440 research outputs found

    An efficient Particle Swarm Optimization approach to cluster short texts

    Get PDF
    This is the author’s version of a work that was accepted for publication in Information Sciencies. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, VOL 265, MAY 1 2014 DOI 10.1016/j.ins.2013.12.010.Short texts such as evaluations of commercial products, news, FAQ's and scientific abstracts are important resources on the Web due to the constant requirements of people to use this on line information in real life. In this context, the clustering of short texts is a significant analysis task and a discrete Particle Swarm Optimization (PSO) algorithm named CLUDIPSO has recently shown a promising performance in this type of problems. CLUDIPSO obtained high quality results with small corpora although, with larger corpora, a significant deterioration of performance was observed. This article presents CLUDIPSO*, an improved version of CLUDIPSO, which includes a different representation of particles, a more efficient evaluation of the function to be optimized and some modifications in the mutation operator. Experimental results with corpora containing scientific abstracts, news and short legal documents obtained from the Web, show that CLUDIPSO* is an effective clustering method for short-text corpora of small and medium size. (C) 2013 Elsevier Inc. All rights reserved.The research work is partially funded by the European Commission as part of the WIQ-EI IRSES research project (Grant No. 269180) within the FP 7 Marie Curie People Framework and it has been developed in the framework of the Microcluster VLC/Campus (International Campus of Excellence) on Multimodal Intelligent Systems. The research work of the first author is partially funded by the program PAID-02-10 2257 (Universitat Politecnica de Valencia) and CONICET (Argentina).Cagnina, L.; Errecalde, M.; Ingaramo, D.; Rosso, P. (2014). An efficient Particle Swarm Optimization approach to cluster short texts. Information Sciences. 265:36-49. https://doi.org/10.1016/j.ins.2013.12.010S364926

    A Particle Swarm Optimizer to Cluster Parallel Spanish-English Short-text Corpora

    Full text link
    Short-texts clustering is currently an important research area because of its applicability to web information retrieval, text summarization and text mining. These texts are often available in different languages and parallel multilingual corpora. Some previous works have demonstrated the effectiveness of a discrete Particle Swarm Optimizer algorithm, named CLUDIPSO, for clustering monolingual corpora containing very short documents. In all the considered cases, CLUDIPSO outperformed different algorithms representative of the state-of-the-art in the area. This paper presents a preliminary study showing the performance of CLUDIPSO on parallel Spanish-English corpora. The idea is to analyze how this bilingual information can be incorporated in the CLUDIPSO algorithm and to what extent this information can improve the clustering results. In order to adapt CLUDIPSO to a bilingual environment, some alternatives are proposed and evaluated. The results were compared considering CLUDIPSO in both environments, bilingual and monolingual. The experimental work shows that bilingual information allows to obtain just comparable results to those obtained with monolingual corpora. More work is required to make an effective use of this kind of information.Ingaramo, DA.; Errecalde, ML.; Cagnina, L.; Rosso, P. (2011). A Particle Swarm Optimizer to Cluster Parallel Spanish-English Short-text Corpora. CEUR Workshop Proceedings. 824:43-48. http://hdl.handle.net/10251/33475S434882

    A PSO-based clustering approach assisted by initial clustering information

    Get PDF
    Clustering of short texts is an important research area because of its applicability in information retrieval and text mining. To this end was proposed CLUDIPSO, a discrete Particle Swarm Optimization algorithm to cluster short texts. Initial results showed that CLUDIPSO has performed well in small collections of short texts. However, later works showed some drawbacks when dealing with larger collections. In this paper we present a hybridization of CLUDIPSO to overcome these drawbacks, by providing information in the initial cycles of the algorithm to avoid a random search and thus speed up the convergence process. This is achieved by using a pre-clustering obtained with the Expectation-Maximization method which is included in the initial population of the algorithm. The results obtained with the hybrid version show a significant improvement over those obtained with the original version.Eje: Workshop Bases de datos y minería de datos (WBDDM)Red de Universidades con Carreras en Informática (RedUNCI

    Silhouette + Attraction: A Simple and Effective Method for Text Clustering

    Get PDF
    [EN] This article presents silhouette attraction (Sil Att), a simple and effective method for text clustering, which is based on two main concepts: the silhouette coefficient and the idea of attraction. The combination of both principles allows us to obtain a general technique that can be used either as a boosting method, which improves results of other clustering algorithms, or as an independent clustering algorithm. The experimental work shows that Sil Att is able to obtain high-quality results on text corpora with very different characteristics. Furthermore, its stable performance on all the considered corpora is indicative that it is a very robust method. This is a very interesting positive aspect of Sil Att with respect to the other algorithms used in the experiments, whose performances heavily depend on specific characteristics of the corpora being considered.This research work has been partially funded by UNSL, CONICET (Argentina), DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) research project, and the WIQ-EI IRSES project (grant no. 269180) within the FP 7 Marie Curie People Framework on Web Information Quality Evaluation Initiative. The work of the third author was done also in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Errecalde, M.; Cagnina, L.; Rosso, P. (2015). Silhouette + Attraction: A Simple and Effective Method for Text Clustering. Natural Language Engineering. 1-40. https://doi.org/10.1017/S1351324915000273S140Zhao, Y., & Karypis, G. (2004). Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning, 55(3), 311-331. doi:10.1023/b:mach.0000027785.44527.d6Tu, L., & Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), 1-27. doi:10.1145/1552303.1552305Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009). Combining link and content for community detection. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09. doi:10.1145/1557019.1557120Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical Clustering Algorithms for Document Datasets. Data Mining and Knowledge Discovery, 10(2), 141-168. doi:10.1007/s10618-005-0361-3Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. Wiley Series in Probability and Statistics. doi:10.1002/9780470316801Karypis, G., Eui-Hong Han, & Kumar, V. (1999). Chameleon: hierarchical clustering using dynamic modeling. Computer, 32(8), 68-75. doi:10.1109/2.781637Cagnina, L., Errecalde, M., Ingaramo, D., & Rosso, P. (2014). An efficient Particle Swarm Optimization approach to cluster short texts. Information Sciences, 265, 36-49. doi:10.1016/j.ins.2013.12.010He, H., Chen, B., Xu, W., & Guo, J. (2007). Short Text Feature Extraction and Clustering for Web Topic Mining. Third International Conference on Semantics, Knowledge and Grid (SKG 2007). doi:10.1109/skg.2007.76Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071Qi, G.-J., Aggarwal, C. C., & Huang, T. (2012). Community Detection with Edge Content in Social Media Networks. 2012 IEEE 28th International Conference on Data Engineering. doi:10.1109/icde.2012.77Daxin Jiang, Jian Pei, & Aidong Zhang. (s. f.). DHC: a density-based hierarchical clustering method for time series gene expression data. Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings. doi:10.1109/bibe.2003.1188978Charikar, M., Chekuri, C., Feder, T., & Motwani, R. (2004). Incremental Clustering and Dynamic Information Retrieval. SIAM Journal on Computing, 33(6), 1417-1440. doi:10.1137/s0097539702418498Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. doi:10.1016/0031-3203(91)90097-oAranganayagi, S., & Thangavel, K. (2007). Clustering Categorical Data Using Silhouette Coefficient as a Relocating Measure. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). doi:10.1109/iccima.2007.328Makagonov, P., Alexandrov, M., & Gelbukh, A. (2004). Clustering Abstracts Instead of Full Texts. Lecture Notes in Computer Science, 129-135. doi:10.1007/978-3-540-30120-2_17Jing L. 2005. Survey of text clustering. Technical report. Department of Mathematics. The University of Hong Kong, Hong Kong, China.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xHearst, M. A. (2006). Clustering versus faceted categories for information exploration. Communications of the ACM, 49(4), 59. doi:10.1145/1121949.1121983Alexandrov, M., Gelbukh, A., & Rosso, P. (2005). An Approach to Clustering Abstracts. Lecture Notes in Computer Science, 275-285. doi:10.1007/11428817_25Dos Santos, J. B., Heuser, C. A., Moreira, V. P., & Wives, L. K. (2011). Automatic threshold estimation for data matching applications. Information Sciences, 181(13), 2685-2699. doi:10.1016/j.ins.2010.05.029Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2009). Robust partitional clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11), 994-1002. doi:10.1016/j.patrec.2009.04.013Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4(1), 95-104. doi:10.1080/01969727408546059Carullo, M., Binaghi, E., & Gallo, I. (2009). An online document clustering technique for short web contents. Pattern Recognition Letters, 30(10), 870-876. doi:10.1016/j.patrec.2009.04.001Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Bezdek, J. C., & Pal, N. R. (s. f.). Cluster validation with generalized Dunn’s indices. Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. doi:10.1109/annes.1995.499469Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., & Dougherty, E. R. (2007). Model-based evaluation of clustering validation measures. Pattern Recognition, 40(3), 807-824. doi:10.1016/j.patcog.2006.06.026Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227. doi:10.1109/tpami.1979.4766909Pinto, D., & Rosso, P. (s. f.). On the Relative Hardness of Clustering Corpora. Lecture Notes in Computer Science, 155-161. doi:10.1007/978-3-540-74628-7_22Pons-Porrata, A., Berlanga-Llavori, R., & Ruiz-Shulcloper, J. (2007). Topic discovery based on text mining techniques. Information Processing & Management, 43(3), 752-768. doi:10.1016/j.ipm.2006.06.001Pinto, D., Benedí, J.-M., & Rosso, P. (2007). Clustering Narrow-Domain Short Texts by Using the Kullback-Leibler Distance. Lecture Notes in Computer Science, 611-622. doi:10.1007/978-3-540-70939-8_5

    Hybrid fuzzy multi-objective particle swarm optimization for taxonomy extraction

    Get PDF
    Ontology learning refers to an automatic extraction of ontology to produce the ontology learning layer cake which consists of five kinds of output: terms, concepts, taxonomy relations, non-taxonomy relations and axioms. Term extraction is a prerequisite for all aspects of ontology learning. It is the automatic mining of complete terms from the input document. Another important part of ontology is taxonomy, or the hierarchy of concepts. It presents a tree view of the ontology and shows the inheritance between subconcepts and superconcepts. In this research, two methods were proposed for improving the performance of the extraction result. The first method uses particle swarm optimization in order to optimize the weights of features. The advantage of particle swarm optimization is that it can calculate and adjust the weight of each feature according to the appropriate value, and here it is used to improve the performance of term and taxonomy extraction. The second method uses a hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems that ensures that the membership functions and fuzzy system rule sets are optimized. The advantage of using a fuzzy system is that the imprecise and uncertain values of feature weights can be tolerated during the extraction process. This method is used to improve the performance of taxonomy extraction. In the term extraction experiment, five extracted features were used for each term from the document. These features were represented by feature vectors consisting of domain relevance, domain consensus, term cohesion, first occurrence and length of noun phrase. For taxonomy extraction, matching Hearst lexico-syntactic patterns in documents and the web, and hypernym information form WordNet were used as the features that represent each pair of terms from the texts. These two proposed methods are evaluated using a dataset that contains documents about tourism. For term extraction, the proposed method is compared with benchmark algorithms such as Term Frequency Inverse Document Frequency, Weirdness, Glossary Extraction and Term Extractor, using the precision performance evaluation measurement. For taxonomy extraction, the proposed methods are compared with benchmark methods of Feature-based and weighting by Support Vector Machine using the f-measure, precision and recall performance evaluation measurements. For the first method, the experiment results concluded that implementing particle swarm optimization in order to optimize the feature weights in terms and taxonomy extraction leads to improved accuracy of extraction result compared to the benchmark algorithms. For the second method, the results concluded that the hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems leads to improved performance of taxonomy extraction results when compared to the benchmark methods, while adjusting the fuzzy membership function and keeping the number of fuzzy rules to a minimum number with a high degree of accuracy

    Narrow-domain Short Texts Clustering Algorithm

    Full text link
    In this paper, we describe the algorithm of narrow-domain short texts clustering, which is based on terms’ selection and modification of k-means algorithm. Our approach was tested on collections: CICling–2002 and SEPLIN-CICling. Results of tests and conclusions are presented

    New techniques for Arabic document classification

    Get PDF
    Text classification (TC) concerns automatically assigning a class (category) label to a text document, and has increasingly many applications, particularly in the domain of organizing, for browsing in large document collections. It is typically achieved via machine learning, where a model is built on the basis of a typically large collection of document features. Feature selection is critical in this process, since there are typically several thousand potential features (distinct words or terms). In text classification, feature selection aims to improve the computational e ciency and classification accuracy by removing irrelevant and redundant terms (features), while retaining features (words) that contain su cient information that help with the classification task. This thesis proposes binary particle swarm optimization (BPSO) hybridized with either K Nearest Neighbour (KNN) or Support Vector Machines (SVM) for feature selection in Arabic text classi cation tasks. Comparison between feature selection approaches is done on the basis of using the selected features in conjunction with SVM, Decision Trees (C4.5), and Naive Bayes (NB), to classify a hold out test set. Using publically available Arabic datasets, results show that BPSO/KNN and BPSO/SVM techniques are promising in this domain. The sets of selected features (words) are also analyzed to consider the di erences between the types of features that BPSO/KNN and BPSO/SVM tend to choose. This leads to speculation concerning the appropriate feature selection strategy, based on the relationship between the classes in the document categorization task at hand. The thesis also investigates the use of statistically extracted phrases of length two as terms in Arabic text classi cation. In comparison with Bag of Words text representation, results show that using phrases alone as terms in Arabic TC task decreases the classification accuracy of Arabic TC classifiers significantly while combining bag of words and phrase based representations may increase the classification accuracy of the SVM classifier slightly

    A new AntTree-based algorithm for clustering short-text corpora

    Get PDF
    Research work on "short-text clustering" is a very important research area due to the current tendency for people to use "small-language", e.g. blogs, textmessaging and others. In some recent works, new bioinspired clustering algorithms have been proposed to deal with this difficult problem and novel uses of Internal Clustering Validity Measures have also been presented. In this work, a new AntTree-based approach is proposed for this task. It integrates information on the Silhouette Coefficient and the concept of attraction of a cluster in different stages of the clustering process. The proposal achieves results comparable to the best reported results in this area, showing an interesting stability in the quality of the results and presenting some interesting capabilities as a general improvement method for arbitrary clustering approaches.Facultad de Informátic
    corecore