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ABSTRACT

A massive amount of online information is natural language text: newspapers, blog articles, forum posts

and comments, tweets, scientific literature, government documents, and more. While in general, all

kinds of online information is useful, textual information is especially important—it is the most natural,

most common, and most expressive form of information.

Text representation plays a critical role in application tasks like classification or information retrieval

since the quality of the underlying feature space directly impacts each task’s performance. Because of this

importance, many different approaches have been developed for generating text representations. By far,

the most common way to generate features is to segment text into words and record their n-grams. While

simple term features perform relatively well in topic-based tasks, not all downstream applications are of

a topical nature and can be captured by words alone. For example, determining the native language of

an English essay writer will depend on more than just word choice. Competing methods to topic-based

representations (such as neural networks) are often not interpretable or rely on massive amounts of

training data. This thesis proposes three novel contributions to generate and analyze a large space of

non-topical features.

First, structural parse tree features are solely based on structural properties of a parse tree by ignoring

all of the syntactic categories in the tree. An important advantage of these “skeletons” over regular syn-

tactic features is that they can capture global tree structures without causing problems of data sparseness

or overfitting.

Second, SYNTACTICDIFF explicitly captures differences in a text document with respect to a reference

corpus, creating features that are easily explained as weighted word edit differences. These edit fea-

tures are especially useful since they are derived from information not present in the current document,

capturing a type of comparative feature.

Third, Cross-Context Lexical Analysis is a general framework for analyzing similarities and differences

in both term meaning and representation with respect to different, potentially overlapping partitions of

a text collection. The representations analyzed by CCLA are not limited to topic-based features.
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CHAPTER 1

MOTIVATION AND IMPACT

In this chapter, we motivate and declare the thesis topic. We start with a broad, general view of text data

mining before focusing on specific contributions and main research questions. The organization of the

thesis then follows.

1.1 Text Data

A massive amount of online information is natural language text: newspapers, blog articles, forum posts

and comments, tweets, scientific literature, government documents, and more. While in general, all

kinds of online information is useful, textual information plays an especially important role—it is the

most natural, most common, and most expressive form of information for the following reasons (Zhai

and Massung, 2016).

1. Text—transcribed human language—is the most natural way of encoding knowledge. As a result,

most human insight is encoded in the form of text data. For example, scientific knowledge almost

exclusively exists in scientific literature, while technical manuals contain detailed explanations of

how to operate devices.

2. Text is by far the most common type of information encountered by people. Indeed, most of the

information a person produces and consumes daily is in text form.

3. Text is the most expressive form of information in the sense that it can be used to describe other

media such as video or images. Indeed, image search engines such as those supported by Google

and Bing often rely on matching companion text of images to retrieve “matching” images to a user’s

keyword query.

In contrast to structured data, which conform to well-defined schemas and are thus relatively easy for

computers to handle, text has less explicit structure, so the development of intelligent software tools to

understand content encoded in text is a necessity. The explosive growth of online text information has

1



created a strong demand for the following two related services to help people manage and exploit big

text data.

First, is text retrieval. The rapid growth of online text information means that no one can possibly

digest all the new information created on a daily basis. Thus there is an urgent need for developing

intelligent text retrieval systems to help people get access to relevant information quickly and accurately,

leading to the recent growth of the Web search industry. Web search engines like Google and Bing are

now an essential part of our daily life, serving billions of queries each day1.

Second, is text mining. Due to the fact that text data are produced by humans for communication pur-

poses, they are generally rich in semantic content and often contain valuable knowledge, information,

opinions, and preferences. As such, they offer great opportunity for discovering various kinds of knowl-

edge useful for many applications. For example, it is now the norm for people to tap into opinionated text

data such as product reviews, forum discussions, and social media text to obtain opinions about topics

interesting to them and optimize various decision-making tasks. Once again, due to the overwhelming

amount of information, people need intelligent software tools to help discover relevant knowledge.

1.2 Text Representation

Text representation plays a critical role in these downstream tasks since the quality of the underlying

feature space directly impacts each task’s performance. Because of this importance, many different ap-

proaches have been developed for generating text representations.

We can represent text by a set of extracted features, often stored in a feature vector. The simplest fea-

tures can be the words in the text—e.g., delimited by whitespace. Text representation is a fundamental

issue in all text retrieval and text mining applications such as Web search, text clustering, and text cate-

gorization. Text representation is also critical for generating useful features to be used in many machine

learning algorithms to support natural language processing applications.

In other words, virtually all text mining applications operate on feature vectors of text. The quality

and generality of these feature vectors directly impacts the performance of downstream applications.

Even the most sophisticated machine learning algorithm will achieve poor results if the feature vectors

it operates on are not a sufficient representation of the knowledge encoded in the original text data.

The issue of text representation is complicated because different tasks tend to require a somewhat

different perspective of representation—thus a different feature set. For example, while function words

(such as while, throughout, and despite) are generally not useful for topic categorization, they may be

useful for an authorship attribution categorization task, which may also benefit from features capturing

1http://www.internetlivestats.com/google-search-statistics/
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sentence length and structure. It is therefore important to develop a rich set of potential features that can

represent text from orthogonal perspectives and to understand what kind of features are most effective

for which tasks.

By far, the most common way to generate features is to segment text into words and record their n-

grams; indeed, unigram words are a common baseline for information retrieval and text classification

applications. Competing methods will challenge the performance and assumptions made by baselines

like n-gram words.

Other feature types rely on natural language processing, such as part-of-speech tags or grammatical

parse tree features. Using topic models like LDA (Blei et al., 2003) or its many variants can be used to

represent documents in a lower-dimensional topical space by looking at word co-occurrence statistics. As

we use more sophisticated NLP methods to represent text (such as named entity recognition or semantic

role labeling), we obtain more informative and often discriminative features, but at a higher cost of

introducing errors into the pipeline. On the other hand, shallow features like n-gram words are very

robust, but may not be able to capture sufficiently characteristic properties. Thus, developing general,

robust, and discriminative features is a difficult and important open research problem.

Recently, representation learning—deep learning—as described by Bengio et al. (2013) has become

a powerful way to compose features in new dimensions. Deep learning has increased performance in

many areas of computer science, such as speech recognition, vision, and even NLP (Collobert et al., 2011).

Representations such as paragraph vectors (Le and Mikolov, 2014) and skip-thought vectors (Kiros et al.,

2015) can represent entire documents or phrases in a low-dimensional space. Both are built on top of

word embeddings such as WORD2VEC (Mikolov et al., 2013b), though these particular word embeddings

are not strictly “deep learning” (Levy and Goldberg, 2014).

While intriguing, these deep document representations suffer from a few issues. First, they require

much larger amounts of training data compared to more basic methods. Second, due to their complexity,

they require very long training times that are usually measured in weeks. Lastly, neural networks are

the ultimate black box of decision making. Today, we do not completely understand how they work

or how to interpret their results. Bengio et al. (2013) list ten points that make a representation good;

unfortunately, interpretability is not one of them. In other words, a useful feature representation should

be “mineable”.

As educators, how can we teach students to write better essays if our autograder is not interpretable?

This doesn’t solve the workload scaling problem if the instructor or TA still needs to individually meet

with each student to explain the results. As members of industry, how can we explain to our bosses

that the AI we use won’t take over humanity2? Understanding why a document was ranked higher than

2http://www.businessinsider.com/musk-on-artificial-intelligence-2014-6
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another or why a group of documents share a topic is just as important as the search results or topics

themselves. Ribeiro et al. (2016) emphasize the importance of human understanding in text mining

applications. As a medical practitioner or government agent fighting terrorism, understanding exactly

why some models behave the ways they do is critical to their effectiveness and utility in decision making

and causal analysis (e.g. Zhao et al. (2017)).

It is therefore important to develop a rich set of potential features that can represent text from orthog-

onal perspectives. These different perspectives allow us to understand what kind of features are most

effective for which tasks, and enable mining knowledge in the underlying datasets that would otherwise

be lost in more complicated and less transparent features.

While there is some considerable work in “explaining” existing features (Baehrens et al., 2010; Bansal

et al., 2014; Ribeiro et al., 2016), there is less of a focus on designing interpretable, orthogonal features

to n-gram words in the first place. Ribeiro et al. (2016) introduce methods to explain predictions of clas-

sifiers and regressors as well as algorithms to select representative members of each class. They examine

text representation with bag-of-words features. While a classifier obtained 94% accuracy on newsgroup

categorization, examining highly-weighted unigram word features showed a serious overfitting problem.

These are the types of issues that we wish to find through interpretable and understandable features.

To address the limitations of existing work on text representation, this thesis proposes three novel

contributions to generate a large space of non-topical features from text data in a general, interpretable,

and efficient way.

Structural parse tree features (Massung et al., 2013) are one such contribution. These features are

solely based on structural properties of a parse tree by ignoring all of the syntactic categories in the

tree. An important advantage of these “skeletons” over regular syntactic features is that they can capture

global tree structures without causing problems of data sparseness or overfitting. Because of the focus

on pure structures, even relatively large skeletons can be observed multiple times in a set of text articles;

in contrast, if we were to attach the syntactic categories, we would end up having far more specialized

features that may not be observed multiple times in the corpus. When combined with unigram words,

skeleton features increased the classification accuracy on two different tasks. Skeletons also provide

visual clues as to why they are important for certain classes.

SYNTACTICDIFF (Massung and Zhai, 2015) explicitly captures differences in a text document with re-

spect to a reference corpus, creating features that are easily explained as weighted word edit differences.

These edit features are especially useful since they are derived from information not present in the current

document, capturing a type of comparative feature. As with our previous work, we used non-native text

mining (Massung and Zhai, 2016) as a source of example downstream applications. SYNTACTICDIFF’s

edit features improved native language identification and were able to be directly used for grammatical
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error correction (without a specific, heavily-tuned pipeline). In an essay-grading setting, we grouped stu-

dents together by the types of mistakes they made (realized as edit features). For example, one cluster

of students made many article errors while another overused certain word types.

Cross-Context Lexical Analysis (Massung et al., 2017) directly addresses the issue that good features

should be interpretable. We propose a general framework for analyzing similarities and differences in

both term meaning and representation with respect to different, potentially overlapping partitions of a

text collection. We apply our framework to three different tasks: semantic change detection (discovering

words whose meanings changed over time), comparative lexical analysis over context (finding context-

sensitive and context-insensitive terms), and word representation comparison (investigating randomness

inherent in word embeddings).

In summary, text representation is critical to all text mining applications to avoid overfitting and enable

potential causal analysis. This thesis contributes approaches to generate and analyze non-topical features

from text data. Novel features (Massung et al., 2013; Massung and Zhai, 2015) are shown to help improve

performance for various tasks while simultaneously enabling interesting feature analysis and mining. A

novel framework for feature analysis (Massung et al., 2017) that supports non-topical features helps

explore and explain text representations, including some that are inherently difficult to analyze, such as

word embeddings.

1.3 Organization of this Thesis

This thesis is organized as follows:

Chapter 2 explains and motivates the importance of text data management and analysis (Zhai and

Massung, 2016). We explain how text is transformed from a raw string into meaningful features that can

be used in downstream applications.

Chapter 3 examines and surveys a subfield of text mining named non-native text analysis (Massung

and Zhai, 2016). We see how text mining and representation play a crucial role and have the ability to

affect billions of language learners around the world.

Chapter 4 details structural parse tree features for text representation (Massung et al., 2013). We

examine these features from a classification perspective and compare representative features conditioned

on class labels for native language identification.

Chapter 5 introduces SYNTACTICDIFF (Massung and Zhai, 2015), an operator-based comparative text

mining algorithm. We demonstrate SYNTACTICDIFF’s performance in three tasks—grammatical error cor-

rection, summarization, and classification.

Chapter 6 defines Cross-Context Lexical Analysis (Massung et al., 2017), a general framework for
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analyzing similarities and differences in both term meaning and representation with respect to different,

potentially overlapping partitions of a text collection.

Chapter 7 explains how the previous methods are all open source and available online as part of the

META toolkit (Massung et al., 2016).

Chapter 8 concludes the thesis with a summary of existing work and remaining open questions.
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CHAPTER 2

TEXT REPRESENTATION

This chapter gives a very broad, general introduction and literature survey to text representation tech-

niques. Organization and content is an expanded version of section 3.3 from Zhai and Massung (2016).

2.1 Feature Types

Techniques from natural language processing allow us to design many different types of informative

features for text objects. Let’s take a look at the example sentence:

A dog is chasing a boy on the playground.

We can represent this sentence in many different ways. First, we can always represent such a sentence

as a string of characters—this is true for every language. This is perhaps the most general way of repre-

senting text since we can always use this approach. Unfortunately, the downside to this representation

is that it can’t allow us to perform semantic analysis, which is often needed for many applications of text

mining. We’re not even recognizing words, which are the basic units of meaning for any language. (Of

course, there are some situations where characters are useful, but that is not the general case.)

The next version of text representation is performing word segmentation to obtain a sequence of words.

In the example sentence, we get features like dog and chasing. With this level of representation, we

suddenly have much more freedom. By identifying words, we can (for example), easily discover the

most frequent words in this document or the whole collection. These words can then be used to form

topics. Therefore, representing text data as a sequence of words opens up a lot of interesting analysis

possibilities.

This level of representation is slightly less general than a string of characters. In some languages—

such as Chinese—it’s actually not that easy to identify all the word boundaries since that language’s text

is a sequence of characters with no spaces in between words. To solve this problem, we have to rely

on some special techniques to identify words and perform more advanced segmentation that isn’t only

based on whitespace (which isn’t always 100% accurate). So, the sequence of words representation is

7



not as robust as the string of characters representation. In English, it’s very easy to obtain this level of

representation so we can use this all the time.

Below, we additionally show three modifications to the whitespace tokenization:

• Lowercasing changes capital letters to lowercase ones in order to reduce the total number of

unique words and ensure that words like Cat and cat are counted as the same.

• Stemming reduces each word to its root form. This results in a further reduction of unique words

and ensures that words like runs and running are counted the same as run.

• Stopword removal gets rid of non-content bearing words, which usually do not provide useful

information to the downstream task.

These modifications do not greatly change the token-based representation of text. Instead, they slightly

adjust the representation in attempts to circumvent its limitations.

A, dog, is, chasing, a, boy, on, the, playground, . (tokenized)

a, dog, is, chasing, a, boy, on, the, playground, . (+lowercased)

a, dog, is, chase, a, boy, on, the, playground, . (+stemmed)

dog, chase, boy, playground (+no stopwords)

If we go further into natural language processing techniques, we can add part-of-speech (POS) tags to

the words. This allows us to count, for example, the most frequent nouns; or, we could determine what

kind of nouns are associated with what kind of verbs. This opens up more interesting opportunities for

further analysis.

ADT dogNN is V BZ chasingV BG aDT boyNN onIN theDT playgroundNN ..

Note that as we add more advanced features, we don’t necessarily replace the original word sequence or

prior features. Instead, we add this as an additional way of representing the text data. Representing text

as both words and POS tags enriches the representation of text data, enabling a deeper, more principled

analysis. We will see this theme continued throughout this thesis.

If we go further, then we can apply a grammatical parser to the sentence, obtaining a syntactic structure

and productions displayed in Figure 2.1. Again, this further opens up more interesting analysis of (e.g.)

writing style or grammatical error correction depending on how features are extracted from the tree and

aggregated across sentences.

Going further still into semantic analysis, we might be able to recognize dog as an animal. We also can

recognize boy as a person, and playground as a location and analyze their relations. One deduction could

be that the dog was chasing the boy, and the boy is on the playground. This will add more entities and
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Figure 2.1: An example grammatical parse tree of the sentence A dog is chasing a boy on the playground.

relations, through entity-relation recreation. Now, we can count the most frequent person that appears

in this whole collection of news articles. Or, whenever this person is mentioned, we discover that we also

tend to see mentions of another person or object. These types of repeated pattens can potentially make

very good features.

A dog
︸ ︷︷ ︸

Animal

→chase a boy
︸ ︷︷ ︸

Person

→on the playground
︸ ︷︷ ︸

Location

Such a high-level representation is even less robust than the sequence of words or POS tags. It’s not

always easy to identify all the entities with the right types and we might make mistakes. Relations are

even harder to find; again, we might make mistakes. The level of representation is less robust, yet it’s

very useful. If we move further to a logic representation, then we have predicates and inference rules.

With inference rules we can infer interesting derived facts from the text. As one would imagine, we can’t

do that all the time for all kinds of sentences since it may take significant computation time or a large

amount of training data.

Finally, speech acts would add a yet another level of representation of the intent of this sentence. In

this example, it might be a request. Knowing that would allow us to analyze even more interesting things

about the observer or the author of this sentence. What’s the intention of saying that? What scenarios
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or what kinds of actions will occur?

Such advanced techniques would require more human effort as well, and they are generally less robust

since they attempt to solve a much more difficult problem. If we analyze our text at levels that represent

deeper analysis of language, then we have to tolerate potential errors. That also means it’s still necessary

to combine such deep analysis with shallow analysis based on (e.g.) sequences of words. Despite this,

the advanced techniques achieve a representation of text is closer to the knowledge representation in our

mind.

Clearly, there is a tradeoff here between doing deeper analysis that might have errors but would give

us direct knowledge that can be extracted from text. Doing shadow analysis (which is more robust)

wouldn’t give us the necessary deeper representation of knowledge.

A further issue is feature sparsity—using individual words to represent meaning results in a very sparse

feature space. For example, a typical text corpus may have a vocabulary size of over 100, 000 unique

terms. Lowercasing, stemming, and stopword removal were shown as ways to attempt to alleviate this

issue, but they will never completely solve the problem. For example, the words “dog” and “canine”

will never be the same (or similar) feature in a unigram words representation even though they have an

almost identical meaning.

A way to address this sparsity issue is to transform the one-hot |V |-sized space into a lower-dimensional

dense space. After removing stopwords, our sentence could look like the following:

dog chasing boy playground
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Now, (ideally) words such as “dog” and “canine” have higher similarity than “dog” and “banana” by

using cosine similarity between their embeddings.

Methods to induce word embeddings have seen some resurgence in popularity recently (Mikolov et al.,

2013b; Pennington et al., 2014), but older techniques such as Brown clustering (Brown et al., 1992) have

existed for many years. We investigate some different word embeddings methods in section 6.5.

Still, using individual word embeddings to represent an entire document is an issue. Simply aver-

aging each dimension together is a baseline, but combining them in more structured ways is an area

of active research (Le and Mikolov, 2014; Kiros et al., 2015; Kenter et al., 2016). Alternatively, jointly
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Representation Generality Enabled Analysis Application Example
String ? ? ?? string and character

processing
compression

Words ? ? ? word relations, topic
and sentiment analysis

thesaurus discovery
and opinion mining

+Syntactic structure ?? syntactic graph
analysis

stylistic analysis and
structure-based
feature extraction

+Entities/Relations ? knowledge graph
analysis, information
network analysis

knowledge/opinion
discovery for specific
entities

+Logic predicates ? integrative analysis of
scattered knowledge;
logic inference

knowledge assistant
for biologists

Table 2.1: Text representation and enabled analysis. More sophisticated representation generally
enables more intelligent text analysis applications, but also tends to be less robust. (Reproduced
from Zhai and Massung (2016))

learning embeddings along with some neural network task is a possibility, as demonstrated (in one case)

by Collobert et al. (2011).

Text data are generated by humans and are meant to be consumed by humans. As a result, in text

data analysis and text mining, humans play a very important role. They are always in the loop, meaning

that we should optimize for a collaboration between humans and computers. In that sense, it’s okay that

computers may not be able to have a completely accurate representation of text data. Patterns that are

extracted from text data can be interpreted by humans, and then humans can guide the computers to

do more accurate analysis by annotating more data, guiding machine learning programs to make them

work more effectively.

Different text representation tends to enable different analyses as shown in Table 2.1. In particular, we

can gradually add more and more deeper analysis results to represent text data that would open up more

interesting representation opportunities and analysis capabilities. The table summarizes what we have

just seen; the first column shows the type of text representation while the second visualizes the generality

of such a representation. By generality, we mean whether we can do this kind of representation accurately

for all the text data (very general; more stars) or only some of them (not very general; fewer stars).

The third column shows the enabled analysis techniques and the final column shows some examples of

applications that can be achieved with a particular level of representation.

As a sequence of characters, text can only be processed by stream processing algorithms. They are very

robust and general. In a compression application, we don’t need to know word boundaries (although

knowing word boundaries might actually help). Sequences of words—as opposed to characters—afford a

very important level of representation; it’s quite general and relatively robust, indicating that it supports
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many analysis techniques such as word relation analysis, topic analysis, and sentiment analysis. As you

may expect, many applications can be enabled by these kinds of analysis. For example, thesaurus discov-

ery has to do with discovering related words, and topic- and opinion-related applications are enabled.

People might be interested in knowing major topics covered in the collection of text, where a topic is

represented as a distribution over words.

Moving down, we’ll see we can gradually add additional representations. By adding syntactic struc-

tures, we can enable syntactic graph analysis; we can use graph mining algorithms to analyze these

syntactic graphs. For example, stylistic analysis generally requires syntactical structure representation.

We can also generate structure-based features that might help us classify the text objects into different

categories by looking at their different syntactic structures. If you want to classify articles into different

categories corresponding to different authors, then you generally need to look at syntactic structures.

When we add entities and relations, then we can enable other techniques such as knowledge graphs or

information networks. Using these more advanced feature representations allow applications that deal

with entities.

Finally, when we add logical predicates, we can integrate analysis of scattered knowledge. For example,

we can add an ontology on top of extracted information from text to make inferences. A good example

of an application enabled by this level of representation is a knowledge assistant for biologists. This

system is able to manage all the relevant knowledge from literature about a research problem such as

understanding gene functions. The computer can make inferences about some of the hypotheses that a

biologist might be interested in. For example, it could determine whether a gene has a certain function

by reading literature to extract relevant facts. It could use a logic system to track answers to researchers’

questions about what genes are related to what functions. In order to support this level of application,

we need to go as far as logical representation.

2.2 Using Extracted Features

Consider the following movie review from IMDB1:

I also am utterly bemused to see so many negative comments on this show. For those who

seem to think the show is about pointing out the improved morals of the 21st century, or

don’t catch the story lines as being evolved enough, or think the characters shallow—I’m

afraid you’re missing the picture completely.

Is it positive or negative?

1http://www.imdb.com/title/tt0804503/reviews
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Next, consider the following snippet from an essay (Ishikawa, 2013):

I agree this opinion that part-time job is important for college school students, because I

studied a lot of thing with my part-time job. At first, the communication skill is necessary

to work.

Was this essay written by a Chinese, Japanese, or English student?

These are examples of categorization problems in text mining. In the first snippet, we want to perform

sentiment analysis; that is, we want to determine if the review is positive or negative. This particular

review is challenging because it is a positive review about the TV show Mad Men, but it is very negative

towards the other reviewers. Thus, the sentiment target is critical to capture.

The second snippet—the native language identification task—has its own set of challenges. All the

essays are written about similar topics, so “job” and “college” frequently occur given any native language.

Perhaps modeling grammatical errors or colloquialisms could better capture information that a classifier

can use to separate the classes.

Despite these differences in downstream tasks (and most other tasks), the unigram words represen-

tation remains an important baseline to compare against for the same reasons mentioned in chapter 1.

Unigram words are effective and interpretable since they can sufficiently capture topical ideas from text

(e.g., a document about sports is more likely to contain the word score than a document about food).

Unigram words are efficient since the representation is achieved by simply splitting on whitespace or fol-

lowing some simple tokenization rules, such as separating can’t into can and ’t. The generality of words

is also clear, since it can be applied to any text document.

The downside here is that due to its great generality, unigram words fail to capture deeper meaning

from documents such as the sentiment target. Even more unsatisfactory is the loss of any word order

under this model: the sentences “They have many theoretical ideas” and “many They theoretical have ideas”

would be represented in exactly the same way. This is where the need for research into different text

representations arises.

Now that we have examined the different types of features, how exactly are they used? Downstream

applications make use of document representations (i.e., extracted features) in three main ways: feature

vector similarity, feature presence and absence, and feature sequences.

2.2.1 Feature Vector Similarity

Feature vector similarity is crucial in information retrieval and clustering. For example, consider a doc-

ument di from a large collection D. In the vector space model of information retrieval, we assume that

relevance can be modeled by similarity. That is, the most similar documents to a given query are the
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ones that should be returned by a search engine.

Consider the following:

sim(di , q)> sim(d j , q).

Here, di is found to be more similar (i.e., relevant) to the query q, so it would be rewarded with a higher

position on the search engine results page than d j . Note that both the similarity function and feature

representation are user- or algorithm-defined.

A basic similarity algorithm is cosine similarity, which measures the cosine of the angle between two

vectors in a high-dimensional feature space,

simcosine(a, b) =
a · b
||a|| ||b||

=

∑n
i=0 ai bi

q

∑n
i=0 a2

i

q

∑n
i=0 b2

i

,

but many others exist that are tailored towards information retrieval, such as Okapi BM25 (Robertson

et al., 1994).

Clustering also uses similarity measures to assign documents into coherent groups (i.e., clusters) that

may be inspected by the user for exploratory analysis or knowledge discovery. Multiple variations of

clustering exist. Two simple methods are hierarchical agglomerative clustering and divisive clustering.

Hierarchical agglomerative clustering uses a similarity measure to incrementally group documents

together until there is only one large group. The merges that lead up to the single cluster form a dendro-

gram (cluster tree) that may be traversed or partitioned as desired. Nodes near the root of the tree are

more general; as one traverses down the tree, the nodes represent smaller and more specific clusters.

A divisive clustering called K-means uses the expectation maximization framework to optimally parti-

tion groups of elements into K clusters, each represented with a cluster centroid. Here, we minimize the

distance (i.e., maximize the similarity) between each element and its centroid.

In both clustering cases, the choice of features determines the meaning of the uncovered clusters. For

example, using unigram words may find topical clusters while grammatical features may find clusters that

are more stylistically-oriented. For a more in-depth discussion of feature usage in information retrieval

and clustering, please consult Zhai and Massung (2016) or Han et al. (2011).

2.2.2 Feature presence, absence, and co-occurrence

Feature presence, absence, and co-occurrence is crucial in topic modeling and frequent pattern mining.

Topic modeling is a text mining tool that is used to discover latent themes in a collection of documents.

A topic is a distribution of words; additionally, each document is imagined to have some mixture of topics.

For instance, a news article could be about both finance and entertainment. The generative process to
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write one word in a document is as follows: select a topic z ∼ Mul tinomial(θ ); then, select a word

w∼ Mul tinomial(φ). Typically, θ and φ will have Dirichlet priors.

Latent Dirichlet allocation (Blei et al., 2003) is a well-known topic modeling algorithm. It and similar

algorithms learn the θ and φ parameters through some form of smoothed counting. In this framework,

frequently co-occurring words are likely to become part of a topic.

An important aspect of topic modeling is that the basic units of meaning do not necessarily have to

be words—any “bag-of-features” may be used. For example, when clustering student essays, it may

be beneficial to represent essays as a collection of grammatical errors. Thus, a topic in this corpus is

frequently co-occurring errors or idiosyncrasies, and documents are some mixture of common errors.

Frequent pattern mining (or association rule learning) is a knowledge discovery technique for common

sets of unordered items. A standard example is the grocery store purchase history over thousands of

customers. It could be discovered that beer, nuts, and diapers are often bought together. This fact can

be used to strategically place products in the store in close proximity, encouraging their joint purchase.

Agrawal and Srikant (1994) describe a pattern mining algorithm that generates candidate sets of length

k given previously-discovered sets of length k − 1. This refinement is continued until some confidence

threshold is broken, and the user is left with the largest frequent patterns that satisfy some probability

constraints. In an alternate approach focused on efficiency, Han et al. (2000) recursively prune a prefix

tree of connected items to find the frequent patterns.

Again, if these pattern mining algorithms are run over a text collection, the types of features used to

represent the contents of each document will directly impact the meaning of the output.

2.2.3 Sequences of features

Sequences of features are also used in pattern mining as well as NLP tools such as parsers.

In contrast to frequent pattern mining, sequential pattern mining finds ordered sequences of items.

These items may be actions, events, or other time-based occurrences. If we consider a document as a

sequence of features over time, we could use sequential pattern mining to find common phrases or even

consecutive topic mentions (e.g., a news reporter may frequently use the ordered transition spor ts →

mone y → poli t ics).

Pei et al. (2001) is one example of a sequential pattern mining algorithm that focuses on efficiently

finding long sequences by using prefix-projection to reduce the number of candidates generated. Such

an algorithm that focuses on long sequences could be used (e.g.) to mine characters in streams of text.

Focusing on characters instead of words is more robust to word misspellings and other grammatical

errors Tsur and Rappoport (2007).
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Pattern mining itself can even be thought of as feature generation, as frequent patterns can be used to

represent documents in a corpus and fed into a classifier.

Discriminative models for part-of-speech tagging like conditional random fields (Lafferty et al., 2001)

allow arbitrary features to be encoded into the model. Thus, features for a current token wi could have

specific dependencies on wi−1 and wi+1. These features could be vary from “the previous word ended

in ly” to “the word after this word is a stop word”. Clearly, feature choice for these types of models can

have a huge impact on performance. Such engineered features are often critical to the performance of

NLP tools that perform semantic role labeling or constituency and dependency parsering.

The examples above are just a few of the many potential applications that depend on a meaningful

feature representation. Despite this, most cases will fit into one of the three broad categories of feature

vector similarity; feature presence, absence, and co-occurrence; and feature sequences. Most of the

work presented in this thesis uses applications from the first two categories, but it is natural to extend

the feature representations for use in any of the three groups.
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CHAPTER 3

CASE STUDY: NON-NATIVE TEXT MINING

In contrast to chapter 2, this chapter explores a particular subfield of text mining that benefits from

advances in text representation. The narrative in this chapter is heavily based on Massung and Zhai

(2016).

3.1 Introduction

By the year 2020, Robson (2014) estimates that there will be two billion English language learners—

already, it is spoken by one quarter of the Earth’s population. Some learn in the classroom; some learn

online. Some may even learn through their phone or in an online class. Regardless of the medium, com-

putational tools to enhance this educational experience will be valuable. Automatic scoring of essays—

not only for grammar, but also fluency—would contribute greatly to second-language learners’ under-

standing. User personalization for online services (including search engines and social networks) would

benefit from improved user profiling. More relevant books or news articles could be recommended if the

user’s background and competency of English were known.

Due to these many motivating examples, research in non-native text mining has prospered. This field

encompasses any textual task that deals with words written in a language other than the writer’s native

tongue. We call the native language L1 and the second, learned language L2. Throughout this thesis, we

will usually assume that L2 is English, though most (but not all) techniques mentioned here are general

and could function with any pair of L1 and L2.

We provide a brief survey of existing work on non-native text mining. First, we discuss non-native

grammatical error correction—finding and modifying text to fix errors or to make it sound more fluent.

Second, an introduction to native language identification: determining the native language of an author

based on text in the second language. Then, we take a brief look at two emerging fields: native fluency

scoring and text simplification for non-native speakers. This concludes the literature review component

of this thesis.

The current work on non-native text mining generally falls into the four categories mentioned above:
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Text Mining and NLP

Grammar Correction Essay GradingAuthor Profiling Summarization

Non-Native GEC Fluency ScoringNLI Simplification

Non-Native Text Mining

Figure 3.1: Dichotomy of non-native text mining as part of the general text mining and NLP domains.

1. Native language identification (NLI): classifying L1 based on text written in L2. Techniques can

be categorized into feature-based (using a classifier) or likelihood-based (using a probabilistic

model of language).

2. Non-native Grammatical Error Correction (GEC): detecting and correcting grammatical errors

in L2 text. Techniques can be categorized into targeted (correcting specific errors) or general

(correcting all errors).

3. Fluency Scoring: given L2 text, how close to native does it appear?

4. Text simplification: providing a better experience for users interacting with text in their L2. Tech-

niques are much more varied in this field.

These four areas can be regarded as special cases of four more general categories of text mining and

NLP as shown in Figure 3.1.

3.2 Native Language Identification

NLI usually relies on classification, but also consists of other components that are able to capture a

deeper syntactic meaning (such as dependencies or language modeling). NLI is usually the first step in

any second language error correction or author profiling system. Identifying the native language of an

anonymous text was first popularized by Koppel et al. (2005). Brooke and Hirst (2012) do an extensive

survey of NLI feature efficacy, and develop a robust model that works well when used across corpora.
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NLI tasks are most commonly evaluated solely on a small learner corpus usually consisting of student

essays. It was previously thought that lexical features would be biased or overfit towards essay topics,

but a cross-corpus evaluation showed that this was not the case (Brooke and Hirst, 2012).

For an in-depth discussion of the related task of authorship attribution, we recommend the reader

consult Stamatatos (2009). Many techniques common to authorship attribution and author profiling are

also relevant to NLI.

Tsur and Rappoport (2007) found that incredibly simple top two hundred frequent bigram character

features fed to SVM led to 66% accuracy on the five native languages. They claimed that word choice of

non-native speakers is influenced by the phonology of their native language (as evidenced by the effective-

ness of the character features). This approach is compared to a unigram words baseline which achieved

only 47% accuracy. They finally hypothesized that using a spoken-language corpus would achieve even

stronger results favoring character bigrams. Their reasoning was that much less conscious effort is put

into speaking than writing. For analyzing transcripts of spoken words, the ICNALE corpus (Ishikawa,

2013) may be applicable.

NLI has also been approached through contrastive analysis (Wong and Dras, 2009): the idea that

errors in text are influenced by the native language of the author. They investigated three error types as

features: subject-verb disagreement, noun-number disagreement, and determiner misuse. These error

types are then used as “stylistic markers” for NLI features with an SVM classifier. To find these errors in

text, they used an open source grammar checker1, as opposed to professionally edited text. Interestingly,

ANOVA showed that the features had a measurable effect, but after combining their contrastive features

with existing methods, they were not able to significantly increase the classification accuracy from Koppel

et al. (2005).

Wong and Dras (2011) follow their work on contrastive analysis, attempting to amend its shortcomings.

Instead of error types, they use two different features obtained from grammatical parse trees: horizontal

slices (production rules) and parse rerankings. They claim these are the first pure syntactic features used

in NLI. For the production rules, they immediately applied information gain dimensionality reduction.

The reranking features are those contained in the Charniak parser2 and Stanford Parser3 trained on the

Wall Street Journal. Unlike the previous two attempts, the authors found MaxEnt to outperform SVM

as the classifier. Additionally, five-fold cross validation was performed (as opposed to ten-fold), which

means the accuracies cannot be precisely compared with previous work. In any event, they report a final

accuracy of 80%, which was the highest reported as of 2012.

Johnson et al. (2006) explore adaptor grammars to generate features. Simply, adaptor grammars are

1http://queequeg.sourceforge.net/index-e.html
2http://cs.brown.edu/~ec/
3http://nlp.stanford.edu/software/lex-parser.shtml
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Paper Method Accuracy
Tsur and Rappoport (2007) character n-grams∗ 66%
Wong and Dras (2009) syntactic errors∗ 74%
Wong and Dras (2011) syntactic rules∗ 80%
Wong et al. (2012) adaptor grammars∗+ 76%
Swanson and Charniak (2012) tree substitution grammars∗ 78%

Table 3.1: Summary of NLI results listed in Brooke and Hirst for the ICLE corpus; accuracies added to
chart. ∗ indicates feature-based methods and + indicates likelihood-based methods.

a non-parametric extension to PCFGs (probabilistic context free grammars). They can learn arbitrary-

length word sequences (collocations); for example, gradient descent and cost function were learned as

phrases in a machine learning topic. These adaptor grammars are used in two ways: in the first, col-

locations are used as features in a MaxEnt classifier. In the second, the grammar is trained on each

class (representing native language). At test time, the most probable grammar to have generated the

text is selected. For both tasks, the authors use five-fold cross validation on seven native languages.

In the feature-based classification, they achieved 76%; in the language model-based classification, they

achieved only 50%, a performance similar to the unigram word baseline from Tsur and Rappoport (2007).

Swanson and Charniak (2012) made use of tree substitution grammars (TSGs) Blunsom and Cohn

(2010). TSGs are a tree-rewriting formalism that defines operations on partial (parse) tree objects.

For example, subtrees may be added or removed from a base tree. Benefits of using this method are

priors which prefer smaller production rules and the ability to capture long-range dependencies. Various

induction methods are compared to generate features, and five-fold cross validation on seven native

languages is performed. All TSG features outperformed the CFG baseline (at 73%). The highest TSG

induction method was Bayesian induction at 78%.

In summary, Table 3.1 lists the comparable accuracies from experiments run on the ICLE subset of five

European languages. In general though, accuracies between 70% to 80% are standard for a wide variety

of techniques and corpora.

3.3 Non-Native Grammatical Error Correction

An excellent overview of grammatical error correction with a focus on non-native learners can be found

in Leacock et al. (2014). This short book is a concise collection on the topic and consists of many recent

advances since 2010. If the reader wishes to delve into more detail in this subtopic, we suggest refer-

encing their work, whereas this thesis features a broader outline and is thus not able to go into as much

depth in one particular area.
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Lee and Seneff (2006) train a trigram language model on a lattice of alternatives, where “alterna-

tives” are prepositions, articles, and auxiliaries that may or may not occur between words in the original

text. For example, the sentence I want flight Monday can be corrected by inserting two tokens as such:

I want a flight on Monday. Their algorithm first strips all such alternatives from the original sentence.

So far, this is not much different from the article and preposition corrections. However, they addition-

ally change each remaining word in the input sentence to be a set of related words to the base form:

want → {want, wants, wanted, wanting}. Their language model then outputs the k-best candidates.

Next, these candidates are given to a PCFG and reranked. The final output is the top-ranked sentence

from the PCFG. Across all experiments, they found that reranking the language model candidates signif-

icantly increased the F measure.

West et al. (2011) use bilingual random walks between L1 and L2 word senses. For example, on one

side of a bipartite graph are L1 words. There are connections from a word w ∈ L1 to a word w′ ∈ L2

if a w could be translated into w′. w could be the English word head, and be translated into a physical

head, head of an organization, or the verb to head. This model was used to correct non-native sounding

phrases such as entire stranger to the more natural complete stranger. This bipartite graph was combined

with a language model to correct non-native sentences. In these experiments, the native language was

Korean. Evaluation was performed with Amazon Mechanical Turk 4 where workers chose between the

corrected sentence and the original sentence. Results were not strongly positive, since sometimes the

corrected errors changed the meaning of the sentence or made it ungrammatical. In future work the

authors suggest using a richer probabilistic model such as a PCFG.

Dahlmeier and Ng (2011b) use the NUCLE corpus to find and correct collocation errors via machine

translation. Here, a collocation is a phrase commonly used by native speakers. The authors propose that

when a writer mentally translates from L1 to L2, some unnatural phrases result due to word choice. They

give an example, “I like to look movies” that might be written by a native Chinese speaker since watch and

look are very similar in the L1. It would be possible to correct this to the more grammatical “I like to look at

movies”, but it still does not sound natural. Instead, look is replaced by watch, resulting in the more fluent

collocation watch movies. For their experiments, they assume the unnatural collocations have already

been identified; this mimics a system where a user may ask for improvement suggestions for a snippet of

writing. They train a statistical machine translation model on a parallel Chinese-English corpus to correct

collocation errors in the NUCLE corpus. A log-linear model was used to score the candidate phrases which

allows additional spelling, homophone, and synonym features to be incorporated. They evaluated their

method as a retrieval task, where they returned the top k suggestions to fix each collocation error. Two

native-English speakers judged results from five hundred corrections with good rater agreement. Finally,

4https://www.mturk.com/mturk/welcome
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they performed an analysis of errors and found that the main reason top-ranked phrases were not correct

was due to out-of-vocabulary words.

Dahlmeier and Ng (2011a) introduce an alternating structure optimization (ASO) approach to GEC.

In short, ASO is able to leverage a common structure between multiple related problems. In this case,

the related problems are selection (find features from native text) and correction (fix the errors in non-

native text). Targets were article and preposition errors, again using the NUCLE corpus. It was shown that

ASO significantly outperformed a simple linear classifier as well as two unnamed commercial grammar

checkers. Features included part-of-speech tags, hypernyms from WordNet, named entities, and shallow

parsing tags.

Gamon (2010) combined a language model and classifier into a “meta-classifier” that detected errors in

both article and preposition use. Additionally, they investigated how much more training data is needed

for the individual methods to approach the accuracy of the meta-classifier. Features for the classifier

were a window of six tokens to the right and left of errors, POS tags, and lexical head features. The

classifier was actually split into two steps: first, determine the likely presence of a preposition or article.

Then, determine which article or preposition should be chosen. The language model is trained on LDC’s

Gigaword corpus and log-likelihood was used (normalized by sentence length). The meta-classifier uses

features generated from the two primary models such as ratio of likelihood scores from the language

model and classifier decisions. As expected, the meta-classifier outperformed the two simpler models.

Prepositions were harder to classify than articles and they required more training data to reach a specific

level of accuracy. Future work would be including more primary models to feed features into the meta-

classifier.

Madnani et al. (2012) applied “round-trip” machine translation to correct generic errors in L2 text.

A round-trip translation used the Google Translate API5 to translate the candidate text from L2 to eight

different languages and back again to L2. Since it is not guaranteed that the translations will preserve

the meaning of the sentence, they assert that using a language model to select the most fluent choice is

not acceptable. Instead, they combined alignments between the source and each round trip translation

to create the final answer. This method had a better likelihood of maintaining the sentence’s original

meaning. In order to evaluate their system, they had human graders check whether the fixes were fluent

as well as retaining the original meaning.

The next two papers we discuss consider alternatives to standard acquisition of training data for GEC.

Usually, a dataset annotated corrections is used, but these papers create or acquire their own non-native

errors.

Instead of training directly on non-native text, Rozovskaya and Roth (2010) took native text and in-

5http://research.google.com/university/translate/
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tentionally inserted article errors. In order to create a realistic error distribution, they generated the

article errors with the same observed distribution as the non-native corpora. Advantages to training data

generation in this style are avoiding expensive data annotation, circumventing small corpus sizes, and

tailoring the classifier to a particular language. Most of all, their method was shown to be superior to

only training a classifier on purely native data. One final note they make is that previous baselines used

in the literature are not always appropriate; baselines mentioned before are simply the majority class.

While this is acceptable for a selection task, this ignores the actual error rate in the data. Usually, the er-

ror rate is much lower (shown to be about 10% in their experiments) than the majority class. Therefore,

they argue, a more fair comparison would be the error reduction, and this is indeed the measure they use

to report their results. They reduced the error detection in native Chinese, Czech, and Russian text by

10%, 5%, and 11% respectively.

Cahill et al. (2013) obtained their grammatical errors from Wikipedia revisions. They filtered the article

revisions dataset looking for single-word changes that corresponded to correcting article and preposition

errors. Using this method, they obtained over one million corrections. They compared their mined corpus

with standard error correction corpora as well as artificially-inserted errors like Rozovskaya and Roth’s

approach. They found that the larger “somewhat clean” Wikipedia edits were much better in increasing

the F1 of the grammar corrector as opposed to other common datasets, including a smaller “more clean”

version of their Wikipedia data. Furthermore, they found that artificial error insertion methods trained

on their Wikipedia revisions data increased system accuracy compared to training on smaller corpora,

and even generalized across datasets.

In sharp contrast to NLI evaluation, Chodorow et al. (2012) describe many issues regarding evaluation

for grammatical error correction, with a focus on non-native sentences. This is a valuable paper for those

engaging in any GEC task. Their main issue is the “three-way contingency” between the original sentence,

the human correction, and the system output (let alone the evaluation scripts themselves). Mentioned

later by Rozovskaya and Roth (2013), this report also emphasizes the significance of the relatively low

error rates in non-native sentences—this phenomenon suggests using more interpretable measures such

as true and false positives and negatives. Furthermore, how is the severity of an error taken into account?

For example, most native English speakers often misuse who and whom. Their conclusion from these

observations is to develop a robust evaluation system based on raw error type counts. This allows bias

and error skewness to be perceived by the reader while simultaneously permitting the reader or other

evaluator to map the raw error data into another form such as precision, accuracy, prevalence, or bias.

Correcting machine translated text is a related issue, but we do not discuss it here; instead, please

see Corston-Oliver et al. (2001) or Gamon et al. (2005b). Table 3.2 compares the different methods

discussed in this section.
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Paper Method Target
Corston-Oliver et al. (2001) machine translation∗ specific injected errors
Lee and Seneff (2006) LM with PCFG scoring∗ articles, prepositions,

and word forms
West et al. (2011) bilingual random walk+ word sense
Dahlmeier and Ng (2011a) structure optimization∗ articles/prepositions
Dahlmeier and Ng (2011b) machine translation+ collocation errors

Table 3.2: Comparison of GEC strategies. ∗ indicates targeted approaches and + indicates general
approaches.

Some grammar correction methods are targeted towards a very specific subset of errors, often catego-

rized by the corpus; others attempt to solve more general errors concerning word sense or collocations.

Evaluation for grammar correction is much more varied and unstandardized in comparison to the con-

figurations from NLI as we will see in the next section. Which non-native corpus is used also dictates the

types of errors that can be corrected.

3.4 Fluency Scoring

Which of the two following sentences sounds more natural?

1. “If there are unexpected expenses, material for their lesson, for example, they may not be able to pay

money to it only with monthly allowance.”

2. “If there are unexpected expenses—school materials, for example—they may not be able to afford them

with only a monthly allowance.”

Most readers would probably agree that the second sentence sounds much more fluent than the first,

even though the first sentence has only very minor grammatical errors. Fluency scoring is thus related to

GEC in this way. However, as evidenced above, a lack of grammatical errors does not necessarily mean

that a sentence sounds native.

In this section, we will discuss directly approaching fluency scoring in addition to three indirect meth-

ods: essay grading, machine translation evaluation, and native vs. non-native sentence classification.

Direct fluency scoring focuses on both the “nativeness”, grammaticality, and correct colloquialisms

used at an individual sentence level. For example, the following sentence would not be considered totally

fluent English despite the lack of grammatical errors: They may not be able to pay money for it. Of course,

grammar does play a very important role in fluency evaluation, but it is not the sole contributor to the

final score.
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Rabinovich et al. (2016) examine the similarities between native, non-native, and translated texts.

They found that non-native and translated texts were much more similar to one another compared to

native text. They investigate several features that are particularly indicative of the text source. While

they don’t use these features directly to measure fluency, it would be straightforward to encode them as

features in a fluency scorer. Characteristics they found lexical richness (L2 texts use a smaller vocabulary),

collocations (L1 texts use more colloquialisms), cohesive markers (L2 texts overuse sentence transition

markers), and personal pronouns (L2 texts are more likely to spell out nouns and proper nouns instead

of using pronouns). These would certainly be excellent explanatory text representations since all are

linguistically motivated and easy for humans to understand.

A main issue with direct fluency scoring is the lack of training or evaluation data. Thus, indirect

methods are almost always used instead. Heilman et al. (2014) address the lack of training data by

annotating a corpus of TOEFL sentences with a proposed fluency annotation scheme. They train a model

to score each sentence on a scale based on the annotations. A main issue with this work is the amount of

manual effort required. They produced a corpus of approximately 3,000 scored sentences and used many

hand-crafted features for their predictions. Due to the large number of specialized features operating on

a small collection of documents from a very restricted domain, overfitting may be a serious issue.

Yoon and Bhat (2012) use recorded speech by non-native speakers and use part-of-speech n-grams

to measure fluency. Of course, there are many differences between spoken and written datasets, but

the approach here shows us that relatively simple features can be used quite effectively to score fluency

assuming there is enough training data (their dataset had 41, 000 objects). Despite issues that could

arise from using imperfect speech recognition and POS-tagging, they achieved high correlation with

expert proficiency scores. Finally, they performed a simple feature analysis for which POS-tag sequences

are indicative of which class type.

In the next paragraphs, we describe indirect approaches that take advantage of existing methods and

corpora to address the fluency scoring task.

Essay scoring is content-based, grammar-based, and could contain a fluency component. Essay scoring

could also be a type of discourse analysis that attempts to consider the work as a whole. Often though,

simple statistics are taken at the word or sentence level that are assumed to be independent of each

other. In some cases, the overall flow of an essay has been investigated (Lynch et al., 2014). Readability

scoring Dell’Orletta et al. (2014) is also a related task, which can be used both for fluency scoring and

text simplification (see section 3.5). Dikli (2006) gives an informative overview of many different essay

scoring systems; for brevity, we only mention a few in this section.

The ETS corpus (Blanchard et al., 2013) is a collection of essays from the Test of English as a Foreign

Language (TOEFL), a component of the Educational Testing Service. The TOEFL is an essay-based mea-
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sure of English proficiency for students seeking to enroll in college. While the ETS corpus was designed

to aid in NLI research, it also has scores in the range [1, 5] for each essay. These scores represent how

well the student answered the essay question, and is not a measure of fluency. According to the essay

scoring rubric6, even essays with a perfect score may have “occasional language errors” that do not re-

sult in “imprecise presentation of content”. Similarly, a score of 1 could mean either the response is not

relevant to the prompt or the level of English is too low to understand. Thus while the level of English

fluency may be correlated with the essay score, the score is strictly a result of how well the prompt was

answered.

The e-rater system by Attali and Burstein (2006) was used to grade non-native essays from the ETS

dataset. It used features such as “grammar, usage, mechanics, style, organization, length, word length,

vocabulary, and correlation between prompt and essay vocabulary”, but does not explain in detail how

some features are derived. They found that e-rater had the same reliability of two human raters’ scores,

but the correlation between two human raters was about 0.60, or a weighted kappa rater agreement

score of 0.44 (the low end of moderate agreement).

Powers et al. (2001) attempted to undermine the first version of e-rater’s scoring abilities by taking

advantage of its scoring system. They found it was easy to make e-rater give a higher-than-deserved

score, but much harder to make it give a lower-than-deserved score. Even so, these scores are still based

on answering the prompt, and not on English fluency.

Machine translation evaluation is another related subfield. Fluency scoring is used to judge the

output of machine translation (MT) systems (and vice versa), and there are many metrics that have been

designed. Most MT evaluation metrics are designed with a target sentence in mind (since MT is a source

to target transformation). BLEU (Papineni et al., 2002) is a common measure that scores each sentence

based on n-gram precision and the difference between source and target length. Essay scoring is also

used (though to a lesser extent) for MT evaluation; for example, ETS’s e-rater system won an MTeval

competition Parton et al. (2011).

A simple approach to score fluency without reference translations is to use a language model trained on

a large amount of fluent text such as the English Gigaword corpus (CITE). The language model would as-

sign probability to each sentence where more fluent sentences are more probable. On the other hand, Ga-

mon et al. (2005a) describe an MT evaluation system without reference translations that does not rely

solely on language modeling.

Classifying native vs. non-native sentences may be used as a component of a fluency scorer or fluency

corrector.

Sun et al. (2007) use features called labeled sequential patterns (LSPs). Similar to Yoon and Bhat

6https://www.ets.org/Media/Tests/TOEFL/pdf/Writing_Rubrics.pdf

26

https://www.ets.org/Media/Tests/TOEFL/pdf/Writing_Rubrics.pdf


(2012), their patterns are POS-tags. However, they are discovered via frequent pattern mining (see

section 2.2.2). Additionally, they leave in stop words and time words, capturing malformed phrases such

as a NNS. In addition to these LSPs, they add features about language model perplexity and collocations;

however, the LSPs were found to be the most effective features.

Lee et al. (2007) solve the training data sparsity issue by using machine translated text as their L2

text. This agrees with the findings by Rabinovich et al. (2016), where L2 and translated texts are highly

similar compared to L1 text. A similar task is detecting whether text is machine-translated Aharoni et al.

(2014).

Finally, Horbach et al. (2015) build on POS-tags with stop word features and improve L1 vs. L2 classi-

fication results. Particularly useful are similarity scores that can be obtained using their features to show

how far apart a given text is from L1. This similarity score could be used in fluency scoring, and they do in

fact apply it to coarse-grained adequacy labels (low, medium, or high proficiency). From an explanatory

text representation perspective, they can output the most over- and under-used features for each L1. For

example, they show native Japanese speakers tend to begin sentences with first, while native German

speakers tend to begin sentences with another NN.

3.5 Text Simplification

Consider the following two sentences:

1. “The main bar at King’s is far older, and is the site of more informal meetings between students. The

bar has been traditionally painted a socialist red, including a depiction of a hammer and sickle.”

2. “King’s main bar is older. The bar is traditionally painted a socialist red, including a picture of a

hammer and sickle.”

The first sentence is longer and uses a slightly larger vocabulary (depiction instead of picture). As a

non-native speaker of English, it is likely that the second sentence is easier to understand, or would at

least take less time to comprehend.

Summarization, simplification, and readability go hand in hand to help a non-native speaker under-

stand text. Unlike NLI, GEC, and even fluency scoring, most algorithms operate solely on well-formed,

native L2 passages. Simplification can be seen as an easy-to-understand summary of a more difficult

text; simplification essentially “translates” one sentence to another, in efforts to make the result have

a better readability. It is a form of monolingual machine translation when using a parallel corpus of

advanced and simple language. For a detailed description of general text simplification, we direct the

reader to Siddharthan (2014).
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Unfortunately, not much work has been done in text simplification specifically for non-native speakers.

A typical use case is simplifying medical texts so the common reader can make sense of them (e.g.

see Abrahamsson et al. (2014)). Other use cases could be helping younger readers or users with learning

disabilities.

Wikipedia and Simple Wikipedia7 are popular parallel corpora. In fact, the first example sentence in

this section is from Wikipedia and the second is from Simple Wikipedia. Both Wubben et al. (2012) and

Zhu et al. (2010) use them as corpora for sentence simplification via monolingual machine translation.

The former uses non-native speakers to judge sentences from their system, but the system itself doesn’t

take into account the users’ native language when forming the simplifications. The latter defines sentence

splitting, deletion, reordering, and substitution operations on complex parse trees in order to simplify

them into more understandable sentences. They evaluate with standard readability measures as well as

perplexity from an English language model.

Lappas and Vlachos (2012) show how to rank documents in a search engine to favor both relevance and

readability for non-native speakers. The readability score is determined based on the user’s native lan-

guage, although this is not automatically detected. Each document is assigned a (relevance, readabil i t y)

pair at query-time, and it can be imagined that documents are plotted in this 2D space. A document is

said to dominate another document if it is more understandable and more relevant. In the 2D document

space, documents that are not dominated by any other document are on the “skyline” (or perimeter) of

the space. These are the documents that are browsed by the user. They evaluated their search engine

based on the number of documents a user viewed before satisfaction, and found that taking readability

into account decreased the number of documents that needed to be examined.

As the text simplification field continues to evolve, we hope to see more simplification tasks specifically

aimed at helping second-language learners. The “teddy bear principle” states that language learners

tend to stick with a relatively small set of learned syntactic patterns when speaking or writing in L2.

Depending on the L1, a sentence simplification task could translate the complex sentences into a format

more comfortable to the user. Petersen and Ostendorf (2007) analyze changes made to professionally

abridged versions of newspaper articles to determine common translations. These common modifications

could be incorporated in a monolingual translation model.

Another relatively unaddressed question is whether simplification is better than an alternative means to

understanding: for example, elaboration. The Master’s thesis by Maxwell (2011) considers this question

and asserts that elaboration is actually more beneficial based on reading comprehension scores of Korean

high school students studying English. She claims that simplification often results in unnatural-sounding

phrases that do not resemble authentic L1 text. This is still an open problem that has not been approached

7http://simple.wikipedia.org/wiki/Main_Page
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with computational techniques.
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CHAPTER 4

STRUCTURAL PARSE TREE FEATURES

In this chapter, we propose and study novel text representation features created from parse tree struc-

tures. Unlike the traditional parse tree features which include all the attached syntactic categories to

capture linguistic properties of text, the new features are solely or primarily defined based on the tree

structure, and thus better reflect the pure structural properties of parse trees. We hypothesize that these

new complex structural features capture an orthogonal perspective of text even compared to advanced

syntactic ones. Evaluation based on three different text categorization tasks (i.e., nationality detection,

essay scoring, and sentiment analysis) shows that the proposed new tree structure features complement

the existing ones to enrich text representation. Experimental results further show that a combination of

the proposed new structure features with word n-grams can improve F1 score and classification accuracy.

4.1 Motivation

The issue of text representation is complicated because different tasks tend to require a somewhat differ-

ent perspective of representation—thus a different feature set. For example, while functional words are

generally not useful for topic categorization, they may be useful for the author attribution categorization

task, which may also benefit from features capturing sentence structures. It is therefore important to de-

velop a rich set of potential features that can represent text from different perspectives and to understand

what kind of features are most effective for which tasks.

By far, the most common way to generate features is to segment text into words and record their n-

grams; indeed, unigrams are quite common for information retrieval and text classification applications.

In addition to content features, functional words and syntactic features have also been considered,

notably for tasks such as author attribution or essay scoring. Complementary with content features, syn-

tactic features can better reflect the writing style of an article. For example, simple syntactic features such

as n-grams of part-of-speech tags and unigram function words were used for authorship attribution (Sta-

matatos, 2009; Koppel et al., 2009). To further capture syntactic structures, grammatical productions

(rewrite rules) were also discussed as potential features (Baayen et al., 1996), where the authors showed
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that rule frequencies were significantly different across classes and used them as features in some simple

classification tasks. Later work used syntactic tree features for scoring non-native speech (Chen and Zech-

ner, 2011), authorship attribution (Raghavan et al., 2010; Kim et al., 2011), deception detection (Feng

et al., 2012), relation extraction (Jiang and Zhai, 2007), and even tree kernel methods (Agarwal et al.,

2011; Zhou et al., 2010).

In this chapter, we propose to investigate a new dimension of text representation based on parse trees

with more emphasis on structural representation. Specifically, we propose to define structural features

solely based on structural properties of a parse tree by ignoring all of the syntactic categories in the

tree. More specifically, we call such new features skeletons to indicate their emphasis on pure structures

rather than rewrite rules. A skeleton is defined as any subtree of a parse tree without including any

syntactic categories. Compared with syntactic rewrite rules, skeletons can better capture the structural

properties of a whole parse tree. Indeed, an important advantage of skeletons over regular syntactic

features is that they can capture “global tree structures” without causing problems of data sparseness

or overfitting. Because of the focus on pure structures, even relatively large skeletons can be observed

multiple times in a reasonably large set of text articles; in contrast, if we are to attach the syntactic

categories, we would end up having far more specialized features that may not be observed multiple

times in a corpus. We thus hypothesize that skeletons can capture a new additional dimension of text

that cannot be easily captured by either content features or regular syntactic features, and thus may serve

well as complementary features with the existing ones.

We evaluate the proposed skeleton-based features using three different categorization tasks that likely

would benefit from structural representation of text: nationality detection, essay grading, and sentiment

analysis. We compare feature combinations of the proposed new features with three common simple

features (n-grams of words, part-of-speech tags, and function words). We also investigate existing tree

features (rewrite rules and syntactic categories), showing that the new skeleton-based features provide

orthogonal information compared to the simpler features and validating their usefulness for text repre-

sentation.

4.2 Related Work

Tree structure has been explored before, though not in a text representation perspective. A treebank

described in Black et al. (1996) allows grammatical parse trees to be browsed based on structure alone,

but does not provide any sort of classification component. Wang and Neumann (2007) use dependency

tree structure in a sentence similarity metric for textual entailment. A sentence similarity measure could

possibly be generalized to an entire document, though a purely-structural sentence similarity measure
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has not been presented before.

Although both these works consider tree skeletons, they are not used as a feature for text representa-

tion, and thus have not been used as features for classification, clustering, or information retrieval.

In previous studies of features for text representation, the authors only examined a small subset of

feature competitors: in Raghavan et al. (2010), unigrams, bigrams, and trigrams of words; in Kim et al.

(2011), unigram and bigram part-of-speech (POS) tags and bag-of-words function words (FW); in Feng

et al. (2012), unigram and bigram words and unigram, bigram, and trigram parts-of-speech. In addition

to a limited comparison set, each paper only considered one domain; authorship attribution in the first

two, and deception detection in the second. In this paper, we compare these existing features with the

proposed new features on three additional tasks: nationality detection, essay scoring, and sentiment

analysis.

Chen and Zechner (2011) examine tree features at a much higher level in the form of nonterminals

per sentence, e.g. number of noun phrases per sentence and mean number of prepositional phrases per

sentence. The work was mainly focused on investigating potential features so no classification tasks were

performed.

Kim et al. (2011) mine discriminative frequent PCFG tree patterns for each author. Features used

were the rewrite rules and a new pattern, k-embedded-edge (ee) subtrees: subtrees that share a set

of k ancestor-descendant subtrees. Therefore, a 0-ee subtree would be one arbitrarily-sized subtree,

and a 1-ee subtree would be one subtree and one descendant subtree anywhere in the parse tree. This

creates an exponential number of potential patterns, and the authors define algorithms in order to process

this large amount of data before pruning the number of ee trees to be used as features. In fact, the

algorithms were run on a petascale supercomputer, which justified the implication that their method is

quite computationally intensive. Besides the concern of computational complexity, another concern is

the high susceptibility of the large number of patterns to overfitting. In contrast, the skeleton features

proposed in this paper are efficient to compute and systematically capture the major structures in a parse

tree.

Jiang and Zhai (2007) explore feature extraction from sequence (words), syntactic (grammatical parse

trees), and dependency (dependency parse trees) subspaces. Features used were n-grams for the word

sequences, grammar productions for PCFGs, and dependency paths for the dependency parse trees. They

concluded that adding all these features together versus separately only slightly increases performance.

We suspect that this is because the structural information encoded in the parse trees is not taken into

account.

Grammatical parse tree features have also been explored in classification tasks as tree kernels in Collins

and Duffy (2002), Kudo and Matsumoto (2004), and Moschitti (2006). Again, none of this previous work
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Figure 4.1: An example grammatical parse tree of the sentence They have many theoretical ideas.

takes into account the structure of the trees themselves, but rather focuses on the syntactic categories

as the main avenue of information. Collins and Duffy (2002) mainly focus on reducing the feature

space of “all subtrees” for the perceptron algorithm using rewrite-rule features. Kudo and Matsumoto

(2004) explore a boosting method over “subtree stumps” (common subtree sequences). Finally, Moschitti

(2006) provide yet another tree kernel method, focusing on efficient algorithms. They use parse tree

substructures, a somewhat larger feature space than rewrite rules, but still consider only the node labels

in addition to their order.

4.3 Model

A parse tree of the sentence “They have many theoretical ideas.” is used for examples and given in Fig-

ure 4.1.

The parse tree is rooted with S, denoting Sentence; the sentence is composed of a noun phrase (N P)

followed by a verb phrase (V P) and period. The leaves of the tree are the words in the sentence, and

the preterminals (the direct parents of the leaves) are part-of-speech tags.

It’s worth noting that feature extraction from the grammatical structure of a parse tree is separated

from the sentence’s words themselves. For example, the sentence “They have many theoretical elbows”–

while nonsensical–will still have the exact same parse tree, since elbows and ideas are both plural nouns.

In both cases, the sentences are grammatically correct.

In this work, we investigate existing parse tree features like syntactic categories and rewrite rules

before introducing the novel features tree skeletons and annotated tree skeletons.

Syntactic category features can be thought of as an extension of POS tags to parse trees. This creates

a distribution of non-terminal productions over each class. The trees are simply traversed, tallying the
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Figure 4.2: Example rewrite rule grammatical parse tree features of the sentence They have many
theoretical ideas.

labels of internal nodes: S:1, NP:2, VP:1, PRP:1, VBP:1, JJ:2, and NNS:1. The goal of syntactic categories

is to observe phrase structure occurrence at a level above POS tags and words. This feature is similar to

POS tags in that sense, and it even records them when examining nodes near the leaves of the tree. We

hope this feature does at least as well as unigram POS tags, since they are a strict subset of this feature.

Rewrite rules aggregate subtrees from each sentence’s parse and was one of the tree features in Kim

et al. (2011) and others. The subtrees in Figure 4.2 would be recorded from the example sentence “They

have many theoretical ideas.":

This process is repeated for all sentences in all texts belonging to a given class, so each class has a

distribution of these subtrees. It can be thought of as a “bag-of-trees” method. This feature is desirable,

as particular parse trees could be common for any particular category. For example, in age detection,

more complicated tree structures could be scarce for younger writers. Similarly, authors whose native

language is not English may only select sentence structures from a relatively small learned collection, or

repeat similar practiced patterns.

Skeleton features are extracted from a novel procedure that recursively descends into subtrees, record-

ing the internal structure with disregard to internal node labels. This attempts to capture the flow or

phrasal structure of sentences while being agnostic to actual labels. The simple COUNTSKELETONS func-

tion is described below. SKELETON returns the skeletal structure of the tree rooted at the parameter.

Algorithm 1 Counting different skeletons in a parse tree

procedure COUNTSKELETONS(T)
token← SKELETON(T)
INCREMENTCOUNT(token)
for each subtree t ∈ T do

COUNTSKELETONS(t)
end for

end procedure

Frequency counts are kept for each tree skeleton in each sentence in the entire class dataset as indicated

by the function INCREMENTCOUNT. The skeleton structure representations can be recorded as sets of

parenthesis: ((())(()(()))()). For example, Figure 4.3 displays the skeletons generated from the

sentence “They have many theoretical ideas”.
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Figure 4.3: Example skeleton grammatical parse tree features of the sentence They have many
theoretical ideas.
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Figure 4.4: Example annotated skeleton grammatical parse tree features of the sentence They have
many theoretical ideas.

Annotated skeleton features are a compromise between rewrite rules and raw skeletons. They hope

to form a middle ground between the specificity of rewrite rules and the generality of skeletons. The

algorithm to generate these features is almost exactly the same as skeleton’s, except the topmost internal

node’s label is retained (the annotation). Again, the pseudocode for obtaining annotated skeletons is

given below. The function CATEGORY returns the syntactic category of its parameter, e.g. V P or CC .

Algorithm 2 Counting annotated skeletons in a parse tree

procedure COUNTANNOTATEDSKELETONS(T)
token← CATEGORY(T) + SKELETON(T)
INCREMENTCOUNT(token)
for each subtree t ∈ T do

COUNTANNOTATEDSKELETONS(t)
end for

end procedure

An annotated skeleton feature could be as follows: (S(())(()(()))()). Given the example sen-

tence, each subtree above would be given a frequency count of one as shown in Figure 4.4.

A key difference between the skeleton-based features and the existing rewriting rules features is that
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the skeleton-based features emphasize pure structural properties by intentionally ignoring the syntactic

labels. Thus, they can represent text data from an orthogonal perspective to what existing features can

capture. Furthermore, an advantage of such features as compared with rewrite rules is that they are

generally more frequent, therefore less likely to suffer from data sparseness.

From another perspective, we may also view a skeleton feature as a cluster of syntactically annotated

tree structures that share the same underlying structure. An annotated skeleton is simply a more re-

stricted cluster with the root node fixed to a phrasal category.

As baseline methods, we consider POS tags and function words.

Part-of-speech tags are a common grammatical feature. Their small, finite number lends them to be

simple features for a classifier. When expanding to n-grams of part-of-speech tags, their small number

also ensures that there are still a relatively low number of features generated (opposed, mainly, to words).

POS tags are perhaps the syntactic analog of basic words, in that they are simple and robust. They

capture grammar usage at its most basic level. High accuracy POS taggers (≥ 97%) ensure cleanly

processed data.

Function words are a well-performing feature for authorship attribution as noted by Stamatatos

(2009) and Koppel et al. (2009). They attempt to capture nuances in text that remain largely an un-

conscious byproduct of individual authors. In our experiments, we see if our 320 function words also

distinguish between nationality, essay grades, or positive or negative sentiment.

Since the n-gram feature generation tools in our toolkit already existed for POS tags and words, we ran

the function words collected from the text through this part of the system as well, mainly out of curiosity

if bigram function words or higher turned out to be useful.

4.4 Experiments

We evaluate the proposed features using three different text categorization tasks that likely benefit from

using structural features.

The CEEAUS (Ishikawa, 2009) dataset consists of 1008 essays written in English by native Chinese,

Japanese, and English students. Essays were classified by their writers’ native language. In attempts

to keep content uniform, each essay is a response to one of two writing prompts: 1) It is important for

college students to have a part-time job or 2) Smoking should be completely banned at all restaurants in the

country. Categorizing text based on assumed nationality would be a useful way to rate one’s mastery of

a second language. It would also aid in authorship profiling when combined with other methods trained

on age and gender.

The Essay (Foundation, 2012) dataset is 10,686 scored student essays on a range of 0 to 12. Essays
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Nationality Detection (ICNALE)
Method nbest F1 A

Word 1 .827 .916
POS-tags 2 .810 .902
Function words 2 .728 .876

Syntactic categories .703 .844
Rewrite rules .778 .844
Skeletons .510 .806
Annotated Skeletons .721 .870

ASkel + Word 1 .885 .942
SC + Word 1 .867 .936
RR + Word 1 .854 .924
ASkel + POS 2 .811 .900
RR + POS 2 .810 .896
Skel + Word 1 .809 .912

Essay Scoring (Kaggle) Sentiment Analysis (IMDB)
Method nbest κ

Word 2 .889
POS-tags 2 .765
Function words 1 .845

Syntactic categories .431
Rewrite rules .702
Skeletons .356
Annotated Skeletons .658

SC + Word 2 .834
ASkel + FW 1 .822
RR + Word 2 .807
ASkel + Word 2 .791
RR + FW 1 .786
ASkel + POS 2 .782

Method nbest F1 A

Word 1 .820 .820
POS-tags 3 .662 .662
Function words 1 .687 .687

Syntactic Categories .555 .568
Rewrite rules .650 .650
Skeletons .556 .557
Annotated Skeletons .654 .654

Skel + Word 1 .828 .828
RR + Word 1 .824 .824
ASkel + Word 1 .824 .824
SC + Word 1 .822 .822
ASkel + FW 1 .704 .704
RR + FW 1 .686 .686

Table 4.1: Comparison of single and combined features across corpora. SC, RR, Skel, and ASkel refer to
Syntactic Category, Rewrite Rules, Skeleton, and Annotated Skeleton. Combination methods and all
parameters were chosen via tuning on development set.

were relatively short, all between 150 and 550 words. These essays were originally used as data for

a contest in essay scoring. Scores for the essays are an average of three human graders’ scores in an

attempt to portray the most accurate human judgement.

The IMDB dataset (Maas et al., 2011a) consists of 50,000 movie reviews from the International Movie

Database, classified as either positive or negative. All movie reviews are scored out of 10, but only clearly

negative (score ≤ 4) or clearly positive (score ≥ 7) are included in the dataset for data polarization.

To assess classification accuracy for nationality detection and sentiment analysis, we employ the com-

monly used information retrieval measurements F1 score and accuracy (Caruana and Niculescu-Mizil,

2004).

The essay dataset is evaluated differently. As in the original contest, performance is calculated with
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the quadratic weighted κ metric, described in Cohen (1968). In short, the κ metric measures agreement

between two raters using a fixed scale, where usually κ ∈ [0.0,1.0], with 0.0 indicating random agree-

ment and 1.0 indicating exact agreement. For very poor features, it is possible that the score drops below

0.0. The contest’s own evaluation script was run on our output.

Experiment Design

The main questions we strive to answer are Q1) Are the new features orthogonal to the existing ones?

and Q2) Can we combine the new features with old ones to improve accuracy?

In order to conduct fair experiments, we created a modular testing framework that easily allows us

to exchange features and datasets. Source texts were preprocessed with the Stanford parser (Klein and

Manning, 2003) and part-of-speech tagger (Toutanova et al., 2003), then features were generated based

on the preprocessed data. The feature files are then passed to liblinear (Fan et al., 2008), where it learns

a classifier and performs five-fold cross-validation to evaluate the results. We used the parameter -s 1

for all runs, referring to L2-regularized L2-loss support vector classification (dual). This configuration has

C = 1, B = −1,ε= 0.1.

In reference to authorship attribution, Stamatatos (2009) notes that the “SVM model is able to avoid

overfitting problems even when several thousands of features are used and is considered one of the best

solutions of current technology". Hence we chose to use SVMs as our classification method, though of

course any classifier could be used.

For word features, 433 stop words based on the Lemur toolkit’s (Strohman et al., 2005) stop word list

are removed. Then, the words are stemmed according to the Porter2 stemmer (Porter, 2012).

We compare the three baseline features (words, POS tags, function words) with the tree features

(rewrite rules, skeletons, annotated skeletons, and syntactic categories). We partition each corpus into

two parts; on the first, we perform parameter selection via five-fold cross-validation to find the best n

for words, part-of-speech tags, and function words. Then, we select the best-performing n from this set

and run it, the tree features, and tree features + best n-grams on the second part, again with five-fold

cross-validation. Software used to run all experiments presented in this paper is open-source and freely

available online.1

Results

Table 4.1 shows the evaluation results on the three data sets. Each column is split into three parts; the top

records performance for the best-performing single methods for all n-grams. The middle section shows

1https://meta-toolkit.org
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tree-based method results, and the bottom section shows the best-performing combined methods.

On the nationality dataset, we see that of the single methods, word unigrams performed the best with

an F1 score of .827, where the best tree feature (RR) had .778. Combining features showed annotated

skeletons and unigram words proved most effective (F1 = .885).

The contest that originated the essay dataset ended before this work was begun; the first place finisher

ended up with a score of κ = .8141, but this score is not directly comparable to our results since we

believe the contest scored entries based on a withheld testing set. For this task, word features performed

the best, with none of the structural features being beneficial. This shows that the effectiveness of features

clearly depends on the task. Perhaps the essay scoring is more dependent on content rather than writing

style.

Similarly to the nationality detection experiment, word unigrams performed the best in the sentiment

analysis task (F1 = .820). For combined features, skeleton and unigram words performed the best with

(F1 = .828). Maas et al. (2011a) use this corpus, testing with two folds. They achieved A= 88.89. Wang

and Manning (2012) also cite using this dataset, with A= 91.22 on what we assume to be two folds. We

note that our results are significantly less, due to using half the dataset for n-gram parameter selection

before running the experiments on the other half.

4.5 Discussion

Table 4.2 shows the relative gain obtained by adding the syntactic category, rewrite rules, skeleton, and

annotated skeleton tree features to the original methods.

We find that annotated skeletons provide the best performance boost across all three domains. This

confirms our suspicions that structural tree information provides the most useful information. We do not

believe n-grams of function words have seriously been considered as a feature, but bigrams of function

words worked well when combined with tree features for the nationality and essay data sets.

Mining Tree Features

We use the correlation coefficient as described in Ng et al. (1997) to explore the efficacy of the tree

features. Looking at the highest weighted features, we should be able to rationalize their appearance.

Given the following metrics for a term t and a category ci we can define the probabilities:

1. P(t, ci): presence of t, membership in ci

2. P(t, ci): presence of t, non-membership in ci
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Nationality Detection F1 Gain
Method n Skel ASkel RR SC
Words 1 -.018 .058 .027 .040
POS-tags 2 -.045 .001 .000 -.025
Function words 2 -.074 .071 .067 .024
x̄ -.046 .043 .031 .013
σ .028 .037 .034 .033

Essay Scoring κ Gain
Method n Skel ASkel RR SC
Words 2 -.140 -.098 -.082 -.055
POS-tags 2 .003 .017 -.004 -.099
Function words 1 -.132 -0.23 -.077 -.145
x̄ -.090 -.104 -.054 -.100
σ .080 .123 .044 .045

Sentiment Analysis F1 Gain
Method n Skel ASkel RR SC
Words 1 .008 .004 .004 .002
POS-tags 3 .015 .023 .019 .002
Function words 1 -.005 .017 -.001 -.030
x̄ .006 .015 .007 -.090
σ .010 .010 .010 .018

Table 4.2: Adding tree features to the best-performing single features changes F1 and κ scores across
the three data sets.

3. P(t, ci): absence of t, membership in ci

4. P(t, ci) absence of t, non-membership in ci ,

Then, with N total documents, the correlation coefficient (CC) can be written as follows:

CC(t, ci) =
p

N[P(t, ci)P(t, ci)− P(t, ci)P(t, ci))]
Æ

P(t)P(t)P(ci)P(ci)
.

The correlation coefficient can be viewed as a one-sided Chi-square metric (Zheng et al., 2004). That is,

the features selected by correlation coefficient are most indicative of class membership only (as opposed

to membership and non-membership).

Structural tree features allow us automatically mine frequent phrase structures per class by collapsing

the surface form into a lower-dimensional structured representation. This dimensionality reduction is

critical; note how using unigram words or rewrite rules would only capture subsets of the groups we

display in Figure 4.5.

For the first Japanese structure, there were over twenty variations of a writer stating agreement or

disagreement with the prompt using the exact same phrase structure (including the incorrect usage of to
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ci = English
Words Skel ASkel RR SC
educ () VBG() NP→(NP)(VP) VBG
financi (()()()) DT() VP→(MD)(ADVP)(VP) DT
individu (()()()()) JJ() NP→(NP)(PP) :
believ (()(()()()())) NNS() S→(VP) -RRB-
right (()()) NP(()()()) PP→(TO)(NP) -LRB-

ci = Chinese
RR SC
ADVP→(DT) JJR
ADVP→(DT)(RBR) RBR
NP→(NP)(,)(SBAR) $
ADJP→(JJR) DT
NP→(JJR) FRAG

Words Skel ASkel
china (()(()(()(()(()(())))))) JJR()
knowledg (((()())(()(())))()()((()())(()(())))) RBR()
partjob ((())(()(())((())((())(()))))) ADVP(()()(()((())(()(())))))
chines (()((()()()()())(()(()())))) SBAR(()((()(()(()(()))))))
hold (()(()(()()))(()((()())(()(()(()())))))) VP(()(()(()(()(()(()))))))

ci = Japanese
Words Skel ASkel RR SC
think (()) PRP() NP→(PRP) PRP
smoke (()(())) NP(()) VP→(VBP)(NP) VBP
seat ((())(()(()()))) VBP() NP→(NN) .
money (()(())(()(()(()())))()) .() VP→(VBP)(S) LS
japan ((())(()(()()))()) LS() S→(CC)(NP)(VP)(.) ”

Table 4.3: Samples of the highest ranked features for each language as selected by the correlation
coefficient metric. Note that the words are stemmed.

and missing articles when using first):

{So,And,But,“}{I,we,they}{agree,disagree}{to,with}{first,that,the,this}{idea,statement,opinion,subject}

These phrases were almost always part of the first sentence of the response. Such patterns may reflect the

students’ L2 learning style to form these types of sentences, and is why these features are valuable in na-

tive language identification. Even if such patterns are found by manually inspecting thousands of essays,

extracting them would require writing complicated regular expressions. Even using traditional rewrite

rules would not be able to capture these nontrivial productions; thus, we see the power of structural

parse tree features in this knowledge-discovery task.

The highly-ranked word features are intuitive, especially interesting are “china” and “chines” for ci =

Chinese, and “japan” for ci = Japanese.

41



N
at

iv
e

Ja
pa

n
es

e

x

x

“
But
So
“

So

x

x

I
we
I
I

the y

x

x

agree
get

agree
disagree

could

x

x

to
t ired
with
with

spend

x

x

this
ver y
that
this
good

x

opinion
much

statement
statement

t ime

N
at

iv
e

C
hi

n
es

e

x

especial l y
ver y
can
do

stud y

t rue
di f f erent

not
not
and

x

f or
f rom
have
have
make

x

x

f amil ies
them
meals

responsibil i t y
repor t

x

with
in

with
f or
l ike

x

child ren
age
jo y

ever y thing
this

N
at

iv
e

En
gl

is
h

x

For
around

in
want
make

x

some
their
this

a
a

ex t ra-
child ren

da y
pleasant

poor

sensi t ive
and
and

dining
l i f est y le

people
others

age
ex perience

choice

Figure 4.5: Representative phrases for a top feature from each L1.
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We have a few observations regarding the syntactic features:

1. Somewhat surprisingly, structural tree features are significantly shorter for native speakers.

2. Native speakers use parenthesis (-RRB- and -LRB-) and colons (but not semicolons) much more

than non-native speakers do.

3. Non-native speakers more often start phrases with conjunctions.

4. Native speakers use more obscure rewrite rules such as VP→MD, ADVP, VP.

For example, the sentence “And if there are unexpected expenses, material for their lesson, for example,

they may not be able to pay money to it only with monthly allowance" shows it beginning with a conjunction,

and containing a relatively complex (or convoluted) structure.

Another sentence by a native speaker “Indeed, students who have a part-time job (like I did) quickly

change their perspective" shows a non-standard sentence beginning and the (seemingly) popular paren-

theses.

These observations are intuitive and lend credibility to the tree features, rationalizing their excellent

performance when combined with simple features.

4.6 Contributions and Future Work

We compared combinations of simple n-gram text representation models with new and existing tree

features. We showed that the novel structural tree features are most effective and when combined with

a simpler lexical model, capturing multiple perspectives of the same text.

Using these new methods, we display performance gains on existing corpora across domains. This

demonstrates the generality and usefulness of our features. We showed that the new structural features

combine better with simple features than existing tree representations such as rewrite rules.

Additionally, the structural tree features introduced are not restricted to probabilistic context-free

grammars as mainly discussed here; they could be applied to other tree structures as well: abstract

syntax trees for source code analysis, dependency parses for more linguistic analysis, and even HTML or

XML data for Web page or structured document comparisons.

We aimed to answer Q1) Are the new features orthogonal to the existing ones? and Q2) Can we

combine the new features with old ones to improve accuracy? Based on our experimental results, we

can answer yes to both. We assert the new features are orthogonal due to lack of syntactic information

and positive F1 score gain after adding them to the lexical features as shown in Table 4.2. We answer Q2

affirmatively with Table 4.1.
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In the future we would like to explore these features in tree structures other than PCFGs, as well in

other domains such as clustering and information retrieval. Using structural tree features in a topic

modeling context would allow distributions of structures to be obtained for each class more easily than

with machine learning algorithms such as SVM. This leads to better interpretability of features, offering

clearer explanations of why some classes favor certain structures.

We would also like to compare these new methods with the k-embedded-edge subtrees discussed

in Kim et al. (2011), as well as using their proposed feature reduction frequent tree pattern pruning.

Additionally, we would be interested in seeing how the features respond to dimensionality reduction

techniques, as the number of skeleton and annotated skeleton features is usually quite large.

In work published after this, Nagata and Sakaguchi (2016) examine specific phrase structures from

learner English. They create a treebank from non-native corpora that includes interior nodes representing

errors such as “word order error” or “word omission error”. Their contribution is an improved parser

model for learner English and analysis of L2 errors.
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CHAPTER 5

SYNTACTICDIFF

In this chapter, we describe SYNTACTICDIFF, a novel, general, and efficient edit-based method for trans-

forming sequences of words given a reference text collection. These transformations can be used directly

or can be employed as features to represent text data in a wide variety of text mining applications. As

case studies, we apply SYNTACTICDIFF to three quite different tasks, including grammatical error cor-

rection, student essay clustering and analysis, and native language identification, showing its benefit in

each case. SYNTACTICDIFF is completely general and can thus be potentially applied to any text data in

any natural language. It is highly efficient, customizable, and able to capture syntactic differences from

a reference text collection at the sentence, document, and subcollection levels. This enables both a rich

translation method and feature representation for many text mining tasks that deal with word usage and

syntax beyond bag-of-words.

5.1 Motivation

SYNTACTICDIFF was primarily motivated by arguably the most important fundamental question in text

data mining: how can we go beyond the bag-of-words representation in a general and robust way? Text

representation plays a crucial role in virtually all the text data applications since an inadequate represen-

tation always inevitably limits the capacity of a system in performing a mining or analysis task. The most

popular text representation used in many applications is the simplest bag-of-words representation, which

tends to work reasonably well for many content-processing tasks despite its simplicity. One reason for its

popularity is its robustness—it is very general and can be applied to any natural language text. However,

such a simple representation is clearly insufficient; for example, it cannot distinguish different orders of

words. Improvement over bag-of-words representation has thus been attempted, including n-grams or

phrase-based representations, and mixed representations based on part-of-speech tags and words (see

section 5.2 for a detailed review of this).

Virtually all the existing work on text representation has assumed that the representation of a text

object such as a document would be derived based on solely the document itself. Unfortunately, such
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an “independent representation” strategy is insufficient for many tasks, particularly those that require

discrimination that goes beyond pure content analysis.

For example, to support learning a second language at scale in Massive Open Online Courses (MOOCs),

it is often necessary to cluster student essays based on their grammar mistakes to enable “batch grading”

of a whole cluster together (Shah et al., 2014). Since all the students may have been asked to write

about similar topics, a content-based representation would clearly not work well. To effectively cluster

text documents for this application, we would need a representation of each document based on how

far it deviates from some reference text data (e.g. writing by native speakers). A comparative analysis

of a document with a reference text would be necessary in this case, allowing for the discovery of many

subtle differences in the document from comparable native writing. Such a comparative analysis can

reveal frequent article errors or incorrect verb form uses, among others. We can use the set of all such

mistakes to represent the document in which they occurred, allowing us to cluster essays where similar

mistakes are made.

Consider an authorship attribution variant with the goal of identifying the native language of a doc-

ument’s author, a shared task in 2013 (Tetreault et al., 2013). In essence, this is a text categorization

problem, so it is common to apply a supervised learning approach. As in the case of clustering, text

representation plays a critical role here. Since different authors may have written about the same topic,

pure content-based representations again would not work well. Instead, we would need to represent a

document based on features that can characterize and distinguish the writing styles. Once again, compar-

ative analysis of the document with a reference corpus of writings by native speakers on similar topics

can be very useful for generating more discriminative features to characterize style differences; since

writers speaking different native languages tend to have somewhat different writing styles, such features

derived from comparative analysis of text are likely much more effective than ordinary content-based

features for this categorization task.

In both examples above, we see a clear need for deriving a representation of a text object based on

comparative analysis involving another reference text; such a comparative analysis approach to text

representation has not been studied in any existing work. In this paper, we conduct the first study of

such a new strategy for generating text representation via comparative analysis of text data. Specifically,

we propose SYNTACTICDIFF, a novel edit-based method for transforming sequences of words given a

reference corpus (model) and use these transformations directly as features or to derive useful features

based on them for improved text representation. In addition, the proposed transformation method can be

used directly to solve many interesting application problems involving text transformation or comparative

analysis of text such as grammatical error correction.
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5.1.1 Basic idea of SYNTACTICDIFF

The idea of SYNTACTICDIFF is to define three basic (and therefore general) edit operations: insert a

word, remove a word, and substitute one word for another. These edits are used to transform a given

sentence. With a source sentence S and a reference text collection R, we can ask the following question:

what’s the minimum set of edits that we have to apply to S in order to transform it into a sentence in R?

This question is interesting because the “minimum set of edits” can be used to measure the deviation of

S from sentences in R; what is most interesting is that this “measure” is not a numerical one, but a set of

edits that can be features for text representation.

Suppose S is a sentence with potential grammatical errors written by a non-native speaker, and R is

a set of sentences written by native speakers on similar topics which includes a very similar sentence to

S with no grammatical errors. The minimum set of edits would be very meaningful because they are

precisely the corrections we must make in order to correct the grammatical errors in S (making it look

like it was written by a native). Thus, we can represent the original sentence S with a minimum set of

edits, instead of with the words or other content-based features derived from S. Such a transformation-

based representation would be much more effective than a content-based representation for generating

clusters of sentences that share similar grammatical errors, a task useful for “batch grading” as discussed

before.

However, there is one caveat here: what if there is no sentence in R that is very similar to S? We solve

this problem by relaxing the requirement of transforming S to a sentence in R and simply requiring the

new sentence S∗, resulted from applying a set of edits to S, to “look like” sentences in R. Formally, this

can be quantified by estimating an n-gram language model θ based on R, and maximizing the probability

of observing S∗ from this language model, i.e., seeking S∗ that would maximize P(S∗|θ ), or equivalently,

minimizing the perplexity of S∗ according to θ . This is a very general and robust strategy, as it allows

us to compute the minimum set of edits (subject to some constraints on the edits, such as the maximum

number of edits allowed) for any sentence S with respect to any reference text data R. This is similar to

likelihood-based methods, but these methods are not created with such rigorously defined operations.

The obtained minimum set of edits can then be used as features to represent text in a context-sensitive

way (R as context), which can be used as either an alternative or supplement to the existing content-based

representation. By varying the constraints on the edits in interesting ways (e.g. restricting the words to

be inserted or deleted to only function words or varying R), we can naturally obtain many interesting

variations of text representation that are not possible to generate by any existing methods.

It becomes clear that when restricted to insertion of function words and substitutions involving only

lexical transformations, such an edit-based transformation method can be directly useful for grammat-

ical error correction. However, it is important to note that the proposed method can have many other
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interesting applications also besides generating interesting features for representing text. For instance,

the method can also be used for performing comparative analysis of opposite opinions about an issue in

a debate. This can reveal the differences between the opinions since the edits that have to be applied

to transform one group of opinions to the other (or vice versa) can potentially reveal the details of their

differences. Furthermore, when comparing an article with a reference collection with only deletion edits

allowed, we would obtain a set of deletion edits that represent the main topic of the article, since deleting

words that are frequent in the article but not frequent in the reference collection is encouraged to make

the article conform to the language model induced by the reference collection (those topical words likely

have smaller probabilities in the reference collection, thus deleting them in the original article helps

increase the likelihood).

5.1.2 Applications of SYNTACTICDIFF

Using the generic framework of SYNTACTICDIFF, we further propose general methods for applying it to

three quite different tasks and show that it is beneficial in each case. In the first task, we use weighted

word edits with likelihood scoring for grammatical error correction. The method is compared against

systems in an grammar correction shared task, and we find that SYNTACTICDIFF edits perform comparably

while being much more general than the other methods. In the second task, we create clusters of student

essays with similar errors via topic modeling, and find that the interpretability is significantly higher than

an n-gram words approach. The third task is native language identification: a classification problem

predicting the native language of a student writer based on English essays. We represent documents as

vectors of edits, and show that a combination of unigram words and SYNTACTICDIFF edits outperforms

each representation individually. In all tasks, we consider SYNTACTICDIFF’s efficiency and scalability,

showing that is a strong, viable candidate for alternative methods of text representation.

5.2 Related Work

Lee and Seneff (2006) describe a method to correct non-native English sentences. Compared with work

in this line, our work, SYNTACTICDIFF, is much more general, since it performs all the basic edit operations

(insert, remove, substitute) on real, second language-learner data. SYNTACTICDIFF is also more efficient

as it only modifies words in unlikely positions based on a background language model (see section 5.3).

Wong and Dras’ contrastive analysis (Wong and Dras, 2009) uses an off-the-shelf grammar checker to

generate error-based features. There is no reference corpus or edit-based operations, and it is restricted

to a small class of grammatical errors.
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SYNTACTICDIFF is related to several other fields, but none of the fields provide full support for all the

operations that SYNTACTICDIFF offers. Statistical machine translation (Lopez, 2008) is a related field

because one use is to translate non-native language into more fluent language. Unlike our work, com-

parison of subcorpora is not a natural byproduct of the translation from one sentence to another. Parse

tree kernel functions (Moschitti, 2006) can be viewed as assigning a similarity score between a source

sentence and target sentence. While this similarity score is quite useful for machine learning problems,

it does not provide steps for how to translate the first sentence into the second while maintaining correct

syntax. Like tree kernels, DNA sequence alignment from bioinformatics (Li and Homer, 2010) records the

similarity between two or more sequences. When applied in an NLP domain, it is to usually solve align-

ment problems for machine translation (Barzilay and Lee, 2003) or word sense (Barzilay and Lee, 2002).

Again, there is no viable method to offer the translation steps while preserving the original structure of

the sentence. Additionally, comparing documents using these sequences is not well-defined.

Comparative Text Mining (CTM) (Zhai et al., 2004) uses a mixture model to compare subcorpora. The

comparative analysis enabled by this approach is very coarse; in contrast, SYNTACTICDIFF enables very

detailed comparative analysis at the level of subtle syntactic and lexical differences.

SYNTACTICDIFF provides a general way to generate new text representations based on a bag of ed-

its, which can be used as alternative or supplementary tokens to feed into any topic model as we have

explored in the second task. In this sense, SYNTACTICDIFF is orthogonal to any other text processing tech-

niques. This opens up many interesting new opportunities for applications and research in text mining.

5.3 Model

SYNTACTICDIFF is a general text analysis framework for transforming (modifying) text with respect to a

reference corpus using various edits; the goal is to transform a text object into another so as to better

match the reference corpus. Aside from modifying single sentences, it can also be used to make syntactic

comparisons between two bodies of text as well as using edits performed on a collection of sentences

as features for text representation. We hope to be able to transform, compare, summarize, and induce

features from text. The proposed definition of SYNTACTICDIFF will give us the power and flexibility to

solve these proposed tasks.

5.3.1 Reference Language Models (LMs)

The reference corpus provides guidance for how we transform a given text object and enables flexible cus-

tomization of the perspective for defining transformations in SYNTACTICDIFF. The choice of the reference
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corpus is thus intentionally application specific.

Given a reference corpus, our goal is to find transformations that can convert any given text object into

one that matches the reference corpus as well as possible. Specifically, we would seek transformations

to convert the original text object into a new one that would have a higher probability according to the

reference language model (LM).

Without loss of generality, we make use of an n-gram LM. An n-gram LM assigns probability to a

sequence of m words, where each word is conditioned on the previous n− 1 words. Thus, for LM θ :

Pθ (w1, w2, . . . , wm)≈
m
∏

i=1

P(wi |wi−n+1, . . . , wi−1).

In practice, we reserve probability mass for unseen events by smoothing our LM. A simple form of

smoothing used by the SYNTACTICDIFF LM is linear interpolation (Jurafsky and Martin, 2000).

An example of this smoothing for a 3-gram language model is

Pθ (wi |wi−2, wi−1) = λ3P(wi |wi−2, wi−1)

+λ2P(wi |wi−1)

+λ1P(wi),

where λ1 +λ2 +λ3 = 1 in order to ensure a valid probability distribution.

Perplexity is a measure for LM evaluation. It can be used to test the likelihood of a sequence given an

LM θ .

Perp(w1, w2, . . . , wm) =

�

m
∏

i=1

1
Pθ (wi |wi−n+1, . . . , wi−1

�
1
n

A lower perplexity (or cross-entropy) means that the sequence was more likely to have been generated by

θ . We use perplexity per word as a normalized form of scoring for candidate sentences in SYNTACTICDIFF.

For a more rigorous and detailed introduction to LMs and their related concepts, please consult Jurafsky

and Martin (2000).

5.3.2 Transformation Edits

We define three basic edit operations on sentences:

1. Insert the word w after position j in sentence S: inser t(S, j, w). The inserted word is drawn from

a set of words V INS .

2. Remove the word at position j in S: remove(S, j).
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Algorithm 3 The SYNTACTICDIFF algorithm

procedure SYNTACTICDIFF(S)
candidates ← {}
Initialize V INS

Initialize V SUB(w)∀w ∈ V
SYNTACTICDIFF(S, 0)
return best candidate from candidates

end procedure

3. Substitute the word at position j in S with w: subst i tute(S, j, w). The substituted word is drawn

from a set of words potentially dependent on w j: V SUB(w j).

These three edit functions are used to incrementally transform the original sentence into multiple can-

didate sentences. The candidate sentences are scored based on perplexity using the reference language

model, and the sentence with the lowest perplexity per word becomes the output. Setting V INS to only

insert non-content words and setting V SUB(w) to replace words with similar words or inflected forms of

the word allows insert and delete to preserve the original meaning of the sentence, though this is

not a requirement. It’s possible that the two sets are defined to capture some other grammatical meaning

as a particular task demands.

V INS and V SUB(w) may be chosen arbitrarily, thus making size a variable of consideration. In the case

where SYNTACTICDIFF is used at large scale on big data, these sets may be reduced to only the most

promising elements, in effect reducing the (albeit already competitive) runtime.

For an index j, there are candidates generated from each edit function for a total of |V INS | + 1 +

|V SUB(w j)| edits in addition to the original sentence, which is also regarded as a candidate. Each iteration

of SYNTACTICDIFF only performs the edit functions on one index. The index j is chosen by the least

likely n-gram from the current sentence S = w1, w2, . . . , wm (which is most promising for increasing the

likelihood and lowering the perplexity). The index of this n-gram is given by

j = arg max
i∈[0,m]

{Perp(wi , wi+1, . . . , wi+n−1)} .

Next, we need to choose k, the number of iterations to perform. Each iteration operates on all candi-

date sentences, so for iteration one, only one sentence is operated on. In the second iteration, all new

candidates are operated on. Generally, we choose k ∈ [1, 5] in order to preserve the main content of

the original sentence. The full algorithm for SYNTACTICDIFF is given in Alg. 1 and Alg. 2. Initially, we

learn an n-gram language model θ from a reference corpus and pick a maximum depth k. Not shown

in the pseudocode are checks to ensure edits aren’t recomputed for duplicated sentences, since the same

candidate sentence may be generated in different branches of the algorithm. This is a simple dynamic

51



Algorithm 4 The recursive SYNTACTICDIFF algorithm

procedure SYNTACTICDIFF(S, depth)
return if depth= k
j← arg maxi∈[0,m] {Perp(wi , wi+1, . . . , wi+n−1 ∈ S)}
for w ∈ V INS do

S′← inser t(S, j, w)
candidates.add(S′)
SYNTACTICDIFF(S′, depth+ 1)

end for
S′← remove(S, j)
candidates.add(S′)
SYNTACTICDIFF(S′, depth+ 1)
for w ∈ V SUB(w j) do

S′← subst i tute(S, j, w)
candidates.add(S′)
SYNTACTICDIFF(S′, depth+ 1)

end for
end procedure

programming optimization.

5.3.3 Weighted Edits

Until now, each candidate sentence is scored equally based on minimizing perplexity per word, regardless

of the number or type of edits. This gives the simple scoring function

S∗ = argmin
S∈candidates

{Perp(S)} .

However, we can improve the scoring function to capture some meaning in each edit:

S∗ = argmin
S∈candidates

{α · Perp(S) + (1−α) ·WS} ,

where WS is the edit weight (or edit penalty) of S and α ∈ [0, 1]. α controls the tradeoff between lowering

perplexity and lowering penalty; for simplicity, in this first study of SYNTACTICDIFF, we simply set α= 0.5

in our experiments, though obviously it is also interesting to further study how to optimize α in the future

work. The edit penalty of S can be determined as the average penalty over all edits performed on S. Each

penalty edit weight can be on [0,1].

In this paper, we define four penalties, though the framework is general and any penalty type may

be defined using information from the current sentence or reference corpus. We define: an insert,

remove, and substitute penalty. We also have a base penalty incurred if any edit is performed,

penalizing sentences with many edits.

52



If we set all penalties to zero, we arrive at the original SYNTACTICDIFF formulation; thus, weighted

SYNTACTICDIFF is a generalization of the previous description. Furthermore, these penalties can be fur-

ther refined to vary according to the specific words inserted, deleted, or substituted, and optimized based

on specific needs of an application. Since only the scoring function to find S∗ changes for weighted edits,

the SYNTACTICDIFF algorithm remains unchanged from Algorithm 3 and Algorithm 4.

5.4 Experiments

The proposed SYNTACTICDIFF is useful for a wide range of interesting applications as we will further dis-

cuss in Section 5.5. As specific case studies in this section, we apply it to three different and representative

text mining tasks related to non-native text analysis in a MOOC or any other online learning scenario.

Please note though, that SYNTACTICDIFF could be used in virtually any text mining environment.

First, we show that SYNTACTICDIFF can be used to search for a transformation of a sentence with

grammatical errors into one with no errors by using native writing as a reference corpus, thus performing

grammatical error correction as monolingual translation. This application could be a tool that students use

to correct or grade their own writing. Second, we show that the edits found by SYNTACTICDIFF for each

sentence can be used as new tokens to replace the original text for topical analysis using topic models.

When applied to student essays, this would allow course instructors to find groups of similar essays that

share common errors. These clusters can be viewed as a form of summary of the corpus and can be used

to form teams, pair complementary students, or allow batch grading. Third, we show that the edits

found by SYNTACTICDIFF can be used as features to improve text representation for the classification task

of native language identification, for which pure content-based features tend not to be very effective.

Once a student’s native language is known, that information could be used as a fluency score with a

confidence level. Additionally, knowing the native language of a student would enable course material

to be specifically targeted towards that demographic, or to combat “patriotic grading” (Kulkarni et al.,

2013).

Since our goal is to demonstrate the benefit of SYNTACTICDIFF in a variety of different tasks, and due

to the space limit, we do not attempt to optimize the performance for any of these tasks and thus do not

report detailed results for parameter variations.

All experiments and algorithms are open source and freely available online as part of the toolkit META1.

The NUCLE corpus2 (for grammar correction) and the ICNALE corpus3 (for summarization and classi-

fication) are also freely available online. All experiments were run on a laptop with an eight-threaded

1https://meta-toolkit.org
2http://www.comp.nus.edu.sg/~nlp/corpora.html
3http://language.sakura.ne.jp/icnale/download.html
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Weight LM No-op P R F1 t
No No 0.0% 2.96 4.49 3.57 120s
No Yes 0.8% 3.22 4.47 3.74 11s
Yes No 25.5% 18.78 19.40 19.09 123s
Yes Yes 57.4% 35.20 17.55 23.42 11s

Table 5.1: Grammar correction task: the table shows whether edit weights are used, whether insertions
are done based on perplexity, how many final candidate sentences are unchanged (no-ops), precision,
recall, F1 score, and runtime in seconds. This system would place 7th in the CoNLL shared task.

processor and eight gigabytes of memory.

5.4.1 Monolingual Translation

Using the edits directly on each sentence can be seen as a form of monolingual translation. We use

the NUCLE corpus (Dahlmeier et al., 2013) to investigate SYNTACTICDIFF’s performance in correcting

grammatical errors. It is evaluated with precision, recall, and F1 score using the same framework and

testing and training data as the CoNLL-2013 Shared Task in Grammatical Error Correction (Hwee Tou

Ng and Siew Mei Wu and Yuanbin Wu and Christian Hadiwinoto and Joel Tetreault, 2013).

Experimental Setup

We used the 1,036 training data sentences to do parameter selection on the four different edit penalties

and maximum step size. Since the runtime of SYNTACTICDIFF is quite fast on the NUCLE corpus training

data, we easily applied grid search on the weights and k (the maximum number of edits), optimizing the

F1 score. The n-gram value was fixed at n = 3, a standard value for sentence fluency scoring purposes.

As the reference corpus, we used 50,000 sentences from the Wall Street Journal that are part of the Penn

Treebank, since this text is a staple of well-formed English.

The selected edit weights from the training data were 0.0 for substitute and base penalties, 0.07 for

insert, and 0.30 for remove. This shows that the default SYNTACTICDIFF needs to remove fewer words to

get better performance, while inserting slightly less. The selected value of k was 3. We set V INS to be a

short list of function words, since the omission of these is a common error. We used a modified version

of the Porter2 stemmer4 for V SUB(w) that focuses only on reducing plurals and possessives to the same

root.

We tested with the designated 345 testing data sentences and used the evaluation scripts from the

shared task. Given a candidate sentence S, the predicted corrected form is a new sentence S∗ that has

the lowest perplexity (see section 5.3.3).

4http://snowball.tartarus.org
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Results

Table 5.1 shows the results of SYNTACTICDIFF used for grammatical error correction, including the preci-

sion (P), recall (R), F1 score, the running time (t), and the percentage of sentences that are unchanged

(No-op). We also included results without edit positions selected by the language model and results

without tuned edit weights. Without edit points selected, edits are performed at every position in the

sentence, generating many more candidates. Without edit weights, each edit type is treated equally with

no distinction between many or few edits in scoring.

Lack of weighted edits and language model insertion is similar to Lee and Seneff (2006). Of course,

the language model is still used to score the candidates in all cases. As seen in Table 5.1, compared

with this baseline, the intelligent edit points greatly decrease the run time and the learned edit weights

contribute significantly to the performance improvement.

Some sentences in the NUCLE corpus are free of errors, so the correct annotation for these is a no-op.

The true no-op rate in the testing data is 36.2%; all other sentences had at least one correction. A system

with 100% no-ops received a precision and recall of zero using the CoNLL scoring script. We included

the percent of no-ops in the table to compare how zealous each configuration was in suggesting changes.

When no edit weights are used, virtually every sentence was modified in some way; consequently, having

edit weights ensures that the top-ranked candidate sentence is fluent enough despite having edits.

For a more direct comparison, we can look at the results from the CoNLL shared task where the teams

were judged by F1 score. SYNTACTICDIFF’s score of 23.42 would place it in seventh overall, beating out

65% (eleven) of the other teams. Not only does our method place fairly in the shared task standings,

but SYNTACTICDIFF is a much more general system than its competitors. The other systems specifically

targeted five error types: article/determiner, preposition, noun number, verb form, and subject-verb

agreement. The standard system first classified errors into one of the five types. Then, a specific module

was run on each error type in order to produce candidates. Finally, the set of candidates were scored,

and results from each of the five modules was combined into the final corrected sentence.

SYNTACTICDIFF has no concept of different error types and doesn’t rely on classifiers to select partic-

ular modules to run. Thus, it is a more general solution than required for the shared task and can be

considered fluency correction.

5.4.2 Corpus Summarization

Summarizing student essays can give insight into how they are written. Comparable essays will have

similar deviances from fluent English. Does a group of students make similar errors? Can we target

specific problem areas depending on the group of students we speak to? Or, can we pair students with
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complementary strengths and weaknesses?

Topic models such as latent Dirichlet allocation (Blei et al., 2003) are a powerful text analysis tool.

After running a topic modeling algorithm, each document in a corpus is assigned a distribution over a

fixed number of topics. A topic itself is a distribution over the corpus vocabulary.

We can use the power of topic models to simultaneously cluster and summarize errors in non-native

English essays and will show that the bag-of-edits representation enabled by SYNTACTICDIFF is much

more useful than the standard bag-of-words representation for this task. For this task, we use the native

English essays on a similar topic as the reference corpus; this enables us to use SYNTACTICDIFF to obtain

edits more likely related to the usage of English language by the students, which are presumably more

useful for this application task than bag-of-words representation.

Experimental Setup

We compare SYNTACTICDIFF edit tokens with unigram and bigram words using the 2,800 ICNALE es-

says debating public smoking. We hypothesize that the edit tokens will be more interpretable than the

competing methods.

Each document is treated as a “bag-of-edits”, where SYNTACTICDIFF is run on each sentence in every

document. A small feature vector for a document could be

{inser t(the) : 3, subst i tute(a→ an) : 1, remove(o f ) : 2}.

We run META’s LDA on this feature set, examining the resulting distributions of edits and topics. Hy-

perparameters were set to 0.1, encouraging sparse distributions.

Since the summarization task is unsupervised, we have no clear objective for parameter selection.

Thus, we leave the weights at zero. However, based on the observed output, the user is free to adjust

the penalties in order to perturb the results in a direction he or she chooses. Perhaps only substitutions

are currently of interest. Due to space constraints, we do not investigate further than all zeroed weights.

We set k = 1 to get the most likely change to the original sentence, and set n = 3. We set V INS to the

same function word list as the error correction task and used the full Porter2 stemmer for V SUB(w) since

there was no requirement for such precise substitutions. The LDA inference is run with a maximum of

one thousand iterations, though all three representations converged before this limit.
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Features |V | DLavg Iteration t 500t
Unigram words 11,580 256 3.2s 26.7m
Bigram words 130,411 255 5.4s 45.0m
SYNTACTICDIFF 2,079 15 0.4s 3.3m

Table 5.2: Summarization task: different tokenization methods for 16 topics on the ICNALE smoking
corpus. Displayed are vocabulary size, average document length, LDA inference iteration time, and the
time for 500 iterations for comparison.

Results

Table 5.2 compares vocabulary sizes and iteration runtime for the LDA inference. Since the SYNTACTICD-

IFF edits have much lower dimensionality than the word vectors, inference is significantly faster, even

on this relatively small dataset. Table 5.3 shows a sample of topics learned from the ICNALE smoking

corpus.

We can see the n-gram representations capture more content-based themes while the edit tokens cap-

ture syntactic similarities. For unigram words, topic 1 deals with the physiological concerns of smoking.

Topic 12 discusses banning smoking in restaurants, while topic 15 is more nationally-focused. Topic 4

may be of some use, suggesting an overuse of personal pronouns.

Bigram words have almost the same interpretability as unigram words. Topic 4 is similar to topic

12 from the unigram model. Each topic is more of a theme, rather than a collection of grammatical

differences. We only see positive essay tokens in each topic, as opposed to lacking (missing) ones.

On the other hand, the SYNTACTICDIFF edits give some insight into the syntactic structure of the student

essays. For example, consider these excerpts from three different documents: “Because it is so bad to mom

with baby”, “In restaurant when people...”, “...go to restaurant to have meal”. Each student has article use

errors which insert(a) from topic 4 would fix. The word a would never appear in an n-gram topic

model because it is absent in each of these documents. Such results can also be used to retrieval sample

sentences where the errors occurred.

The same three essays also have an overuse of the word so, which remove(so) from topic 4 would

make more fluent: so bad, so scared, so dead. In fact, the first essay contains the phrase so bad five times

in about fifteen sentences. The third essay contains the sentence “The smoke make many people feel so

bad.” Aside from the so issue as before, there is a subject-verb disagreement between the smoke and

make. While other essays may correctly use the verb make, these particular essays use it in an incorrect

way such that sub(make->makes) is a correction.
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Unigram Words
topic 1 topic 4 topic 8 topic 12 topic 15
cancer i the restaurant i
lung very of banned japan
smokers my tobacco all ban
disease he cigarettes country japanese
heart was government agree a
nicotine think quit reasons government
cause don’t increase in just
passive when decrease people think

Bigram Words
topic 1 topic 4 topic 8 topic 12 topic 15
smoke cigarette restaurant owners if you the media passive smoker
smoking zone smoking bans you are harmful for active smoker
can make bars and you can responsibility of active smokers
sick in customers would when you hotels or in indonesia
global warming or non you smoke cigarette companies the active
this policy ban on for your have shown can disturb
public space in bars around you and teenagers more dangerous
make many smoke filled yourself and or anything all restaurant

SYNTACTICDIFF
topic 1 topic 4 topic 8 topic 12 topic 15
insert(the) insert(a) remove(you) remove(so) remove(area)
remove(opinion) remove(so) insert(to) insert(for) s(seat→seats)
remove(cigarettes) s(lung→lungs) s(reason→reasons) insert(in) remove(of)
s(give→giving) s(make→makes) s(ban→banning) remove(not) s(stop→stopped)
remove(bans) remove(healthy) remove(us) s(have→having) remove(again)
insert(you) remove(reasons) remove(person) remove(nonsmoker) insert(i)
remove(totally) remove(as) insert(are) remove(that) remove(all)
s(cause→causes) remove(even) remove(better) remove(increasing) insert(it)

Table 5.3: Summarization task: 5 of 16 topics learned from the ICNALE smoking corpus with three
tokenization methods. The n-gram methods capture writing themes while SYNTACTICDIFF captures
similar errors. Note that s(·) refers to the substitute function for brevity.

5.4.3 Machine Learning

We use the ICNALE native language identification corpus (Ishikawa, 2013) to test the effectiveness of

using the SYNTACTICDIFF edits as features to represent text for classifying English essays based on the

native language of the author. This corpus contains 5,600 total essays on two prompts. We hypothe-

size that the SYNTACTICDIFF features capture the grammatical differences in writing styles of the eleven

different native backgrounds.

Experimental Setup

The same bag-of-edits representation as the summarization task is used as input for a classifier to predict

the native language of the student essay writer. The Wall Street Journal sentences from the Penn Treebank

are used for the reference language model as they were for the monolingual translation task.
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Features |V | DLavg F1 Acc.
Unigram words 9,021 129 80.1 81.8
SYNTACTICDIFF 12,279 56 73.1 75.4
Combined 21,300 185 84.5∗ 85.9∗

Table 5.4: Classification task: comparison between the three methods on the ICNALE essays. Displayed
are vocabulary size, average document length, F1 score, and accuracy. ∗Combined results are
significantly higher with p < 0.001. Each experiment completed in less than 10 seconds.

CHN ENS HKG IDN JPN KOR PAK PHL SIN THA TWN
CHN 92 0 0 0 1 1 1 1 0 1 3
ENS 0 90 1 0 2 2 0 2 1 1 1
HKG 10 3 64 1 2 0 1 2 8 5 4
IDN 2 1 1 83 0 1 1 3 1 6 1
JPN 1 1 0 1 94 2 0 0 0 0 1
KOR 5 1 1 1 7 76 1 1 0 6 1
PAK 1 0 1 0 0 1 94 2 0 1 0
PHL 4 1 0 0 0 2 1 84 2 5 1
SIN 1 2 0 1 0 2 1 5 87 1 0
THA 2 0 0 2 1 3 0 1 0 90 1
TWN 12 1 2 0 3 6 2 2 1 5 66

Table 5.5: Classification task: confusion matrix of combined features on the ICNALE corpus. Overall
accuracy of 85.9%. Percentages have been rounded for readability. Each (row, column) index
represents the fraction of times row is labeled as column; thus all rows sum to 100%.

As a baseline, we use a standard unigram words feature representation with stemming and stop word

removal. Additionally, we combine the unigram words representation with the SYNTACTICDIFF features

to see if the performance increases compared to using only one method.

The ICNALE corpus is split in half, based on whether the essay is a smoking essay or a part-time job

essay. We use the part-time job subcorpus as a development set to do parameter selection on n and

k, for the n-gram language model and maximum number of edits respectively. Once the parameters

(k = 5, n = 5) were chosen, we evaluated with five-fold cross validation on the smoking testing set.

Each fold of the cross validation is used to do an unpaired t-test for statistical significance. For both

development and testing, we use the default SVM classifier that is part of META. The unigram words

baseline and feature combination are also part of the same toolkit.

Since adding edit weights will always decrease the score of candidate sentences, we set them all to

zero for the classification task. We want the learned SYNTACTICDIFF model to have full control over the

generated edits that appear as features. In contrast to the monolingual translation task, we prefer to

minimize the number of no-ops, since each edit operation is used as a feature; more no-ops means less

information is represented. The edit weights are easily set if the user requires, e.g. to ignore a particular

operation. Finally, we leave V INS and V SUB(w) the same as the summarization task.
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CHN HKG ENS JPN KOR
remove(people’s) remove(hong) remove(<s>) remove(seat) remove(<s>)
remove(china) remove(kong) insert(is) remove(nonsmoking) remove(korea)
insert(the) insert(the) remove(bad) remove(tobacco’s) remove(sterility)
remove(harmony) sub(forced→forcing) insert(a) sub(so→be) insert(or)
sub(people’s→people) remove(don’t) unmodified remove(can’t) remove(rice)
remove(etc) remove(carcinogenic) remove(good) remove(foods) remove(habit)
insert(such) sub(affected→affecting) insert(such) remove(opinion) remove(non)
sub(terrible→terribly) remove(country) insert(to) remove(two) sub(fair→fairly)

Table 5.6: Classification task: edit features selected via information gain for 5 of the 11 classes in the
ICNALE corpus.

Results

Table 5.4 shows a comparison between the three methods: unigram words baseline, SYNTACTICDIFF, and

a combination. While unigram words does outperform edit features in F1 and accuracy, a combination

is able to increase both measures at a significance level of p < 0.001. This shows that the syntactic edit

features capture an orthogonal perspective of the student essays compared to the lexical features as we

expected.

Table 5.5 shows a confusion matrix of the eleven classes using the combined features. Each row is a

distribution over which class label was chosen for the given row name; the diagonal represents a correct

categorization. From this, we see that Japanese and Pakistani students are confidently modeled. Students

from Hong Kong and Taiwan and more easily confused with native Chinese speakers, which is logical.

The most informative features for some selected classes are shown in Table 5.6 according to information

gain (Zheng et al., 2004). Information gain is a commonly-used feature selection metric in the machine

learning and information retrieval communities. It describes the difference in entropy by knowing the

presence or absence of a specific term appearing in a class.

Some features are obvious and not as informative to the human reader: Chinese and Korean students

overuse China and Korea compared to the reference language model. Less apparent (yet still useful)

edits are the Chinese students’ overuse of etc, the Hong Kong students’ underuse of the, the Japanese

students’ mixup between so and be, and the Korean students’ differentiation between fair and fairly. We

also notice that the native English-speaking students have unmodified as a main feature, meaning the

perplexity-based candidate scoring preferred their original sentences over edited ones.

There are also a few artifacts of the tokenization method; the sentence marker <s> appears as a top

feature, implying that English and Korean speakers tend to have shorter sentences, at least compared to

the reference model.
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5.5 Discussion

This section addresses various questions and hypotheses brought up in our study, particularly the gener-

ality of SYNTACTICDIFF and the new application and research directions it can potentially open up.

5.5.1 Generality

As a new way of representing text, SYNTACTICDIFF is very general and robust; just like the bag-of-words

representation, the bag-of-edits representation can be applied to arbitrary text data to obtain interesting

variations of text representation. Note that the bag-of-edits representation is not meant to compete with

the bag-of-words representation, but rather to supplement it to improve text representation since they

capture different perspectives of representation.

The applications of SYNTACTICDIFF are not restricted to improving text representation. SYNTACTICD-

IFF is a general framework, rather than a particular algorithm. Virtually all the components in SYNTAC-

TICDIFF are configurable; most obviously, edit weight values, n-gram settings, and the reference corpus.

Edit weights and n-gram values do not necessarily contribute to any specific syntactic meaning. Rather,

these settings are for tuning a model against some objective function, which can vary according to appli-

cations (e.g., in the grammatical error correction case, we set edit weights to optimize F1 score).

The reference language model from the reference corpus plays a more important role in the meaning of

each edit. It steers the edit transformations in a particular direction, coaxing each candidate sentence to

align with the reference. In our experiments, we considered the reference to be gold standard language,

since our tasks dealt with non-native English speakers. Modifying each sentence to minimize its distance

with well-formed English makes sense. However, there are many ways to choose and set the reference,

enabling the support of other interesting tasks.

For example, suppose we operate on a sentiment analysis dataset. We have a reference model of

very positive sentences, and use SYNTACTICDIFF to translate candidate sentences to match the reference.

Depending on the sentiment polarity of the candidate sentences, do negative sentences have a different

pattern of edits than positive ones? It is in this way that the reference language model choice influences

the significance of each edit.

In our experiments, we defined four edit weight penalties. In practice, these could be almost anything

the user desires. Returning to the sentiment analysis task, imagine an edit weight penalty that is im-

posed if the words no or not are inserted. Or, if a word has a positive sentiment affiliation a penalty is

also triggered. Finally, what if at each iteration, a penalty is imposed if the edit operation changes the po-

larity of the sentence? Some of these suggestions require a classifier in the candidate generation stage;

alternatively, sentiment valence scores (Pang and Lee, 2008) could be used as a crude (yet effective)

61



judgement.

Sentence edit features themselves are also configurable; for instance, we could include the previous

word or word index. Then insert(the) could be come insert(the|in) meaning add the after in or

insert(4, the) representing add the in the fourth position in the sentence.

Due to space constraints, we could not investigate all possible variations described above, but we

envision much future work in this direction.

5.5.2 Applications

The three tasks that we have applied SYNTACTICDIFF to only represent a few of the many possible uses,

but even these already have a very broad scope:

Text transformation: In the first task, the edits are used directly to search for an optimal transfor-

mation of an original sentence. This represents a general new retrieval model that allows us to use the

original sentence as a query to “retrieve" a relevant sentence that best matches the query, where “match-

ing" is based on the edits that we allow. By varying the edits allowed, their weights, and the choice of

reference language model, this can potentially support many interesting text transformations that can

easily go beyond grammatical error correction (like improvement of coherence, retrieval of opposite

opinions, or text summarization).

Comparative text mining: In our second task, we used the edits to represent the original text in an

unsupervised learning setting (i.e., topic modeling), which enabled discovery of interesting clusters of

related edits. It is very easy to imagine the use of this strategy for many other unsupervised learning

methods such as matrix factorization. Also, there are many variants of the basic topic models that can

perform more sophisticated topic analysis. All these algorithms can be combined with SYNTACTICDIFF to

open up interesting new opportunities for comparative text mining.

Improving text representation for machine learning: In our third task, we used edits to represent

text in a supervised learning setting, and showed superior performance of such a representation in com-

parison to existing text representation methods for the task of native language identification. Supervised

learning is widely applied in many text processing tasks. Thus SYNTACTICDIFF can be potentially useful

for improving text representation for many of these tasks. Note that we do not have to solely rely on

edits for text representation, and can in general combine edit-based representation with content-based

representation. This would provide an interesting general and robust way to represent text. Moreover,

such an improved representation can easily be exploited in the feedback process of a retrieval task where

we face the problem of supervised or semi-supervised learning from a set of feedback documents and the

representation of these feedback documents can be improved with SYNTACTICDIFF.
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We anticipate many more creative uses of this framework in other text mining tasks to be possible.

5.5.3 Semantic Diff

Using a customized SYNTACTICDIFF for each task allows researchers to gain insight into the differences

between subsets of a corpus. How much customization is required to push SYNTACTICDIFF to SEMAN-

TICDIFF?

We have already seen how edit penalty types can be imposed in an ad hoc manner, and how their

weights can be chosen intuitively. Although we set V SUB(w) to be a stemmer, it could just as easily be a

thesaurus or negator, focused on word sense disambiguation.

We can get even more creative knowing the parts of speech of each word. What if we only insert articles

and determiners instead of a list of common function words? We can even design penalty weights for

the part of speech. Is it more important to remove a determiner than it is a verb? It depends on the

application, and can be learned automatically. Although these many possibilities greatly expand the

search space, more advanced candidate selection algorithms such as beam search (Norvig, 1992) can

easily be applied.

With a basis for penalty creation, it would be possible to create penalty types on the fly during a training

phase. We can break the definition of a penalty into context and an argument. For instance, one context

could be surrounding part of speech tags, and the argument is the current word examined in an edit

operation. Once SYNTACTICDIFF operates in this format, we can arbitrarily create penalties.

Given all these modifications enabling increased generality, we assert that SEMANTICDIFF is not only

attainable, but will form the landscape of edit-based rich text meaning.

5.6 Contributions and Future Work

We presented SYNTACTICDIFF, a novel, efficient, and general framework for many text mining tasks that

examines syntactic differences between current text and a reference background collection. These dif-

ferences are captured in weighted edit operations. These text edits can not only be used to generate an

alternative representation of text data that is complementary with the content-based representation, but

also support a wide range of interesting novel applications.

We evaluated the generality and effectiveness of SYNTACTICDIFF using three distinct tasks: grammatical

error correction, corpus summarization, and classification. In all areas, SYNTACTICDIFF provided concrete

advantages, clearly demonstrating its empirical benefit. In the first, we achieved remarkable performance

considering our generality compared to other systems. In the second, we summarized grammatical er-
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rors better than baseline systems. Lastly, we increased the accuracy of a baseline native language iden-

tification system by augmenting with SYNTACTICDIFF edit features. Despite its increased performance,

SYNTACTICDIFF comes with no runtime performance penalty, and in some cases is faster than the base-

line. While the experiments we have conducted in this paper all involve relatively small data sets, the

relatively low computational complexity of SYNTACTICDIFF and its support for flexibility scalability and

accuracy tradeoffs make it an appealing novel approach to analysis of big text data.

Our exploration in this paper was only the tip of the iceberg concerning SYNTACTICDIFF’s great po-

tential; there are many interesting future directions to further explore, particularly in leveraging such a

new representation in many other applications, exploring different configurations for comparative text

analysis, and further generalizing the framework to capture more semantic meaning—moving from SYN-

TACTICDIFF to SEMANTICDIFF.

64



CHAPTER 6

CROSS-CONTEXT LEXICAL ANALYSIS

We propose a general framework for performing cross-context lexical analysis; that is, analyzing similari-

ties and differences in term meaning and representation with respect to different, potentially overlapping

partitions of a text collection.

We apply our framework to three different tasks: semantic change detection (discovering words whose

meanings changed over time), comparative lexical analysis over context (finding context-sensitive and

context-insensitive terms), and word representation comparison (investigating randomness inherent in

word embeddings).

6.1 Motivation

Natural language is almost always used in a particular context (e.g., a particular time, location, or pur-

pose), and thus the interpretation of a sentence, phrase, or word inherently depends on this context.

Indeed, the whole subject area of pragmatics studies the ways in which context contributes meaning1. In

this paper, we are interested in analyzing the variations of term meaning in different–but comparable–

contexts and propose a general framework for performing cross-context lexical analysis (CCLA). We use

CCLA to generally refer to any analysis of term meaning or term representation in different contexts,

especially for understanding the differences and similarities in multiple contexts.

Due to the generality of the notion of context, CCLA can be useful in many ways. For example, when

context is defined as the time period a piece of text is written, CCLA allows us to compare the meaning of

a word in different periods and reveal how a word may have evolved over time (Hamilton et al., 2016).

If context is defined as location, it would allow us to study variations in the meaning of a word over

different locations, potentially revealing influences of some locations on others (Kulkarni et al., 2016).

In general, we can use any associated attribute values of text data—including metadata—as context

to form a partition. For example, the institution of a research article’s author can be used as a “context

variable” to partition the articles based on institutions or regions in the world of their authors.

1https://en.wikipedia.org/wiki/Pragmatics
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Any meaningful partitioning of text data may also be regarded as implicitly defining a context value

for each partition; sentiment analysis may allow us to define a sentiment context so positive and negative

sentences would be regarded as belonging to different categories.

We can characterize any term in a specific context by its similarity to other terms in corresponding

contexts. The similarity can be computed in many ways, including (e.g.) with word embeddings. This

gives us a context-specific “term similarity profile” for every term. These profiles for the same term

computed from different contexts can be compared to analyze the variations of term meaning across

contexts.

Traditionally, such cross-contextual analysis has been done on a “topic-level” basis (Zhai et al., 2004;

Mei and Zhai, 2006). However, this is limiting because only word co-occurrence data can be used to

estimate the model. Thus, including distributional similarity metrics (or any other representation) is not

built-in, and it is not obvious how to include it in a probabilistic model in an easily-interchangeable way.

Lastly, relying solely on word co-occurrence statistics (which are often unigrams) misses opportunities to

examine context windows of adjacent terms, which could be useful for capturing word sense or ambiguity.

CCLA can be used to perform analysis in three distinct ways:

1. a term focused approach, where the emphasis is placed on mining the terms themselves with

respect to the collection of contexts. For example, we could detect words whose meanings have

shifted over time (which we explore in section 6.3), or compare dialects of the same language

across different regions;

2. a score focused approach, where the emphasis is placed on defining a scoring function over terms

that can detect context-sensitive (representative) or context-insensitive (shared) terms (which we

explore in section 6.4). This can be useful as a component in downstream tasks such as feature

selection, transfer learning, and information retrieval; and

3. an annotation focused approach, where the emphasis is placed on understanding how the anno-

tations for words change as a function of the context used to derive the annotation. We explore

this in section 6.5, where we analyze the stability of two well-known word embedding methods.

These focuses often intermix and overlap.

This paper is organized in the following manner. Section 6.2 formalizes cross-context lexical analy-

sis. Sections 6.3-6.5 investigate concrete applications of CCLA and illustrate each of the three focuses

described above. Section 6.7 shows related work and section 6.8 concludes the paper.

All source code from this work is made publicly available online (Massung et al., 2016). All datasets

used in our experiments are also freely and publicly available.
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6.2 Model

We now formally define the framework for cross-context lexical analysis. Critical to CCLA is the idea

of a context view. We define a context view as a tuple Ci = (Vi , fi), where Vi is a set of unique terms

w ∈ Vi and fi : Vi → A is an annotation function that maps words from the vocabulary set Vi to some

shared analysis space A. Potential annotations could be term probabilities (A = [0,1]) or word vectors

(A= Rd), depending on the eventual goal. Different contexts Ci and C j may share word tokens, but each

word’s annotation is specific to its context. That is, the term w= amazing may occur in both Vi and Vj ,

but fi(w) is not necessarily equal to f j(w). This allows us to compare the usage of the token amazing

respective to each context. We refer to the set of all contexts as C.

The vocabularies for each context come from a backing set of text documents D. This may be a corpus

in the conventional notion—like the IMDB movie reviews (Maas et al., 2011b)—or it may be a collection

of such corpora. Due to this flexible nature of context views, it is not a requirement that all contexts

partition D; contexts may even overlap. Take the sentiment analysis dataset collection as an example:

imagine that D contains documents from both IMDB and Yelp2. If we set A = Rd , we could define the

contexts that comprise C over D in the following way: let CY ELP = (VY ELP , fY ELP), where VY ELP is all

the terms that occur in the Yelp business reviews and fY ELP(w) yields a d-dimensional word vector for

w learned on the Yelp dataset; similarly let CI M DB have VI M DB as all of the terms that occur in IMDB

and fI M DB(w) yield a d-dimensional word vector for w learned on IMDB; CPOS and CN EG can be defined

similarly, with vocabularies and word vectors coming from only the positive and negative reviews across

both datasets, respectively. We could add a background context CALL with a vocabulary consisting of all

terms used across both datasets and with word vectors learned on the union of both datasets.

The comparison operator Φ takes multiple contexts and outputs a list of (word, score) tuples for each

term in the shared vocabulary:

Φ(C j , . . . , Ck) =

®

(w,φ(w, C j , . . . , Ck) | w ∈
k
⋂

i= j

Vi

¸

where the scoring function φ is user-defined and task-specific. For example, if our task is to identify

words used similarly across contexts, our scoring function can be specified to give high scores to terms

whose usage is similar across the contexts.

The scored terms returned from Φ are able to be processed by operators such as head (return the

highest-scored terms), tail (return the lowest-scored terms), and average (return the average scores

of all the terms).

As an example application, we can use disjoint temporal segments as our context views in a term-

2https://www.yelp.com/dataset_challenge
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focused task. Let C1 be the initial time period context and let C2 be the final time period context. We

wish to discover a list of w ∈ V1 ∩ V2 that underwent semantic change. We define a φ such that a given

term with similar annotations across C1 and C2 will have a higher score, and a given term with different

annotations across C1 and C2 will have a lower score. Thus, when we run head(Φ(C1, C2)) the result is

the terms that changed the least while tail(Φ(C1, C2)) will show the terms that changed the most, i.e.,

underwent semantic change. We discuss this particular application scenario in more depth in the next

section.

6.3 Analysis of Semantic Change

The evolution of word usage is a well-studied area in linguistics. Also known as semantic change or

diachronic analysis, it has received attention in the NLP community, most recently by Kim et al. (2014),

Kulkarni et al. (2015), and Hamilton et al. (2016). All three methods are based on word embedding

similarity, and learn separate embeddings for distinct time periods. For a brief outline of each method, see

section 6.7. With these techniques, we can discover how words such as awful change meaning over time.

In the 1850s, it meant solemn or majestic, whereas in the 1900s it meant terrible or horrible (Hamilton

et al., 2016). Detecting and analyzing these semantic shifts allows us to learn about the culture and

evolution of language.

We next formalize the problem in the CCLA framework and compare our findings to previous results.

6.3.1 CCLA Formulation

In this task, we will use disjoint temporal segments as our context views in a term-focused task. Let C1 be

the initial time period context and let C2 be the final time period context. We wish to discover w ∈ V1∩V2

that underwent semantic change.

We define the following scoring function:

φ(w, C1, C2) = cos(NN(w, C1), NN(w, C2))

where NN finds the top-k nearest neighbors of w in Ci (and their corresponding similarities) by using

its d-dimensional word vector annotation fi(w) ∈ Rd . Since the word vectors are normalized to unit

length, the nearest neighbors are calculated using a dot product against all other word vectors in each

embedding space.
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Figure 6.1: The effect of the k parameter in cosine similarity of top-k similarity scores.

Consider the following example of φ(w, C1, C2) for w= sour and k = 3:

NN(w, C1) = 〈(grapes, 0.47), (sweet, 0.40), (meek,0.38)〉

NN(w, C2) = 〈(bitter, 0.41), (tart, 0.39), (sweet, 0.37)〉

To compute the cosine similarity of these two nearest-neighbor lists, we have the following:

cos(NN(w, C1), NN(w, C2)) =
0.40 · 0.37

p
0.472 + 0.402 + 0.382 ·

p
0.412 + 0.392 + 0.372

= 0.302

That is, we take a dot product over the shared vocabulary with the nearest-neighbor similarities as weights

and then divide by the product of each list’s magnitude. This results in a maximum score of 1.0 when

all k dimensions are exactly the same and a minimum score of 0.0 when none of the dimensions in the

top-k match. Essentially, φ measures how similar the usage of a particular w is across the two contexts.

Figure 6.1 shows the effect of k on the similarity scores. If we have very small k values, the similarity

is very high, since it’s always the case that the top-ranked term is the term itself. There are usually 1 or

2 other terms that are highly correlated, which gives high scores. Then, as we increase k past about 4,
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the similarity sharply drops as the different contexts begin to come into play. Lastly, we slowly increase

the similarity score as more and more terms are added, since there is a greater and greater chance of

matching dimensions.

In black, we show the average similarity score for the IMDB corpus for positive versus negative contexts.

The dashed lines show the boundary of one standard deviation in similarity. If we plot individual words

(in green, blue, and red), we can see they are relatively stable with respect to themselves. The individual

words displayed have high TF, medium TF, and low TF. This is to show that (as one would expect) the

higher the TF, the easier it is to match the top-k terms. In conclusion, Figure 6.1 shows that the similarity

scores are relatively robust to the setting of k.

The function Φ’s output is a list of unsorted (term, score) tuples. From the current example, this could

look like

Φ(C1, C2) = 〈(sour, 0.302), (plane, 0.122), . . . , (the,0.506)〉

Thus, to find words whose usage changed the most (i.e., underwent semantic change), we find the w’s

with the least similar usage: tail(Φ(C1, C2)), which returns the tuples with the lowest scores. To find

the most stable words (i.e., those whose meaning changed the least), we would instead use head.

6.3.2 Experiments

We compare our method to Hamilton et al. (2016) and use the COHA corpus (Davies, 2010) to contrast

word usage in English fiction between C1 = 1900 and C2 = 1990. For word annotations, we used PPMI,

SVD, and SGNS (skipgram with negative sampling from Mikolov et al. (2013b)) word vectors released

by Hamilton et al. (2016). We set k = 500 in the nearest-neighbor scoring function to capture a fair

amount of similar words while reducing noise farther down in the neighbor lists.

Table 6.1 compares the results using the CCLA framework with the semantic change detection described

in Hamilton et al. (2016). As with the previous work, we found SVD and SGNS to outperform PPMI.

Interestingly, SVD appears to be slightly ahead of SGNS, in contrast to the previous results. Despite

this, it has been shown that SVD may be superior to SGNS in some evaluation cases (Levy et al., 2015).

Some detected words are shared with those found in Hamilton et al. (headed, gay) and some words were

detected by multiple methods with CCLA (figured, gay, handling, compound).

Table 6.2 shows the nearest-neighbor lists for the words detected to have changed the most by SVD

and SGNS. We see that plane shifted from meaning a type of inclined or flat surface to a shortened form

of airplane. The term figured changed meaning from describing one’s figure (body) to an act of making

a decision.

Words that changed the least (i.e., were the most similar) from 1900 to 1990 were non-content words
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PPMI SVD SGNS
Hamilton et al. CCLA Hamilton et al. CCLA Hamilton et al. CCLA
know gay harry handling wanting figured
got favorite headed plane gay guy
would arrangement calls headed check random
decided please gay gay starting gay
think which whenever figured major chick
stop handling male compound actually compound
remember random actually kid touching notices
started distributed special random harry checking
must available cover reverse headed perspective
wanted otherwise naturally division romance handling

Table 6.1: Comparing methods to find the most-changed words between 1900 and 1990. Each method
operates on a type of word representation (PPMI, SVD, or SGNS). We follow the conventions
of Hamilton et al. (2016) in bolding terms the authors agree to be clearly correct after consulting a
dictionary, underlining borderline cases, and leaving incorrect terms unmarked.

Word Vector Nearest-neighbors in 1900s Nearest-neighbors in 1990s
handling SVD ribbon, threads, buttons, silk, yellow delivery, enclosed, send, additional, tax
plane SVD level, higher, above, horizon, beneath train, pilot, engines, jet, flight
figured SGNS thread, lace, rip, lined, stockings figure, find, thought, pointed, remember
guy SGNS jane, grey, thomas, chester, roger tough, person, kid, fellow, man

Table 6.2: Example words that changed dramatically during the 20th century. The examples were
chosen from the top-20 most-changed lists from words in Table 6.1.
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IMDB Yelp
Positive Negative Ambiguous Positive Negative Ambiguous
shift travesty loggia trails zero behavior
magnificent drivel krigie gem tasteless planner
lovingly utter morton heavenly edible advertising
observed inane clifford freshest flavorless reaching
heartbreaking pile griffin wonderfully apology silverware
determination abysmal chad gifts shitty arrogant
marvelous unfunny epps tastings lousy avoiding
tightly idiotic deluise hike irritated gratuity
globe nonsensical perkins scrumptious clerk collections
superbly wretched ana explore error cc

Table 6.3: Using embedding annotation similarity to discover the top positive, negative, and ambiguous
terms for IMDB and Yelp. Each corpus treated independently as a separate CCLA problem.

such as never, not, eight, six, and twenty. These are produced when using head(Φ(C1, C2)).

6.4 Comparative Lexical Analysis over Context

A context-aware lexical analysis allows us to discover both context-sensitive and context-insensitive

terms. Context-sensitive terms are those that may be used to represent their respective context. For

example, excellent and great could represent a positive sentiment context and bad and horrible could

represent negative sentiment contexts. Context-insensitive terms are those that do not change across

contexts, such as stop words. Intelligently assigning scores to these word types will allow us to rank

words per context, and even allow us to discover ambiguous words (those whose meaning changes be-

tween contexts). Topic models have been used to address some of these issues, and we discuss their

differences and limitations in more depth in section 6.7. Tan et al. (2015) investigated finding ambigu-

ous terms between two corpora, but not in a general contextual text mining framework. In the next

sections, we will show how to address these goals with CCLA.

6.4.1 CCLA Formulation

First, we will find ambiguous—or, “context-sensitive”— words between two disjoint contexts in a score-

focused manner. We ask the following question: which words’ surroundings change the most between

C1 and C2? In semantic change detection, C1 and C2 were time periods. Here, we will use contexts from

the same time, but with different metadata attributes. Concretely, imagine D is a sentiment analysis

dataset. If we let C1 = (V1, f1) where V1 is the set of all words used in positive documents and f1(w)

is a d-dimensional word vector learned from only the positive documents, and similarly for C2 with the
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Word Sentiment Phrases

loggia

Positive
loggia is wonderful as tony’s boss, lopez
watching o’connor and loggia [...] is pure poetry
loggia i always enjoyed watching in just seeing him yell

Negative
loggia played his character so lamely, you didn’t care
loggia is about as heroic as a bored businessman.
ridiculous attempt at a hispanic accent. (sorry loggia.)

krige

Positive
great cast with alice krige and brian krause
alice krige plays the borg queen again fantastically
played by beautiful and talented alice krige.

Negative
usually excellent alice krige is wasted in this one
alice krige seems to shoulder the film,
krige gave the only convincing performance

morton

Positive
love’s rebound with socialite anne morton (ruth roman)
cannavale, rory culkin, joe morton, sandra oh, john
and morton selden (as oberon’s grandfather)

Negative
thriller from directors rocky morton and annabel
morton is too strong an actress to be relegated
is a poor replacement for bob morton’s charismatic

clifford

Positive
is a fledgling playwright named clifford anderson
old student named clifford anderson (christopher reeve)
impressed with christopher reeve as clifford anderson.

Negative
dumps louque for his mate clifford grayson
her love for his pal, clifford greyson (robert noland)
his companion clifford grayson. what a yawn-fest

griffin

Positive
and co-stars griffin dunn (‘after hours’)
send his younger brother (griffin dunne) to law school
griffin dunne is very well cast as the man

Negative
how did lee and griffin become such deep friends
put together by the hack griffin jay who wrote
his awful behavior, peter griffin has no excuse.

Table 6.4: Usage samples of the five most ambiguous words (all actors and actresses) in the IMDB
dataset. In some cases, the same person is discussed in different ways; in others, people share the same
name, leading to ambiguity.

negative documents, we can discover (1) which words are the most stable between sentiments and (2)

which words change the most (i.e., are ambiguous) between sentiments.

We will use the exact same φ as in section 6.3:

φ(w, C1, C2) = cos(NN(w, C1), NN(w, C2))

Now, using head(Φ(C1, C2)) we retrieve stable words between sentiment polarities and using tail we

discover ambiguous words.

Second, we want to find words that are representative of their context. In the sentiment analysis

example, we hope to find words like amazing in C1 and terrible in C2. To accomplish this, we design

73



Shared between IMDB and Yelp
Positive Negative Ambiguous
magnificent unfunny unparalleled
marvelous incoherent panoramic
breathtaking unimaginative unmatched
heavenly inane daunting
understated abysmal tantalizing
splendid horrid aligned
exquisite moronic soft
timeless atrocious hardworking
inspirational nonsensical descriptive
delectable idiotic serene

Positive Negative
IMDB Yelp Ambiguous IMDB Yelp Ambiguous
disturbing helpful orthodox corny watery overzealous
effective whipped gargantuan contrived rubbery ravenous
political flaky accented unbelievable polite functional
engaging polite mirrored unoriginal surly desolate
brutal generous copious convincing oily impersonal
dramatic fluffy pungent wealthy mushy squashed
touching prompt textured inept sticky callous
powerful quaint sweltering graphic helpful grubby
striking trendy conscientious scary drenched sturdy
shocking efficient kooky predictable crusty blah

Table 6.5: Using embedding annotations to compare term contexts between IMDB and Yelp.
Cross-corpus lists show words that are used similarly in both collections. Corpus-specific lists show
words that are used differently given a particular collection.

a second scoring function Φ′ which uses the previous Φ. We include a third “background” context CB

that covers all the documents in D. To find representative words in C1 (i.e., positive words), we use

head(Φ′(C1, CB)), where

φ′(w, C1, CB) = φ(w, C1, CB)−φ(w, C1, C2).

The first term compares word contexts in C1 with the background. Recall that φ gives a high score if

the word shares similar neighbors and a low score if the word has different neighbors. A high score may

result from two situations: (1) the word’s usage is the same in both contexts (e.g., a stop word), or (2)

the word’s usage is primarily in C1, so when combined with CB, its usage doesn’t change.

To filter out the stop words from φ(C1, CB) we subtract φ(C1, C2), since the second term assigns high

scores to stable words—stop words. This leaves terms that represent C1 well. Naturally, the same may

be done to find words specific to C2.
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6.4.2 Experiments

We perform a few different experiments on two popular sentiment analysis datasets, IMDB movie reviews

and the Yelp academic dataset. For all experiments, we used 300-dimensional word vectors as term

annotations that were learned by GloVe (Global Vectors by Pennington et al. (2014)) with the following

untuned parameters: window size = 15, max iterations = 25, and a minimum term count of 10 in each

corpus.

Table 6.3 shows two separate CCLA experiments. In each case, we set C1 = terms from positive docu-

ments, C2 = terms from negative documents, and CB = terms from the entire dataset. As in section 6.3,

we set k = 500 for the nearest-neighbor lists. We use Φ to discover ambiguous words and Φ′ to find

representative words.

As expected, words such as travesty describe negative tones: “a hopelessly miscast, misdirected travesty

of actors.” At first glance, shift may seem a strange choice for positive feelings, but when examined in

context, it makes sense: “display her native rhythm and ability to shift tempo in the lavish production”

and “a 180-degree shift from the idealistic rhetoric portrayed in [other] offerings.”

Ambiguous words offer hints at sentiment targets. In IMDB, the most ambiguous terms are all names

of actors and actresses. Table 6.4 shows example sentences where these words are used. In Yelp, the

ambiguous terms are more varied; staff behavior could be good or bad and silverware could be clean or

dirty. Credit cards (“CC”) may or may not be accepted.

Table 6.5 compares different context views that span both IMDB and Yelp. The “Shared” row sets

C1 = all words in positive documents, C2 = all words in negative documents, and CB = words across all

documents in both datasets.

The “Pos only” and “Neg only” rows split Ci by positive and negative documents across both corpora.

Ambiguous words in these two rows refer to distinguishing terms between all positive documents based

on the corpus or all negative documents based on the corpus.

For example, we can learn the following from this analysis:

1. magnificent is used similarly in both datasets for positive sentiment;

2. unparalleled is used differently in terms of positive and negative sentiment in both datasets;

3. disturbing can be a positive word to describe movies3, but is not a positive way to describe busi-

nesses;

4. helpful can be a positive word to describe businesses, but is not a positive way to describe movies;

5. overzealous is a negative word in both datasets, but used differently in IMDB vs. Yelp.

3“This movie is both disturbing and extremely deep” / “. . .very compelling, even disturbing, a chill ran down my spine.”
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When comparing across corpora, we have the issue of disjoint vocabulary. For example, “movie” is

used much more in IMDB reviews than Yelp, even though the term occurs in both. Thus, when comparing

positive reviews, “movie” will seem like it’s a positive word for IMDB. To combat this, we filter the lists

from each cross-corpus analysis, only keeping adjectives.

Since each word is scored with respect to its context, it is a natural extension to use these scored terms

in feature selection or even to estimate word polarity scores. Further, scoring terms based on sensitivity

to different contexts can be very useful for domain adaptation and transfer learning since we can treat

both the source domain(s) and the target domain as contexts to identify terms semantically “stable”

across domains, which are intuitively more generalizable than terms very sensitive to domain variations.

We would expect shared positive and negative terms between IMDB and Yelp to aid in other sentiment

analysis tasks, where the corpus-specific terms are less helpful. The fact that this works even when there

is no labeled data in the target domain results in a completely unsupervised way to received specialized

knowledge.

6.5 Comparing Word Annotations

It is educational to study how annotations drawn from the same data are similar or different. There are

many ways to compare embedding methods as annotations using downstream tasks like word analogies

or word similarity scoring (Levy et al., 2015). But is there a way to explicitly compare the structure

learned by these models? If we have a quantification of this structure, does it give any information

about task performance? Levy et al. (2015) consider different word embedding parameters such as

adding context vectors (GloVe and SGNS), eigenvalue weighting (SVD), and vector normalization. Other

configurations mentioned (but not tested) are number of iterations, vector dimensionality, and effect of

randomness.

As a demonstration of CCLA’s flexibility in choice of context definition, we explore the concept of

word embedding stability. We define word embedding stability as a measure of how consistent nearest-

neighbor lists are across different runs of the same algorithm. Consistency is an important attribute

when replicating results or comparing two methods against one another. Different random seeds may

play some role in the quality of the word vectors, and methods that use random sampling (like SGNS)

may be affected. Nearest-neighbor lists are critical when solving word analogy problems or measuring the

similarity between words, so this is the aspect of the word vectors that we will consider while measuring

stability.
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6.5.1 CCLA Formulation

In sections 6.3 and 6.4, we varied the vocabularies for each context. Now, we will vary the word anno-

tations instead in annotation-focused experiments.

Let C1 and C2 represent the same text data (and hence V1 = V2), but define f1(w) and f2(w) as yielding

word vectors learned by the same word embedding method with a different random initialization. We

wish to measure how similar the embeddings are for different runs of the same algorithm.

In the CCLA framework, one way to address this situation requires a similarity metric to measure

the nearest-neighbors of the two runs. Before, we used cosine similarity with the term annotation dot

product scores as term weights. If we want to stress the orders of the lists themselves, we should ignore

the weights and use a ranking correlation metric. The flexibility of CCLA allows us to choose the best

measure to suit our task. A rank difference near the top of the lists should be more detrimental than

a rank difference farther down the list. In other words, heavy bias should be placed on getting similar

top terms to match, rather than terms farther down the list. For this reason, we choose normalized

discounted cumulative gain (NDCG) as our measure. Discounted cumulative gain is defined as

DCG@n=
n
∑

i=1

ri

log2(i + 1)

where each element at rank i has a relevance score ri . Normalized DCG divides DCG by the ideal ranking,

i.e. sorting the top n elements by their decreasing relevance and taking their DCG.

To measure embedding stability, we consider the two ranked nearest-neighbor lists for w from C1 and

C2. We call C1’s list the ideal ranking and assign the relevance scores n, n− 1, . . . , 1 to the top n items.

We then measure NDCG of C2 with respect to C1’s neighbors as a rank correlation metric, defining the

function NDCG@n(w, C1, C2). Therefore, stable methods will have a higher average NDCG@n than less

stable methods. For our application, NDCG@n is the following.

N DCG@n=
DCG@n
iDCG@n

=
DCG@n
∑n

i=1
n−i+1

log2(i+1)

Note that in our case, the ideal DCG is always the same for each value of n, since we call the top-ranked

word the most relevant, the second-ranked word the second-most relevant, and so on.

We can now state φ for embedding stability measurement as

φ(w, C1, C2) = NDCG@n(w, C1, C2)

and overall stability score average(Φ(C1, C2)).
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SGNS GloVe
Dataset (task) Low High Low High
Google (word analogies) 38.70 44.74 11.98 26.52
MSR (word analogies) 53.41 56.32 13.92 31.92
MEN (word similarity) 51.85 58.06 23.80 38.24
Rare (word similarity) 44.37 58.09 29.18 42.92

Table 6.6: We compare the effect of stability (low vs. high) using analogy and word similarity
benchmarks. While stability does not seem to indicate performance differences across embedding
methods, it does suggest that a higher stability indicates higher performance within-method.

As an example, we compute the NDCG@5 for the term sour. Imagine the top-k terms for C1 are

〈A, B, C , D, E〉 and the top-k terms for C2 are 〈B, A, F, D, C〉. We take the list returned by C1 as the ideal

ranking by assigning the relevance scores 〈5,4, 3,2, 1〉. This gives an ideal DCG of

5
log2(2)

+
4

log2(3)
+

3
log2(4)

+
2

log2(5)
+

1
log2(6)

= 10.27192.

For C2’s list, we would get the relevance scores 〈4,5, 0,2, 3〉 for a DCG of

4
log2(2)

+
5

log2(3)
+

0
log2(4)

+
2

log2(5)
+

3
log2(6)

= 9.17656.

Thus, the NDCG@5 for the term sour would be 9.17656
10.27192 = 0.8933637. If we had a small |V |= 3 where

Φ(C1, C2) = 〈(sour, 0.89), (plane,0.74), (the,0.82)〉,

then average(Φ(C1, C2)) = 0.8166667.

Because NDCG@n(w, C1, C2) is not necessarily equal to NDCG@n(w, C2, C1), it’s important to take

multiple measurements to understand the consistency of the score. In our case, we take several mea-

surements over different random seeds for each comparison and report results with standard deviations

for interpretability (see Figure 6.2, to be discussed later).

Note that we can use this framework to compare embeddings not only from different seeds, but from

different algorithms or even dimensions. This measure could be used to see how similarly two or more

algorithms perform on the same data.

6.5.2 Experiments

We use public word embedding implementations to measure the stability of both GloVe (Massung et al.,

2016) and SGNS4 at various numbers of iterations and test whether stability may be an indicator of task

4https://bitbucket.org/yoavgo/word2vecf
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Figure 6.2: Using NDCG of nearest-neighbor lists to measure the stability of GloVe and SGNS by
iteration.

performance. We used 300-dimensional embeddings trained on the IMDB dataset. In both cases, we

used a symmetric window of size 8 with the remaining parameters set to their defaults. For the NDCG

measure, we set n= 20 to stress performance at the top of the nearest-neighbor lists.

Figure 6.2 shows the CCLA stability scores from 1 to 25 iterations. Each point on the chart is the

average of 10 different random seeds with error bars denoting the standard deviation of the stability

scores. SGNS is initially stable, but starts to drop as iterations increase, perhaps indicative of overfitting

or model divergence. GloVe’s word vectors are fairly consistent after 10 iterations.

We used standard benchmarks for word analogy solving and word similarity scoring. Google analo-

gies (Mikolov et al., 2013a) and MSR analogies (Mikolov et al., 2013c) are written in the form “a is to b

as c is to d” (where d must be determined). The MEN (Bruni et al., 2012) and Rare (Luong et al., 2013)

word similarity tests present word pairs with human-assigned similarity scores. This task is evaluated by

measuring the embedding similarity scores’ correlation with human judgements via Spearman’s ρ.

Table 6.6 compares task performance on embeddings with low stability vs. high stability. For SGNS, we

used iteration 25 as the low stability point and iteration 5 as the high stability point; for GloVe, we used

5 as low and 10 as high. SGNS outperformed GloVe in all tasks, even at low stability. Thus, comparing

stability across methods may not be a viable metric at suggested performance. Despite this, looking

within-method, CCLA’s stability measure does seem to indicate that lower-stability runs do underperform

the higher-stability runs. This is an especially interesting result for SGNS, since the high stability point

is actually at a much lower number of iterations. This suggests that we might use stability as an early-
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stopping criterion when learning the word representations, potentially saving much compute time while

increasing performance.

6.6 CCLA for Text Representation

In sections 6.3, 6.4, and 6.5, we focused on how CCLA can be used to explain differences across cor-

pora or annotations. In each section, we briefly touched on how CCLA can be used to create feature

representations themselves. In this section, we explicitly list a few scenarios where CCLA can be used for

explanatory text representation with attention on downstream task applicability.

Feature selection for machine learning problems follows directly from comparative lexical analysis

over context. The top words for class C1 selected by head(Φ′(C1, CB)) provide a principled way to select

the terms indicative of C1, a one-sided metric (Zheng et al., 2004). Negative features, i.e., those that

create a two-sided metric are not explicitly modeled in the previous formula. However, we can find

the context-sensitive features (ambiguous features between class labels) via tailΦ′(C1, CB) and not use

them.

Depending on the definition of our initial scoring function, Φ gives a real score per term with a possible

bound. In section 6.4 we used

φ(w, C1, C2) = cos(NN(w, C1), NN(w, C1))

and

φ′(w, C1, CB) = φ(w, C1, CB)−φ(w, C1, C2).

Note that since we use cosine similarity in positive space such thatφ ∈ [0, 1]. This results inφ′ ∈ [−1, 1].

Since we have this convenient bound, the per-term score φ′ can easily be included in a linear feature

selection model.

For example, if we wished to include terms with a higher document frequency (d f , the fraction of

documents a particular term appears in), we could rewrite our feature scoring function for term w with

respect to context C1 as

score(w, C1) = φ
′(w, C1, CB)

β1 + d f β2

where β1 and β2 are parameters that can be set or learned depending on the corpus or task.

Transfer learning is also a potential application for lexical CCLA scores. As an example, imagine

that we have a sentiment analysis problem to perform on some previously unknown, streaming data.

We would like to select robust sentiment features that are applicable in a wide range of domains. As
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we showed in section 6.4, there are some particular terms that only carry meaningful sentiment when

considered in certain contexts. Our goal would be to use CCLA to select those generalizable terms that

are able to explain sentiment. In other words, we wish to find context-insensitive (i.e., unambiguous

with regard to polarity) terms across sentiment analysis corpora.

Consider the case where we have two datasets, C1 and C2. We wish to find terms that are positive in

both and negative in both. We can use the same setup as the feature selection task, where we use positive

C1 and C2 documents as one comparison and negative C1 and C2 documents as another. Further, we can

explicitly drop the context-sensitive terms found between the two corpora to reduce the dataset bias on

certain terms when applied to our streaming application.

Such a use of CCLA allows practitioners to explain why certain terms were selected: awful was chosen

because it is a clearly negative term across domains and soft was explicitly dropped because it is not clear

what its sentiment is given our existing cross-domain corpora.

Selecting word embeddings to use in a task is a choice researchers often face when designing an

end-to-end NLP or machine learning system. Word embeddings play a crucial role since their quality

significantly determines the overall performance of the system (Collobert et al., 2011). Usually, we are

able to test the system with multiple word embeddings and gauge the performance. However, it is not

always the case that we have labeled training data or have the time to run many experiments, which is

especially true if the word embeddings are input to a neural network architecture.

In this case, we can design CCLA functions that measure some property that we wish our word an-

notations (i.e., embeddings) to capture. Due to the flexible nature of CCLA, we can even incorporate

multiple measurements into our score. For example, we may desire word embeddings that are stable

(see section 6.5) while also attaining high scores in word similarity tasks. This strategy is not limited

to word embeddings in particular, and can be applied to any word annotation. Performing this type of

“annotation selection” is quite similar to feature selection.

6.7 Related Work

Our work spans several areas of research:

Detecting semantic change. Hamilton et al. (2016) suggest orthogonal Procrustes to align word

embedding spaces learned from different time periods, in contrast to per-word heuristics for the align-

ment Kulkarni et al. (2015). Kim et al. (2014) start at time period t and learn embeddings. They initialize

time period t+1 with those from t, and measure which words’ cosine similarities changed the most. Un-

like the previous two works, this does not produce a mapping function. We propose an approach that

does not require embedding matrix alignment and thus does not require an optimization algorithm; we
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utilize within-period word similarities to create word representations that are comparable across time.

This also removes the constraint of incrementally retraining the embeddings each time step; instead of

learning 10 embeddings to compare between t1 and t10, we learn two and directly compare them with

CCLA.

Contextual text mining. Topic models have been extended to support analysis of topic variations over

different contexts in many ways. In CPLSA (Mei and Zhai, 2006), a generalized form of Zhai et al. (2004),

context is incorporated into a topic model as explicit variables. A flexible way to incorporate arbitrary

features into a topic model, Dirichlet-multinomial regression, was proposed by Mimno and McCallum

(2008). Related recent work is the differential topic model (Chen et al., 2015). There are many topic

models for supporting topic analysis in association with specific context such as time and location (e.g.,

Mei et al. (2006); Yuan et al. (2013)). A common idea in all these and other methods is to model the

association of context and topics as word distributions, facilitating cross-context topic analysis, but cannot

easily support cross-context lexical analysis, which is our main goal. An important difference between

our work and these contextual topic models is that our approach does not make parametric assumptions

in modeling text (which are generally needed in topic models) and is very flexible, allowing it to easily

work with any context and context-specific word annotations.

Word embedding evaluation. Word embeddings like SGNS (Mikolov et al., 2013b)) and GloVe (Pen-

nington et al., 2014) have become standard repertoire in text mining and NLP. Some work has been

done examining the methods and parameters themselves (Levy and Goldberg, 2014; Levy et al., 2015).

Faruqui et al. (2016) find issues with using word similarity as evaluation for embeddings, and suggest

only to consider downstream task performance. Our method is able to compare the embedding spaces

themselves, which may be a useful alternative to premade similarity datasets or the less direct application

tasks.

6.8 Conclusions and Future Work

We propose a general way to perform cross-context lexical analysis to accommodate any notion of con-

text, any similarity function, and any type of word annotation. This enables many new applications all

under the same framework (e.g. development of a common toolkit to support all applications), includ-

ing analysis of semantic change, comparative analysis of meaning over context, and word embedding

stability evaluation.

CCLA opens up interesting new directions for further study, especially in additional applications. One

use is to investigate framing bias on political viewpoints. Another is a more fine-grained comparative

analysis over specific products as opposed to movies or businesses. Term scoring can be further taken

82



advantage of in sentiment valence prediction. Pablos et al. (2016) use word vector similarity to create

sentiment valence scores per term, but they only consider similarity with a manually-chosen positive and

negative word. Word sense disambiguation is another unvisited technique, and CCLA’s notion of context

could help determine which words have multiple senses. Using CCLA as a tool in a larger system is

desirable, such as learning to automatically partition a corpus to maximize word differences, or using

it for event detection when tones shift from a monitored stream. We want to investigate embedding

comparisons further using larger training data and automatically determine an optimal dimensionality

or window size given new scoring functions.
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CHAPTER 7

APPLICATION SYNTHESIS: META

This chapter shows how the previous work has been integrated into free, open-source tools available

online. This enables broad impact through reproducibility and enables faster discovery of future work.

META is developed to unite machine learning, information retrieval, and natural language processing

in one easy-to-use toolkit. Its focus on indexing allows it to perform well on large datasets, supporting

online classification and other out-of-core algorithms. META’s liberal open source license encourages

contributions, and its extensive online documentation, forum, and tutorials make this process straight-

forward. We run experiments and show META’s performance is competitive with or better than existing

software.

7.1 A Unified Framework

As NLP techniques become more and more mature, we have great opportunities to use them to develop

and support many applications, such as search engines, classifiers, and integrative applications that in-

volve multiple components. It’s possible to develop each application from scratch, but it’s much more

efficient to have a general toolkit that supports multiple application types.

Existing tools tend to specialize on one particular area, and as such there is a wide variety of tools

one must sample when performing different data science tasks. For text-mining tasks, this is even more

apparent; it is extremely difficult (if not impossible) to find tools that support both traditional information

retrieval tasks (like tokenization, indexing, and search) alongside traditional machine learning tasks (like

document classification, regression, and topic modeling).

Table 7.1 compares META’s many features across various dimensions. Note that only META satisfies

all the areas while other toolkits focus on a particular area. In the case where the desired functionality

is scattered, data science students, researchers, and practitioners must find the appropriate software

packages for their needs and compile and configure each appropriate tool. Then, there is the problem

of data formatting—it is unlikely that the tools all have standardized upon a single input format, so a

certain amount of “data munging” is required. All of this detracts from the actual task at hand, which
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Indri Lucene MALLET LIBLINEAR SVMMU LT scikit CoreNLP META
IR IR ML/NLP ML ML ML/NLP ML/NLP all

Feature generation Ø Ø Ø Ø Ø Ø
Search Ø Ø Ø
Classification Ø Ø Ø Ø Ø Ø
Regression Ø Ø Ø Ø Ø Ø
POS tagging Ø Ø Ø
Parsing Ø Ø
Topic models Ø Ø Ø
n-gram LM Ø
Word embeddings Ø Ø Ø
Graph algorithms Ø
Multithreading Ø Ø Ø Ø Ø

Table 7.1: Toolkit feature comparison. Citations for all toolkits may be found in their respective
comparison sections.

has a marked impact on productivity.

The goal of the META project is to address these issues. In particular, we provide a unifying framework

for existing machine learning and natural language processing algorithms, allowing researchers to quickly

run controlled experiments. We have modularized the feature generation, instance representation, data

storage formats, and algorithm implementations; this allows users to make seamless transitions along

any of these dimensions with minimal effort. Finally, META is dual-licensed under the University of

Illinois/NCSA Open Source Licence and the MIT License to reach the broadest audience possible.

Due to space constraints, in this paper, we only delve into META’s natural language processing (NLP),

information retrieval (IR), and machine learning (ML) components in section 7.3. However, we briefly

outline all of its components here:

Feature generation. META has a collection of tokenizers, filters, and analyzers that convert raw text

into a feature representation. Basic features are n-gram words, but other analyzers make use of different

parts of the toolkit, such as POS tag n-grams and parse tree features. An arbitrary number of feature

representations may be combined; for example, a document could be represented as unigram words,

bigram POS tags, and parse tree rewrite rules. Users can easily add their own feature types as well, such

as sentence length distribution in a document.

Search. The META search engine can store document feature vectors in an inverted index and score

them with respect to a query. Rankers include vector space models such as Okapi BM25 (Robertson et al.,

1994) and probabilistic models like Dirichlet prior smoothing (Zhai and Lafferty, 2004). A search demo

is online1.

Classification. META includes a normalized adaptive stochastic gradient descent (SGD) implemen-

tation (Ross et al., 2013) with pluggable loss functions, allowing creation of an SVM classifier (among

1https://meta-toolkit.org/search-demo.html
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others). Both `1 (Tsuruoka et al., 2009) and `2 regularization are supported. Ensemble methods for bi-

nary classifiers allow multiclass classification. Other classifiers like naïve Bayes and k-nearest neighbors

also exist. A confusion matrix class and significance testing framework allow evaluation and comparison

of different methods and feature representations.

Regression. Regression via SGD predicts real-valued responses from featurized documents. Evaluation

metrics such as mean squared error and R2 score allow model comparison.

POS tagging. META contains a linear-chain conditional random field for POS tagging and chunking

applications, learned using `2 regularized SGD (Sutton and McCallum, 2012). It also contains an efficient

greedy averaged perceptron tagger (Collins, 2002).

Parsing. A fast shift-reduce constituency parser using generalized averaged perceptron (Zhu et al.,

2013) is META’s grammatical parser. Parse tree featurizers implement different types of structural tree

representations (Massung et al., 2013). An NLP demo online presents tokenization, POS-tagging, and

parsing2.

Topic models. META can learn topic models over any feature representation using collapsed varia-

tional Bayes (Asuncion et al., 2009), collapsed Gibbs sampling (Griffiths and Steyvers, 2004), stochastic

collapsed variational Bayes (Foulds et al., 2013), or approximate distributed LDA (Newman et al., 2009).

n-gram language models (LMs). META takes an ARPA-formatted input3 and creates a language model

that can be queried for token sequence probabilities or used in downstream applications like SyntacticD-

iff (Massung and Zhai, 2015).

Word embeddings. The GloVe algorithm (Pennington et al., 2014) is implemented in a streaming

framework and also features an interactive semantic relationship demo. Word vectors can be used in

other applications as part of the META API.

Graph algorithms. Directed and undirected graph implementations exist and various algorithms such

as betweenness centrality, PageRank, and myopic search are available. Random graph generation models

like Watts-Strogatz and preferential attachment exist. For these algorithms see Easley and Kleinberg

(2010).

Multithreading. When possible, META algorithms and applications are parallelized using C++ threads

to make full use of available resources.
2https://meta-toolkit.org/nlp-demo.html
3http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html
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7.2 Usability

Consistency across components is a key feature that allows META to work well with large datasets. This is

accomplished via a three-layer architecture. On the first layer, we have tokenizers, analyzers, and all the

text processing that accompanies them. Once a document representation is determined, this tool chain is

run on a corpus. The indexes are the second layer; they provide an efficient format for storing processed

data. The third layer—the application layer—interfaces solely with indexes. This means that we may

use the same index for running an SVM as we do to evaluate a ranking function, without processing the

data again.

Since all applications use these indexes, META supports out-of-core classification with some classifiers.

We ran our large classification dataset that doesn’t fit in memory—Webspam (Webb et al., 2006)—using

the sgd classifier. Where LIBLINEAR failed to run, META was able to finish the classification in a few

minutes.

Besides using META’s rich built-in feature generation, it is possible to directly use LIBSVM-formatted

data. This allows preprocessed datasets to be run using any of META’s algorithms. Additionally, META’s

forward_index (used for classification), is easily convertible to LIBSVM format. The reverse is also

true: you may do feature generation with META, and use it to generate input for any other program that

supports LIBSVM format.

META is hosted publicly on GitHub4, which provides the project with community involvement through

its bug/issue tracker and fork/pull request model. Its API is heavily documented5, allowing the creation

of Web-based applications (listed in section 7.1). The project website contains several tutorials that

cover the major aspects of the toolkit6 to enable users to get started as fast as possible with little friction.

Additionally, a public forum7 is accessible for all users to view and participate in user support topics,

community-written documentation, and developer discussions.

A major design point in META is to allow for most of the functionality to be configured via a configu-

ration file. This enables minimal effort exploratory data analysis without having to write (or recompile)

any code. Designing the code in this way also encourages the components of the system to be pluggable:

the entire indexing process, for example, consists of several modular layers which can be controlled by

the configuration file.

An example snippet of a config file is given below; this creates a bigram part-of-speech analyzer. Mul-

tiple [[analyzers]] sections may be added, which META automatically combines while processing

input.

4https://github.com/meta-toolkit/meta/
5https://meta-toolkit.org/doxygen/namespaces.html
6https://meta-toolkit.org/
7https://forum.meta-toolkit.org/
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CoreNLP META
Training Testing F1 Training Testing F1

Greedy
7m 27s 18.6s

86.7
17m 31s 12.9s

86.9
8.85 GB 1.53 GB 0.79 GB 0.29 GB

Beam (4)
6h 10m 43s 46.8s

89.9
2h 17m 25s 59.2s

88.1
10.84 GB 3.83 GB 2.29 GB 0.94 GB

Table 7.2: (NLP) Training/testing performance for the shift-reduce constituency parsers. All models
were trained for 40 iterations on the standard training split of the Penn Treebank. Accuracy is reported
as labeled F1 from evalb on section 23.

[[analyzers]]

method = "ngram-pos"

ngram = 2

filter = [{type = "icu-tokenizer"},

{type = "ptb-normalizer"}]

crf-prefix = "crf/model/folder"

A simple class hierarchy allows users to add filters, analyzers, ranking functions, and classifiers with

full integration to the toolkit (e.g. one may specify user-defined classes in the config file). The process

for adding these is detailed in the META online tutorials.

This low barrier of entry experiment setup ease led to META’s use in text mining and analysis MOOCs

reaching over 40,000 students8,9.

Multi-language support is hard to do correctly. Many toolkits sidestep this issue by only supporting

ASCII text or the OS language; META supports multiple (non-romance) languages by default, using the

industry standard ICU library10. This allows META to tokenize arbitrarily-encoded text in many lan-

guages.

Unit tests ensure that contributors are confident that their modifications do not break the toolkit. Unit

tests are automatically run after each commit and pull request, so developers immediately know if there

is an issue (of course, unit tests may be run manually before committing). The unit tests are run in a

continuous integration setup where META is compiled and run on Linux, Mac OS X11, and Windows12

under a variety of compilers and software development configurations.

8https://www.coursera.org/course/textretrieval
9https://www.coursera.org/course/textanalytics

10http://site.icu-project.org/
11https://travis-ci.org/meta-toolkit/meta
12https://ci.appveyor.com/project/skystrife/meta
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Extra Data Accuracy
Human annotators 97.0%

CoreNLP Ø 97.3%
LTag-Spinal 97.3%

SCCN Ø 97.5%
META (CRF) 97.0%

META (AP) 96.9%

Table 7.3: (NLP) Part-of-speech tagging token-level accuracies. “Extra data” implies the use of large
amounts of extra unlabeled data (e.g. for distributional similarity features).

Docs Size |D|avg |V |
Blog06 3,215,171 26 GB 782.3 10,971,746
Gov2 25,205,179 147 GB 515.5 21,203,125

Table 7.4: (IR) The two TREC datasets used. Uncleaned versions of blog06 and gov2 were 89 GB and
426 GB respectively.

7.3 Experiments

We evaluate META’s performance in NLP, IR, and ML tasks. All experiments were performed on a work-

station with an Intel(R) Core(TM) i7-5820K CPU, 16 GB of RAM, and a 4 TB 5900 RPM disk.

META’s part-of-speech taggers for English provide quite reasonable performance. It provides a linear-

chain CRF tagger (CRF) as well as an averaged perceptron based greedy tagger (AP). We report the

token level accuracy on sections 22–24 of the Penn Treebank, with a few prior model results trained on

sections 0–18 in Table 7.3. “Human annotators” is an estimate based on a 3% error rate reported in the

Penn Treebank README and is likely overly optimistic (Manning, 2011). CoreNLP’s model is the result

of Manning (2011), LTag-Spinal is from Shen et al. (2007), and SCCN is from Søgaard (2011). Both of

META’s taggers are within 0.6% of the existing literature.

META and CoreNLP both provide implementations of shift-reduce constituency parsers, following the

framework of Zhu et al. (2013). These can be trained greedily or via beam search. We compared the

parser implementations in META and CoreNLP along two dimensions—speed, measured in wall time, and

memory consumption, measured as maximum resident set size—for both training and testing a greedy

and beam search parser (with a beam size of 4). Training was performed on the standard training split of

sections 2–21 of the Penn Treebank, with section 22 used as a development set (only used by CoreNLP).

Section 23 was held out for evaluation. The results are summarized in Table 7.2.

META consistently uses less RAM than CoreNLP, both at training time and testing time. Its training time

is slower than CoreNLP for the greedy parser, but less than half of CoreNLP’s training time for the beam

parser. META’s beam parser has worse labeled F1 score, likely the result of its simpler model averaging
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Indri Lucene META
Blog06 55m 40s 20m 23s 11m 23s
Gov2 8h 13m 43s 1h 59m 42s 1h 12m 10s

Table 7.5: (IR) Indexing speed.

Indri Lucene META
Blog06 31.02 GB 2.06 GB 2.84 GB
Gov2 170.50 GB 11.02 GB 10.24 GB

Table 7.6: (IR) Index size.

strategy13. Overall, however, META’s shift-reduce parser is competitive and particularly lightweight.

META’s IR performance is compared with two well-known search engine toolkits: LUCENE’s latest ver-

sion 5.5.014 and INDRI’s version 5.9 (Strohman et al., 2005)15.

We use the TREC blog06 (Ounis et al., 2006) permalink documents and TREC gov2 corpus (Clarke

et al., 2004). To ensure a more uniform indexing environment, all HTML is cleaned before indexing. In

addition, each corpus is converted into a single file with one document per line to reduce the effects of

many file operations.

During indexing, terms are lower-cased, stop words are removed from a common list of 431 stop

words, Porter2 (META) or Porter (Indri, Lucene) stemming is performed, a maximum word length of 32

characters is set, original documents are not stored in the index, and term position information is not

stored16.

We compare the following: indexing speed (Table 7.5), index size (Table 7.6), query speed (Table 7.7),

and query accuracy (Table 7.8) with BM25 using k1 = 0.9 and b = 0.4. We use the standard TREC queries

associated with each dataset and score each system’s search results with the usual trec_eval program17.

META leads in indexing speed, though we note that META’s default indexer is multithreaded and

LUCENE does not provide a parallel one18. META creates the smallest index for gov2 while LUCENE creates

the smallest index for blog06; INDRI greatly lags behind both. META follows LUCENE closely in retrieval

speed, with INDRI again lagging. As expected, query performance between the three systems is relatively

even, and we attribute any small difference in MAP or precision to idiosyncrasies during tokenization.

META’s ML performance is compared with LIBLINEAR (Fan et al., 2008), SCIKIT-LEARN (Pedregosa et al.,

2011), and SVMMULTICLASS19. We focus on linear classification with SVM across these tools (MAL-

13At training time, both CoreNLP and METAperform model averaging, but META computes the average over all updates and
CoreNLP performs cross-validation over a default of the best 8 models on the development set.

14http://lucene.apache.org/
15Indri 5.10 does not provide source code packages and thus could not be used. It is also known as LEMUR.
16For Indri, we are unable to disable positions information storage.
17http://trec.nist.gov/trec_eval/
18Additionally, we did not feel that writing a correct and threadsafe indexer as a user is something to be reasonably expected.
19http://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
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Indri Lucene META
Blog06 55.0s 1.60s 3.67s
Gov2 24m 6.73s 57.53s 1m 3.98s

Table 7.7: (IR) Query speed.

Indri Lucene META
MAP P@10 MAP P@10 MAP P@10

Blog06 29.13 63.20 29.10 63.60 32.34 64.70
Gov2 25.96 53.69 30.23 59.26 29.97 57.43

Table 7.8: (IR) Query performance via Mean Average Precision and Precision at 10 documents.

LET (McCallum, 2002) does not provide an SVM, so it is excluded from the comparisons). Statistics for

the four ML datasets can be found in Table 7.9.

The 20news dataset (Lang, 1995)20 is split into its standard 60% training and 40% testing sets by

post date. The Blog dataset (Schler et al., 2006) is split into 80% training and 20% testing randomly.

Both of these two textual datasets were preprocessed using META using the same settings from the IR

experiments.

The rcv1 dataset (Lewis et al., 2004) was processed into a training and testing set using the prep_rcv1

tool provided with Leon Bottou’s SGD tool21. The resulting training set has 781,265 documents and the

testing set has 23,149. The Webspam corpus (Webb et al., 2006) consists of the subset of the Webb

Spam Corpus used in the Pascal Large Scale Learning Challenge22. The corpus was processed using the

provided convert.py into byte trigrams. The first 80% of the resulting file is used for training and the

last 20% for testing.

In Table 7.10, we can see that META performs well both in terms of speed and accuracy. Both LIBLINEAR

and SVMMULTICLASS were unable to produce models on the Webspam dataset due to memory limitations

and lack of a minibatch framework. For SCIKIT-LEARN and META, we broke the training data into 4 equal

sized batches and ran one iteration of SGD per batch. The timing result includes the time to load each

chunk into memory; for META this is from its forward-index format23 and for SCIKIT-LEARN this is from

LIBSVM-formatted text files.
20http://qwone.com/~jason/20Newsgroups/
21http://leon.bottou.org/projects/sgd
22ftp://largescale.ml.tu-berlin.de/largescale/
23It took 12m 24s to generate the index.
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Docs Size k Features
20news 18,846 86 MB 20 112,377
Blog 19,320 778 MB 3 548,812
rcv1 804,414 1.1 GB 2 47,152
Webspam 350,000 24 GB 2 16,609,143

Table 7.9: (ML) Datasets used for k-class categorization.

liblinear scikit SVMmult MeTA

20news
79.4% 74.3% 67.1% 80.1%
2.58s 0.326s 2.54s 0.648s

Blog
75.8% 76.2% 72.2% 72.2%
61.3s 0.801s 17.5s 1.11s

rcv1
94.7% 94.0% 83.6% 94.8%
17.6s 1.66s 2.01s 3.44s

Webspam 7
97.4%

7
99.4%

11m 52s 1m 16s

Table 7.10: (ML) Accuracy and speed classification results. Reported time is to both train and test the
model. For all except Webspam, this excludes IO.

7.4 Contributions from this Thesis

The three main contributions to this thesis are all contained in META. This section simply shows how to

use the configuration file to adjust settings for each work. For the most up-to-date information, please

consult META’s home page, https://meta-toolkit.org/.

7.4.1 Structural Parse Tree Features

Structural parse tree features (i.e., skeleton and annotated skeleton features) are able to be used in META.

Additionally, we have a few other baseline parse tree features to choose from. Modify the features

setting in the analyzer block. Note that it is possible to combine multiple tree features together in this

section.

[[analyzers]]

method = "tree"

filter = [{type = "icu-tokenizer"}, {type = "ptb-normalizer"}]

features = ["skel", "subtree"]

tagger = "path/to/greedy-tagger/model"

parser = "path/to/sr-parser/model"

The possible values for features are:
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• branch, branch featurizer: analyzes parse trees by the number of productions at each interior

node.

• depth, depth featurizer: analyzes parse trees by their depth

• skel, skeleton featurizer: analyzes parse trees by their structural subtree patterns (Massung et al.,

2013)

• semi-skel, semi-skeleton featurizer: analyzes parse trees by their annotated (keeping the root

subtree node) structural patterns (Massung et al., 2013)

• subtree, subtree featurizer: analyzes parse trees using their rewrite rules.

• tag, tag featurizer: analyzes parse trees by counts of their interior node labels.

7.4.2 Syntactic Diff

SYNTACTICDIFF (Massung and Zhai, 2015) can directly be used with META to generate text features with

respect to a reference corpus. Its configuration file setting is below:

[diff]

n-value = 3

max-edits = 3

base-penalty = 0.0 # base penalty is for any edit

insert-penalty = 0.0

substitute-penalty = 0.0

remove-penalty = 0.0

By default, all the penalties are zero, but they can be arbitrarily set in this configuration. Additionally,

the following language model section is needed to represent the reference corpus:

[language-model]

arpa-file = "../data/english-sentences.arpa"

binary-file-prefix = "english-sentences-"

The arpa-file is a prelearned language model that can be from any other corpus. This is what is

used to determine where to make edits to each sentence inspected by SYNTACTICDIFF.
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7.4.3 Cross-Context Lexical Analysis

CCLA (Massung et al., 2017) is also available under a configuration setting.

[ccla]

corpora = ["imdb", "yelp"]

context-labels = ["positive", "negative"]

k = 500

scoring-function = "nearest-neighbors" # or "ndcg"

annotation = "embedding"

The corpora parameter is a list of META datasets; context-labels is a metadata field value that

is used to split documents into contexts. The k parameter is the top-k nearest neighbors or NDCG@k

parameter for the scoring function. Currently, only the embedding annotation is supported.

7.5 Conclusions and Future Work

META is a valuable resource for text mining applications; it is a viable and competitive alternative to

existing toolkits that unifies algorithms from natural language processing, information retrieval, and ma-

chine learning. META is an extensible, consistent framework that enables quick development of complex

application systems. It has demonstrated its usefulness in courses from twenty students to MOOCs with

tens of thousands of students; it can efficiently operate on terabytes of data while also supporting novice

users through configuration file manipulation.

All of the work in this thesis is contained in META. It will always remain a free and open-source toolkit

for text retrieval and analysis.
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CHAPTER 8

CONCLUSIONS AND OPEN QUESTIONS

The importance and prevalence of text data has been greatly emphasized in this thesis and the papers

that it contains. Converting raw strings to quantized feature vectors or sequences is a crucial step in

any text processing application. Example applications we explored in this thesis are native language

identification, grammatical error correction, summarization via topic analysis, authorship attribution,

essay scoring, sentiment analysis, analysis of semantic change, comparative lexical analysis over context,

and word embedding comparison.

In chapter 2, we gave a very broad, general introduction and literature survey to text representation

and techniques. In contrast to chapter 2, chapter 3 explored a particular subfield of text mining that

benefits from advances in text representation: non-native text mining. This subfield operates on text data

that has been produced by writers in a non-native language. Many of the non-topical features explored

for non-native text analysis performed well due to their ability to capture the concept of “nativeness” or

“fluency”, which inherently makes them interpretable.

As mentioned in chapter 1, a major limitation in existing text representation methods is the dependence

on topic-based features. When we diverge from topic-based features, we often lose interpretability or

explanatory power. To address this issue, non-topical text representations and mining methods were

introduced and studied in chapters 4, 5, and 6.

We began with structural parse tree features in chapter 4, comparing combinations of simple n-gram

text representation models with new and existing tree features. We showed that the novel structural

tree features are most effective and when combined with a simpler lexical model, capturing multiple

perspectives of the same text. Using these new methods, we displayed performance gains on existing

corpora across domains. This demonstrated the generality and usefulness of our features. We showed

that the new structural features combine better with simple features than existing tree representations

such as rewrite rules. The interpretability of the skeleton features is a key point; we showed common

phrases for each L1 that would not be captured by existing methods, yet were easily understandable by

humans.

SYNTACTICDIFF was introduced in chapter 5. It is a novel, efficient, and general framework for many
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text mining tasks that examines syntactic differences between target text and a reference background

collection. These differences are captured in weighted edit operations. These text edits can not only

be used to generate an alternative representation of text data that is complementary with the content-

based representation, but also support a wide range of interesting novel applications. We evaluated the

generality and effectiveness of SYNTACTICDIFF using three distinct tasks: grammatical error correction,

corpus summarization, and classification. In all areas, SYNTACTICDIFF provided concrete advantages,

clearly demonstrating its empirical benefit. Importantly, the features produced by SYNTACTICDIFF are

human-interpretable; inspecting top features for a given label provide immediate insight into why they

were chosen and what makes a particular class label different than other labels.

Cross-Context Comparative Analysis (CCLA) was discussed in chapter 6. CCLA generally refers to

any analysis of term meaning or term representation in different contexts, especially for understanding

the differences and similarities in multiple contexts. We formalized this notion with a general framework

that accommodates any notion of context, any similarity function, and any type of word annotation. This

enables many new applications all under the same framework (e.g. development of a common toolkit to

support all applications), including analysis of semantic change, comparative analysis of meaning over

context, and word embedding evaluation. CCLA is a particularly useful tool when we wish to examine

(e.g.) word annotations that are not inherently topic-based. For example, we derived the understandable

notion of word embedding stability using the CCLA framework and showed that it is correlated with word

similarity and analogy performance.

In chapter 7, we overviewed META, a unified toolkit for text retrieval and analysis. It is a viable

and competitive alternative to existing toolkits that unifies algorithms from natural language processing,

information retrieval, and machine learning. META is an extensible, consistent framework that enables

quick development of complex application systems. It has demonstrated its usefulness in courses from

twenty students to MOOCs with tens of thousands of students; it can efficiently operate on terabytes of

data while also supporting novice users through configuration file manipulation. All of the work in this

thesis is contained in META. It will always remain a free and open-source toolkit for text retrieval and

analysis.

Although many advances in explanatory text mining and representation are included as part of this

thesis, there are still many open questions and avenues for future work.

We would like to explore structural features in tree structures other than PCFGs (such as dependency

parses or XML documents), as well in other domains such as clustering and information retrieval. Ad-

ditionally, we would be interested in seeing how the features respond to dimensionality reduction tech-

niques, and if this can further increase the interpretability of the top features per class.

For SYNTACTICDIFF, there are many interesting future directions to further explore, particularly in
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leveraging such a new representation in many other applications, exploring different configurations for

comparative text analysis, and further generalizing the framework to capture more semantic meaning.

It should be straightforward to improve the candidate generation efficiency via beam search. Lastly, ex-

ploring the possibility of learning new penalty types during training is desirable. To approach this, we

can break the definition of a penalty into context and an argument. One context could be surround-

ing part of speech tags, and the argument is the current word examined in an edit operation. Once

SYNTACTICDIFF operates in this format, we can arbitrarily create penalties.

CCLA opens up interesting new directions for further study, especially in additional applications. One

use is to investigate framing bias on political viewpoints. Another is a more fine-grained comparative

analysis over specific products as opposed to movies or businesses. Term scoring can be further taken

advantage of in sentiment valence prediction. Pablos et al. (2016) use word vector similarity to create

sentiment valence scores per term, but they only consider similarity with a manually-chosen positive and

negative word. Word sense disambiguation is another unvisited technique, and CCLA’s notion of context

could help determine which words have multiple senses. Using CCLA as a tool in a larger system is

desirable, such as learning to automatically partition a corpus to maximize word differences, or using

it for event detection when tones shift from a monitored stream. We want to investigate embedding

comparisons further using larger training data and automatically determine an optimal dimensionality

or window size given new scoring functions.

Finally, a detailed analysis of combining multiple interpretable features would be hugely beneficial to

downstream tasks. Determining programmatically why features are interpretable would greatly help in

their design and effectiveness.
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