
Distributed Particle Swarm Optimization using
Optimal Computing Budget Allocation for

Multi-Robot Learning

Ezequiel Di Mario, Iñaki Navarro and Alcherio Martinoli
Distributed Intelligent Systems and Algorithms Laboratory

School of Architecture, Civil and Environmental Engineering

École Polytechnique Fédérale de Lausanne

{ezequiel.dimario, inaki.navarro, alcherio.martinoli}@epfl.ch

Abstract—Particle Swarm Optimization (PSO) is a population-
based metaheuristic that can be applied to optimize controllers
for multiple robots using only local information. In order to cope
with noise in the robotic performance evaluations, different re-
evaluation strategies were proposed in the past. In this article, we
apply a statistical technique called Optimal Computing Budget
Allocation to improve the performance of distributed PSO in the
presence of noise. In particular, we compare a distributed PSO
OCBA algorithm suitable for resource-constrained mobile robots
with a centralized version that uses global information for the
allocation. We show that the distributed PSO OCBA outperforms
a previous distributed noise-resistant PSO variant, and that the
performance of the distributed PSO OCBA approaches that of
the centralized one as the communication radius is increased.
We also explore different parametrizations of the PSO OCBA
algorithm, and show that the choice of parameter values differs
from previous guidelines proposed for stand-alone OCBA.

I. INTRODUCTION

There are several sources of randomness that make perfor-

mance evaluations of robotic controllers inherently noisy. In

addition to the obvious sensor and actuator noise, there are

other factors such as varying initial conditions, manufacturing

tolerances, or changes in the environment that can increase the

uncertainty in performance measurements.
Population-based learning techniques have been proven to

be effective in dealing with noise in fitness evaluations [1].

Within this family of algorithms, we can find examples on the

successful performance under noise for Particle Swarm Op-

timization [2], [3], Genetic Algorithms [4], and Evolutionary

Strategies [5]. Therefore, these techniques are promising tools

for the design of high-performing robotic controllers.
We focus this research on the PSO algorithm [6], which

allows a distributed implementation in each robot, speeding

up the optimization process and adding robustness to failure

of individual robots. PSO has been applied to several problems

in the robotics domain, such as odor source localization [7],

[8], robotic search [9], and obstacle avoidance [10].

Regarding the influence of noise on PSO, Parsopoulos

and Vrahatis showed that standard PSO was able to cope

with noisy and continuously changing environments, and even

suggested that noise may help to avoid local minima [2]. Pugh

et al. showed that PSO could outperform Genetic Algorithms

on benchmark functions and for certain scenarios of limited-

time learning in presence of noise [10], [11].

In this article, we describe a distributed noise-resistant

PSO algorithm for multi-robot learning based on Optimal

Computing Budget Allocation (OCBA), a statistical sample

allocation method introduced by Chen et al. [12]. OCBA

has previously been applied to PSO on numerical benchmark

functions in a centralized manner [3], [13], [14], where it

outperformed other techniques for dealing with noise. Here,

we will describe how we apply OCBA to PSO for a multi-

robot task in a centralized manner, and then introduce a

distributed version which requires only local information and

communication. We also propose OCBA parameter values that

differ from the guidelines for stand-alone OCBA based on

experimental results in simulation.

OCBA has also been applied in the context of evolutionary

algorithms [15], [16]. Schmidt et al. [15] used OCBA on an

evolutionary algorithm for ranking selection on noisy func-

tions. They allocated as many evaluations as needed to obtain

an arbitrary quality of the estimations. In [16], the authors used

a version of OCBA to select a set of best potential solutions

on each iteration of an Evolution Strategy (ES) algorithm

and showed with experimental results the effect of different

values of the OCBA parameter initial number of samples (n0),

which we also analyze in this article. The difference between

the ES OCBA and PSO OCBA is that in the ES it is only

needed to estimate the performance of the subset with the best

solutions while PSO requires to estimate the performance of

all candidate solutions.

The idea behind the application of OCBA to PSO is to fix

some issues of previous algorithms which affect their perfor-

mance under the presence of noise [17]. Standard PSO has no

explicit mechanism for dealing with noise. The naı̈ve approach

of evaluating every new candidate a fixed number of times

results in a better performance estimation for new candidates,

but invests as many resources in good candidates as in poor

ones which could be immediately discarded [13]. Another

disadvantage of this method is that the number of repetitions

of each evaluation is fixed and should be selected based on

the amount of noise, which must be known in advance. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148011451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

noise-resistant approach that evaluates best candidates multiple

times [10] has the advantage of placing more computation on

the most promising solutions and therefore achieves a high

performance, but it is sensitive to “lucky” good evaluations of

bad new solutions, which might displace a consistently better

old solution, generating random performance drops during the

learning [17].

OCBA automatically adjusts the evaluation budget between

old and new solutions to maximize the probability of correct

selection of good candidates. In addition, as the iterations

increase, good candidates tend to accumulate a large number

of samples, thereby producing accurate performance estimates

of the best solutions, and leaving a larger proportion of the

allocation budget to accurately test new candidates.

The remainder of this article is organized as follows.

Section II provides some background on PSO and OCBA in

order to facilitate the explanation of the subsequent algorithms.

Section III describes the algorithms incorporating OCBA to

PSO for multi-robot implementations and their differences

with the ones from the literature. In Section IV, we describe

the obstacle avoidance task that will be used to compare

the algorithms and controllers. Section V presents the results

from applying the different algorithms and parametrizations

for learning in simulation. Finally, Section VI concludes the

paper.

II. BACKGROUND

PSO is a relatively new metaheuristic originally introduced

by Kennedy and Eberhart [6], which was inspired by the

movement of flocks of birds and schools of fish. PSO is well

suited for distributed implementations due to its distinct indi-

vidual and social components and the use of the neighborhood

concept [10]. It models candidate solutions as a swarm of

particles moving in a high-dimensional space. Each particle

stores its own personal best position and the position of the

best in its neighborhood, which are used to guide the particle’s

movement.

At each iteration, the position of particle i in dimension j

(x∗i, j) is updated by adding a velocity vi, j (Eq. 1). This velocity

depends on three components: the velocity at the previous

iteration weighted by an inertia coefficient wI , a randomized

attraction to its personal best x∗i, j weighted by wP, and a

randomized attraction to the neighborhood’s best x∗
i′, j weighted

by wN (Eq. 2). rand() is a random number drawn from a

uniform distribution between 0 and 1.

xi, j := xi, j + vi, j (1)

vi, j := wI · vi, j +wP · rand() · (x∗i, j − xi, j)

+wN · rand() · (x∗i′, j − xi, j) (2)

The pseudocode for PSO is shown in Fig. 1.

Pugh et al. [11] introduced a distributed, noise-resistant,

averaging variation of PSO which operates by re-evaluating

personal best positions and averaging them with the previous

evaluations. We will refer to this variant as PSO pbest and

1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate new particle position

5: Share personal best within neighborhood

6: Update particle position (Eqs. 1 and 2)

7: end for

8: end for

Fig. 1. Pseudocode for the standard PSO algorithm.

1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate particle new particle position

5: Re-evaluate personal best

6: Aggregate personal best with previous best

7: Share personal best within neighborhood

8: Update particle position (Eqs. 1 and 2)

9: end for

10: end for

Fig. 2. Pseudocode for the PSO pbest algorithm.

compare it to our proposed distributed PSO OCBA. The

pseudocode for PSO pbest is shown in Fig. 2. The difference

with the standard PSO pseudocode is the addition of lines 5

and 6.

OCBA is a technique based on Bayesian statistics for allo-

cating samples to different candidate solutions introduced by

Chen et al. [12]. Given k candidates with means {X̄1, . . . , X̄k}
and variances {σ2

1 , . . . ,σ
2
k }, and a total number of samples T ,

OCBA aims at maximizing the probability of correct selection

P{CS} of candidate b as the best (in a minimization problem,

the one with the lowest mean):

P{CS}= P{X̄B < X̄i, i 6= b} (3)

by applying the following allocation rules:

Ni

N j

=

(

σi/δb,i

σ j/δb, j

)2

, i 6= j 6= b (4)

Nb = σb

√

∑
k

i=1,i 6=b

N2
i

σ2
i

(5)

where Ni is the number of samples for candidate i, and

δi, j = X̄i − X̄ j the difference between the means of candidate i

and candidate j. An intuitive way of interpreting Equations 4

and 5 is that candidate i will get more samples Ni when it has

larger variance σ2
i and when its mean is closer to the mean

of the best solution found so far (small δ 2
b,i). To switch the

type of problem from minimization to maximization, we can

TABLE I
PARAMETERS COMMON TO ALL PSO ALGORITHMS

Parameter Value
Number of robots Nrob 4
Population size Np 24
Evaluation span te 30 s
Personal weight wP 2.0
Neighborhood weight wN 2.0
Neighborhood size Nn 3
Dimension D 24
Inertia wI 0.8
Vmax 20

TABLE II
PARAMETERS FOR PSO ocbaC AND PSO ocbaD

Parameter PSO ocbaC PSO ocbaD

Iterations Ni 50 50
Iteration budget Bi 240 10
Initial number of samples n0 2 2
Additional number of samples ∆ 4 1

simply consider X̄i =−X̄ ′
i where X̄ ′

i corresponds to the mean

of the maximization problem.

This allocation procedure has been proven to be optimal in

the sense that it maximizes an asymptotic approximation to

the probability of correct selection P{CS} as the number of

samples tends to infinity, but it was also shown to be very ef-

ficient for limited sampling budgets in numerical experiments

[12].

III. LEARNING ALGORITHMS

In this section, we will describe how we incorporate OCBA

into PSO in two variants:

• PSO ocbaC: a centralized variant where the OCBA allo-

cation is performed with full information,

• PSO ocbaD: a distributed variant where each particle

performs its own OCBA allocation with information from

its local neighborhood.

We will then compare their performances with PSO pbest,

the noise-resistant variant by Pugh et al. [10] that re-evaluates

personal bests at each iteration.

Table I shows the parameters that are common to all PSO

algorithms used in this article. They are set following the

guidelines for limited-time adaptation presented in [18].

The pseudocode for the centralized version of PSO OCBA,

PSO ocbaC, is shown in Fig. 3. The main difference from the

standard PSO shown in Fig. 1 is the evaluation step, which

now involves an allocation procedure using OCBA (Fig. 3

lines 3 to 12). First, n0 samples of the new positions are

taken to estimate their mean and variance. Then the remaining

samples are allocated among all the new positions and all

the personal bests using OCBA Equations 4 and 5. Note that

since all personal bests were new positions at some time,

they already have at least n0 samples at the moment of the

OCBA allocation. The parameters for PSO ocbaC are shown

in Table II.

The pseudocode for the distributed version of PSO OCBA,

PSO ocbaD, is shown in Fig. 4. In this case, each particle is

1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate new particle position n0 times

5: end for

6: remaining budget := iteration budget - n0 ·Np

7: while remaining budget> 0 do

8: Allocate ∆ samples among current positions and

personal bests using OCBA

9: Evaluate allocated samples

10: Recalculate mean and variance for new evaluations

11: remaining budget := remaining budget - ∆

12: end while

13: for Np particles do

14: Update personal best

15: Update neighborhood best

16: Update particle position

17: end for

18: end for

Fig. 3. Pseudocode for the PSO ocbaC algorithm.

running its own algorithm, so the pseudocode is written from

the point of view of an individual particle. First, the particle

takes n0 samples of its new position in order to estimate

its mean and variance. Next, the particle collects the mean,

variance, and number of samples of all candidates in the

neighborhood (new positions and personal bests). In our case,

for comparison purposes, we are using the same neighborhood

size as Pugh et al. [10], which is one neighbor on each side of a

ring topology. Then, the particle allocates the remaining budget

among the shared new positions and personal bests in the

neighborhood (in this case, 6 candidates in total: own position,

own personal best, 2 shared new positions, and 2 shared

personal bests) using OCBA Equations 4 and 5. Finally, the

particle evaluates the candidates with the number of samples

given by the OCBA allocation and shares the results in the

neighborhood.

The parameters for PSO ocbaD are displayed alongside

those for PSO ocbaC in Table II. The main difference is that

since each particle is performing its own OCBA allocation, the

iteration budget Bi for that allocation is 1/24 the budget of the

centralized version, and the additional number of samples ∆

is reduced to 1 in order to share and receive the results from

other particles after each evaluation.

The information shared by each particle is the mean, vari-

ance, and sample size of its current position and personal best

position, which are required to compute the OCBA allocation.

The mean, variance, and sample size can be calculated online

incrementally every time a new sample is added using the

1: Initialize particle

2: for Ni iterations do

3: Evaluate new particle position n0 times

4: Share evaluation results in neighborhood

5: Receive and store evaluation results from neighborhood

6: remaining budget := iteration budget - n0 ·Np

7: while remaining budget> 0 do

8: Allocate ∆ samples among current positions and

personal bests in neighborhood using OCBA

9: Evaluate allocated samples

10: Recalculate mean and variance for new evaluations

11: Share evaluation results in neighborhood

12: Receive and store evaluation results from neighbor-

hood

13: remaining budget := remaining budget - ∆

14: end while

15: Update personal best

16: Update neighborhood best

17: Update particle position

18: end for

Fig. 4. Pseudocode for the PSO ocbaD algorithm.

following equations:

X̄n =
(n−1)X̄n−1 +Xn

n
(6)

σ2
n =

(n−2)

(n−1)
σ2

n−1 +
(xn − x̄n−1)

2

n
(7)

Therefore, the history from previous evaluations can be

incorporated without the need to store or share the entire

vector of samples, which can become large towards the end

of the learning, especially in the case of good solutions (e.g.,

we have observed several runs where the best solution had

more than 100 samples at the end). Thus, the memory and

communication requirements for the distributed algorithm are

significantly reduced and they remain constant for the entire

learning process.

IV. BENCHMARK TASK

In order to test the algorithms discussed in Section III we

use obstacle avoidance as a benchmark task. We chose this task

because of its popularity in the robotic learning literature [10],

[19]–[22], and because of its noisy performance evaluations

which pose a challenge to the learning algorithms [17].

We use a metric of performance based on the work of

[19], which is present in several studies on learning obstacle

avoidance (e.g., [10], [21], and our own previous work [22]).

The fitness function consists of three factors, all normalized

to the interval [0, 1]:

f = fv · (1−
√

ft) · (1− fi) (8)

fv =
1

Neval

Neval

∑
k=1

|vl,k + vr,k|

2
(9)

ft =
1

Neval

Neval

∑
k=1

|vl,k − vr,k|

2
(10)

fi =
1

Neval

Neval

∑
k=1

imax,k (11)

where {vl,k,vr,k} are the normalized speeds of the left and

right wheels at time step k, imax,k is the normalized proximity

sensor activation value of the most active sensor at time step k,

and Neval is the number of time steps in the evaluation period.

This function rewards robots that move quickly (fv), turn as

little as possible (ft), and stay away from obstacles (fi). Each

factor is calculated at each time step and then the product is

averaged for the total number of time steps in the evaluation

period.

Our experimental platform is the Khepera III, a differential

wheeled robot with a diameter of 12 cm. It is equipped with

nine infra-red sensors for short range obstacle detection, which

in our case are the only external inputs for the controllers, and

two wheel encoders, which are used to measure the wheel

speeds for the fitness calculations.

The comparison between algorithms presented in this paper

is performed only in simulation using Webots [23], a high-

fidelity robotic simulator that models dynamical effects such

as friction and inertia. The accuracy of the simulation in this

setup has been previously validated with experiments on real

robots in [18].

We conduct experiments in a square arena of 2m x 2m with

walls, where 15 cylindrical obstacles of diameter 10 cm are

randomly placed at the beginning of each fitness evaluation.

The initial robots’ positions at the beginning of each evaluation

are also set randomly with a uniform probability distribution,

verifying that they do not overlap with obstacles or other

robots. The setup can be seen in Fig. 5, which shows 4 robots

in the arena with 15 obstacles.

The optimization problem to be solved by the PSO learning

algorithms is to choose the set of weights of an artificial neural

network (ANN) controller such that the fitness function f as

defined in Eq. 8 is maximized. Since the ANN is a general

controller architecture that was not specifically engineered for

this task, it is the PSO algorithm that decides the behavior of

the robot, which is why we describe the resulting behavior as

learned.

The artificial neural network has a recurrent architecture

consisting of two units with sigmoidal activation functions.

The outputs of the units determine the wheel speeds. Each

neuron has 12 input connections: the 9 infrared sensors, a

connection to a constant bias speed, a recurrent connection

from its own output, and a lateral connection from the other

neuron’s output, resulting in 24 weight parameters in total.

Fig. 5. Arena with 15 obstacles and four Khepera III robots performing one
of the obstacle avoidance algorithms learned.

These 24 parameters define the dimensionality of the learning

space of the algorithms.

Each particle evaluation consists of a robot moving in the

arena for a fixed time (te =30 s) running the controller with

the weights given by that particle’s position. At the end of

each evaluation, robots communicate the number of samples,

mean, and variance of the solution they have evaluated, and

they synchronize for the start of the next evaluation. The

time required for the communication and synchronization

is negligible in comparison to the evaluation time of the

controllers (less than 1 second vs 30 seconds).

V. RESULTS

For each configuration of the algorithms under study we

perform 20 learning runs for statistical significance. The

number of iterations for each learning experiment is 250 in

the case of PSO pbest, and 50 for PSO ocbaC and PSO

ocbaD. This results in the same total number of evaluations for

every algorithm. Parameters that are not explicitly mentioned

in this section take the values listed in Section III (i.e., we

only mention parameters that are different from the defaults).

Due to the presence of noise, the fitness value of the best

solution as reported by the algorithms may not be an accu-

rate representation of the actual performance of the solution.

Therefore, in order to accurately judge the performances for

comparison purposes, we perform 100 a-posteriori evaluations

of the best solution at each iteration and consider the mean of

the 100 evaluations as the ground truth performance of that

solution.

We begin by comparing the final ground truth performance

of the three algorithms with their default parameter values,

shown in Fig. 6. Due to the adequate selection of parameters,

all algorithms achieve the desired robotic behavior with high

performances, with PSO ocbaC slightly outperforming the

two distributed algorithms. There is no statistically significant

difference in ground truth performance between PSO pbest and

PSO ocbaD (Mann Whitney U test, 5% significance level), but

we will show next that there is a significant difference in their

estimates of the ground truth.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pbest ocbaC ocbaD

Fig. 6. Final ground truth performance with default parameter values for PSO

pbest, PSO ocbaC, and PSO ocbaD. The box represents the upper and lower
quartiles, the line across the middle marks the median, the bars extend to the
most extreme data points not considered outliers, and the red crosses show
outliers.

We now compare the performances estimated by the dis-

tributed algorithms with the ground truth for different neigh-

borhood sizes. Figures 7 and 8 show the progress of PSO

ocbaD and PSO pbest for neighborhoods of size 3, 7, 15, and

24.

By comparing these two figures, we can see that the

difference between estimates and ground truth is much lower

in the case of PSO ocbaD than in PSO pbest, i.e., PSO pbest

reports a much higher performance than the one it actually

achieves. Also, for PSO ocbaD the difference becomes smaller

for larger neighborhood sizes, which is not the case for PSO

pbest.

In order to measure the differences between the performance

estimated by the algorithm and the ground truth from a-

posteriori measurements we calculate the root-mean-squared

error (RMSE):

RMSE =

√

1

N

N

∑
i=1

(X̂i −Xi)2 (12)

where N = 20 is the number of runs, X̂i is the performance

estimated by the algorithm for run i, and Xi is the ground truth

for run i.

Table III shows the calculated RMSE for PSO ocbaC, PSO

ocbaD, and PSO pbest using different neighborhood sizes.

PSO ocbaC provides the best estimate of the ground truth

performance, followed by PSO ocbaD. The errors for both

PSO OCBA variants are one order of magnitude smaller than

for PSO pbest.

We now switch to the analysis of two parameters that are

specific to the OCBA algorithm: n0 and ∆. n0 is the number

of samples used for the initial estimates of the mean and

variance: low values can lead to poor initial estimates, while

high values may waste function evaluations on poor solutions.

In [12] values between 5 and 20 are suggested as suitable

choices for stand-alone OCBA.

We ran the two PSO OCBA algorithms with three different

n0 values: 2, 4, and 8; results are shown in Table IV. From

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n

e
s
s

estimated
ground truth

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n

e
s
s

estimated
ground truth

(b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n

e
s
s

estimated
ground truth

(c)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n

e
s
s

estimated
ground truth

(d)

Fig. 7. Progress averaged over 20 runs for PSO ocbaD with increasing neighborhood size. The red curve represents the performance of the best solution as
estimated by the algorithm, and the blue curve represents the ground truth performance obtained as the average of 100 a-posteriori evaluations. Error bars
represent one standard deviation (a) Neighborhood size 3. (b) Neighborhood size 7. (c) Neighborhood size 15. (d) Neighborhoood size 24.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n
e
s
s

estimated
ground truth

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n
e
s
s

estimated
ground truth

(b)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n
e
s
s

estimated
ground truth

(c)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Iteration

F
it
n
e
s
s

estimated
ground truth

(d)

Fig. 8. Progress averaged over 20 runs for PSO pbest with increasing neighborhood size. The red curve represents the performance of the best solution as
estimated by the algorithm, and the blue curve represents the ground truth performance obtained as the average of 100 a-posteriori evaluations. Error bars
represent one standard deviation (a) Neighborhood size 3. (b) Neighborhood size 7. (c) Neighborhood size 15. (d) Neighborhoood size 24.

TABLE III
ROOT-MEAN-SQUARED ERROR BETWEEN ESTIMATES AND GROUND TRUTH

FOR INCREASING NEIGHBORHOOD SIZE.

Algorithm Neighborhood size RMSE
PSO ocbaC 3 0.009
PSO ocbaC 7 0.013
PSO ocbaC 15 0.012
PSO ocbaC 24 0.015
PSO ocbaD 3 0.033
PSO ocbaD 7 0.023
PSO ocbaD 15 0.024
PSO ocbaD 24 0.026
PSO pbest 3 0.19
PSO pbest 7 0.18
PSO pbest 15 0.19
PSO pbest 24 0.21

these experiments, we found that when applying OCBA in

PSO, the lowest possible value of n0 = 2 led to the best final

estimate of the ground truth performance, which is different

from the guideline for stand-alone OCBA. This result suggests

that for PSO OCBA it is better to save function evaluations in

the initial estimates and perform more iterations of the OCBA

algorithm.

The other OCBA parameter that we analyze is ∆, the

additional number of samples used in the internal OCBA

iterations. A smaller delta means that more OCBA calculations

are performed, which is more computationally expensive but

provides better estimates because mean and standard deviation

TABLE IV
ROOT-MEAN-SQUARED ERROR BETWEEN ESTIMATES AND GROUND TRUTH

FOR INCREASING n0 .

Algorithm n0 ∆ RMSE
PSO ocbaC 2 4 0.009
PSO ocbaC 4 4 0.019
PSO ocbaC 8 4 0.025
PSO ocbaD 2 1 0.033
PSO ocbaD 4 1 0.035
PSO ocbaD 8 1 0.051

are updated more often. The guidelines for this parameter are

to select a number bigger than 5 but smaller than 10% of the

number of candidates [12].

Table V shows the results from experiments with the two

PSO OCBA algorithms and different values of ∆, where it can

be seen that lower values of ∆ produce a lower error. In robotic

learning the computational cost of the OCBA procedure is

negligible compared to the cost of evaluations (both with

high-fidelity simulation and real robot experiments), which is

why the guidelines from stand-alone OCBA do not necessarily

apply. Therefore, we can select the lowest possible value for

∆, which is one for the distributed case and four (the number

of robots in the system) for the centralized one (in order to

avoid idle robots and evaluate a maximum number of solutions

in parallel).

TABLE V
ROOT-MEAN-SQUARED ERROR BETWEEN ESTIMATES AND GROUND TRUTH

FOR INCREASING ∆.

Algorithm n0 ∆ RMSE
PSO ocbaC 2 4 0.009
PSO ocbaC 2 8 0.014
PSO ocbaC 2 16 0.022
PSO ocbaC 2 32 0.017
PSO ocbaD 2 1 0.033
PSO ocbaD 2 2 0.039
PSO ocbaD 2 4 0.065
PSO ocbaD 2 8 0.056

VI. CONCLUSION

To conclude, we will summarize the contributions from this

article. We have described two PSO OCBA algorithms that

are suitable for noisy optimization problems such as those

found in robotics. The centralized version is similar to those

previously applied to numerical benchmark functions, while

the distributed version is the first of such kind found in the lit-

erature (to the best of our knowledge). The distributed version

has limited communication and computational requirements,

which makes it suitable for multi-robot distributed on-line

optimization problems.

Both versions provided better estimates of the ground truth

performance than a previous distributed noise-resistant PSO

implementation, even though the final performance of the

three algorithms was similar. The distributed version’s estimate

of the ground truth was slightly worse than the centralized

one, but the difference was reduced when increasing the

neighborhood size. This was not the case for the previous

distributed noise-resistant PSO, whose estimation error was an

order of magnitude worse than both PSO OCBA algorithms.

We also analyzed two parameters specific to OCBA: n0

and ∆. We showed that the lowest possible values (n0 = 2,

∆ = number of robots) performed best, and these values

differ considerably from the guidelines for stand-alone OCBA

present in the literature.

As a future work, we would like to implement a modified

version of the distributed PSO OCBA for the learning of

heterogeneous controllers for cooperative robotic behaviors as

in [24].

ACKNOWLEDGMENT

This research was partially supported by the Swiss National

Science Foundation through the National Center of Compe-

tence in Research Robotics.

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Envi-
ronments: A Survey,” IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, 2005.

[2] K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimizer in
Noisy and Continuously Changing Environments,” in Artificial Intelli-

gence and Soft Computing, 2001, pp. 289–294.
[3] H. Pan, L. Wang, and B. Liu, “Particle Swarm Optimization for

Function Optimization in Noisy Environment,” Applied Mathematics and

Computation, vol. 181, no. 2, pp. 908–919, 2006.

[4] J. Fitzpatrick and J. Grefenstette, “Genetic Algorithms in Noisy Envi-
ronments,” Machine Learning, vol. 3, no. 2, pp. 101–120, 1988.

[5] D. Arnold and H.-G. Beyer, “A General Noise Model and its Effects on
Evolution Strategy Performance,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 4, pp. 380–391, 2006.
[6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in IEEE

International Conference on Neural Networks, 1995, pp. 1942 – 1948
vol.4.

[7] M. Turduev and Y. Atas, “Cooperative Chemical Concentration Map
Building Using Decentralized Asynchronous Particle Swarm Optimiza-
tion Based Search by Mobile Robots,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2010, pp. 4175–4180.
[8] L. Marques, U. Nunes, and A. T. Almeida, “Particle Swarm-based

Olfactory Guided Search,” Autonomous Robots, vol. 20, no. 3, pp. 277–
287, 2006.

[9] J. Hereford and M. Siebold, “Using the Particle Swarm Optimization Al-
gorithm for Robotic Search Applications,” in IEEE Swarm Intelligence

Symposium, 2007, pp. 53–59.
[10] J. Pugh and A. Martinoli, “Distributed Scalable Multi-robot Learning

using Particle Swarm Optimization,” Swarm Intelligence, vol. 3, no. 3,
pp. 203–222, 2009.

[11] J. Pugh, Y. Zhang, and A. Martinoli, “Particle Swarm Optimization for
Unsupervised Robotic Learning,” in IEEE Swarm Intelligence Sympo-

sium, 2005, pp. 92–99.
[12] C. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation Budget Al-

location for Further Enhancing the Efficiency of Ordinal Optimization,”
Discrete Event Dynamic Systems: Theory and Applications, pp. 251–
270, 2000.

[13] T. Bartz-Beielstein, D. Blum, and J. Branke, “Particle Swarm Optimiza-
tion and Sequential Sampling in Noisy Environments,” Metaheuristics,
vol. 39, pp. 261–273, 2007.

[14] J. Rada-Vilela, M. Zhang, and M. Johnston, “Optimal Computing
Budget Allocation in Particle Swarm Optimization,” in Genetic and

Evolutionary Computation Conference. ACM, 2013, pp. 81–88.
[15] C. Schmidt, J. Branke, and S. Chick, “Integrating Techniques from

Statistical Ranking into Evolutionary Algorithms,” in Applications of

Evolutionary Computing, 2006, vol. 3907, pp. 752–763.
[16] G. LaPorte, J. Branke, and C.-H. Chen, “Optimal Computing Budget

Allocation for Small Computing Budgets,” in Winter Simulation Con-

ference, 2012, pp. 1–13.
[17] E. Di Mario, I. Navarro, and A. Martinoli, “Analysis of Fitness Noise

in Particle Swarm Optimization: From Robotic Learning to Benchmark
Functions,” in IEEE Congress on Evolutionary Computation, 2014, pp.
2785–2792.

[18] E. Di Mario and A. Martinoli, “Distributed Particle Swarm Optimization
for Limited Time Adaptation with Real Robots,” Robotica, vol. 32,
no. 02, pp. 193–208, 2014.

[19] D. Floreano and F. Mondada, “Evolution of Homing Navigation in a Real
Mobile Robot,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 26, no. 3, pp. 396–407, 1996.
[20] B. Huang, G. Cao, and M. Guo, “Reinforcement Learning Neural Net-

work to the Problem of Autonomous Mobile Robot Obstacle Avoidance,”
in International Conference on Machine Learning and Cybernetics,
2005, pp. 85–89.

[21] R. E. Palacios-Leyva, R. Cruz-Alvarez, F. Montes-Gonzalez, and
L. Rascon-Perez, “Combination of Reinforcement Learning with Evo-
lution for Automatically Obtaining Robot Neural Controllers,” in IEEE

International Conference on Evolutionary Computation, 2013, pp. 119–
126.

[22] E. Di Mario, I. Navarro, and A. Martinoli, “The Role of Environ-
mental and Controller Complexity in the Distributed Optimization of
Multi-Robot Obstacle Avoidance,” in IEEE International Conference on

Robotics and Automation, 2014, pp. 571–577.
[23] O. Michel, “Webots: Professional Mobile Robot Simulation,” Advanced

Robotic Systems, vol. 1, no. 1, pp. 39–42, 2004.
[24] E. Di Mario, I. Navarro, and A. Martinoli, “Distributed Learning of

Cooperative Robotic Behaviors using Particle Swarm Optimization,”
in International Symposium on Experimental Robotics 2014, Springer

Tracts in Advanced Robotics, to appear.

