8,595 research outputs found

    Partial discharge pulse propagation in power cable and partial discharge monitoring system

    Get PDF
    Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique

    Partial Discharge in Electronic Equipments

    Get PDF
    Tato disertační práce se věnuje studiu částečných výbojů (PD) způsobených poklesem spolehlivosti a životnosti elektronických zařízení a systémů. Diagnostika PD je dnes známá metoda pro vysoké napětí u vysoko-výkonných zařízení. V případě elektronických zařízení PD testování není ale běžně používáná metoda, přestože je zde také potenciál pro vysoké elektrické zatížení vzhledem k velmi krátké vzdálenosti. Tato práce je zaměřena na vyšetřování PD činnosti u elektronických zařízení. Bylo navrženo a provedeno pracoviště pro diagnostiku PD v elektronických zařízeních. Pracovní frekvence se pohybuje od několika stovek Hz až 100 kHz. Maximální amplituda PD testovaného napětí je vyšší než 10 kV. Navzdory jednoduché konstrukci toto zařízení přináší vysokou spolehlivost měření. Více než 300 PD testů bylo provedeno na různých elektronických zařízeních a elektronických součástí,např. na planárních transformátorech a elektronických komponentách používaných při vysoko-napěťových měničíchThis dissertation thesis is devoted to study of partial discharge (PD) caused decrease of reliability and lifetime of electronic equipments and systems. PD diagnostic is nowadays well known method for high voltage high power equipments but in case of electronic devices PD testing it is not used routinely despite that there is also a potential for high electric load due to extremely short distances. The risk of PD caused failure is here extremely high because of high working frequency and consequently high repetition rate of PD events. Therefore, this work is focused on investigation of PD activity in electronic equipments. The workplace for PD diagnostic in electronic devices based on switched power supply was designed and made. Working frequency ranges from several hundreds of Hertz up to 100 kHz. The maximal amplitude of PD testing voltage is higher than 10 kV. Despite the simple design this equipment brings high repeatability and reliability of measurement. More than 300 PD tests were made on different electronic devices and electronic components, on planar transformers, and on components for voltage gate drivers for use in high voltage power converters. Possibilities of PD tools in investigation and engineering ofd insulation systems were demonstrated.

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    Remote controlled partial discharge acquisition unit

    Get PDF
    Online partial discharge (PD) analysis for underground high voltage cables has major advantages over the offline techniques. Online techniques usually involve PD data acquisition, storage and post-processing of the data. However, the data acquisition process can be time consuming and troublesome because of design procedures and protocols required before commencement of data acquisition. This paper presents a robust remote controlled partial discharge acquisition unit for underground high voltage cable networks. This system is uniquely designed to incorporate the difficulties of accessibility, especially for remotely located substations. Real field data from a 33kV network is included in the paper

    A frequency-based RF partial discharge detector for low-power wireless sensing

    Get PDF
    Partial discharge (PD) monitoring has been the subject of significant research in recent years, which has given rise to a range of well-established PD detection and measurement techniques, such as acoustic and RF, on which condition monitoring systems for highvoltage equipment have been based. This paper presents a novel approach to partial discharge monitoring by using a low-cost, low-power RF detector. The detector employs a frequency-based technique that can distinguish between multiple partial discharge events and other impulsive noise sources within a substation, tracking defect severity over time and providing information pertaining to plant health. The detector is designed to operate as part of a wireless condition monitoring network, removing the need for additional wiring to be installed into substations whilst still gaining the benefits of the RF technique. This novel approach to PD detection not only provides a low-cost solution to on-line partial discharge monitoring, but also presents a means to deploy wide-scale RF monitoring without the associated costs of wide-band monitoring systems

    Sessile water droplets on insulating surfaces subject to high AC stress effect of contact angle

    Get PDF
    Surface pollution of outdoor high-voltage insulators is an important cause of flashover. We have undertaken an experimental study of electrical breakdown at the edges of a sessile water droplet on a planar, polymeric, insulating surface when subject to AC stress, parallel to the insulator surface, up to 2MV/m. The static contact angle between droplet and surface was varied by controlling the physical properties of the droplet and by inclining the insulator plane from the horizontal. The partial discharge activity from the water droplet was investigated using a combination of high-speed video camera, operated at up to 3,000 frames per second, and an electrical partial discharge detection system. We have used this to examine the location of partial discharge at the edges of the water droplet

    Partial discharge testing of defective three-phase PILC cable under rated conditions

    No full text
    The ability to accurately monitor the health of power distribution plant is a very attractive prospect for utility companies. This capability would provide a system that engineers could use to assess the real-time state of the network. Analysis of the data produced could allow for more informed decisions to be made in the areas of asset replacement and maintenance scheduling amongst others. It is widely accepted that partial discharge activity is linked with the electrical ageing/degradation of high voltage equipment. Work at Southampton is focused on obtaining a better understanding of the characteristics and trends of partial discharge events associated with medium voltage cables under, 'real life' conditions. An experiment has been developed that allows for service conditions to be applied to defective paper insulated lead covered cable samples. The samples under investigation were exposed to mechanical damage designed to replicate typical problems found on an active circuit. Partial discharge measurement was undertaken during the stressing process

    Interpretation of partial discharge activity in the presence of harmonics

    Get PDF
    Recent work has identified that circumstances of equipment operation can radically change condition monitoring data. This contribution investigates the significance of considering circumstance monitoring on the diagnostic interpretation of such condition monitoring data. Electrical treeing partial discharge data have been subjected to a data mining investigation, providing a platform for classification of harmonic influenced partial discharge patterns. The Total Harmonic Distortion (THD) index was varied to a maximum of 40%. The results show progressive development for interpretation of condition monitoring data, improving the asset manager's holistic view of an asset's health

    Identifying harmonic attributes from online partial discharge data

    Get PDF
    Partial discharge (PD) monitoring is a key method of tracking fault progression and degradation of insulation systems. Recent research discovered that the harmonic regime experienced by the plant also affects the PD pattern, questioning the conclusions about equipment health drawn from PD data. This paper presents the design and creation of an online system for harmonic circumstance monitoring of distribution cables, using only PD data. Based on machine learning techniques, the system can assess the prevalence of the 5th and 7th harmonic orders over the monitoring period. This information is key for asset managers to draw correct conclusions about the remaining life of polymeric cable insulation, and prevent overestimation of the degradation trend
    corecore