
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

Deep Convolutional Correlation Particle Filter for Visual Tracking Deep Convolutional Correlation Particle Filter for Visual Tracking

Reza Jalil Mozhdehi
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Mozhdehi, Reza Jalil, "Deep Convolutional Correlation Particle Filter for Visual Tracking" (2021).
Dissertations (1934 -). 1092.
https://epublications.marquette.edu/dissertations_mu/1092

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/1092?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP CONVOLUTIONAL CORRELATION PARTICLE FILTER FOR VISUAL
TRACKING

by

Reza Jalil Mozhdehi, B.S., M.S.

A Dissertation submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

December 2021

ABSTRACT
DEEP CONVOLUTIONAL CORRELATION PARTICLE FILTER FOR VISUAL

TRACKING

Reza Jalil Mozhdehi, B.S., M.S.

Marquette University, 2021

In this dissertation, we explore the advantages and limitations of the application of
sequential Monte Carlo methods to visual tracking, which is a challenging computer vi-
sion problem. We propose six visual tracking models, each of which integrates a particle
filter, a deep convolutional neural network, and a correlation filter. In our first model, we
generate an image patch corresponding to each particle and use a convolutional neural net-
work (CNN) to extract features from the corresponding image region. A correlation filter
then computes the correlation response maps corresponding to these features, which are
used to determine the particle weights and estimate the state of the target. We then intro-
duce a particle filter that extends the target state by incorporating its size information. This
model also utilizes a new adaptive correlation filtering approach that generates multiple
target models to account for potential model update errors. We build upon that strategy to
devise an adaptive particle filter that can decrease the number of particles in simple frames
in which there is no challenging scenarios and the target model closely reflects the current
appearance of the target. This strategy allows us to reduce the computational cost of the
particle filter without negatively impacting its performance. This tracker also improves the
likelihood model by generating multiple target models using varying model update rates
based on the high-likelihood particles. We also propose a novel likelihood particle filter
for CNN-correlation visual trackers. Our method uses correlation response maps to esti-
mate likelihood distributions and employs these likelihoods as proposal densities to sample
particles. Additionally, our particle filter searches for multiple modes in the likelihood dis-
tribution using a Gaussian mixture model. We further introduce an iterative particle filter
that performs iterations to decrease the distance between particles and the peaks of their
correlation maps which results in having a few more accurate particles in the end of it-
erations. Applying K-mean clustering method on the remaining particles determine the
number of the clusters which is used in evaluation step and find the target state. Our ap-
proach ensures a consistent support for the posterior distribution. Thus, we do not need to
perform resampling at every video frame, improving the utilization of prior distribution in-
formation. Finally, we introduce a novel framework which calculates the confidence score
of the tracking algorithm at each video frame based on the correlation response maps of the
particles. Our framework applies different model update rules according to the calculated
confidence score, reducing tracking failures caused by model drift. The benefits of each
of the proposed techniques are demonstrated through experiments using publicly available
benchmark datasets.

i

ACKNOWLEDGEMENTS

First, I would like to sincerely thank my advisor Dr. Henry Medeiros for his in-

valuable supervision during my Ph.D. study at Marquette University. He is one of the most

knowledgeable and respectful professors I know in academia. I cannot thank him enough

for all his continuous support and devotion throughout my study.

My gratitude extends to Dr. Frederick Frigo, Dr. Edwin Yaz, Dr. Richard Povinelli

and Dr. Cristinel Ababei for being part of my dissertation committee and providing bene-

ficial feedback. Additionally, I would like to express gratitude to all my colleagues at the

COVISS lab.

Finally, My appreciation beyond words goes out to my mother, father and sisters,

who are the most important people in my world, for their encouragement and support

through my PhD study. I sincerely dedicate my Ph.D. dissertation to them.

ii

CONTENTS

List of Figures . v

1 INTRODUCTION . 1

1.1 Problem statement 1 . 2

1.2 Problem statement 2 . 3

1.3 Problem statement 3 . 4

1.4 Objectives . 4

1.4.1 Objective 1 . 5

1.4.2 Objective 2 . 6

1.4.3 Objective 3 . 6

1.5 Dissertation organization . 8

2 BACKGROUND . 9

2.1 Basic information on visual object tracking 9

2.1.1 Deep neural networks . 9

2.1.2 Correlation filters . 11

2.1.3 Particle filters . 14

2.2 CNN visual trackers . 15

2.3 CNN-correlation visual trackers . 16

2.4 Particle filters in CNN-correlation visual Trackers 17

2.5 Benchmarks . 19

2.5.1 OTB50 and OTB 100 . 19

2.5.2 LaSOT . 20

iii

2.5.3 Evaluation metrics . 20

3 DEEP CONVOLUTIONAL PARTICLE FILTER 23

3.1 Structure of HCFT . 23

3.2 Particle Filter Design . 25

3.3 Results and Discussion . 28

4 TARGET SIZE ESTIMATION AND ADAPTIVE CORRELATION MAPS . . . 30

4.1 Proposed Algorithm . 31

4.1.1 Particle Filter to Estimate the Target Bounding Box 31

4.1.2 Adaptive Correlation Filter 34

4.2 Results and Discussion . 35

5 ADAPTIVE PARTICLES FILTER FOR VISUAL TRACKING 38

5.1 Proposed Algorithm . 39

5.1.1 Adaptive Particle Filter . 40

5.1.2 Multiple Correlation Models 47

5.2 Results and Discussion . 48

6 LIKELIHOOD PARTICLE FILTER . 51

6.1 The change of support problem in convolution-correlation particle filters 51

6.2 Proposed Algorithm . 52

6.2.1 Multi-modal likelihood estimation 56

6.2.2 Particle sampling . 56

6.2.3 Calculating the weights and posterior distribution 58

6.3 Experimental results . 60

iv

7 ITERATIVE PARTICLE FILTER . 64

7.1 Proposed Algorithm . 65

7.1.1 Iterative Particle Filter . 65

7.1.2 Target state estimation . 71

7.2 Results and Discussion . 73

7.2.1 LaSOT evaluation . 75

7.2.2 OTB100 evaluation . 75

7.2.3 Ablative analysis . 81

8 ADAPTIVE TARGET MODEL UPDATE USING SHORT-TERM MEMORY . . 82

8.1 Proposed Algorithm . 82

8.2 Results and Discussion . 87

9 CONCLUSION . 90

9.1 Summary . 90

9.2 Future work . 92

Bibliography . 93

10 COPYRIGHT . 102

v

LIST OF FIGURES

1.1 Illustration of the visual tracking problem. 1

1.2 Schematic illustration of a typical CNN-correlation visual tracker. 3

2.1 Diagram illustrating the architecture of VGG16 introduced in [1]. 10

2.2 A comparison among the VGG16, VGG19, and AlexNet network structures [2]. 12

2.3 Example of a correlation map of a given frame. 13

2.4 Degeneracy and impoverishment in particle filters [3]. 15

2.5 Sample frames of the video sequences comprising the OTB50 and OTB100
benchmarks. 18

2.6 Sample frames of the video sequences comprising the LaSOT benchmark [4] . 19

2.7 Precision and success plots used to evaluation visual tracking algorithms 21

3.1 The outputs of the different layers of the CNN and the determination of the
exact position of the target by applying a coarse-to-fine method. 24

3.2 Performance comparison of our tracker versus HCFT on OPE. 26

3.3 Performance comparison of our tracker versus HCFT on SRE. 27

3.4 Comparison between our tracker and HCFT on six different data sequences. . . 28

4.1 Overview of our proposed tracker which estimates target size and employs
an adaptive correlation filter. 31

4.2 Quantitative evaluation of our tracker and fourteen state-of-the-art trackers on OPE. . . 36

4.3 Qualitative evaluation of our tracker, HCFT, HDT and SCT6 37

5.1 Our proposed adaptive particle filter (when resampling is not needed). 39

5.2 Decreasing the number of particles in simple frames and implementing
resampling in difficult frames. 40

5.3 How to influence different adjusting rates on DCPF2’s performance. 41

vi

5.4 Our proposed multiple models with different adjusting rates. 44

5.5 Qualitative evaluation of our tracker, DCPF2, SINT and HCFT 45

5.6 Quantitative evaluation of our tracker in comparison with state-of-the-art
trackers on OPE. 50

6.1 The change of support problem in convolution-correlation particle filters. 53

6.2 Estimated likelihood distributions for common scenarios (simple frame)
and a challenging scenario involving fast motion (difficult frame). 54

6.3 Standard deviations of the estimated likelihood distributions in data
sequence Jogging-1 of the OTB-100 dataset. 55

6.4 A difficult frame including target occlusion. Its correlation response map
has two peaks. 57

6.5 Finding clusters by fitting Gaussian mixture model 58

6.6 Overview of the steps comprising the proposed DCPF-Likelihood visual tracker. 59

6.7 One pass evaluation of our tracker in comparison with three state-of-the-art
approaches. 61

6.8 Qualitative evaluation of our tracker against DCPF, HCFT, and CNN-SVM
on two challenging sequences: Human6 (top) and Ironman (bottom). 62

7.1 Illustration of the proposed iterative particle position refinement. 66

7.2 Illustration of the particle selection process for Jt−1 = 3. 67

7.3 Evaluation when we have only one cluster. 72

7.4 Evaluation when we have more than one cluster. 74

7.5 Quantitative assessment of the performance of our tracker in comparison
with state-of-the-art trackers using precision plots 76

7.6 Quantitative assessment of the performance of our tracker in comparison
with state-of-the-art trackers using success plots 77

7.7 Quantitative performance assessment of our tracker in comparison with
eight state-of-the-art trackers using precision plots. 78

vii

7.8 Quantitative performance assessment of our tracker in comparison with
eight state-of-the-art trackers using success plots. 79

7.9 Qualitative evaluation of our tracker in comparison with ASRCF, ECO and
HCFT . 80

8.1 Using the model of frame before starting the partially lost state caused by a
partial occlusion helps to find the target after finishing the partially lost state. . . 84

8.2 Illustration of the short-term memory mechanism used in the partially lost state. 85

8.3 Illustration of how the short-term memory mechanism helps tracking. 85

8.4 Illustration of the three states of the tracker. Black, green, yellow and red
squares show the search areas, target found, partially lost and fully lost states. . 86

8.5 OPE quantitative evaluation of our tracker in comparison with nine
state-of-the-art trackers on OTB100. 89

viii

LIST OF ALGORITHMS

3.1 Proposed Visual Tracking Algorithm . 24

4.1 Calculate the current target state . 34

4.2 Adaptive Correlation Filter . 35

5.1 Adaptive particle filter . 41

5.2 Generate and evaluate initial particles . 42

5.3 Update particles and remove redundant ones 43

5.4 Generate multiple target models . 44

6.1 Multi-modal likelihood estimation . 57

6.2 DCPF-Likelihood visual tracker. 60

7.1 Deep Convolutional Correlation Iterative Particle (D2CIP). 68

7.2 Iterative Particle Refinement. 70

7.3 Target State Estimation. 74

8.1 Confidence Score Computation . 86

8.2 Short-term Memory . 87

1

CHAPTER 1
INTRODUCTION

One important field of artificial intelligence (AI) is computer vision, which enables

machines to extract meaningful information from images and videos in a manner similar to

the human visual system. Some applications of computer vision include activity recogni-

tion [5], object tracking [6], autonomous navigation [7], and security and surveillance [8].

Visual target tracking is a challenging computer vision problem, particularly in situations

including target occlusions, deformations, and in-plane or out-of-plane rotations. In visual

tracking, the size and location of a specific target are provided in the first video frame, and

the target is then followed in subsequent frames by estimating its size and position. Fig.

1.1 illustrates an example of the visual tracking problem.

Every field of computer vision has seen considerable progress through the appli-

cation of deep learning techniques, which currently represent some of the most effective

machine learning methods [9, 10]. Machine learning refers to algorithms that are able to

learn how to perform their tasks based on observed data, preferably with minimal human in-

tervention [11, 12]. Deep learning [13, 14] entails “deeper” machine learning models, i.e.,

models that perform more sophisticated inferences by applying multiple levels of trans-

formations to the input data. Deep belief networks [15], deep reinforcement learning [16],

Given Estimated

Figure 1.1: Illustration of the visual tracking problem. The yellow bounding box labeled
z1 is provided by the user at the first frame of the video sequence. The algorithm then
automatically estimates the green bounding boxes z2, . . . , zT in the subsequent T−1 frames
of the video.

2

deep recurrent neural networks [17], and deep convolutional neural networks [18] are some

of many different structures used in deep learning models.

The successful application of deep convolutional neural networks (CNN) to object

detection tasks [19, 20, 21, 22, 23, 24] has led to an increased interest in the utilization of

such networks for visual tracking applications [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

More specifically, we can consider visual tracking as a classification problem comprising

two classes: the foreground, which corresponds to the target object, and background, which

comprises the regions of the image that do not contain the target. This dissertation aims

to contribute to the improvement of visual tracking techniques utilizing deep CNNs. More

specifically, it intends to address the three problems described below.

1.1 Problem statement 1

Much of the performance of CNN-based visual trackers is due to the fact that

they are trained utilizing the benchmark datasets on which they are evaluated. One

of the most challenging aspects of proposing a visual tacker based on a CNN is to provide

enough labeled samples for training the CNN. Neural network models need labeled image

patches to learn how to distinguish different kinds of targets from the background. For

this reason, they are trained using many labeled samples. If the network is evaluated on

the same set of samples used in the training process, its performance is artificially inflated

because the network already observed these samples. Thus, the evaluation is not accurate

and the network does not show the same performance on unseen video sequences. As an

example, state-of-the-art visual trackers such as MDNet [36] and SANet [37] owe much

of their performance to the fact that they are trained utilizing the benchmark datasets on

which they are evaluated.

3

Figure 1.2: Schematic illustration of a typical CNN-correlation visual tracker. The previ-
ous frame and its estimated target state are given to a CNN to generate its convolutional
features (purple boxes at the bottom). This process is repeated for the current frame using
the previous target state (top purple boxes). The current convolutional features are com-
pared with the model through a correlation filter in frequency domain (blue F boxes). For
each layer of convolutional features, a correlation map is calculated (represented by the
small normal distribution plots). The sum of all these maps generates the final correlation
response map.

1.2 Problem statement 2

Correlation filters do not adapt well to changes in target appearances. One

effective mechanism to determine the similarity between an image patch and the target

model is to apply correlation filters in conjunction with CNNs [38, 39, 40, 41, 42, 43,

44, 45, 46, 47]. Fig. 1.2 shows how a CNN-correlation visual tracker works. Although

applying correlation filters on visual features generated by a CNN is an efficient solution to

improve the trackers’ performance, especially on datasets not used in the training processes,

changes in target appearance cause errors in model generation. These inaccuracies in model

update lead to tracking failures that are generally unrecoverable.

4

1.3 Problem statement 3

Although particle filters have been widely used in visual tracking, correlation-

particle filters are not sufficiently robust in sampling and calculating the posterior dis-

tributions. Combining particle filters with CNNs and correlation filters is a new approach

for visual tracking. In this new combination, not violating Bayesian rules is challenging

because correlation response maps create inter-dependencies among the target state and its

appearance. Sampling particles and evaluating their relative likelihoods using a rigorous

Bayesian update strategy are other challenging problems related to this new framework.

1.4 Objectives

We propose a novel visual tracking framework based on CNNs, correlation filters,

and particle filters. Our framework has been one of the first to apply a particle filter to

CNN-correlation visual trackers. Our proposed particle filter can efficiently estimate the

target location and size accurately using correlation maps to weigh the particles. We pro-

pose an adaptive version of this particle filter which increases the number of particles in

challenging frames, such as in the presence of target occlusion or motion blur. We also

propose a likelihood version of this particle filter which samples particles more accurately

after calculating a likelihood distribution for each frame. Using an iterative version of our

particle filter, we considerably improve our sampling process and solve the problem of

changing the support of the posterior observed in other state-of-the-art particle-correlation

trackers. This iterative version enables us not to resample particles at every frame, which

reduces the sample impoverishment problem. Additionally, we solve potential errors in

model generation by applying novel strategies in the model update process. We apply dif-

ferent clustering methods on the correlation maps corresponding to each of the particles to

find potential clusters which allows our model to accommodate multi-modal likelihoods.

5

Each of these contributions is discussed in further detail in the dissertation objectives de-

scribed below.

This dissertation has objectives associated to each of the three problems stated

above: 1) CNN-based trackers depend the training sets; 2) Correlation filters do not adapt

well to changes in target appearances; 3) Correlation-particle filters are not sufficiently ro-

bust in sampling and calculating the posterior distributions. MATLAB has been used for

the implementation of all proposed algorithms in this dissertation. The Parallel Comput-

ing toolbox of MATLAB has been also applied to take advantage of GPU hardware for

computational efficiency.

1.4.1 Objective 1

Devise CNN-based trackers that operate successfully on datasets not used in

the training process. An effective method to make CNNs robust against unseen samples

is to combine CNNs with correlation and particle filters. Trackers based on correlation

filters measure the correlation between a target model and an image patch in the frequency

domain and are agnostic to the features used to represent the targets. Target models are

constructed in the first frame based on a correlation filter designed to operate on the features

generated by a CNN using ground truth information. The model is updated by adapting the

correlation filter in subsequent frames based on the CNN features and the estimated target

state. These target models are compared with the CNN features in the current frames

through the correlation filter. The particle filter samples particles to estimate the target

positions and sizes, thereby providing more accurate samples for the correlation filters to

improve their performance against unseen datasets.

We propose a novel framework for visual tracking based on the integration of a deep

convolutional neural network (CNN) and a particle filter. In the proposed framework, the

position and the size of the target at each frame is predicted by a particle filter according to

a motion model. Particles around the predicted position are then used as input to a CNN-

6

correlation tracker which adjusts their positions to the most likely target positions. The

weights of the particles are then determined using the correlation map of the CNN tracker.

Finally, the particles and their weights are used to calculate the position of the target in the

current frame [45, 48].

1.4.2 Objective 2

Devise correlation filters that are robust against drifting errors in target model

generation. One of the most challenging limitations of correlation filters is the fact that

they update the target model based on the estimated target state. Thus, any error in calcu-

lating the final target state causes the target model to be incorrectly updated. Novel model

update strategies are needed to address this issue.

We propose a new adaptive correlation filter to account for potential errors in model

generation. Thus, instead of generating one model which is highly dependent on the esti-

mated target position and size, we generate a variable number of target models based on

high likelihood particles, which increases in challenging situations and decreases in less

complex scenarios [48, 49]. We also apply different model update rates to each of the

high-likelihood particles to create a variable number of models. Some models are useful

in challenging frames because they are more influenced by previously generated models,

while others are suitable for simple frames because they are less affected by previous mod-

els [50].

1.4.3 Objective 3

Devise a recursive Bayesian estimation framework for CNN-correlation visual

trackers. There are many challenges in applying particle filters in CNN-correlation track-

ers. These challenges involve designing principled transition and likelihood models as well

as proposal distributions that enable CNN-correlation frameworks to use particle filters for

7

improving accuracy in the estimation of the target location and the size of its bounding box

while respecting Bayesian update rules in the calculation of the posterior distributions.

More technically, we present an adaptive particle filter to decrease the number of

particles in simple frames in which there is no challenging scenario and the target model

closely reflects the current appearance of the target. In simple frames, target estimation is

easier, therefore many particles may converge to the same point. Consequently, the number

of particles should be allowed to decrease in these frames. This strategy allows us to resort

to resampling only when the number of particles or their corresponding weights are too

low in comparison to those computed in the first frame using the ground truth model [50].

Additionally, we propose a novel likelihood particle filter for CNN-correlation vi-

sual trackers. Our method uses correlation response maps to estimate likelihood distribu-

tions and employs these likelihoods as proposal densities to sample particles. Likelihood

distributions are more reliable than proposal densities based on target transition distribu-

tions because correlation response maps provide additional information regarding the tar-

get’s location. Additionally, our particle filter searches for multiple modes in the likelihood

distribution, which improves performance in target occlusion scenarios while decreasing

computational costs by more efficiently sampling particles. In challenging scenarios, such

as those involving motion blur, where only one mode is present but a larger search area

may be necessary, our particle filter allows for the variance of the likelihood distribution to

increase [51].

Finally, we propose a novel framework for visual tracking based on the integration

of an iterative particle filter, a deep convolutional neural network and a correlation filter.

The iterative particle filter enables the particles to correct themselves and converge to the

correct target position. We employ a novel strategy to assess the likelihood of the particles

after by clustering them into multiple modes using the K-means algorithm [52]. Our iter-

ative particle filter ensures a consistent support for the distribution of the posterior. Thus,

8

we do not need to perform resampling at every video frame and discard prior information

[49].

1.5 Dissertation organization

This dissertation consists of nine chapters. Chapter 1 provides an introduction re-

garding visual tracking and the three main problems addressed by methods proposed in this

dissertation. Chapter 2 contains the basic information, main datasets, and existing methods

in the literature for visual object tracking. Chapter 3 explains our proposed visual tracking

framework based on a deep convolutional neural network, a correlation filter, and a particle

filter to find target positions. Chapter 4 proposes a framework to find target sizes as well as

to generate multiple target models to improve the performance of correlation filters. Chap-

ter 5 discusses our adaptive particle filter. In Chapter 6, we describe our likelihood particle

filter as well as our model to clusters the correlation response maps into a multi-modal

likelihood model. Chapter 7 explains our iterative particle filter as well as an alternative

method to cluster the particles. In Chapter 8, we explain our framework that uses a short-

term memory mechanism and a finite state machine to improve robustness to model drift.

Finally, Chapter 9 concludes this dissertation and provides possible directions for future

work.

9

CHAPTER 2
BACKGROUND

In this section, we provide a brief overview of the background and previous well-

known algorithms related to the three problems stated above. We also discuss relevant

benchmarks and evaluation metrics for visual tracking methods.

2.1 Basic information on visual object tracking

In this section, we provide relevant background information regarding deep neural

networks, correlation and particles filter, and how to apply them to visual object tracking.

2.1.1 Deep neural networks

Neural networks having multiple hidden layers are called deep neural networks.

Deep neural networks have a huge limitation which is their need for a large amount of

annotated data for training. Because providing such a large collection of data in computer

vision problems is not simple, deep neural networks had not been widely used in computer

vision for a long time. However, the introduction of the large publicly available datasets

ImageNet [53], which is a dataset of over 14 million images belonging to 21k categories,

enabled the application of deep neural networks to different fields of computer vision.

Training deep neural networks with huge datasets was another significant, long-

standing problem, which was solved by using graphics processing units (GPUs) [54, 55].

Deep belief networks, deep reinforcement learning, deep recurrent neural network,s and

deep convolutional neural network are different structures used in deep learning. Among

all of them, convolutional neural networks (CNNs) are widely used in computer vision

applications. CNNs employ convolutional filters to create sparse connections among layers

[56]. To provide more details about CNNs, we review the VGG architecture [10], which is

a well-known deep neural network used in visual tracking applications.

10

Figure 2.1: Diagram illustrating the architecture of VGG16 introduced in [1].

2.1.1.1 VGG network

VGG is a convolutional neural network model proposed by K. Simonyan and A.

Zisserman. The model’s accuracy is 92.7% on ImageNet. The reason for its improvement

over AlexNet, which is another well-known network in computer vision [9], is that it ap-

plies multiple 3 × 3 kernel filters one after another instead of the large kernel-sized filters

used in AlexNet (11 × 11 and 5 × 5 in the first and second convolutional layers, respec-

tively) [10]. Fig. 2.1 illustrates the structure of VGG. There are multiple versions of VGG.

The first version “VGG16” has 13 convolutional layers while “VGG19” consists of 16 con-

volutional layers. The size of the input is 224× 224× 3. The convolution stride is 1 pixel.

Spatial padding is used to preserve the spatial resolution of the image.

In VGG16 for example, the first two convolutional layers have 64 filters. So, their

output is a 224 × 224 × 64 volume. After these two convolutional layers, max-pooling is

implemented over a 2 × 2 pixel window with stride 2. Max pooling finds the maximum

value among multiple inputs and replaces all of those inputs with that maximum value.

11

Thus, the output’s size reduces to 112 × 112 × 64. The two next convolutional layers

having 128 filters result in an output with the size of 112× 112× 128, which is decreased

to 56 × 56 × 128 by another Max-pooling layer. Next, three convolution layers including

256 filters each followed by Max-pooling result in an output with the size of 28×28×256.

The last step is repeated two more times to generates an output with the size of 7× 7× 512

because the convolutional layers include 512 filters. VGG19 has 4 convolutional layers in

the last three steps instead of the 3 convolutional layers found in VGG16.

Both versions include three Fully-Connected (FC) layers as well. The first two FC

layers have 4096 channels, while the third one has 1000 channels to predict 1000 classes.

The network has a soft-max output layer. All hidden layers use the rectified linear units

(ReLU) as an activation function. ReLU is effective for hidden layers because its output

is 1 for values larger than 0, while it is 0 for negative values. Fig. 2.2 makes a compar-

ison among the two versions of VGG and AlexNet. All the algorithms described in this

dissertation use VGG19 to generate convolutional features.

2.1.2 Correlation filters

An effective mechanism to assess the similarity between an image patch and a target

model in visual tracking is the correlation filter. Correlation filters produce sharp peaks in

their output to localize targets [57]. More specifically, a typical correlation tracker such

as [58] learns a discriminative classifier and estimates the translation of target objects by

searching for the maximum value of the corresponding correlation response map [44].

Ma et al. in [44] used a correlation filter in conjunction with a deep neural network

for the first time in the visual tracking literature. They selected the correlation filter pro-

posed in [32] and the VGG16 network. In their model, let f be layer l of the convolutional

feature vector generated by VGG16. f has D channels with size of M × N . The authors

train their correlation filter with all the circular shifts of f along its first two dimensions.

Consider fm,n, where (m,n) ∈ {0, 1, ...,M − 1} × {0, 1, ..., N − 1} as a shifted sample.

12

Figure 2.2: A comparison among the VGG16, VGG19, and AlexNet network structures
[2].

The authors define a Gaussian function label g(m,n) = e−
(m−M/2)2(n−N/2)2

2σ2 for each shifted

sample, where σ is the kernel width. A correlation filter c is then learned by solving the

following minimization problem [44]:

c∗ = arg min
c

∑
m,n

||c.fm,n − g(m,n)||2 + λ||c||22, (2.1)

13

Final

Position

Previous Position

(Given to CNN)

Distance

Figure 2.3: Example of a correlation map of a given frame with respect to the previous
target position.

where λ is a regularization parameter and c.fm,n =
∑D

d=1 c
T
m,n,dfm,n,d [44]. Transferring

Eq. 2.1 to the frequency domain results in solving the minimization problem:

Cd =
G� F̄ d∑D

i=1 F
i � F̄ i + λ

, (2.2)

where the capital letters represent the corresponding Fourier transformed signals [44]. In

Eq. 2.2, d ∈ {1, ..., D} is the channel, the bar means complex conjugation, and � is the

Hadamard (element-wise) product. Let y be l-th channel of an image patch with size of

M ×N ×D, layer l of the correlation response map is given by

Rl = F−1
(

D∑
d=1

Cd � Ȳ d

)
, (2.3)

where F−1 represents the inverse Fourier transform and the size of Rl is M × N . The

position of maximum value of Rl represents the target location in layer l.

As Fig. 2.3 illustrates, correlation filter-based trackers attempt to determine the new

position of the target by analyzing the displacement between the center of the correlation

map, which corresponds to the previous target position, and the new peak in the map.

More specifically, the correlation between the target model generated at previous frames

and image features extracted from the current frame are used to determine the new target

position.

14

2.1.3 Particle filters

The sequential importance sampling (SIS) algorithm is the basis of the particle fil-

tering framework [59]. This technique implements a recursive Bayesian filter by sampling

a set ofN random particles x(i)t , i = 1, . . . , N , calculating their weights, and estimating the

posterior distribution based on these particles and weights. The higher the number of par-

ticles, the more accurate the model. In a particle filter, the particle weights are calculated

by [59]

ω(i)
xt ∝ ω(i)

xt−1

p(yt|x(i)t)p(x
(i)
t |xt−1)

q(x
(i)
t |xt−1, yt)

, (2.4)

where p(x(i)t |xt−1) and p(yt|x(i)t) are the transition and likelihood distributions, q(x(i)t |xt−1, yt)

is the proposal distribution used to sample the particles, and ω(i)
xt−1 represents the previous

weights. The posterior distribution is then approximated by

P̂ r(xt|yt) ≈
N∑
i=1

$(i)
xt δ(xt − x

(i)
t), (2.5)

where$(i)
t are the normalized particle weights. However, particle filters used in correlation

trackers generally sample particles from the transition distribution, i.e., q(x(i)t |xt−1, yt) =

p(x
(i)
t |xt−1). These methods also re-sample particles at every frame, which removes the

term corresponding to previous weights ω(i)
xt−1 from Eq. 2.4. Finally, the weight of each

particle in these trackers is given by [60]

ω(i)
xt ∝ p(yt|x(i)t). (2.6)

2.1.3.1 Sample degeneracy and impoverishment

The degeneracy phenomenon is a significant challenge in particle filtering. In this

scenario, all but a few particles have negligible weight after a few iterations. Degeneracy in

the particle filter model means spending substantial computational resources on updating

particles that have negligible influence on the posterior distribution [59]. Resampling is

the solution for degeneracy, and it consists of generating new particles with equal weights.

15

Figure 2.4: Degeneracy and impoverishment in particle filters [3].

However, a frequent resampling causes a decrease in particle diversity. This problem is

referred to as sample impoverishment [3]. Fig. 2.4 illustrates the degeneracy and impov-

erishment problems in particle filters. Thus, resampling should be carried out only if it is

strictly needed.

2.2 CNN visual trackers

The successful application of deep convolutional neural networks to object detec-

tion tasks [19, 20, 21, 22, 23, 24] has led to an increased interest in the utilization of such

networks for visual tracking applications. Most CNN-based tracking algorithms use the

CNN to examine image patches and determine the likelihood that a particular patch corre-

sponds to the target. Li et al. [61] presented a tracker which samples image patches from

the region surrounding the previous target position and uses multiple image cues such as

hue, intensity, and gradient as inputs to a simple CNN. The network weights are updated

at every frame by employing a structural loss cost function that decreases the importance

of new image patches as their distance to the estimated target position increases. The

authors later employed Bagging [62] to improve the robustness of their online network

weight update process [63]. Vital, proposed by Song et al. [64], solves the problems of

using deep classification networks in the tracking-by-detection framework, which consists

16

of two stages: 1) sampling around the target, 2) classifying each sample as the target object

or as background. For the problem of overlapping positive samples, they integrate adver-

sarial learning into their framework. Adversarial learning predicts discriminative features

from different samples. The classifier is then able to focus on temporally robust features.

Another successful strategy is to employ a CNN that generates a prediction map to evaluate

the likelihood that the object is present in a larger search region [65]. This method con-

siderably decreases the number of candidate patches to be compared with the target. The

multi-domain network (MDNet) tracker [36] samples image patches at multiple positions

and scales to account for target size variations. MDNet uses three convolutional layers to

extract common target features and several domain- (or target-) specific fully connected

layers to differentiate between a certain target category and the background. SANet [37]

extends the MDNet architecture by employing a recurrent neural network (RNN) to predict

the target position. However, much of the performance of MDNet and SANet is due to the

fact that they are trained utilizing the benchmark datasets on which they are evaluated.

2.3 CNN-correlation visual trackers

One effective mechanism to improve the performance of CNN trackers on un-

seen datasets is to apply correlation filters. This framework determines the similarity be-

tween an image patch and a target model using frequency domain, feature agnostic filters

[38, 39, 40]. As a consequence, most state-of-the art CNN-based trackers integrate con-

volutional features and correlation filters [66]. By employing correlation filters on the

hierarchical convolutional features generated by multiple layers of a deep CNN, HCFT

[44] shows substantial performance improvement in comparison with other visual trackers.

Later, Qi et al. [43] introduced HDT, a new CNN tracker based on the HCFT structure

that employs a hedging algorithm to assign weights to the outputs of the convolutional

layers. This is because different convolutional layers encode different levels of semantic

and spatial information and their combination may improve tracking results [67]. Instead

17

of considering convolutional layers independently, Danelljan et al. proposed C-COT [68],

which employs a continuous fusion method among multiple convolutional layers and uses

a joint learning framework to leverage different spatial resolutions. The authors later ad-

dressed C-COT’s problems of computational complexity and model over-fitting in the ECO

algorithm [69]. Their factorized convolution operator and their novel model update method

decrease the number of parameters in the model and improve tracking speed and robust-

ness.

Recently, several methods have been proposed to improve the performance of cor-

relation based trackers. One strategy entails combining different types of features and con-

structing multiple correlation-based experts [70]. Spatial-temporal information can also be

used to address unwanted boundary effects in correlation trackers by spatially penalizing

the filter coefficients [40]. To address the additional computational costs associated with

such strategies, in contrast to methods that train the model using samples from the current

and previous frames, the authors of [71] update the correlation model using samples from

the current frame and the previously learned correlation filter. In [72], Zu et al. further

extend such strategies through a spatial-temporal attention mechanism that uses optical

flow information in consecutive frames. Finally, Sun et al. [73] use an approach based

on reliability information [74], which performs real-time tracking by estimating the im-

portance of sub-regions within the correlation filter. The reliability information highlights

more reliable regions.

2.4 Particle filters in CNN-correlation visual Trackers

Particle filters provide an effective and general framework for improving the perfor-

mance of CNN-correlation trackers [45, 75, 48, 76, 77]. All of the particle filters applied in

CNN-correlation trackers use the transition distribution as the sampling (or proposal) dis-

tribution and calculate the weight of each particle based on the correlation response map

obtained from the correlation filter and the CNN features. However, using particle filters

18

MotorRolling: "motorcycle rolling in a race"

Jogging-1: "Woman jogging and passing a tra c light"

Figure 2.5: Sample frames of the video sequences comprising the OTB50 and OTB100
benchmarks. The first row is MotorRolling data sequence included in OTB50 and OTB100.
The second row is Jogging-1 included only in OTB100.

in conjunction with correlation filters also introduces additional challenges. As shown in

[45, 76], particle-correlation trackers use the sum of the elements of the correlation maps

as the weights of the particles. However, in challenging situations, such as in the presence

of occlusions or target deformations, the correlation maps are not reliable and generate

weights that do not reflect the similarity between the target model and the image patch un-

der consideration. Additionally, particle-correlation trackers generally estimate the target

state based on the particle with the maximum weight [45, 76, 75], which is not always

an accurate method because many particles may have similar weights. Furthermore, the

aforementioned correlation-particle trackers perform resampling at every frame and conse-

quently lose previous particle information. As shown in [78], iterative particle filters can

improve sampling and lead to more distinctive particle likelihood models. However, such

methods have been not used in conjunction with CNN-correlation trackers so far.

19

Figure 2.6: Sample frames of the video sequences comprising the LaSOT benchmark [4]

2.5 Benchmarks

In most computer vision problems, we need benchmarks to evaluate the perfor-

mance of different methods and compare it with other works. There are three important

benchmarks for visual tracking, which are described in the following subsections.

2.5.1 OTB50 and OTB 100

The OTB50 [79] and OTB100 [6] benchmarks contain 50 and 100 fully annotated

video sequences, respectively. For each video sequence, the annotations correspond to the

bounding boxes of one target of interest over all the video frames. Each of these data

sequences is associated with one or more attributes. The dataset considers 11 different

attributes covering the most common challenging scenarios observed in visual tracking.

20

These attributes include: illumination variation, scale variation, occlusion, deformation,

motion blur, fast motion, out-plane and in-plane rotations, out of view, background clutter

and low resolution. What makes visual tracking particularly challenging is the fact that

the target motion and appearance may change significantly under these conditions. Fig 2.5

shows examples of the video sequences contained in these benchmarks.

2.5.2 LaSOT

LaSOT is currently the largest publicly available benchmark for object tracking [4].

It provides high-quality dense manual annotations with 14 attributes representing challeng-

ing aspects of tracking. In comparison with OTB50 and OTB100, the additional attributes

considered in this benchmark are partial occlusion, full occlusion, and viewpoint change.

The benchmark consists of 1, 400 videos with an average of 2, 512 frames per sequence.

Fig. 2.6 illustrates examples of this benchmark.

2.5.3 Evaluation metrics

Two of the most commonly used metrics to evaluate the performance of visual

tracking algorithms are the precision plot and the success plot, which are illustrated in Fig.

2.7. Briefly, Precision plots correspond to the percentage of video frames for which the

average Euclidean distance between the tracked locations and the ground truth is below a

certain threshold while for the Success plots, the threshold is based on the area of overlap

between the predicted bounding box and the respective ground truth [79].

Precision plot. This metric indicates how precise a tracker is. It represents the Euclidean

distance between the target locations calculated by the tracker and centers of the manually

labeled ground truth bounding boxes [79]. The precision plot is shown in Fig. 2.7. The

location error threshold on the horizontal axis shows the magnitude of the threshold dis-

tances in comparison with the ground truth. The calculated precisions on the vertical axis

21

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

Precision plots of OPE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c

e
s

s
 r

a
te

Success plots of OPE

Figure 2.7: Left: the precision plot represents the precision in the calculation of target
positions with respect to the location error threshold. Right: The success plot represents
the precision in the calculation of target bounding box with respect to the overlap threshold.

represent the percentage of frames in which the estimated target locations are within these

thresholds.

Success plot. This metric represents the overlap between the bounding boxes estimated

by a tracker and the corresponding ground truth bounding boxes [79]. The success plot

is illustrated in Fig. 2.7. The overlap threshold on the horizontal axis shows the ratio of

overlap between the estimated target bounding box and the corresponding ground truth.

The calculated precisions on the vertical axis represent the percentage of frames in which

the target bounding box overlaps with the ground truth within these ratios. This overlap is

computed using the Jaccard index (or intersection-over-union), which is given by

Success =
BBEst ∩BBGT

BBEst ∪BBGT

, (2.7)

where BBEst and BBGT are the estimated bounding box and the ground truth bounding

box, respectively, while ∩ and ∪ are the set intersection and union operators, respectively.

2.5.3.1 Evaluation strategies

The precision and success metrics are generally computed using the so called One-

Pass Evaluation (OPE) strategy. In OPE, the ground truth for the first video frame is used to

initialize the target position, which is then tracked throughout the video sequence without

22

intermediate re-initialization steps. In the alternative Spatial Robustness Evaluation (SRE),

the initialization is subject to some disturbance. Temporal Robustness Evaluation (TRE)

focuses on short-term tracking [79].

23

CHAPTER 3
DEEP CONVOLUTIONAL PARTICLE FILTER

This chapter proposes a novel framework for visual tracking based on the integra-

tion of a deep convolutional neural network (CNN), a correlation filter and a particle filter

[45]. In the proposed framework, the position of the target at each frame is predicted by

a particle filter according to a motion model. The motion model in conjunction with the

particle filter’s ability to sample several image patches allow it to overcome temporary

target losses caused by dramatic temporary appearance changes or occlusions. Particles

around the predicted position are then used as input to the HCFT CNN-based tracker [44]

which adjusts their positions to the most likely target positions. Our framework utilizes

the output of the convolutional neural network and correlation filter, which we henceforth

call a feature map, to determine the weights of the particles. Finally, the particles and their

weights are used to calculate the target’s position in the current frame. We evaluated the

performance of the proposed framework using the OTB50 benchmark dataset [79]. Our re-

sults show that this method improves the performance of HCFT, especially in challenging

scenarios, such as those involving target deformation, illumination changes, out-of-plane

and in-plane rotations.

3.1 Structure of HCFT

The CNN used in HCFT was originally proposed by Simonyan et al. in [10] for

object detection. It includes five convolutional layers and five pooling layers. The outputs

of the different layers of HCFT for a specific frame of the motor-rolling data sequence

are illustrated in Fig. 3.1. The deconvolutional neural network proposed by Zeiler et al.

in [80] clarified that layers 1 and 2 tend to respond to image edges, layer 3 recognizes

similar textures, layer 4 illustrates significant variation, and layer 5 shows entire objects

with significant pose variation. Thus, semantic information of the target is extracted from

24

Figure 3.1: The outputs of the different layers of the CNN and the determination of the
exact position of the target by applying a coarse-to-fine method. W1, W2 and W3 refer to
the correlation filters. The red boxes are the estimated location of the target at each layer.
The yellow, green and blue boxes show the areas from the search at each layer. Blue and
red circles show the previous and current positions, respectively.

the later layers of the CNN and spatial details are obtained from the early layers. HCFT

applies a correlation filter to the output of each convolutional layer. Then, by applying a

coarse-to-fine localization method, it moves back from the fifth layer to the third layer to

determine the exact position of the target. Fig. 3.1 also illustrates the coarse-to-fine method

proposed in [44].

Algorithm 3.1 Proposed Visual Tracking Algorithm
Input: Current frame, previous target state zt−1
Output: Current position and velocity of the target zt

1: repeat
2: Predict x̂t based on Eqs. 3.3 and 3.4
3: Generate initial particles x(i)t around x̂t based on Eq. 3.5
4: Give the patch corresponding to x(i)t to the CNN and compute its correlation map
5: Extract the weight of each particle ω(i) from its correlation map
6: Compute the normalized weights $(i)

t

7: Estimate xt based on 3.7
8: until end of the video sequence

25

3.2 Particle Filter Design

Let the target state be defined as

zt = [xt, ẋt]
T , (3.1)

where xt represents the location of the target in the frame on the horizontal and vertical

image axes

xt =

[
ut, vt,

]T
(3.2)

and ẋt is the velocity of xt. We apply a first-order motion model to zt−1 according to

ẑt = Azt−1, (3.3)

where ẑt represents the predicted target state for frame t andA is the process matrix defined

by

A =

 I2 I2

0(2,2) I2

 . (3.4)

The predicted target position is then disturbed by adding samples η(i) ∈ R8 drawn from a

zero-mean normal distribution to generate an initial set of particles x(i)t according to

x
(i)
t = x̂t + η(i), (3.5)

These particles are then used as inputs to the VGG network [10] to generate their

convolutional features. These features are then fed to the correlation filter proposed in [44]

to calculate the response maps corresponding to the particles. As shown in Eq. 2.6, the

weight, ω(i), of each particle is equal to the particle’s likelihood which is calculated by

ω(i) =
M∑
m=1

Q∑
q=1

R
(i)
(m,q), (3.6)

where R(i)
(m,q) is computed using Eq. 2.3 for each particle i. The intuition behind this

choice is that feature maps that correspond to the target tend to show substantially higher

26

Figure 3.2: Performance comparison of our tracker versus HCFT on OPE. The red plots
correspond to our tracker and the green plots to the baseline (HCFT).

27

Figure 3.3: Performance comparison of our tracker versus HCFT on SRE metrics. The red
plots correspond to our tracker and the green plots to the baseline (HCFT).

28

Figure 3.4: Comparison between our tracker and HCFT on six different data sequences.
The performance of HCFT is shown in green and ours in red. The three test sequences on
the left show OPE results and the three sequences on the right show SRE results.

correlation values than background patches. In the next step, each particle is shifted to the

peak of its correlation response map as shown in Fig. 2.3. Finally, the position of the target

in the current frame is estimated according to

xt ≈
N∑
i=1

$
(i)
t x̃

(i)
t , (3.7)

where x̃(i)t represents the shifted location and $(i)
t is the normalized weight. Algorithm 3.1

summarizes the proposed visual tracker.

3.3 Results and Discussion

We evaluate our algorithm using the well known visual tracking benchmark OTB50

[79]. Fig.S 3.2 and 3.2 shows a quantitative evaluation of the performance of the pro-

posed approach on OPE and SRE in comparison with HCFT for the attributes in which

our approach shows the most significant improvement. As the figures shows, the proposed

framework improves the performance of HCFT on several attributes. In attributes such as

temporary deformation, illumination, in-plane and out-of-plane rotations in which the cor-

relation filter loses track of the target, the motion model allows the successful prediction of

29

the position of the target and the particles are then able to recover using the weights gen-

erated by the CNN. Under challenging conditions that include deformation, illumination

variation, out-of-plane and in-plane rotations, our method shows improvements of approxi-

mately 7.5%, 4.5%, 4% and 3.5%, respectively. The overall OPE success rate improvement

is approximately 3.5%.

Fig. 3.4 shows a qualitative illustration of the performance of our tracker in com-

parison with HCFT on some sequences in which HCFT fails. The three sequences on the

left show OPE results and the three sequences on the right illustrate SRE results. As the

sequences indicate, the baseline tracker gets easily confused in situations such as deforma-

tion, occlusion, motion blur, and out-of-plane rotations. The particle filter is able to sample

several image patches and it is hence capable of overcoming these difficulties.

30

CHAPTER 4
TARGET SIZE ESTIMATION AND ADAPTIVE CORRELATION MAPS

In this chapter, we propose a novel framework named DCPF2 for visual tracking

[48]. The most important aspect of visual target tracking is to accurately determine the

target position as well as its size. Despite the substantial performance gains obtained in

recent years by the aforementioned CNN-correlation methods, their main disadvantage is

their inability to vary the size of the target bounding box [44, 43]. We extend the particle

filter described in the previous chapter (DCPF) to estimate the target size as well as the

target position. Briefly, DCPF uses multiple particles as inputs to the VGG deep convolu-

tional neural network [10]. For each particle, it then applies the correlation filter used in

HCFT [44] on the extracted hierarchical convolutional features to construct the correlation

map. The target position at the current frame is calculated based on the response of the

correlation maps. However, similar to HCFT, DCPF tracks a bounding box of fixed size.

Another limitation of trackers based on conventional correlation filters is the fact

that they generate only one target model. Thus, errors in calculating the final target state

cause the target model to be incorrectly updated. In this chapter, we employ a new adap-

tive correlation filter to account for potential errors in the model generation. Thus, instead

of generating one model which is highly dependent on the estimated target position and

size, we generate a variable number of target models based on high likelihood particles.

In frames where the target can be easily tracked, this number is low because the best par-

ticle has a high likelihood and fewer particles have similar likelihoods. Conversely, in

challenging situations, the target is less similar to the model and hence the likelihood of

most particles decreases and the particle weight distribution becomes less centralized. Ex-

perimental results on OTB50 [79] demonstrate that our proposed framework significantly

outperforms state-of-the-art methods.

31

Final

Target Size

&Position

Best

Particle

 Current Frame,

Previous Position

& Target Size

Generate

Particles

Sample

Patches

Correlation

Maps

 Deep CNN +

Correlation

Filter with

Model 1

Model

 Deep CNN +

Correlation

Filter with

Model 1

 Deep CNN +

Correlation

Filter with

Model 1

Patch 1

Patch 2

Patch N

New Patches

High-

Likelihood

Particle 2

High-

Likelihood

Particle

Patch 1

Patch 2

Patch

 Deep

CNN

Model 1

Model 2

Model

 Correlation Filter

for the Next Frame

Model

Model

Figure 4.1: Overview of our proposed tracker which estimates target size and employs an
adaptive correlation filter.

4.1 Proposed Algorithm

In this section, we first explain how our particle filter estimates the target size and its

position. Our adaptive correlation filter is then discussed. Fig. 4.1 illustrates the proposed

approach.

4.1.1 Particle Filter to Estimate the Target Bounding Box

Let the target state be

zt =

[
xt, ẋt

]T
, (4.1)

where

xt =

[
ut, vt, ht, wt

]T
(4.2)

and ẋt is the velocity of xt. ut and vt are the locations of the target on the horizontal and

vertical image axes at frame t, and ht and wt are its width and height. The tracker employs

a linear motion model to predict the current state of the target ẑt based on the previous

32

target state zt−1. The predicted target state is given by

ẑt = Azt−1, (4.3)

where A is a standard constant velocity process matrix defined by

A =

 I4 I4

0(4,4) I4

 . (4.4)

Particles x(i) are then generated by Eq. 3.5. In order to limit the number of particles

needed, rather than drawing η(i) directly from an eight-dimensional distribution, we draw

its samples individually, and change their height and width simultaneously using the same

sample (i.e., we change the target scale but not its aspect ratio).

In the next step, z(i) are used to sample different patches from the video frame at

time t. Each patch is then fed into VGG to calculate its convolutional feature map. Let

f
(i)
l,d ∈ RM×Q be the convolutional feature map, where M , Q are the width and height of

the map, l is the convolutional layer and d is the number of the channels for that layer

d = 1, ..., D. Then, its correlation response map R(j)(i)
l ∈ RM×Q is given by [44]

R
(j)(i)
l = F−1

(
D∑
d=1

C
(j)
l,d � F̄

(i)
l,d

)
, (4.5)

where F̄ (i)
l,d is the complex conjugate Fourier transform of f (i)

l,d , F−1 represents the inverse

Fourier transform, j = 1, ..., Kt−1 illustrates the number of models generated in the previ-

ous frame t− 1, C(j)
l,d represents channel d of layer l of the correlation filter of the model j,

the bar represents complex conjugation and � is the Hadamard product. The final correla-

tion response map R(j)(i) for particle i and model j is calculated based on a weighted sum

of the maps for all the CNN layers [44]

R(j)(i) =
L∑
l=1

Υl(R
(j)(i)
l), (4.6)

33

where Υl is a regularization term for each layer term [44]. The likelihood or weight of each

correlation response map is calculated by

ω(j)(i) =
M∑
m=1

Q∑
q=1

R
(j)(i)
(m,q), (4.7)

where R(j)(i)
(m,q) refers to the element of the final correlation response map on row m and

column q. In total, we have N × Kt−1 weights. Unlike the method discussed in Chapter

3, here we use the highest likelihood particle to estimate the target state. Thus, we find the

maximum weight ωmax over all the particles and models

ω∗ = max
j,i

ω(i,j). (4.8)

Let the indexes corresponding to ω∗ be i = i∗ (the best particle) and j = j∗ (the best

model). Then, the final target size is given by h(i∗) and w(i∗). That is, the i∗-th patch with

dimensions h(i∗) and w(i∗) is the most similar to the best model C(j∗). Additionally, let

R∗(j
∗)(i∗) be the correlation response map associated with ω∗, its peak is located at

[δu, δv] = arg max
m,q

R
∗(j∗)(i∗)
(m,q) , (4.9)

wherem = 1, ...,M and q = 1, ..., Q. The final target position is then calculated by shifting

the best particle towards the peak of its correlation map

[ũ, ṽ] = [u(i
∗) + δu, v

(i∗) + δv], (4.10)

where u(i∗) and v(i∗) correspond to the position of the best particle. Thus, the target state at

the frame t is

zt =

[
x∗, ẋ(i

∗)

]T
, (4.11)

where ẋ(i∗) is the velocity of the best particle and

x∗ =

[
ũ, ṽ, h(i

∗), w(i∗)

]T
. (4.12)

Algorithm 4.1 summarizes our method to estimate the target state.

34

Algorithm 4.1 Calculate the current target state

Input: Current frame, previous target state zt−1, correlation filters C(j), j = 1, . . . , Kt−1
generated in the previous frame

Output: Current target state zt, maximum weight ω∗, N particles x(i), N ×Kt−1
correlation response maps R(j)(i) and their weights ω(j)(i)

1: Generate N particles around the predicted target state x̂t according to Eqs. 4.3 to 4.4
2: for Each particle x(i) do
3: for Each of the Kt−1 correlation filters C(j) do
4: Generate the Kt−1 correlation response maps R(j)(i) according to Eq. 4.5
5: Compute the weight ω(j)(i) based on Eq. 4.7
6: end for
7: end for
8: Determine the best particle using Eq. 4.8
9: Update the target state zt according to Eqs. 4.9 to 4.12

4.1.2 Adaptive Correlation Filter

After finding ωmax, we examine the following relationship for allN×Kt−1 weights

ω(j)(i) > αω∗, (4.13)

where α is a constant. If Eq. 4.13 is true, the corresponding particle is considered a high

likelihood particle. Let i′ and j′ be the indices of the selected particle weights. Then, h(i′)

and w(i′) calculated by Eq. 3.5 are considered the target size. Additionally, the correlation

response map R∗(j′)(i′) is used to calculate the estimated target position ũi′ and ṽi′ similar

to Eq. 4.9 and Eq. 4.10. Thus the corresponding high likelihood particle z(s)high is given by

z
(s)
high =

[
ũi
′
, ṽi
′
, h(i

′), w(i′)

]T
, (4.14)

where s = 1, ..., Kt and Kt is the number of the high-likelihood particles. We then gen-

erate a patch from frame t for each of the Kt high-likelihood particles. In the next step,

these patches are fed into the CNN to extract Kt convolutional feature maps, and a new

correlation filter C(s)
l,d is then generated for each of the Kt high likelihood particles. The

generated models are used in frame t + 1 to be compared with the convolutional features

generated by each particle.

35

Algorithm 4.2 Adaptive Correlation Filter

Input: Current frame, maximum weight ω∗, N particles x(i), their N ×Kt−1
correlation response maps R(j)(i) and weights ω(j)(i)

Output: Correlation filters C(j), j = 1, . . . , Kt to be used in the next frame
1: for Each weight ωji do
2: if Eq. 4.13 is true then
3: Generate a high-likelihood particle z(s)high according to Eq. 4.14
4: end if
5: end for
6: for Each particle z(s)high do
7: Calculate its correlation filter C(s)

l,d

8: end for

Algorithm 4.2 summarizes our adaptive correlation filter procedure. The compari-

son between the best model with the most accurate target size and position generates more

accurate correlation maps. As previously mentioned, by varying the number of models Kt

with the number of high likelihood particles, we are able to maintain a larger number of

tentative models in challenging scenarios such as in the presence of illumination variation,

motion blur, or partial occlusion due to the wider distribution of the particle weights under

these conditions.

4.2 Results and Discussion

We evaluate our tracker on the OTB50 dataset. We heuristically set α = 0.8 and

N = 300. Fig. 4.2 provides a quantitative evaluation of our proposed approach in com-

parison with 11 state-of-the-art trackers [44, 43, 81, 82, 83, 84, 83, 85, 86, 87, 88]. In

attributes such as scale variation, illumination and out-of-plane rotations where the com-

mon correlation filter loses track of the target, our adaptive correlation filter in conjunction

with the particle filter are then able to recover using the weights generated by the CNN. For

challenging scenarios of scale variation, illumination variation and out-of-plane rotation as

36

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE

DCPF2 [0.822]

HCFT [0.801]

HDT [0.798]

CNN-SVM [0.777]

SCT6 [0.755]

Struck [0.610]

SCM [0.608]

TLD [0.559]

VTD [0.537]

CXT [0.534]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE

DCPF2 [0.644]

HCFT [0.605]

HDT [0.603]

CNN-SVM [0.597]

SCT6 [0.590]

SCM [0.499]

Struck [0.474]

TLD [0.437]

ASLA [0.434]

CXT [0.426]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - scale variations (28)

DCPF2 [0.815]

HCFT [0.784]

HDT [0.773]

CNN-SVM [0.744]

SCT6 [0.672]

SCM [0.634]

Struck [0.598]

TLD [0.562]

VTD [0.549]

ASLA [0.539]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - scale variations (28)

DCPF2 [0.604]

HCFT [0.531]

HDT [0.523]

SCM [0.518]

CNN-SVM [0.513]

SCT6 [0.478]

ASLA [0.452]

Struck [0.425]

TLD [0.421]

VTD [0.405]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - illumination variations (25)

DCPF2 [0.800]

HCFT [0.751]

HDT [0.749]

CNN-SVM [0.716]

SCT6 [0.696]

SCM [0.561]

VTS [0.531]

Struck [0.529]

VTD [0.520]

ASLA [0.499]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - illumination variations (25)

DCPF2 [0.615]

HCFT [0.560]

HDT [0.557]

CNN-SVM [0.556]

SCT6 [0.550]

SCM [0.473]

ASLA [0.429]

VTS [0.429]

Struck [0.428]

VTD [0.420]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - out-of-plane rotation (39)

DCPF2 [0.819]

HDT [0.783]

HCFT [0.782]

CNN-SVM [0.756]

SCT6 [0.751]

SCM [0.577]

VTD [0.568]

Struck [0.560]

VTS [0.555]

TLD [0.546]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - out-of-plane rotation (39)

DCPF2 [0.639]

HCFT [0.587]

HDT [0.584]

SCT6 [0.583]

CNN-SVM [0.582]

SCM [0.470]

VTD [0.434]

Struck [0.432]

VTS [0.425]

ASLA [0.422]

Figure 4.2: Quantitative evaluation of our tracker and fourteen state-of-the-art trackers on OPE.

well in terms of overall performance, our tracker shows improvements of approximately

14%, 10%, 9% and 7%, respectively, in comparison with the second best tracker HCFT.

37

Ours HCFT HDT SCT6

Figure 4.3: Qualitative evaluation of our tracker, HCFT, HDT and SCT6 on six challenging
sequences (from left to right and top to bottom are Liquor, Car4, Lemming and Singer1,
respectively).

Fig. 4.3 qualitatively illustrates the performance of our tracker in comparison with

three trackers: the CNN-based trackers HCFT and HDT as well as the correlation filter

tracker SCT6 [82]. As the results in Fig. 4.3 indicate, the baseline trackers get easily

confused in situations such as scale variation, illumination variation, or in-plane and out-

of-plane rotations. The proposed particle-correlation filter is able to sample several image

patches and it is hence capable of overcoming these difficulties.

38

CHAPTER 5
ADAPTIVE PARTICLES FILTER FOR VISUAL TRACKING

In this chapter, we describe a visual tracker named Deep Convolutional Adaptive

Particle Filter with Multiple Correlation Models (CAP-mc) [50], in which we replace the

particle filter proposed in DCPF2 with an adaptive particle filter. Although particle filters

improve the performance of CNN-correlation trackers, especially in challenging scenarios

such as those involving target occlusion and deformation, they considerably increase the

computational cost. Adaptive particle filters can improve the results of object tracking [89]

while decreasing the computational costs. However, they have not been used in conjunction

with CNNs and correlation filters yet. Our adaptive particle filter decreases the number

of particles and the computation cost in simple frames in which there is no challenging

scenario and the target model closely reflects the current appearance of the target. In such

scenarios, many particles may converge to the same location and the number of particles

is allowed to decrease in these frames. Additionally, our adaptive particle filter can refine

the particles’ locations to be used in the next frame. This method is more reliable than

sampling new particles in every frame which was employed in DCPF2. We use the weight

calculated in the first frame as one of the resampling criteria because it is calculated by

comparing with the ground truth target model. Another threshold for resampling is the

number of particles. We perform resampling only when the number of particles or the

weight of the selected particle is too small.

Additionally, we realized that the model update rate is a critical parameter in correlation-

base trackers. The adaptive correlation filter proposed in DCPF2 generates several target

models based on all the high-likelihood particles to cover probable errors instead of gen-

erating one model based on the selected particle. Our new tracker applies different model

update rates to generate several target models for each high-likelihood particle. Thus, we

create multiple models; some are less affected by the previous model and are useful in

39

 Deep CNN

+

Multi-model

correlation

�lter

Selected target state

(Maximum weight)

particles

1

2

Same location

as particle 2 with

lower weight

Predicted target

state

for frame t+1

Sample di�erent target sizes

around the predicted target size

size for each predicted target

position

particles

Frame t+1

Predicted target

state

for frame t+1

Updated particles

for frame t

Figure 5.1: Our proposed adaptive particle filter (when resampling is not needed).

simple frames, while other models are affected by the previous model, and are hence suit-

able for challenging frames. We tested our tracker on OTB100 [6], and the results show

substantial performance improvements over state-of-the-art methods.

5.1 Proposed Algorithm

In this section, we present our adaptive particle filter illustrated in Fig. 5.1. We then

discuss our new adaptive correlation filter based on variable model update rates.

40

= 300 = 300= 70 = 30

Resmapling

Frame 2 Frame 32 Frame 68 Frame 69

Figure 5.2: Decreasing the number of particles in simple frames and implementing resam-
pling in difficult frames.

5.1.1 Adaptive Particle Filter

Algorithm 5.1 summarizes our adaptive particle filter. Let z1 be the ground truth

target position and size in the first frame

x1 =

[
u1, v1, h1, w1

]T
, (5.1)

where u1 and v1 are the ground truth locations of the target and h1 and w1 are its

ground truth width and height. The initial target state is defined by

z1 =

[
x1, ẋ1

]T
, (5.2)

where ż1 is the velocity of z1, which is assumed to be zero in the first frame. After ex-

tracting a patch from the first frame based on z1, we provide this patch to a CNN [10]

to calculate its convolutional features. The ground truth target model is then generated

by computing the Fourier transform of the convolutional features as explained in Section

2.1.2. The ground truth target model is used to calculate a threshold for the resampling

process as explained later in this chapter. Additionally, this model is updated during the

next frames as discussed in the next section.

In the subsequent frames (i.e., t > 1), we generate and evaluate the initial particles

as explained in Algorithm 5.2. Considering zt−1 as the previous target state, the predicted

41

Algorithm 5.1 Adaptive particle filter

Input: Current frame, previous target state zt−1 and Ct−1 target models f(j)
t−1

Output: Current target state zt, particles x(i)t+1 for the next frame
1: Generate initial particles to find the final target state zt according to Algorithm 5.2
2: if t = 1 then
3: Calculate Tw
4: end if
5: Update particles and remove redundant ones using Algorithm 5.3
6: Examine the resampling conditions according to Eq. 5.10 and Eq. 5.11
7: if resampling is needed then
8: Generate particles x(i)t+1 for the next frame based on Algorithm 5.2
9: else

10: Calculate the predicted states x̂(p)(t+1) for frame t+ 1 using Eq. 5.12

11: for each x̂(p)(t+1) do
12: Generate β samples of the target size
13: Calculate the particles for the next frame t+ 1 according to Eq. 5.13
14: end for
15: end if

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1
Precision plot of OPE for Girl2

Υ = 0.01

Υ = 0.005

Υ = 0.003

Figure 5.3: How to influence different adjusting rates on DCPF2’s performance and giving
the idea to generate multiple target models based on applying different adjusting rates in
CAP-mc.

target state x̂t is calculated by Eqs. 4.3 and 4.4. It is clear that x̂2 = x1 because ż1 = 0. Let

42

Algorithm 5.2 Generate and evaluate initial particles

Input: Current frame, previous target state zt−1 and Ct−1 target models f(j)
t−1

Output: Current target state zt, Nt particles x(i)t , their correlation response maps
R(i)(j), their weights ω(i)(j), maximum weight ω∗ and the best target
model f∗t−1

1: Calculate the predicted target state ẑt according to Eq. 4.3 and Eq. 4.4
2: Generate Nt particles x(i)t around the predicted target state according to Eq. 3.5
3: for each particle x(i)t do
4: for each of the Ct−1 target models f(j)

t−1 do
5: Generate the correlation response map R(i)(j)

6: Calculate its weight ω(i)(j) according to Eq. 4.7
7: end for
8: end for
9: Find the maximum weight ω∗ based on Eq. 5.3

10: Consider the particle corresponding to ω∗ as the final target state zt
11: Consider the target model corresponding to ω∗ as the best model f∗t−1

x
(i)
t represent the particles sampled by Eq. 3.5, where i = 1, ..., Nt and Nt is the number of

the particles.

In the next step, different patches from frame t are generated based on z(i)t . For

each patch, a convolutional feature map is calculated using the CNN. Let R(i)(j) ∈ RM×Q

be the final correlation response map for particle i and target model j, j = 1, ..., Ct−1 (the

generation of different target models in the previous frame is explained in the next section).

M and Q are the length and width of the final correlation response map. These correlation

response maps are computed by comparing the target models and the convolutional feature

maps [44]. For each correlation response map, the weight is calculated by Eq. 4.7.

In the second frame, after comparing the convolutional features with the ground

truth model , we save the weight calculated from the correlation response map as a thresh-

old Tw which is a reliable representative of the target because it is calculated based on the

ground truth model. The location of the particle with the maximum weight [48]

[i∗, j∗] = arg max
i,j

ω(i)(j). (5.3)

43

Algorithm 5.3 Update particles and remove redundant ones

Input: Nt particles x(i)t , their correlation response maps R(i)(j), their weights ω(i)(j)

Output: Remaining updated particle x̄(i)(j)t

1: for each R(i)(j) do
2: Calculate its peak according to Eq. 5.4
3: Update its x(i)t to find x̄(i)(j)t using Eq. 5.5 to Eq. 5.7
4: end for
5: for every two particles do
6: if Eq. 5.8 is correct that means two particles converge the same target

position then
7: Remove the particle with the smaller weight using Eq. 5.9
8: end if
9: end for

We define ω∗ as the weight corresponding to [i∗, j∗]. The target size corresponding to the

maximum weight is then selected as the size of the bounding box for the current frame [48].

For the target position, the peak of the correlation response map of the maximum weight

is added to the location corresponding to the maximum weight as discussed in [48]. Thus,

the final target state xt is calculated by comparing the convolutional features of particle

i∗th (the best particle) and the j∗th target model (the best target model). We define the best

model as f∗t−1 which is one of the Ct−1 target models generated in frame t− 1.

We then use the positions estimated in frame t as the locations of the new particles

for frame t+ 1 as explained in Algorithm 5.3. The peak of the correlation response map of

particle i compared with target model j is given by [48]

[δ(i)(j)u , δ(i)(j)v] = arg max
m,q

R
(i)(j)
(m,q). (5.4)

The target position estimated by that particle and target model is then given by [48]

[ũ
(i)(j)
t , ṽ

(i)(j)
t] = [u

(i)
t + δ(i)(j)u , v

(i)
t + δ(i)(j)v], (5.5)

where [u
(i)
t , v

(i)
t] corresponds to the location of particle i. For the location of each particle

x
(i)
t , we estimate Ct−1 target positions. The updated state of particle i compared with target

44

High-likelihood updated

particles in frame t

2

1

 Deep CNN

+

Resizing

+

FFT

 Deep CNN

+

Resizing

+

FFT

 Deep CNN

+

Resizing

+

FFT

 Current

model

 Current

model

1

 Current

model

2

 Di�erent

adjusting

rates

 Best previous

target model

Final target

model

Final target

model

Final target

model

Final target

model

Final target

model

Final target

model

Final target

models for frame t+1

Figure 5.4: Our proposed multiple models with different adjusting rates.

Algorithm 5.4 Generate multiple target models

Input: Current frame, maximum weight ω∗, updated particles x̄(i)(j)t , their weights
ω(i)(j) and the best target model f∗t−1

Output: Ct target models f(j)
t for the next frame t+ 1

1: Examine Eq. 4.13 to determine the high-likelihood states
2: Generate Kt current target models f̆(j)

t based on the high-likelihood states
3: for Each f̆(j)

t do
4: if Eq. 5.10 is correct then
5: Select the set with bigger adjusting rates S1

6: else
7: Select the set with smaller adjusting rates S2

8: end if
9: Generate Γ final target models f(j)

t for the next frame based on Eq. 5.15
10: end for

45

Ours DCPF2 SINT HCFT

Figure 5.5: Qualitative evaluation of our tracker, DCPF2, SINT and HCFT on three chal-
lenging sequences (from up to down are Human3, Car1 and Freeman4, respectively).

model j in frame t is

z̄
(i)(j)
t =

[
x̄
(i)(j)
t , ˙̄x

(i)(j)
t

]T
, (5.6)

where ˙̄z
(i)(j)
t is the updated version of ẋ(i)t based on [ũ

(i)(j)
t , ṽ

(i)(j)
t] and

x̄
(i)(j)
t =

[
ũ
(i)(j)
t , ṽ

(i)(j)
t , h

(i)
t , w

(i)
t

]T
. (5.7)

x̄
(i)(j)
t is rounded because target positions and sizes are discrete quantities measured in

pixels. After rounding, several x̄(i)(j)t may have the same location. Since the initial particles

can refine their locations for subsequent frames, these refined particles perform better than

newly sampled particles in every frame. Their locations can also merge especially in simple

frames to decrease the number of particles. Thus, the number of particles in simple frames

46

is lower. For the target size, our tracker samples around each remaining particle based on

its velocity. Consider two particles x̄(i
′
)(j
′
)

t and x̄(i
′′
)(j
′′
)

t , if

[ũ
(i
′
)(j
′
)

t , ṽ
(i
′
)(j
′
)

t] = [ũ
(i
′′
)(j
′′
)

t , ṽ
(i
′′
)(j
′′
)

t], (5.8)

and

ω(i
′
)(j
′
) > ω(i

′′
)(j
′′
), (5.9)

x̄
(i
′
)(j
′
)

t is selected and x̄(i
′′
)(j
′′
)

t is removed, that is two particles converge to the same target

position, the one with the highest weight is selected and the other is removed. In the

next step, the Ct target models are generated as discussed in the following section. The

resampling conditions are then examined for frame t+ 1. The first condition is

ω(i∗)(j∗) > ϕ× Tw. (5.10)

As explained earlier, Tw is the maximum particle weight in the second frame. This

maximum weight is calculated based on comparing the model generated by the ground

truth in the first frame. Assuming there is no challenging scenario in the second frame, Tw

is a good representative of the target. When the maximum weight in frame t is less than

ϕ×Tw, where ϕ is a threshold, it means our tracker could not produce a reliable correlation

response map because of challenging scenarios such as occlusion. Therefore, the particles

can not properly refine their locations based on these weak correlation response maps. In

these scenarios, we resample new particles. The second resampling condition is

Nt · Ct−1 − Z > Tt, (5.11)

where Tt is the minimum number of particles to transfer to the next frame. Let Z be the

number of x̄t which are removed. When too many particles converge to the same location

and Z is too high, we increase the number of the particles by resampling. We then predict

the new particles for frame t+ 1 based on the remaining particles in frame t according to

x̂
(p)
t+1 = Ax̄

(i)(j)
t , (5.12)

47

where p = 1, ..., Nt ·Ct−1−Z is the index of the particles which are transferred to the next

frame t+ 1. We generate β samples to be added to the target size of each x̂(p)(t+1) according

to

x
(f)
t+1 = x̂

(p)
t+1 + [0(1,4), ζt+1], (5.13)

where ζt+1 ∈ R4 is drawn from a zero-mean normal distribution and f = 1, ..., β. Thus,

the number of particles for frame t+ 1 is

Nt+1 = β · (Nt · Ct−1 − Z). (5.14)

If the resampling conditions are met, the selected target state xt for frame t is ap-

plied in Eq. 4.3 , Eq. 4.4 and 3.5 to generate the new particles. Fig. 5.2 illustrates how the

number of particles decreases in simple frames. Additionally, the figure shows when the

maximum weight significantly decreases comparing with Tw, resampling is implemented.

5.1.2 Multiple Correlation Models

In this section, we generateCt target models for frame t to be employed in frame t+

1. A target model is generated by giving a patch to the CNN and applying Fourier transform

to the calculated convolutional features. This model distinguishes the background from

the foreground. Fig. 5.4 illustrates our method for generating several target models. As

discussed in [48], a comparison between the best model and the most accurate target size

and position results in higher weight. Similar to [48] and explained in the previous chapter,

we select all high-likelihood target states by examining the following equation over all

Nt × Ct−1 weights according to 4.13.

where we set α to 0.8. the target states corresponding with the selected weights are

considered as high-likelihood candidates [48]. A target model is generated based on each

Kt selected high-likelihood particles in frame t, as discussed in [48]. Let f̆(j)
t represent

one of Kt target models generated from the current frame, where j = 1, ..., Kt. The final

48

target models to be used in frame t+ 1 are a combination of the current target models and

the previously selected target model according to [44]

f(j)
t = (1−Υ)f∗t−1 + Υf̆(j)

t , (5.15)

where Υ is named adjusting rate. As seen in Fig. 5.3, the adjusting rate has a significant

influence on the correlation tracker’s performance. In our tracker, we consider different

adjusting rates and then apply them to Eq. 5.15. Thus, instead of having Kt target models,

we have Ct ones

Ct = ΓKt, (5.16)

where Γ is the number of adjusting rates. We define two sets of adjusting rates S1 and S2.

Based on Eq. 5.10, we use one of those sets. It means that when the tracker can not pass

Eq. 5.10, the correlation response maps are not reliable because of challenging scenarios

and we should use smaller adjusting rates to increase the effect of the previous target model

and decrease the current one. When Eq. 5.10 is passed, we can use bigger adjusting rates.

Algorithm 5.4 explains the method of generating multiple target models.

5.2 Results and Discussion

We used OTB100 [6] to test our tracker performance. We selectNt = 300, ϕ = 0.7,

Tr2 = 4, β = 5, Γ = 3, S1 = [0.075, 0.01, 0.015] and S2 = [0.075, 0.005, 0.001]. The

number of adjusting rates in each set is limited to three because of the computation costs.

However, these sets are defined based on experiments.

We compared our tracker with eight state of the art trackers including: CFNet-conv3

[90], SiameseFC [91], SINT, LCT [31] and CNN-SVM [81], HDT, HCFT and DCPF2. As

illustrated in Fig. 5.6, our overall performance of precision and success are improved by

3.5% and 5.5% compared to DCPF2, which are the second and fourth-best trackers in the

precision and success plots, respectively. Our tracker outperforms SINT, the second-best

49

tracker in the success plot, by around 4.5%. On deformation and occlusion, our perfor-

mance is better because we employ different adjusting rates and decrease the updating rate

of the model in challenging frames. As seen in Fig. 5.6, for deformation and occlusion,

our performance is improved around 4.5% on the precision plot and 6% on the success

plot in comparison with the second-best tracker. For other challenging scenarios such as

motion blur, background clutter and out of plane rotation, our tracker shows improvements

of approximately 5%, 3.5% and 3%, respectively, compared to the second-best tracker.

Fig. 5.5 illustrates the qualitative evaluation of our tracker comparing to DCPF2,

SINT [92] and HCFT. In the first data sequence Human3, the lower adjusting rate helps our

tracker to use the previous target model more in the correlation filter. In the second data

sequence Car1 and third one Freeman4, the influence of using a more reliable sampling

method for generating particles and employing different adjusting rates is shown.

50

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE

CAP_mc [0.885]

DCPF2 [0.856]

HDT [0.848]

HCFT [0.837]

CNN-SVM [0.814]

SINT [0.789]

CFNet_conv3 [0.777]

SiamFC_3s [0.771]

LCT [0.762]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE

CAP_mc [0.618]

SINT [0.592]

CFNet_conv3 [0.589]

DCPF2 [0.585]

SiamFC_3s [0.582]

HDT [0.564]

HCFT [0.562]

LCT [0.562]

CNN-SVM [0.554]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE - occlusion (49)

CAP_mc [0.835]

DCPF2 [0.801]

HDT [0.774]

HCFT [0.767]

SINT [0.756]

CNN-SVM [0.730]

SiamFC_3s [0.722]

CFNet_conv3 [0.701]

LCT [0.682]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE - occlusion (49)

CAP_mc [0.600]

SINT [0.574]

DCPF2 [0.565]

SiamFC_3s [0.543]

HDT [0.528]

CFNet_conv3 [0.527]

HCFT [0.525]

CNN-SVM [0.515]

LCT [0.507]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE - deformation (44)

CAP_mc [0.875]

DCPF2 [0.838]

HDT [0.821]

CNN-SVM [0.793]

HCFT [0.791]

SINT [0.745]

CFNet_conv3 [0.713]

SiamFC_3s [0.690]

LCT [0.689]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE - deformation (44)

CAP_mc [0.602]

DCPF2 [0.567]

SINT [0.550]

CNN-SVM [0.547]

HDT [0.543]

HCFT [0.530]

CFNet_conv3 [0.525]

SiamFC_3s [0.506]

LCT [0.499]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE - motion blur (29)

CAP_mc [0.844]

DCPF2 [0.812]

HCFT [0.804]

HDT [0.789]

CNN-SVM [0.751]

SINT [0.750]

SiamFC_3s [0.705]

CFNet_conv3 [0.679]

LCT [0.669]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE - motion blur (29)

CAP_mc [0.619]

DCPF2 [0.591]

SINT [0.591]

HCFT [0.585]

CNN-SVM [0.578]

HDT [0.574]

SiamFC_3s [0.550]

CFNet_conv3 [0.540]

LCT [0.533]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE - background clutter (31)

CAP_mc [0.912]

DCPF2 [0.882]

HDT [0.844]

HCFT [0.843]

CNN-SVM [0.776]

SINT [0.776]

CFNet_conv3 [0.755]

LCT [0.734]

SiamFC_3s [0.690]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE - background clutter (31)

CAP_mc [0.636]

DCPF2 [0.615]

SINT [0.590]

HCFT [0.585]

HDT [0.578]

CFNet_conv3 [0.561]

LCT [0.550]

CNN-SVM [0.548]

SiamFC_3s [0.523]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision plots of OPE - out-of-plane rotation (63)

CAP_mc [0.864]

DCPF2 [0.836]

SINT [0.811]

HCFT [0.807]

HDT [0.805]

CNN-SVM [0.798]

CFNet_conv3 [0.759]

SiamFC_3s [0.756]

LCT [0.746]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success plots of OPE - out-of-plane rotation (63)

CAP_mc [0.602]

SINT [0.598]

DCPF2 [0.564]

SiamFC_3s [0.558]

CFNet_conv3 [0.556]

CNN-SVM [0.548]

LCT [0.538]

HCFT [0.534]

HDT [0.533]

Figure 5.6: Quantitative evaluation of our tracker in comparison with state-of-the-art track-
ers on OPE.

51

CHAPTER 6
LIKELIHOOD PARTICLE FILTER

In this chapter, we propose a novel particle filter for CNN-correlation visual track-

ers. Our method uses correlation response maps to estimate the likelihood distributions and

employs these likelihoods as proposal densities to sample particles. Likelihood distribu-

tions are more reliable than proposal densities based on target transition distributions such

as [60, 77, 45, 48] because correlation response maps provide additional information re-

garding the target’s location. Additionally, these trackers calculate the posterior distribution

based on the peaks of the correlation maps without considering them in the computation

of the particle weights. Our method also solves this problem by calculating a likelihood

distribution and using it as the proposal density.

Furthermore, our particle filter searches for multiple modes in the likelihood distri-

bution, which improves performance in target occlusion scenarios while decreasing com-

putational costs by more efficiently sampling particles. In other challenging scenarios such

as those involving motion blur, where only one mode is present but a larger search area

may be necessary, our particle filter allows for the variance of the likelihood distribution to

increase. We tested our algorithm on OTB100 [6] and our experimental results demonstrate

that our framework outperforms state-of-the-art methods.

6.1 The change of support problem in convolution-correlation particle filters

In particle filters used in correlation trackers such as [45, 75, 48, 50, 51, 76, 77],

the particles are shifted to the peak of the correlation maps and the posterior distribution in

Eq. 2.5 is then changed to

p(xt|yt) ≈
N∑
i=1

$
(i)
t δ(xt − x̃

(i)
t), (6.1)

52

where x̃(i)t is the peak of the correlation response map corresponding to the i-th particle and

$
(i)
t is the normalized weight of the i-th particle.

However, the posterior distribution must take into consideration the weights corre-

sponding to the shifted locations, not the original particles. As seen in the top and middle

rows of Fig. 6.1, it is possible that multiple particles with different correlation maps and

weights converge to the same location, which means the posterior distribution would then

include multiple particles at a common location but with different weights, which invali-

dates the assumption that the likelihood depends solely on x(i)t . In other words, the patch

centered in the shifted location generates different features and consequently a different

weight from the corresponding patch centered in the particle as shown in the middle and

bottom rows of Fig. 6.1. Thus, the posterior distributions estimated by these trackers are

not accurate.

Because the posterior distributions generated by these trackers are not reliable, they

resort to resampling in every frame. While resampling is a suitable solution to avoid sample

degeneracy that should be performed when necessary, resampling at every frame causes

loss of information. It also causes sample impoverishment (i.e., loss of diversity among

particles) and may cause all the particles to collapse to a single point within a few frames.

To solve the mentioned problems, we sample particles from the likelihood distribution

instead. Particle filters that sample from likelihood distributions generate more accurate

particles, but sampling from the likelihood distribution is not always possible. Fortunately,

CNN-correlation trackers generate correlation maps that can be used in the construction of

likelihood distributions.

6.2 Proposed Algorithm

Our algorithm generates an initial correlation response map for the current frame

based on the previously estimated target state to calculate an initial likelihood distribu-

tion. That is, we generate a patch from the current frame based on the previous target

53

CNN + CF

Correlation Response Map

Centered on Particle 2

Correlation Response Map

Centered on Previous

Shifted Location

Particle 2

Position

Particle 2

Shifted

Location

CNN + CF

Previous

Shifted

Location

New

Shifted

Location

CNN + CF

Correlation Response Map

Centered on Particle 1

Particle Size

Search Area

Particle 1

Position

Particle 1

Shifted

Location

Shifted

Location

Shifted

Location

Previous Shifted

Location

New Shifted

Location

Figure 6.1: The top and middle rows illustrate how two distinct particles with different
weights converge to the same shifted location. Two different patches centered in particles
1 and 2 are given to the CNN and correlation filter to generate their correlation response
maps. Each of these particles is then shifted to the peak of its corresponding correlation
response map. As shown, their shifted locations are identical. Thus, this location is asso-
ciated with two different weights in the posterior distribution because the correlation maps
corresponding to the two particles are different. The middle and bottom rows show how
the particle and its shifted location may generate different correlation maps. In the bottom
row, a patch centered in the shifted location of particle 2 is generated. This patch results
in a different correlation map at a different shifted location in comparison with the patch
corresponding to particle 2. Thus, if the shifted location of particle 2 is used in the compu-
tation of the posterior distribution, its weight should be calculated based on the correlation
map on the bottom row instead of the one on the middle row.

state and use a CNN [10] to extract the convolutional features from this patch. We then

compare these features with the target model to calculate the final correlation response

54

Di cult Frame

Simple Frame

Figure 6.2: Estimated likelihood distributions for common scenarios (simple frame) and a
challenging scenario involving fast motion (difficult frame).

map [44]. As seen in Fig. 6.2, in most scenarios (which we call “simple frames”), the

correlation response map corresponds to a sharp Gaussian distribution with a prominent

peak. In challenging scenarios (“difficult frames”), correlation maps are wider with less

pronounced peaks. We need to estimate likelihood distributions consistently in both sce-

narios. To address this issue, we fit a Gaussian distribution to the correlation response maps

while disregarding elements with probability lower than a threshold τ . By disregarding low

probability elements, we mitigate the impact of the background on the computation of the

model. We compute the mean of the correlation response map using

µ ≈
∑u

i=1 qisi∑u
i=1 qi

, (6.2)

where si and qi represent the elements of the correlation response map and their respective

probabilities, and u is the number of elements with probability higher than τ . The variance

55

Simple Frame

Di cult Frame

Figure 6.3: Standard deviations of the estimated likelihood distributions in data sequence
Jogging-1 of the OTB-100 dataset.

of the response map is then given by

σ2 ≈
∑u

i=1 qi(si − µ)2∑u
i=1 qi

. (6.3)

Thus, our model assigns low probabilities to pixels that are likely to belong to the back-

ground while assigning relatively high probabilities to all the regions that might correspond

to the target. As a result, our samples concentrate in regions where the target is more likely

to be present.

Fig. 6.2 shows our estimated likelihood distributions for two different frames of the

Biker data sequence of the OTB100 benchmark. In the difficult frame, the target undergoes

motion blur, which causes the correlation response map to be wider with a lower peak.

Our estimated variance is then correspondingly higher, which helps our tracker to sample

particles over a wider area to compensate for tracking uncertainties in difficult scenarios.

The example in Fig. 6.3 shows how the variance increases as the target approaches difficult

frames.

56

Although allowing for higher variances in challenging scenarios such as those in-

volving fast motion helps our tracker address such issues, this strategy alone cannot handle

multi-modal correlation response maps. To resolve this issue, we propose to determine the

peaks of the distribution using the approach described below.

6.2.1 Multi-modal likelihood estimation

The existence of multiple peaks in a correlation response map usually indicates the

presence of confusing elements in the background of the frame, as the example in Fig.

6.4 illustrates. In the frame shown in the figure, there are two peaks in the correlation

response map when partial target occlusion occurs. The peaks correspond to the woman

on the left side of the image (the target) and the pole partially occluding her. By applying

a threshold to remove low probability elements from the correlation response map, two

clusters become apparent.

To identify the peaks of the correlation map while disregarding additional back-

ground clutter, we remove from the map points with probability lower than a threshold τ .

We then fit a Gaussian mixture model to the remaining feature map points [93]. Our model

tests different numbers of clusters up to 3 groups and finds the optimal number k using the

silhouette score method [94]. Fig. 6.5 shows two instances of correlation response maps

in which we identify k = 2 and k = 3 clusters. The likelihood corresponding to each peak

is then given by a normal distribution with mean and variance given by Eqs. 6.2 and 6.3.

Algorithm 6.1 summarizes our proposed approach to estimate the likelihood distribution

for each cluster.

6.2.2 Particle sampling

We sample particles from the Gaussian likelihood distributions obtained from the

correlation response maps in the current frame. The probability that a particle is sampled

57

Figure 6.4: A difficult frame including target occlusion. Its correlation response map has
two peaks. By increasing the threshold to remove low probability elements, two clusters
corresponding to the target and the pole are seen.

Algorithm 6.1 Multi-modal likelihood estimation
Input: Current frame yt and previous target state xt−1
Output: One likelihood distribution for each correlation map cluster

1: Extract a patch from the current frame based on the previous target state
2: Extract the CNN features of the patch and calculate its correlation response map
3: Remove points with probability lower than τ
4: Fit a Gaussian mixture model to the map and find the clusters
5: Estimate the likelihood distribution of each cluster based on the mean and variance of

its elements in the map according to Eqs. 6.2 and 6.3

from the likelihood distribution is given by

p(x
(i)
t |yt) ∝

k∑
j=1

N
(
x
(i)
t ;µj, σj

)
, (6.4)

where µj and σj are the mean and variance of the j-th mode of the likelihood. We gen-

erate a patch for each particle and extract its features using a CNN. After calculating the

58

45 50 55 60 65 70 75

28

29

30

31

32

33

34

35

36

Scatter Plot and Fitted Gaussian Mixture Contours

Model 0

Model1

40 45 50 55 60 65 70 75

20

22

24

26

28

30

32

34

36

38

Scatter Plot and Fitted Gaussian Mixture Contours

Model 0

Model1

Model2

Figure 6.5: Finding clusters; left: correlation response maps with two and three clusters,
middle: clusters of the correlation response maps obtained by fitting a Gaussian mixture
model, right: estimated likelihood distributions for each cluster.

correlation response map for each particle, we shift the particles to the peaks of their re-

spective correlation response maps. The peak of each correlation response map is the

estimated target position based on the patch centered at the corresponding particle. Be-

cause each particle is shifted to the peak of the correlation response map, we consider

p(x̃
(i)
t |x

(i)
t) = 1, where x̃(i)t is the peak of the corresponding correlation response map. As

a result, p(x(i)t |yt) = p(x̃
(i)
t |yt).

6.2.3 Calculating the weights and posterior distribution

By computing the weight corresponding to each shifted particle x̃(i)t , we can accu-

rately estimate the posterior based on the shifted particles and their correct weights, which

59

Previous

target state

 Current frame

CNN +

Correlation

Filter

Correlation map

after removing

low probability

elements

Predicted

target state

CNN +

Correlation

Filter

Transition

distribution

Gaussian

mixture model

Estimated

likelihood

distributions

Figure 6.6: Overview of the steps comprising the proposed DCPF-Likelihood visual
tracker.

addresses the problem of incorrect support points observed in previous works. The correct

weight corresponding to each shifted particle is then given by

ω
(i)
x̃t
∝ ω(i)

xt−1

p(yt|x̃(i)t)p(x̃
(i)
t |xt−1)

q(x̃
(i)
t |xt−1, yt)

, (6.5)

where the term corresponding to the previous weight is removed because we perform re-

sampling at every frame. Additionally, the proposal density is given by

q(x̃
(i)
t |xt−1, yt) = p(x̃

(i)
t |yt). (6.6)

Thus, the weight of each shifted particle is

ω
(i)
x̃t
∝ p(yt|x̃(i)t)p(x̃

(i)
t |xt−1)

p(x̃
(i)
t |yt)

. (6.7)

Let the target state be defined based on Eq. 4.1 and Eq. 4.2. We apply a first-order motion

model to the previous target state zt−1 according to Eq. 4.3 and Eq. 4.4 to find the predicted

target state ẑt−1. We use a Gaussian distributionN (x̄t−1, σ
2) to find the probability of each

estimated particle in the current frame p(x̃(i)t |xt−1).

60

Additionally, p(yt|x̃(i)t) is the likelihood of each shifted particle. The correlation

response map R(i) is then calculated based on Eq. 4.5 and Eq. 4.6. The peak, x̃(i)t , of the

correlation response map is then calculated based on Eq. 4.9 and Eq. 4.12. The likelihood

of x̃(i)t is calculated by [48]

p(yt|x̃(i)t) =
1

M ×Q
∑
m,q

R(i)(m, q). (6.8)

The posterior distribution based on the shifted particles and their respective weights is then

P̂ r(xt|yt) ≈
N∑
i=1

$
(i)
x̃t
δ(xt − x̃(i)t), (6.9)

where $(i)
x̃t

is the normalized version of ω(i)
x̃t

. Fig. 6.6 summarizes the steps of our method,

and Algorithm 6.2 describes the details of our approach.

Algorithm 6.2 DCPF-Likelihood visual tracker.
Input: Current frame yt and previous target state xt−1
Output: Current target state xt

1: Estimate a likelihood distribution for each cluster using Algorithm 6.1
2: Sample particles from the likelihood distributions p(x(i)t |yt)
3: Extract the CNN features of the patches corresponding to each particle and calculate

its correlation response map
4: Shift the particles to the peaks of their correlation response maps
5: Calculate the likelihood p(yt|x̃(i)t) based on Eq. 6.8
6: Calculate the transition probability p(x̃(i)t |xt−1)
7: Compute the weight of each shifted particle ω(i)

x̃t
according to Eqs. 6.5 to 6.7

8: Calculate the posterior distribution according to Eq. 6.9

6.3 Experimental results

We assess the performance of our tracker on the OTB100 dataset. Fig. 6.7 shows the

OPE results for our tracker in comparison with DCPF, HCFT, and CNN-SVM. Our overall

performance improvements over DCPF, the second best tracker, in terms of precision and

61

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE

DCPF-Likelihood [0.865]

DCPF [0.846]

HCFT [0.837]

CNN-SVM [0.814]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e
s
s
 r

a
te

Success plots of OPE

DCPF-Likelihood [0.581]

DCPF [0.569]

HCFT [0.562]

CNN-SVM [0.554]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - background clutter (31)

DCPF-Likelihood [0.908]

DCPF [0.871]

HCFT [0.843]

CNN-SVM [0.776]
0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

Precision plots of OPE - occlusions (49)

DCPF-Likelihood [0.803]

DCPF [0.783]

HCFT [0.767]

CNN-SVM [0.730]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - fast motion (39)

DCPF-Likelihood [0.846]

DCPF [0.835]

HCFT [0.815]

CNN-SVM [0.747]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - motion blur (29)

DCPF-Likelihood [0.844]

DCPF [0.809]

HCFT [0.804]

CNN-SVM [0.751]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - illumination variations (38)

DCPF-Likelihood [0.864]

DCPF [0.840]

HCFT [0.817]

CNN-SVM [0.795]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - out-of-plane rotation (63)

DCPF-Likelihood [0.849]

DCPF [0.821]

HCFT [0.807]

CNN-SVM [0.798]

Figure 6.7: One pass evaluation of our tracker in comparison with three state-of-the-art
approaches.

62

330 360 370

100 113 123

Ours DCPF HCFT CNN-SVM

Figure 6.8: Qualitative evaluation of our tracker against DCPF, HCFT, and CNN-SVM on
two challenging sequences: Human6 (top) and Ironman (bottom).

success rates are 2.5% and 2%, respectively. Our method outperforms DCPF particularly

in scenarios involving occlusions (+3%) and background clutter (+4.5%). DCPF uses the

transition distribution as the proposal density, a common approach in particle-correlation

trackers. Our results show that the likelihood is a more effective proposal distribution.

In scenarios involving motion blur and fast motion, our performance improvements over

DCPF are around 4.5% and 2%, respectively, because our tracker increases the variance of

the likelihood distribution to spread out particles across a wider area. Our method also out-

performs DCPF in scenarios involving illumination variation (+3%), out-of-plane rotation

(+3.5%), and deformation (+3%). Our method also decreases the computational cost of the

algorithm. Our tracker uses 100 particles, which is significantly less than the 300 particles

used in DCPF.

Fig. 6.8 shows qualitative results comparing our tracker with DCPF [45], HCFT

[44], and CNN-SVM [81]. In both data sequences shown in the figure, our method suc-

63

cessfully handles occlusion scenarios. These results highlight the impact of using more

reliable sampling distributions.

64

CHAPTER 7
ITERATIVE PARTICLE FILTER

In this chapter, we propose a deep convolutional correlation iterative particle filter

(D2CIP) tracker. Our proposed tracker uses multiple particles as the inputs to a CNN

[10] and then applies the correlation filter used in the ECO tracker [69] to generate the

correlation map of each particle. Large displacements between the previous target position

and the peak of the correlation map, shown in Fig. 2.3, lead to a degradation in the quality

of the correlation map, since the corresponding convolutional features are less similar to the

target model. Our proposed iterative particle filter decreases this distance for each particle

through an iterative procedure. At each iteration, the particles approach the target location

and an improved correlation map is computed. To our knowledge, iterative particle filters

have not been used in conjunction with CNNs and correlation filters before.

The second major contribution of this chapter is a novel target state estimation

strategy. In state-of-the-art particle-correlation trackers such as [45, 75, 48, 50, 51, 76, 77],

assessing the likelihood of the particles is challenging because many particles may be in

close proximity to one another. In our framework, the particles converge to a few locations

after a series of iterations. Thus, we propose a novel method based on particle convergence

consistency and K-means clustering to evaluate the final particle locations. This novel

method enables our proposed tracker to overcome challenges associated with multi-modal

likelihood distributions.

Additionally, state-of-the-art particle-correlation trackers must perform resampling

at every frame because shifting the particles to the peak of the correlation maps changes

the support of the posterior distribution as we discussed in Section 6.1. We addressed the

aforementioned problems in the previous chapter by proposing a likelihood particle filter.

In that method, although the peaks of the correlation maps are used as the proposal and

transition distributions, the weights of the peaks are still calculated based on the likelihood

65

of the particles instead of the likelihood of the corresponding peaks. Our proposed itera-

tive particle filter is a novel solution for correlation-convolutional trackers to calculate an

accurate posterior without performing resampling at every frame. As a third contribution,

our iterative particle filter overcomes this issue and hence does not disregard information

from prior samples. We tested our tracker on the OTB100 and the LaSOT datasets, and the

results show that our tracker outperforms several state-of-the-art methods.

7.1 Proposed Algorithm

This section discusses our proposed strategy to generate particles that better reflect

the actual position of the target while avoiding the change of support problem discussed in

Section 6.1. Our approach is based on an iterative particle filter that gradually shifts the

particle positions to locations that are closer to the peak of the correlation response map

while also updating the response maps themselves so that they become less sensitive to

background clutter and better aligned with the target position. As the particles are updated,

their corresponding weights are also recomputed based on the new correlation response

maps.

7.1.1 Iterative Particle Filter

As Fig. 7.1 illustrates, correlation filter-based trackers attempt to determine the

position of the target by analyzing the displacement between the center of the correlation

map, which corresponds to each particle in our tracker, and the peak of the map. A particle

filter allows us to generate multiple samples around the predicted target state and hence

increase our chances of finding maps with low displacement [45]. If this displacement is

sufficiently low, then the features extracted from the CNN are similar to the model and the

correlation response map is reliable. Our iterative particle filter considerably decreases this

displacement and generates more reliable correlation maps for all the particles. As shown

in Fig. 7.1, after generating the correlation response map for one particle, the distance be-

66

Image

Patch

Response Map

Iteration 1 Iteration 2 Iteration

 <

e
e

Image

Patch

Image

Patch

CNN + CF

CNN + CF

CNN + CF

Figure 7.1: Illustration of the proposed iterative particle position refinement. In the first
iteration, particle x(i,j)t,0 shown by the yellow point is given to the CNN and the correlation
filter to calculate its response map. Because the displacement d(i,j)t,1 between the estimated
position and the particle is higher than ε, the particle needs to be refined. In this scenario,
the estimated position is not accurate and there is an error e between the peak of the cor-
relation map and the ground truth position (black point). The red point is then considered
the new particle x(i,j)t,1 for the second iteration. The cyan point shows the estimated position
in the second iteration, which needs further refinement despite the reduction in the error e.
The purple point represents the position at the Kt-th iteration, which does not need to be
refined because d(i,j)t,Kt

< ε.

tween the particle position (yellow point) and the peak of the map (red point) is calculated.

If the distance is larger than a small threshold ε, the correlation response map is not reliable

enough to estimate the target position because it was generated based on an image patch

centered at a position (yellow point) far from the ground truth location (black point). In

such scenarios, the corresponding particle needs to be refined. To that end, the peak of

the map is considered the new particle position and its corresponding correlation response

map is calculated in a subsequent iteration. Although the peak of the new map (cyan point)

is closer to the ground truth, the corresponding particle needs further refinement because

the distance between the new particle position (which is now the red point) and the peak

of the new map is larger than ε. Finally, in the Kt-th iteration, the calculated distance is

smaller than ε and the iterative refinement procedure terminates. The peak of the final map

(purple point) is considered the estimated target position for this particle. Since no shifting

67

Frame t-1

Final Peaks

Motion

Model

Predicted

States

Frame t

Iterations

Cluster 1

Cluster 2

Peak 1

Peak 2

Peak 3

Peak 4

Figure 7.2: Illustration of the particle selection process for Jt−1 = 3. The particles are
sampled from three distributions whose means are given by the previous correlation map
peaks. At time t, the particles converge to four final peaks at the end of the iterations. Two
clusters are found by applying K-means to the final particle locations. After selecting the
best cluster, the peak of the correlation response map corresponding to the cluster with the
highest number of particles is selected as the target state.

is performed in the last iteration, the particle support problem discussed above is avoided.

Our iterative particle filter is explained in greater detail in the following subsections.

7.1.1.1 Particle prediction model

As shown in the top row of Fig. 7.2, the posterior distribution of the target at

time t − 1 is modeled by a mixture of Jt−1 normal distributions N (z
(j)
t−1, σ

2) where j =

1, . . . , Jt−1 and z(j)t−1 is given by Eq. 4.1 and Eq. 4.2. For simplicity in calculating distances,

68

we consider p(j)t−1 = [ut, vt,]
T and s(j)t−1 = [ht, wt,]

T . The predicted state is then calculated

based on Eqs. 4.3 and 4.4. Our transition distribution is then given by the mixture

p(xt,0|xt−1) =
1

Jt−1

Jt−1∑
j=1

N (ẑ
(j)
t , σ2). (7.1)

We then sample Nt × Jt−1 new particles x(i,j)t,0 ∼ p(xt,0|xt−1), where i = 1, . . . , Nt. To

increase the efficiency of our strategy, instead of sampling all the particles directly from

the mixture distribution, we employ a stratified strategy and sample Nt particles from each

of the Jt−1 predicted normal distributions. Fig. 7.2 also illustrates the processes of refining

and clustering the particles, which are discussed in more detail in the following sections.

Algorithm 7.1 summarizes our iterative particle filter algorithm. Lines 1-4 correspond

to the sampling method described above. The remaining steps of the algorithm are also

discussed in the following sections.

Algorithm 7.1 Deep Convolutional Correlation Iterative Particle (D2CIP).

Input: Current frame at time t, target models, previous final peaks z(j)t−1 and their
normalized weights $(j)

t−1

Output: Estimated target state x∗t , updated target models, current final peaks z(i,j)t,Kt

and their normalized weights $(i,j)
t,Kt

1: Find the predicted distributions N (ẑ
(j)
t , σ2)

2: for each predicted state ẑ(j)t do
3: Sample Nt initial particles x(i,j)t,0 ∼ N (ẑ

(j)
t , σ2)

4: end for
5: for each initial particle x(i,j)t,0 do
6: Find its corresponding final peak using Alg. 7.2
7: end for
8: for each final peak x(i,j)t,Kt

do
9: Calculate the peak weight ω(i,j)

t,Kt

10: end for
11: Estimate the target state x∗t based on the final peaks x(i,j)t,Kt

using Alg. 7.3
12: Find the updated target models based on the final peaks x(i,j)t,Kt

13: Resample if the effective sample size is lower than γ

69

7.1.1.2 Iterative particle refinement

Particle x(i,j)t,0 is used to sample a patch from the current frame at time t and to

generate the corresponding convolutional features. These features are compared with the

target models to calculate the correlation response map R(i,j)
t,0 using the correlation filter

proposed in [69]. We maintain one target model for each of the predicted distributions, but

to simplify the notation in this section, we refrain from explicitly differentiating the models.

Let p(yt|x(i,j)t,0) be the likelihood of x(i,j)t,0 , which is given by the sum of the elements of

R
(i,j)
t,0 . We discard the samples for which p(yt|x(i,j)t,0) < Lmin, where Lmin is the threshold to

consider a correlation response map acceptable. As illustrated in Fig. 7.1, at each iteration

k = 1, . . . , Kt, the remaining samples are shifted to x(i,j)t,k , which is defined as

x
(i,j)
t,k = [p

(i,j)
t,k , s

(i,j)
t,0], (7.2)

where p(i,j)t,k = arg max(R
(i,j)
t,k−1), i.e., the peak of the associated correlation response map at

step k− 1 of the iterative refinement process. We then have d(i,j)t,k = ||p(i,j)t,k − p
(i,j)
t,k−1|| as the

Euclidean distance between p(i,j)t,k and p(i,j)t,k−1. For each particle, the refinement procedure

continues until d(i,j)t,k < ε. Since particles in close proximity tend to generate correlation

response maps whose peaks share a common location, all the particles converge to a small

number high-likelihood points in the image. These peaks determine the means of the nor-

mal distributions used to generate the prediction model described in Section 7.1.1.1.

As seen in Fig. 7.2, let N (x
(i,j)
t,k , σ

2) be the normal distributions after the conver-

gence of the k-th iteration. We select the mean of these normal distributions as the particles

for the next iteration if d(i,j)t,k ≥ ε. After the iterations, the particles reach the final peaks

x
(i,j)
t,Kt

= [p
(i,j)
t,Kt

, s
(i,j)
t,0], which do not need further refinement because d(i,j)t,Kt

< ε. Thus, we

have

p
(i,j)
t,Kt

= p
(i,j)
t,0 +

Kt∑
k=1

d
(i,j)
t,k . (7.3)

Algorithm 7.2 explains how to reach the final peaks in our iterative particle filter.

Additionally, all the normal distributions N (x
(i,j)
t,Kt

, σ2) are used in the process of updating

70

the target models as well. ECO examines only the estimated target state to update the target

models, while our iterative particle filter provides all N (x
(i,j)
t,Kt

, σ2) for ECO to examine in

the target model update process.

Algorithm 7.2 Iterative Particle Refinement.

Input: Current frame t, initial particles x(i,j)t,0 , target models
Output: Final current peaks x(i,j)t,Kt

1: for each particle x(i,j)t,0 do
2: d

(i,j)
t,k =∞

3: while d(i,j)t,k > ε do
4: Generate the correlation response map R(i,j)

t,k−1

5: Calculate the likelihood p(yt|x(i,j)t,k−1) based on R(i,j)
t,k−1

6: if p(yt|x(i,j)t,k) > Lmin then
7: p

(i,j)
t,k = arg max(R

(i,j)
t,k−1)

8: d
(i,j)
t,k = ||p(i,j)t,k − p

(i,j)
t,k−1||

9: else
10: Discard particle x(i,j)t,k−1
11: end if
12: end while
13: Find Jt,K for each final peak
14: end for

7.1.1.3 Weight update model

The posterior distribution for the particle filter is approximated by

p(xt|yt) ≈
∑

$
(i,j)
t,Kt

δ(xt − x(i,j)t,Kt
), (7.4)

where $(i,j)
t,Kt

represents the normalized weights of the final correlation map peaks. As dis-

cussed in Section 6, all of the correlation-based particle filters proposed in the literature so

far compute the likelihood of the particles based on the correlation response maps of their

initial positions without considering the change of support caused by shifting the particles.

71

Since our approach keeps track of the particles that converge to a common location, it al-

lows us to update the particle posterior distribution based on the likelihood of their final

locations and their corresponding prior weights, i.e.,

ω
(i,j)
t,Kt
∝ p(yt|x(i,j)t,Kt

) max
$

(j)
t−1∈X

j
t−1

$
(j)
t−1, (7.5)

where p(yt|x(i,j)t,Kt
) is the likelihood of the final peak based on its correlation response map

andX j
t−1 is the set of weights ofN (z

(j)
t−1, σ

2) that converge to x(i,j)t,Kt
. This approach allows us

to refrain from unnecessarily resampling the particles at every frame. Instead, we perform

resampling only when the effective sample size N̂s is lower than a thresholdNthr according

to [11]

N̂s =
1∑N

i=1 ω
(i)2

t

, (7.6)

where if N̂s <= Nthr, resampling is then performed.

7.1.2 Target state estimation

Using Eq. 7.5 in simple frames that do not involve any challenging scenario results

in particle weights very similar to one another. Again, this is because the particles converge

to a few nearby peaks after the iterations. Hence, the correlation maps related to these final

peaks are similar as well. Thus, evaluation of the particles based on likelihoods calculated

from the correlation maps is not sufficiently accurate in such simple frames. However, after

the iterations, it is possible to determine the location to where most particles converge. As

Fig. 7.3 illustrates, our initial particles gradually converge to a few peaks at the end of

the iterative refinement procedure. The plots in the middle column of the figure show how

the iterations decrease the area covered by the particles. As the plots indicate, after the

iterations, the particles reach a sharp posterior distribution from a wide initial distribution.

The plots in the left column of the figure show that the weights based on the correlation

maps are similar to one another after the iterations. As seen in the bottom right plot, which

shows the weights based on Eq. 7.5, the weight of the peak located exactly on the ground

72

Initial Particles

First Iteration

Final Iteration

Figure 7.3: The images in the left column show how our initial particles converge to the
target after the iterations. The plots in the middle column illustrate how the particles reach
a sharp final posterior distribution from the wide initial sampling distribution after the
iterations. In the right column, the plots show the normalized weights and the number of
particles converging to the peaks after the iterations.

truth is slightly lower than the weights of farther peaks (shown within the blue ellipse).

However, most particles converge to the peak closest to the ground truth location as shown

in the plot at the top of the right column. Thus, the final state x∗t is calculated by

x∗t = arg max
x
(i,j)
t,Kt

Jt,Kt , (7.7)

where Jt,Kt is the number of particles x(i,j)t,0 that converge to the common final peak x(i,j)t,Kt
.

However, when the tracker faces a challenging scenario, the area covered by the

particles does not necessarily decrease after the iterations. This is because the particles

73

may converge to different image regions. As seen in Fig. 7.4, after the iterations, the par-

ticles converge to the pole and the jogger, which correspond to two clusters of particles

in this challenging scenario. In such scenarios, we first determine the number of clusters

and select the one that best represents the posterior. Since the particles converge to distinct

image regions, our proposed method can partition them using K-means clustering [52].

We determine the number of modes in the distribution using simplified silhouette analysis

based on the Euclidean distances among particles [95]. The plots in the middle column

of Fig. 7.4 illustrate how the particles form a posterior distribution with two sharp modes

from the wide initial sampling distribution. This posterior distribution is calculated based

on the particle weights according to Eq. 7.5. As seen in the top plot of the right column

of Fig. 7.4, the number of particles converging to each cluster is not sufficiently accurate

to find the image region corresponding to the target. As the plot indicates, only a few par-

ticles converge to the region surrounding the jogger. The bottom plot of the right column

of the figure shows that the weights calculated by Eq. 7.5, on the other hand, provide an

accurate method to distinguish the clusters. Because of the considerable distance between

the clusters, the correlation response maps within different clusters are not similar to each

other. Thus, particle evaluation based on the likelihoods according to Eq. 7.5 is reliable be-

cause correlation maps closer to the target generate higher likelihoods. Thus, we first find

the clusters using K-means after performing the iterations, and the mode of each cluster is

then selected based on the number of particles reaching the final peaks. The best cluster is

then selected based on the correlation response maps corresponding to each mode accord-

ing to Eq. 7.5. Algorithm 7.3 summarizes our mode clustering and target state estimation

method.

7.2 Results and Discussion

We evaluate our algorithm on two publicly available visual tracking benchmarks:

the large-scale single object tracking benchmark (LaSOT) [4] and the visual tracker bench-

74

Initial Particles

Fina Iteration

Cluster 1

Cluster 2

Cluster 1

Cluster 2

Figure 7.4: The images in the left column show that the initial particles reach two clusters
after the iterations in a challenging scenario. The plots in the middle column illustrate that
the two clusters correspond to two sharp posterior distribution modes from the wide initial
sampling distribution after applying K-means to the normalized particle weights. The right
column shows that the weights are more reliable for distinguishing the clusters than the
number of particles converging to their modes.

mark v1.1 beta (OTB100) [6]. All the results shown in this section correspond to a particle

filter with 200 particles.

Algorithm 7.3 Target State Estimation.

Input: Final peaks x(i,j)t,Kt
at time t, their weights ω(i,j)

t,Kt
and Jt,Kt

Output: Current target state x∗t
1: Apply K-means to all final current peaks x(i,j)t,Kt

to find the clusters
2: Find the mode of each cluster based on Jt,Kt
3: Compare the weight of the calculated modes based on ω(i,j)

t,Kt
to select the best mode

4: Consider the best mode as the current target state x∗t

75

7.2.1 LaSOT evaluation

Fig.s 7.5 and 7.6 present precision and success plots of a quantitative assessment

of our proposed approach using a one-pass evaluation (OPE) on LaSOT in comparison

with 10 state-of-the-art trackers including ECO, ASRCF [26], DSiam [27], CFNet [28],

HCFT [44], BACF [29], CSRDCF [30], SRDCF [40], LCT [31] and KCF [32]. In the

one-pass evaluation, the tracker is initialized with the ground truth location of the target

at the first frame of the image sequence and is allowed to keep track of the target over

the remaining frames without reinitialization. As seen in Fig.s 7.5 and 7.6, our tracker

outperforms all the other trackers in terms of overall precision and success. In particular,

it outperforms ASRCF by 1.2% and 2.3%, respectively. Similar to our proposed tracker,

ASRCF is a recent state-of-the-art correlation-convolutional visual tracker that uses ECO

as a baseline method. Our most significant improvements in comparison with ASRCF

occur in low resolution and scale variation scenarios, which show improvements of 2%

and 1.6% in precision and 1.4% and 2.4% in success, respectively. In comparison with

our baseline tracker, our precision improvement reaches 9.1%, 12.0%, and 11.5% in low

resolution, scale variation, and partial occlusion scenarios, respectively. In terms of the

success metric, our improvement in such scenarios reaches 7.5%, 8.8%, and 10.7% in

comparison with ECO.

7.2.2 OTB100 evaluation

Fig.s 7.7 and 7.8 illustrate precision and success plots of a quantitative OPE assess-

ment of our proposed approach in comparison with eight state-of-the-art trackers whose

results in the OTB100 dataset are publicly available: ASRCF, ECO, MDNet [36], HDT

[43], HCFT, FRDCFdecon [33], CREST [34] and CNN-SVM [35]. On the overall evalua-

tion of the precision and success metrics considering the entire dataset, our tracker shows

improvements of approximately 0.6% and 1.6% in comparison with the second best tracker

76

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

P
re

c
is

io
n

Precision plots of OPE on LaSOT Testing Set
[0.335] D2CIP

[0.331] ASRCF

[0.322] DSiam

[0.301] ECO

[0.259] CFNet

[0.241] HCFT

[0.239] BACF

[0.220] CSRDCF

[0.219] SRDCF

[0.190] LCT

[0.166] KCF

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

P
re

c
is

io
n

Precision plots of OPE - Scale Variation (273)
[0.327] D2CIP

[0.322] ASRCF

[0.317] DSiam

[0.292] ECO

[0.253] CFNet

[0.235] BACF

[0.234] HCFT

[0.216] CSRDCF

[0.213] SRDCF

[0.185] LCT

[0.160] KCF

0 10 20 30 40 50

Location error threshold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
re

c
is

io
n

Precision plots of OPE - Fast Motion (53)
[0.285] D2CIP

[0.282] ASRCF

[0.265] ECO

[0.225] DSiam

[0.199] HCFT

[0.194] BACF

[0.183] CFNet

[0.177] LCT

[0.164] CSRDCF

[0.164] SRDCF

[0.110] KCF

0 10 20 30 40 50

Location error threshold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

c
is

io
n

Precision plots of OPE - Out-of-View (104)
[0.254] D2CIP

[0.252] ASRCF

[0.235] DSiam

[0.218] ECO

[0.175] HCFT

[0.167] BACF

[0.162] CFNet

[0.158] CSRDCF

[0.158] LCT

[0.149] SRDCF

[0.115] KCF

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

P
re

c
is

io
n

Precision plots of OPE - Low Resolution (141)
[0.360] D2CIP

[0.353] ASRCF

[0.333] DSiam

[0.330] ECO

[0.259] CFNet

[0.245] HCFT

[0.234] BACF

[0.226] SRDCF

[0.221] CSRDCF

[0.196] LCT

[0.164] KCF

0 10 20 30 40 50

Location error threshold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
re

c
is

io
n

Precision plots of OPE - Partial Occlusion (187)
[0.291] D2CIP

[0.289] ASRCF

[0.281] DSiam

[0.261] ECO

[0.225] CFNet

[0.210] HCFT

[0.194] BACF

[0.184] SRDCF

[0.183] CSRDCF

[0.162] LCT

[0.142] KCF

Figure 7.5: Quantitative assessment of the performance of our tracker in comparison with
state-of-the-art trackers using a one-pass evaluation and precision plots on the LaSOT
benchmark dataset.

ASRCF. Our precision and success improvements in comparison with ASRCF reach 3.6%

and 4.6% in fast motion scenarios, 1.9% and 4.4% in scale variation scenarios, 1.5% and

1.8% in out of view conditions, 2.5% and 3.9% when illumination variations are present

77

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE on LaSOT Testing Set
[0.352] D2CIP

[0.344] ASRCF

[0.333] DSiam

[0.324] ECO

[0.275] CFNet

[0.259] BACF

[0.250] HCFT

[0.245] SRDCF

[0.244] CSRDCF

[0.221] LCT

[0.178] KCF

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Scale Variation (273)
[0.346] D2CIP

[0.338] ASRCF

[0.328] DSiam

[0.318] ECO

[0.267] CFNet

[0.255] BACF

[0.244] HCFT

[0.239] CSRDCF

[0.239] SRDCF

[0.215] LCT

[0.171] KCF

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Fast Motion (53)
[0.246] D2CIP

[0.240] ASRCF

[0.233] ECO

[0.197] DSiam

[0.176] BACF

[0.161] LCT

[0.156] CFNet

[0.146] HCFT

[0.145] SRDCF

[0.140] CSRDCF

[0.089] KCF

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Out-of-View (104)
[0.269] D2CIP

[0.266] ASRCF

[0.253] DSiam

[0.239] ECO

[0.189] HCFT

[0.183] CFNet

[0.181] BACF

[0.175] CSRDCF

[0.173] LCT

[0.168] SRDCF

[0.130] KCF

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Low Resolution (141)
[0.287] D2CIP

[0.283] ASRCF

[0.267] ECO

[0.257] DSiam

[0.195] BACF

[0.195] CFNet

[0.187] SRDCF

[0.185] HCFT

[0.177] CSRDCF

[0.170] LCT

[0.126] KCF

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Partial Occlusion (187)
[0.321] D2CIP

[0.317] ASRCF

[0.303] DSiam

[0.290] ECO

[0.246] CFNet

[0.233] HCFT

[0.222] BACF

[0.214] SRDCF

[0.211] CSRDCF

[0.198] LCT

[0.161] KCF

Figure 7.6: Quantitative assessment of the performance of our tracker in comparison with
state-of-the-art trackers using a one-pass evaluation and success plots on the LaSOT bench-
mark dataset.

and 4.4% and 1.9% in scenes including occlusion. In some challenging scenarios in the

OTB100 dataset, ASRCF is outperformed by ECO and MDNet. ECO is the second best

tracker in the success metric for fast motion, scale variation, and illumination variation sce-

78

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE

D2CIP [0.927]

ASRCF [0.922]

ECO [0.910]

MDNet [0.909]

HDT [0.848]

CREST [0.838]

HCFT [0.837]

SRDCFdecon [0.825]

CNN-SVM [0.814]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE - scale variations (64)

D2CIP [0.910]

ASRCF [0.893]

MDNet [0.892]

ECO [0.879]

HDT [0.808]

SRDCFdecon [0.805]

HCFT [0.799]

CNN-SVM [0.787]

CREST [0.786]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE - fast motion (39)

D2CIP [0.916]

MDNet [0.885]

ASRCF [0.884]

ECO [0.878]

HDT [0.817]

HCFT [0.815]

CREST [0.792]

SRDCFdecon [0.775]

CNN-SVM [0.747]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE - out of view (14)

D2CIP [0.932]

ASRCF [0.918]

ECO [0.913]

MDNet [0.825]

CREST [0.734]

HCFT [0.677]

HDT [0.663]

CNN-SVM [0.650]

SRDCFdecon [0.641]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE - illumination variations (38)

D2CIP [0.951]

ASRCF [0.928]

MDNet [0.915]

ECO [0.914]

CREST [0.876]

SRDCFdecon [0.835]

HDT [0.820]

HCFT [0.817]

CNN-SVM [0.795]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Precision plots of OPE - occlusions (49)

D2CIP [0.931]

ECO [0.908]

ASRCF [0.891]

MDNet [0.857]

CREST [0.786]

HDT [0.774]

SRDCFdecon [0.768]

HCFT [0.767]

CNN-SVM [0.730]

Figure 7.7: Quantitative performance assessment of our tracker in comparison with eight
state-of-the-art trackers using a one-pass evaluation and precision plots on the OTB100
benchmark dataset.

narios, as well as in both metrics for occlusion scenarios. Our performance improvements

with respect to ECO in these scenarios are 2.8%, 3.8%, 3.4%, 2.5%, and 1.8%, respectively.

MDNet only outperforms ASRCF in the precision metric for fast motion scenarios. In that

case, our performance improvement with respect to MDNet is 3.5%.

79

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

D2CIP [0.703]

ASRCF [0.692]

ECO [0.691]

MDNet [0.678]

SRDCFdecon [0.627]

CREST [0.623]

HDT [0.564]

HCFT [0.562]

CNN-SVM [0.554]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - scale variations (64)

D2CIP [0.691]

ECO [0.666]

ASRCF [0.662]

MDNet [0.658]

SRDCFdecon [0.607]

CREST [0.572]

CNN-SVM [0.490]

HDT [0.486]

HCFT [0.485]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - fast motion (39)

D2CIP [0.702]

ECO [0.683]

MDNet [0.675]

ASRCF [0.671]

CREST [0.627]

SRDCFdecon [0.606]

HCFT [0.570]

HDT [0.568]

CNN-SVM [0.546]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - out of view (14)

D2CIP [0.678]

ASRCF [0.666]

ECO [0.660]

MDNet [0.627]

CREST [0.566]

SRDCFdecon [0.510]

CNN-SVM [0.488]

HCFT [0.474]

HDT [0.472]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - illumination variations (38)

D2CIP [0.737]

ECO [0.713]

ASRCF [0.709]

MDNet [0.689]

SRDCFdecon [0.646]

CREST [0.644]

HCFT [0.540]

CNN-SVM [0.537]

HDT [0.535]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - occlusions (49)

D2CIP [0.692]

ECO [0.680]

ASRCF [0.679]

MDNet [0.646]

CREST [0.592]

SRDCFdecon [0.589]

HDT [0.528]

HCFT [0.525]

CNN-SVM [0.515]

Figure 7.8: Quantitative performance assessment of our tracker in comparison with eight
state-of-the-art trackers using a one-pass evaluation and success plots on the OTB100
benchmark dataset.

Fig. 7.9 presents a qualitative assessment of our tracker in comparison with AS-

RCF, ECO, and HCFT. In the first row, the other trackers fail because of a relatively long

occlusion period, which causes not only tracking loss but also incorrect model updates.

Our tracker, on the other hand, finds multiple potential clusters during partial occlusion

80

Frame 90Frame 30Frame 5

Frame 100 Frame 160 Frame 250

Frame 520Frame 430Frame 4

Ours ASRCF ECO HCFT

Figure 7.9: Qualitative evaluation of our tracker in comparison with ASRCF, ECO and
HCFT on three challenging sequences of the OTB100 (top row, Girl2 sequence) and La-
SOT datasets (middle and bottom rows, Train-1 and Goldfish-4 sequences, respectively).

and maintains one model per cluster. When the target becomes visible again, this enables

our tracker to sample from distributions closer to the target and assess the corresponding

updated models. In the second row, the other trackers fail because of a period of fast motion

by the target. Our particle filter enables our tracker to sample particles over a wider search

area and the iterative particle refinement allows it to reach the best location for the target.

In the third row, the presence of several similar objects causes failures in the other trackers,

whereas our novel method for evaluating the particle likelihoods locates the correct target

accurately.

81

Table 7.1: Ablative analysis of the components of the proposed visual tracker. PF cor-
responds to the integration of the baseline tracker with the particle filter model. IPF in-
corporates the iterative particle refinement procedure. IPFK includes the clustering of the
likelihood distributions. D2CIP corresponds to our complete algorithm, which further in-
corporates maintaining one target model for each predicted mode. The numbers within
parentheses indicate the relative performance gains over the baseline tracker.

Benchmark PF IPF IPFK D2CIP Precision Success

LaSOT

D 7 7 7 30.9% (+2.6%) 33.1% (+2.3%)D D 7 7 32.3% (+7.3%) 34.5% (+6.4%)D D D 7 33.2% (+10.4%) 34.9% (+7.9%)D D D D 33.5% (+11.3%) 35.2% (+8.7%)

OTB100

D 7 7 7 91.5% (+0.5%) 69.6% (+0.7%)D D 7 7 92.2% (+1.3%) 69.9% (+1.2%)D D D 7 92.6% (+1.8%) 70.2% (+1.6%)D D D D 92.7% (+1.9%) 70.3% (+1.7%)

7.2.3 Ablative analysis

Table 7.1 shows the performance improvement introduced by the different compo-

nents of our proposed method and compares them with ECO [69], our baseline tracker. As

seen in Table 7.1, our proposed method improves the performance of ECO by 11.3% in

terms of precision and 8.7% on the success metric for LaSOT. Since the OTB100 dataset

contains less complex sequences, the performance of the baseline tracker is already rela-

tively high for both metrics. Nonetheless, our tracker still provides up to 1.9% and 1.7%

relative improvements in precision and success.

82

CHAPTER 8
ADAPTIVE TARGET MODEL UPDATE USING SHORT-TERM MEMORY

To increase the robustness of the method presented in the previous chapter to model

drift, we propose a new model update strategy based on the confidence scores of the corre-

lation response maps. Inspired by the approach proposed in [96], we employ the confidence

score vector in a finite state machine that assigns three different states to the tracking al-

gorithm: target found, partially lost, and fully lost. The target model is updated based on

the state of the tracker. In the partially lost state, our tracker then employs a short-term

memory mechanism to save previous models, including the model corresponding to the

last frame in which the tracker was in the target found state. No model update is performed

in the fully lost state. We evaluated the performance of our tracker on OTB100 [6] and

LaSOT [4] and observed significant improvement against state-of-the-art methods.

8.1 Proposed Algorithm

After selecting the best particle for the current frame using our iterative particle

filter as explained in Section 7.1.2, we use its correlation response map to determine the

target state. We calculate its mean and negative entropy according to

µt =
1

M ×Q

M∑
m=1

Q∑
q=1

R∗t(m,q), (8.1)

Et =
1

M ×Q

M∑
m=1

Q∑
q=1

R∗t(m,q) log(R∗∗t(m,q)), (8.2)

where R∗t(m,q) ∈ RM×Q represents the correlation response map corresponding to the best

particle and R∗∗t(m,q) is its normalized version. We then compute the moving weighted aver-

age of Gk = [µk, Ek]
T over the last β frames

Wt =

∑t
k=t−β−1Gkk∑t
k=t−β−1 k

. (8.3)

83

Finally, as proposed in [96] the confidence score vector of the current frame St = [Sµt , SEt]
T

is given by

St =
Wt −Gt

(Wt +Gt)/2
. (8.4)

We use this confidence score vector in a finite state machine which includes three

different states: target found, partially lost, and fully lost. The finite state machine is

initialized in the first frame in the target found state. The corresponding confidence scores

are updated only in the target found state while the weighted averages are updated only

in the two other states. The reason behind this design is that we do not want the frames

with weak correlation response map affect on the expected mean and entropy [96]. The

confidence scores of the current frame Sµt and SEt are compared with a mean threshold

µtr, and two entropy thresholdsEpt andEft, which determine the transitions to the partially

lost and fully lost states. If

Sµt > µtr ∨ SEt > Ept, (8.5)

the tracker remains in the target found state, meaning that the confidence score is suffi-

ciently high to allow the tracker to operate normally. In this scenario, the best particle is

selected as the target state of the current frame, and the model is updated using the method

described in Section 7.1.1.2. When the following conditions are satisfied

Sµt ≤ µtr ∧ SEt ≤ Ept ∧ SEt > Eft, (8.6)

the tracker transitions to the partially lost state, meaning that the tracker has lower confi-

dence on its estimate because part of the target might be occluded or the target appearance

temporarily changed because of fast motion or other challenging scenarios. In this state,

the size and position of the target are determined by the correlation response map of the

best particle as in the target found state. However, once the tracker transitions to this state,

we initiate a short-term memory mechanism to update its correlation filter based on models

generated in previous frames.

84

Before starting the

partially lost state
End of the partially

lost state

Figure 8.1: Using the model of frame before starting the partially lost state caused by a
partial occlusion helps to find the target after finishing the partially lost state.

Fig. 8.1 illustrates a scenario where the target is temporarily partially occluded,

which puts the tracker in the partially lost state. In that case, our short-term memory

mechanism uses the best model obtained in the last frame in which the tracker was in the

target found state to update the correlation filter. This model allows us to find the target

once it is no longer occluded. In other challenging scenarios, such as those caused by

fast target motion, we need a different approach. By incorporating all of the best models

obtained over the previous β in partially lost state, we are able to keep track of the target

until its appearance returns to normal. Fig. 8.2 illustrates our short-term memory method.

At time t, we evaluate the target likelihood using the N models generated for all high-

likelihood particles at t− 1, as in the target found state. Additionally, we evaluate the best

model obtained in the target found state (frame t − 6 in the figure) and the best models

from the β = 3 previous frames in partially lost state. In the example shown in Fig. 8.2,

the model generated at time t − 3 is the most similar to the target because it contains the

least amount of motion blur. Algorithm 8.2 explain our short-term memory.

In scenarios where the confidence score of the correlation response map is signifi-

cantly lower than average, i.e., when the following conditions are satisfied

Sµt ≤ µtr ∧ SEt ≤ Ept ∧ SEt ≤ Eft, (8.7)

85

t-6 t-5 t-4 t-3 t-2 t

Start of the partially

lost state because

of a fast motion

Current

Frame

Adding the best model of the

frames "t-4, t-3 & t-2" to the

correlation �lter of the frame t

Model

 1

Model

 N

Best

Model
Compare

Compare

C
o
m

p
a
r
e

Best

Model

C
o
m

p
a
r
e

C
o
m

p
a
r
e

C
o
m

p
a
r
e

Best

Model

Best

Model

t-1

Figure 8.2: Illustration of the short-term memory mechanism used in the partially lost
state.

Figure 8.3: Illustration of how the short-term memory mechanism helps tracking.
Black, green and yellow squares show the search areas, target found and partially
lost states.

the target is likely lost due to complete occlusion or other challenging scenarios. In that

case, tracker transitions to the fully lost state. In this state, model updates are not performed

to avoid model drift. In addition, since no information is available regarding the likelihood

of the target, the tracker considers the previous target state as its current estimate. Algo-

rithm 8.1 explain our proposed framework.

86

Algorithm 8.1 Confidence Score Computation
Input: Correlation response map R∗t and target state x∗t of the best particle of the current

frame t, previous target state xt−1 and previous correlation filter
Output: Final target state xt of the current frame t, method of generating the target models

used in the next frame t+ 1 and search area size Ws

1: Compute the confidence score according to Eq. 8.1 to Eq. 8.4
2: if tracker state = target found based on Eq. 8.5 then
3: Find xt and update the model as normal
4: end if
5: if tracker state = partially lost based on Eq. 8.6 then
6: Find xt as normal but use short-term memory to update the models based on

Algorithm 8.2
7: end if
8: if tracker state = fully lost based on Eq. 8.7 then
9: Use xt−1 as xt and stop updating the models

10: end if
11: Determine the search area size W according to Eq. 8.8 to Eq. 8.10

Figure 8.4: Illustration of the three states of the tracker. Black, green, yellow and red
squares show the search areas, target found, partially lost and fully lost states.

The confidence score vector can also be used to scale the search area size Ws. That

is, the lower the confidence of the tracker on its estimated target position, the larger the

search area it should consider. Again, similar to the strategy proposed in [96], we define

the search window size as

Ws = Wh

[(√
Enµn
2

)
STt Tr

]
+Wl, (8.8)

87

where Tr = [µ−1t , E−1ft], En and µn are the normalized constants such that the following

relationship holds

0 ≤ STt Tr ≤ 1, (8.9)

and Wh and Wl determine the acceptable range of search area sizes such that

Wl ≤ Ws ≤ Wl +Wh. (8.10)

Algorithm 8.2 Short-term Memory
Input: Previous model set, best model generated in frame t−1 and estimated tracker state

in frame t
Output: Updated model set to be employed in frame t+ 1

1: Generate the models for all high likelihood particles in frame t
2: if previous tracker state = fully found then
3: add the best model of frame t− 1 to our model set
4: end if
5: if previous tracker state = partially lost then
6: Add the best model of frame t− 1 to our model models
7: if the best model of frame t− 4 is available in our model set then
8: Remove it
9: end if

10: end if

8.2 Results and Discussion

We evaluate our algorithm on OTB100. In this visual tracker, we use HCFT [44]

as the baseline of our framework instead of ECO [69] used in the previous chapter. Based

on the experiments, we consider µtr = 0.28, Ept = 0.17, Eft = 0.57, Wl = 1 and

Wh = 3.5. In Fig 8.5, we provide a quantitative evaluation of our proposed approach

(DCPF_3) on a one-pass evaluation (OPE) in comparison with 9 state-of-the-art trackers:

CREST [34], CFNet-conv3 [90], SiameseFC [91], SINT [92], FRDCFdecon [33], LCT

[31] and CNN-SVM [35], HDT [43] and HCFT [44]. On the overall evaluation of the

88

precision and success plots, our tracker shows improvements of 4.5% and 3.5% in com-

parison with HDT, the second-best tracker in the precision metric and SRDCFdecon, the

second-best tracker according to the success metric. In comparison with the well-known

HCFT, the corresponding improvements are 5.5% and 15%. For the challenging scenarios

of fast motion, deformation, low resolution, background clutter and out-of-plane rotation,

our tracker shows improvements of approximately 7%, 6.5%, 6%, 4.5% and 4%, respec-

tively, in comparison with the second-best tracker.

In Fig. 8.3, we further illustrate how the short-term memory contributes to our

tracker’s performance. After a tracking failure, the short-term memory mechanism helps

the tracker to find the correct target and resume tracking it. In Fig. 8.4 we provide an

example that incorporates all three states of the algorithm. Using the previous position and

stopping the model update in the fully lost states help the tracker refrain from following the

man instead of the girl.

89

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE

DCPF_3 [0.883]

HDT [0.848]

CREST [0.838]

HCFT [0.837]

SRDCFdecon [0.825]

CNN-SVM [0.814]

SINT [0.789]

CFNet_conv3 [0.777]

SiamFC_3s [0.771]

LCT [0.762]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE

DCPF_3 [0.650]

SRDCFdecon [0.627]

CREST [0.623]

SINT [0.592]

CFNet_conv3 [0.589]

SiamFC_3s [0.582]

HDT [0.564]

HCFT [0.562]

LCT [0.562]

CNN-SVM [0.554]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - deformation (44)

DCPF_3 [0.875]

HDT [0.821]

CNN-SVM [0.793]

HCFT [0.791]

CREST [0.776]

SRDCFdecon [0.754]

SINT [0.745]

CFNet_conv3 [0.713]

SiamFC_3s [0.690]

LCT [0.689]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - deformation (44)

DCPF_3 [0.593]

CREST [0.569]

SRDCFdecon [0.553]

SINT [0.550]

CNN-SVM [0.547]

HDT [0.543]

HCFT [0.530]

CFNet_conv3 [0.525]

SiamFC_3s [0.506]

LCT [0.499]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - fast motion (39)

DCPF_3 [0.872]

HDT [0.817]

HCFT [0.815]

CREST [0.792]

SRDCFdecon [0.775]

CNN-SVM [0.747]

SINT [0.743]

SiamFC_3s [0.743]

CFNet_conv3 [0.704]

LCT [0.681]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - fast motion (39)

DCPF_3 [0.659]

CREST [0.627]

SRDCFdecon [0.606]

SINT [0.570]

HCFT [0.570]

SiamFC_3s [0.568]

HDT [0.568]

CFNet_conv3 [0.555]

CNN-SVM [0.546]

LCT [0.534]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - low resolution (9)

DCPF_3 [0.896]

SiamFC_3s [0.847]

HDT [0.846]

HCFT [0.831]

CREST [0.819]

CNN-SVM [0.811]

SINT [0.768]

CFNet_conv3 [0.750]

SRDCFdecon [0.644]

LCT [0.537]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - low resolution (9)

DCPF_3 [0.617]

SiamFC_3s [0.592]

CFNet_conv3 [0.552]

CREST [0.528]

SINT [0.521]

SRDCFdecon [0.492]

HDT [0.456]

HCFT [0.439]

CNN-SVM [0.403]

LCT [0.354]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - out-of-plane rotation (63)

DCPF_3 [0.874]

CREST [0.842]

SINT [0.811]

HCFT [0.807]

HDT [0.805]

CNN-SVM [0.798]

SRDCFdecon [0.797]

CFNet_conv3 [0.759]

SiamFC_3s [0.756]

LCT [0.746]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - out-of-plane rotation (63)

DCPF_3 [0.627]

CREST [0.615]

SINT [0.598]

SRDCFdecon [0.591]

SiamFC_3s [0.558]

CFNet_conv3 [0.556]

CNN-SVM [0.548]

LCT [0.538]

LCT [0.538]

HCFT [0.534]

Location error threshold

0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

Precision plots of OPE - background clutter (31)

DCPF_3 [0.886]

SRDCFdecon [0.850]

HDT [0.844]

HCFT [0.843]

CREST [0.829]

CNN-SVM [0.776]

SINT [0.776]

CFNet_conv3 [0.755]

LCT [0.734]

SiamFC_3s [0.690]

Overlap threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1
Success plots of OPE - background clutter (31)

DCPF_3 [0.659]

SRDCFdecon [0.641]

CREST [0.618]

SINT [0.590]

HCFT [0.585]

HDT [0.578]

CFNet_conv3 [0.561]

LCT [0.550]

CNN-SVM [0.548]

SiamFC_3s [0.523]

Figure 8.5: OPE quantitative evaluation of our tracker in comparison with nine state-of-
the-art trackers on OTB100.

90

CHAPTER 9
CONCLUSION

This final chapter summarizes the main findings and contributions of this disserta-

tion and discusses some possible future research directions related to this dissertation.

9.1 Summary

This dissertation provides several contributions to improve the performance of vi-

sual tracking algorithms. All six visual tracking techniques proposed in this dissertation

resort to the integration of a novel particle filter, a deep convolutional neural network, and

a correlation filter. The visual tracking algorithm described in Chapter 1 is one of the first

visual trackers to use particle filters in conjunction with deep learning techniques. Sequen-

tial Monte Carlo methods such as particle filters have been used to incorporate temporal

information and hence develop robust object tracking algorithms that build on features that

range from simple color histograms to support vector machines. It is only natural to in-

tegrate such temporal robustness with recent state-of-the-art, highly discriminative feature

extraction techniques such as correlation filter-based deep convolutional neural networks.

We use the response maps generated by a correlation filter for each particle to calculate its

corresponding weight. However, our initial framework, similar to other correlation visual

trackers, can not find the target sizes. Thus, we extend our particle filter to sample particles

for both the location and size of the target.

The main drawback of particle filters is their computational cost. So, in Chapter 5,

we propose an adaptive particle filter which decrease the number of the particles especially

in simple frames where locating the target is not challenging. We then present a likelihood

particle filter which estimates a likelihood distribution as the proposal density for a parti-

cle filter based on correlation response maps. Correlation response maps provide an initial

estimate of the target location, which results in more accurate particles. Furthermore, the

91

resulting likelihood distribution has a wider variance in challenging scenarios such as in

the presence of fast motion and motion blur. In our fifth approach, we propose an itera-

tive particle filter which refines the particles by considering the peak estimated from the

correlation response map as a new particle. This process continues until the distance be-

tween the particle and its peak is smaller than a threshold. This iterative procedure leads

most particles to converge to only a few final positions. By iteratively updating the particle

likelihoods, our method also addresses the problem of calculating the posterior distribution

over the correct support points in particle-correlation trackers.

This dissertation also provides a number of contributions towards the improvement

of the target model generated by correlation filters. In our second visual tracker, we find all

of the high-likelihood particles and calculate a model for each of them, because the com-

mon correlation filters are heavily dependent upon the estimated target position. In our third

approach, we generate multiple target models in each frame by applying different update

rates to the models created by the high-likelihood particles. For challenging frames, we use

lower update rates, which means we rely more on previous target models. In Chapter 6,

we present a mechanism based on a Gaussian mixture model that allows our algorithm to

accommodate multi-modal likelihoods by clustering particles according to the distribution

of their correlation response maps. Our particle filter then generates a likelihood distribu-

tion for each correlation map cluster in difficult scenarios such as those involving target

occlusions. We then introduce an iterative approach that allows the particles to converge to

a small number of locations closer to the actual target position in Chapter 7. In our sixth

strategy, discussed in Chapter 8, We define a confidence score calculated from the corre-

lation response map of the best particle to overcome challenging scenarios such as those

involving occlusion, fast motion, or target deformation. We use the confidence score vector

in a finite state machine comprised of three different states: target found, partially lost, and

fully lost. In the partially lost state, a short-term memory is used to save target models from

92

previous frames in partially lost state and the model of the last frame in found state. In the

fully lost state, the target models is not updated.

The evaluation of our proposed strategies on different benchmarks demonstrates

that our methods substantially outperform several state-of-the-art techniques.

9.2 Future work

The recursive Bayesian estimation methods and models presented in this disserta-

tion shows that sequential Monte Carlo methods can be successfully used to improve the

performance of visual tracking algorithms. However, as is common in such frameworks,

several parameters of our algorithms must be determined empirically. Identifying strategies

to determine these parameters automatically is a promising direction for future research. In

particular, more effective mode finding strategies such as mean-shift [97] might allow us to

better accommodate multi-modal likelihoods while resorting to fewer heuristic strategies

to determine the number of modes in the distribution. As previously mentioned, compu-

tational cost is also a drawback in particle filters. Improving the likelihood models using

smaller but more accurate deep neural networks would allow us to reduce the number

of particles needed by our algorithms. Recently, many new visual tracking benchmarks

have been proposed such as [98]. These benchmark datasets could be used for training

the networks to improve the accuracy of our likelihood models. Our short-term memory

mechanism explained in Chapter 8 can be combined with our another contribution in ap-

plying different adjusting rates explained in Chapter 5. For example, variable target model

update rates could be used according to the state of the tracker. We can also define new

tracker states that account for the different modes of the likelihood distribution. This strat-

egy would allow us to account for rapid target appearance changes without allowing the

model to drift because of potentially confusing background regions.

93

BIBLIOGRAPHY

[1] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What your images
reveal: Exploiting visual contents for point-of-interest recommendation,” in 26th In-
ternational World Wide Web Conference, WWW 2017, 2017, pp. 391–400.

[2] K. Patel. (2020) Architecture comparison of alexnet, vggnet, resnet, in-
ception, densenet. [Online]. Available: https://towardsdatascience.com/
architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d

[3] T. Li, S. Sun, T. P. Sattar, and J. M. Corchado, “Fight sample degeneracy and impov-
erishment in particle filters: A review of intelligent approaches,” Expert Systems with
Applications, vol. 41, pp. 3944–3954, 2014.

[4] H. Fan, L. Lin, Y. Fan, P. Chu, G. Deng, S. Yu, and H. Bai, “LaSOT: A high-quality
benchmark for large-scale single object tracking,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[5] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity recogni-
tion,” in International Conference on Computer Vision (ICCV), 2016.

[6] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834–1848, 2015.

[7] J. Janai, F. GÃŒney, A. Behl, and A. Geiger, Computer Vision for Autonomous Ve-
hicles: Problems, Datasets and State of the Art. Now Foundations and Trends,
2020.

[8] G. Sreenu and M. A. Saleem Durai, “Intelligent video surveillance: a review through
deep learning techniques for crowd analysis,” Journal of Big Data, vol. 6, no. 48,
2019.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances In Neural Information Processing Sys-
tems, pp. 1–9, 2012.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR (Presented at International Conference on Learning Rep-
resentations, 2015), vol. abs/1409.1556, 2014.

[11] C. Bishop, Pattern recognition and machine learning. New York, NY, USA:
Springer, 2006.

https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d
https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d

94

[12] E. Alpaydin, Introduction to machine learning. Cambridge, MA, USA: MIT Press,
2014.

[13] L. Li Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and
Trends in Signal Processing, vol. 7, pp. 197–387, 2014.

[14] X. Wang, Y. Zhao, and F. Pourpanah, “Recent advances in deep learning,” Interna-
tional Journal of Machine Learning and Cybernetics, vol. 11, pp. 747–750, 2020.

[15] S. N. Gowda, “Human activity recognition using combinatorial deep belief networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

[16] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Young Choi, “Action-decision networks for
visual tracking with deep reinforcement learning,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[17] Q. Wang, C. Yuan, J. Wang, and W. Zeng, “Learning attentional recurrent neural
network for visual tracking,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
930–942, 2019.

[18] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for vi-
sual tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2016.

[19] Y. Liu, J. Han, Z. Qiang, and S. Caifeng, “Deep salient object detection with con-
textual information guidance,” IEEE Transactions on Image Processing, vol. 29, pp.
360–374, 2020.

[20] T.-Y. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature
pyramid networks for object detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional net-
works for accurate object detection and segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 1, pp. 142–158, 2016.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” 2015, pp. 1–10.

[23] A. Siddique, R. J. Mozhdehi, and H. Medeiros, “Deep heterogeneous autoencoder for
subspace clustering of sequential data,” arXiv:2007.07175, 2020.

95

[24] F. S. Bashiri, E. LaRose, J. C. Badger, R. M. D’Souza, Z. Yu, and P. Peissig, “Object
detection to assist visually impaired people: A deep neural network adventure,” in
13th International Symposium on Visual Computing (ISVC), 2018.

[25] N. Wang and D.-Y. Yeung, “Learning a deep compact image representation for visual
tracking,” in Conference on Neural Information Processing Systems (NIPS), 2013.

[26] K. Dai, D. Wang, L. Huchuan, C. Sun, and J. LI, “Visual tracking via adaptive
spatially-regularized correlation filters,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[27] Q. Guo, W. Feng, C. zhou, R. Huang, L. Wan, and S. Wang, “Learning dynamic
siamese network for visual object tracking,” in International Conference on Com-
puter Vision (ICCV), 2017.

[28] J. Valmadre, L. Bertinetto, J. F. Henriques, and P. H. S. Vedaldi, Andrea Torr, “End-to-
end representation learning for correlation filter based tracking,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[29] H. K. Galoogahi, A. Fagg, and S. Lucey, “Learning background-aware correlation
filters for visual tracking,” in International Conference on Computer Vision (ICCV),
2017.

[30] A. Lukezic, T. Vojir, L. Cehovin, J. Matas, and M. Kristan, “Discriminative corre-
lation filter with channel and spatial reliability,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[31] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term correlation tracking.” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
5388–5396.

[32] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with
kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 3, pp. 583–596, 2015.

[33] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Adaptive decontamination of
the training set: A unified formulation for discriminative visual tracking,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[34] Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M.-H. Yang, “CREST: Convolutional
residual learning for visual tracking,” in IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 2555 – 2564.

96

[35] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative
saliency map with convolutional neural network,” in International Conference on
Machine Learning (ICML), 2015.

[36] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for vi-
sual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[37] H. Fan and H. Ling, “SANet: Structure-aware network for visual tracking,” in CVPR
Workshop on DeepVision: Temporal Deep Learning, 2017.

[38] J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi, “Visual tracking using
attention-modulated disintegration and integration,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[39] M. Tang and J. Feng, “Multi-kernel correlation filter for visual tracking,” in IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 3038–3046.

[40] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning spatially reg-
ularized correlation filters for visual tracking,” in IEEE International Conference on
Computer Vision (ICCV), 2015.

[41] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, “Visual tracking via adaptive spatially-
regularized correlation filters,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 4670–4679.

[42] M. Zhang, Q. Wang, J. Xing, J. Gao, P. Peng, W. Hu, and S. Maybank, “Visual
tracking via spatially aligned correlation filters network,” in European Conference on
Computer Vision (ECCV), 2018, pp. 469–485.

[43] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M. H. Yang, “Hedged deep
tracking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016, pp. 4303–4311.

[44] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolutional features
for visual tracking,” in IEEE International Conference on Computer Vision (ICCV),
December 2015.

[45] R. J. Mozhdehi and H. Medeiros, “Deep convolutional particle filter for visual track-
ing,” in IEEE International Conference on Image Processing (ICIP), 2017.

[46] H. Fu, Y. Zhang, Z. Wuneng, W. Xiaofeng, and H. Zhang, “Learning reliable-spatial
and spatial-variation regularization correlation filters for visual tracking,” Image and
Vision Computing, vol. 94, p. 103869, 2020.

97

[47] P. M. Raju, D. Mishra, and P. Mukherjee, “DA-SACOT: Domain adaptive-
segmentation guided attention for correlation based object tracking,” Image and Vi-
sion Computing, p. 104215, 2021.

[48] R. J. Mozhdehi, Y. Reznichenko, A. Siddique, and H. Medeiros, “Deep convolutional
particle filter with adaptive correlation maps for visual tracking,” in IEEE Interna-
tional Conference on Image Processing (ICIP), 2018.

[49] R. J. Mozhdehi and H. Medeiros, “Deep convolutional correlation iterative particle
filter for visual tracking,” arXiv preprint arXiv:2107.02984, 2021.

[50] R. J. Mozhdehi, Y. Reznichenko, A. Siddique, and H. Medeiros, “Convolutional adap-
tive particle filter with multiple models for visual tracking,” in 13th International
Symposium on Visual Computing (ISVC), 2018.

[51] R. J. Mozhdehi and H. Medeiros, “Deep convolutional likelihood particle filter for
visual tracking,” in 24th International Conference on Image Processing, Computer
Vision, & Pattern Recognition (IPCV), 2020.

[52] C. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in IEEE Conference on Computer Vision and Pattern
Recognition. Ieee, 2009, pp. 248–255.

[54] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[56] P. Ambrozio Dias, “Stochastic methods for fine-grained image segmentation and un-
certainty estimation in computer vision,” Ph.D. dissertation, Marquette University,
2020.

[57] V. V. Bhagavatula and V. Naresh Boddeti, “Advances in correlation filters: vector
features, structured prediction and shape alignment,” Ph.D. dissertation, Carnegie
Mellon University, 2012.

[58] M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer, “Adaptive color attributes
for real-time visual tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

http://www.deeplearningbook.org

98

[59] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, 2002.

[60] T. Zhang, S. Liu, and C. Xu, “Correlation particle filter for visual tracking,” IEEE
Transactions on Image Processing, vol. 27, no. 6, pp. 2676–2687, 2018.

[61] H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature represen-
tations online for robust visual tracking,” IEEE Transactions on Image Processing,
vol. 25, no. 4, pp. 1834–1848, April 2016.

[62] A. Shinde, A. Sahu, D. Apley, and G. Runger, “Preimages for variation patterns from
kernel PCA and bagging,” IIE Transactions, vol. 46, no. 5, pp. 429–456, 2014.

[63] H. Li, Y. Li, and F. Porikli, “Convolutional neural net bagging for online visual track-
ing,” Computer Vision and Image Understanding, vol. 153, pp. 120–129, 2016.

[64] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, W. R. Lau, and M.-
H. Yang, “Vital: Visual tracking via adversarial learning,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[65] K. Chen and W. Tao, “Once for all: a two-flow convolutional neural network for
visual tracking,” IEEE Transactions on Circuits and Systems for Video Technology,
September 2017.

[66] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convolutional features
for correlation filter based visual tracking,” in IEEE International Conference on
Computer Vision (ICCV) Workshops, December 2015.

[67] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and experimental
comparison,” Pattern Recognition, vol. 76, pp. 323–338, 2018.

[68] M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Fels-berg, “Beyond correlation
filters: Learning continuous convolution operators for visual tracking,” in European
Conference on Computer Vision (EECV), 2016.

[69] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “Eco: Efficient convo-
lution operators for tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[70] N. Wang, Q. Zhou, R. Tian, R. Hong, M. Wang, and H. Li, “Multi-cue correlation fil-
ters for robust visual tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

99

[71] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning spatial-temporal regu-
larized correlation filters for visual tracking,” in IEEE conference on computer vision
and pattern recognition (CVPR), 2018, pp. 4904–4913.

[72] Z. Zhu, W. Wu, W. Zou, and J. Yan, “End-to-end flow correlation tracking with
spatial-temporal attention,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2018, pp. 548–557.

[73] C. Sun, H. Wang, H. Lu, and M.-H. Yang, “Correlation tracking via joint discrimi-
nation and reliability learning,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[74] F. Du, P. Liu, W. Zhao, and X. Tang, “Joint channel reliability and correlation filters
learning for visual tracking,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 30, no. 6, pp. 1625–1638, 2020.

[75] T. Zhang, C. Xu, and M.-H. Yang, “Multi-task correlation particle filter for robust
object tracking,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[76] T. Zhang, S. Liu, and C. Xu, “Correlation particle filter for visual tracking,” IEEE
Transactions on Image Processing, vol. 27, no. 6, pp. 2676–2687, 2018.

[77] D. Yuan, X. Lu, D. Li, Y. Liang, and X. Zhang, “Particle filter re-detection for visual
tracking via correlation filters,” Multimedia Tools and Applications, vol. 78, no. 11,
pp. 14 277–14 301, 2019.

[78] Z. Fan, H. Ji, and Y. Zhang, “Iterative particle filter for visual tracking,” Image Com-
munication, vol. 36, pp. 140–153, 2015.

[79] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[80] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
CoRR, vol. abs/1311.2901, 2013. [Online]. Available: http://arxiv.org/abs/1311.2901

[81] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative
saliency map with convolutional neural network,” in International Conference on
Machine Learning (ICML), 2015.

[82] J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi, “Visual tracking using
attention-modulated disintegration and integration,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

http://arxiv.org/abs/1311.2901

100

[83] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1409–1422,
2012.

[84] W. Zhong, H. Lu, and M. H. Yang, “Robust object tracking via sparse collabora-
tive appearance model,” IEEE Transactions on Image Processing, vol. 23, no. 5, pp.
2356–2368, 2014.

[85] X. Jia, “Visual tracking via adaptive structural local sparse appearance model,” in Pro-
ceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, 2012, pp. 1822–1829.

[86] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1269–1276.

[87] T. B. Dinh, N. Vo, and G. Medioni, “Context tracker: Exploring supporters and dis-
tracters in unconstrained environments,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[88] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in IEEE International
Conference on Computer Vision (ICCV), 2011, pp. 1195–1202.

[89] H. Y. Cheng and J. N. Hwang, “Adaptive particle sampling and adaptive appearance
for multiple video object tracking,” Signal Processing, vol. 89, no. 9, pp. 1844–1849,
2009.

[90] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S. Torr, “End-to-end
representation learning for correlation filter based tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[91] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-
convolutional Siamese networks for object tracking,” in ECCV 2016 Workshops,
2016, pp. 850–865.

[92] R. Tao, E. Gavves, and A. W. M. Smeulders, “Siamese instance search for tracking,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[93] T. Kawabata, “Multiple subunit fitting into a low-resolution density map of a macro-
molecular complex using a gaussian mixture model,” Biophysical Journal, vol. 95,
no. 10, pp. 4643–4658, 2008.

[94] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp.

101

53–65, 1987. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0377042787901257

[95] F. Wang, H.-H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. Ross, “An analysis of
the application of simplified silhouette to the evaluation of k-means clustering valid-
ity,” in International Conference on Machine Learning and Data Mining in Pattern
Recognition, 2017, pp. 291–305.

[96] R. Walsh and H. Medeiros, “Detecting tracking failures from correlation response
maps,” in Advances in Visual Computing: 12th International Symposium (ISVC),
2016, pp. 125–135.

[97] M. Trassinelli and P. Ciccodicola, “Mean shift cluster recognition method implemen-
tation in the nested sampling algorithm,” Entropy, vol. 22, no. 2, 2020.

[98] M. Mullert, A. Bibit, S. Giancolat, S. Alsubaihi, and B. Ghanem, “Trackingnet: A
large-scale dataset and benchmark for object tracking in the wild,” in European Con-
ference on Computer Vision (ECCV), 2018.

https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257

102

CHAPTER 10
COPYRIGHT

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of Marquette University’s products or services. In-

ternal or personal use of this material is permitted. If interested in reprinting/republishing

IEEE copyrighted material for advertising or promotional purposes or for creating new

collective works for resale or redistribution, please go to http://www.ieee.org/

publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or

ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

	Deep Convolutional Correlation Particle Filter for Visual Tracking
	Recommended Citation

	List of Figures
	Introduction
	Problem statement 1
	Problem statement 2
	Problem statement 3
	Objectives
	Objective 1
	Objective 2
	Objective 3

	Dissertation organization

	Background
	Basic information on visual object tracking
	Deep neural networks
	Correlation filters
	Particle filters

	CNN visual trackers
	CNN-correlation visual trackers
	Particle filters in CNN-correlation visual Trackers
	Benchmarks
	OTB50 and OTB 100
	LaSOT
	Evaluation metrics

	Deep Convolutional Particle Filter
	Structure of HCFT
	Particle Filter Design
	Results and Discussion

	Target Size Estimation and Adaptive correlation Maps
	Proposed Algorithm
	Particle Filter to Estimate the Target Bounding Box
	Adaptive Correlation Filter

	Results and Discussion

	Adaptive particles filter for visual tracking
	Proposed Algorithm
	Adaptive Particle Filter
	Multiple Correlation Models

	Results and Discussion

	Likelihood particle filter
	The change of support problem in convolution-correlation particle filters
	Proposed Algorithm
	Multi-modal likelihood estimation
	Particle sampling
	Calculating the weights and posterior distribution

	Experimental results

	Iterative particle filter
	Proposed Algorithm
	Iterative Particle Filter
	Target state estimation

	Results and Discussion
	LaSOT evaluation
	OTB100 evaluation
	Ablative analysis

	Adaptive target model update using short-term memory
	Proposed Algorithm
	Results and Discussion

	Conclusion
	Summary
	Future work

	Bibliography
	Copyright

