1,032 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Study of Cooperative Control System for Multiple Mobile Robots Using Particle Swarm Optimization

    Get PDF
    The idea of using multiple mobile robots for tracking targets in an unknown environment can be realized with Particle Swarm Optimization proposed by Kennedy and Eberhart in 1995. The actual implementation of an efficient algorithm like Particle Swarm Optimization (PSO) is required when robots need to avoid the randomly placed obstacles in unknown environment and reach the target point. However, ordinary methods of obstacle avoidance have not proven good results in route planning. PSO is a self-adaptive population-based method in which behavior of the swarm is iteratively generated from the combination of social and cognitive behaviors and is an effective technique for collective robotic search problem. When PSO is used for exploration, this algorithm enables robots to travel on trajectories that lead to total swarm convergence on some target

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Bio-Inspired Optimization of Ultra-Wideband Patch Antennas Using Graphics Processing Unit Acceleration

    Get PDF
    Ultra-wideband (UWB) wireless systems have recently gained considerable attention as effective communications platforms with the properties of low power and high data rates. Applications of UWB such as wireless USB put size constraints on the antenna, however, which can be very dicult to meet using typical narrow band antenna designs. The aim of this thesis is to show how bio-inspired evolutionary optimization algorithms, in particular genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO) can produce novel UWB planar patch antenna designs that meet a size constraint of a 10 mm 10 mm patch. Each potential antenna design is evaluated with the nite dierence time domain (FDTD) technique, which is accurate but time-consuming. Another aspect of this thesis is the modication of FDTD to run on a graphics processing unit (GPU) to obtain nearly a 20 speedup. With the combination of GA, PSO, BBO and GPU-accelerated FDTD, three novel antenna designs are produced that meet the size and bandwidth requirements applicable to UWB wireless USB system

    Automated optimization of reconfigurable designs

    Get PDF
    Currently, the optimization of reconfigurable design parameters is typically done manually and often involves substantial amount effort. The main focus of this thesis is to reduce this effort. The designer can focus on the implementation and design correctness, leaving the tools to carry out optimization. To address this, this thesis makes three main contributions. First, we present initial investigation of reconfigurable design optimization with the Machine Learning Optimizer (MLO) algorithm. The algorithm is based on surrogate model technology and particle swarm optimization. By using surrogate models the long hardware generation time is mitigated and automatic optimization is possible. For the first time, to the best of our knowledge, we show how those models can both predict when hardware generation will fail and how well will the design perform. Second, we introduce a new algorithm called Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), which is based on the Efficient Global Optimization (EGO) algorithm. Compared to MLO, it supports parallelism and uses a simpler optimization loop. As the ARDEGO algorithm uses multiple optimization compute nodes, its optimization speed is greatly improved relative to MLO. Hardware generation time is random in nature, two similar configurations can take vastly different amount of time to generate making parallelization complicated. The novelty is efficient use of the optimization compute nodes achieved through extension of the asynchronous parallel EGO algorithm to constrained problems. Third, we show how results of design synthesis and benchmarking can be reused when a design is ported to a different platform or when its code is revised. This is achieved through the new Auto-Transfer algorithm. A methodology to make the best use of available synthesis and benchmarking results is a novel contribution to design automation of reconfigurable systems.Open Acces

    Microwave Tomography Using Stochastic Optimization And High Performance Computing

    Get PDF
    This thesis discusses the application of parallel computing in microwave tomography for detection and imaging of dielectric objects. The main focus is on microwave tomography with the use of a parallelized Finite Difference Time Domain (FDTD) forward solver in conjunction with non-linear stochastic optimization based inverse solvers. Because such solvers require very heavy computation, their investigation has been limited in favour of deterministic inverse solvers that make use of assumptions and approximations of the imaging target. Without the use of linearization assumptions, a non-linear stochastic microwave tomography system is able to resolve targets of arbitrary permittivity contrast profiles while avoiding convergence to local minima of the microwave tomography optimization space. This work is focused on ameliorating this computational load with the use of heavy parallelization. The presented microwave tomography system is capable of modelling complex, heterogeneous, and dispersive media using the Debye model. A detailed explanation of the dispersive FDTD is presented herein. The system uses scattered field data due to multiple excitation angles, frequencies, and observation angles in order to improve target resolution, reduce the ill-posedness of the microwave tomography inverse problem, and improve the accuracy of the complex permittivity profile of the imaging target. The FDTD forward solver is parallelized with the use of the Common Unified Device Architecture (CUDA) programming model developed by NVIDIA corporation. In the forward solver, the time stepping of the fields are computed on a Graphics Processing Unit (GPU). In addition the inverse solver makes use of the Message Passing Interface (MPI) system to distribute computation across multiple work stations. The FDTD method was chosen due to its ease of parallelization using GPU computing, in addition to its ability to simulate wideband excitation signals during a single forward simulation. We investigated the use of distributed Particle Swarm Optimization (PSO) and Differential Evolution (DE) methods in the inverse solver for this microwave tomography system. In these optimization algorithms, candidate solutions are farmed out to separate workstations to be evaluated. As fitness evaluations are returned asynchronously, the optimization algorithm updates the population of candidate solutions and gives new candidate solutions to be evaluated to open workstations. In this manner, we used a total of eight graphics processing units during optimization with minimal downtime. Presented in this thesis is a microwave tomography algorithm that does not rely on linearization assumptions, capable of imaging a target in a reasonable amount of time for clinical applications. The proposed algorithm was tested using numerical phantoms that with material parameters similar to what one would find in normal or malignant human tissue

    Heterogeneous architecture to process swarm optimization algorithms

    Get PDF
    Desde años recientes, el paralelismo hace parte de la arquitectura de las computadoras personales al incluir unidades de co-procesamiento como las unidades de procesamiento gráfico, para conformar así una arquitectura heterogénea. Este artículo presenta la implementación de algoritmos de enjambres sobre esta arquitectura para resolver problemas de optimización de funciones, destacando su estructura inherentemente paralela y sus propiedades de control distribuido. En estos algoritmos se paralelizan los individuos de la población y las dimensiones del problema gracias a la granuralidad del sistema de procesamiento, que además proporciona una baja latencia de comunicaciones entre los individuos debido al procesamiento embebido. Para evaluar las potencialidades de los algoritmos de enjambres sobre la plataforma heterogénea, son implementados dos de ellos: el algoritmo de enjambre de partículas y el algoritmo de enjambre de bacterias. Se utiliza la aceleración como métrica para contrastar los algoritmos en la arquitectura heterogénea compuesta por una GPU NVIDIA GTX480 y una unidad de procesamiento secuencial, donde el algoritmo de enjambre de partículas obtiene una aceleración de hasta 36,82x y el algoritmo de enjambre de bacterias logra una aceleración de hasta 9,26x. Además, se evalúa el efecto al incrementar el tamaño en las poblaciones donde la aceleración es significativamente diferenciable pero con riesgos en la calidad de las soluciones.Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution
    corecore