1,279 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem

    Get PDF
    In the classical model for portfolio selection the risk is measured by the variance of returns. It is well known that, if returns are not elliptically distributed, this may cause inaccurate investment decisions. To address this issue, several alternative measures of risk have been proposed. In this contribution we focus on a class of measures that uses information contained both in lower and in upper tail of the distribution of the returns. We consider a nonlinear mixed-integer portfolio selection model which takes into account several constraints used in fund management practice. The latter problem is NP-hard in general, and exact algorithms for its minimization, which are both effective and efficient, are still sought at present. Thus, to approximately solve this model we experience the heuristics Particle Swarm Optimization (PSO). Since PSO was originally conceived for unconstrained global optimization problems, we apply it to a novel reformulation of our mixed-integer model, where a standard exact penalty function is introduced.Portfolio selection, coherent risk measure, fund management constraints, NP-hard mathematical programming problem, PSO, exact penalty method, SP100 index's assets.

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Optimal multiple-objective resource allocation using hybrid particle swarm optimization and adaptive resource bounds technique

    Get PDF
    AbstractThe multiple-objective resource allocation problem (MORAP) seeks for an allocation of resource to a number of activities such that a set of objectives are optimized simultaneously and the resource constraints are satisfied. MORAP has many applications, such as resource distribution, project budgeting, software testing, health care resource allocation, etc. This paper addresses the nonlinear MORAP with integer decision variable constraint. To guarantee that all the resource constraints are satisfied, we devise an adaptive-resource-bound technique to construct feasible solutions. The proposed method employs the particle swarm optimization (PSO) paradigm and presents a hybrid execution plan which embeds a hill-climbing heuristic into the PSO for expediting the convergence. To cope with the optimization problem with multiple objectives, we evaluate the candidate solutions based on dominance relationship and a score function. Experimental results manifest that the hybrid PSO derives solution sets which are very close to the exact Pareto sets. The proposed method also outperforms several representatives of the state-of-the-art algorithms on a simulation data set of the MORAP

    A Partition-Based Random Search Method for Multimodal Optimization

    Get PDF
    Practical optimization problems are often too complex to be formulated exactly. Knowing multiple good alternatives can help decision-makers easily switch solutions when needed, such as when faced with unforeseen constraints. A multimodal optimization task aims to find multiple global optima as well as high-quality local optima of an optimization problem. Evolutionary algorithms with niching techniques are commonly used for such problems, where a rough estimate of the optima number is required to determine the population size. In this paper, a partition-based random search method is proposed, in which the entire feasible domain is partitioned into smaller and smaller subregions iteratively. Promising regions are partitioned faster than unpromising regions, thus, promising areas will be exploited earlier than unpromising areas. All promising areas are exploited in parallel, which allows multiple good solutions to be found in a single run. The proposed method does not require prior knowledge about the optima number and it is not sensitive to the distance parameter. By cooperating with local search to refine the obtained solutions, the proposed method demonstrates good performance in many benchmark functions with multiple global optima. In addition, in problems with numerous local optima, high-quality local optima are captured earlier than low-quality local optima

    Distributed Particle Swarm Optimization using Optimal Computing Budget Allocation for Multi-Robot Learning

    Get PDF
    Particle Swarm Optimization (PSO) is a population-based metaheuristic that can be applied to optimize controllers for multiple robots using only local information. In order to cope with noise in the robotic performance evaluations, different re-evaluation strategies were proposed in the past. In this article, we apply a statistical technique called Optimal Computing Budget Allocation to improve the performance of distributed PSO in the presence of noise. In particular, we compare a distributed PSO OCBA algorithm suitable for resource-constrained mobile robots with a centralized version that uses global information for the allocation. We show that the distributed PSO OCBA outperforms a previous distributed noise-resistant PSO variant, and that the performance of the distributed PSO OCBA approaches that of the centralized one as the communication radius is increased. We also explore different parametrizations of the PSO OCBA algorithm, and show that the choice of parameter values differs from previous guidelines proposed for stand-alone OCBA

    An improved ant system algorithm for maximizing system reliability in the compatible module

    Get PDF
    This paper presents an improved Ant System (AS) algorithm called AS-2Swap for solving one of the reliability optimization problems. The objective is to selection a compatible module in order to maximize the system reliability and subject to budget constraints. This problem is NP-hard and formulated as a binary integer-programming problem with a nonlinear objective function. The proposed algorithm is based on the original AS algorithm and the improvement, focused on choosing the feasible solutions, neighborhood search with Swap technique for each loop of finding the solution. The implementation was tested by the five groups of data sets from the existing meta-heuristic found in the literature. The computational results show that the proposed algorithm can find the global optimal solution and is more accurate for larger problems
    corecore