2,307 research outputs found

    Online Metric-Weighted Linear Representations for Robust Visual Tracking

    Full text link
    In this paper, we propose a visual tracker based on a metric-weighted linear representation of appearance. In order to capture the interdependence of different feature dimensions, we develop two online distance metric learning methods using proximity comparison information and structured output learning. The learned metric is then incorporated into a linear representation of appearance. We show that online distance metric learning significantly improves the robustness of the tracker, especially on those sequences exhibiting drastic appearance changes. In order to bound growth in the number of training samples, we design a time-weighted reservoir sampling method. Moreover, we enable our tracker to automatically perform object identification during the process of object tracking, by introducing a collection of static template samples belonging to several object classes of interest. Object identification results for an entire video sequence are achieved by systematically combining the tracking information and visual recognition at each frame. Experimental results on challenging video sequences demonstrate the effectiveness of the method for both inter-frame tracking and object identification.Comment: 51 pages. Appearing in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Detection-assisted Object Tracking by Mobile Cameras

    Get PDF
    Tracking-by-detection is a class of new tracking approaches that utilizes recent development of object detection algorithms. This type of approach performs object detection for each frame and uses data association algorithms to associate new observations to existing targets. Inspired by the core idea of the tracking-by-detection framework, we propose a new framework called detection-assisted tracking where object detection algorithm provides help to the tracking algorithm when such help is necessary; thus object detection, a very time consuming task, is performed only when needed. The proposed framework is also able to handle complicated scenarios where cameras are allowed to move, and occlusion or multiple similar objects exist. We also port the core component of the proposed framework, the detector, onto embedded smart cameras. Contrary to traditional scenarios where the smart cameras are assumed to be static, we allow the smart cameras to move around in the scene. Our approach employs histogram of oriented gradients (HOG) object detector for foreground detection, to enable more robust detection on mobile platform. Traditional background subtraction methods are not suitable for mobile platforms where the background changes constantly. Adviser: Senem Velipasalar and Mustafa Cenk Gurso

    Keeping track of worm trackers

    Get PDF
    C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement)

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Deep Convolutional Correlation Particle Filter for Visual Tracking

    Get PDF
    In this dissertation, we explore the advantages and limitations of the application of sequential Monte Carlo methods to visual tracking, which is a challenging computer vision problem. We propose six visual tracking models, each of which integrates a particle filter, a deep convolutional neural network, and a correlation filter. In our first model, we generate an image patch corresponding to each particle and use a convolutional neural network (CNN) to extract features from the corresponding image region. A correlation filter then computes the correlation response maps corresponding to these features, which are used to determine the particle weights and estimate the state of the target. We then introduce a particle filter that extends the target state by incorporating its size information. This model also utilizes a new adaptive correlation filtering approach that generates multiple target models to account for potential model update errors. We build upon that strategy to devise an adaptive particle filter that can decrease the number of particles in simple frames in which there is no challenging scenarios and the target model closely reflects the current appearance of the target. This strategy allows us to reduce the computational cost of the particle filter without negatively impacting its performance. This tracker also improves the likelihood model by generating multiple target models using varying model update rates based on the high-likelihood particles. We also propose a novel likelihood particle filter for CNN-correlation visual trackers. Our method uses correlation response maps to estimate likelihood distributions and employs these likelihoods as proposal densities to sample particles. Additionally, our particle filter searches for multiple modes in the likelihood distribution using a Gaussian mixture model. We further introduce an iterative particle filter that performs iterations to decrease the distance between particles and the peaks of their correlation maps which results in having a few more accurate particles in the end of iterations. Applying K-mean clustering method on the remaining particles determine the number of the clusters which is used in evaluation step and find the target state. Our approach ensures a consistent support for the posterior distribution. Thus, we do not need to perform resampling at every video frame, improving the utilization of prior distribution information. Finally, we introduce a novel framework which calculates the confidence score of the tracking algorithm at each video frame based on the correlation response maps of the particles. Our framework applies different model update rules according to the calculated confidence score, reducing tracking failures caused by model drift. The benefits of each of the proposed techniques are demonstrated through experiments using publicly available benchmark datasets

    Gaussian mixture model classifiers for detection and tracking in UAV video streams.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. The automation of such systems often employs detectors, trackers and classifiers as fundamental building blocks. Detection, tracking and classification are especially useful and challenging in Unmanned Aerial Vehicle (UAV) based surveillance systems. Previous solutions have addressed challenges via complex classification methods. This dissertation proposes less complex Gaussian Mixture Model (GMM) based classifiers that can simplify the process; where data is represented as a reduced set of model parameters, and classification is performed in the low dimensionality parameter-space. The specification and adoption of GMM based classifiers on the UAV visual tracking feature space formed the principal contribution of the work. This methodology can be generalised to other feature spaces. This dissertation presents two main contributions in the form of submissions to ISI accredited journals. In the first paper, objectives are demonstrated with a vehicle detector incorporating a two stage GMM classifier, applied to a single feature space, namely Histogram of Oriented Gradients (HoG). While the second paper demonstrates objectives with a vehicle tracker using colour histograms (in RGB and HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. The proposed works are comparable to related works with testing performed on benchmark datasets. In the tracking domain for such platforms, tracking alone is insufficient. Adaptive detection and classification can assist in search space reduction, building of knowledge priors and improved target representations. Results show that the proposed approach improves performance and robustness. Findings also indicate potential further enhancements such as a multi-mode tracker with global and local tracking based on a combination of both papers
    • …
    corecore