5,127 research outputs found

    ADAM: a general method for using various data types in asteroid reconstruction

    Get PDF
    We introduce ADAM, the All-Data Asteroid Modelling algorithm. ADAM is simple and universal since it handles all disk-resolved data types (adaptive optics or other images, interferometry, and range-Doppler radar data) in a uniform manner via the 2D Fourier transform, enabling fast convergence in model optimization. The resolved data can be combined with disk-integrated data (photometry). In the reconstruction process, the difference between each data type is only a few code lines defining the particular generalized projection from 3D onto a 2D image plane. Occultation timings can be included as sparse silhouettes, and thermal infrared data are efficiently handled with an approximate algorithm that is sufficient in practice due to the dominance of the high-contrast (boundary) pixels over the low-contrast (interior) ones. This is of particular importance to the raw ALMA data that can be directly handled by ADAM without having to construct the standard image. We study the reliability of the inversion by using the independent shape supports of function series and control-point surfaces. When other data are lacking, one can carry out fast nonconvex lightcurve-only inversion, but any shape models resulting from it should only be taken as illustrative global-scale ones.Comment: 11 pages, submitted to A&

    STiC -- A multi-atom non-LTE PRD inversion code for full-Stokes solar observations

    Full text link
    The inference of the underlying state of the plasma in the solar chromosphere remains extremely challenging because of the nonlocal character of the observed radiation and plasma conditions in this layer. Inversion methods allow us to derive a model atmosphere that can reproduce the observed spectra by undertaking several physical assumptions. The most advanced approaches involve a depth-stratified model atmosphere described by temperature, line-of-sight velocity, turbulent velocity, the three components of the magnetic field vector, and gas and electron pressure. The parameters of the radiative transfer equation are computed from a solid ground of physical principles. To apply these techniques to spectral lines that sample the chromosphere, NLTE effects must be included in the calculations. We developed a new inversion code STiC to study spectral lines that sample the upper chromosphere. The code is based the RH synthetis code, which we modified to make the inversions faster and more stable. For the first time, STiC facilitates the processing of lines from multiple atoms in non-LTE, also including partial redistribution effects. Furthermore, we include a regularization strategy that allows for model atmospheres with a complex stratification, without introducing artifacts in the reconstructed physical parameters, which are usually manifested in the form of oscillatory behavior. This approach takes steps toward a node-less inversion, in which the value of the physical parameters at each grid point can be considered a free parameter. In this paper we discuss the implementation of the aforementioned techniques, the description of the model atmosphere, and the optimizations that we applied to the code. We carry out some numerical experiments to show the performance of the code and the regularization techniques that we implemented. We made STiC publicly available to the community.Comment: Accepted for publication in Astronomy & Astrophysic

    Bayesian interpretation of periodograms

    Full text link
    The usual nonparametric approach to spectral analysis is revisited within the regularization framework. Both usual and windowed periodograms are obtained as the squared modulus of the minimizer of regularized least squares criteria. Then, particular attention is paid to their interpretation within the Bayesian statistical framework. Finally, the question of unsupervised hyperparameter and window selection is addressed. It is shown that maximum likelihood solution is both formally achievable and practically useful

    Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation

    Full text link
    In this paper, we aim at recovering an unknown signal x0 from noisy L1measurements y=Phi*x0+w, where Phi is an ill-conditioned or singular linear operator and w accounts for some noise. To regularize such an ill-posed inverse problem, we impose an analysis sparsity prior. More precisely, the recovery is cast as a convex optimization program where the objective is the sum of a quadratic data fidelity term and a regularization term formed of the L1-norm of the correlations between the sought after signal and atoms in a given (generally overcomplete) dictionary. The L1-sparsity analysis prior is weighted by a regularization parameter lambda>0. In this paper, we prove that any minimizers of this problem is a piecewise-affine function of the observations y and the regularization parameter lambda. As a byproduct, we exploit these properties to get an objectively guided choice of lambda. In particular, we develop an extension of the Generalized Stein Unbiased Risk Estimator (GSURE) and show that it is an unbiased and reliable estimator of an appropriately defined risk. The latter encompasses special cases such as the prediction risk, the projection risk and the estimation risk. We apply these risk estimators to the special case of L1-sparsity analysis regularization. We also discuss implementation issues and propose fast algorithms to solve the L1 analysis minimization problem and to compute the associated GSURE. We finally illustrate the applicability of our framework to parameter(s) selection on several imaging problems

    Confidence driven TGV fusion

    Full text link
    We introduce a novel model for spatially varying variational data fusion, driven by point-wise confidence values. The proposed model allows for the joint estimation of the data and the confidence values based on the spatial coherence of the data. We discuss the main properties of the introduced model as well as suitable algorithms for estimating the solution of the corresponding biconvex minimization problem and their convergence. The performance of the proposed model is evaluated considering the problem of depth image fusion by using both synthetic and real data from publicly available datasets

    Problems of the Strategy of Regions

    Full text link
    Problems that arise in the application of general prescriptions of the so-called strategy of regions for asymptotic expansions of Feynman integrals in various limits of momenta and masses are discussed with the help of characteristic examples of two-loop diagrams. The strategy is also reformulated in the language of alpha parameters.Comment: 12 pages, LaTeX with axodraw.st

    Robust Estimation and Wavelet Thresholding in Partial Linear Models

    Full text link
    This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l1l_1-penalty based wavelet estimator of the nonparametric component and Huber's M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations and a real example are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature
    • …
    corecore