836 research outputs found

    Particle Metropolis-Hastings using gradient and Hessian information

    Full text link
    Particle Metropolis-Hastings (PMH) allows for Bayesian parameter inference in nonlinear state space models by combining Markov chain Monte Carlo (MCMC) and particle filtering. The latter is used to estimate the intractable likelihood. In its original formulation, PMH makes use of a marginal MCMC proposal for the parameters, typically a Gaussian random walk. However, this can lead to a poor exploration of the parameter space and an inefficient use of the generated particles. We propose a number of alternative versions of PMH that incorporate gradient and Hessian information about the posterior into the proposal. This information is more or less obtained as a byproduct of the likelihood estimation. Indeed, we show how to estimate the required information using a fixed-lag particle smoother, with a computational cost growing linearly in the number of particles. We conclude that the proposed methods can: (i) decrease the length of the burn-in phase, (ii) increase the mixing of the Markov chain at the stationary phase, and (iii) make the proposal distribution scale invariant which simplifies tuning.Comment: 27 pages, 5 figures, 2 tables. The final publication is available at Springer via: http://dx.doi.org/10.1007/s11222-014-9510-

    Quasi-Newton particle Metropolis-Hastings

    Full text link
    Particle Metropolis-Hastings enables Bayesian parameter inference in general nonlinear state space models (SSMs). However, in many implementations a random walk proposal is used and this can result in poor mixing if not tuned correctly using tedious pilot runs. Therefore, we consider a new proposal inspired by quasi-Newton algorithms that may achieve similar (or better) mixing with less tuning. An advantage compared to other Hessian based proposals, is that it only requires estimates of the gradient of the log-posterior. A possible application is parameter inference in the challenging class of SSMs with intractable likelihoods. We exemplify this application and the benefits of the new proposal by modelling log-returns of future contracts on coffee by a stochastic volatility model with α\alpha-stable observations.Comment: 23 pages, 5 figures. Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201

    Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods"

    Full text link
    This is a collection of discussions of `Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead, to appear in the Journal of the Royal Statistical Society, Series B.Comment: 6 pages, one figur

    Sequential Monte Carlo Methods for System Identification

    Full text link
    One of the key challenges in identifying nonlinear and possibly non-Gaussian state space models (SSMs) is the intractability of estimating the system state. Sequential Monte Carlo (SMC) methods, such as the particle filter (introduced more than two decades ago), provide numerical solutions to the nonlinear state estimation problems arising in SSMs. When combined with additional identification techniques, these algorithms provide solid solutions to the nonlinear system identification problem. We describe two general strategies for creating such combinations and discuss why SMC is a natural tool for implementing these strategies.Comment: In proceedings of the 17th IFAC Symposium on System Identification (SYSID). Added cover pag

    Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models

    Get PDF
    This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear state-space models together with a software implementation in the statistical programming language R. We employ a step-by-step approach to develop an implementation of the PMH algorithm (and the particle filter within) together with the reader. This final implementation is also available as the package pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some intuition as to how the algorithm operates and discuss some solutions to problems that might occur in practice. To illustrate the use of PMH, we consider parameter inference in a linear Gaussian state-space model with synthetic data and a nonlinear stochastic volatility model with real-world data.Comment: 41 pages, 7 figures. In press for Journal of Statistical Software. Source code for R, Python and MATLAB available at: https://github.com/compops/pmh-tutoria

    Subsampling MCMC - An introduction for the survey statistician

    Full text link
    The rapid development of computing power and efficient Markov Chain Monte Carlo (MCMC) simulation algorithms have revolutionized Bayesian statistics, making it a highly practical inference method in applied work. However, MCMC algorithms tend to be computationally demanding, and are particularly slow for large datasets. Data subsampling has recently been suggested as a way to make MCMC methods scalable on massively large data, utilizing efficient sampling schemes and estimators from the survey sampling literature. These developments tend to be unknown by many survey statisticians who traditionally work with non-Bayesian methods, and rarely use MCMC. Our article explains the idea of data subsampling in MCMC by reviewing one strand of work, Subsampling MCMC, a so called pseudo-marginal MCMC approach to speeding up MCMC through data subsampling. The review is written for a survey statistician without previous knowledge of MCMC methods since our aim is to motivate survey sampling experts to contribute to the growing Subsampling MCMC literature.Comment: Accepted for publication in Sankhya A. Previous uploaded version contained a bug in generating the figures and reference

    Constructing Metropolis-Hastings proposals using damped BFGS updates

    Full text link
    The computation of Bayesian estimates of system parameters and functions of them on the basis of observed system performance data is a common problem within system identification. This is a previously studied issue where stochastic simulation approaches have been examined using the popular Metropolis--Hastings (MH) algorithm. This prior study has identified a recognised difficulty of tuning the {proposal distribution so that the MH method provides realisations with sufficient mixing to deliver efficient convergence. This paper proposes and empirically examines a method of tuning the proposal using ideas borrowed from the numerical optimisation literature around efficient computation of Hessians so that gradient and curvature information of the target posterior can be incorporated in the proposal.Comment: 16 pages, 2 figures. Accepted for publication in the Proceedings of the 18th IFAC Symposium on System Identification (SYSID
    corecore