change of the respective membrane potential. Figure adapted with permission from E. R. Kandel, J.
H. Schwartz, and T. M. Jessel: Principles of Neural Science © 2000 McGraw-Hill Education.

Synapses

At a synapse, the membrane potential of one neuron may influence the membrane
potential of a second neuron. There are two qualitatively different types of synapses:
electrical synapses and chemical synapses. At an electrical synapse, the membranes
of two neurons approach each other close enough to form so called gap junctions.
Gap junctions are channels which allow the bidirectional passage of electrical currents
and small molecules (Bennett and Zukin, 2004; Pereda, 2014). Thus, at an electrical
synapse, two neurons are directly electrically coupled. This allows bidirectional signal
transmission without any significant synaptic delay. At the same time, electrical
synapses cannot amplify or transform the transmitted signals (Pereda, 2014). This is
possible in chemical synapses. At a chemical synapse, a presynaptic axon terminal is
separated from the postsynaptic dendrite by the synaptic cleft (Figure 2.2). Action
potentials arriving at the axon terminal cause the release of specific substances called
neurotransmitters into the synaptic cleft (Kandel et al., 2000). The neurotransmitters
diffuse through the synaptic cleft and bind to receptors in the postsynaptic membrane.
This leads to the opening of channels in the postsynaptic membrane which allows
different kinds of ions to flow into or out of the cell. These ion currents alter the
membrane potential of the postsynaptic neuron. Thus, the action potential arriving at
the presynaptic neuron induces an electrical signal at the postsynaptic neuron. This
signal is called a postsynaptic potential. Depending on the type of neurotransmitter
released by the presynaptic terminal and the type of receptors in the postsynaptic
membrane, a postsynaptic potential may either increase or decrease the membrane
potential of the postsynaptic neuron. Synapses which mediate an increase of the
postsynaptic membrane potential are called excitatory synapses (Chua et al., 2010).
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Synapses which transmit signals that decrease the postsynaptic potential are called
inhibitory synapses (Kubota et al., 2016). According to Dale’s principle, a neuron
releases the same neurotransmitter substances at all of its axonal terminals (Strata
and Harvey, 1999). We can therefore classify neurons as either excitatory neurons or
inhibitory neurons.

The amplitude of a postsynaptic potential evoked by a synaptic transmission
depends on a number of synapse specific parameters. These include, for instance, the
number of available vesicles in the presynaptic terminal, the probability of neuro-
transmitter release and the number of receptors and ion channels in the postsynaptic
membrane (Markram et al., 1998). All these influences determine the transmission
efficacy of a synapse or, in other words, the synaptic weight (Dayan and Abbott,
2001). A larger synaptic weight denotes a stronger influence of the presynaptic neu-
ron on the membrane potential of the postsynaptic neuron. Importantly, the weight
of a given synapse is not fixed but can be adapted over time by different processes
summarized as synaptic plasticity.

Synaptic Plasticity

There is a broad variety of different types of synaptic plasticity processes which adapt
different properties of the presynaptic or the postsynaptic neuron. In general, an
increase of the synaptic weight is called potentiation. A weakening of the synaptic
weight is called depression. A particular well-studied class of plasticity processes is
subsumed as Hebbian plasticity (Hebb, 1949). Hebbian plasticity is also referred to
as homosynaptic plasticity and describes synaptic plasticity processes that act asso-
ciative and input-specific (Abbott and Nelson, 2000). This means, Hebbian plasticity
strengthens synapses that transmit signals in between neurons which simultaneously
produce action potentials. Hebbian plasticity is mostly observed in long-term poten-
tiation processes that last for hours, days or possibly even longer (Malenka and Bear,
2004; Nicoll and Roche, 2013). Long-term potentiation is evoked by neurotransmitters
which are released from the presynaptic axon terminal and bind to specific receptor
channels in the postsynaptic membrane and thereby open them. If the postsynaptic
membrane potential is large enough, these open channels allow the influx of calcium
ions. The increased calcium concentration in the postsynaptic neuron leads to both an
increase of the number of neurotransmitter receptors in the postsynaptic membrane
as well as to an enhanced sensitivity of the existing receptors (Lüscher and Malenka,
2012). Both effects result in an increase of the synaptic weight. A larger synaptic
weight, in turn, increases the influence of the presynaptic neuron on the membrane
potential of the postsynaptic neuron. Thus, it also increases the probability that an
action potential in the presynaptic neuron evokes an action potential in the postsy-
naptic neuron which leads to further Hebbian plasticity. Therefore, Hebbian plasticity
results in a positive feedback loop (Abbott and Nelson, 2000). This feedback loop is
broken by another class of plasticity process called homeostatic plasticity (Turrigiano
and Nelson, 2004). Homeostatic plasticity refers to plasticity processes that act in
order to stabilize certain neuronal parameters at a given set point. A specific form
of homeostatic plasticity is the process of synaptic scaling (Turrigiano, 2008). Synap-
tic scaling adjusts the weights of all synapses via which a neurons receives signals
from other neurons to maintain a certain target rate of action potentials. Therefore,
synaptic scaling is a plasticity process which is not input-specific and referred to as
heterosynaptic plasticity (Chistiakova et al., 2014).
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Figure 2.3: Rate based neuron model and different firing rate functions. (a) In the rate based
description of neuronal networks, every neuron  is described by the dynamics of a (leaky) membrane
potential ,  ∈ {1, . . . ,N}. The firing rate F of a neuron is given by a firing rate function ϕ of
the membrane potential . Synaptic interactions are modeled by linearly coupling the firing rates
Fj, j ∈ {1, . . . ,N}, of other neurons in the network to the dynamics of . The coupling strength j

represents the synaptic weight. (b) A possible choice of the firing rate function ϕ is given by the hyperbolic
tangent which produces firing rates in between −1 and 1 (used in Chapter 3). (c) A second class of firing
rate functions is given by the logistic function with an inflection point at  = ε and a steepness β which
produces strictly positive firing rates between 0 and 1 (used in Chapter 4).

Rate Based Models of Neuronal Networks

The functioning of neurons, synapses and synaptic plasticity is based on complex
biophysical processes involving different kinds of proteins, neurotransmitters, and
ions. Depending on the specific research question, it may not be necessary to model
all of these details when studying the dynamics of neuronal networks. Therefore,
neuron models on very different levels of abstraction have been developed. They
range from the detailed electrophysiological Hodgin-Huxley-Model (Hodgkin and
Huxley, 1952) over the simplified integrate-and-fire neuron model (Burkitt, 2006)
up to the very reduced McCulloch-Pitts-neuron (McCulloch and Pitts, 1943). In this
thesis, we use an intermediate level of description, namely a rate-based neuron model
(Dayan and Abbott, 2001; Shriki et al., 2003). At this level of description, the timing
of the individual action potentials of a neuron is disregarded. Instead, neurons are
described as point-like units whose current state is determined by a leaky membrane
potential (Figure 2.3 a). The membrane potential of a neuron determines the current
rate of action potentials produced by this neuron. This rate is called the firing rate of
the neuron. It is given by a sigmoidal function of the the membrane potential (Figure
2.3 b and Figure 2.3 c). Alternatively, the firing rate may also be interpreted as the
current firing probability of the neuron (Gerstner et al., 2014).

Synaptic interactions are modeled by coupling the presynaptic firing rate linearly
to the dynamics of the membrane potential of the postsynaptic neuron. The strength
of this coupling corresponds to the synaptic weight. Thus, synaptic plasticity is
modeled by modifying this coupling strength based on the neuronal activity.

2.2 The Hebbian Postulates

According to the synaptic plasticity and memory hypothesis, the neuronal networks
in the brain store memories about past experiences by alterations of synaptic weights,
i.e, by synaptic plasticity (Takeuchi et al., 2013). This notion dates back to the in-
fluential book “The Organization of Behavior” (Hebb, 1949). In this book, Donald
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Hebb constructs a theory about the neuronal mechanisms which underly behavioral
learning and memory. This theory is based on three postulates.

The first postulate states that “when an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased” (Hebb, 1949). In other words, correlated activity
of the presynaptic and the postsynaptic neurons leads to an increase of the weight
of the respective synapse. This is often subsumed in the statement “What fires
together wires together.” (Shatz, 1992). In the field of computational neuroscience,
this proposal is referred to as the Hebb rule. As discussed above, Hebbian plasticity
refers to synaptic plasticity processes that modify synapses according to this rule.

The second postulate builds upon the first one. It states that due to the first
postulate, groups of cells which are repeatedly active simultaneously get associated
by increased synaptic weights and form strongly interconnected cell assemblies (CAs)
(Hebb, 1949). These CAs are considered to be the fundamental building block of
LTM. They are able to memorize patterns of input-evoked activity and, due to their
auto-associative nature, to restore these patterns later on also for incomplete input,
i.e., to perform pattern completion. In addition, the recurrent excitation within a CA
allows the firing of the respective neurons to persist even after the removal of the
stimulus which originally evoked this activity. This represents a possible mechanism
for information maintenance in WM.

In his third postulate, Hebb proposes the sequential activation of several CAs
as the process which underlies thinking. The activation of one CA might project
excitatory signals to another assembly and herewith evoke the activation of this
second CA. By the same mechanism, this second CA might evoke a third one and
so forth. Hebb termed this sequential activation of multiple CAs a phase sequence.
According to his proposal, a phase sequence represents the flow of thoughts in a
neuronal system (Hebb, 1949).

In particular the first and the second postulate are the basis of many current
models of memory in the brain (Lansner, 2009). The ability for pattern completion
of a CA is recognized as being essential for memory recall in LTM (Nadel and
Hardt, 2011). Still, the formation and the temporal evolution of CAs in LTM are not
completely understood (Buzsáki, 2010).

2.3 Long-Term Memory

Long-term memory (LTM) refers to the ability of the brain to store information
for hours, days or even years. In general, there seems to be no relevant capacity
limit for the information stored in LTM (Nadel and Hardt, 2011). The LTM can
be separated into declarative and non-declarative memory (Figure 2.4). Loosely
speaking, declarative memory encodes information about the "knowing that" while
non-declarative memory encodes information about the "knowing how" (Ryle, 1949).
The declarative memory is consciously accessible (Squire, 2004; Wood et al., 2011). It
can be further subdivided into semantic memory and episodic memory. Semantic
memory stores information about facts, ideas and concepts. Episodic memory, in
turn, provides the ability to re-experience events in its original context (Tulving, 1983).
In contrast to declarative memory, information stored in the non-declarative part of
LTM is not directly consciously available. Furthermore, non-declarative LTM does
not encode the characteristics of a single type of input stimuli but rather generalizes
across multiple input sets and encodes their common features (Squire, 2004; Wood et
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Figure 2.4: Taxonomy of the long-term memory system. The long-term memory contains the con-
sciously available declarative memory and the nondeclaratative memory which is not directly consciously
available. The declarative memory contains information about facts, concepts and events. The non-
declaratative memory contains learned skills and habits and other implicit types of learning and memory.
Figure adapted from Squire, (2004).

al., 2011). The most prominent component of non-declarative memory is procedural
memory which contains memories of skilled behavior and habits (Wood et al., 2011).
Further non-declarative LTM components include priming and perceptual learning,
simple classical conditioning and non-associative learning (Figure 2.4).

2.3.1 Neural Correlates of Long-Term Memory

The neuronal systems implementing the different types of LTM are distributed over
the brain (Squire, 2004). In particular, the declarative and the non-declarative parts
of LTM are implemented in distinct brain areas. Amnesic patients which cannot
form new declarative memories can still acquire new procedural skills (Cohen and
Squire, 1980). Declarative memory depends on an interplay of the hippocampus, the
surrounding structures in the medial temporal lobe and the neocortex (Eichenbaum,
2000). New memories are formed in the hippocampus and later on consolidated
and transfered to the neocortex (Wiltgen et al., 2004; Nadel and Hardt, 2011; Genzel
et al., 2017). Procedural memory, in turn, is implemented by the basal ganglia and
the cerebellum (Eichenbaum, 2000; Wolpert et al., 2001).

Recent technological advances and the resulting data from neuroanatomical and
physiological studies lead to increasing support for the hypothesis that CAs are
the fundamental building blocks of the neuronal systems implementing LTM (Palm
et al., 2014; Holtmaat and Caroni, 2016). Furthermore, the synaptic connectivity
in the cortex has been show to provide properties which are optimal for robustly
storing a large number of attractor states like they are imposed by CAs (Brunel,
2016). While a lot of experimental results support the necessity of synaptic plasticity
for the formation of memory, it is not clear whether synaptic plasticity alone is
also sufficient for successful learning and recall (Martin et al., 2000). For instance,
structural plasticity has been proposed to be necessary for long-term maintenance of
information in memory (Chklovskii et al., 2004; Fauth et al., 2015).

2.3.2 Neurocomputational Models of Long-Term Memory

One of the earliest functional network models of LTM is the class of Hopfield networks
(Hopfield, 1982; Hopfield, 1984). In a Hopfield network, a certain number of neurons
is fully recurrently connected. The information which is stored in such a network is
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given by a number of different binary activation patterns. Every activation pattern
is described by a fixed set of neurons which participate in firing in this pattern.
The synaptic weights in between the different neurons are adjusted based on the
first Hebbian postulate. Thus, the strength of the synapse in between two neurons
depends on the number of stored patterns in which these two neurons expose the
same activity state. As a result, the stored activation patterns become attractor states
of the network dynamics. If the network is initialized in a state close to one of the
stored patterns, the system dynamics converges towards the stored pattern. This is
interpreted as a recall of the corresponding information from memory.

Most models of LTM rely on similar types of attractor dynamics as observed in
the Hopfield model (Wood et al., 2011). Differences arise in the level of biophysical
details that are included into the model and in the way in which the synaptic weights
are adapted to form the different attractor states. In the Hopfield model, these
weights are optimized and then applied as constant weights. Alternatively, a variety
of correlation-based Hebbian learning rules have been proposed which adapt the
synaptic weights during the actual operation of the network (Gerstner and Kistler,
2002). One particular example is a learning rule which adapts the synaptic weights
based on the interplay between Hebbian plasticity and synaptic scaling (Tetzlaff et al.,
2011). This learning rule has been shown to form stable CAs in a recurrent network
which constitute input dependent attractor states of the network activity dynamics
(Tetzlaff et al., 2013). Thus, once formed, a CA in this model allows the fast recall of
earlier experienced patterns. Furthermore, this model is able to explain nontrivial
reconsolidation effects (Tetzlaff et al., 2013).

2.4 Working Memory

Working memory (WM) refers to the ability to store memories that persist for several
seconds up to minutes (Baddeley, 2012; Constantinidis and Klingberg, 2016). The
duration during which an item is kept in WM can be increased by active rehearsal
methods (Brown, 1958; Peterson and Peterson, 1959; Nadel and Hardt, 2011). In
addition to maintenance of the information, WM also enables the manipulation of the
memory content (Cowan, 2008; Nadel and Hardt, 2011; Baddeley, 2012). For instance,
during reading a text, WM allows to memorize the recently perceived words and to
connect them internally to a sentence. In contrast to LTM, WM is characterized by a
limited capacity (Cowan, 2001). The number of items that can be kept simultaneously
active in WM lies between four and seven (Miller, 1956; Cowan, 2001). It can be
increased by chunking techniques, i.e., by hierarchically combining individual items
to meaningful “chunks” (Miller, 1956). Differences in WM capacity have been shown
to correlate with variations in different abilities and skills, for instance control of
attention (Kane et al., 2007a), the ability for non-verbal reasoning (Kyllonen and
Christal, 1990) and even academic performance (Gathercole et al., 2003).

The idea that LTM and WM actually represent two distinct neuronal systems
dates back to James, (1890). Today, there is a lot of phenomenological evidence for
this notion. For instance, there are amnesic patients who show normal performance
in WM tasks but achieve only significantly reduced performance in tasks requiring
LTM (Jeneson and Squire, 2011). This includes the popular case of the patient H.M.
which lost his ability to form new memories in LTM after the surgical removal of
his hippocampus (Squire, 2009). The fact that he was able to acquire memories
on short time scales but not on longer time scales supports the view that separate
neuronal systems are responsible for WM and LTM (Nadel and Hardt, 2011). Still,
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Figure 2.5: Phenomenological models of working memory. (a) According to the influential model
of Baddeley and Hitch, (1974), which was later extend by Baddeley, (2000), WM consists of four
components: A central executive (green) and three different short-term storage systems (blue). These
short-term storage systems interact with the related information storage systems in LTM (orange). Figure
adapted from Baddeley, (2000). (b) Alternatively to viewing WM and LTM as two distinct systems,
Cowan, (1988) proposes that WM is given by an activated portion (blue) of the information stored in
LTM (orange). Only the part of this activated information which is currently in the focus of attention (red)
is consciously accessible. This focus of attention is controlled by a central executive (green). Figure
adapted from Cowan, (2008).

WM continuously interacts with LTM. For instance, WM is required for forming
new representations in LTM (Baddeley et al., 1988). At the same time, existing LTM
representations support the processes in WM. The number of words that can be
remembered and recalled in correct order in a WM task is larger for familiar words
than for unfamiliar ones (Hulme et al., 1991). In addition, the number of remembered
words is also higher if these words belong to the same semantic category (Poirier
et al., 2011). Thus, information which can be related to existing representations in
LTM is easier to maintain in WM. Furthermore, LTM supports WM when the capacity
of WM is exceeded or when the attention of the subject is distracted (Jeneson and
Squire, 2011).

The most influential phenomenological model of WM has been formulated by
Baddeley and Hitch, (1974) and later on revised by Baddeley, (2000). According
to the revised model, WM consists of four distinct components (Figure 2.5 a). The
central executive is responsible for the overall control of the cognitive processes in
WM. It has access to three distinct short-term storages named the phonological loop,
the visuo-spatial sketchpad and the episodic buffer. The phonological loop stores
auditory memory components and implements auditory rehearsal mechanisms. The
visuo-spatial sketchpad keeps visual stimuli active as mental images. The episodic
buffer stores chronological sequences of information from different domains. All of
these three subsystems also interact with the related parts of LTM. Alternatively to
viewing WM and LTM as two different storage systems, Cowan, (1988) proposed
the embedded process model (Figure 2.5 b). In this model, the information currently
stored in WM is given by the information in LTM which is temporary in a state of
higher activation. Only a subset of this activated information is also contained in the
focus of attention. The focus of attention contains the information that the subject
is consciously aware of and is controlled by a central executive component. Thus,
from a psychological perspective, it is not clear whether WM and LTM constitute
two manifestations of the same underlying neuronal system or whether they are
implemented by two distinct systems.
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Figure 2.6: Working memory n-back task. (a) During an n-back task, a subject is exposed to a series
of incoming stimuli. Typically, these stimuli are presented either visually or verbally. Whenever a new
stimulus arrives, the subject has to decide whether this stimulus equals the one seen n steps before
(here n = 2) and has to perform an appropriate action. (b) The performance of subjects performing
the n-back task does not depend on whether the input stimuli are presented with constant interstimulus
intervals (predictable temporal structure) or with variable interstimulus intervals (unpredictable stimulus
structure). This has been verified for n = 0 and n = 1 and the original n-back task (“compare”) and a
variant in which the target action of the subject only depends on the stimulus received n steps before
(“react”). The stimuli consist of squares and triangles. The constant interstimulus interval is 4 s. The
variable interstimulus intervals vary between 2.5 s and 5.5 s. Data extracted from Koppe et al., (2014).

2.4.1 The N-Back Task as a Measure of Working Memory

In order to study the properties of WM, different experimental tasks for human or
animal subjects have been developed. One of these experimental tasks is the so-called
n-back task (Kirchner, 1958). The n-back task is an established experimental paradigm
to explore different features of WM in humans and animals (Baddeley, 2003; Conway
et al., 2005; Jaeggi et al., 2010).

During performing an n-back task, the subject is exposed to a series of sequentially
incoming stimuli (Figure 2.6 a). On every arrival of a new stimulus, the subject has to
detect whether this new stimulus equals the stimulus presented n steps before. Based
on the result of this comparison, the subject has to perform a beforehand defined
action. For instance, the subject might have to push a specific button whenever the
current stimulus and the stimulus observed n steps before are identical. Typically
used values of n range between 1 and 3. The different stimuli may be presented
verbally, for instance in the form of words, or nonverbally, for instance in the form
of different visual inputs. The performance of a subject in solving the n-back task is
measured by the ratio of correctly performed actions.

The n-back task requires the subject to (i) perceive and process the incoming
stimuli, (ii) store the relevant information about the stimuli, (iii) update and overwrite
the stored information at every new stimulus, and (iv) manipulate this information
to compare the current and the past stimuli. It therefore covers many of the key
components of working memory (Owen et al., 2005). In addition to comparing WM
performance of different subjects, the n-back task is also employed as a training task
to improve WM performance of individual subjects (Jaeggi et al., 2008). However,
there are also studies that challenge the validity of the n-back task as a measure
of WM by demonstrating little correlation with other WM measures, for instance
WM span (Kane et al., 2007b). In the latter, the subject has to remember items while
performing a secondary cognitive task. However, these little correlations might also
emerge from the fact that the n-back task and the WM span task capture different
aspects of WM operation (Kane et al., 2007b).

The individual stimuli in an n-back task are separated by specific time intervals.
We refer to these time intervals as the interstimulus intervals. If all interstimulus
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intervals are identical, the n-back task has a predictable temporal structure. If, in
contrast, the interstimulus intervals are randomly drawn from a certain distribution,
the temporal structure is unpredictable. Subjects performing the n-back task with
unpredictable temporal structure show an increased activation in several brain re-
gions as compared to subjects performing the n-back task with predictable stimulus
timing (Koppe et al., 2014). Furthermore, an increase of the reaction time is observed
in the case of unpredictable stimulus timing. Interestingly, however, introducing
temporal unpredictability in the n-back task does not inhibit the level of performance
of the subjects (Figure 2.6 b). This demonstrates the robustness of WM performance
with respect to unpredictable stimulus timing. We can use this finding to evaluate
neurocomputational models of WM by testing whether they achieve the same level
of robustness with respect to unpredictable temporal structure.

2.4.2 Neural Correlates of Working Memory

The prefrontal cortex (PFC) is the central neuronal component implementing WM.
This was discovered in early lesion studies (Pribram et al., 1952) as well as in electro-
physiological recordings in monkeys (Kubota and Niki, 1971; Fuster and Alexander,
1971). However, there are diverse results regarding the type of activity observed
in the PFC during WM operation. On the one hand, it was reported that during
performing a WM task, individual neurons in the PFC show persistent activity during
the delay phase (Fuster and Alexander, 1971; Funahashi et al., 1989). The delay phase
denotes the time interval in between the presentation of a stimulus and the recall of
the information about this stimulus to perform a certain task. The level of persistent
activity in PFC during the delay phase has been shown to predict the performance of
subjects in the respective WM task (Constantinidis et al., 2001; Zhou et al., 2013; Wim-
mer et al., 2014). Furthermore, different neurons in the PFC have been show to stably
code for different features of the stimulus during the delay phase (Goldman-Rakic,
1995; Constantinidis and Wang, 2004). This suggests that information stored in WM
is represented by persistent activity of specific neurons in the PFC. On the other hand,
other studies observe a much larger heterogeneity of the activity traces of neurons
in the monkey PFC during the delay phase of WM tasks (Jun et al., 2010; Hussar
and Pasternak, 2012). The representation of the maintained information is found to
depend on the time since the presentation of the stimulus (Hussar and Pasternak,
2012). Thus, stored information is not represented by a single stable pattern of activity
but rather by a transient sequence, or trajectory, of different activity states. This kind
of transient information coding has also been identified in the PFC of rats which
perform a WM task (Zhang et al., 2015). Independent of WM, neuronal information
representation in the form of transient activity has also been found in other organisms
and brain areas (Mazor and Laurent, 2005).

In summary, experimental results on the neural correlates of WM are diverse with
some experiments indicating that WM relies on storing information by persistent
activity while other experiments find that information is rather stored in complex
transient trajectories of different neuronal patterns.

2.4.3 Neurocomputational Models of Working Memory

The different experimental findings regarding the representation of information
stored in WM give rise to an ongoing debate about the kind of dynamics underlying
the neuronal systems implementing WM. (D’Esposito, 2007; Mongillo et al., 2008;
Barak and Tsodyks, 2014; Trübutschek et al., 2017). As a first option, WM functionality



16 Chapter 2. Experimental and Theoretical Background

might rely on attractor-dominated neuronal dynamics. As a second option, WM
might exploit the properties of purely transient neuronal dynamics to store, retrieve
and process the stream of incoming stimuli. Both notions have lead to different
neurocomputational models of WM. Additionally, there are also other approaches
which propose that information in WM is encoded in the different properties of
rhythmic activity (Siegel et al., 2009; Salazar et al., 2012; Buschman et al., 2012) or by
fast and short-lasting changes of synaptic weights (Sandberg et al., 2003; Mongillo
et al., 2008; Sugase-Miyamoto et al., 2008; Eriksson et al., 2015).

The idea that WM might operate based on attractor dynamics basically dates back
to Hebb’s second postulate (Section 2.2) which states that WM relies on reverberating
activity in CAs. This is compatible with the electrophysiological experiments which
find persistent activity during the delay period of typical WM tasks (Section 2.4.2). A
variety of different mechanisms have been proposed to underly this persistent activity
(Durstewitz et al., 2000). In ring models, for instance, neurons representing different
orientations or locations of a stimulus interact via mutually inhibition and self-
recurrence. The occurrence of a stimulus results in persistent activity in the neurons
which represents the to be remembered orientation (Compte et al., 2000). Once the
stimulus vanishes, this bump of activity slowly drifts away from the original position
resulting in a time-dependent loss of precision as also observed in experiments.
Predictions from this model could actually be confirmed in activities recorded in
monkey PFC (Wimmer et al., 2014). Slow divergence of the activity along a continuum
of attractor states has been proposed to explain different tuning properties of cells in
different phases of a WM task (Drover, 2014). Attractor dynamics, which reproduce
the frequently observed persistent activity during the delay period, has also been
modeled in a very detailed neurobiological model involving several populations of
spiking neuronal networks and different kinds of synaptic interactions (Deco and
Rolls, 2003).

The second class of proposed WM mechanisms is based on dynamic patterns and
transient dynamics (Stokes et al., 2013). In these models, every incoming stimulus
drives the neuronal system along a characteristic trajectory. This results in different
activities of individual neurons at different point of times during the delay period
of a WM task and might explain the corresponding experimental findings (Section
2.4.2). Transient dynamics possess a larger computational power than attractor-
dominated dynamics (Rabinovich et al., 2008a) and offer a powerful mechanism to
combine the internal neuronal dynamics with the signals arriving due to external
stimuli (Buonomano and Maass, 2009). Additionally, they have the potential to allow
multiple computations to be performed simultaneously (Maass, 2011; Tetzlaff et al.,
2015). Accordingly, models relying on different types of transient activities have been
proposed as alternative models of working memory operation (Barak and Tsodyks,
2014). One of these types are reservoir networks which are discussed in more detail
in the next section.

2.4.4 Reservoir Networks

The paradigm of reservoir computing has been simultaneously and independently
emerged under the name of echo state networks (ESNs) in the field of machine learn-
ing (Jaeger, 2001) and as liquid state machines (LSMs) in the field of computational
neuroscience (Maass et al., 2002). Accordingly, ESNs are implemented in networks of
abstract rate-coded neurons while the LSMs employ networks of complex spiking
neurons. The unifying idea of both approaches is based on the same observation: In
a recurrent neuronal network with certain generic properties, it is not necessary to
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adapt the strength of the recurrent synapses in order to obtain a system that trans-
forms possibly time-dependent input traces into some desired output signals. Instead,
it suffices to train a memoryless linear readout (Lukoševičius et al., 2012). Loosely
speaking, all kinds of different nonlinear transformations are performed automati-
cally within the recurrent neuronal network. For the readout, it therefore suffices to
collect and superimpose these transformations in an optimal way. Thus, even the
training of complex nonlinear computations can be reduced to a linear optimization
problem. Network architectures which are trained in this manner, are called reservoir
networks (Lukoševičius et al., 2012). A reservoir network consists of a large recurrent
neuronal network called the generator network and a set of readout units.

In the most basic reservoir network architecture, there is no feedback from readout
neurons back to the generator network. Introducing such feedback can turn the
reservoir into a universal function approximator that is able to carry out all possible
kinds of computation on the incoming time-dependent stimuli (Maass et al., 2007). A
reservoir training method that is especially tailored for architectures with feedback
signals from the readout units is called first-order reduced and controlled error
(FORCE) learning (Sussillo and Abbott, 2009). The key idea of FORCE learning is to
adapt the readout weights fast enough to make sure that already during the training
session, the feedback from the readout units resembles the actual feedback during
exploitation of the reservoir network. When training the reservoir network using
the method originally proposed for ESNs, in contrast, the feedback signals have to
be artificially set to the respective target signals during the training of the network
(Jaeger, 2001). This may result in diverging network dynamics once this feedback
clamping is released.

Reservoir networks have been discussed as possible models of WM (Barak et al.,
2010; Sussillo et al., 2015; Barak and Tsodyks, 2014). In addition to using the plain
reservoir network architecture without feedback from the readout units, also the
introduction of specific readout units which establish feedback loops to store relevant
information has been proposed (Maass et al., 2007; Jaeger and Eck, 2008; Pascanu and
Jaeger, 2011). In Chapter 3, we study both of these architecture variants.

2.5 Memory of Rhythmic Neuronal Signals

While LTM and WM constitute very explicit forms of memory, there are many pro-
cesses in the brain which can be interpreted as a kind of more implicit memory. For
instance, such a process may be given by the ongoing generation of a rhythmic signal
at a specific memorized frequency. This memorized frequency might have been ex-
tracted, for example, from a short transient control signal generated by a higher-level
neuronal system. In general, rhythmic signals are of central importance in many areas
of biological life. Well known examples of rhythmic processes include the cardiac
rhythm, circadian rhythms and in particular all kinds of locomotion (Winfree, 1967;
Barkai and Leibler, 2000; Goldbeter et al., 2012). Many of these rhythmic processes
in biological creatures are controlled by so called central pattern generators (CPGs)
(Hooper, 2001; Marder and Bucher, 2001). CPGs are specific neuronal circuits which
are able to produce periodic activity signals without receiving any periodic input
signal.
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2.5.1 Central Pattern Generators

Several pieces of evidence for the existence of CPGs in both mammalian and non-
mammalian animals stem from fictive locomotion experiments (Wilson, 1961; Del-
comyn, 1980; Wallén and Williams, 1984; Clarac and Pearlstein, 2007; Guertin, 2009).
During these experiments, all relevant sensory inputs are surgically removed from
the animal. In this state, activity in the neuronal areas responsible for motor control
is evoked, for instance, by the addition of certain neuromodulators. Apart from
a different frequency, the hereby recorded patterns of neuronal activity resemble
strongly the ones recorded during normal locomotion of the intact animal. Thus, the
nervous system is able to produce these patterns without having to rely on sensory
feedback.

Studies of theoretical models of CPGs have been performed on many different
levels of abstractions. On the one hand, simulations of detailed biophysical models
of networks of spiking neurons have been shown to be able to produce rhythmic
signals in the biologically relevant frequency range (e.g. Hellgren and Grillner, 1992;
Tråvén et al., 1993). On the other hand, abstract mathematical models of oscillatory
systems reducing the level of complexity to a minimum have been used to derive
general principles and properties of such self-sustained oscillations (e.g. Matsuoka,
1985; Landsman and Slotine, 2012).

Based on the widespread and successful occurrence of CPGs in biological organ-
isms, models of CPGs have been employed in a number of robotic control applications
(Ijspeert, 2008). This includes the control of biped robots (Nakamura et al., 2007; Nas-
sour et al., 2014; Santos et al., 2017), quadruped robts (Righetti and Ijspeert, 2008), and
hexapod robots (Steingrube et al., 2010; Pinto et al., 2012) as well as the optimization
of the control of swimming and crawling robots (Lu et al., 2005; Inoue et al., 2007;
Crespi and Ijspeert, 2008). In contrast to locomotion schemes relying on purely reflex
control mechanisms (Foth and Bässler, 1985; Cruse et al., 1995), locomotion controlled
by CPG models has been show to be more stable and robust (Kimura et al., 2001;
Righetti and Ijspeert, 2008).

Most CPG models produce output signals at a single predefined frequency. In
order to obtain a CPG which is able to adapt its output frequency to the frequency of
a short-lasting transient input signal as described above, additional mechanisms are
required. One such mechanism has been described by Righetti et al., (2006) under the
name of adaptive frequency oscillator (AFO).

2.5.2 Adaptive Frequency Oscillators

Righetti et al., (2006) developed a universal mechanism which is able to adapt the
intrinsic frequency of a nonlinear oscillator based on the frequency of an external
periodic signal coupled to the oscillator. This method is applicable to a variety of dif-
ferent mathematical models of oscillators including harmonic oscillators (Andronov
et al., 1971) and highly non-harmonic oscillators (Rayleigh, 1877; Van der Pol, 1920).
Note that the mechanism modifies the intrinsic frequency of the respective oscillators
permanently. This is in contrast to the phenomenon of entrainment which describes
the just transient frequency locking of an oscillator to an external perturbation (Buchli
et al., 2006b). Oscillator models which are able to adapt their intrinsic frequency
based on the mechanism proposed by Righetti et al., (2006) are referred to as adaptive
frequency oscillators (AFOs).

AFOs have been successfully employed in a number of robotic applications such
as pendulum swing-up problems (Spong, 1995; Furuta, 2003), assistance of human
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locomotion (Ronsse et al., 2011; Tropea et al., 2015), frequency analysis of an input
signal (Buchli et al., 2008), and the construction of limit cycle systems of arbitrary
shape (Righetti et al., 2009). In particular, they have been used as models of CPGs
which are able to autonomously adapt their frequency to beneficial frequencies of
the system under control, for instance, in quadruped robots (Buchli et al., 2006a),
biped robots (Santos et al., 2017) and swimming robots (Wang et al., 2013). There is,
however, a common pitfall of the AFO mechanism which all of these applications
suffer off: In order to achieve precise adaptation, the learning rates of the mechanism
has to be chosen small which results in long adaptation times. In Chapter 5, this
trade-off is investigated in more detail.
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Chapter 3

Neuronal Dynamics of Working
Memory

Working memory (WM) is characterized by its ability to both store information about
past stimuli on short timescales as well as to process and manipulate the stored
information (Baddeley and Hitch, 1974). The type of neuronal network dynamics
underlying these two abilities, to store and to process information, is a matter of
ongoing debate. The dynamics might either be dominated by an interaction of
different attractor states or, instead, follow attractor-less transient dynamics. In
theories which follow the first assumption, the attractor states in the WM system are
commonly believed to be represented by persistent neuronal activity (Durstewitz
et al., 2000). According to the second assumption, WM is considered to be realized
by a complex and non-stationary flow of neuronal activity within a possibly large
neuronal population (Stokes et al., 2013). Interestingly, experimental results as well
as theoretical considerations yield support for both of these seemingly contradictory
assumptions.

Considering the assumption that WM is implemented by a non-stationary flow
of neuronal activity, reservoir networks (Jaeger, 2001; Maass et al., 2002) are the
most prominent and intensively studied class of neuronal network models which
operate on transient neuronal dynamics. Indeed, they have been shown (Jaeger, 2002;
Bertschinger and Natschläger, 2004; Lukoševičius and Jaeger, 2009; Schrauwen et al.,
2009) to possess both high computational power (processing of information) as well
as the ability to transiently represent recent stimuli on short timescales (storing of
information). As a consequence, different studies (e.g. Barak et al., 2013; Dasgupta
et al., 2013; Barak and Tsodyks, 2014; Cheng et al., 2015) have presented reservoir
networks which are able to perform typical WM tasks. Most of these studies, however,
neglect an important requirement for robust WM operation: When interacting with
the environment, neither humans nor animals can rely on precisely and predictably
timed input stimuli. In contrast, stimuli commonly arrive in a highly temporally
unpredictable manner. Interestingly, as discussed in Section 2.4.1, the performance of
human subjects performing an established WM task, the n-back task, is not altered
by presenting the individual stimuli with unpredictable timing (Koppe et al., 2014).
Plausible neuronal models of WM have to be able to provide the same level of
tolerance with respect to unreliably timed input stimuli. Whether reservoir networks
are able to provide this level of robustness has not yet been studied.

According to the first sub-hypothesis of this thesis (compare Figure 1.1), WM
operation depends on both transient dynamics and attractor states to enable robust
information storage and complex computations. After introducing the methods and
theoretical foundations of this chapter (Section 3.1), we verify this sub-hypothesis
(Section 3.2). First, we show that reservoir networks operating with purely tran-
sient dynamics are able to solve the n-back task with predictable stimulus timing
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(Section 3.2.1) but not the n-back task with unpredictable stimulus timing (Section
3.2.2). Second, we demonstrate that the introduction of feedback loops via additional
readout units, which represent the relevant information for the n-back task, restores
the performance of reservoir network in the n-back task with unpredictable stimulus
timing (Section 3.2.3). We show that this robustness of the performance is caused by
introducing structure into the dynamics of the system in the form of distinct attractor
states (Section 3.2.4). Nevertheless, we demonstrate that only sufficiently complex
transient dynamics enables the precise production of the target signal in the n-back
task (Section 3.2.5). Based on this analysis, we propose a functional separation be-
tween attractor states and transient dynamics in the neuronal systems implementing
WM: Attractor states are responsible for robust information storage and transient
neuronal dynamics enable complex computations.

The line of argument and the corresponding conclusions in this chapter have been
published in the following journal article:

T. Nachstedt and C. Tetzlaff (2017). Working Memory Requires a Combination of
Transient and Attractor-Dominated Dynamics to Process Unreliably Timed Inputs.

Scientific Reports 7, p. 2473. DOI: 10.1038/s41598-017-02471-z.

3.1 Methods

In this section, first, we give a short summary of the theory of the type of recurrent
networks employed as reservoir networks in this study. Next, we present the actually
used reservoir network architecture, the two used methods to train these reservoir
networks and the measure for performance evaluation. Afterwards, we define the
formulation of the n-back task for the reservoir networks. Finally, we summarize the
method of dimensionality reduction via principal component analysis.

3.1.1 Recurrent Networks at the Edge of Chaos

Following the approach of Sussillo and Abbott, (2009), the reservoir networks used
in this study are given by random networks of N coupled nonlinear neurons as
originally studied by Sompolinsky et al., (1988). We describe each neuron by a
time-dependent membrane potential ui(t) with i ∈ {1, . . . , N}. The membrane
potential determines the firing rate Fi(t) of the neuron via a nonlinear firing rate
function φ such that Fi(t) = φ(ui(t)). The firing rate function is given by the tangent
hyperbolic: φ(x) = tanh(x). The dynamics of every neuron is described by a first-
order differential equation:

τu̇i = −ui +
N

∑
j=1

wijFj = −ui +
N

∑
j=1

wijφ(uj) (3.1)

with a time constant τ. Importantly, we assume the weight wij of the synapse from
neuron j to neuron i to be an independent random variable drawn from a Gaussian
distribution with zero mean and variance σ2

w = g2/N with a gain parameter g > 0. As
analytically shown by Sompolinsky et al., (1988), in the limit N → ∞, the long-term
dynamics of this network depends critically on the parameter g.

In the case of g < 1, the system possesses a single stable equilibrium at the origin,
i.e. ui = 0 for all i. This is related to the circular law for random matrices which
states that for N → ∞, the spectral radius of the matrix W = (wij) converges to
g (Figure 3.1 a; Tao et al., 2010). Thus, the real parts Re(λi) of all eigenvalues λi

http://dx.doi.org/10.1038/s41598-017-02471-z
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g = 0.9: stable equilibrium at zero
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1Figure 3.1: Dynamics at the edge of chaos in random neuronal networks. The dynamics of random
recurrent networks ofN neurons with a firing rate functionϕ() = tnh() and a weight matrixW = (j)

drawn from a normal distribution with zero mean and variance g2/N depends on the value of g. Here,
the network contains N = 1000 neurons and has a time constant τ = 10ms. (a, b, c) For g < 1, the
network exposes stable dynamics with a single stable equilibrium at zero activity. (d, e, f) For g > 1,
chaotic dynamics emerge. (g, h, i) The critical value g = 1 is called the edge of chaos. To ensure the
network is still slightly below the edge of chaos, we make sure that the real part of all eigenvalues λ of
W are smaller than 1: mx Re(λ) < 1. Networks operating slightly below the edge of chaos have
been shown to offer optimal computational power (Bertschinger and Natschläger, 2004; Legenstein and
Maass, 2007). (a, d, g) The spectrum of eigenvalues λ of the weight matrixW in the complex plane
and the resulting spectral radius is directly related to the gain parameter g by the circular law for random
matrices. The individual eigenvalues λ of the random matrix are depicted in blue. The circle with radius
g in the complex plane is shown in black. The red line indicates the threshold for chaotic behavior at
Re(λ) = 1. (b, e, h) We project an external perturbation of unit amplitude via random weights onto
half of the network neurons for −1 s < t < 0 s. Shown are the resulting dynamics of the activities F of
ten randomly chosen neurons in the network. Observe the different time scales of the decay to zero for
g = 0.9 and g = 1.0. (c, i, f) We project a second external perturbation of unit amplitude via random
weights onto the second half of network neurons as compared to b, e and h. The norm of the difference
between the vector ~F1 of all neuron activities observed in (b), (e) and (h) and the vector ~F2 of the neuron
activities observed here characterizes the decay of the information about the stimulus type over time.
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of W are smaller than 1: maxi Re(λi) < 1. Due to the leak term of the membrane
potential (Equation 3.1), this means that the real parts of all eigenvalues of the
Jacobian matrix of the network dynamics evaluated at the zero activity equilibrium
are negative. Accordingly, the zero activity equilibrium is stable (Sompolinsky et
al., 1988). Thus, if the network state is pushed away from this equilibrium state
by an external perturbation, the network dynamics drives the system back to the
equilibrium state (Figure 3.1 b). As a result, the difference between the network states
resulting from two different perturbations eventually decays to zero (Figure 3.1 c).

In the case of g > 1, in contrast, no stable solutions exist and the system exposes
a dynamics known as deterministic chaos. Now, the spectral radius of the weight
matrix W is larger than 1. Accordingly, also the maximum real part maxi Re(λi) of
the eigenvalues λi of W is larger than 1 (Figure 3.1 d). As a consequence, the Jacobian
matrix of the network dynamics evaluated at the equilibrium possesses eigenvalues
with positive real parts. Thus, a network which originally resides in the equilibrium
at the origin of the activity space and receives an external perturbation does not
return to this equilibrium. Instead, it exposes ongoing and not stereotyped activity
(Figure 3.1 e). In particular, the difference of the network states resulting from two
different perturbations does not decay but remains large (Figure 3.1 f).

Within the context of reservoir computing, the dynamics near the boundary
between ordered dynamics (g < 1) and chaotic dynamics (g > 1), that is for g = 1, is
of special interest (Figure 3.1 g). Networks operating slightly below this boundary,
i.e., whose largest real part maxi Re(λi) of all eigenvalues of W is still below 1, are
characterized by a slow decay of activity (Figure 3.1 h). This intuitively corresponds
to a high memory capacity and is accompanied by a slow decay of the difference of
the network states resulting from different external perturbations (Figure 3.1 i). Based
on different theoretical studies, networks operating slightly below this so-called
edge of chaos are assumed to offer optimal computational power (Bertschinger and
Natschläger, 2004; Legenstein and Maass, 2007). The reservoir networks trained in
the following operate in this regime, i.e., slightly below the edge of chaos.

3.1.2 Reservoir Network Training Algorithms

As described in Section 2.4.4, different methods to optimize the readout weights of a
reservoir network have been developed. Within this thesis, the echo state network
procedure (Jaeger, 2001) (in the following "ESN learning") and the FORCE learning
algorithm (Sussillo and Abbott, 2009) are employed. While the former is an offline
method especially suitable for networks without feedback from the readout units,
the latter adapts the weights on-line during operation of the network and is tailored
for networks relying on feedback signals. Before introducing these two methods, we
describe the used network architecture.

Network Architecture

Following the terminology of Sussillo and Abbott, (2009), we divide the reservoir net-
work into the input units, the generator network and the readout units. Every neuron
i of the NG neurons within the generator network receives signals from exactly one
randomly chosen input signal k via a synapse with a weight wGI

ik drawn from a normal
distribution with zero mean and variance g2

GI. The generator neurons themselves are
fully recurrently connected. The weight wGG

ij of the synapse transmitting signals from
neuron j to neuron i within the generator network is drawn from a normal distribu-
tion with zero mean and standard deviation gGG/

√
NG (Figure 3.2, right). Note that
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the parameter gGG corresponds to the gain parameter g in Section 3.1.1. Thus, the
value of gGG determines the type of dynamics within the generator network. In the
following, we usually choose gGG = 1 but only use weight matrices WGG = (wGG

ij ) for
which the maximum real part of an eigenvalue λi is smaller than one: maxi Re λi < 1.
Additionally, the neurons in the generator network may receive feedback from the
NR readout units. The weight wGR

il of a synapse transmitting signals from readout
unit l to neuron i within the generator network is drawn from a normal distribution
with zero mean and variance g2

GR/
√

NR. Thus, a value of gGR = 0 corresponds to
disabled feedback signals.

The dynamics of neuron i, i ∈ {1, . . . , NG}, within the generator network is
determined by a leaky membrane potential uG

i described by

τ
duG

i
dt

= −uG
i +

NG

∑
j=1

wGG
ij FG

j +
NI

∑
k=1

wGI
ik Ik +

NR

∑
l=1

wGR
il Rl . (3.2)

Here, the time constant τ = 10 ms determines the timescale of the dynamics and NG,
NI, and NR give the number of neurons within the generator network, the number
of input signals and the number of readout units, respectively. The firing rate FG

i
of neuron i within the generator network is given by the hyperbolic tangent of its
membrane potential:

FG
i = φ(uG

i ) = tanh
(

uG
i

)
. (3.3)

The input signals Ik are externally controlled and vary between 0 and 1. The activity
of the linear readout unit l, l ∈ {1, . . . , NR}, is given by

Rl =
NG

∑
i=1

wRG
li FG

i . (3.4)

Depending on the used reservoir network training algorithm, it may be necessary to
define initial values for the readout weights wRG

li . In these cases, the initial values are
drawn from a normal distribution with zero mean and standard deviation 1/

√
NG.

We numerically integrate the network dynamics by using the Euler method
(Butcher, 2003) with a time step of ∆teuler = 1 ms.

Echo State Network Learning

The echo state network (ESN) learning procedure as proposed by Jaeger, (2001)
relies on sampling the network activity while driving the network with a sample
of the input signal. Hereby, the first sdiscard time steps after the onset of the input
signal are discarded to avoid transient effects of the network’s initial conditions.
At every one of the following strain time steps, the activity FG

i (ttrain
s ) of all reservoir

neurons i ∈ {1, . . . , NG} is collected into a row of the state matrix M such that the
final dimension of M is strain × NG. Here, ttrain

s denotes the actual time at which
state number s is collected. In parallel, the corresponding target signals fl(ttrain

s ),
l ∈ {1, . . . , NR}, for the readout units are collected into columns of a teacher matrix T
of dimension strain × NR. Note that in the case of non-zero feedback connections from
the readout units back to the neurons within the generator network (gGR > 0), the
ESN procedure uses so-called feedback-clamping during the training process: The
signal transmitted from readout unit Rl , l ∈ {1, . . . , NR), to the generator network is
artificially set to the respective target value fl(ttrain

s ) modified by Gaussian noise with
a variance σ2

noise. Concerning the strength of the applied noise, no clear guideline



26 Chapter 3. Neuronal Dynamics of Working Memory

how to choose its amplitude is available. Throughout this thesis, we use a value of
σnoise = 0.1.

After the sampling phase, the readout weights are determined by minimizing the
mean squared error (MSE) of the resulting overdetermined system of equations with
the help of the Moore-Penrose pseudoinverse M+ of the state matrix M:

WRG = (M+T)T . (3.5)

The root mean squared error RMSEtrain of the readout signals, as they would have
been read out during training by the optimized weight matrix WRG, provides in-
formation on how well the reservoir is able to approximate the trained sample of
the target signal. This value is normalized by the root mean square RMStarget of the
recorded target signal to obtain the training error Etrain:

Etrain =
RMSEtrain

RMStarget
=

√√√√strain

∑
s=1

NR

∑
l=1

(
fl(ttrain

s )−
NG

∑
i=1

wRG
li FG

i (ttrain
s )

)2

√
strain

∑
s=1

NR

∑
l=1

( fl(ttrain
s ))

2

=

√
‖M · (WRG)T − T‖F

‖T‖F

(3.6)

where ‖·‖F denotes the Frobenius norm.

FORCE Learning

In contrast to the ESN learning procedure, first-order reduced and controlled error
learning (FORCE, Sussillo and Abbott, 2009) relies on an on-line adaptation of the
network where the weight matrix WRG is modified in every simulation step. The idea
of FORCE learning is to allow very rapid weight modifications. As a result, the signal
at the readout units is close to the target signal right from the very beginning. This
removes the necessity of feedback-clamping as used in the ESN learning approach.

As in the ESN approach, the network is first driven by the input signal for sdiscard
time steps to eliminate the influence of the initial conditions. Afterwards, at every time
step ts with s ∈ {1, . . . , strain}, the recursive least-squares (RLS) algorithm (Haykin,
2002) is utilized to adapt the readout weight vectors ~wRG

l = (wRG
l,1 , . . . , wRG

l,NG
)T, l ∈

{1, . . . , NR}, according to

~wRG
l (ts) = ~wRG

l (ts−1)− e−l (ts)(P(ts)~FG(ts))
T. (3.7)

Here, ~FG(ts) = (FG
1 (ts), . . . , FG

NG
(ts))T is the activity vector of the neurons within the

generator network and e−l (ts) denotes the difference between the readout signal with
index l and the corresponding target signal fl(ts) prior to the weight update:

e−l (ts) = (~wRG
l (ts−1))

T~FG(ts)− fl(ts) . (3.8)

Note that already the updated weights ~wRG
l (ts) are used to determine the actual

readout signals Rl(ts) in the given time step. The square matrix P(ts) of shape
NG × NG has an initial value of P(t0) = α−11. Here, 1 denotes the identity matrix.
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P(ts) is updated in every time step according to

P(ts) = P(ts−1)−
P(ts−1)~FG(ts)(~FG(ts))TP(ts−1)

1 + (~FG(ts))TP(ts−1)~FG(ts)
. (3.9)

The value of α has to be adjusted according to the specific optimization problem at
hand. Lower values of α allow for faster weight adaptations in the early learning
phase. In the presence of feedback connections from the readout units back to the
neurons within the generator network, however, this may reduce stability of the
FORCE method (Sussillo and Abbott, 2009).

Performance Evaluation

We evaluate the actual performance of the networks trained by either of the two
training methods on test data that was not used during training. For this, we iterate
the network for further stest simulation steps and compare the readout signal Rl(ttest

s )
at every sampled time ttest

s , s ∈ {1, . . . , stest}, with the respective target signal fl(ttest
s )

to obtain the error E:

E =
RMSEtest

RMStarget
=

√
stest

∑
s=1

NR

∑
l=1

( fl(ttest
s )− Rl(ttest

s ))2

√
stest

∑
s=1

NR

∑
l=1

( fl(ttest
s ))2

. (3.10)

3.1.3 An N-Back Task for Reservoir Networks

In order to evaluate whether reservoir networks may solve the n-back task, we have
to translate the experimental paradigm of the n-back task into a set of input signals
which represent the different stimuli in this task. Additionally, we have to define the
shape of the target signal. In the following, if not stated otherwise, we always choose
n = 2. Thus, the network has to compare the current incoming stimulus with the
second last stimulus it received and to produce a corresponding output signal.

Input Signal

The network receives pulse-shaped input signals from NI = 2 different input path-
ways labeled A and B (Figure 3.2, top left). Every occurrence of a pulse at either of
the two input pathways represents the presentation of a respective stimulus. The
shape of the pulses is given by a convolution of a constant signal with unit magni-
tude and length tpulse = 25 ms and a normalized Gaussian window with standard
deviation σsmooth = 5 ms. The individual pulses are separated by interstimulus inter-
vals ∆ti which are drawn from a normal distribution with mean µ∆t and standard
deviation σ∆t. To avoid overlaps between the different input stimuli, we additionally
require ∆t ≥ tpulse. If a drawn value ∆t is smaller than tpulse, we draw a new ran-
dom value. The pulse signals at the two input pathways are superposed by a small
noisy background signal given by a white noise process with a standard deviation of
σWN = 0.001.
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Figure 3.2: Setup for testing a reservoir’s performance in the n-back task (here n = 2). The input
signal consists of two channels representing the two different stimuli, namely A and B. Every stimulus
has an equal probability of being either of the A- or the B-type and is represented by a smooth pulse of
duration tpulse. The individual stimuli are separated by time intervals ∆t drawn from a normal distribution
N with mean μ∆t and variance σ2

∆t
. The inputs are projected into the generator network by a synaptic

weight matrix WGI whose elements GI
k

are drawn from N (0,g2GI). Similar to a regular n-back task,
the network has to produce output pulses of a defined shape whenever the type of the current stimulus
corresponds to the type of the stimulus two steps before (compare arrows). During learning, the readout
weight matrix WRG is adapted (red). The readout signal is fed back into the generator network via a
synaptic weight matrixWGR with elements GR


drawn from N (0,g2GR). Figure adapted from Nachstedt

and Tetzlaff, (2017).

Target Signal

According to the n-back paradigm (Section 2.4.1), we define a target signal which
depends on the comparison of the types (A or B) of the currently received input
stimulus and of the stimulus received n input pulses earlier (Figure 3.2, bottom left).
The target signal is a one-dimensional signal for a single readout unit (NR = 1). If the
current stimulus is of the same type as the nth-last stimulus, the target signal is given
by a positive pulse of the shape already described for input signals. This output pulse
sets in with a delay tdelay = 25 ms after the onset of the current input pulse. If, in
contrast, the current input stimulus is of a different type than the type of the nth-last
stimulus, the target signal is given by a similar output pulse as in the first case but
with a negative sign.

Additional Readout Units

In the second part of the analysis of the n-back performance of reservoir networks, we
introduce NA = 2 specially trained readout units to maintain the relevant information
for solving the n-back task (Maass et al., 2007; Pascanu and Jaeger, 2011). These units
reflect the types of the two last received input stimuli. In particular, the first additional
readout unit is trained to have a value of 1 whenever the last received stimulus was
of type A and to attain a value of −1 whenever the last received stimulus was of type
B. The second additional readout unit reflects the type of the second-last stimulus by
a similar coding. Like the original target signal of the reservoir network n-back task,
also the target signals of additional readout units react with a delay tdelay = 25 ms
whenever a new input stimulus arrives. Furthermore, also the target signals for both
additional readout units are smoothed by a convolution with a normalized Gaussian
window with standard deviation σsmooth = 5 ms.

Formally, we define the additional readout units Am, m ∈ 1, 2, as

Am =
NG

∑
i=1

wAG
mi FG

i (3.11)
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with the trained synaptic weights wAG
mi . Feedback to the generator neurons is mediated

by a weight matrix WGA = (wGA
im ), with elements drawn from a normal distribution

with zero mean and standard deviation gGA, and a corresponding additional term
in Equation (3.2). During the training of the reservoir network using the ESN or the
FORCE method, we treat these additional readout units completely identical to the
original readout unit.

Recall Stimulus

In Section 3.2.5, we apply a recall stimulus to the network to trigger transient activity.
This recall stimulus is modeled as an additional input signal to the network such
that in this case, we have NI = 3. The recall stimulus is of similar shape as the input
pulses representing the stimuli A or B. It is applied 25 ms before the onset of the target
signal of the readout unit.

3.1.4 Principal Component Analysis

A complete analysis of the neuronal dynamics emerging in a reservoir network has
to consider all NG independent neuronal activities within the generator network.
However, as proposed by Sussillo and Barak, (2013), projecting the reservoir dy-
namics onto its most relevant directions does already provide a good overview of
the dynamics of the system. One established method to obtain such a projection is
the principal component analysis (PCA; Wall et al., 2003). A PCA determines the
linear uncorrelated directions within a set of high-dimensional samples and orders
these directions according to the amount of variance occurring along them. These
directions are referred to as the principal components of the system. They are given
by the eigenvectors of the correlation matrix of the individual system variables. The
corresponding eigenvalues, in turn, are proportional to the fraction of variance which
is covered by the respective principal component.

For the analysis of the neuronal dynamics within the generator network, we
sample the activity of the network while performing the n-back task for a certain
amount of time steps. From the obtained samples, we determine the principal
components by calculating the eigenvalues of the correlation matrix. Afterwards, we
project the sampled dynamics onto the first two principal components, i.e. the two
principal components with the highest eigenvalues. In the respective figures, we give
the fraction of variance explained by the two principal components along the given
axis.

3.2 Performance of Reservoir Networks in the N-Back Task

As discussed in Section 2.4.1, the n-back task is an established WM benchmark test.
If neuronal networks relying on transient storage mechanism are a valid model of
the neuronal system implementing WM, their performance in solving the n-back task
should have similar characteristics as the performance observed in human subjects.
Therefore, here, we study the performance of reservoir networks in solving the n-back
task. We investigate the performance of reservoir networks trained with both the
ESN and the FORCE algorithm to exclude training-algorithm specific effects.

We start by training reservoir networks to perform a regular n-back task with
predictable stimulus timing. In a second step, we modify the n-back task similar to
Koppe et al., (2014) by introducing unpredictable stimulus timing. Interestingly, we
observe a break-down of the performance when gradually increasing the variance
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of the interstimulus intervals for both training methods. We demonstrate that the
introduction of specially trained readout units, which assist the maintenance of the
relevant information, restores the performance. In fact, we find that these additional
readout units allow a level of robustness with respect to unpredictable stimulus
timing which is comparable to the one observed in psychological experiments. In
a final step, we investigate the dynamics of the original network and the one with
additional specially trained readout units in the space spanned by the first two
principal components. This investigation leads to an heuristic explanation of the
observed effects.

3.2.1 Predictable Stimulus Timing

In a first step, we train reservoir networks consisting of NG = 250 neurons to solve
an n-back task with n = 2 in which the individual stimuli are presented with totally
identical and hence predictable interstimulus intervals ∆t = 0.2 s (compare Figure
3.2). Furthermore, we do not include feedback from the readout units to the generator
network (gGR = 0). First, we study the results when training the network using the
ESN method. In a second step, we employ the FORCE learning method for the same
task.

When using the ESN method, the difference between the mean training error
Etrain and the mean test error E depends on the length of the training duration
ttrain = strain · ∆teuler. Here, strain is the number of time steps during which the
reservoir dynamics is sampled during training and ∆teuler denotes the time step of the
numerical integration. If there is no feedback from the readout units to the neurons
of the generator network, Etrain and E converge toward a common value for long
durations ttrain (Figure 3.3 a). The increase of Etrain with the parallel decrease of E for
longer learning durations ttrain reflects the transition of the readout weight matrix
WRG from a configuration specialized on the given training set to a configuration
which generalizes across the presented input-output relation. The mean common
convergence value is 〈E〉 ≈ 〈Etrain〉 ≈ 0.053. Here, 〈·〉 denotes the mean over 100
independent network instantiations. This low error value indicates a high capability
of the network to perform the n-back task with predictable stimulus timing. This is
confirmed by the visually close match between the target signal and the produced
readout signal (Figure 3.3 c). Hence, the ESN method is able to train a reservoir
network to successfully perform the n-back task.

In contrast to the ESN method, the strength of the FORCE method is based on the
fast adaptation of the readout weights to provide appropriate feedback signals. This
implies that the FORCE method is not tailored for cases without feedback from the
readout signals. As a result, the error E of networks trained with the FORCE method
does not converge as fast as a function of the training time ttrain as observed for the
ESN method (Figure 3.3 b). Still, after a training duration ttrain = 104 s, the mean error
of the readout signal is 〈E〉 ≈ 0.065. This error is only slightly larger than the average
error obtained with the ESN method. Thus, also the FORCE method allows to train
reservoir networks to perform the n-back task with predictable stimulus timing.

We conclude that both used training methods, ESN and FORCE learning, are
able to optimize the readout weights of a reservoir network such as to achieve a
high performance in the n-back task with predictable stimulus timing (σ∆t = 0). The
reservoir networks possess both the necessary short-term memory as well as the
required computational power to perform this standard WM task with predictable
temporal structure. In the following, we investigate the performance of reservoir
networks in an n-back task with unpredictable stimulus timing.
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Figure 3.3: Training reservoir networks to perform the n-back task. Reservoir networks are able
to solve the n-back task with predictable stimulus timing. The constant interstimulus interval is ∆t = 0.2 s.
The network parameters are NG = 250, gGG = 1.0, and gGR = 0. (a) The mean training error
〈Etrain〉 and the mean test error 〈E〉 when training reservoir networks to solve the n-back task using
the ESN method converge toward a common small value 〈Etrain〉 ≈ 〈E〉 ≈ 0.053 for long training
sample durations ttrain = strain · ∆teuler. (b) As the FORCE algorithm is an on-line method, there is no
quantity like Etrain available when training reservoir networks using this method. After a training time
ttrain = strain ·∆teuler = 104 s, the mean test error in the n-back task is 〈E〉 ≈ 0.065. The convergence
is slower than for the ESN method. (c) The readout signal of a network which was trained using the
ESN method and a training sample duration ttrain = 1000 s corresponds almost perfectly to the target
signal. The test error obtained for the complete test period ttest in this reservoir network instantiation
is E ≈ 0.048. (a, b) Every data point represents the mean of 100 independent network instantiations.
Error bars denote the standard deviation of the underlying distribution. Note the logarithmic scale of the
ttrain-axis.

3.2.2 Unpredictable Stimulus Timing

As we discussed in Section 2.4.1, experimental results show that the performance
of human subjects while performing different variants of the n-back task does not
decrease when the stimuli are presented with an unpredictable timing. If the reser-
voir networks investigated here are a plausible model of WM, they should show a
comparable tolerance to variances in the input timing.

Before introducing unpredictability into the timing of the input stimuli by mixing
different interstimulus intervals, however, we first investigate the general influence
of different interstimulus intervals ∆t on the reservoir performance in the n-back
task. For both learning methods, longer intervals ∆t lead to an increased average
error 〈E〉 (Figures 3.4 a and 3.4 c). This is because the activity of the network decays
closer to the noise level in between the different stimuli for larger values of ∆t. Note,
however, that the mean error is below 0.5 for all interstimulus intervals up to 500 ms.
This is of relevance in the following, when a distribution of interstimulus intervals is
employed.

We introduce unpredictability into the stimulus timing by drawing the individual
interstimulus intervals ∆ti from a normal distribution with mean µ∆t and standard
deviation σ∆t. Note that we apply this distribution both during the training and the
testing phase of the reservoir network. Thus, for every value of the standard deviation
σ∆t, a new set of readout weights is trained which is optimized for the specific value of
σ∆t. Interestingly, the reservoir networks turn out to be significantly more vulnerable
to variances in the stimulus timing than it is found in WM experiments. For the ESN
learning approach, a standard deviation of σ∆t = 50 ms results in a mean error of
〈E〉 ≈ 0.74± 0.02 (Figure 3.4 b). Note that next to all interstimulus intervals which
are expected to be drawn from a normal distribution with mean µ∆t = 200 ms and
standard deviation σ∆t = 50 ms result in significantly lower errors in the case of
predictable stimulus timing (green distribution in Figure 3.4 a). Thus, the increase
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Figure 3.4: Influence of the interstimulus interval and of temporal unpredictability on the n-
back performance of reservoir networks. The error E of reservoir networks solving the n-back task
increases for larger (but constant) interstimulus intervals ∆t as well as for increased unpredictability of
the stimulus timing as expressed by the standard deviation σ∆t . (a)We train reservoir networks using the
ESN method to solve n-back tasks with perfectly predictable temporal structure (σ∆t = 0ms). The mean
error 〈E〉 increases for longer interstimulus intervals ∆t. The green distribution at the top visualizes a
normal distribution of interstimulus intervals with mean μ∆t = 200ms (dashed gray line) and standard
deviation σ∆t = 50ms. Note that for all values of ∆t with relevant probability in this distribution, the
mean error is well below 0.5. (b) Using again the ESN method, we train reservoir networks to solve
the n-back task with a mean interstimulus interval μ∆t = 200ms (dashed gray line in (a)) and varying
standard deviation σ∆t of the distribution of interstimulus intervals. The error increases for larger values
of σ∆t . Importantly, for a standard deviation σ∆t = 50ms (green line), the mean error is well above 0.5.
This is significantly larger than for almost all constant values of ∆t which are expected to occur in the
respective distribution (green distribution in (a)). (c, d) The results obtained using the FORCE method
correspond to the results for the ESN method. This is expected in the case without feedback signals
from the readout neurons back to the generator neurons (gRG = 0). (a-d) In all cases, we train the
network on the same interstimulus interval statistics than used during testing. There is no feedback
from the readout units to the generator network (gRG = 0). The data points represent the mean of 100
independent network instantiations. The error bars are given by the standard deviation of the underlying
distribution of error values. (a, b) The training sample duration during the ESN learning is ttrain = 103 s.
The dashed orange line shows the mean 〈Etrain〉 of the training error as a function of ∆t. (c, d) The
reservoir networks are trained using the FORCE method for a duration of ttrain = 104 s and α = 10−3.
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of the error as compared to the completely predictable n-back task (σ∆t = 0 ms)
cannot be solely explained by the fact that larger interstimulus intervals occur in the
unpredictable case.

Training the networks using the FORCE algorithm, we find a very similar relation
between the standard deviation σ∆t and the error E (Figure 3.4 d). For a standard
deviation of σ∆t = 50 ms, the mean error is 〈E〉 ≈ 0.76 ± 0.02. Also here, this
error is higher than what we found in the case of predictable stimulus timing for
next to all interstimulus intervals which are drawn from the respective distribution
(green distribution in Figure 3.4 c). Having observed the increase of the error for
both the ESN and the FORCE training method, we conclude that the break-down of
performance in the presence of unpredictable input timing is independent of the used
training algorithm.

Even though the vulnerability with respect to unpredictable stimulus timing is
independent from the employed learning algorithm, it might still be related to the
specific choice of reservoir parameters. Therefore, in the following, we investigate the
stability of this finding when varying different parameters of the network architecture.

At first, we study the influence of the standard deviation gGR of the weights
projecting the readout signal back to the neurons of the generator network (Figure
3.5 a and Figure 3.5 b). As it turns out, introducing feedback via non-zero values of
gGR does not support but rather weaken the performance of reservoir networks when
performing the n-back task. This is more pronounced in the case of the ESN method
(3.5 a) which has to rely on feedback-clamping during training to deal with these kind
of connections (compare Section 3.1.2). However, also for the FORCE method (Figure
3.5 b), no significant improvement of the performance can be observed for stronger
feedback connections. Even though, the increase of the error for higher values gGR
is not as pronounced as in the ESN case. This reflects the superiority of the FORCE
method in the presence of feedback connections as compared to the ESN method.

In a next step, we analyze the influence of the number of neurons NG in the
generator network on the performance of the reservoir networks in the n-back task
with unpredictable stimulus timing. Here, the qualitative results for the ESN learning
method (Figure 3.5 c) and the FORCE learning method (Figure 3.5 d) are similar.
In general, increasing NG decreases the average error 〈E〉 for a given value of σ∆t.
Nevertheless, the increase of E for large values of σ∆t remains qualitatively similar.
Basically, the error curve is shifted toward higher values of σ∆t. Given that the tested
values of σ∆t are comparably small and the related improvement of the tolerance
with respect to timing variance is weak, this implies a very high number of neurons
needed to solve this rather simple WM task. Thus, we conclude that a high number
NG of generator neurons may not overcome the problem of decreased performance
in the n-back task with unpredictable stimulus timing.

Finally, we observe that also modifying the gain parameter gGG of the distribution
of weights within the generator network does not reduce the vulnerability of the
reservoir network with respect to unpredictable stimulus timing in the n-back task
(Figure 3.5 e and Figure 3.5 f). For both training methods, decreasing gGG to a smaller
value (gGG = 0.9) or increasing it to a larger value (gGG = 1.1) than the used value
slightly below the edge of chaos (gGG = 1.0) leads to an increase of the error E for
most tested values of σ∆t.

Thus, neither varying the standard deviation gGR of the feedback connections
from the readout units to the neurons in the generator network (Figures 3.5 a and 3.5 b)
nor increasing or decreasing the number NG of neurons within the generator network
(Figures 3.5 c and 3.5 d) nor trying different gain parameters gGG of the internal
synaptic weights within the generator network (Figures 3.5 e and 3.5 f) challenges the
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Figure 3.5: Influence of different network parameters on the performance of reservoir networks
in the n-back task with unpredictable stimulus timing. The error E of the output signal in the n-back
task with μ∆t = 200ms increases for larger standard deviations σ∆t of the interstimulus intervals ∆t. This
finding is independent of the used network parameters. (a, b) We train networks with different strengths
of the feedback connections from the readout units back to the generator network as expressed by the
standard deviation gGR of the respective weight matrix. For both training methods (ESN and FORCE),
increasing gGR leads to increased errors E for a given value of σ∆t . Still, the FORCE methods achieves
lower error values than the ESN method for nonzero gGR values. The number NG = 250 of neurons in
the generator network and the gain parameter gGG = 1.0 in the respective weight matrix are identical for
all network instantiations. (c, d) Increasing the number NG of neurons in the generator network reduces
the error E for a given value of σ∆t . Nevertheless, qualitatively, the performance of the networks shows
the same strong vulnerability to unpredictable stimulus timing, i.e., large values of σ∆t. The constant
parameters are gGR = 0 and gGG = 1.0. (e, f) When varying the gain parameter gGG of the weight
matrix within the generator network, the lowest error E for most values of σ∆t is obtained for gGG = 1.0,
i.e., slightly below the edge of chaos (compare Section 3.1.1). Neither decreasing nor increasing gGG

improves the robustness of the network performance with respect to unpredictable stimulus timing. (a-f)
Every data point represents the mean error of 100 independent network instantiations. The shaded
areas show the standard deviation of the respective distributions. (a, c, e) The training sample duration
during the ESN learning is ttrain = 103 s. (b, d, f) The FORCE learning parameters are ttrain = 104 s and
α = 10−3. Figure adapted from Nachstedt and Tetzlaff, (2017).
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described qualitative finding. Independent of the used network parameters and of
the employed learning algorithm, reservoir networks show a low performance in the
n-back task with unpredictable stimulus timing. As this contradicts the described
results from psychological experiments which do not find an influence of stimulus
timing unpredictability on the performance in the n-back task (Koppe et al., 2014), we
can exclude reservoir networks with purely transient dynamics as a plausible model
of WM.

3.2.3 Restoring Performance with Additional Readout Units

In the previous section, we observed that regular reservoir networks fail in the n-back
task with unpredictable stimulus timing. This indicates that in these systems, the
relevant information about past stimuli is represented in a way that strongly relies on
precisely timed input stimuli. As a result, if the input stimuli occur unpredictably,
the relevant information cannot be reliably read out to produce a time-dependent
output signal as required in the n-back task. Therefore, here, we modify the training
of the reservoir networks to ensure that the relevant information about past stimuli
is kept in a robust manner. A possible way to obtain such a robust representation
is by introducing NA = 2 additional specially trained readout units whose output
values reflect the stored information in a straight-forward way (compare Section 3.1.3
and Maass et al., 2007; Pascanu and Jaeger, 2011). The output of the first additional
readout unit is always positive if the last received stimulus was of type A and negative
if it was of type B. The second additional readout units remembers the type of the
second-last received stimulus in an identical manner. The signal of the additional
readout units are fed back via random connections into the generator network where
they influence the ongoing dynamics based on the remembered information (Figure
3.6). Thus, in some sense, the idea is to lift the network up by its own bootstraps.
Both additional readout units are trained by the same mechanisms and in parallel to
the regular readout unit.

In order to evaluate whether this adapted reservoir training schema achieves
better performances in the n-back task with unpredictable stimulus timing, various
instances of reservoir networks with the same parameters as used before are trained
on the modified task including the additional readout units. As above, for both
the ESN approach and the FORCE learning method, the level of unpredictability of
the stimulus timing as expressed by the standard deviation σ∆t of the underlying
distribution is varied. According to the observation that feedback from the regular
readout unit back to the reservoir network does not support the operation in the
n-back task, we always set gGR = 0.

We find that for both training methods, the standard deviation gGA of the feedback
weights from the additional readout units to the generator network determines the
susceptibility of the n-back performance to unpredictable stimulus timing (Figures
3.7 a and 3.7 b). For very low values of gGA, higher standard deviations σ∆t still lead
to an increase of the error E until the saturation level near E ≈ 1.0 is reached. If gGA
is chosen as a lager value, this saturation level decreases. For gGA = 1.0, the error
E is low for all values of the timing standard deviation σ∆t or, in other words, no
longer dependent on σ∆t. Thus, adding the additional readout units which reflect
and maintain the relevant information of past stimuli for the n-back task leads to
a significant improvement of the performance of reservoir networks in the n-back
task with unpredictable stimulus timing. The robustness of the system with respect
to the stimulus timing is now compatible with the one found for human subjects
performing the n-back task (Koppe et al., 2014). In the following, we investigate the
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Figure 3.6: Setup for the reservoir n-back task with additional readout units. The input signal and
the target signal as well as the related connectivity are identical to the setup without additional readout
units (Figure 3.2). NA = 2 additional readout neurons are introduced whose target signals reflect the
identity of the two last received input stimuli. One of them (upper orange trace) attains a value of 1when
the last received stimulus was an “A”. If the last received stimulus was a “B”, the additional readout signal
is supposed to attain a value of −1. The target signal for the second additional readout unit (lower orange
trace) contains the same information about the second-last stimulus. These two additional readout
signals are projected back to the generator network via a synaptic weight matrixWGA with elementsGA

m
drawn from a normal distribution with zero mean and standard deviation gGA. Feedback from the original
readout unit back to the generator network is neglected (gGR = 0). Figure adapted from Nachstedt and
Tetzlaff, (2017).

dynamical cause of this qualitative change by projecting the reservoir dynamics into
the space spanned by its principal components.

3.2.4 Dynamics of Principal Components

The qualitative performance difference in the n-back task with unpredictable stimulus
timing between reservoir networks with and without the additional readout units
indicates a qualitative difference in the underlying dynamics. Instead of analyzing
the dynamics of the different reservoir networks in the complete high-dimensional
activity space, we project the activities within the generator network onto its two
most significant principal components (Section 3.1.4). This allows for an heuristic
understanding of the basic dynamical modes that determine the dynamics of the
respective reservoir networks (Sussillo and Barak, 2013).

At first, we investigate the dynamics of a representative example of a reservoir
network without any additional readout units which operates on an n-back task
with constant interstimulus intervals (σ∆t = 0 ms, Figure 3.8 a). The dynamics of
the network is dominated by a single attractor state at zero activity. Thus, the
reservoir network indeed operates on purely transient dynamics. When the network
is exposed to an ongoing stream of stimuli like in the n-back task, the attractor state
is never reached. Instead, the incoming stimuli keep perturbing the system away
from its convergence toward the attractor. Importantly, the state of the system at
the occurrence of a stimulus depends on the earlier received stimuli. This results in
transient trajectories which are not only characteristic for the recently received input
stimulus but also for the history of the earlier received stimuli. For instance, there is a
specific bundle of trajectories representing states in which the network has received
an “A” stimulus followed by two “B” stimuli (∗1 → ∗2 → ∗3 in Figure 3.8 a). As a
result, trajectories during which the network has to produce a positive output pulse
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Figure 3.7: Performance of reservoir networks with additional readout units in the n-back task
with unpredictable stimulus timing. In contrast to the case without additional readout units (Figure
3.5), reservoir networks with strong feedback from these additional readout units are able to solve the
n-back task also for highly unpredictable input stimulus timing. For stronger feedback from the additional
readout units, i.e. for larger values of gGA, the error E gets smaller also for large values of the standard
deviation σ∆t of the interstimulus intervals. Thus, the performance becomes independent from the
predictability of the temporal structure of the n-back task. These results are confirmed by both training
methods (ESN and FORCE). (a) The training sample duration during the ESN learning is ttrain = 103 s.
(b) The FORCE learning parameters are ttrain = 104 s and α = 10−3. Figure adapted from Nachstedt
and Tetzlaff, (2017).

and trajectories during which a negative output pulse is required are close but can
be clearly separated (red and blue trajectories in Figure 3.8 a). Thus, all the relevant
information required for the n-back task is stored in distinguishable trajectories of
the network dynamics.

Introducing unpredictability (here, σ∆t = 100 ms) in the timing of the input stimuli
directly affects this transient storage mechanism of the network without additional
readout units (Figure 3.8 b). The incoming stimuli do now appear at different stages
of the convergence of the system dynamics toward the single attractor state. As a
result, the trajectory bundles representing different stimulus histories become broader.
The same sequence of stimuli may result in very different trajectories in the phase
space. For large value of σ∆t, the trajectories requiring a positive output signal can no
longer be reliably separated from the trajectories requiring a negative output signal.
Thus, the readout unit is no longer able to extract the relevant information for the
n-back task and to produce the required time-dependent readout signal.

When we add the additional readout neurons to the network, this results in a
significant change of the system dynamics (Figure 3.8 c). Now, the network pos-
sesses four distinct attractor states with each of them corresponding to one specific
combination of the last two received stimuli. Whenever a new stimulus arrives, it
pushes the system along a characteristic transient trajectory which interlinks the
different attractor states. These transient dynamics are used to process the incoming
information and to produce the desired time-dependent readout signals. As before,
a reservoir network which receives an “A” stimulus followed by two “B” stimuli
evolves along a set of characteristic trajectories (∗1, ∗2, ∗3 in Figure 3.8 c). In contrast
to the case without additional readout units, however, these trajectories do now
interlink history-specific attractor states (�1, �2). Thus, the information about the type
of the recent stimuli is stored in the attractor states while the transient trajectories in
between these states are exploited for reading out the desired output signal.

In contrast to the original reservoir network, the dynamics of the reservoir network
with additional readout units is robust with respect to unpredictable stimulus timing
in the n-back task. Increasing the standard deviation σ∆t of the interstimulus intervals
(here, σ∆t = 100 ms) does not result in significant overlaps of the different trajectories
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Figure 3.8: Dynamics of a reservoir network during performing the n-back task projected onto
the first two principal components. The color of the different trajectories encodes the sign of the
output pulse that has to be produced along the given trajectory. The percentage values at the axes
give the fraction of variance explained by the respective principal component. (a) The reservoir network
without additional readout units stores the information about the current stimulus history in distinct
transient trajectory bundles. (b) When we introduce unpredictable stimulus timing, these trajectory
bundles overlap. This impedes a proper readout of the desired signals. (c) The addition of specific
additional readout units “restructures” the dynamics of the system by introducing several distinct attractor
states. These attractor states store the information about the past stimuli. (d) Even in the case of
unpredictable stimulus timing, the attractor states introduced by the additional readout units preserve
the difference between the different trajectory bundles. This enables a proper readout of the desired
signals. (a-d) In all cases, the mean interstimulus interval is μ∆t = 200ms. There is no feedback from
the original readout units (gGR = 0) and, if applicable, strong feedback from the additional readout units
(gGA = 1). The networks are trained using the FORCE method with tlearn = 104 s and α = 10−3. Figure
adapted from Nachstedt and Tetzlaff, (2017).
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Figure 3.9: Performance of a reservoir network with additional readout units in n-back tasks with
different response delays. We train reservoir networks with two additional readout units to perform the
n-back task with n = 1 and an increased output delay tdelay. (a) Interestingly, the reservoir network is
only able to produce a readout signals (green) with significant differences to the target signal (gray). The
pure information about the type of the past stimuli can still be reliably read out (orange). (b) Introducing
an unspecific additional recall stimulus which perturbs the system shortly before the onset of the output
pulse restores the performance. (c) Without an additional recall stimulus (gray dots), the error E of
the readout signal increases with larger output delays tdelay < ∆t as the system reaches an attractor
state. The occurrence of the next input stimulus leads to a new transient trajectory which again enables
the system to produce the time-dependent output signal. If an additional recall stimulus is introduced
(orange dots), the error E decreases for all output delays. For tdelay < ∆t, the recall stimulus initializes a
transient trajectory which can be used to read out a time-dependent signal based on the information
stored in the attractor state. For tdelay > ∆t, the effect diminishes as the relevant information is no longer
available in the currently active attractor state. Figure adapted from Nachstedt and Tetzlaff, (2017).

(Figure 3.8 d). Instead, the trajectories remain clearly separated. This enables the
readout unit to extract the relevant information and to produce the desired time-
dependent output signal.

In summary, introducing the additional readout neurons into the reservoir net-
work results in a set of distinct attractor states which “structure” the phase space.
As a consequence, also the trajectories requiring different output signals remain
clearly separated in the case of unpredictable stimulus timing. This separation of the
trajectories reflects the dynamical cause of the robust performance of the network
with additional readout units in the n-back task with unpredictable stimulus timing.

3.2.5 Transient Dynamics and the Generation of Time-Dependent Signals

As demonstrated, only the introduction of distinct attractor states enables a reservoir
network to solve the n-back task with unpredictable stimulus timing. While this
emphasizes the relevance of attractor states for robust WM operation, it does not
diminish the importance of the transient dynamics for WM. In fact, only the transient
trajectories of the system enable the readout unit to produce a time-dependent (non-
constant) output signal. This includes tasks during which the information stored in
WM has to be read out only at specific periods of time.

By varying the time interval tdelay in between the input stimulus and the respective
output pulse in the target signal, this yields an interesting prediction. As before, we
consider a reservoir network with two additional readout units. However, now, this
network is performing an n-back task with n = 1. This means it has to compare the
type of the current stimulus with the type of the previous stimulus. Furthermore, we
assume a completely predictable stimulus timing (σ∆t = 0). According to our earlier
results, the reservoir network is able to solve this task with only a small error E for
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short time intervals tdelay (gray dots in Figure 3.9 c). Here, the network is still in the
transient state which is evoked by the recently received input stimulus. When we
increase the delay tdelay, the system dynamics gets closer to the attractor state and
the complexity of the transient dynamics decreases. As a result, the time-dependent
output signal can no longer be read out precisely and the error E of the readout
signal increases (Figure 3.9 a). Note that the pure information about the type of the
two last stimuli can still be easily read out as demonstrated by the two additional
readout units. Without transient dynamics, however, this information cannot be used
to generate a time-dependent signal. Consequently, for tdelay > ∆t, the occurrence of
the next input stimulus leads to new complex transient dynamics and thereby again
enables the reservoir network to produce the time-dependent output signal. Based on
this observation, we introduce an additional recall stimulus which we always apply
shortly before the onset of an output pulse. This additional input signal restores the
performance of the reservoir network for time delays 0 < tdelay < ∆t by pushing
the dynamics of the network back into a transient state (orange dots in Fig 3.9 b).
Importantly, this recall stimulus does not convey task-relevant information. Its only
role is to trigger complex transient dynamics that may be used to readout the stored
information in a time-dependent way. Therefore, this does only work as long as the
relevant information is still available in the network. Once the current attractor state
does no longer contain the necessary information to produce the current output pulse,
the enhancing effect of the recall stimulus vanishes (tdelay > ∆t in Figure 3.9 c).

These results show that both the attractor states as well as the transient dynamics
in between them have to be exploited in order to obtain a robust and functional
network model of working memory. In the presence of unpredictable stimulus timing,
information can only be reliably stored in attractor states. Information processing in
terms of a temporally specific readout signals, on the other hand, requires transient
dynamics.

3.3 Discussion

In this chapter, we address the still unresolved question regarding the type of neuronal
network dynamics underlying the operation of WM. Experimental studies provide
evidence for both of the two seemingly contradictory views that either complex
transient dynamics implement WM (e.g. Jun et al., 2010; Hussar and Pasternak, 2012)
or that persistent activity as resulting from attractor dominated dynamics suffices to
explain WM operation (e.g. Zhou et al., 2013; Wimmer et al., 2014). Here, we verify
the first sub-hypothesis of this thesis (Figure 1.1) according to which the neuronal
systems implementing WM actually require both, transient neuronal dynamics and
distinct attractor states, to enable robust memory storage and complex computations.

The n-back task is an established measure of WM performance. We show that a
purely transient network model is able to solve this task with predictable temporal
structure by storing the information about the past stimuli in distinguishable trajec-
tories. However, if we introduce uncertainty in the timing of stimuli, this storage
mechanism is disturbed as the trajectory bundles representing different stimulus
histories overlap. This overlap impedes the readout of the desired target signal. In
contrast, human subjects do not show reduced performance in the n-back task with
unpredictable stimulus timing (Koppe et al., 2014). We show that introducing distinct
attractor states into the network dynamics, which store the relevant information
about the past stimuli, leads to a structuring of the phase space of the system. Now,
the trajectory bundles which correspond to the different stimulus histories remain
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well separated also in the case of unpredictable stimulus timing. The corresponding
phase of transient dynamics triggered by an incoming stimulus is both necessary and
sufficient to produce a complex time-dependent signal at the readout unit, i.e. to
perform complex temporal computations. Thus, only a network exploiting distinct
attractor states as well as transient dynamics is able to solve the n-back task with
unpredictable stimulus timing. This verifies our first sub-hypothesis of this thesis.

We use the well studied class of reservoir networks as a model of neuronal
systems which operate on purely transient dynamics (Jaeger, 2001; Maass et al., 2002;
Lukoševičius et al., 2012). The robustness of reservoir networks with respect to
additional or multiplicative noise in the input signal has been extensively studied
(Maass and Sontag, 1999; Rabinovich et al., 2006; Lukoševičius and Jaeger, 2009;
Laje and Buonomano, 2013). The vulnerability of reservoir networks with respect to
noise in the temporal structure of a task, in contrast, has not been analyzed before.
The dynamical origin of the inability to solve a task with unpredictable temporal
structure is due to the very general principle of storing information about the recent
stimulus history in distinct trajectories. We therefore expect that this inability can
be generalized to other types of neuronal networks which store information in a
purely transient manner (for a review, see Buonomano and Maass, 2009). However, a
detailed investigation of the performance of other transient storage mechanisms in
tasks with unpredictable temporal structure remains to be done.

Reservoir networks with additional attractor dynamics have been discussed in a
general context (Sussillo and Barak, 2013) and in the context of WM (Jaeger and Eck,
2008; Pascanu and Jaeger, 2011) but not specifically in the context of solving task with
unpredictable temporal structure. As in this chapter, also these studies introduce
the attractor states via feedback loops through additional readout neurons. These
feedback signals do not only enhance the stability and the performance of the network
but can also enable universal computational power (Maass et al., 2007; Sussillo and
Abbott, 2009; Gros, 2009). Actually, the activities in a reservoir network representing
context signals via feedback from explicitly trained readout neurons resembles the
neuronal activity in monkey cortex (Enel et al., 2016). Instead of training explicit
additional readout units, also the internal synaptic weights within the generator
network can be adapted to obtain equivalent attractor states (Sussillo and Abbott,
2012). Note that the states used to stably store the relevant information possibly do
not necessarily need to be real attractors of the systems. Instead, it might also suffice
to employ slow-states of the dynamics (Sussillo and Barak, 2013) or attractor relics
as exploited in saddle point networks and heteroclinic networks (Rabinovich et al.,
2008b; Gros, 2009; Bick and Rabinovich, 2009). As long as the dynamics of these
states evolve on a slower time scale than the transient neuronal dynamics, they might
structure the phase space of the neuronal activity in a similar manner as discussed
above. Additionally, these attractor or attractor-like states do not necessarily have to
be realized by persistent neuronal activities. Instead, they might also be implemented
by short-term synaptic dynamics (Mongillo et al., 2008; Rose et al., 2016a).

Several experimental results agree with our finding that a combination of both
transient dynamics and attractor states underly the dynamics of WM. In the monkey
PFC, incoming stimuli during a WM task trigger neuronal dynamics which can be
described as a fast transient transition through the activity space before ending up in
a low activity attractor state (Stokes et al., 2013). Imaging studies of the human PFC
reveal similar dynamics (Courtney et al., 1997). Furthermore, recent experimental
results confirm the important role of persistent activity in the PFC in encoding
information during different WM tasks (Riley and Constantinidis, 2016). An interplay
of transient dynamics and attractor states is also found in other contexts in the brain,
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for instance, in the odor system of the locust (Mazor and Laurent, 2005).
In this chapter, we demonstrate the necessity of attractor states for the neuronal

systems implementing WM as stated by our first sub-hypothesis. We introduce these
attractor states by the addition of two appropriately trained additional readout units
whose activities represent the relevant information about past stimuli (Section 3.2.3).
This raises the question how such meaningful attractor states may emerge in the brain.
According to the main hypothesis of this thesis, the attractor states are not formed in
the WM system itself. Instead, they emerge in a self-organized way in the interacting
memory systems. The attractor states which are required for robust memory storage
in WM need to represent the types of the observed stimuli. For instance, in the WM
task studied by Koppe et al., (2014), they need to represent triangles, squares and
combinations of these. If these types are known to the subject performing the WM
task, they are represented in the declarative parts of LTM. As discussed in Section
2.3, information in LTM is generally assumed to be encoded in distinct attractor
states (Wood et al., 2011). Thus, by ways of mutual interactions, the attractor states
formed in a self-organized way in the LTM system might be the basis of robust
storage of information in WM. To evaluate this possibility, we need to understand the
mechanisms which allow the self-organized formation of attractor states and their
correct assignment to different stimuli in the neuronal system implementing LTM.
These are covered by the second sub-hypothesis of this thesis which is the subject of
the following chapter.
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Chapter 4

Self-Organized Formation and
Allocation of Cell Assemblies

In the previous chapter, we show that the neuronal system implementing working
memory (WM) requires attractor states (or attractor-like states, see Section 3.3) for
solving WM tasks with unpredictable temporal structure. This yields the question
how such attractor states, which represent the current history of stimuli, may emerge
in the brain. Following the main hypothesis of this thesis, we propose that these
attractor states are not formed in the specific neuronal system implementing WM
but rather in different interacting memory systems. In particular, the declarative
part of the long-term memory (LTM) is assumed to be implemented by input depen-
dent attractor states which represent facts, events and concepts (Section 2.3). These
concepts may be of abstract nature and may represent, for instance, the different
types of stimuli experienced during a WM task. Thus, in order to understand the
self-organized emergence of the attractor states which allow the stable information
storage in WM, we need to understand the mechanisms which underly the formation
and allocation of attractor states in LTM.

According to the Hebbian postulates (Section 2.2), a previously unknown stimulus
leads to the activation of a certain group of neurons in the neuronal system imple-
menting LTM. As a result, the weights of the synapses which interconnect these active
neurons are potentiated by activity-dependent synaptic plasticity or, more specific,
Hebbian plasticity. This leads to the formation of a group of strongly interconnected
neurons called a cell assembly (CA). This CA is the new mental representation of
the previously unknown stimulus. A later recall of this stimulus corresponds to the
reactivation of the respective CA. In other terms, recognizing two slightly different
stimuli as being of the same type requires both stimuli to activate the same CA. This is
possible if two key conditions are met. On the one hand, as described, the formation
of a CA leads to strong recurrent synapses in between the respective neurons. This is
required to enable pattern completion, i.e., the activation of the complete CA from
just a fraction of the original stimulus (Palm et al., 2014; Hunsaker and Kesner, 2013).
On the other hand, the feedforward synapses which project the different stimuli to
the different CAs need to be accurately adjusted to ensure that only specific stimuli
are able to evoke activity within a given CA. This process is referred to as memory
assignment or memory allocation. Most existing studies, both theoretical and experi-
mental ones, may either explain the mechanisms involved in the formation of CAs
(Tetzlaff et al., 2013; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015; Holtmaat
and Caroni, 2016) or the processes involved in the allocation of specific stimuli to
respective neuronal representations (Kohonen, 1982; Sullivan and Sa, 2006; Stevens
et al., 2013; Rogerson et al., 2014). It is still unknown, however, how the neuronal
system is able to reliably coordinate both processes simultaneously in a self-organized
way.
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In this chapter, we show that attractor states representing different stimuli can
be formed and assigned reliably in a self-organized way by two interacting forms of
synaptic plasticity, Hebbian plasticity and synaptic scaling, in the LTM system. This
corresponds to the verification of the second sub-hypothesis of this thesis (Figure
1.1). We present a neuronal network model in which stimuli are projected via feedfor-
ward synapses onto a recurrent area containing neurons which interact via recurrent
synapses (Section 4.1). Both the feedforward and the recurrent synapses are subject
to a combination of Hebbian plasticity and synaptic scaling (compare Section 2.1).
Based on different topological and functional measures, we study the self-organized
formation and allocation of CAs in this network model (Section 4.2). We derive a
reduced population model of the network dynamics which allows for an analytical
treatment. This enables the identification of three generic properties of the synaptic
plasticity rule which allow the reliable formation and allocation of CAs (Section 4.3).
Finally, we summarize and discuss the obtained results and its implications within
the context of this thesis (Section 4.4).

Many of the results presented here are taken from a submitted manuscript:

J. M. Auth, T. Nachstedt, and C. Tetzlaff (2017). The interplay of synaptic plasticity
and scaling enables the self-organized allocation of multiple memory representations.

Submitted.

4.1 Methods

In this section, first, we present in detail the actual network model used to study the
self-organization of CAs. We continue by defining the topological and functional
measures used to investigate the CAs which emerge in this network and their dynamic
behavior. Finally, we give a brief overview of the most relevant concepts employed
in the analytical investigations of the population model in Section 4.3.

4.1.1 Network Model

The model which we study in this chapter is based on the recurrent network model
presented by Tetzlaff et al., (2013). We extend this model by a set of plastic feedforward
synapses. These synapses transmit the signals received from a lower level brain area
into the recurrent area. In addition, we replace the local inhibition in this recurrent
area by a global inhibitory mechanism.

Network Topology

The network model consists of three distinct neuronal areas (Figure 4.1 a): an input
area, a recurrent area and an inhibitory population.

Signals or stimuli arriving from other brain areas are represented by the input area.
In the input area, a stimulus is encoded by activating a subset of the Nin excitatory
neurons. Feedforward synapses project the firing rates of these neuron into the
recurrent area. The recurrent area consists of Nrec recurrently connected excitatory
neurons. These neurons are distributed on a grid and interact via synapses with
a distance dependent-topology. We apply periodic boundary conditions to avoid
boundary effects. Every neuron in the recurrent area receives feedforward synaptic
signals from exactly nff neurons in the input area. The corresponding synaptic
weights are denoted as wff

ik with i ∈ {1, . . . , Nrec} and k ∈ {1, . . . , Nin}. Additionally,
every neuron in the recurrent area receives excitatory synaptic signals from all other
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Figure 4.1: Network model for studying the self-organized formation of CAs. (a) The network is
divided into three distinct areas. The neurons in the input area are externally controlled and represent the
different stimuli presented to the network. Neurons in the input area project signals through feedforward
synapses into the recurrent area composed of excitatory neurons distributed on a grid. The interaction
radius rrec determines the distance-dependent synaptic topology of the neurons within the recurrent
layer (green circle). A neuron receives signals from all other neurons in the recurrent area whose
euclidean distance measured in grid units is smaller than rrec. All neurons in the recurrent area excite
the inhibitory population which, in turn, transmits inhibitory signals to all neurons in the recurrent area.
In the figure, only the synaptic connections of one neuron (red neuron) in the recurrent area are shown
as an example. (b) The synapses transmitting signals from the input area to the recurrent area and the
recurrent synapses in the recurrent area are subject to synaptic plasticity. The outgoing and ingoing
synapses at the inhibitory population are static.

neurons in the recurrent area whose distance on the grid is smaller than the recurrent
interaction radius rrec. The respective synaptic weights are referred to as wrec

ij with
i, j ∈ {1, . . . , Nrec}. Every neuron in the recurrent area also receives inhibitory signals
through synapses with weights winh

out from the inhibitory population. The inhibitory
population, in turn, receives synaptic connections with weight winh

in from all neurons
in the recurrent area.

All synaptic connections in between excitatory neurons are subject to synaptic
plasticity (Figure 4.1 b). Only the synapses transmitting signals into and from the
inhibitory population are assumed to be static.

Model Dynamics

The models used to describe the neurons and plastic synapses in the network are
chosen according to the models used by Tetzlaff et al., (2013). All neurons in the
network are described by a rate-coded neuron model. The synapses in between
excitatory neurons are governed by a combination of Hebbian plasticity and synaptic
scaling. In contrast to Tetzlaff et al., (2013), we normalize both the neuronal dynamics
and the synaptic dynamics to reduce the number of covariant parameters. In the
normalized formulation, the firing rate of a neuron ranges between zero and one.
Similarly, the equilibrium weight of a synapse in between two neurons with maximum
firing rate is also one. The details about how to convert the original model into the
normalized version are given in Appendix A.1.

Every neuron in the recurrent area is described by a leaky membrane potential ui,
i ∈ {1, . . . , Nrec}, which develops according to

τ
dui

dt
= −ui + ∑

j∈Crec
i

wrec
ij Fj + ∑

k∈Cff
i

wff
ik Ik + winh

outF
inh . (4.1)



46 Chapter 4. Self-Organized Formation and Allocation of Cell Assemblies

Here, the time constant τ characterizes the time scale of the dynamics. The set Crec
i

contains the indices j of neurons within the recurrent area which transmit synaptic
signals to the neuron with index i. Accordingly, Cff

i is the set of the indices k of all
neurons in the input area which project signals to the neuron i within the recurrent
area. The activity level of the neuron with index k in the input area is given by Ik.
The weight winh

out determines the uniform coupling of the inhibitory population to the
neurons within the recurrent area.

The firing rate Fi of neuron i within the recurrent area is given by a sigmoidal
firing rate function φ of the membrane potential ui:

Fi = φ(ui) =
1

1 + exp(β(ε− ui))
. (4.2)

The parameter ε determines the location of the inflection point, i.e., of the steepest
point of the firing rate function. The parameter β controls the overall steepness of the
function.

The inhibitory population is modeled like a single neuron. The dynamics of its
membrane potential uinh is given by

τinh duinh

dt
= −uinh +

Nrec

∑
i

winh
in Fi (4.3)

where the time constant τinh defines the time scale of the dynamics of the inhibitory
population. The synaptic weight winh

in specifies the strengths of the synapses transmit-
ting the activity of the excitatory neurons to the inhibitory population. Analogously
to the firing rate of the excitatory neurons, the firing rate Finh of the inhibitory popu-
lation is determined by a sigmoidal firing rate function φinh with parameters βinh and
εinh:

Finh = φinh(uinh) =
1

1 + exp(βinh(εinh − uinh))
. (4.4)

The dynamics of the recurrent synapses in between the excitatory neurons in
the recurrent area (compare Figure 4.1 b) is given by a normalized version of the
combination of Hebbian plasticity and homeostatic synaptic scaling introduced by
Tetzlaff et al., (2011). The weight wrec

ij of the synapse transmitting signals from neuron
j to neuron i follows the following dynamics:

τrec
dwrec

ij

dt
= FiFj +

FT − Fi

1− FT (wrec
ij )2. (4.5)

In this normalized plasticity model, the time constant τrec and the target firing rate
FT of the homeostatic process are the only free parameters.

The dynamics of the feedforward synapses follows the same plasticity rule. The
weight wff

ik of the feedforward synapse transmitting signals from neuron k in the input
area to neuron i in the recurrent area follows the following dynamics:

τff dwff
ik

dt
= Fi Ik +

FT − Fi

1− FT (wff
ik)

2 (4.6)

with a time constant τff determining the timescale of the plasticity process.
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Parameters

The described network model contains a number of topological and dynamical
parameters. In the following, we discuss the used set of parameter values.

Concerning the topological parameters of the model, the number of neurons in
the recurrent area is chosen to be Nrec = 30 × 30 = 900. On the one hand, this
number is large enough to allow the application of tools tailored for the analysis of
large dynamical systems, for instance mean-field approaches. On the other hand,
it ensures computational tractability when simulating the network. The interaction
radius within the recurrent area is rrec = 3. Consequently, every neuron in the
recurrent area receives synaptic signals from nrec = 28 other neurons in this area. In
addition, every neuron in the recurrent area receives synaptic signals from nff = 25
independently chosen neurons in the input area. The number of neurons in the input
area is Nin = 100.

The time scales of the excitatory and inhibitory neurons are typically in the range
of tens of milliseconds (Tetzlaff et al., 2012a). Thus, we use τ = τinh = 10 ms. The
time scale of long-term synaptic plasticity, on the other hand, is several orders of
magnitudes slower (Tetzlaff et al., 2012a). We choose τrec = τff = 10 s. On the one
hand, this significantly larger than the neuronal time scales. On the other hand, it
still allows reasonable simulation times.

The target firing rate FT of the synaptic scaling term in Equations (4.5) and (4.6) is
a further free parameter of the synaptic plasticity model. In previous studies either
very small values (Tetzlaff et al., 2012b) or a zero value (Tetzlaff et al., 2013) have
been used for FT. Here, we consider the fact that the Hebbian terms in Equations
(4.5) and (4.6) only describe long-term potentiation and no long-term depression of
synapses. Therefore, the synaptic scaling terms only need to balance the potentiation
of the synaptic weights. If FT is chosen to be a strictly positive value, both Hebbian
plasticity and synaptic scaling yield to potentiation for postsynaptic firing rates lower
than FT. Hence, no equilibrium exists in this regime. This may result in diverging
weights, for instance, if the postsynaptic neuron receives strong inhibitory inputs. We
choose FT = 0 to avoid these kind of instabilities.

The parameters of the firing rate function of the excitatory neurons determine how
the neuron reacts to presynaptic inputs. For the position of the inflection point,
we choose ε = 12. As a result, 12 fully active presynaptic neurons may drive a
postsynaptic neuron to half of its maximum firing rate. Furthermore, we use β = 1 as
the overall steepness of the function. This means that few more than 12 fully active
inputs suffice to drive the neuron close toward its maximum firing rate.

The strength of the synapses transmitting signals from neurons in the recurrent
area to the inhibitory population is winh

in = 1. This parameter is covariant with the
parameters of the firing rate function of the inhibitory population. For this firing rate
function, we choose εinh = 100 and βinh = 1. The position εinh of the inflection point
is chosen such that it starts to balance the excitatory activity if approximately 100
neurons in the recurrent area are active. The strength of the synapses transmitting
signals from the inhibitory population to the recurrent area is winh

out = −20. This
strength needs to be large enough to balance the sum of excitatory signals which
arrive at a neuron in the recurrent area.

When numerically solving the network dynamics, the initial weights of the recur-
rent and feedforward synapses are wrec

ij (t = 0) = wff
ik(t = 0) = 0.5 for all values of i,j

and k that belong to existing synapses. Table 4.1 summarizes all used parameters and
their respective values. If not stated differently, this set of parameter values is used in
all simulations whose results we present in the following.
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Table 4.1: Overview of the network model parameters and their values

Parameter Description Symbol Value

number of neurons in the recurrent area Nrec 900
number of neurons in the input area Nin 100
excitatory interaction radius rrec 3
number of feedforward synapses per neuron in the recurrent area nff 25
time constant of excitatory neurons τ 10ms
time constant of inhibitory population τinh 10ms
weight of synapses from inhibitory population to recurrent area inh

out −20
weight of synapses from recurrent area to inhibitory population inh

in 1
steepness of excitatory firing rate function β 1
inflection point of excitatory firing rate function ε 12
steepness of inhibitory firing rate function βinh 1
inflection point of inhibitory firing rate function εinh 100
time constant of recurrent synaptic plasticity τrec 10 s
time constant of feedforward synaptic plasticity τff 10 s
target firing rate of synaptic scaling FT 0
initial weight of recurrent synapses rec

j
(t = 0) 0.5

initial weight of feedforward synapses ff
k
(t = 0) 0.5

Numerical Integration

For numerically solving the network dynamics, we integrate the network model
using the Euler method (Butcher, 2003) with a time step of ∆teuler = 1 ms.

4.1.2 Topological and Functional Measures

When analyzing the described network model, we use different topological and
functional measures to capture the characteristic properties of the representations
emerging in the recurrent area. These are defined and motivated in the following.

Active Neurons

We refer to neurons whose current firing rate Fi is higher than 0.5 as active neurons.
Neurons with a firing rate Fi < 0.5 are called inactive. The number of currently active
neurons in the recurrent area is denoted as Nrec

+ . When we present a stimulus to
the network, we set the firing rate of every neuron in the input area to either zero
(inactive) or one (active). The number of currently active neurons in the input area
is denoted as Nin

+ . We call the number of incoming recurrent synapses at neuron i
that transmit signals from active neurons in the recurrent area nrec

i,+. The quantity nff
i,+

gives the number of feedforward synapses which originate from active input neurons
and converge at neuron i in the recurrent area.

Active Neighbor Ratio

A CA is defined as a group of highly interconnected neurons (compare Section 2.2). If
the set of currently active neurons in the recurrent area is a CA, every active neuron
receives synaptic signals from many other active neurons in the recurrent area. This
means in case of a CA, the active neurons form a cluster in the topology defined
by the synaptic connectivity. To evaluate the degree of clustering, we introduce a
measure which captures the ratio of the number nrec

i,+ of incoming recurrent synapses
from active neurons and the total number nrec of incoming recurrent synapses. We
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Figure 4.2: Active neighbor ratio (ANR) as a measure of activity clustering. The ANR is given by
the mean ratio of the number of recurrent synapses originating from active (F > 0.5) neurons and the
number of all incoming recurrent synapses for active neurons. (a) In the case of unclustered activity, the
proportion of synapses transmitting signals from active neurons in the recurrent area is low. Here, active
neurons are filled blue. The circles in the background indicate the recurrent interaction radius rrec of these
neurons. For each active neuron, the number of other active neurons within this circular neighborhood
is given. Note that only these values influence the ANR. (b) If the same number of active neurons is
clustered at a specific location in the network, the number of synapses transmitting signals from active
neurons in the recurrent area is much higher in these neurons. (c) Expected ANR for unclustered activity
and for perfectly clustered activity in the recurrent area of the network as a function of the number Nrec

+
of

active neurons in this area. The dashed vertical line indicates the value Nrec
+

= 100 as this approximate
value is of relevance later on.

define the active neighbor ratio ANR of a network state as the mean of this ratio over
all currently active neurons in the recurrent area:

ANR =
1

N+

Nrec

∑
i=1,

Fi>0.5

nrec
i,+

nrec . (4.7)

If the currently active neurons are not clustered, i.e., randomly located in the
recurrent area (Figure 4.2 a), the ANR depends linearly on the number N+ of active
neurons (Figure 4.2 c). The expected value of the ANR for a perfect clustering of
the neuronal activity (Figure 4.2 b), in contrast, is much higher (Figure 4.2 c). The
actual ANR difference between the clustered and the unclustered case depends on the
number N+ of active neurons in the recurrent area. If N+ is close to Nrec, almost all
neurons in the recurrent area are active. Thus, the ANR difference between clustered
and unclustered activity is small. This is a finite size effect.

Pattern Completion and Separation

Pattern completion and pattern separation are fundamental capabilities of memory
systems (Bakker et al., 2008; Hunsaker and Kesner, 2013). In very general terms, a
memory system maps different input stimuli to corresponding memory representa-
tions. If the difference between two representations is smaller than the difference
between the two respective input stimuli, this process is called pattern completion. If
the difference between the representations is higher than the difference between the
stimuli, this is referred to as pattern separation.

To quantify whether a system performs pattern completion or pattern separation
for a given pair of input stimuli A and B, we introduce a measure for the similarity
between the input stimuli and between the memory representations. We define the
set SA of neurons in the input area which are active when stimulus A is presented to
the network. The corresponding memory representation RA of stimulus A is given
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by the set of neurons in the recurrent area which are active when A is presented to
the network. Accordingly, the set SB contains the neurons in the input area which
are active when stimulus B is presented to the network. The corresponding active
neurons in the recurrent area define the set RB.

We use the Jaccard index J as a measure of the overlap between the two input
stimuli and between the two memory representations. Given two sets, the Jaccard
index J is defined as the ratio of the size of the intersection and the size of the union
of these two sets. In consequence, J is zero for two disjunct sets and one for two
identical sets. Given the sets SA, SB, RA, and RB, we have

J(SA, SB) =
|SA ∩ SB|
|SA ∪ SB|

and J(RA, RB) =
|RA ∩ RB|
|RA ∪ RB|

. (4.8)

If the Jaccard index J(RA, RB) of the two memory representations is larger than the
Jaccard index J(SA, SB) of the two input stimuli (J(RA, RB) > J(SA, SB)), pattern
completion has occurred. In contrast, if the Jaccard index of the representations is
lower than the Jaccard index of the input stimuli (J(RA, RB) < J(SA, SB)), the network
performs pattern separation for these stimuli.

Network and Ensemble Averages

In the following, we use different kinds of mean values to discuss the properties
of individual neurons or synapses. We denote a mean value of a property x over
a certain group of neurons or synapses within a single network instantiation as x̄.
The average of this mean value over an ensemble of several independent network
instantiations is denoted as 〈x̄〉.

4.1.3 Nullclines, Equilibria and Asymptotic Stability

In Section 4.3, we reduce the network dynamics to a low-dimensional model. We
analyze this model using methods of standard stability theory. Here, we briefly
summarize the most relevant concepts for this analysis.

We assume ẋ = dx
dt x = f (x) to be an autonomous system of n ordinary differential

equations:
ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)

...
ẋn = fn(x1, . . . , xn) .

(4.9)

When we set each of the n differential equations equal to zero (ẋi = 0 for i ∈
{1, . . . , n}), we obtain the n nullclines of the system. The i’th nullcline is defined
as the geometric shape in the phase space for which ẋi = 0 holds. A point x∗ :=
(x∗1 , x∗2 , . . . , x∗n) in the phase space in which all the n nullclines intersect is an equilib-
rium of the system. For this point, we have f (x∗) = 0. Alternatively, the term fixed
point is used interchangeably with the term equilibrium.

The dynamics of the system in the surroundings of an equilibrium x∗ determines
the asymptotic stability of this equilibrium. If there is a region around x∗ from within
which the system converges back to x∗, the equilibrium is called asymptotically stable
or attracting. If no such region exist and even infinitesimally small perturbations
suffice to drive the system away from the equilibrium, it is unstable or repulsive.
Whether a given equilibrium x∗ of a system is asymptotically stable can be determined
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by evaluating the eigenvalues of the Jacobian matrix Dx f of the system at x∗. If the
real parts of all eigenvalues are negative, the given equilibrium is asymptotically
stable. If the real part of at least one eigenvalue is larger than zero, the equilibrium
is an unstable one. If the eigenvalue with the largest real part lies on the imaginary
axis, linear stability theory is not conclusive about its stability and higher order terms
have to be considered (Kuznetsov, 1998).

4.2 Cell Assembly Dynamics

In the following, we study the self-organized formation of CAs in the described
network model. We start with an overview of the general process of CA formation
and assignment in the model. Afterwards, we investigate different topological and
functional properties of the formed CAs.

4.2.1 General Cell Assembly Formation

We initiate the process of self-organized CA formation by presenting a stimulus
pattern in the input area, i.e., by activating a subset of the neurons in the input area
(Figure 4.3 a, top row). This activity is transmitted to neurons in the recurrent area
by the feedforward synapses. In the example discussed here, the resulting signals
arriving at neurons in the recurrent area initially do not suffice to elicit significant
firing rates (t = 0 s). This may be different for a larger number Nin

+ of activated
neurons in the input area. Here, however, the onset of the stimulus is first followed
by a phase of very low activity in the recurrent area. Nevertheless, due to the large
presynaptic activity, the weights of the feedforward synapses transmitting signals
from the active neurons in the input area are slowly potentiated.

As a result of this potentiation, at some point of time, the membrane potential
of neurons in the recurrent area which receive synaptic signals from a high number
of active neurons in the input area reaches the inflection point of the firing rate
function. These neurons do now show significant firing activity (t = 20 s). This
leads to the potentiation of the recurrent synapses in between active neurons in the
recurrent area. Additionally, due to the high presynaptic activity, also the weights of
synapses from active neurons in the recurrent area to inactive neighboring neurons
are increased. This increases the probability of these neighboring neurons to also
receive enough excitatory inputs to get active. At some point, this ongoing process of
self-organization leads to a cluster of strongly interconnected active neurons or, in
other words, a CA (t = 40 s). This is also reflected by the time course of the ANR in
the network which initially takes low values and then increases to an intermediate
value (Figure 4.3 d). This indicates a transition from a state of unclustered activity in
the recurrent area to a state in which a CA coexists with some active neurons which
do not possess a high number of synaptic connections with other active neurons.

The ongoing plasticity at both the recurrent and the feedforward synapses in-
creases the number of neurons involved in the CA (Figure 4.3 c). The plasticity of the
feedforward synapses potentiates the synapses projecting signals from active neurons
in the input are to neurons in the CA. In parallel, synaptic scaling decreases the
weights of synapses which connect inactive neurons in the input area to active neu-
rons in the recurrent area (bottom row in Figure 4.3 a). The downscaling is important
for the separation of distinct patterns as will be discussed in Section 4.3.3.

The recruitment of more and more neurons into the CA results in stronger activa-
tion of the inhibitory population. This leads to stronger inhibitory signals received
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Figure 4.3: Self-organized formation of a CA. (a) Snapshots of the activities k of the neurons within
the input area, the excitatory activity F of neurons within the recurrent area, the mean weights ̄rec


of the

incoming recurrent synapses per neuron, and the mean weights ̄ff
,+

and ̄ff
,− of incoming feedforward

synapses originating from active or inactive input neurons, respectively, at different point of times during
the CA formation. The input stimulus is active for 0 s ≤ t ≤ 125 s. (b) The activity Finh of the inhibitory
population increases rapidly during the initial formation of the CA. Afterwards it increases slowly. Note
that Finh depends monotonously on the total excitatory activity in the recurrent area. (c) The number
Nrec

+
of active neurons, i.e., neurons with a firing rate F > 0.5, increases only slightly once the CA has

emerged (t > 50 s). (d) The active neighbor ratio (ANR) in the recurrent area reflects the degree of
clustering of the active neurons in the space defined by the synaptic topology. The theoretically expected
ANR values for perfectly clustered or completely unclustered activity depend on the current number Nrec

+

of active neurons in the recurrent area (dashed orange lines). Note that the ANR is only defined for a
non-zero number of active neurons. The intermediate value of the ANR reached after the formation of
the CA reflects the coexistence of an active CA and single active neurons with few synaptic connections
with other active neurons in the recurrent area. (b, c, d) The dashed vertical lines indicate the times of
the snapshots shown in (a).
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Figure 4.4: Mean long-term development of a CA. A stimulus activating half of the neurons in the
input area is presented for 105 s in 100 independent network instantiations. Note the logarithmic scale of
the time axes. The shaded area indicates the standard deviation of the distribution of the respective value
within the 100 network instantiations. (a) The mean number 〈Nrec

+
〉 of active neurons in the recurrent

area increases slowly after the formation of the CA and reaches a stable value after approximately 104 s.
(b) The mean activity 〈Finh〉 of the inhibitory population keeps increasing also for long stimulation times
t. Due to the direct coupling between the activity in the recurrent area and the membrane potential of
the inhibitory population, this directly indicates an increasing sum of excitatory activity in the recurrent
area. (c) The mean active neighbor ratio 〈ANR〉 first reaches an intermediate value in between the
theoretically expected values for unclustered activity and clustered activity in the recurrent area. For
very long stimulus presentation times, it approaches the limit value for perfectly clustered activity. Here,
all active neurons are part of the highly interconnected CA.

by all neurons in the recurrent area (Figure 4.3 b). As a result, the number of active
neurons within the recurrent area which are not connected to a high number of other
active neurons decreases. These neurons do no longer receive enough recurrent
excitatory input to counterbalance the inhibitory signals. This leads to a slow increase
of the ANR (Figure 4.3 d). At the same time, the growing of the CA gets slower and
saturates with stronger inhibition which impedes the recruitment of further neurons
into the CA (t = 100 s, see Section 4.2.2).

After the input stimulus is switched off, the activity of the CA drops to baseline
(t = 150 s). For the given set of parameters, the recurrent signals in between the
neurons which are part of the CA are not sufficient to maintain persistent activity
of the CA. However, while the activity of the CA drops, the strong weights of the
synapses in between the neurons which are part of the CA remain. As will be
shown in section 4.2.3, these modified synaptic weights allow for the recognition and
completion of the learned input pattern.

In the example shown here (Figure 4.3), the input stimulus lasts for 125 s. Al-
though the network dynamics has considerably slowed down at the end of this
interval, it has not yet reached an equilibrium. In a second analysis, we present the
stimulus for a much longer time span of 105 s to 100 independent network instantia-
tions. We find that after the initial formation of a CA, the mean number 〈N+〉 of active
neurons in the recurrent area continues to slowly increase (Figure 4.4 a). In parallel,
also the mean inhibitory activity 〈Finh〉 (Figure 4.4 b) and the mean active neighbor
ratio 〈ANR〉 in the recurrent area (Figure 4.4 c) increase. For long stimulation times,
the value of 〈ANR〉 gets close to the ANR value expected for perfect clustering of the
active neurons. Thus, eventually, all active neurons in the recurrent area are part of
the highly interconnected CA.

4.2.2 Topological Properties

Whereas the formation of CAs in the presented model is both visually apparent
and indicated by the ANR value, the detailed topological properties of the CAs
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remain to be investigated. These properties are the basis for the derivation of a
reduced population model in Section 4.3. The population model approximates the
mean dynamics inside subpopulations of neurons in the recurrent area. Every such
subpopulations has the potential to be recruited as a CA for a given input stimulus.
Thus, the properties of the individual subpopulations have to be adjusted to the
properties of the CA observed in the numerical solutions of the complete network
model. In particular, we require the number of neurons that are recruited into a CA
and the mean recurrent and feedforward synaptic connectivity of these neurons.

Number of Neurons in a Cell Assembly

As discussed in the previous section, the ANR approaches the expected value for
perfect clustering for very long presentation times (Figure 4.4 c). Thus, all active
neurons in this limit are part of the CA. Therefore, we define the number NCA
of neurons in a CA for a given input stimulus as the limit value of Nrec

+ for long
stimulus presentation times. This number varies only slightly across different network
instantiations (Figure 4.4 a).

Topological and dynamical considerations allow an analytical derivation of NCA.
We consider a situation in which a certain stimulus pattern consisting of Nin

+ active
input neurons is presented to the network. We assume that this stimulus has already
lead to the formation of a CA in the recurrent area and that this CA has reached
its final size NCA. In other words, the final equilibrium of the network state is
reached. All NCA neurons in the recurrent area which are part of the CA are highly
active, i.e., their equilibrium firing rate F∗i is close to 1. We assume that there are
no more unclustered active neurons. All neurons which are not part of the CA are
approximated by an equilibrium firing rate F∗i ≈ 0. The equilibrium membrane
potential uinh,∗ of the inhibitory population is given by the number of neurons in the
CA (compare Equation 4.3):

duinh,∗

dt
= 0⇒ uinh,∗ =

Nrec

∑
i=1

winh
in F∗i = winh

in


Nrec

∑
i=1

F∗i >0.5

F∗i

︸ ︷︷ ︸
≈NCA

+
Nrec

∑
i=1

F∗i ≤0.5

F∗i

︸ ︷︷ ︸
≈0


≈ winh

in NCA .

(4.10)
We assume that the network has reached the equilibrium state. This means no

more additional neurons in the recurrent area are recruited into the CA. In particular,
inactive neurons which are located directly next to the CA do not receive enough
excitatory input to cross the inflection point of their firing rate function (Figure
4.5 a). We can calculate the equilibrium weights of the synapses that project signals
from neurons within the CA to these neurons from Equation (4.5). For FT = 0, the
equilibrium condition ẇrec,∗

ij = 0 leads to (wrec,∗
ij )2 = F∗j . Thus, the weights of all

synapses arriving from active presynaptic neurons (F∗j ≈ 1) can be approximated by
wrec,∗

ij ≈ 1. Similar consideration hold for the feedforward synapses which project
signal from active neurons in the input area to inactive neurons in the network
(Equation 4.6). From Ik = 1 and FT = 0, it follows that wff,∗

ik = 1. We can therefore
approximate the equilibrium value of the membrane potential of a neuron i located
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Figure 4.5: Analytical derivation of the CA size and numerical results. (a) The analytical derivation
of the number NCA of neurons in the recurrent area that are recruited for a CA is based on the excitatory
and inhibitory signals received by a neuron (edged in yellow) located right next to the active (dark
blue) CA. Based on the recurrent interaction radius rrec (green) in the recurrent area, such a neuron
receives recurrent synaptic signals from nrec other neurons (edged in red). For estimating the CA size,
the number nrec

+
of recurrent synaptic signals from active neurons is crucial (dark blue and edged in

red). In the case of rrec = 3, we find nrec
+

= 11. (b) The analytically derived value of the number NCA of
neurons in the CA matches the mean value obtained in numerical simulations of the network for different
values of the inflection point εinh of the inhibitory population. The dashed gray line marks the identity
NCA = εinh. (c) The analytical derived expression for NCA does also correctly capture the influence of
different numbers Nin

+
of active neurons in the input area. Interestingly, NCA does only increase by 34%

when increasing Nin
+
from 25 to 75. (b, c) For every parameter value, we simulated 100 independent

network instantiations. NCA is given by the number N+ of active neurons after a stimulus presentation
for 105 s. To further accelerate the development of the CA, we reduce the time scales τrec and τff of the
synaptic plasticity processes to 0.1 s. The error bars show the standard deviation among these trials (in
many cases too small to be visible).

directly next to the CA (Figure 4.5 a) as follows (compare Equation 4.1):

u∗i = ∑
j∈Crec

i

wrec,∗
ij F∗j + ∑

k∈Cff
i

wff,∗
ik Ik + winh

outF
inh,∗

= ∑
j∈Crec

i
F∗j >0.5

wrec,∗
ij F∗j

︸ ︷︷ ︸
≈nrec

i,+

+ ∑
j∈Crec

i
F∗j ≤0.5

wrec,∗
ij F∗j

︸ ︷︷ ︸
≈0

+ ∑
k∈Cff

i
Ik>0.5

wff,∗
ik Ik

︸ ︷︷ ︸
≈nff

i,+

+ ∑
k∈Cff

i
Ik≤0.5

wff,∗
ik Ik

︸ ︷︷ ︸
≈0

+winh
outF

inh,∗

≈ nrec
i,+ + nff

i,+ + winh
outF

inh,∗ .

(4.11)

Here, nrec
i,+ is the number of recurrent synapses transmitting signals from active

neurons in the recurrent area to neuron i (blue neurons with red edges in Figure
4.5 a). For a recurrent interaction radius rrec = 3, geometrical considerations lead to
nrec

i,+ = 11 (Figure 4.5 a). Accordingly, nff
i,+ = Nin

+ nff/Nin is the expected number of
synapses transmitting signals from active neurons in the input area to neuron i.

From Equation (4.10), we can extract the inhibitory equilibrium firing rate Finh,∗

which leads to an equilibrium membrane potential u∗i of a neuron located directly next
to the CA. Using the inverse of the firing rate function of the inhibitory population
(Equation 4.4), we can transform Finh,∗ into the respective equilibrium membrane
potential uinh,∗. Finally, using the expression for uinh,∗ in Equation (4.10), we arrive at
a formula which gives the number NCA of neurons in the CA required to keep the
inactive neuron i at a membrane potential u∗i . As u∗i = ε defines the steepest point
of the firing rate function and marks the transition from inactivity to activity, we
evaluate the formula for this condition. This yields an expression for the number NCA
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of neurons which are recruited into the CA:

NCA =
1

winh
in

(
εinh − 1

βinh

(
log

(
winh

out

ε− nrec
i,+ − nff

i,+
− 1

)))
. (4.12)

For deriving the expression in Equation (4.12), we assumed the weights of all
synapses to be close to the respective equilibrium state. Therefore, a comparison of
the values obtained from Equation (4.12) with the results from solving the network
dynamics numerically requires long simulation times. These long-run simulations
confirm the linear relationship between the position of the inflection point εinh and
the CA size NCA predicted by Equation (4.12) (Figure 4.5 b). Note that the offset
of the curve from the diagonal is comparably small indicating small values of the
logarithm in Equation (4.12) (βinh = 1). The influence of variations of the parameters
which occur in the argument of this logarithm on the number of neurons in the CA
is small. In particular, this holds for the expected number nff

i,+ of signals received
from active neurons in the input area. The value of nff

i,+ is directly proportional to the
total number Nin

+ of active neurons in the input area: nff
i,+ = nffNin/nff. Accordingly,

we find NCA ≈ 90 for Nin = 25 and NCA ≈ 121 for Nin = 75 (Figure 4.5 c). Thus, an
increase of Nin

+ of 200 % leads to an increase of only approximately 34 % of Nrec
+ . This

shows that the system is able to form memory representations with almost uniform
properties for different stimulus sizes.

Number of Active Feedforward and Recurrent Connections

The collective dynamical properties of the neurons within a CA are determined by
both the recurrent and the feedforward connectivity of the neurons within the CA.
The numbers of the recurrent and feedforward synapses transmitting signals from
active neurons to CA neurons are crucial parameters for the population model in
Section 4.3. Therefore, here, we study these numbers for the active neurons in the
recurrent area.

We denote by n̄ff
++ the mean of all values nff

i,+ of neurons i whose firing rate Fi
is larger than 0.5, i.e., which are active. Similarly, we define n̄rec

++ as the mean of
all values nrec

i,+ of active neurons i. In the very early CA development phase, only
neurons i in the recurrent area with a high number of feedforward synapses from
active neurons in the input area receive enough excitation to get activated (Figure
4.6 a). This results in a high value of n̄ff

++. As discussed in Section 4.2.1, these initially
activated neurons in the recurrent are unclustered. Accordingly, they receive few
inputs from other active neurons in the recurrent area and the value of n̄rec

++ is low.
During the formation of the CA, the relation of n̄ff

++ and n̄rec
++ starts to reverse. The

increasing clustering of the active neurons in the recurrent area (Figure 4.4 c) leads to
a higher number of synapses transmitting signals in between active neurons. Thus,
n̄rec
++ starts to increase. At the same time, also neurons receiving fewer synapses from

active neurons in the input area are recruited into the CA and n̄ff
++ starts to decrease.

This development reflects the transition from an unclustered representation of the
input stimulus which only relies on feedforward signals to a representation by a CA.

As shown in Section 4.2.1, for long stimulus presentation times, the ANR ap-
proaches the theoretical expected value for perfect clustering. Thus, in this limit, all
active neurons are part of the formed CA and the numbers n̄ff

++ and n̄rec
++ characterize

the connectivity of this CA. We find that the mean number n̄ff
++ of synapses from

active input neurons received by CA neurons varies only slightly among the different
initializations of the network model (Figure 4.6 b). The average value after 105 s of
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Figure 4.6: Mean number of active recurrent and feedforward inputs for CA neurons. The value
n̄ff
++

is given by the mean of the numbers of incoming active feedforward inputs for active neurons in
the recurrent area. Similarly, n̄rec

++
is the mean number of active recurrent inputs received by active

neurons in the recurrent area. For long stimulation durations, these values characterize the connectivity
of the formed CA and are of relevance for the population model derived in Section 4.3. (a) The relation
between 〈n̄rec

++
〉 and 〈n̄ff

++
〉 is reversed during the formation of a CA. This reflects the transition from a

feedforward dominated representation of the input stimulus to a representation by a CA. As for long
stimulus presentation durations all active neurons in the recurrent area are part of the CA, in this limit,
〈n̄rec

++
〉 and 〈n̄ff

++
〉 describe the connectivity of the CA. The shaded area gives the standard deviation

among 100 independent network instantiations. (b) The value of 〈n̄ff
++
〉 converges toward the mean

number of incoming feedforward synapses from active neurons in the input area which a neuron within
the CA receives. (c) The value of 〈n̄rec

++
〉 corresponds to the mean number of incoming recurrent synapses

which a neuron in the CA receives from other neurons in the CA. (a, b, c) The data is extracted from the
same 100 long-term network simulations as used in Figure 4.4. (b, c) The connectivity data is extracted
after a stimulus presentation duration of 105 s. The red line indicates the mean of the distribution.

stimulus presentation is 〈n̄ff
++〉 ≈ 13.3. The standard deviation of the underlying

distribution is σ(n̄ff
++) ≈ 0.2. Every neuron in the recurrent area receives synapses

from nff = 25 randomly chosen neurons in the input area. During the presentation
of the stimulus, half of these neurons in the input area are active. Thus, we would
expect the ensemble average of nff

++ to be 12.5 if the CA would be formed at a random
location within the recurrent area. Instead, the presentation of an input stimulus
leads to a competition among the neurons in the recurrent area about representing
this stimulus. In this competition, the recruitment of neurons which receive a higher
number of signals from the active neurons in the input area is more likely. We have to
include the resulting larger mean value 〈n̄ff

++〉 when setting up the population model
in Section 4.3.

The distribution of the mean number n̄rec
++ of incoming recurrent synapses from

active neurons after long stimulus presentations has a mean of 〈n̄rec
+ 〉 ≈ 21.2 (Figure

4.6 c). The standard deviation of this distribution is σ(n̄rec
+ ) ≈ 0.1.

4.2.3 Pattern Completion and Separation

The topological properties of a CA directly influence its functional properties. The
most prominent functional property commonly attributed to CAs is their capability to
perform pattern completion and separation. Pattern completion occurs if two input
stimuli are mapped to memory representations whose difference is smaller than the
difference of the input stimuli. Pattern separation, in contrast, refers to a mapping of
two input stimuli to two memory representations with a higher difference than the
one of the input stimuli.

We investigate the pattern completion and separation capabilities of the memory
representations formed in the here described model. For this, we present a stimulus
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which activates half of the neurons in the input layer to the network. The active
neurons in the input area define the set SA. This stimulus is presented to the network
for a time span tlearn. The active neurons in the recurrent area at the end of this
learning phase define the set RA. Thus, RA is the memory representation of the
stimulus SA. After a short period without activity in the input area, a recall stimulus
SB is presented for a short time span trecall (trecall � tlearn). The stimulus SB consists
of the same number of neurons in the input area as the stimulus SA (|SA| = |SB|).
The activity of the recurrent area at the end of this recall phase defines the recalled
representation RB. As outlined in Section 4.1.2, the difference between the Jaccard
index J(SA, SB) of the two stimuli and the Jaccard index J(RA, RB) of the correspond-
ing representations in the recurrent area determines if pattern completion or pattern
separation has occurred.

In the following, first, we investigate the pattern completion and pattern separa-
tion properties of the network that rely solely on neuronal dynamics. In a second
step, we allow the synaptic plasticity processes to be also active during recall.

Static Recall

In a first experiment, similar to previous studies (e.g. Hopfield, 1982; Blumenfeld
et al., 2006), we artificially switch off synaptic plasticity at both the feedforward and
the recurrent synapses after the learning phase (Figure 4.7 a). Typical recall processes
are assumed to occur on time scales short enough to ignore the influence of plasticity
process. This way, we can analyze the pattern completion and separation properties
relying solely on the dynamics of the neuronal activities.

For learning durations tlearn which are significantly shorter than the typical stim-
ulation time required to build up a CA (tlearn . 20), the network performs pattern
separation (J(RA, RB) < J(SA, SB)) for the whole range of stimulus overlaps J(SA, SB)
(tlearn = 10 s in Figure 4.7 a). For these values of tlearn, the sizes of the representations
formed in the recurrent area are small and almost exclusively determined by the
random feedforward connectivity. As the weights of the feedforward synapses are
close to their initial values, only few memory neurons receive enough stimulation
to reach the inflection point of the firing rate function, i.e., to become active. Ad-
ditionally, the active neurons are not yet clustered and the recurrent weights are
low preventing effective recurrent interactions. Small changes in the input stimulus
can easily deactivate active neurons and vice versa. These changes in the neuronal
activity imply differences in the respective memory representations which yield a
low similarity J(RA, RB) of the two representations.

If we increase the learning duration tlearn to tlearn = 20 s , the J(SA, SB)-J(RA, RB)-
curve is shifted close to the identity line (Figure 4.7 a). This is due to the increased
number of neurons representing the learned stimulus and receiving inputs from
potentiated feedforward synapses (see Figure 4.3 a). At the same time, in some
network instantiations a CA has already emerged at this point of time. This is also
the reason of the high standard deviation of the J(SA, SB)-J(RA, RB)-curve for this
learning duration.

We can observe the effect of the presence of a CA on the J(SA, SB)-J(RA, RB)-curve
by analyzing this curve for a learning duration tlearn at which a CA has been formed
in almost all network instantiations (tlearn = 30 s in Figure 4.7 a). Now, the network,
or rather the CA, performs pattern completion (J(RA, RB) > J(SA, SB)) for a wide
range of stimulus similarities J(SA, SB) & 0.15. As soon as neurons in the recurrent
area which are part of the CA receive enough feedforward signals to become active,
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Figure 4.7: Pattern completion and separation properties of the network model. A stimulus SA

defined by a set of active neurons in the input area is present for a duration tlearn to the network.
The neurons in the recurrent area which are active at the end of this time span define the stimulus
representation RA. Afterwards, a recall stimulus SB with similarity J(SA,SB) to SA is presented to the
network for a duration trecall. The activity in the recurrent area at the end of this time span defines the
recalled representation RB. Pattern completion occurs if J(RA,RB) > J(SA,SB). Pattern separation is
defined as J(RA,RB) < J(SA,SB) (a) We switch off the plasticity before presenting the recall stimulus.
Thus, the recall is only based on activity dynamics. The mean similarity between RA and RB depends not
only on the similarity of SA and SB but also on the time span tlearn. For short learning times (tlearn = 10 s),
the network performs pattern separation for all values of J(SA,SB). For longer learning times (tlearn & 30 s),
pattern completion occurs for a broad range of J(SA,SB) values. In all cases, we use trecall = 5 s. (b) After
the stimulus presentation for tlearn = 100 s, we keep the synaptic plasticity processes active also for the
recall phase. Synaptic plasticity assists the process of pattern completion. For longer durations trecall of
the recall stimulus presentation, the border between pattern separation and pattern completion is shifted
toward lower stimulus similarities. (a, b) The dashed grey line indicates the identity J(SA,SB) = J(RA,RB).

they excite other neurons of the CA via the strong recurrent synaptic connections.
This eventually leads to the activation of the complete CA.

Shortly after the formation of the CA, there is still a number of active neurons
in the recurrent area that are not part of the CA, i.e., not part of the cluster of active
neurons. These unclustered active neurons vanish during an ongoing presentation
of the learning stimulus (tlearn = 1000 s in Figure 4.7 a). This sharpens the pattern
completion effect: The representation similarity J(RA, RB) reaches values close to one
for a wide range of stimulus similarities J(SA, SB). Interestingly, also the regime for
low stimulus similarities J(SA, SB) in which pattern separation is performed increases
for long stimulation durations. Now, pattern completion occurs only for J(SA, SB) &
0.25. This is due to the downscaling of feedforward synapses from inactive neurons
in the input area to neurons in the CA due to the synaptic scaling term of the plasticity
rule in Equation (4.6). Thus, neurons in the input area which are part of SB but not of
SA cannot contribute to the activation of the memory representation RA.

In conclusion, the network model initially performs pattern separation for all
input stimulus similarities. The formation of a CA which represents the learned
stimulus in the recurrent area, in contrast, leads to pattern completion for a broad
range of stimulus similarities. Longer stimulation times during the CA learning
phase shift the border between pattern separation and pattern completion toward
higher stimulus similarities. At the same time, long stimulus durations pronounce
the pattern completion effect for mediate to high stimulus similarities.
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Plastic Recall

As discussed above, most studies of neuronal network models of memory assume
synaptic plasticity to be only active during the learning phase. In living neuronal
systems, however, plasticity is an ongoing dynamic process which influences the
activity dynamics both during learning and during recall. Therefore, we now keep
the synaptic plasticity processes in the here described network model active during
the recall phase. We find that the representation similarity J(RA, RB) in the presence
of a CA depends on the duration trecall of the recall interval (Figure 4.7 b). For small
values of trecall, the influence of synaptic plasticity is negligible and the recall of the
CA solely relies on the faster neuronal activity dynamics.

In contrast, for longer recall intervals, synaptic plasticity supports the pattern
completion process induced by the recall stimulus. While a stimulus similarity of
J(SA, SB) = 0.25 leads to almost complete pattern separation (J(RA, RB) ≈ 0.05) for
trecall = 0.1 s, it results in pattern completion (J(RA, RB) ≈ 0.63) for trecall = 20 s.
The ongoing synaptic plasticity leads to the potentiation of feedforward synapses
transmitting signals from neurons in the input area which belong to SB but not to
SA. The increasing weights of these synapses result in to stronger excitatory signals
received by the neurons in the recurrent area. This, in turn, may lead to the activation
of a CA which beforehand did not receive enough excitatory input signals to become
active. As a result, the transition between pattern separation and pattern completion
is shifted toward lower values of J(SA, SB) for longer recall times trecall. This effect
saturates for long recall intervals trecall.

Ongoing synaptic plasticity during the recall phase supports pattern completion.
Still, it is not possible to activate the originally formed CA with recall stimuli with
very low similarity to the original stimulus (J(SA, SB) . 0.2). Instead, in these cases,
the ongoing synaptic plasticity results in the formation of a second CA. This new
CA explicitly represents the recall stimulus SB. In the following, we investigate the
formation of a second CA in more detail.

4.2.4 Formation of Multiple Cell Assemblies

The formation of a first CA in the recurrent area may influence the initial conditions
for the formation of further CAs representing different stimuli. In the following,
we refer to the set of neurons in the recurrent are which are part of the first CA as
population 1. The stimulus which lead to the formation of the CA in population 1
is called stimulus A. The presentation of a second stimulus B leads to the formation
of a new CA if the similarity between stimulus A and stimulus B is small enough
(compare Figure 4.7 b). We refer to the neurons which are recruited for this new
CA as population 2. Additionally, we introduce a control population. This control
population contains all neurons in the recurrent area which belong to neither of the
two CA populations.

Interestingly, population 1 and population 2 do not share any common neurons
(Figure 4.8 a). The competition introduced by the synaptic scaling term of the plasticity
rule of the recurrent synapses (Equation 4.5) prevents overlaps. The time course of
the activity of the inhibitory population during the formation of the CA in population
2 is highly similar to the one of the inhibitory activity during the formation of the CA
in population 1 (Figure 4.8 b). The same is true for the time course of the number of
active neurons (Figure 4.8 c) and the active neighbor ratio in the network (Figure 4.8 d).
Thus, the formation of additional CAs is qualitatively equivalent to the formation of
the first CA in a blank network.
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1Figure 4.8: Formation of a second self-organized CA in the network model. Two different stimuli
are presented successively to the network. Stimulus A is active for 0 s < t < 100 s. Stimulus B is active
for 110 s < t < 210 s. Both stimuli contain 52 out of the 100 stimulus neurons of which they share 12.
The stimulus similarity is thus J(SA,SB) = 12/92 ≈ 0.13. (a) Every stimulus leads to the formation
of a CA in the recurrent area. The two CAs are formed at non-overlapping locations and both CAs are
characterized by strong recurrent synapses. Feedforward synapses originating from the stimulus that
is represented by the CA are potentiated. Feedforward synapses from neurons in the input area that
belong to the respective other stimulus are scaled down. (b) The time course of the activity Finh of the
inhibitory population during the formation of the first CA resembles the time course during the formation
of the second CA. (c) Also the time course of the number Nrec

+
of active neurons in the recurrent area

and (d) the time course of the active neighbor ratio (ANR) during the two CA formation processes does
not show significant differences. The dashed orange lines give the expected ANR for perfectly clustered
and completely unclustered activity depending on the current number Nrec

+
of active neurons. Note that

the ANR is only defined for a non-zero number of active neurons. (b, c, d) The dashed vertical lines
indicate the times of the network plots shown in (a).
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1Figure 4.9: Plasticity of feedforward and recurrent synapses during the sequential formation of
two CAs. Two non-overlapping stimuli A and B each consisting of 50 stimulus neurons are successively
presented for 100 s each to the network. All neurons which are active at the end of the presentation of
stimulus A are considered as population 1. All neurons which are active at the end of the presentation
of stimulus B are part of population 2. Neurons which belong neither to population 1 or population 2
are part of the control group. The shown mean synaptic weights are averaged over 100 independent
network initializations. The dashed lines are visual aids and do not represent the actual time courses.
(a) During the formation of a CA in one of the two populations, the weights of recurrent synapses in the
respective population are potentiated. The weights of recurrent synapses in the other populations are not
modified. (b) The formation of a CA in population 1 leads to the potentiation of the feedforward synapses
transmitting signals from neurons in the input area which are part of stimulus A to the neurons within
population 1. Feedforward synapses from the same neurons in the input area to other neurons in the
recurrent area are not modified. The formation of a CA in populations 2 results in the downscaling of the
feedforward synapses from stimulus A neurons in the input area to the neurons belonging to population
2 in the recurrent area. (c) The weights of the feedforward synapses originating from stimulus B neurons
and transmitting signals to neurons within population 1 are downscaled during the formation of a CA in
population 1. The weights of feedforward synapses connecting neurons in the input area which belong
to stimulus B with neurons in the recurrent area which are part of population 2 are potentiated during the
formation of a CA in population 2. Figure adapted from Auth et al., (2017).

During the presentation of stimulus A, the recurrent synapses in population 1
are potentiated (Figure 4.9 a). Accordingly, during the presentation of stimulus B,
the recurrent synapses in population 2 are potentiated. In both cases, the recurrent
synapses in the respective other population and in the control population are not
significantly modified. Similarly, also the synaptic plasticity of feedforward synapses
results in significant weight changes only at the synapses that converge at the pop-
ulation which is recruited for representing the current stimulus (Figures 4.9 b and
4.9 c). Synapses transmitting signals from the active neurons in the input areas to
the active population in the recurrent area are potentiated. In parallel, synapses
transmitting signals from inactive neurons in the input area to the active population
are scaled down by the homeostatic synaptic scaling term of the plasticity rule. As
will be outlined in Section 4.3.4, this downscaling is crucial for the discrimination of
the currently learned stimulus from other stimuli.

In summary, the network model allows for the formation of multiple distinct CAs
in the recurrent area. During the formation of a CA, the recurrent and feedforward
synapses of other populations in the recurrent area are not significantly modified.
Thus, the formation of a new CA does neither disrupt existing CAs nor prevent the
formation of additional CAs. Of course, this holds only as long as the number of
neurons which are not recruited for any CA is high enough to allow for the formation
of a new CA.
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4.3 Population Model

The network model investigated in the previous section is a high-dimensional dy-
namical system. The list of its dynamic variables includes the membrane potentials
of the 900 neurons in the recurrent area, the membrane potential of the inhibitory
population, the weights of 900× 28 = 25 200 recurrent synapses, and the weights
of the 900× 25 = 22 500 feedforward synapses. In total, there are 48 601 dynamic
variables in the model. This prevents a direct analytical treatment of the underlying
dynamics in terms of its attractive and repulsive equilibria. In this section, we develop
a population model which reduces the network dynamics to a set of seven interacting
dynamical equations. This reduction allows the derivation of the equilibria and
bifurcations underlying the self-organized formation and allocation of CAs in the
network. These equilbria and bifurcations determine the long-run behavior of the
system. Therefore, they allow us to obtain a more detailed understanding of the
self-organized interplay of the plasticity at the recurrent and feedforward synapses in
the limit of long stimulation times. Furthermore, we can draw conclusions about the
components of the model which are essential for making the self-organized formation
and allocation of CAs possible.

4.3.1 Model Definition

The population model is based on two distinct neuronal populations which both have
the potential to represent a given input stimulus (Figure 4.10). We assume the two
populations to be locally separated in the recurrent area such that there is effectively
no interaction via recurrent synapses in between them. Their only way of interaction
is by means of the inhibitory population. We describe each of the two populations by
a mean membrane potential ūi, i ∈ {1, 2}. Differences between neurons at different
positions within the populations are neglected.

In addition to the inhibitory signals, the neurons within each population receive
recurrent excitation from other neurons within the same population and external
inputs from two different input stimuli A and B. The mean membrane potential ūi,
i ∈ {1, 2}, in each of the two populations is described by

τ
dūi

dt
= −ūi + n̄rec

++w̄rec
i F̄i + winh

outF
inh + ∑

k=A,B
n̄ff
++w̄ff

ik Īk . (4.13)

The time scale τ and the weight winh
out correspond to the equivalent values in the

network simulation. The mean input strength Īk, k ∈ {A, B}, describes the mean
firing rate of the active neurons within the input area which belong to the respective
stimulus. If not stated otherwise, Īk takes values of either one or zero. The number
n̄rec
++ describes the mean number of recurrent synapses received by a neuron within

one of the two populations from other neurons belonging to the same population. It
corresponds to the mean number n̄rec

++ of synaptic signals in between active neurons
obtained for long stimulation durations in the previous section (Figure 4.6 c). Accord-
ingly, n̄ff

++ gives the mean number of incoming feedforward synapses from active
neurons in the input area received by neurons within one of the two populations. For
this, we use the value n̄ff

++ obtained for long stimulation durations in the complete
network model (Figure 4.6 b). As in the full network simulations, we transform the
mean membrane potential ūi of a population into a mean firing rate F̄i through the
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Figure 4.10: Structure of the population model. The two populations 1 and 2 are described by their
mean membrane potentials ̄,  ∈ {1, 2}, and the mean weight ̄rec


of their internal recurrent synapses.
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synapses with mean weights ̄ff
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. The only interaction between the two populations is mediated by the

inhibitory population with membrane potential inh. Figure adapted from Auth et al., (2017).

firing rate function φ:

F̄i = φ(ūi) =
1

1 + exp(β(ε− ūi))
. (4.14)

The dynamics of the membrane potential of the inhibitory population depends
on the number Npop of neurons in each population:

τinh duinh

dt
= −uinh + winh

in NpopF̄1 + winh
in NpopF̄2 . (4.15)

We use Npop = NCA ≈ 104.3 as obtained from the expression for the number of
neurons in a CA in Equation (4.12) (compare Figure 4.5). The firing rate of the
inhibitory population is given by the same firing rate function φinh as in the full
network model:

Finh = φinh(uinh) =
1

1 + exp(βinh(εinh − uinh))
. (4.16)

We assume that the dynamics of the mean synaptic weights w̄rec
i of the recurrent

synapses within the two populations follows the same plasticity rule as an individual
recurrent synaptic weight:

τrec dw̄rec
i

dt
= F̄2

i +
FT − F̄i

1− FT (w̄rec
i )2 . (4.17)

Also the mean weights of the feedforward synapses projecting the two input stimuli
onto the populations are assumed to follow the same plasticity rule as the weight of a
single feedforward synapse:

τff dw̄ff
ik

dt
= F̄i Īk +

FT − F̄i

1− FT (w̄ff
ik)

2 . (4.18)

In summary, the dynamics of the population model are described by nine inde-
pendent dynamical variables: the mean membrane potentials ū1 and ū2 of the two
excitatory populations, the membrane potential uinh of the inhibitory population, the
mean weights w̄rec

1 and w̄rec
2 of recurrent synapses within the two populations, and

the four mean weights w̄ff
1A, w̄ff

1B, w̄ff
2A and w̄ff

2B of the feedforward synapses. As we
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Table 4.2: Overview of the population model parameters and their respective values.

Parameter Description Symbol Value

number of neurons in each excitatory population Npop 104.3
mean number of intra-population synapses per neuron n̄rec

++
21.0

mean number of synapses from active inputs per neuron n̄ff
++

13.3
synaptic weight from inhibitory population to recurrent area inh

out −20
synaptic weight from recurrent area to inhibitory population inh

in 1
steepness of excitatory firing rate function β 1
inflection point of excitatory firing rate function ε 12
steepness of inhibitory firing rate function βinh 1
inflection point of inhibitory firing rate function εinh 100
target firing rate of synaptic scaling FT 0
time constant of excitatory neurons τ 10ms
time constant of inhibitory population τinh 10ms
time constant of recurrent plasticity τrec 10 s
time constant of feedforward plasticity τff 10 s

assume that at any point of time at least one of the two stimuli is inactive, always
two of the four feedforward connections can be omitted. This effectively reduces the
population model to a total of seven dimensions. Table 4.2 summarizes all parameters
of the model.

4.3.2 Population Nullclines and Equilibria

In contrast to the underlying network model with its 900 neurons and several thou-
sands of plastic synapses, the reduction to a population model with only nine or
rather seven dynamical variables allows an analytical investigation of the underlying
structure of the equilibria. This analysis is based on determining the intersections of
the membrane potential nullclines of the two excitatory populations.

The equilibrium values w̄rec,∗
i , i ∈ {1, 2}, of the mean recurrent synaptic weights

are given as a function of the equilibrium values F̄∗i of the population activities from
Equation (4.17):

w̄rec,∗
i (F̄∗i ) =

√
1− FT

F̄∗i − FT F̄∗i . (4.19)

Accordingly, the equilibrium values w̄ff,∗
ik , i ∈ {1, 2} and k ∈ {A, B}, of the mean

weights of the feedforward synapses are obtained as a function of F̄∗i from Equation
(4.18):

w̄ff,∗
ik (F̄∗i ) =

√
1− FT

F̄∗i − FT F̄∗i Īk . (4.20)

The only interaction between the two excitatory populations is mediated by
the inhibitory population. We derive the equilibrium value uinh,∗ of its membrane
potential as a function of both F̄∗1 and F̄∗2 from Equation (4.15):

uinh,∗(F̄∗1 , F̄∗2 ) = winh
in Npop(F̄∗1 + F̄∗2 ) . (4.21)

We transform uinh,∗ into the equilibrium firing rate Finh,∗ by means of the firing rate
function φinh of the inhibitory population (Equation 4.16):

Finh,∗(F̄∗1 , F̄∗2 ) = φinh(uinh,∗(F̄∗1 , F̄∗2 )) . (4.22)
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In Equations (4.19), (4.20) and (4.22), we express the equilibrium values of the
weights of the plastic synapses and of the inhibitory firing rate as functions of the
equilibrium values of the mean firing rates of the excitatory populations. We insert
these expressions into the dynamical equation of the membrane potentials of the
excitatory populations (Equation 4.13). Thus, we obtain a system of equations which
implicitly define the two population nullclines (i ∈ {1, 2}):

0 = −ū∗i + n̄rec
++w̄rec,∗

i (F̄∗i )F̄∗i + winh
outF

inh,∗(F̄∗1 , F̄∗2 ) + ∑
k=A,B

n̄ff
++w̄ff,∗

ik (F̄∗i ) Īk . (4.23)

Using F̄∗i = φ(ū∗i ), we transform the two equations into explicit function equations
describing the respective population nullclines (i, j ∈ {1, 2} and i 6= j):

ū∗j = φ−1

φinh,−1
(

1
winh

out

(
ui − n̄rec

++w̄rec,∗
i (ū∗i )φ(u

∗
i )−∑

k
n̄ff
++w̄ff,∗

ik (ū∗i ) Īk

))
winh

in Npop
− φ(u∗i )

.

(4.24)
The inverse firing rate functions φ−1 and φinh,−1 are analytically accessible.

The nullcline ū∗j (ū
∗
i ) gives the mean membrane potential ū∗j of neurons in pop-

ulation j which is necessary for an equilibrium at which the neurons in population
i have the mean membrane potential ū∗i . Actual equilibria of the system require
that both equations are fulfilled and are therefore located at intersections of the two
nullclines (Figure 4.11 a). Due to the nonlinearity of the nullclines in Equation (4.24),
their intersections can only be numerically determined. To do so, we use the methods
provided by the SciPy software package (Jones et al., 2001). For the set of parameters
which we derived from the network model (Table 4.2), the dynamics of the population
model is dominated by a total of three equilibria if one of the two input stimuli is
active. We determine the stability of these equilibria by evaluating the eigenvalues of
the Jacobi matrix of the system (Appendix A.2) at the respective locations of the phase
space. We find that there are two stable equilibria in the population model separated
by an unstable one on the symmetry axis (Figure 4.11 a). The two stable equilibria (2,
3) represent states in which the neurons of one of the two populations have a high
mean membrane potential ū∗i . The mean membrane potential of the neurons in the
respective other population is close to zero.

Using the firing rate equation for the two excitatory populations (Equation 4.14),
we project the nullclines and equilibria of the population model into the space which
is spanned by the two mean population firing rates F̄∗i (Figure 4.11 b). As to be
expected, the asymmetric equilibria (2, 3) are characterized by a close to maximum
firing rate in one population and almost no neuronal activity in the other population.
Furthermore, Equation (4.19) allows to project the nullclines and the equilibria into the
space spanned by the mean weights w̄rec,∗

1 and w̄rec,∗
2 of the recurrent synapses (Figure

4.11 c). The high or low level of activities in the two equilibria are accompanied by
corresponding strong or weak recurrent synaptic weights. The stable equilibria (2, 3)
therefore describe the formation of a CA in one of the two populations.

It is noteworthy that there is no stable equilibrium for low or intermediate firing
rates and corresponding low or intermediate recurrent weights in both populations.
This illustrates the preference of the system to build up local clusters of high activity
instead of unclustered and wide-spread intermediate activity and explains the reliable
formation of CAs observed in the simulations of the full network model.
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Figure 4.11: Nullclines and equilibria of the population model. (a) The nullcline of population  is
given by the mean membrane potential ̄∗

j
in population j 6=  which results in an equilibrium in population

 with mean membrane potential ̄∗

. Intersections of the two nullclines are equilibria of the system which

are either asymptotically stable or unstable. The two asymmetric stable equilibria (2, 3) indicate the
formation of a CA in population 1 or 2, respectively. They are separated by an unstable equilibrium (7).
(b) The projection of the nullclines and equilibria into the activity space shows that the formation of CAs
is accompanied by a high mean firing rate in the respective population. (c) In the space spanned by the
mean weights of the recurrent synapses, the stable equilibria correspond to maximum recurrent weights
in one of the populations and almost zero weights in the second population. (a, b, c) The numbers of
the equilibria correspond to the numbers in Figure 4.12. The gray lines show example trajectories of
the integrated population model for slightly different initial conditions. Figure adapted from Auth et al.,
(2017).

Input Amplitude Bifurcation

The nullclines of the population model and, as such, also the equilibria calculated
from the population model do not only depend on the chosen parametrization of
the model, but also on the properties of the input stimulus. For instance, in living
neuronal systems, we cannot assume that all input signals are characterized by the
same stimulus amplitude. Therefore, here, we study the bifurcation behavior of the
population model for varying input amplitudes ĪA. In other words, we investigate
the stable and unstable equilibria of the population model as a function of ĪA (Figure
4.12).

For very low stimulus intensities ĪA . 0.35, there are either two unstable equilibria
(2,3) representing CA formations in one of the two populations or no such equilibria
at all ( ĪA . 0.25). A symmetric equilibrium (1) with low recurrent weights in both
populations is the only stable equilibrium of the system in this input amplitude
regime. This equilibrium corresponds to no CA being formed in either of the two
populations. Thus, neither can new CAs be learned nor existing ones reliably recalled.
Still, this does not exclude the possibility to recall an already existing CA on short
time scales by solely exploiting activity dynamics.

For stimulus intensities 0.35 . ĪA . 0.8, the population model still possesses the
stable symmetric equilibrium (1) which corresponds to low potentials ūi and low
recurrent weights w̄rec

i in both populations. However, in this input regime, there are
also the two stable asymmetric equilibria (2,3) existing. These equilibria correspond
to the formation of a CA in one of the two populations. They are separated from the
stable symmetric equilibrium by two unstable equilibria (5, 6). Which of the three
stable equilibria is reached depends on the initial conditions of the model. The stable
symmetric equilibrium (1) is likely to be reached from intermediate and low initial
recurrent weights, i.e., from a situation in which there is no CA existing in either of
the two populations. The stable asymmetric equilibria (2, 3), in turn, are reached from
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Figure 4.12: Bifurcation diagram of the population model for varied input amplitudes ̄A. Shown
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equilibria. This projection provides a good overview over the bifurcation diagram as it allows to distinguish
symmetric equilibria at different recurrent weight levels. The red and green numbers identify the different
equilibria (compare Figure 4.11). Note that in some cases, two different equilibria are projected onto the
same line in this bifurcation diagram. The violet points stem from long-run network simulations (104 s)
with different initial conditions of the feedforward and recurrent weights corresponding to zero, one or two
CAs in the network (10 runs each per value of ̄A, see main text for details). While the network simulations
show the same general bifurcation behavior, the exact positions of these bifurcations differ from the
population model due to the simplifying assumptions of the latter. In the gray shaded area (̄A ' 1.41),
even maximum inhibition is not able to balance the sum of excitatory feedforward and recurrent inputs
received by neurons in the recurrent area. Thus, CA growth is unbounded (Appendix A.3). In this regime,
the population model does not apply. The insets at the bottom show the nullclines and the equilibria at
their intersections in the ̄rec

1
-̄rec

2
-space. Stable equilibria are marked green, unstable ones are red.

Figure adapted from Auth et al., (2017).

initial conditions in which a CA is already existing in one of the two populations.
Thus, input amplitudes in this regime suffice to recall existing CAs. This recall is
reliable, i.e., does not reduce the respective feedforward and recurrent weights in the
long run.

For higher input amplitudes 0.8 / ĪA / 1.1, the two stable equilibria (2,3) dom-
inate the dynamics of the model. There is no more stable symmetric equilibrium
existing. In this regime, the formation of a CA in one of the two populations is robust
to variations of the stimulus intensity ĪA. Only if there is perfect symmetry in the
initial conditions, the unstable equilibrium (7) is reached. In all other cases, a CA is
formed in one of the two populations.

For even higher stimulus intensities 1.1 / ĪA / 1.35, an additional stable equilib-
rium (4) accompanied by a total of three new unstable equilibria (8, 9, 10) emerges.
The stable equilibrium (4) is characterized by a high mean membrane potential and
thus also close to maximum recurrent weights in both populations. This may either
correspond to epileptic activity of the complete network or to the formation of two
CAs for a given stimulus. However, this equilibrium is densely “shielded” by the
three unstable equilibria (8, 9, 10) and therefore unlikely to be reached from usual
initial conditions.

Even though there are stable equilibria in the population model for input am-
plitudes ĪA ' 1.41, these do no longer relate to stable CAs in the complete network
model. This is due to the fact that for these input amplitudes, the inhibition in the
network model is no longer able to balance the excitatory signals in the recurrent
area. Therefore, the CA growth is not limited and eventually all neurons within the
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recurrent area become active. The derivation of the maximum input amplitude for
CA formation is outlined in Appendix A.3.

For the range ĪA / 1.41, we compare the bifurcation curve with results obtained
from simulating the complete network dynamics with stimuli of the respective input
amplitudes ĪA. In order to reach the different equilibria, we perform these simula-
tions with three different initial weight configurations: In addition to the normal
homogenous initialization, we also perform simulations in which we initially create
one or two CAs consisting of approximately Npop neurons in the recurrent area by
scaling up the respective recurrent and feedforward weights to their maximum values.
Furthermore, in order to reach the equilibrium of the network dynamics in finite
time, at the end of the simulation period (104 s), we set the plastic synaptic weights
to their respective equilibrium values as defined by the final pre- and postsynaptic
activity. For each value of ĪA, we simulate ten independent network instantiations for
each of the three initial weight configurations. If there are two distinct active CAs in
the final state, we consider the corresponding active neurons as populations 1 and
2. If there is only one active CA in the final state, we consider all active neurons as
population 1 and the circular group of Npop neurons with the highest topological
distance to population 1 as population 2. If there is no active CA in the final state,
we define two distinct circular groups of Npop neurons each as populations 1 and
2. The resulting values of the sum of the mean recurrent weights within these two
populations show a similar bifurcation behavior than obtained for the population
model (violet points in Figure 4.12). However, for small values of ĪA, differences
emerge regarding the maximum input amplitude ĪA for which the formation of a CA
is a stable equilibrium of the network dynamics. Furthermore, also the position of the
bifurcation at ĪA ≈ 1.1 at which a stable equilibrium with two active CAs emerges
differs between the population model and the network simulations. We assume that
in both cases, this is due to the fixed population size Npop underlying the bifurcation
in the population model. In the complete network model, smaller CAs may emerge
which result in less inhibitory signals received by the neurons in the recurrent area.
Thus, lower excitatory feedforward signals may still suffice to elicit the formation of
a CA.

In summary, the analysis of the bifurcation curve of the population model for
varying input amplitudes ĪA shows that CAs can be reliably formed for a wide range
of different values 0.8 . ĪA . 1.35. A reliable recall of existing CAs is possible also
for smaller values of IA & 0.35.

4.3.3 Relevance of Feedforward Plasticity

Up to now, we concentrated our discussion of the self-organized CA formation in
the population model on the dynamics of the membrane potential and the weights
of the recurrent synapses within the two populations. In parallel, however, also the
weights of the feedforward synapses develop according to the plasticity rule stated in
Equation (4.18). While the equilibrium value of this combination of Hebbian plasticity
and synaptic scaling for small target firing rates FT mostly (in the case of FT = 0
solely) depends on the presynaptic activity (Equation 4.20), the postsynaptic activity
value strongly determines the time scale of the adaptation toward this equilibrium
value.

In the case of the feedforward synapses in the population model, the presynaptic
activity level is given by the stimulus intensity Īk, k ∈ {A, B}. The postsynaptic
activity level corresponds to the activity F̄i, i ∈ {1, 2}, of the population in the
recurrent area. Assuming Īk and F̄i to be constant, the mean weight dynamics of
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the feedforward synapses described by Equation (4.18) can be exactly solved by
separation of variables. In the special case F̄i · Īk = 0, the solution is given by

w̄ff
ik(t) =

(
1

w̄ff
ik(0)

+
F̄i − FT

1− FT
t

τff

)−1

. (4.25)

If F̄i · Īk > 0, the solution reads as follows:

w̄ff
ik(t) =



w̄ff,*
ik coth

(
w̄ff,*

ik
F̄i−FT

1−FT
t

τff + arcoth
(

w̄ff
ik(0)
w̄ff,*

ik

))
if F̄i > FT ∧ w̄ff

ik(0) > w̄ff,*
ik

w̄ff,*
ik tanh

(
w̄ff,*

ik
F̄i−FT

1−FT
t

τff + artanh
(

w̄ff
ik(0)
w̄ff,*

ik

))
if F̄i > FT ∧ w̄ff

ik(0) < w̄ff,*
ik

w̄ff,†
ik tan

(
w̄ff,†

ik
F̄i−FT

1−FT
t

τff + arctan
(

w̄ff
ik(0)

w̄ff,†
ik

))
if F̄i < FT

F̄i Īk
t

τff + w̄ff
ik(0) if F̄i = FT

(4.26)
with w̄ff,*

ik =
√

F̄i Īk(1− FT)/(F̄i − FT) and w̄ff,†
ik =

√
F̄i Īk(1− FT)/(FT − F̄i).

In all cases, the rate of the adaptation is directly scaled by either the factor F̄i − FT

or by F̄i. Thus, a high population activity F̄i results in a fast evolution toward the
equilibrium value w̄ff,*

ik defined by the stimulus intensity Īk. When starting from an
intermediate value w̄ff

ij(0), high values of F̄i and Īk result in strong potentiation of
the mean synaptic weight (case II in Figure 4.13 a). As defined in Section 2.1, this
kind of plasticity which is evoked by strong simultaneous pre- and postsynaptic
activity is referred to as homosynaptic potentiation. A high population activity
F̄i in combination with a low stimulus intensity Īk, on the other hand, leads to
strong and fast downscaling of the mean synaptic weight due to the low equilibrium
value w̄ff,*

ik (case I in Figure 4.13 a). As this downscaling is essentially due to the
postsynaptic activity evoked by signals from other neuronal inputs, it can be classified
as heterosynaptic depression (compare Section 2.1). Low values of the population
activity F̄i, in contrast, slow down the evolution of the synaptic weight toward the
respective equilibrium value. Both homosynaptic potentiation and heterosynaptic
depression result only in negligible changes of the synaptic weights for low values of
F̄i independent of the specific presynaptic input stimulus intensity Īk (cases III and IV
in Figure 4.13 a).

All of the four discussed limiting cases of the plasticity dynamics of the feed-
forward synapses contribute to the formation of a CA in the recurrent area. In the
following, we assume that due to a symmetry breaking condition, stimulus A is
assigned to population 1. For instance, initially, population 1 might receive slightly
stronger feedforward synapses from stimulus A than population 2. This means the
system initially resides in a regime in the phase space in which the presentation of
stimulus A leads to the formation of a CA in population 1 (Figure 4.13 b, blue). We
refer to this regime as the A1-regime. In contrast, the A2-regime of the phase space
is given by the set of states from which on the presentation of stimulus A results
in a CA in population 2 (Figure 4.13 b, orange). During the formation of the CA in
population 1, the plasticity of the recurrent synapses in population 1 leads to a strong
potentiation of their mean weight w̄rec

1 . The high activity of both presynaptic and
postsynaptic activity additionally results in strong homosynaptic potentiation of the
mean feedforward weight w̄ff

1A (case II). Both processes drive the system away from
the boundary between the A1-regime and the A2-regime implying a more stable
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0

1
po

p.
ac

tiv
ity

F̄ I II

III IV

Δt = 5 s

−0.1

0.0

0.1

Δ
w̄

ff

a

0 1
w̄rec

1

0

1

w̄
ff 1A

CA 1
(II)

w̄ff
2A

(IV)

stimulus A

0 1
w̄rec

1

0

1

w̄
ff 1B CA 1

(I)

w̄ff
2B

(III)

stimulus B

1

b c

1
Figure 4.13: The role of heterosynaptic plasticity in the self-organized assignment of multiple
CAs. (a) The change ∆̄ff of the mean weight of the feedforward synapses, here in a time interval
of ∆t = 5 s, depends strongly on both the mean population activity F̄ and the mean input amplitude ̄.
The four small black and white rectangles (I-IV) indicate the four limiting cases of near to maximum or
near to minimum activities, respectively. Note that ∆̄ff vanishes in cases III and IV. (b, c) During the
formation of a CA in one of the two populations (here population 1), the four different cases (I-IV) of the
feedforward plasticity are exploited to pronounce the assignment of the active stimulus to this population.
The blue and orange regimes in the ̄rec

1
-̄ff

1A
-space and the ̄rec

1
-̄ff

1B
-space indicate the phase-space

regimes in which either population 1 (blue) or population 2 (orange) is recruited to represent (b) stimulus
A or (c) stimulus B. The initial feedforward weight ̄ff

1A is assumed to be marginally higher than ̄ff
1B

such that stimulus A is assigned to population 1. The growth of the recurrent synapses in this population
(CA 1) in conjunction with the growth of the feedforward weights ̄ff

1A drives the system deeper into
the regime where stimulus A is represented in population 1 (b). At the same time, the shrinkage of the
weight ̄ff

1B prevents stimulus B from also being represented by population 1 (c). Note that the shown
regimes also depend on the mean synaptic weights ̄ff

2A and ̄ff
2B. These, however, are only slightly

changed during the CA formation (cases III and IV). Figure adapted from Auth et al., (2017).

memory representation. A parallel potentiation of the mean weights w̄ff
2A of the feed-

forward synapses projecting the active stimulus onto population 2 would counteract
this stabilization of the memory representation. It would shift the boundary between
the A1-regime and the A2-regime in the w̄rec

1 -w̄ff
1A space toward higher values of

w̄ff
1A. Due to the low postsynaptic activity, however, the rate of the corresponding

adaptation is very low (case IV).
The formation of a CA in population 1 influences the initial conditions for a later

presentation of stimulus B (Figure 4.13 c). Similar to the A1- and A2-regimes defined
above, also the w̄rec-w̄ff

1B-space can be subdivided into a B1-regime, in which stimulus
B is represented by a CA in population 1, and a B2-regime, in which population 2 is
recruited for stimulus B. Not assuming any kind of initial symmetry breaking, the
system initially resides exactly at the boundary between these two regimes. Without
any additional modifications, the formation of a CA in population 1 would drive the
model into the B1-regime. Thus, both stimuli A and B eventually would equally be
represented by population 1 impeding any discrimination ability. This situation is cir-
cumvented by the heterosynaptic depression of the feedforward synapses projecting
stimulus B into population 1 during the formation of the CA in population 1 (case
I). This reduction of the mean weight w̄ff

1B prevents the system from ending up in
the B1-regime and drives it instead into the B2-regime (Figure 4.13 c, orange). Again,
this could be counterbalanced by a depression of the mean weight w̄ff

2B projecting
stimulus B onto population 2. It would shift the boundary between the B1-regime
and the B2-regime in the w̄rec-w̄ff

1B-space toward smaller values of wff
1B. As before, this

counterbalancing effect is negligible due to the low postsynaptic activity level and
the associated slow plasticity of the converging feedforward synapses (case III).

Thus, indeed, all four limiting cases of the plasticity of the feedforward synapses
contribute critically to the successful assignment of the CA on the one hand and to
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Figure 4.14: Summary of the synaptic weight changes underlying the formation and allocation
of memory representations. The different figures illustrate the chronology of the assignment of the two
distinct stimuli A and B to the two different populations 1 and 2. The sketches in the upper row illustrate
the strengths of the different groups of plastic feedforward and recurrent synapses. Bolder arrows
indicate stronger synaptic connections. The plots in the lower row visualize the plasticity processes
during the presentation of stimulus A and during the presentation of stimulus B, respectively, in the
spaces spanned by the mean recurrent synaptic weights ̄rec

1
and ̄rec

2
and the mean feedforward

synaptic weights ̄ff
1A, ̄

ff
1B, ̄

ff
2A and ̄ff

2B. As in Figures 4.13 b and 4.13 c, the blue area designates the
regime in which the stimulus is assigned to population 1. In the orange area, the stimulus is assigned to
population 2. The shape of these regimes depends on the state of all plastic synapses in the model. The
state at the beginning of the learning process is given by the white dot. The horizontal arrows labeled
“CA 1” and “CA 2” show the growing of the recurrent synaptic weights. The arrows labeled (I) and (II)
belong to a change of the feedforward synaptic weights according to the cases defined in Figure 4.13 a.
Figure adapted from Auth et al., (2017).

the discrimination against other stimuli on the other hand. This shows that not only
the structure of the equilibria but also the different time scales emerging from the
underlying dynamical processes is of relevance for the self-organized formation and
assignment of CAs in the network model.

4.3.4 Summary of the Formation and Assignment of Cell Assemblies

The study of the equilibria of the population model in the space of the recurrent
weights in Section 4.3.2 and the analysis of the dynamics of the feedforward weights
in Section 4.3.3 lead to a complete picture of the self-organized formation of two CAs
and their assignment to two different stimuli (Figure 4.14).

Starting from a “blank” network with all synapses at their initial values, a small
symmetry break decides which population (here population 1) represents the stimulus
which is first presented to the network (here stimulus A). As a result, a CA is formed
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by potentiation of the recurrent synapses within population 1. It is furthermore
assigned to the current stimulus via homosynaptic potentiation and discriminated
from other stimuli by heterosynaptic depression. The reaction of the system to the
presentation of a second stimulus B is biased by the results of the first CA formation.
The system already resides deeply in the B2-regime, meaning that stimulus B is safely
assigned to the CA which is now formed in population 2.

The fact that even when there is not yet a CA in population 2 existing, population
2 is already designated to represent stimulus B, is an artifact of the reduction of
the complete network model to a population model with only two distinct stimuli
and only two different populations. If there would have been, for instance, three
populations included into the model, the formation of a CA in population 1 would
not influence the decision about which of the two remaining populations is going
to represent stimulus B. Nevertheless, this reduction does not diminish the validity
of the key observations resulting from the analyses of the population model: The
successful formation of a CA requires the described equilibria structure with sta-
ble equilibria for the recruitment of a given population for the representation of a
given stimulus. The correct assignment of the CA to the corresponding stimulus
with parallel discrimination against other stimuli, in turn, relies on the interplay of
homosynaptic potentiation, heterosynaptic depression and a slow adaptation rate of
synapses with low postsynaptic activity level.

4.4 Discussion

In this chapter, we show that the combination of Hebbian plasticity and synaptic
scaling operating on both the feedforward and the recurrent synapses in a neuronal
network model enables reliable self-organized memory formation and memory allo-
cation. The resulting CAs are input dependent attractors of the network state and
can be stably stored on long time scales, i.e., implement LTM. This verifies the second
sub-hypothesis of this thesis (Figure 1.1) and provides a possible mechanism by which
the attractor states required for robust WM operation in tasks with unpredictable
temporal structure (compare Chapter 3) may emerge in a self-organized way.

The network model which we study in this chapter is based on the model pre-
sented by Tetzlaff et al., (2013). In this study, the authors show that a CA is formed by
the dynamic interaction between pure Hebbian plasticity and synaptic scaling in a
predefined population of recurrently interconnected neurons. While there are several
alternative models of CA formation (e.g. Litwin-Kumar and Doiron, 2014; Zenke
et al., 2015; Holtmaat and Caroni, 2016), the model of Tetzlaff et al., (2013) stands out
by being able to explain non-trivial effects during reconsolidation protocols (Walker
et al., 2003; Tetzlaff et al., 2013). However, this model does not answer the question
how different stimuli may be assigned to different neurons in the recurrent area in
a self-organized way. In other words, it does not tackle the problem of memory
allocation. Here, we show that including the plasticity of feedforward synapses into
the model resolves this limitation.

In our model, homosynaptic potentiation of the recurrent synapses explains the
formation of a CA. The correct assignment of the CA to the respective stimulus
and the discrimination against other stimuli are enabled by the interplay of ho-
mosynaptic potentiation, heterosynaptic depression and slow weight adaptation
for low postsynaptic activities at the feedforward synapses. While the relevance
of homosynaptic potentiation and heterosynaptic depression for the formation of
memory representations, or Hebbian CAs, has been pronounced before (Tetzlaff
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et al., 2013; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015), these studies do not
include the dynamics of the feedforward connectivity into their analyses. In contrast,
other studies solely concentrate on the importance of homosynaptic potentiation
and heterosynaptic depression in the feedforward connectivity to solve the memory
assignment problem (Kohonen, 1982; Sullivan and Sa, 2006; Stevens et al., 2013). By
considering the dynamics of both the feedforward and the recurrent synapses in
parallel, the here presented network model does not only confirm the relevance of
homosynaptic potentiation and heterosynaptic depression in both processes, but also
reveals the relevance of a third property for the successful self-organizing of mem-
ories in neuronal systems: Low levels of postsynaptic activity have to significantly
slow down the synaptic adaptation processes. This property supports the assignment
and discrimination process by only potentiating synapses converging at the currently
active memory representation. Experimental as well as theoretical results support
the modulatory role of postsynaptic activity on the magnitude of weight changes
induced by synaptic plasticity (Sjöström et al., 2001; Graupner and Brunel, 2010).

In the network model investigated in this chapter, the synapses in between exci-
tatory neurons are subject to a synaptic plasticity rule composed of two countering
terms: Hebbian plasticity and synaptic scaling. The Hebbian term is the origin of
the homosynaptic potentiation, synaptic scaling produces the heterosynaptic depres-
sion. Thus, in our model, synaptic scaling contributes essentially to the successful
discrimination of different stimulus representations. This goes beyond the tradi-
tionally assumed role of synaptic scaling as pure stabilization of Hebbian plasticity
(Turrigiano et al., 1998; Abbott and Nelson, 2000; Turrigiano and Nelson, 2004).

A characteristic feature of the CAs emerging in the network model is their total
distinctness, i.e., the fact that two CAs are not sharing any common neurons. The
corresponding finding in other models of memory formation are diverse with some
models also producing non-overlapping representations (e.g. Garagnani et al., 2009)
and others being able to build up CAs with some neurons being shared between
multiple CAs (e.g. Litwin-Kumar and Doiron, 2014). Theoretically, it is known
that overlapping assemblies provide a higher storage capacity than distinct ones
(Tsodyks and Feigel’man, 1988). Additionally, the overlap between different LTM
representations has been proposed to underly the sequential recall of information
from LTM (Katkov et al., 2017). Experimentally, neuronal representations of different
sounds in the auditory cortex have been shown to indeed posses overlaps (Bathellier
et al., 2012). In the here presented network model, the distinctness of the CAs
arises due to the competition introduced by the synaptic scaling term, i.e., due to
heterosynaptic downscaling of the weights of synapses transmitting signals from
inactive neurons to highly active neurons. Thus, a modification of the used plasticity
rule would be necessary to allow for the formation of overlapping CAs in this model.
For instance, adding a dependence on the presynaptic activity to the synaptic scaling
term might provide a possible solution (Liu, 2011).

As long as a new stimulus is able to recall an earlier learned CA in the recurrent
area, no new CA can emerge in our network model. The transition from pattern
separation to pattern completion for varying stimulus similarities and ongoing synap-
tic plasticity (Figure 4.7 b) gives the maximum stimulus similarity between a new
stimulus and an already learned one which allows for the generation of a new CA.
Given the parametrization which we used in this chapter, this maximum similarity
is comparably small. Thus, our network model is not able to discriminate stimulus
patterns with a significant overlap. It is an open question how this discrimination
ability may be increased. A possible solution might be given by intrinsic plasticity
(Zhang and Linden, 2003) processes at the neurons in the recurrent area. Intrinsic
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plasticity refers to the activity-dependent persistent modification of the properties
of a neuron. This intrinsic plasticity might, for instance, increase the parameter ε of
the firing rate function of neurons which are recruited for a CA. This would lead to a
higher sum of incoming excitatory signals being required to activate neurons within
a CA and would therefore increase the specificity of this CA. Alternatively, inhibitory
regulation mechanisms (Isaacson and Scanziani, 2011) or inhibitory plasticity mecha-
nism (Vogels et al., 2011; Kullmann et al., 2012) might also allow for stronger stimulus
discrimination abilities.

Anatomically, declarative LTM is assumed to be implemented in the hippocampus
and in the neocortex (Eichenbaum, 2000; Nadel and Hardt, 2011). The recurrent area
of the network model which we study in this chapter contains 900 neurons. This is of
course still orders of magnitudes smaller than the number of neurons in the human
cortex (Herculano-Houzel, 2009) or the human hippocampus (West and Gundersen,
1990). When scaling up our model, several assumptions underlying the architecture
of the network model will have to be adapted. While it is known that in small
cortical areas, inhibitory neurons indeed interact with a high fraction of the excitatory
neurons (Fino and Yuste, 2011; Isaacson and Scanziani, 2011), the assumption of an
unspecific global inhibition does not hold on larger cortical distances (Muir and Cook,
2014). Thus, it remains an open question how effective competition between different
neuronal populations about representing a given stimulus may be realized in large
networks with a realistic topology.

The CAs which are formed in our network model are input dependent attractor
states of the network dynamics. Thus, in order to stay active, they require ongoing
excitatory feedforward signals. Importantly, these signals do not have to be of the
same intensity as the signal required to form a new CA (Figure 4.12). When interacting
with the WM system, a low level feedforward activity might be provided by attention
gating mechanisms as proposed by Cowan, (1988). Alternatively, lowering the level
of global inhibition would allow a CA to maintain persistent activity also in the
absence of excitatory feedforward signals. In both cases, the activity of a specific CA
(a specific attractor state) would provide the information of past inputs as required
by the WM system to operate on tasks with unpredictable temporal structure.
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Chapter 5

Fast Adaptation of Central Pattern
Generators

In Chapter 3, we show that the neuronal system implementing working memory
(WM) requires both transient dynamics and distinct attractor states to operate on
tasks with unpredictable temporal structure. We demonstrate that in the employed
formulation of the n-back task, the duration during which the neuronal system moves
along the transient trajectory in between two different attractor states suffices to
produce the required target signal. Indeed, also humans performing an n-back task
typically have to produce rather short response actions whenever a new stimulus
arrives. In more realistic settings, however, based on processes in WM, a subject
might have to produce or adapt motor control signals whose durations are much
longer than the duration of a transient trajectory in the neuronal WM system. For
instance, it may be required to control the movement of writing, speaking or walking.
Thus, the question arises how such long lasting control signals may be produced
based on short lasting transient signals arriving from WM.

Many natural motor control tasks rely on periodic movements. In particular,
this includes the different types of locomotion like walking, running or swimming.
As discussed in Section 2.5.1, these periodic movements are controlled by neuronal
signals which are produced by specific structures called central pattern generators
(CPGs; Hooper, 2001; Ijspeert, 2008). CPGs are neuronal circuits which are able to
produce periodic neuronal signals without the need for any periodic input. Thus,
these systems are dominated by periodic attractor states resulting in ongoing periodic
activity. If a subject needs to activate such a periodic signal or to adapt its properties
based on processes in WM, this requires WM to be able to interact with the respective
CPG and to influence, for instance, the frequency of the produced signal. As an
example, we may imagine a subject who is told to walk at some given velocity
but only after having received a specific “Go”-signal. In this task, first, the subject
has to keep the information about the specified velocity in its WM. Second, when
receiving the “Go”-signal, the subject has to use this information to appropriately
tune the respective CPGs. If this tuning process depends on ongoing active control
by WM, this would require a long transient trajectory within the neuronal system
implementing WM. This would prevent the storing of new information and the
performance of further manipulations and computations. In contrast, the third sub-
hypothesis of this thesis (Figure 1.1) states that transient signals can fast and precisely
adapt the frequency of periodic attractors of CPGs in a self-organized way. If this sub-
hypothesis holds, WM could be released from active control after a short adaptation
time. In order to verify this sub-hypothesis, we need to find a mechanism which
allows a short-lasting signal to rapidly adapt the output frequency of a CPG.

Mathematically, a CPG can be described as a nonlinear system whose dynamics
possesses a stable limit cycle, i.e., a periodic attractor. Such a system is referred to as
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a nonlinear oscillator. The adaptive frequency oscillator (AFO) mechanism allows to
adapt the frequency of nonlinear oscillators based on an external signal originating,
for instance, from WM (Section 5.1). Oscillators adapted by the AFO mechanism
actually learn the frequency of the external signal and are able to keep oscillating
at this frequency even after the removal of the external signal. In order to be a
plausible candidate mechanism of the WM-CPG interaction, however, the adaptation
provided by the AFO mechanism has to be fast and precise. Here, we show that
the AFO mechanism does not provide the ability for fast and precise adaptations, in
particular when considering a larger range of possible external frequencies (Section
5.2). Therefore, we develop and analyze a new mechanism which overcomes this
deficit (Section 5.3). This new mechanism relies on dynamically adjusting the coupling
strengths between the external signal and the nonlinear oscillator. We refer to this
mechanism as “Adaptation through Fast Dynamical Coupling” (AFDC). Compared
to the AFO mechanism, the AFDC mechanism allows significantly faster and more
precise adaptations within a wider range of frequencies (Section 5.3.4). We discuss the
implications of these results for our third sub-hypothesis as well as in the context of
biological plausibility and possible applications of the mechanism for robotic control
problems (Section 5.4)

Most of the results presented in this section have been published in the following
journal article:

T. Nachstedt, C. Tetzlaff, and P. Manoonpong (2017). Fast dynamical coupling
enhances frequency adaptation of oscillators for robotic locomotion control.

Frontiers in Neurorobotics 11, pp. 1–14. DOI: 10.3389/fnbot.2017.00014.

5.1 Methods

In this section, first, we define the general concept of an oscillator as used in this thesis.
Furthermore, we introduce two specific realizations of oscillators which are used
throughout this chapter. We continue by summarizing the adaptive frequency oscilla-
tor mechanism and by applying this mechanism to the two previously introduced
oscillators. Finally, we introduce a set of measures which we use to quantitatively
evaluate the quality of a given frequency adaptation process of an oscillator.

5.1.1 Oscillators

In mathematical terms, an oscillator is defined as an autonomous dynamical system
with at least one limit cycle attractor, i.e., a stable two-dimensional periodic orbit
(Buchli et al., 2006b). The projection of such a system on two variables x and y
which span the plane of the limit cycle can be expressed as a system of two general
dynamical equations:

ẋ(t) = fx(x(t), y(t), θ)

ẏ(t) = fy(x(t), y(t), θ) .
(5.1)

The functions fx and fy define the dynamics of the system on the limit cycle. We
explicitly include the dependency on a parameter θ which determines the intrinsic
oscillation frequency ν of the system. In many cases, there is no analytic expression
of the relation ν(θ) between the frequency ν and the parameter θ available. In the
following, we only assume that this function is monotone. Apart from this, ν(θ) may
be an arbitrary function.

http://dx.doi.org/10.3389/fnbot.2017.00014
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Hopf Oscillator

The Hopf oscillator (Andronov et al., 1971) is described by the following system of
dynamical equations for the state variables x and y:

ẋ(t) =
(
µ− r(t)2) x(t)− θy(t)

ẏ(t) =
(
µ− r(t)2) y(t) + θx(t)

(5.2)

with r(t) =
√

x(t)2 + y(t)2. The dynamics of the system is dominated by a single
asymptotically stable and harmonic limit cycle with radius µ > 0 and an angular
frequency of exactly θ. Accordingly we have ν(θ) = θ/(2π).

Van der Pol Oscillator

The second oscillatory system which we investigate in this chapter is the Van der Pol
oscillator (Van der Pol, 1920). Without external stimulation, the Van der Pol oscillator
is described by the following system of equations for the state variables x and y:

ẋ(t) = y(t)

ẏ(t) = µ
(
1− x(t)2) y(t)− θ2x(t).

(5.3)

Here, the parameter µ ≥ 0 determines the degree of nonlinearity of the limit cycle
which is harmonic for µ = 0. The variable θ determines the frequency ν of the
oscillations. In contrast to the Hopf oscillator, there is no analytical expression for the
function ν(θ) available. We approximate this function numerically (see Appendix B
for details).

5.1.2 Adaptive Frequency Oscillators

Based on the general concept of an oscillator, the original adaptive frequency oscil-
lator (AFO) mechanism has been proposed by Righetti et al., (2006). It describes
a mechanism that can be universally applied to any kind of nonlinear oscillatory
system where a frequency-determining variable θ is available. The method is able to
adapt the intrinsic frequency of the oscillator to the frequency of an external periodic
stimulation.

Transforming the general oscillator in Equation (5.1) into an oscillator with AFO
mechanism requires two modifications. In a first step, the variable x of the oscillator
is coupled to an external periodic stimulation F(t) via a coupling constant ε. The
value of ε determines the strength of the influence of the external stimulation on the
oscillator:

ẋ(t) = fx(x(t), y(t), θ(t)) + εF(t)
ẏ(t) = fy(x(t), y(t), θ(t)).

(5.4)

In a second step, the frequency parameter θ is turned into a dynamic variable θ(t)
which is adapted according to the following dynamics (Righetti et al., 2006):

θ̇(t) = ±ηF(t)
y(t)√

x(t)2 + y(t)2
. (5.5)

The learning rate η determines the speed of the adaptation process. The sign of
the right-hand side of Equation (5.5) depends on the orientation of the oscillations
in the phase space of the specific oscillator at hand. In the original formulation,
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always ε = η is chosen. This choice is suggested by the derivation the adaptation
rule (Equation 5.5) from the effect of the stimulation F(t) on the phase velocity of an
oscillator (Righetti et al., 2006). In general, however, there is no a priori reason for
choosing ε = η to obtain optimal adaption behavior.

In conjunction, Equations (5.4) and (5.5) describe how to transform an oscillator
as defined by Equation (5.1) into an AFO. This mechanism has been successfully
applied to a wide range of different oscillatory systems including harmonic and non-
harmonic ones (Righetti et al., 2006). Additionally, it has been shown that the AFO
mechanism enables adaptation of the intrinsic frequency to very different external
stimuli (Righetti et al., 2006). In the following, we discuss the application of the AFO
mechanism to the purely harmonic Hopf oscillator (Equation 5.2) and to the Van der
Pol oscillator (Equation 5.3) with a highly non-harmonic limit cycle.

Hopf Oscillator with AFO Mechanism

As a first example, the AFO mechanism is applied to the harmonic Hopf oscillator.
Following the schema described above, we couple the variable x(t) to an external
stimulation F(t). Additionally, we turn the frequency parameter θ into a dynamic vari-
able θ(t) which is adapted according to Equation (5.5). This results in the following
system of equations for the Hopf oscillator with AFO mechanism:

ẋ(t) =
(
µ− r(t)2) x(t)− θ(t)y(t) + εF(t)

ẏ(t) =
(
µ− r(t)2) y(t) + θ(t)x(t)

θ̇(t) = −ηF(t)
y(t)√

x(t)2 + y(t)2
.

(5.6)

We couple this system to a periodic stimulation F(t) with a frequency νext. Im-
portantly, νext is different from the initial intrinsic frequency ν0 of the oscillator as
determined by the initial value θ0 of θ(t). This results in the typical AFO adapta-
tion curve (Figure 5.1 a). As the frequency adaptation is based on the correlation
between F(t) and y(t), the intrinsic frequency of the oscillator is not modified as
long as F(t) = 0 holds (t < 100 in Figure 5.1 a). As soon as we switch F(t) on, θ(t)
starts to slowly develop into the direction of the value θext (100 < t < 600). Here θext
denotes the value of the frequency variable θ(t) which corresponds to the frequency
νext in the unperturbed system. The adaptation of θ(t) gets faster the closer θ(t)
gets to θext. Briefly before θ(t) converges to a quasi-constant state with only small
periodic fluctuations, a brief overshoot is observed. The small fluctuations in the
quasi-constant state are due to the ongoing adaption which averages to zero over
one oscillation period (600 < t < 700). Once the quasi-constant state is reached, the
external stimulation F(t) can be removed. The oscillator continues to oscillate with
the learned frequency (t > 700).
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Figure 5.1: Adaptation of two oscillators with AFO mechanism. A Hopf oscillator with AFO mech-
anism (a) and a Van der Pol oscillator with AFO mechanism (b) adapt their intrinsic frequency to a
sine-wave stimulation F(t) with a frequency νext = 2.0 and unit amplitude. The initial intrinsic frequency
of both oscillators is ν0 = 4.0. The time interval during which the stimulation is applied is indicated
by the red bar. The values θ0 and θext (horizontal dashed line) of the frequency variable correspond
to the exact frequencies ν0 and νext of the unperturbed oscillators. The small insets at the bottom
show the oscillating variables  and y of the oscillator and the signal F(t) at the time of the onset of
the stimulation, shortly before convergence and at the end of the stimulation. (a) The Hopf oscillator
with AFO mechanism and parameter values μ = 1.0 and ε = η = 1.0 adjusts its intrinsic frequency
to a value very close to νext. The values of θ(t) which correspond to the frequencies ν0 and νext are
θ0 = 2πν0 ≈ 25.1 and θext = 2πνext ≈ 12.6. (b) The quasi-converged state of the Van der Pol
oscillator with AFO mechanism and parameter values μ = 100.0 and ε = η = 0.7 is characterized by
an offset of the final intrinsic frequency from νext. The relevant values of θ(t) have been numerically
determined to be θ0 ≈ 34.8 and θext ≈ 22.0 (Appendix B). Figure adapted from Nachstedt et al.,
(2017).

Van der Pol Oscillator with AFO Mechanism

Based on the regular Van der Pol oscillator in Equation (5.3), the Van der Pol oscillator
with AFO mechanism is given by the following set of equations:

ẋ(t) = y(t) + εF(t)

ẏ(t) = µ
(
1− x(t)2) y(t)− θ(t)2x

θ̇(t) = +ηF(t)
y(t)√

x(t)2 + y(t)2
.

(5.7)

When the Van der Pol oscillator with AFO mechanism is coupled to an external
periodic stimulation with a frequency νext which is different from the initial intrinsic
frequency ν0 of the oscillator, the behavior of the frequency variable θ(t) resembles the
one discussed for the Hopf oscillator with AFO mechanism (Figure 5.1 b). However,
for the Van der Pol oscillator with AFO mechanism, it is more likely to end up
in a quasi-constant state in which the final value of the frequency variable θ(t) is
significantly different from the value θext which would correspond to the frequency
of the external stimulation νext. As a result, the Van der Pol oscillator with AFO
mechanism will oscillate at a slightly different frequency once the external stimulation
is switched of. As we discuss later in this chapter, this phenomenon is not restricted
to the Van der Pol oscillator and can only be reduced at the cost of longer convergence
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times.

5.1.3 Adaptation Quality Indicators

The trade-off between fast adaptation times and precise adaptation results can be
quantitatively captured by introducing three measures characterizing the respective
features of a given adaptation process (Figure 5.2).

As long as the external stimulation F(t) is active, the adaptation rule in Equation
(5.5) results in ongoing changes of the frequency parameter θ(t). However, at some
point, the system reaches a quasi-converged state in which the changes of θ(t) in-
tegrate to zero over one oscillation period. In other words, in this state, the mean
value θ̄ calculated over one oscillation period is constant. The duration until the
quasi-convergence is reached is captured by the convergence time ∆. We define ∆ as
the time interval between the onset of the external stimulation and the last deviation
of the frequency parameter θ(t) of the system of more than 5 % (10 % for the Van der
Pol oscillator) from the finally reached mean value θ̄. In general, ∆ should be small to
allow fast reconfiguration of the oscillatory output signal.

The precision of the adaptation process is captured by two measures reflecting
orthogonal properties of the intrinsic frequency in the quasi-converged state. First,
the difference between the mean value θ̄ of the frequency-determining variable of
the oscillator and the value θext should be small for a precise adaptation. Therefore,
we define the frequency offset δθ = θext − θ̄. Remember that θext is defined as the
value of θ(t) at which the intrinsic frequency of the oscillator corresponds to the
frequency νext of the external simulation. Second, the amplitude of the fluctuations of
θ(t) around its mean value θ̄ should be small in the quasi-converged state. In case of
large amplitudes of these fluctuations, the frequency stored by the oscillator once the
external stimulation vanishes would strongly depend on the exact point of time at
which the external stimulation is removed. (see F(t) = 0 in Figure 5.2). This reduces
the reliability of the stored frequency. The magnitude of the fluctuations in the quasi-
converged state is captured by the standard deviation σθ of the frequency-determining
variable θ(t).

For interpreting the three defined quality measures, we assume that the frequency
νext of the external stimulation defines the relevant time scale of a given adaptation
process. Therefore, we need to set the convergence time ∆, the frequency offset δθ and
the standard deviation σθ in relation to νext. Equivalently, we can set them in relation
to the corresponding value θext of the frequency-determining variable. We introduce
three relative measures scaled by the cycle duration ν−1

ext of the external stimulation or
the parameter value θext:

∆̃ =
∆

ν−1
ext

, δ̃θ =
δθ

θext
, σ̃θ =

σθ

θext
. (5.8)

Additionally, we define a quality index Q with 0 ≤ Q < 1 which combines the three
relative measures into a single scalar value and simplifies the evaluation of the overall
quality of a given adaptation process:

Q = max
(

1− ∆̃
∆̃max

− |δ̃θ |
δ̃θ,max

− σ̃θ

σ̃θ,max
, 0
)

. (5.9)

Here, ∆̃max, δ̃θ,max and σ̃θ,max are defined as the maximum values of the respective
quality measures which we allow for a reasonably good adaptation process. If either
of these maximum values is reached, the combined quality measure Q vanishes.
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Figure 5.2: Quantitative measures of the quality of a frequency adaptation process. An AFO with
an initial intrinsic frequency ν0, as determined by an initial frequency parameter θ0, is exposed to an
external stimulation with a frequency νext which corresponds to a value θext of the frequency parameter.
The stimulation sets in at time t0 as indicated by the red horizontal bar. The inset plot in the top right
shows a close up of the indicated area in the main plot. Three measures are introduced to quantify the
different qualities of the frequency adaptation process. The convergence time ∆ is defined as the time
interval between the onset of the stimulation and the last deviation of the parameter variable θ(t) of
the oscillator of more than 5% (orange horizontal lines) from the finally reached mean value θ̄. The
difference between θ̄ and the value θext which would correspond to the exact frequency νext of the
stimulation defines the frequency offset δθ. The standard deviation σθ of the parameter θ(t) in the
converged state captures the magnitude of the final fluctuations of θ(t) (light green area). Note that
after the switch-off of the external stimulation (F(t) = 0), the frequency parameter θ(t) remains at a
value which is different from both θext and θ̄. The shown time course stems from an adaptation process
of an Hopf oscillator with AFO mechanism and parameter values μ = 1.0, ε = 5.0, η = 5.0, and
ν0 = 2.0. The oscillator adapts its intrinsic frequency to an external sine-wave signal with unit amplitude
and frequency νext = 1.0. Figure adapted from Nachstedt et al., (2017).

Alternatively, Q may also be zero if the sum of the ratios in Equation (5.9) is larger
than one.

In the following, we use ∆̃max = 100, δ̃θ,max = 0.05, and σ̃θ,max = 0.05 when
analyzing adaptation processes of the Hopf oscillator. The limit cycle of the Van der
Pol oscillator is more complex than the one of the Hopf oscillator. This complicates the
usage of correlation based adaptation process as employed in the AFO mechanism.
Therefore, we choose different maximum values for the Van der Pol oscillator. In
particular, we use ∆̃max = 200, δ̃θ,max = 0.1, and σ̃θ,max = 0.05.

The three defined measures ∆̃, δ̃θ and σ̃θ in conjunction with the combined quality
index Q allow the quantitative analysis of the different adaptation processes and the
study of the influence of the different adaptation parameters.

5.1.4 Numerical Integration

All dynamical systems in this chapter are integrated using the odeint method of the
scipy python package (Jones et al., 2001). This method employs the LSODA algorithm
(Brown and Hindmarsh, 1989) which is part of odepack FORTRAN library (Hind-
marsh, 1983) and operates by dynamically adapting the step size of the numerical
integration.
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Figure 5.3: Influence of the coupling strength ε and the learning rate η on the adaptation of
oscillators with AFO mechanism. A higher coupling strength ε and a higher learning rate η lead to
shorter convergence times ∆. At the same time, larger values of ε also result in a larger offset δθ of the
final mean parameter value θ̄ from the value θext. Larger values of η, in turn, lead to larger fluctuations
of the frequency variable θ(t) in the quasi-converged state as measured by σθ. Shown is the time
course of the frequency parameter θ(t) for different (ε,η)-parameter pairs. The time during which the
external stimulation F with frequency νext = 3.0 is active is indicated by the red bar on the time axis.
The value of the frequency parameter of the oscillator at which its internal frequency corresponds exactly
to νext is designated by θext. The initial internal frequency of the oscillator is ν0 = 4.0 as determined by
the frequency parameter value θ0. The small insets show a close up of the time course of θ(t) in the
quasi-converged state. (a) The Hopf oscillator with AFO mechanism and parameter μ = 1.0 can be
tuned to achieve short convergence times ∆ with only small values of δθ and σθ. (b) For the Van der Pol
oscillator with AFO mechanism and parameter μ = 100.0, larger values of δθ and σθ occur for even
longer convergence times ∆ than achieved in the Hopf oscillator with AFO mechanism. Figure adapted
from Nachstedt et al., (2017).

5.2 Deficits of the AFO Mechanism

The AFO mechanism has been shown to be applicable for a variety of different
oscillators and is able to adapt them to periodic signals of different shapes (Righetti
et al., 2006). A common deficit of the different implementations and applications of
the AFO mechanism, however, is related to the long time interval required until the
internal frequency of the oscillator reaches an approximately stable value close to the
frequency of the external periodic stimulation, i.e., their long convergence time. In
the following, we first investigate in how far the parameters of the AFO mechanism
can be tuned to accelerate the adaptation process. Afterwards, we test whether a
given parameter configuration is able to provide fast adaptations for a wider range of
initial and external frequencies.

5.2.1 Trade-off between Speed and Precision

The convergence time ∆ of oscillators with AFO mechanism depends on both the
coupling strength ε of the external stimulation to the oscillatory system and the
learning rate η of the frequency parameter θ(t). On the one hand, increasing either of
the two values reduces the time interval ∆ until the adaptation mechanism converges
to a quasi-stable value (Figure 5.3). On the other hand, increasing ε or η also results in
a stronger influence of the external stimulation on the oscillatory system in general. A
stronger coupling ε leads to a higher offset δθ of the finally reached internal frequency
from the exact frequency of the external signal (Figure 5.3). A higher learning rate η,
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Figure 5.4: Adaptation quality measures in the ν0-νext-frequency space for different parameter
values of the Hopf oscillator with AFO mechanism. For every given (ε, η)-parameter pair, the
respective column shows (from top to bottom) the relative convergence time ∆̃, the frequency parameter
offset δ̃θ, the final standard deviation σ̃ and the combined quality index Q in the parameter space
spanned by the initial frequency ν0 and the external frequency νext. For all (ε, η)-parameter pairs, the
area in which the adaptive Hopf oscillator allows adaptation processes with a nonzero quality index Q is
only a small part of the complete tested ν0-νext-frequency space. Note that the convergence time ∆
is defined as the time interval between the onset of the external stimulation and the last deviation of
the frequency parameter θ(t) of more than 5% from the value θext. As a consequence, ∆ cannot be
reasonably determined for high values of σ̃θ, i.e., takes very high values, even for ν0 = νext (indicated
areas). Figure adapted from Nachstedt et al., (2017).

in turn, increases the fluctuations σθ of the internal frequency around the frequency
of the external signal in the quasi converged state. Thus, in any case, shorter AFO
convergence times ∆ imply a loss of precision of the adaptation process.

5.2.2 Adaptations Within a Wide Frequency Range

Humans and animals expose a wide range of different behaviors. The associated
movements and manipulations are performed on very different timescales. Accord-
ingly, adaptive oscillators which are supposed to model CPG networks need to be
able to adapt their intrinsic dynamics to a wide range of external frequencies. At the
same time, all these adaptation processes need to be fast and precise. This can be
measured in terms of the relative measures and the quality index defined in Section
5.1.3.
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Figure 5.5: Average combined quality measure 〈Q〉 in the ε-η-parameter space. For every (ε,η)-
parameter pair of the coupling strength ε and the learning rate η, the plots show the average adaptation
quality index 〈Q〉 in the logarithmically sampled ν0-νext-frequency space spanned by the initial intrinsic
frequency ν0 and the frequencies νext of the external stimulation (compare Figure 5.4). The green
crosses indicate the respective maximum values of 〈Q〉. (a) The best found configuration (green cross)
of the Hopf oscillator with AFO mechanism and parameter μ = 1.0 allows a frequency spaced averaged
quality index 〈Q〉 ≈ 0.12. The red circles mark the four examples shown in Figure 5.4. (b) For the Van
der Pol oscillator with AFO mechanism and parameter μ = 100.0, the optimal configuration allows an
average quality 〈Q〉 ≈ 0.08 (green cross). Note that we use different values of ∆̃max, δ̃θ,max and σ̃θ,max

for the two different oscillators. Figure (a) is adapted from Nachstedt et al., (2017).

In the following, we analyze adaptation processes in between frequencies from
two orders of magnitude of the initial intrinsic frequency ν0 of the adaptive oscillator
and of the external frequency νext of the stimulation: 0.1 ≤ {ν0, νext} ≤ 10. Due to
its harmonic limit cycle, we can tune the Hopf oscillator with AFO mechanism for
shorter convergence times without the same loss of precision as observed for the
Van der Pol oscillator (compare Figures 5.3 a and 5.3 b). Still, the frequency range
within which the AFO mechanism allows fast as well as precise adaptation of the
Hopf oscillator for a given ε-η-parameter pair is very limited (Figure 5.4). Strong
couplings ε of the external stimulation to the oscillatory system and high learning
rates η are required for large frequency intervals in which adaptation processes with
fast convergence times ∆̃ are possible (first row in Figure 5.4). At the same time,
however, small frequency offsets δ̃θ require small values of ε (second row in Figure
5.4). Small standard deviations σ̃θ of the intrinsic frequency in the converged state
for a broad range of frequencies are only obtained for small values of η (third row
in Figure 5.4). The (ε, η)-parameter pairs which allow a reasonable balance of speed
and precision for a given frequency configuration can be identified by a nonzero
value of the quality index Q (bottom row in Figure 5.4). The area in the ν0-νext-space
within which nonzero values of Q are achieved depends strongly on the chosen
parameter values. In each case, this area captures only a small portion of the complete
ν0-νext-space under investigation. Thus, the trade-off between speed and precision
can only be resolved for very narrow and well defined frequency configurations.

We can express the inability of the AFO mechanism to allow fast and precise
adaptation of the Hopf oscillator by determining the average quality index 〈Q〉 as a
function of the (ε, η)-parameter pair in the logarithmically sampled frequency space
defined by 0.1 ≤ {ν0, νext} ≤ 10 (Figure 5.5 a). As it turns out, no (ε, η)-combination
allows for a value of 〈Q〉 higher than approximately 0.12. The identical analysis of
the Van der Pol oscillator results in a maximum average value of 〈Q〉 ≈ 0.08 (Figure
5.5 b). Note that the maximum relative quality measures ∆̃max, δ̃θ,max and σ̃θ,max used
to determine the quality index Q differ between the Hopf oscillator and the Van der
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Pol oscillator (Section 5.1.3).
We conclude that in both cases, the Hopf oscillator and the Van der Pol oscillator,

the AFO mechanism is not able to provide fast as well as precise adaptation over the
complete range of analyzed frequencies. As a consequence, we cannot use the AFO
mechanism to reliably convert short-lasting transient signals into a long-lasting peri-
odic signal. This renders this mechanism unlikely to mediate the interaction between
WM and CPGs as discussed above. In the following, we develop an extension of the
AFO mechanism which is able to overcome this limitation.

5.3 Adaptation Through Fast Dynamical Coupling

As shown in the previous section, using the AFO mechanism, there is no fixed
pair of coupling strength ε and learning rate η which allows for both fast as well
as precise adaptation within the investigated range of initial intrinsic frequencies
and external stimulation frequencies. In general, fast adaptation tends to require
high values of both ε and η while precision is achieved for low values of these
parameters. This frequency-specific trade-off between speed and precision does
complicate applications in robotic and artificial systems. In addition, it prevents this
mechanism from being a plausible model of the interaction of short-lasting transient
dynamics and long-lasting periodic signals. For this interaction, it is required that the
system which produces the long-lasting periodic signals is able to adapt its output
fast and precisely to the inputs received from the transient system.

Here, we propose a mechanism that dynamically adjusts the coupling of the
external stimulation to the oscillator during the adaptation process. This mechanism
is able to achieve both fast and precise adaptation over a wide range of frequencies.

5.3.1 Derivation of the Mechanism

In contrast to the AFO mechanism, we do not couple the oscillatory system (Equation
5.1) directly to the external stimulation F(t). Instead, we introduce a filtered signal
P(t) and couple this signal to the oscillator:

ẋ(t) = fx (x(t), y(t), θ(t)) + P(t)
ẏ(t) = fy (x(t), y(t), θ(t)) .

(5.10)

Accordingly, also the adaptation of the frequency variable θ(t) now depends on P(t):

θ̇(t) = ±ηP(t)
y(t)√

x2(t) + y2(t)
. (5.11)

The filtered signal P(t) is given by a weighted difference of the external stimulation
F(t) and the variable x(t) of the oscillatory system:

P(t) = ε(t)F(t)− β(t)x(t) . (5.12)

The dynamical coupling strengths ε(t) and β(t) determine the magnitude of P(t).
These dynamical coupling strengths are the key components of the proposed mecha-
nism. As we have seen in Section 5.2, a strong coupling of the external stimulation
leads to fast adaptation. Thus, ε(t) and β(t) have to amplify the influence of the
external stimulation F(t) on the oscillator at the begin of an adaptation process. In
contrast, a precise adaptation of the intrinsic frequency of the oscillator is enabled
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by a loose coupling of the external stimulation to the oscillator (compare Section 5.2).
Therefore, the influence of F(t) needs to be reduced toward the end of an adaptation
process.

As we will show in the following, both of these two requirements are met by
adapting β(t) and ε(t) based on a combination of a correlation-based growth process
and a passive decay toward a low resting value. In particular, the dynamical coupling
strength β(t) follows the following dynamics:

τβ̇(t) = β0 − β(t) + κP(t)x(t) (5.13)

with a time constant τ, a correlation learning rate κ and a decay value β0. The coupling
strength β(t) scales the negative influence of the oscillator variable x(t) on the filtered
stimulation P(t) in Equation (5.12). Its dynamics is based on the correlation of P(t)
and x(t). This correlation is high if the oscillator is able to follow the frequency of
the external stimulation which, in turn, indicates that the difference between θ(t)
and θext is low. At this stage, the adaptation process should rather concentrate on
precision than on speed. Accordingly, the amplitude of P(t) should be decreased.
This is achieved by increasing β(t).

The dynamical coupling strength ε(t) is adapted according to a very similar
dynamics:

τε̇(t) = ε0 − ε(t) + κF(t)P(t) . (5.14)

The time constant τ and the correlation learning rate κ are the same as in Equation
(5.13). The decay value ε0 may be different from β0. As ε(t) determines the strength of
the influence of the external stimulation F(t) on the filtered signal P(t), it is adapted
based on the correlation of these two signals. If this correlation is high, the subtraction
of x(t) in Equation (5.12) is not able to cancel the additive contributions of F(t). In
other words, the difference between θ(t) and θext is large. In this situation, an increase
of ε(t) is desirable to increase the influence of the external stimulation on the oscillator
and thereby to accelerate the adaptation process.

In conclusion, the proposed mechanism is based on automatically detecting the
current phase of the adaptation process and on modifying the dynamical coupling
strengths accordingly. The coupling strength ε(t) detects the onset of an external
stimulation with a frequency different from the intrinsic one. The dynamical coupling
strength β(t), in turn, gets activated once the intrinsic frequency is close to the external
one. Based on this information about the current phase of the adaptation process,
the mechanism determines whether a stronger or a weaker coupling of the external
stimulation to the oscillatory system is currently required. In the following, we call
this mechanism "Adaptation through Fast Dynamical Coupling" (AFDC).

5.3.2 Examples of Adaptations with the AFDC mechanism

The AFDC mechanism can be easily applied to both the Hopf oscillator (Figure 5.6 a)
and the Van der Pol oscillator (Figure 5.6 b). The Hopf oscillator equipped with the
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AFDC mechanism is given by the following system of differential equations:

ẋ(t) =
(
µ− r(t)2) x(t)− θ(t)y(t) + P(t)

ẏ(t) =
(
µ− r(t)2) y(t) + θ(t)x(t)

τβ̇(t) = β0 − β(t) + κP(t)x(t)
τε̇(t) = ε0 − ε(t) + κF(t)P(t)

θ̇(t) = −ηP(t)
y(t)√

x(t)2 + y(t)2

(5.15)

with P(t) = ε(t)F(t)− β(t)x(t).
The Van der Pol oscillator with AFDC mechanism is described by the following

system of equations:

ẋ(t) = y(t) + P(t)

ẏ(t) = µ
(
1− x(t)2) y(t)− θ(t)2x

τβ̇(t) = β0 − β(t) + κP(t)x(t)
τε̇(t) = ε0 − ε(t) + κF(t)P(t)

θ̇(t) = +ηP(t)
y(t)√

x(t)2 + y(t)2

(5.16)

with P(t) = ε(t)F(t)− β(t)x(t).
A typical adaptation process of the AFDC mechanism (Figure 5.6) can be separated

into several phases which we describe in the following.
As long as the external stimulation is absent (F(t) = 0), the dynamics of the

coupling strength ε(t) in Equation (5.14) is solely dominated by the decay term.
Therefore, ε(t) converges toward its resting state equilibrium ε0 (t < 5 in Figure 5.6 a
and Figure 5.6 b). As for F(t) = 0 we have P(t) = −β(t)x(t), the dynamics of β(t)
in Equation (5.13) involves a quadratic dependence on x(t). From this equation, we
obtain the equilibrium of β(t) for F(t) = 0 as β0/(1 + κx̄2). Here, x̄2 is the mean
over time of the squared signal x(t)2. In the absence of an external stimulation, β(t)
decays toward this value.

When the external stimulation sets in, the average product between the signal
F(t) and the filtered signal P(t) is positive (Equation 5.12) and the value of ε(t) starts
to increase (Equation 5.14). With larger values of ε(t), the average product between
F(t) and P(t) increases. This positive feedback loop enables a fast increase of the
amplitude of P(t) at the begin of the adaptation process. As explained above, this
accelerates the adaptation process by amplifying the influence of the stimulation on
the oscillator (Equation 5.10) and on the dynamics of θ(t) (Equation 5.11).

At some point, the strong influence of the external stimulation and the resulting
fast learning rate suffice to make the oscillator follow the external frequency (t ≈ 15
in Figure 5.6 a and t ≈ 30 in Figure 5.6 b). In other words, now, the average product
of the filtered signal P(t) and the oscillator variable x(t) is positive and results in an
increase of β(t) (Equation 5.13). Higher values of β(t) decrease the amplitude of P(t)
if x(t) and P(t) are correlated (Equation 5.12). A lower amplitude of P(t) leads to a
reduction of the average product between P(t) and x(t). This provides a negative
feedback loop which breaks the positive feedback loop between ε(t) and the average
product of P(t) and F(t) as described above (Equation 5.14). This, finally, results in a
decay of both β(t) and ε(t) to their respective resting values. Once the two coupling
strengths are sufficiently close to these resting values, the external stimulation can be
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Figure 5.6: Examples of frequency adaptation with the AFDC mechanism. Coupling an oscillator
with AFDC mechanism and intrinsic frequency ν0 to an external stimulation with a frequency νext results
in an increase of the dynamical coupling strength ε(t). This increases the magnitude of the signal P(t)
which leads to a fast adaptation of the frequency parameter θ(t) toward the value θext which corresponds
to the frequency νext. Once θ(t) is close to θext, the dynamical coupling strength β(t) starts to grow
which results in a decrease of the magnitude of P(t). This allows precise adaptation of θ(t). Finally, ε(t)
and β(t) decay toward their respective resting values. The insets at the bottom show the variables (t)
and y(t) of the oscillator and the stimulation F(t) at different short time-windows during the adaptation
process (time intervals indicated by gray area). (a) The parameter values of the Hopf oscillator with AFDC
mechanism are μ = 1.0, η = 0.5, κ = 5.0, τ = 2.0, β0 = 0.0, and ε0 = 0.01. The initial intrinsic
frequency is ν0 = 4.0 and the frequency of the external stimulation is νext = 2.0. The corresponding
values of the frequency variable θ(t) are θ0 = 2πν0 ≈ 25.1 and θext = 2πνext ≈ 12.6. The external
stimulation is applied for 5 ≤ t < 30. (b) The parameter values of the Van der Pol oscillator with AFDC
mechanism are μ = 100.0, η = 2.0, κ = 5.0, τ = 15.0, β0 = 0.0 and ε0 = 0.01. The frequencies
ν0 and νext are the same as in (a) and translate into θ0 ≈ 34.8 and θext ≈ 22.0 (see Appendix B). The
external stimulation is applied for 5 ≤ t ≤ 150. Figure adapted from Nachstedt et al., (2017).

switched off without significantly influencing the system dynamics. The influence of
the stimulation on the system has already been reduced to a minimum.

In conclusion, the combination of the dynamics of the two coupling strengths
ε(t) and β(t) amplifies the external stimulation as long as strong adaptation of the
frequency variable θ(t) is required and reduces its magnitude toward the end of the
adaptation process. This allows for a fast as well as precise adaptation of the intrinsic
frequency of the oscillator.

5.3.3 Optimal AFDC Parameters

The AFDC mechanism has three key parameters: the time scale τ of the adaptive
coupling strengths, the correlation learning rate κ, and the learning rate η of the fre-
quency variable θ(t). Technically, the decay values ε0 and β0 are two more parameters
of the model. However, their influence on the dynamics is small as long as they are
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Figure 5.7: Adaptation qualitymeasures for different parameter values of the Hopf oscillator with
AFDC mechanism in the ν0-νext-frequency space. For every given parameter pair of the correlation
learning rate κ and the time scale τ, the respective columns show (from top to bottom), the relative
convergence time ∆̃, the relative frequency parameter offset δ̃θ, the final standard deviation σ̃θ of θ(t),
and the combined quality index Q in the frequency space spanned by the initial intrinsic frequency ν0
of the oscillator and the frequency νext of the external stimulation. In all cases, the frequency variable
learning rate η has the value η = 1. In comparison to the Hopf oscillator with AFO mechanism (Figure
5.4), here, a fixed set of parameter values allows high-quality adaptation processes within a wide range
of frequencies. For κ = 100 and τ = 1.0, the quality index Q attains values close to 1 for all sampled
frequency configurations. Figure adapted from Nachstedt et al., (2017).

chosen sufficiently small. The analysis of the optimal parametrization of an AFDC
oscillator therefore focuses on the τ-κ-η-parameter space. We first discuss in detail
the results for the Hopf oscillator with AFDC mechanism. Afterwards, we make sure
that the findings also hold for the Van der Pol oscillator with AFDC mechanism.

We start by investigating the relative convergence time ∆̃, the relative frequency
offset δ̃θ , the relative standard deviation σ̃θ , and the combined quality index Q of the
Hopf oscillator with AFDC mechanism in the space spanned by the initial intrinsic
frequency ν0 and the frequency νext of the external stimulation. In contrast to the Hopf
oscillator with AFO mechanism, fixed sets of parameter values of the Hopf oscillator
with AFDC mechanism yield adaptation processes with high Q-values for a large
range of frequencies ν0 and νext (Figure 5.7). In particular the relative frequency offset
δ̃θ is low for all tested parameterizations and frequencies. While the convergence time
∆̃ is also low for most parameter values and frequencies, adaptation processes with
low stimulation frequencies νext turn out to require larger values of the correlation
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Figure 5.8: Frequency space averaged quality index 〈Q〉 for different parameter values of oscil-
lators with the AFDC mechanism. The average adaptation quality index 〈Q〉 aggregates the quality
index Q of all combinations of the initial intrinsic frequency ν0 of the oscillator and of the frequency νext

of the external stimulation. The average is calculated over the logarithmically sampled frequency space
defined by 0.1 ≤ {ν0,νext} ≤ 10. (a) For sufficiently high values of the correlation learning rate κ, we
always find (η,τ)-parameter values which yield a value of 〈Q〉 close to the maximum of one for the Hopf
oscillator with AFDC mechanism. This corresponds to fast and precise adaptation processes within
the complete space of sampled frequencies. The red circles indicate the four configuration of the Hopf
oscillator shown in Figure 5.7. (b) For the Van der Pol oscillator with AFDC mechanism, the parameter
range enabling a large average quality 〈Q〉 is more restricted. (a, b) The green crosses indicate the
maximum values for the respective values of κ. Figure adapted from Nachstedt et al., (2017).

learning rate κ and the time scale τ. These larger parameter values do not increase the
value ∆̃ for other areas of the investigated frequency space. Similarly, larger values
of κ and τ also result in smaller values of the relative standard deviation σ̃θ for low
values of νext. For instance, the parameterization η = 1.0, κ = 100, and τ = 1.0 results
in quality values Q close to one within the complete investigated ν0-νext-frequency
space (fourth column in Figure 5.7).

The range of initial intrinsic frequencies ν0 and external stimulation frequencies
νext for which a given parameterization of the Hopf oscillator with AFDC mechanism
achieves high values of the quality index Q is significantly larger as found for the
Hopf oscillator with AFO mechanism (compare Figure 5.4 and Figure 5.7). This results
in higher values of the frequency space averaged quality value 〈Q〉. Investigating 〈Q〉
in the η-τ-parameter space for different values of κ shows that, for sufficiently high
values of κ, parameter values of ε and η can be found which enable an average quality
index 〈Q〉 close to the theoretical maximum of one (Figure 5.8 a). The best found
value is 〈Q〉 ≈ 0.96. This is significantly larger than the best found value 〈Q〉 ≈ 0.12
for the Hopf oscillator with the AFO mechanism. The large value of 〈Q〉 corresponds
to very fast adaptation processes with high precision for any combination of initial
intrinsic frequencies ν0 and external stimulation frequencies νext contained in the
ν0-νext-frequency space spanning two orders of magnitudes.

Repeating the analysis for the Van der Pol oscillator with AFDC mechanism
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Figure 5.9: Average quality measures for the best found parameterizations of the oscillators
with AFO mechanism and with AFDC mechanism. For both (a) the Hopf oscillator and (b) the Van
der Pol oscillator, the AFDC mechanism outperforms the AFO mechanism in terms of all defined quality
measures. Note that the average relative convergence time 〈∆̃〉, the average absolute relative frequency
variable offset 〈|δ̃θ|〉 and the average frequency variable standard deviation 〈σ̃〉 include only values
from (ν0,νext)-frequency pairs for which the combined quality index Q has a nonzero value. The
ratio of the number NQ>0 of these frequency pairs and the number Ntot of all testes frequency pairs
is shown on the very right. All numbers are rounded. (a) The best found parameter values for the
Hopf oscillator with AFO mechanism are ε = η ≈ 15.8. The best found configuration of the Hopf
oscillator with AFDC mechanism is τ ≈ 3.98, η ≈ 1.58, and κ ≈ 398 (β0 = 0.0 and ε0 = 0.01).
(b) For the Van der Pol oscillator with AFO mechanism, the best parametrization is ε ≈ 0.0158 and
η = 1.0. The Van der Pol oscillator with AFDC mechanism performs best for τ ≈ 1.58, η ≈ 0.158,
and κ ≈ 100 (β0 = 0.0 and ε0 = 0.01). (*) Values shown as 0.00 are too small to be resolved in the
figure and are stated in the following. Hopf oscillator with AFDC mechanism: 〈|δ̃θ|〉/δ̃θ,max ≈ 5.3× 10−7

and 〈σ̃θ〉/σ̃θ,max ≈ 8.5× 10−8. Van der Pol oscillator with AFDC mechanism: 〈σ̃θ〉/σ̃θ,max = 2.5× 10−3.
Figure adapted from Nachstedt et al., (2017).

shows that, compared to the Hopf oscillator with AFDC mechanism, the parameter
range enabling fast and precise adaptation is more restricted (Figure 5.8 b). Still, we
find a configuration which results in a frequency space averaged quality index of
〈Q〉 ≈ 0.63. Compared to best value found for the Van der Pol oscillator with AFO
mechanism (〈Q〉 ≈ 0.08), this is still a significant increase.

5.3.4 Quantitative Comparison of the AFO and the AFDC mechanism

In the previous section, we have demonstrated the ability of the AFDC mechanism to
enable fast and precise adaptations within a wider frequency regime than the AFO
mechanism. In particular, we compared the best found frequency space averaged
quality index 〈Q〉. Here, we compare the individual quality measures of the corre-
sponding optimal parameter configurations. This quantitative comparison further
underlines the qualitative difference between the two adaptation mechanisms.

For the Hopf oscillator with AFO mechanism, the parameter value pair ε = η ≈
15.8 performs best and results in an average quality index value of 〈Q〉 ≈ 0.12 (Fig-
ure 5.9 a). Still, only the adaptation processes for roughly 25 % of the investigated
(ν0, νext)-frequency pairs are characterized by a nonzero quality index in this case.
When restricted to these cases, the average relative convergence time ∆̃, the relative
frequency variable offset δ̃θ , and the standard deviation σ̃ normalized by the respec-
tive maximum values for the quality index calculation take values in between 0.16
and 0.18. The best tested configuration for the Hopf oscillator with AFDC mechanism
is τ ≈ 3.98, η ≈ 1.58, and κ ≈ 398. For this parametrization, all (ν0, νext)-frequency
pairs lead to adaptation processes with nonzero quality indices Q and their frequency
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space averaged quality index 〈Q〉 ≈ 0.96 is close to maximum. The individual qual-
ity measures are all significantly lower (hence better) than in the case of the AFO
mechanism.

Similar observations do also apply for the comparison between the best configura-
tion of the Van der Pol oscillator with AFO mechanism and the Van der Pol oscillator
with AFDC mechanism (Figure 5.9 b). Due the highly nonlinear limit cycle of the
Van der Pol oscillator, however, also the best parametrization of the AFDC version
of this oscillator only results in nonzero quality index values for approximately 79 %
of the investigated frequency pairs. Still, this is a considerably larger ratio than the
15 % found for the AFO mechanism. Similar to the Hopf oscillator, also the average
individual quality measures 〈∆̃〉, 〈|δ̃θ |〉 and 〈σθ〉 calculated for the NQ>0 nonzero
quality index cases are all lower (better) for the AFDC version of the Van der Pol
oscillator than for the AFO mechanism. Note that the maximum values ∆̃max, δ̃θ,max
and σ̃θ,max, which we use to calculate the quality index Q, are larger for the Van der
Pol oscillator than for the Hopf oscillator.

5.4 Discussion

In this chapter, we propose a mechanism that may explain how short-lasting transient
signals of the WM system may be used to evoke adaptive long-lasting time-dependent
neuronal signal as required, for instance, in the control of locomotion. We model CPGs
as nonlinear oscillators and develop a mechanism that, in contrast to the previously
existing AFO mechanism (Righetti et al., 2006), allows to adapt the frequency of the
periodic attractor in these oscillators fast and precisely within a wide frequency range
in a self-organized way. This verifies the third sub-hypothesis of this thesis and shows
that WM may evoke long-lasting signals of varying frequencies by only transiently
producing few periods of this respective signal.

The AFO mechanism, as introduced by Righetti et al., (2006), is a powerful method
to adapt the frequencies of different types of oscillatory systems to the frequency of
an external signal. We show, however, that the trade-off between speed and precision
inherent to the AFO mechanism does not allow to find parameter values which
enable fast and precise adaptations within a wide range of frequencies. Therefore,
we develop a new adaptation mechanism which relies on the dynamic adaptation
of the coupling strengths between the oscillatory system and an external periodic
stimulation. The dynamics of the adaptive coupling strengths temporally increases
the influence of the external stimulation on the system and thereby increase the
adaptation rate. Once the intrinsic frequency of the oscillator is close to the one
of the external stimulation, the influence of the latter on the oscillator is reduced.
This enables a precise adaptation toward the end of the adaptation process. As a
consequence, this adaptation through fast dynamical coupling (AFDC) allows fast
and precise adaptation within a wide range of frequencies with a single fixed set of
parameter values.

Mechanisms to dynamically adjust the coupling strengths of oscillators have been
studied before in the context of networks of regular, i.e., non-adaptive, oscillators
with different intrinsic frequencies (Ren and Zhao, 2007). Also in this study, the
adaptive coupling strengths are strong in the beginning, when the oscillators are still
desynchronized, and are weak once synchronization is achieved. As in this study the
oscillators do not adapt their intrinsic frequencies, however, the coupling strengths
cannot ultimately decay to zero like they do in the AFDC mechanism.
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Within this chapter, the AFO mechanism and the AFDC mechanism are studied
by applying them to the harmonic Hopf oscillator and the highly non-harmonic Van
der Pol oscillator. In both cases, the AFDC mechanism clearly outperforms the AFO
mechanism in the employed benchmark test. Still, the adaptive versions of the Van
der Pol oscillator in general performs weaker than the equivalent versions of the
Hopf oscillator. In order to verify the generality of the AFDC mechanism, it remains
to be investigated whether the mechanism can also be applied to other standard
types of nonlinear oscillators like the Rayleigh-oscillator (Rayleigh, 1877), the Duffing
oscillator (Duffing, 1918), or the FitzHugh-Nagumo oscillator (Fitzhugh, 1961).

Considering possible biological implementations of the AFDC mechanism, the
interaction of the fast transient dynamics of the adaptive coupling strengths and the
slower but permanent adaptation of the intrinsic frequency of the oscillator resem-
bles the interplay of short-term plasticity (Zucker and Regehr, 2002) and long-term
plasticity (Wood et al., 2011) in neuronal systems. In Nachstedt et al., (2017), we
propose an implementation of the AFDC rule that employs synaptic plasticity to
modify the output frequency of an abstract neuronal CPG consisting of only two
fully connected point-like and rate based neurons (Pasemann et al., 2003). In this
neuronal implementation of the AFDC mechanism, the adaptive coupling strengths
translate into synaptic connections whose transmission efficacy is subject to transient
correlation-based plasticity. The adaptation of the intrinsic frequency, in turn, con-
stitutes a long-term modification of the network dynamics (Nachstedt et al., 2012).
Therefore, when applied to a neuronal system, the AFDC mechanism describes the
emergence of fast and precise adaptation behavior based on the interplay of short-
term and long-term plasticity processes (Nachstedt et al., 2012). This agrees with
other results indicating the relevance of this interplay of short-term and long-term
plasticity for fast network reconfiguration in biological motor control (Nadim and
Manor, 2000).

Nevertheless, CPGs in biological neuronal system that adapt their oscillation
frequencies on short timescales have not yet been reported. Interestingly, however,
it has been shown that the concentration of the neuromodulator serotonin is able to
modulate the output frequency of a CPG over a wide frequency range (Harris-Warrick
and Cohen, 1985). However, due to the ongoing diffusion processes, it is not clear
whether a neuromodulator concentration can account for the permanent frequency
adaptation implemented by the AFDC mechanism.

As discussed earlier, CPGs play an important role in the control of the different
types of locomotion including legged locomotion. It is known that the leg frequency
during locomotion is tightly coupled to the resonant frequency of the freely swinging
leg (Holt et al., 1990). This enables animals to achieve optimal energy efficiency
(Ahlborn and Blake, 2002). Actually, it has also been proposed that animals might
actively modify the resonant frequency of their legs to allow for different locomotion
speeds (Ahlborn and Blake, 2002). The adaptation of the intrinsic frequency of a
CPG toward the resonant frequency of the controlled system has been repeatedly
modeled (Verdaasdonk et al., 2006; Verdaasdonk et al., 2009). The AFDC mechanism
also offers an explanation how animals might achieve fast and precise adaptation of
their CPGs in this context. This opens up the possibility to rely on few distinct CPGs
being responsible for the complete range of available locomotion speeds.

Following the path of transferring successful biological concepts to the field of
robotics (Pfeifer et al., 2007), the time-discrete predecessor of the general AFDC mech-
anism has been shown to be functional in different robotic control tasks including
self-organized control of a snake-like robot (Nachstedt et al., 2013), adaptive control
of a robot leg with compliant tarsus (Canio et al., 2016b), and bipedal locomotion
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which is robust against global loss of sensory feedback (Canio et al., 2016a). As the
here developed general AFDC mechanism is applicable to all kinds of nonlinear
oscillators, it may allow further robotic applications relying on different kinds of
CPGs (Ijspeert, 2008; Nassour et al., 2014; Santos et al., 2017).

In the context of this thesis, the AFDC mechanism provides a mechanism which
allow a CPG to adapt its output signal based on transient signals arriving from the
neuronal system implementing WM. Still, the AFDC mechanism does only allow to
appropriately adjust the frequency of the CPG output signal. A complete interaction
schema between WM and CPGs does also have to explain how to dynamically adapt
the shape of the produced signal. Interestingly, it has been shown that a set of parallel
operating oscillators with AFO mechanism is able to adaptively synthesize complex
periodic signals (Righetti et al., 2009). If this schema can be transferred to oscillators
with the AFDC mechanism, it might provide an explanation how a CPG can adapt
both the frequency and the shape of its output signal based on short transient signals
from the WM system.
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Chapter 6

Discussion and Future Work

The ability to form memories of past stimuli is fundamental to the generation of
complex behavior (Eichenbaum, 2011). At the same time, the neuronal mechanisms
implementing the processing and storage of past information across different time
scales are still not known. In particular, it is not clear whether the neuronal circuits
that implement working memory (WM) are dominated by dynamics that relies on
different attractor states or by purely transient dynamics. Experimental (e.g. Fuster
and Alexander, 1971; Funahashi et al., 1989; Goldman-Rakic, 1995; Rainer and Miller,
2002; Constantinidis and Wang, 2004; Sreenivasan et al., 2014) as well as theoretical
studies (e.g. Durstewitz et al., 2000; Compte et al., 2000; Rabinovich et al., 2008a;
Stokes et al., 2013; Drover, 2014; Barak and Tsodyks, 2014) are not conclusive and
yield support for both seemingly contradictory assumptions.

In this thesis, we evaluate the hypothesis that complex and robust WM operation
arises from the interaction of transient neuronal dynamics with self-organizing attractor
states in other neuronal memory systems. In order to evaluate this hypothesis, we derive
three necessary sub-hypotheses which we verify separately. First, we demonstrate
that robust WM indeed requires both transient dynamics and distinct attractor states
(Chapter 3). Second, we show that these distinct attractor states may be formed in a
self-organized way in the long-term memory (LTM) based on elementary synaptic
plasticity processes (Chapter 4). Finally, we develop a mechanism that is able to
transform short-lasting transient outputs from WM into long-lasting time-dependent
signals in a self-organized way (Chapter 5).

In the following, we discuss the results which we obtain in this thesis with respect
to the formulated hypotheses. More detailed discussions of the individual results are
given at the end of the respective chapters.

Interplay of Transient Dynamics and Attractor States in WM

As stated above, experimental findings on the type of neuronal dynamics that underly
WM are diverse. Our first sub-hypothesis states that only the combination of both,
complex transient dynamics and distinct attractor states, allows for robust WM
operation. In order to validate this hypothesis, we first show that purely transient
neuronal dynamics does not enable robust WM operation. We demonstrate that
a transient network model is able to solve a typical WM task only for predictable
stimulus timing (Section 3.2.1 and 3.2.2). This is in contrast to the results reported for
human subjects whose performance in this task does not depend on the predictability
of the stimulus timing (Koppe et al., 2014). Importantly, previous studies using
networks with purely transient dynamics to solve WM tasks did not systematically
evaluate the influence of unpredictable stimulus timing on the performance (e.g.
Barak et al., 2013; Dasgupta et al., 2013; Barak and Tsodyks, 2014; Cheng et al., 2015).
The break-down of the performance in the case of unpredictable stimulus timing is
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related to the overlap of the trajectory bundles of the system which represent the
different stimulus histories (Section 3.2.4). This phenomenon is very generic and we
expect that it can be generalized from the class of network models used here to other
network models which store information in a purely transient manner (for a review,
see Buonomano and Maass, 2009). Thus, we conclude that robust WM cannot be
implemented by purely transient neuronal dynamics.

To enable the network to solve the WM task with unpredictable stimulus timing,
we introduce additional feedback loops which represent the relevant information
about the current stimulus history (Section 3.2.3). Such feedback loops have been
proposed before to enable the longer storage of information in reservoir networks
(Maass et al., 2007; Pascanu and Jaeger, 2011). They have not been considered,
however, in the context of unpredictable stimulus timing as done here. The feedback
loops effectively structure the phase space of the system by introducing distinct
attractor states (Section 3.2.4). As a result, the trajectory bundles representing different
stimulus histories remain well separated also in the case of unpredictable stimulus
timing. Accordingly, the network model is now able to perform the WM task robustly
irrespective of the predictability of the stimulus timing. Importantly, this network
model employs both transient dynamics and attractor states to solve the WM task.

The supporting role of persistent activity for the maintenance of information in
WM has recently been experimentally confirmed (Kamiński et al., 2017). Importantly,
in this experiment, it was found that information-specific persistent activity just
constitutes one fraction of the total neuronal activity. Similar to the requirements
identified here, stable or attractor dominated encoding of information coexists with
dynamic and transient encoding (Murray et al., 2017). The dynamic components of
the coding are especially strong during the cue and the early delay period as also
observed for the transient dynamics in our model (Murray et al., 2017). Interestingly,
maintenance of information in WM without persistent activity is mostly found for
experimental paradigms which use fixed maintenance durations (e.g. Watanabe
and Funahashi, 2007; Barak et al., 2010). Thus, it seems that the brain relies on
transient information storage when the temporal structure of the task is predictable
and switches to more robust storage mechanism otherwise (Stokes, 2015). This agrees
well with our results. When the temporal structure of the task is predictable, the
network can rely on attractor-less transient storage of the information to perform this
task. If the temporal structure is unpredictable, on the other hand, attractor states in
other memory systems have to be employed. This explains why during performing
a WM task with unpredictable stimulus timing, a higher activity in multiple brain
regions was recorded than solving the same WM task with predictable stimulus
timing (Koppe et al., 2014). Switching in between these two modes may be beneficial
in terms of energetic efficient processing (Laughlin, 2001).

The attractor states which we introduce to allow robust memory storage in the
presence of unpredictable stimulus timing are formed via additional feedback loops.
We can interpret the signals that the recurrent network receives via these feedback
loops as self-generated context signals (Santiago, 2004; Sussillo and Barak, 2013). It
has been shown that a transient network model that receives such context signals re-
produces population dynamics similar to dynamics observed in the PFC (Mante et al.,
2013). Thus, transient dynamics modulated by a constant context or feedback signal
might indeed be a plausible mechanism to explain complex dynamical computations
in the brain.

The beneficial effect of the attractor states emerges from the additional structure
introduced into the phase space of the neuronal dynamics. Accordingly, we propose
that also other mechanism that modify the neuronal dynamics in a similar way may
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allow robust WM performance in tasks with unpredictable temporal structures. In
particular, this includes attractor relics as employed in saddle point and heteroclinic
networks (Rabinovich et al., 2008b; Gros, 2009; Bick and Rabinovich, 2009) as well
as short-term synaptic plasticity effects (Mongillo et al., 2008; Rose et al., 2016a). As
long as these processes reflect past stimuli reliably on time scales that are significantly
longer than the time scale of the neuronal dynamics, they effectively might behave
like attractor states for the evolution of the neuronal dynamics.

At this point, we have shown that a purely transient network is not able to
solve the n-back task with unpredictable temporal structure and that a network that
exploits both, transient dynamics and distinct attractor states, can solve this task.
To completely verify our first sub-hypothesis, we finally show that the n-back task
cannot be solved by a network that is solely relying on different attractor states. We
do so by investigating the performance of the reservoir network with two feedback
loops in a simplified version of the WM task with predictable stimulus timing (Section
3.2.5). Although all the relevant information is available to the network, its ability to
produce the time-dependent readout signal is reduced once the network dynamics is
close to the attractor state at the end of a transient trajectory. Introducing an unspecific
recall stimulus leads to a new transient trajectory and restores the computational
power of the network. Hence, time-dependent computation cannot be implemented
without complex transient dynamics in the network. As WM requires the ability
to perform complex computations (Baddeley, 2012; Revlin, 2013), the underlying
neuronal system must be using complex transient dynamics.

In summary, these findings verify our first sub-hypothesis in this thesis: Only
the combination of both distinct attractor states and transient neuronal dynamics
enables WM to robustly store information and to perform complex computations. It
remains an open question, however, whether these distinct attractor states might also
be evoked by non-stationary processes evolving on slower time scales.

Self-Organized LTM Representations as Attractor States for WM Operation

The verification of the first sub-hypothesis yields to a subsequent research questions:
Given that WM requires meaningful attractor states for robust performance on unre-
liably timed input stimuli, there needs to be a mechanism by which these attractor
states are formed in a self-organized way in a neuronal network. Following the
main hypothesis of this thesis, we propose that these attractor states emerge from the
interaction of WM with other memory systems, in particular with LTM. This requires
us to verify the second sub-hypothesis stating that relevant attractor states may be
formed and assigned reliably in a self-organized way in the LTM system.

To verify the second sub-hypothesis, we propose a network model that is based
on a recurrent area which receives feedforward signals from a dedicated input area
(Section 4.1.1). We show that in this network, representations of different input
stimuli are formed and assigned to these stimuli in a self-organized way (Section
4.2.1). The time scale of these processes is defined by the time scales of Hebbian
plasticity and synaptic scaling which evoke synaptic changes that last for hours
and days (Mayford et al., 2012; Tetzlaff et al., 2012a). Therefore, our model indeed
operates on the time scales relevant for LTM. The stimulus representations which
are formed in the network are functional Hebbian cell assemblies (CAs) (Hebb, 1949;
Palm et al., 2014, , Section 4.2.3). The self-organization is based on the interplay
of Hebbian plasticity (Hebb, 1949) and synaptic scaling (Turrigiano et al., 1998) at
both the recurrent synapses and the feedforward synapses. By deriving a reduced
population model, we investigate the equilibrium structure which underlies the
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network dynamics (Section 4.3). To ensure that the formation of CAs in our model
does not depend on specific features of the input stimuli, we show that it is robust
with respect to the number of active neurons in the input area (Section 4.2.2) and
with respect to the firing rate of these neurons (Section 4.3.2). Thus, this confirms our
second sub-hypothesis: The interaction of Hebbian plasticity and synaptic scaling
enables the reliable self-organized formation and assignment of attractor states in
LTM.

According to the main hypothesis of this thesis, the self-organized attractor states
in the LTM system provide the attractor states required by WM to robustly process
unreliable input stimuli. This notion is supported by recent experimental evidence
showing that the storage of WM information is distributed across multiple brain
regions which are not specifically dedicated to WM (Christophel et al., 2017), i.e., in
brain regions other than the prefrontal cortex (PFC). Brain regions which are involved
in processing a specific kind of information in non-WM tasks are also active during
WM maintenance of the same kind of information (D’Esposito and Postle, 2015).
Phenomenologically, the existence of LTM representations has been shown to support
the operation of WM (Hulme et al., 1991; Poirier et al., 2011). All these findings
suggest that the PFC as central WM unit uses existing LTM representations of stimuli
to maintain the respective information. In terms of the WM model of Baddeley, (2003)
(Section 2.4), the PFC might thus rather correspond to the central executive and not
to any of the three short term buffer systems (D’Esposito and Postle, 2015).

Note that in Section 3.2.3, we introduce attractor states which represent the identi-
ties of the two most recent stimuli in the form of ongoing activity. The CAs formed in
our LTM model in Chapter 4, however, are input-dependent attractors of the system.
Without additional excitation, they do not show persistent activity. A possible mecha-
nism which allows the CAs to represent past stimuli in a way similar to the additional
readout units introduced in Section 3.2.3 might be based on an ongoing low-level
excitatory input during the delay phase of a WM task. This low-level excitatory input
would constitute a kind of gating mechanism as already proposed by (Cowan, 1988).
Alternatively, adapting the level of inhibition received by neurons in the recurrent
layer of our network model could allow CAs to show persistent activity. Dynamical
switching between input-driven attractors and persistent activity states might be
mediated, for instance, by mechanism of feedforward inhibition (Buzsáki, 1984; Large
et al., 2016).

Apart from being input-dependent attractors, the CAs formed in our LTM model
also only correspond to exactly one stimulus. Thus, in order to keep multiple items
robustly in WM, there need to be attractor states in which multiple CAs are active
simultaneously. Due to the strong competition introduced by the global inhibition,
our network model currently does not allow a reliable way to achieve this (Section
4.3.2). In other LTM models operating with similar attractor dynamics, it has been
shown that the number of simultaneously active representations can be controlled
by the level of the global inhibitory signals (Romani et al., 2013). It remains to be
investigated whether such a mechanism would also work in the LTM model discussed
within this thesis. Alternatively, introducing local inhibition mechanisms (Fukai and
Tanaka, 1997; Harris and Mrsic-Flogel, 2013; Stevens et al., 2013; Tetzlaff et al., 2013)
which limit the growth of a given CA without preventing other non-overlapping
CAs to get active might also allow the concurrent activity of multiple CAs. Note
that ultimately, this concurrent activity of multiple CAs would also have to encode
the temporal order of the respective stimuli. For instance, in the n-back task, it is
required to be able to distinguish the last stimulus from the second-last stimulus.
Different models of the storage of temporal and serial order in the brain have been



Chapter 6. Discussion and Future Work 101

proposed (Henson, 1998; Burgess and Hitch, 1999; Brown et al., 2000; Hurlstone et al.,
2014). It remains to be investigated if any of these mechanisms can be transfered to
the here-described model.

Alternatively to storing information in terms of ongoing activity, it has been pro-
posed that WM may also rely on specific patterns of synaptic weights that arise from
short-term synaptic plasticity (Mongillo et al., 2008; Barak and Tsodyks, 2014; Stokes,
2015; Wolff et al., 2017). These specific patterns are called activity-silent representa-
tions. The information stored in these activity-silent representations is recalled when
the modified synaptic weights influence the emerging neuronal dynamics. This may
be guided by attention mechanisms (Rose et al., 2016b). In comparison to persistent
activity, activity-silent representations are assumed to be less energetically expensive
(Stokes, 2015). In this framework, the number of items that can be kept in WM can be
directly related to parameters of the short-term plasticity process and regulated by
external excitation (Mi et al., 2017). It is proposed that activity-silent representations
underly unconscious WM, i.e., the short-term maintenance of information without the
subject being aware of this information (Trübutschek et al., 2017). Accordingly, both
persistent activity representations as well as activity-silent representations contribute
to WM operation (Silvanto, 2017). The hypotheses in this thesis are compatible with
activity-silent representations. Introducing short-term synaptic plasticity into the
LTM model in Chapter 4 might increase the level of excitability of a given CA after its
activation. A certain level of activity in the WM system might then suffice to activate
this CA. Due to the pattern completion properties of the CA (Section 4.2.3), the re-
sulting signals from the LTM system to the WM system might influence the transient
dynamics in the WM system in a similar prototypical way as the signals mediated
by the activity feedback loops (Section 3.2.3). Thus, the mechanism of activity-silent
representations conforms to our main hypothesis stating that self-organized attractor
states in the LTM system support the transient dynamics in the WM system.

In summary, the interaction of Hebbian plasticity and synaptic scaling enables the
self-organized formation and allocation of attractor states which represent different
stimuli in LTM. These attractor states might support the storage of information in
LTM either by persistent activity or in the form of activity-silent representations
with a higher level of excitability. Regarding the possibility of persistent activity, it
remains to be investigated how multiple CAs may be kept active simultaneously in
the network and how this concurrent activity may represent the temporal order of
the corresponding stimuli.

Unpredictable Timing in the Interaction of WM and LTM

In Chapter 3, we consider unpredictable stimulus timing in an established WM
benchmark task, namely the n-back task (Jaeggi et al., 2003; Conway et al., 2005;
Owen et al., 2005; Kane et al., 2007b; Jaeggi et al., 2010). As such, the n-back task does
not require much contributions of other memory systems like LTM, at least in the
case of a predictable temporal structure. In everyday life, however, WM and LTM are
known to continuously interact and support each other’s operation (Baddeley et al.,
1988; Hulme et al., 1991; Poirier et al., 2011; Marton and Eichorn, 2014). The neuronal
mechanisms underlying this interaction have not yet been analyzed intensively (but
see Burgess and Hitch, 2005).

The fact that WM and LTM interact continuously shows that WM needs to be able
to operate on unpredictably timed input stimuli already during the internal signal
exchange in between different neuronal systems in the brain. Like the model of self-
organized CAs in Section 4, LTM is generally assumed to operate based on attractor
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dynamics (Hopfield, 1982; Gerstner and Kistler, 2002; Wood et al., 2011; Tetzlaff
et al., 2013). Thus, recalling a specific item from LTM corresponds to the convergence
of the system to the respective attractor state. The duration of this convergence
determines the retrieval time of the respective memory item. The retrieval time
may vary from recall to recall depending on the state of the memory system and the
recall stimulus. This yields a distribution of retrieval times which has been studied
theoretically (Kohring, 1990) as well as phenomenologically (Juola et al., 1971). Given
the continuous interaction of WM and LTM, the WM system has to be able to robustly
operate on signals retrieved from LTM despite of the varying retrieval times.

Thus, the unpredictability of retrieval times in LTM provide further evidence for
the importance of robustness with respect to unpredictable stimulus timing in the
neuronal system implementing WM.

Transforming Transient Activity to Long-Lasting Signals with adaptive CPGs

Having shown that computation and the production of complex output signals in
WM depends on transient dynamics, a second follow-up research question arises.
Given that the transient dynamics represents the transition of the WM system from
one attractor state to the next, its duration is coupled to the speed of operation of
WM. Shorter transients enable a faster succession of attractor states and therefore a
higher rate of different computations. At the same time, many actions that may be
triggered by WM require much longer-lasting control signals. For instance, walking
or running requires ongoing neuronal control. Thus, the question arises how short-
lasting transient signals can be used to control longer-lasting output signals.

According to our third hypothesis, one possible solution to this problem is given
by central pattern generators (CPGs) (Hooper, 2001; Ijspeert, 2008) which are able
to adapt fast and precisely the properties of their output signal based on short input
signals. Short transient signals produced by WM might trigger a CPG to adapt
its attractive limit cycle such that its output signal mimics the prototypical signal
received from WM. In order to enable CPGs to accomplish this task, we introduce
a new kind of adaptation mechanism which is based on adaptation through fast
dynamical coupling strengths (AFDC). In contrast to the existing adaptive frequency
oscillator (AFO) mechanism (Righetti et al., 2006, Section 5.2), the AFDC mechanism
is able to adapt the frequency of an oscillatory system fast and precise within only
few periods of input activity (Section 5.3). When the input stimulation vanishes, the
oscillatory system keeps oscillating at the adapted frequency. Thus, this mechanism
is able to transform the frequency of a short-lasting, i.e., transient signal into a
long-lasting time-dependent signal of the same frequency. This verifies our third
sub-hypothesis.

For the AFO mechanism, it has been shown that multiple parallel adaptive oscil-
lators are able to synthesize complex periodic signals (Righetti et al., 2009). Basically,
this is based on a Fourier decomposition of the incoming signal where every oscillator
automatically adapts its frequency to one of the significant Fourier components. This
shows that, in general, frequency adaptation of single oscillators suffices to repro-
duce periodic signals of basically arbitrary shape (Righetti et al., 2009). We expect
that a similar structure composed of oscillators with AFDC mechanism would also
significantly speed up the adaptation towards arbitrary periodic signals.

In this thesis, we consider CPGs on the very abstract level of non-linear limit cycle
systems, i.e., systems with periodic attractors. A variety of more detailed biophysical
models and studies have been proposed that show how CPGs may be implemented
in neuronal networks (Brown, 1911; Pearson and Duysens, 1976; Miller and Scott,
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1977; Matsuoka, 1985; Hellgren and Grillner, 1992; Tråvén et al., 1993; Hooper, 2001;
Guertin, 2009; Guertin, 2013). In general, the AFDC mechanism is applicable to any
CPG model as long as there is a parameter available which allows to monotonically
control the frequency of the produced signal. However, the comparison between
the adaptations of the Hopf oscillator with AFDC mechanism and the Van der Pol
oscillator with AFDC mechanism also show that oscillatory systems with complex
limit cycles are more difficult to adapt. Thus, it remains an open question in how far
the AFDC mechanism is actually able to adapt the frequencies of complex biological
CPG models.

In summary, the AFDC mechanism developed in this thesis provides a possible
explanation for how short-lasting transient activity in WM may evoke long-lasting
periodic control signals by self-organized adaptation of the periodic attractors of
CPGs. It remains to be investigated in how far this mechanism can be transferred to
more realistic CPG models.

Evaluation of the Main Hypothesis

As discussed above, in this thesis, we successfully verify all of our three initially
formulated sub-hypotheses: First, we show that WM operation depends on both
transient dynamics and attractor states for robust information storage and complex
computation (sub-hypothesis 1). Second, we demonstrate that attractor states rep-
resenting different stimuli can be formed and assigned in a self-organized way by
Hebbian plasticity and synaptic scaling in the LTM system (sub-hypothesis 2). Finally,
we also develop a mechanism that allows short-lasting transient signals to fast and
precisely adapt the frequencies of periodic attractors of CPGs (sub-hypothesis 3).
The verification of these three sub-hypotheses is an important prerequisite for the
verification of the main hypothesis. To fully verify the main hypothesis, however, the
functionality of the interaction of transient neuronal dynamics with stable attractor
states in the LTM system and adaptive periodic attractor states in CPGs remains to
be actually shown. The solutions developed during the verifications of the three
sub-hypotheses of this thesis provide valuable insights about promising approaches
to implement this interaction in a unifying neuronal network model.

Outlook

The presented models and the corresponding results and insights provide multiple
possible starting points for future works. We already mentioned a couple of open
questions regarding the individual memory systems which we investigated in this
thesis: Regarding the neuronal dynamics underlying WM, we need to verify in how
far also attractor relics (Rabinovich et al., 2008b; Gros, 2009; Bick and Rabinovich,
2009) or short-term synaptic plasticity processes (Mongillo et al., 2008; Rose et al.,
2016a) may influence transient neuronal dynamics in a way that allows solving WM
tasks with temporal unpredictable structure. In the LTM model, we have to explore
possible mechanisms which allow to reliably control the simultaneous activity of
multiple CAs in the recurrent network and to represent their temporal structure.
Finally, concerning the AFDC mechanism for CPGs, we need to evaluate in how
far the AFDC mechanism is applicable to complex biophysical models of CPGs and
whether it can be generalized to adapt also the shape of the produced periodic output
signal.

Apart from these research questions for the individual memory components, there
are also various open questions regarding the interaction of these components. In
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this thesis, we analyze models of WM, LTM and CPGs and show that these three
models provide the abilities required for beneficial interaction between them. The
actual interaction of these model, however, remains to be demonstrated.

In a first step, the transient WM model and the self-organized LTM model might
be combined. By repeated presentation of stimuli to this combined system, CAs
representing these stimuli would emerge in the LTM system. We might then show
that these representations can be used by the transient reservoir network model
to solve an n-back task with unpredictable temporal structure (Koppe et al., 2014)
operating on these stimuli.

In a second step, we might demonstrate the interaction between WM and CPGs.
For this, we might train a reservoir network to produce transient periodic signals with
a frequency that depends on an incoming input stimulus. This transient signal could
then be transmitted to one or multiple CPGs with AFDC mechanism which adapt
their periodic output signal accordingly. By training the reservoir network in parallel
to also solve an n-back task, a so-called cognitive-motor dual-task could be modeled
(Leone et al., 2017). In one particular setup of this task, it has been shown that human
subjects are able to solve an n-back task well above chance level while at the same
time performing periodic ankle movements (Johannsen et al., 2013). We predict that
the interaction of a WM network model with transient dynamics and CPGs with
AFDC mechanism should be able to reproduce this ability. After the initial control of
the periodic ankle movement, the transient network model would be released from
the ongoing active control of the movements by appropriately adjusting the output
signals of the responsible CPGs. Arising deviations of the CPG frequency resulting,
for instance, from sensory feedback, might still require occasional control by WM and
account for a reduced performance in the n-back task (Johannsen et al., 2013). Based
on this model, we might, for instance, derive experimental predictions regarding the
consequences of an instructed change of the movement frequency.

In a final step, all three neuronal memory system might be combined to solve
and analyze complex WM tasks, for instance, in closed-loop scenarios (Potter et al.,
2014). As an example, we might design a scenario in which an agent has to integrate
multiple sequentially and temporally unpredictably occurring stimuli and, based on
the combination of the received stimuli, adapt its locomotion behavior. Here, LTM
would allow to form representations of the relevant stimuli in a self-organized way.
The representations would allow to robustly store the recently occurred stimuli in
WM. In conjunction with the transient dynamics evoked by these stimuli, this would
enable WM to produce a specific time-dependent transient signal controlling the
first few periods of the new locomotion behavior. This signal, in turn, would result
in the adaptation of CPGs with AFDC mechanism which would afterwards allow
the ongoing control of this locomotion. Thus, this agent would be able to adapt its
behavior based on a possibly complex function of the received stimuli.

Apart from these possible future modeling approaches, the hypothesis of this
thesis also yields an interesting experimental prediction. Note that in the n-back
study with unpredictable stimulus timing as performed by Koppe et al., (2014),
the subjects were operating on well-known visual stimuli. Hence, we can assume
that these stimuli were able to activate specific attractor states in the LTM system.
According to our hypothesis, this explains the robustness of the performance even in
the case of unpredictable stimulus timing. This robustness should vanish, however,
if the n-back task is performed on stimuli which are not able to activate existing
representations in LTM. For instance, these might be given by abstract images that
cannot be decomposed into known geometrical shapes. We predict that in such an
experiment, subjects are able to achieve a high level of performance only as long as
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the WM system can rely on transient storage mechanisms, i.e., as long as the stimuli
appear with a predictable timing. In contrast, introducing unpredictability in the
timing of the stimuli should significantly decrease the performance of the subjects as
there are no LTM attractor states available to support the WM operation. This should
change, however, if the experiment is repeated several times with the same set of
stimuli. The repeated presentation of the same stimuli should trigger the formation
of respective representations in LTM which may then support the dynamics in the
WM system. The performance of the subjects in the n-back task with unpredictable
stimulus timing should therefore eventually reach the same level of performance as
achieved with predictable stimulus timing.

In summary, the neuronal memory models developed and analyzed in this thesis
offer various possibilities for future works. Besides of different research questions
regarding the individual models, their combination might allow to model a com-
plex cognitive-motor WM dual-task as well as closed-loop scenarios requiring the
transformation of a sequence of stimuli into specific locomotion behaviors. Finally,
our results also yield nontrivial experimental predictions that may be verified in a
modified version of the n-back task.

Summary

In this thesis, we show that reliable WM operation requires an interplay of both
transient dynamics and attractor states and that these attractor states may be formed
in a self-organized way in other neuronal memory systems which interact with the
neuronal system implementing WM. We analyze the neuronal dynamics required
to solve a WM task with unpredictable temporal structure and show that only by
exploiting both transient dynamics and attractor states, a neuronal system is able
to solve this task. Furthermore, we present and analyze a new neuronal network
model of LTM which, in contrast to earlier models, allows to form CAs and simulta-
neously allocate these CAs to the correct stimuli in a self-organized way based on the
interaction of two elementary plasticity processes. These CAs are input-dependent
attractor states and may thus provide the kind of attractor dynamics required by WM
to process unreliably timed stimuli. Finally, we develop a new mechanism which
is able to adapt the frequencies of general oscillatory systems based on periodic
input signals within a wide frequency range faster and more precisely as compared
to an existing mechanism. This new mechanism may allow short-lasting transient
trajectories in the WM system to evoke long-lasting time-dependent output signals.
Although our models of the individual memory system involve several abstractions
and simplifications, our studies provide potential explanations for several experi-
mental findings and open questions (e.g. memory maintenance without persistent
activity only in WM experiments with predictable temporal structure). At the same
time, there remain several open questions regarding the actual interaction of the
investigated memory systems. Thus, our results may be the starting point for a
more detailed model incorporating all the investigated neuronal memory systems.
This will allow to study the emergence of complex behavior out of the interaction of
different neuronal memory systems.
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Appendix A

Supplementary Calculations for
the Cell Assembly Model

A.1 Normalization of the Network Model

The dynamics of the neurons and synapses in the network model in Chapter 4 is
based on the model proposed by Tetzlaff et al., (2013). In contrast to Tetzlaff et al.,
(2013), however, we use a normalized version of both the neuronal dynamics and
the synaptic dynamics. This reduces the number of covariant parameters in the
model. Here, we show how to transform the unnormalized model into an equivalent
normalized version.

Unnormalized Model

In the following, we denote all variables of the unnormalized model by a tilde (˜). In
this model, the dynamics of the membrane potential ũi of neuron i (i ∈ {1, . . . , Nrec})
in the recurrent area is given by the following equation:

dũi

dt
= − ũi

τ̃
+ R̃

 ∑
j∈Crec

i

w̃rec
ij F̃j + ∑

k∈Cff
i

w̃ff
ik Ĩk + w̃inh

outF̃
inh

 . (A.1)

Here, the time scale τ̃ defines the decay rate of the membrane potential. The mem-
brane resistance R̃ scales the influence of the incoming signals on the membrane
potential. The weights w̃rec

ij of the recurrent synapses characterize the interaction be-
tween neurons in the recurrent area to the inhibitory population. The set Crec

i contains
all indexes of neurons j within the recurrent area which transmit synaptic signals to
neuron i. Accordingly, the weights of the feedforward synapses transmitting signals
from the inputs Ĩk (k ∈ {1, . . . , Nin}) to neurons within the recurrent area are given
by w̃ff

ik. The set Cff
i contains all indexes k of neurons in the input area which transmit

signals to neuron i in the recurrent area. Finally, the weight w̃inh
out determines the

strengths of the synapses via which the neurons in the recurrent area receive signals
from the inhibitory population. The firing rate of the inhibitory population is given
by F̃inh.

In the unnormalized model, the firing rate function of the neurons in the recurrent
area is given by

F̃i = φ̃(ũi) =
α̃

1 + exp(β̃(ε̃− ũi))
. (A.2)

In addition to the location ε̃ of the inflection point and the steepness β̃, Equation (A.2)
also contains a parameter α̃ which determines the maximum firing rate.
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The dynamics of the membrane potential ũinh of the inhibitory population is given
by

dũinh

dt
= − ũinh

τ̃inh + R̃inh
Nrec

∑
i=1

w̃inh
in F̃i (A.3)

with the time constant τ̃inh, the membrane resistance R̃inh and the weight w̃inh
in of

the synapses transmitting excitatory signals from neurons in the recurrent area. The
firing rate F̃inh of the inhibitory population is determined by the inhibitory firing rate
function:

F̃inh = φ̃inh(ũinh) =
α̃

1 + exp(β̃inh(ε̃inh − ũinh))
(A.4)

with the parameters β̃inh and ε̃inh.
According to Tetzlaff et al., (2013), the synaptic plasticity of the recurrent synapse

transmitting signals from neuron j to neuron i is described by the following differen-
tial equation:

dw̃rec
ij

dt
= µ̃rec

(
F̃i F̃j + (κ̃rec)−1(F̃T − F̃i)(w̃rec

ij )2
)

. (A.5)

Here, µ̃rec is the learning rate of the recurrent synapses. The parameter κ̃rec is sup-
posed to describe the ratio of the time scales of Hebbian plasticity and synaptic
scaling. Larger values of κ̃rec reduce the contributions of the synaptic scaling term.
The target firing rate F̃T defines the set point of the synaptic scaling process. The
plasticity of the feedforward synapses is described by similar dynamics:

dw̃ff
ik

dt
= µ̃ff

(
F̃i F̃k + (κ̃ff)−1(F̃T − F̃i)(w̃ff

ik)
2
)

(A.6)

with a learning rate µ̃ff and time scale ratio κ̃ff.

Normalization

In order to reduce the number of covariant parameters in the network model, in this
thesis, we use normalized versions of the neuronal and synaptic dynamics described
above. Here, we show how to transform a given parameter configuration of the
unnormalized model into a parameter configuration of the normalized one. We thus
prove that every solution of the unnormalized model can be reduced to a solution
of the normalized model. Starting from a parameterization of the unnormalized
model, we introduce rescaled variables ui and uinh for the excitatory and inhibitory
membrane potentials:

ui =
1

τ̃R̃α̃2

√
α̃− F̃T

κ̃rec ũi (A.7)

uinh =
1

τ̃inhα̃R̃inh
ũinh . (A.8)
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We also introduce rescaled versions wrec
ij and wff

ik of the weights of the recurrent and
feedforward synapses:

wrec
ij =

1
α̃

√
α̃− F̃T

κ̃rec w̃rec
ij (A.9)

wff
ik =

1
α̃

√
α̃− F̃T

κ̃rec w̃ff
ik . (A.10)

Furthermore, we define scaled firing rates Fi of the excitatory neurons and Finh of the
inhibitory population:

Fi = φ(ui) =
F̃i

α̃
=

φ̃(ũi)

α̃
(A.11)

Finh = φinh(uinh) =
F̃inh

α̃
=

φ̃inh(ũinh)

α̃
. (A.12)

Finally, we also introduce a set of scaled parameter values:

τ = τ̃ τinh = τ̃inh (A.13)

τrec = µ̃recα̃

√
α̃− F̃T

κ̃rec τff = µ̃ffα̃

√
α̃− F̃T

κ̃ff (A.14)

winh
out =

√
α̃− F̃T

κ̃rec
w̃inh

out
α̃

winh
in = w̃inh

in (A.15)

β = τ̃R̃α̃2 β̃

√
κ̃rec

α̃− F̃T
ε =

ε̃

τ̃R̃α̃2

√
α̃− F̃T

κ̃rec (A.16)

βinh = τ̃inhR̃inhα̃β̃inh εinh =
ε̃inh

τ̃inhR̃inhα̃
(A.17)

Ik =
Ĩk

α̃
FT =

F̃T

α̃
(A.18)

In the following, we show that rescaling the unnormalized network model according
to the stated rules leads to the normalized version of the model used in Chapter 4.

Dynamics of the Excitatory Membrane Potentials

We obtain the dynamics of the scaled membrane potential ui by inserting its definition
in Equation (A.1). We simplify the resulting expression by using the scaled variables
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and parameters defined above:

dui

dt
=

1
τ̃R̃α̃2

√
α̃− F̃T

κ̃rec
dũi

dt

=− 1
τ̃

1
τ̃R̃α̃2

√
α̃− F̃T

κ̃rec ũi︸ ︷︷ ︸
=ui

+
1
τ̃ ∑

j∈Crec
i

w̃rec
ij

α̃

√
α̃− F̃T

κ̃rec︸ ︷︷ ︸
=wrec

ij

F̃j

α̃︸︷︷︸
=Fj

+
1
τ̃

√
κ̃ff

κ̃rec︸ ︷︷ ︸
=s

∑
k∈Cff

i

w̃ff
ik

α̃

√
α̃− F̃T

κ̃rec︸ ︷︷ ︸
=wff

ik

Ĩk

α̃︸︷︷︸
=Ik

+

√
α̃− F̃T

κ̃rec
w̃inh

out
α̃︸ ︷︷ ︸

=winh
out

F̃inh

α̃︸︷︷︸
=Finh

=
1
τ

−ui + ∑
j∈Crec

i

wrec
ij Fj + s ∑

k∈Cff
i

wff
ik Ik + winh

outF
inh

 .

(A.19)

Here, we introduced a correction factor s =
√

κ̃ff/κ̃rec. In the case of κ̃ff = κ̃rec, we
have s = 1 and the final expression in Equation (A.19) directly describes the dynamics
of the membrane potential of excitatory neurons in Chapter 4 (compare Equation 4.1).
If κ̃ff 6= κ̃rec, the different maximum strengths of recurrent and feedforward synapses
result in a correction factor s 6= 1. Instead of explicitly including s in Equation (A.19),
however, we adjust the number of incoming recurrent and feedforward synapses
per neuron. If we have s = 2, for instance, we double the number of incoming
feedforward synapses per neuron in the recurrent area.

Dynamics of the Inhibitory Membrane Potential

From Equation (A.3), we obtain the dynamics of the scaled membrane potential uinh

as follows:

duinh

dt
=

1
τ̃inhα̃R̃inh

dũinh

dt

=
1

τ̃inh

− ũinh

τ̃inhα̃R̃inh︸ ︷︷ ︸
uinh

+
Nrec

∑
i=1

w̃inh
in

F̃i

α̃︸︷︷︸
Fi


=

1
τinh

(
−uinh +

Nrec

∑
i=1

winh
in Fi

)
.

(A.20)

This expression corresponds to the dynamics of the inhibitory membrane potential in
Equation (4.3).

Excitatory Firing Rate Function

We rearrange Equation (A.7) to obtain ũi as a function of ui. Inserting this expression
into the firing rate function φ̃ in Equation (A.2) yields the excitatory firing rate
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function φ of the normalized model:

φ(ui) =
1
α̃

φ̃

(
τ̃R̃α̃2

√
κ̃rec

α̃− F̃T
ui

)
=

1

1 + exp

τ̃R̃α̃2
√

κ̃rec

α̃− F̃T
β̃︸ ︷︷ ︸

β

 ε̃

τ̃R̃α̃2

√
α̃− F̃T

κ̃rec︸ ︷︷ ︸
ε

−ui




=
1

1 + exp (β(ε− ui))
.

(A.21)

This is identical to the firing rate function in Equation (4.2).

Inhibitory Firing Rate Function

Rearranging Equation (A.8) yields ũinh as a function of uinh. This allows us to obtain
the firing rate function φinh of the inhibitory population by inserting this expression
into the function φ̃inh in Equation (A.4):

φ(uinh) =
1
α̃

φ̃inh
(

τ̃inhR̃inhα̃uinh
)

=
1

1 + exp

τ̃inhR̃inhα̃β̃inh︸ ︷︷ ︸
βinh

 ε̃inh

τ̃inhR̃inhα̃︸ ︷︷ ︸
εinh

−uinh




=
1

1 + exp (βinh(εinh − uinh))
.

(A.22)

The final expression in Equation (A.22) corresponds to the firing rate function of the
inhibitory population in Equation (4.4).

Plasticity of Recurrent Synapses

By expressing the dynamics of the weights of the recurrent synapses in Equation
(A.5) in terms of the rescaled variables we obtain:

dwrec
ij

dt
=

1
α̃

√
α̃− F̃T

κ̃rec

dw̃rec
ij

dt

= µ̃recα̃

√
α̃− F̃T

κ̃rec︸ ︷︷ ︸
1/τrec


F̃i

α̃

F̃j

α̃︸︷︷︸
Fi Fj

+

(
F̃T

α̃
− F̃i

α̃

)
︸ ︷︷ ︸

FT−Fi

α̃

α̃− F̃T︸ ︷︷ ︸
1/(1−FT)

 w̃rec
ij

α̃

√
α̃− F̃T

κ̃rec

2

︸ ︷︷ ︸
(wrec

ij )2


=

1
τrec

(
FiFj +

FT − Fi

1− FT (wrec
ij )2

)
.

(A.23)

This is the plasticity rule of the recurrent synapses as stated in Equation (4.5).
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Plasticity of Feedforward Synapses

Finally, we transform the plasticity rule of the feedforward synapses in Equation (A.6)
into the equivalent expression for the rescaled synaptic weight wff

ik:

dwff
ik

dt
=

1
α̃

√
α̃− F̃T

κ̃ff

dw̃ff
ik

dt

= µ̃ffα̃

√
α̃− F̃T

κ̃ff︸ ︷︷ ︸
1/τff


F̃i

α̃

Ĩk

α̃︸︷︷︸
Fi Ik

+

(
F̃T

α̃
− F̃i

α̃

)
︸ ︷︷ ︸

FT−Fi

α̃

α̃− F̃T︸ ︷︷ ︸
1/(1−FT)

 w̃ff
ik

α̃

√
α̃− F̃T

κ̃ff

2

︸ ︷︷ ︸
(wff

ik)
2


=

1
τff

(
Fi Ik +

FT − Fi

1− FT (wff
ik)

2
)

.

(A.24)

Note that this expression is identical to the plasticity rule stated in Equation (4.6).
Thus, we have shown that the rescaled variables and parameters in Equations

(A.7-A.18) transform any parametrization of the unnormalized network model into
an equivalent parametrization of the normalized network model. In other words,
studying the normalized network model suffices to capture the complete dynamics
of the unnormalized model.

A.2 Jacobi Matrix of the Population Model

In order to determine the stability of the equilibria of the population model in Section
4.3, we numerically calculate the eigenvalues of the Jacobi matrix of the model at the
respective equilibria. In the following, we state all nonzero terms of the Jacobi matrix
(i ∈ {1, 2} and k ∈ {A, B}):

∂ ˙̄ui

∂ūi
=

1
τ

(
−1 + n̄rec

++w̄rec
i

∂F̄i

∂ūi

)
∂ ˙̄ui

∂uinh =
winh

out
τ

∂Finh

∂uinh (A.25)

∂ ˙̄ui

∂w̄rec
i

=
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Īi −

(w̄ff
i )

2

1− FT

)
∂F̄i

∂ūi
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where

∂F̄i

∂ūi
= βF̄i (1− F̄i) and

∂F̄inh

∂ūinh = βinhF̄inh
(

1− F̄inh
)

. (A.30)
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A.3 Maximum Input Amplitude for Cell Assembly Forma-
tion

In Section 4.3.2, we state that there is a maximum input amplitude ĪA of a stimulus
A which allows for a stable formation of CAs in the network model. For higher
amplitudes, the signals transmitted from the inhibitory population do not suffice to
balance the recurrent and feedforward excitatory signals in the recurrent area. As a
consequence, the recruitment of additional neurons in the recurrent area continues
until eventually all neurons in the recurrent area are active.

The derivation of the maximum input amplitude that can be balanced by the
inhibitory population is similar to the derivation of the number of neurons in a CA
in Section 4.2.2. We assume that a stimulus A activates Nin

+ neurons in the input
area such that these neurons fire at a rate of IA. Furthermore, we assume that this
stimulus has lead to the formation of a CA in the recurrent area. As in Section 4.2.2,
we investigate the equilibrium potential of a neuron i in the recurrent area which
is not active and located directly next to the active CA neurons (Figure 4.5 a). This
neuron receives recurrent synaptic signals from nrec

i,+ active neurons in the recurrent
area. It also receives and nff

i,+ feedforward signals from active neurons in the input
area.

In the equilibrium, the weights of the recurrent synapses from active neurons
are at their maximum value of 1 (compare Equation 4.20). The equilibrium weights
of the feedforward synapses transmitting signals from active neurons in the input
area are approximated by wff,*

i,+ ≈
√

IA (compare Equation (4.19)). This approximation
is valid for low values of the target firing rate FT of the synaptic scaling term. For
FT = 0 as used in this thesis, wff,*

i,+ =
√

IA is exact. Based on these assumptions, similar
to Equation (4.11), we express the equilibrium membrane potential of neuron i as a
function of IA:

u∗i = ∑
j∈Crec

i

wrec,∗
ij F∗j + ∑

k∈Cff
i

wff,∗
ik Ik + winh

outF
inh,∗

= ∑
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i
F∗j >0.5
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︸ ︷︷ ︸
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︸ ︷︷ ︸
≈0
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i
Ik=IA

wff,∗
ik Ik

︸ ︷︷ ︸
=nff
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√

IA IA

+ ∑
k∈Cff

i
Ik=0

wff,∗
ik Ik

︸ ︷︷ ︸
≈0

+winh
outF

inh,∗

≈ nrec
i,+ + nff

i,+ I
3
2
A + winh

outF
inh,∗ .

(A.31)

In order to limit the recruitment of neurons in the recurrent area into the CA, the
signals received by a neuron i must not allow this neuron to become active. In other
words, the equilibrium potential u∗i of neuron i must be lower than the potential ε
required to reach the inflection point of the firing rate function: u∗i < ε. In particular,
this must be true if the equilibrium activity of the inhibitory population is given by
its maximum firing rate Finh,∗ = 1. Therefore, we require

u∗i = nrec
i,+ + nff

i,+ I
3
2
A + winh

out < ε . (A.32)
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Isolating IA in this inequality yields the expression for the maximum input amplitude
Imax
A which allows for stable CA formation:

IA <

(
ε− wout

inh − nrec
i,+

nff
i,+

) 2
3

= Imax
A . (A.33)

According to the parametrization of the network model in Chapter 4, we have
ε = 12 and winh

out = −20 (Table 4.1). Furthermore, based on the recurrent interaction
radius rrec = 3, a neuron i in the described position directly next to a CA receives
synaptic signals from nrec

i,+ = 11 active neurons in the recurrent area (Figure 4.5 a).
The expected number of synaptic signals from active neurons in the input area
is nff

i,+ = Ninnff/Ninh = 50 · 25/100 = 12.5. Thus, we obtain a maximum input
amplitude of Imax

A ≈ 1.41.
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Appendix B

Frequency-Curve of the Van der
Pol Oscillator

As stated in Equation (5.3), the Van der Pol oscillator is given by the following system
of equations for the state variables x and y:

ẋ(t) = y(t)

ẏ(t) = µ
(
1− x(t)2) y(t)− θ2x(t).

(B.1)

The parameter µ > 0 determines the degree of nonlinearity of the limit cycle
(Figure B.1 a). For small values of µ, the Van der Pol oscillator is almost harmonic.
Thus, the limit cycle in the x-y-space is close to a circle. For larger values of µ, the
shape of the limit cycle is more complex. While, its expansion in the direction of the
variable x is constant, y reaches, according to amount, larger values for larger values
of µ. The variable θ determines the intrinsic frequency ν of the oscillations. There is
no analytical expression for the function ν(θ) available. In addition, this function also
depends of the variable µ (Figure B.1 b).

In order to obtain the oscillation frequency of the Van der Pol oscillator for a given
(µ, θ)-frequency pair, we numerically integrate the dynamical system in Equation
(B.1) for a duration tFFT = 1000. We sample the variable x at time intervals of
∆tFFT = 0.025 and use the SciPy software package (Jones et al., 2001) to perform a
fast Fourier transform (Cooley and Tukey, 1965) on the sampled data. The frequency
component with the highest magnitude identifies the intrinsic frequency ν of the
system. Note that the precision of this frequency depends on the length of the

−2 0 2
oscillator variable x

−100

0

100

os
ci

lla
to

rv
ar

ia
bl

e
y

μ = 1
μ = 10
μ = 100

a

1 10 100
frequency parameter θ

0.1

1

10

in
tri

ns
ic

fre
qu

en
cy

ν

μ = 1
μ = 10
μ = 100

b

1
Figure B.1: Limit cycle and frequency curve of the Van der Pol oscillator. (a) The shape of the
limit cycle in the -y-space depends on the parameter μ of the oscillator. For low values of μ, the limit
cycle approaches a circle (dashed line). For hight values of μ, the shape of the limit cycle is more
complex and reaches large positive and negative values of y. (b) The relation between the frequency ν
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sampled time interval tFFT. The smallest distinguishable frequency difference is given
by ∆ν = 1/tFFT. The maximum unambiguously detectable frequency is given by the
Nyquist frequency νnyquist = 1/(2∆tFFT).

When transforming a frequency ν into the corresponding parameter θ, we use
a binary search algorithm. We start with a minimum parameter bound θmin that
corresponds to a frequency νmin and a maximum parameter bound θmax that corre-
sponds to a frequency νmax. Accordingly, in the beginning, we have θmin < θ < θmax
and νmin < ν < νmax. We then evaluate the frequency νtest of the parameter
θtest = 0.5(θmin + θmax) using the fast Fourier transform as described above. If
νtest < ν, we update the value of θmin: θmin ← θtest. If, in contrast, νtest > ν, we
update the value of θmax: θmax ← θtest. Thus, we still have θmin < θ < θmax but
halved the interval θmax − θmax. We repeat this procedure until we have reached the
desired level of precision, i.e., until the difference νmax − νmin is sufficiently small.
For our analyses, we require νmax − νmin < 10−4. Once this condition is met, we set
θ = 0.5(θmin + θmax).
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