19 research outputs found

    Latent-Variable PCFGs: Background and Applications

    Get PDF
    Latent-variable probabilistic context-free grammars are latent-variable models that are based on context-free grammars. Nonterminals are associated with latent states that provide contextual information during the top-down rewriting process of the grammar. We survey a few of the techniques used to estimate such grammars and to parse text with them. We also give an overview of what the latent states represent for English Penn treebank parsing, and provide an overview of extensions and related models to these grammars

    Unsupervised Extraction of Representative Concepts from Scientific Literature

    Full text link
    This paper studies the automated categorization and extraction of scientific concepts from titles of scientific articles, in order to gain a deeper understanding of their key contributions and facilitate the construction of a generic academic knowledgebase. Towards this goal, we propose an unsupervised, domain-independent, and scalable two-phase algorithm to type and extract key concept mentions into aspects of interest (e.g., Techniques, Applications, etc.). In the first phase of our algorithm we propose PhraseType, a probabilistic generative model which exploits textual features and limited POS tags to broadly segment text snippets into aspect-typed phrases. We extend this model to simultaneously learn aspect-specific features and identify academic domains in multi-domain corpora, since the two tasks mutually enhance each other. In the second phase, we propose an approach based on adaptor grammars to extract fine grained concept mentions from the aspect-typed phrases without the need for any external resources or human effort, in a purely data-driven manner. We apply our technique to study literature from diverse scientific domains and show significant gains over state-of-the-art concept extraction techniques. We also present a qualitative analysis of the results obtained.Comment: Published as a conference paper at CIKM 201

    Unsupervised multilingual learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 241-254).For centuries, scholars have explored the deep links among human languages. In this thesis, we present a class of probabilistic models that exploit these links as a form of naturally occurring supervision. These models allow us to substantially improve performance for core text processing tasks, such as morphological segmentation, part-of-speech tagging, and syntactic parsing. Besides these traditional NLP tasks, we also present a multilingual model for lost language deciphersment. We test this model on the ancient Ugaritic language. Our results show that we can automatically uncover much of the historical relationship between Ugaritic and Biblical Hebrew, a known related language.by Benjamin Snyder.Ph.D

    Probabilistic Modelling of Morphologically Rich Languages

    Full text link
    This thesis investigates how the sub-structure of words can be accounted for in probabilistic models of language. Such models play an important role in natural language processing tasks such as translation or speech recognition, but often rely on the simplistic assumption that words are opaque symbols. This assumption does not fit morphologically complex language well, where words can have rich internal structure and sub-word elements are shared across distinct word forms. Our approach is to encode basic notions of morphology into the assumptions of three different types of language models, with the intention that leveraging shared sub-word structure can improve model performance and help overcome data sparsity that arises from morphological processes. In the context of n-gram language modelling, we formulate a new Bayesian model that relies on the decomposition of compound words to attain better smoothing, and we develop a new distributed language model that learns vector representations of morphemes and leverages them to link together morphologically related words. In both cases, we show that accounting for word sub-structure improves the models' intrinsic performance and provides benefits when applied to other tasks, including machine translation. We then shift the focus beyond the modelling of word sequences and consider models that automatically learn what the sub-word elements of a given language are, given an unannotated list of words. We formulate a novel model that can learn discontiguous morphemes in addition to the more conventional contiguous morphemes that most previous models are limited to. This approach is demonstrated on Semitic languages, and we find that modelling discontiguous sub-word structures leads to improvements in the task of segmenting words into their contiguous morphemes.Comment: DPhil thesis, University of Oxford, submitted and accepted 2014. http://ora.ox.ac.uk/objects/uuid:8df7324f-d3b8-47a1-8b0b-3a6feb5f45c

    Rich Linguistic Structure from Large-Scale Web Data

    Get PDF
    The past two decades have shown an unexpected effectiveness of Web-scale data in natural language processing. Even the simplest models, when paired with unprecedented amounts of unstructured and unlabeled Web data, have been shown to outperform sophisticated ones. It has been argued that the effectiveness of Web-scale data has undermined the necessity of sophisticated modeling or laborious data set curation. In this thesis, we argue for and illustrate an alternative view, that Web-scale data not only serves to improve the performance of simple models, but also can allow the use of qualitatively more sophisticated models that would not be deployable otherwise, leading to even further performance gains.Engineering and Applied Science

    Expressive Knowledge Resources in Probabilistic Models

    Get PDF
    Understanding large collections of unstructured documents remains a persistent problem. Users need to understand the themes of a corpus and to explore documents of interest. Topic models are a useful and ubiquitous tool to discover the main themes (namely topics) of the corpus. Topic models have been successfully applied in natural language processing, computer vision, information retrieval, cognitive science, etc. However, the discovered topics are not always meaningful: some topics confuse two or more themes into one topic; two different topics can be near duplicates; and some topics make no sense at all. Adding knowledge resources into topic models can improve the topics. However, how to encode knowledge into topic models and where to find these knowledge resources remain two scientific challenges. To address these problems, this thesis presents tree-based topic models to encode prior knowledge, a mechanism incorporating knowledge from untrained users, a polylingual tree-based topic model based on existing dictionaries as knowledge resources, an exploration of regularizing spectral methods to encode prior knowledge into topic models, and a model for automatically building hierarchies of prior knowledge for topic models. To encode knowledge resources into topic models, we first present tree-based topic models, where correlations between word types are modeled as a prior tree and applied to topic models. We also develop more efficient inference algorithms for tree- based topic models. Experiments on multiple corpora show that efficiency is greatly improved on different number of topics, number of correlations and vocabulary size. Because users decide whether the topics are useful or not, users' feedback is necessary for effective topic modeling. We thus propose a mechanism for giving normal users a voice to topic models by encoding users' feedback as correlations between word types into tree-based topic models. This framework, interactive topic modeling (ITM), allows untrained users to encode their feedback easily and iteratively into the topic models. We validate the framework both with simulated and real users and discuss strategies for improving the user experience to adapt models to what users need. Existing knowledge resources such as dictionaries can also improve the model. We propose polylingual tree-based topic models based on bilingual dictionaries and apply this model to domain adaptation for statistical Machine Translation. We derive three different inference schemes and evaluate the efficacy of our model on a Chinese to English translation system, and obtain up to 1.2 BLEU improvement over the machine translation baseline. This thesis further explores an alternative way--regularizing spectral methods for topic models--to encode prior knowledge into topic models. Spectral methods offer scalable alternatives to Markov chain Monte Carlo and expectation maximization. However, these new methods lack the priors that are associated with probabilistic models. We examine Arora et al.'s anchor algorithm for topic models and encode prior knowledge by regularizing the anchor algorithm to improve the interpretability and generalizability of topic models. Because existing knowledge resources are limited and because obtaining the knowledge from users is expensive and time-consuming, automatic techniques should also be considered to extract knowledge from the corpus. This thesis further presents a Bayesian hierarchical clustering technique with the Beta coalescent, which provides a possible way to build up the prior tree automatically. Because of its computational complexity, we develop new sampling schemes using sequential Monte carlo and Dirichlet process mixture models, which render the inference practical and efficient. This thesis explores sources of prior knowledge, presents different ways to encode these expressive knowledge resources into probabilistic topic models, and also applies these models in translation domain adaptation. We also discuss further extensions in a bigger picture of interactive machine learning techniques and domain adaptation for downstream tasks

    Iterated learning framework for unsupervised part-of-speech induction

    Get PDF
    Computational approaches to linguistic analysis have been used for more than half a century. The main tools come from the field of Natural Language Processing (NLP) and are based on rule-based or corpora-based (supervised) methods. Despite the undeniable success of supervised learning methods in NLP, they have two main drawbacks: on the practical side, it is expensive to produce the manual annotation (or the rules) required and it is not easy to find annotators for less common languages. A theoretical disadvantage is that the computational analysis produced is tied to a specific theory or annotation scheme. Unsupervised methods offer the possibility to expand our analyses into more resourcepoor languages, and to move beyond the conventional linguistic theories. They are a way of observing patterns and regularities emerging directly from the data and can provide new linguistic insights. In this thesis I explore unsupervised methods for inducing parts of speech across languages. I discuss the challenges in evaluation of unsupervised learning and at the same time, by looking at the historical evolution of part-of-speech systems, I make the case that the compartmentalised, traditional pipeline approach of NLP is not ideal for the task. I present a generative Bayesian system that makes it easy to incorporate multiple diverse features, spanning different levels of linguistic structure, like morphology, lexical distribution, syntactic dependencies and word alignment information that allow for the examination of cross-linguistic patterns. I test the system using features provided by unsupervised systems in a pipeline mode (where the output of one system is the input to another) and show that the performance of the baseline (distributional) model increases significantly, reaching and in some cases surpassing the performance of state-of-the-art part-of-speech induction systems. I then turn to the unsupervised systems that provided these sources of information (morphology, dependencies, word alignment) and examine the way that part-of-speech information influences their inference. Having established a bi-directional relationship between each system and my part-of-speech inducer, I describe an iterated learning method, where each component system is trained using the output of the other system in each iteration. The iterated learning method improves the performance of both component systems in each task. Finally, using this iterated learning framework, and by using parts of speech as the central component, I produce chains of linguistic structure induction that combine all the component systems to offer a more holistic view of NLP. To show the potential of this multi-level system, I demonstrate its use ‘in the wild’. I describe the creation of a vastly multilingual parallel corpus based on 100 translations of the Bible in a diverse set of languages. Using the multi-level induction system, I induce cross-lingual clusters, and provide some qualitative results of my approach. I show that it is possible to discover similarities between languages that correspond to ‘hidden’ morphological, syntactic or semantic elements

    Beyond topic-based representations for text mining

    Get PDF
    A massive amount of online information is natural language text: newspapers, blog articles, forum posts and comments, tweets, scientific literature, government documents, and more. While in general, all kinds of online information is useful, textual information is especially important—it is the most natural, most common, and most expressive form of information. Text representation plays a critical role in application tasks like classification or information retrieval since the quality of the underlying feature space directly impacts each task's performance. Because of this importance, many different approaches have been developed for generating text representations. By far, the most common way to generate features is to segment text into words and record their n-grams. While simple term features perform relatively well in topic-based tasks, not all downstream applications are of a topical nature and can be captured by words alone. For example, determining the native language of an English essay writer will depend on more than just word choice. Competing methods to topic-based representations (such as neural networks) are often not interpretable or rely on massive amounts of training data. This thesis proposes three novel contributions to generate and analyze a large space of non-topical features. First, structural parse tree features are solely based on structural properties of a parse tree by ignoring all of the syntactic categories in the tree. An important advantage of these "skeletons" over regular syntactic features is that they can capture global tree structures without causing problems of data sparseness or overfitting. Second, SyntacticDiff explicitly captures differences in a text document with respect to a reference corpus, creating features that are easily explained as weighted word edit differences. These edit features are especially useful since they are derived from information not present in the current document, capturing a type of comparative feature. Third, Cross-Context Lexical Analysis is a general framework for analyzing similarities and differences in both term meaning and representation with respect to different, potentially overlapping partitions of a text collection. The representations analyzed by CCLA are not limited to topic-based features
    corecore