One of the key challenges in identifying nonlinear and possibly non-Gaussian
state space models (SSMs) is the intractability of estimating the system state.
Sequential Monte Carlo (SMC) methods, such as the particle filter (introduced
more than two decades ago), provide numerical solutions to the nonlinear state
estimation problems arising in SSMs. When combined with additional
identification techniques, these algorithms provide solid solutions to the
nonlinear system identification problem. We describe two general strategies for
creating such combinations and discuss why SMC is a natural tool for
implementing these strategies.Comment: In proceedings of the 17th IFAC Symposium on System Identification
(SYSID). Added cover pag