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Gibbs sampling is a widely applied algorithm to estimate parameters in sta-

tistical models. This thesis uses Gibbs sampling to resolve practical problems,

especially on natural language processing and mixed type data. It includes three

independent studies. The first study includes a Bayesian model for learning latent

annotations. The technique is capable of parsing sentences in a wide variety of

languages, producing results that are on-par with or surpass previous approaches

in accuracy, and shows promising potential for parsing low-resource languages.

The second study presents a method to automatically complete annotations from

partially-annotated sentence data, with the help of Gibbs sampling. The algorithm

significantly reduces the time required to annotate sentences for natural language

processing, without a significant drop in annotation accuracy. The last study pro-

poses a novel factor model for uncovering latent factors and exploring covariation

among multiple outcomes of mixed types, including binary, count, and continuous
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data. Gibbs sampling is used to estimate model parameters. The algorithm suc-

cessfully discovers correlation structures of mixed-type data in both simulated and

real-word data.
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Chapter 1

Introduction

This thesis focuses on the use of statistical tools to resolve practical prob-

lems, especially in discovering hidden structure in natural language processing

and mixed type data. The thesis includes three chapters. Chapter 2 introduces a

Bayesian model and algorithms based on a Gibbs Sampler for learning latent anno-

tations. The technique is capable of parsing sentences in a wide variety of languages

and producing results that are on- par with or surpass previous approaches in accu-

racy. Particularly, the results demonstrate that low-resource language parsing can

benefit substantially from the outlined Bayesian approach.

Chapter 3 further describes a method, based on a Gibbs Sampler, for com-

pleting annotations from partially-annotated sentence data. The completed anno-

tations can be used for training a standard dependency parser. The experiments

show that this strategy improves performance over not using partial annotations for

a variety of languages. Moreover, performance competitive with state-of-the-art

weakly-supervised parsers can be reached with just a few hours of partial annota-

tion.

Chapter 4 describes a factor model for uncovering latent factors and ex-

ploring covariation among multiple outcomes of mixed types. The proposed factor
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model is capable of discovering correlations among many types of variables, in-

cluding binary, count, and continuous types. We create an algorithm to inference

the model parameters, and demonstrate that the algorithm successfully recovers cor-

relation structure on simulated data. The algorithm also provides valuable insights

from political science data. Finally, we implement the algorithm as an R package,

which enables R users to perform factor analysis of data with mixed-types in a fully

automatic way.
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Chapter 2

Parsing low-resource languages using Gibbs sampling
for Probabilistic Context-Free Grammars (PCFGs)

with latent annotations

2.1 Background

This chapter discusses a Bayesian approach to the problem of constituency

parsing. A constituency parse tree represents the constituent structure of the sen-

tence, specifically the way it breaks into sub-phrases. An example of parse tree is

shown in Figure 2.1. Parse trees have come to play a vital role in modern Natural

Languages Processing (NLP). The ability to reconstruct parse tree structure enables

other tasks like machine translation, question answering, etc.

Figure 2.1: A parse tree for the sentence The dog ate the food.

The Probabilistic Context-Free Grammar (PCFG) model has been one of the

most important formal models in syntactic parsing (Charniak, 2000; Collins, 2003).
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The basic PCFG model is briefly introduced here. A Context-Free-Grammar (CFG)

G in Chomsky normal form (Chomsky, 1956) is a 4-tuple (T,N, S,R), which con-

sists of:

1. T is a finite set of terminal symbols, the symbols that appear in the final

strings.

2. N is a finite set of non-terminal symbols, that are expanded into other sym-

bols.

3. S is a special non-terminal called the start symbol, for example, S.

4. and R is a finite set of production rules of the form A → BC or A → w,

where A,B,C ∈ N and w ∈ T .

A CFG can be extended into a PCFG by associating production rule with a proba-

bility θr∈R (Booth and Thompson, 1973). Because all non-terminals must expand,

the probabilities for all the rules that expand the same non-terminal must sum to

one.

Extensive work has been done in search of an automatic and accurate lan-

guage parser for low resource languages. A low resource language is one where not

much data, either labeled or unlabeled, is available. A primary approach to improve

the performance of parsers is to use some form of cross-lingual bootstrapping. For

instance, Kuhn (2004b) used multiple languages to induce a monolingual grammar

to perform parsing in a low resource language. Similarly, Hwa et al. (2005) used

4



a parallel Chinese/English corpus and an English dependency grammar to create

an annotated Chinese corpus and train a Chinese dependency grammar. These ap-

proaches are based on a parallel corpus, which is difficult to acquire, or not available

at all, for low-resource languages.

In addition to bootstrapping, a second method to address low resource lan-

guages is using linguistic universals. For example, Kuhn (2004a) studied vari-

ous tasks using Q’anjob’al and identified some of the difficulties in handling low-

resource languages in general. Bender et al. (2002) seeded newly developed gram-

mars by making use of universal grammars. These approaches, based on linguistic

universals, lacks the accuracy of grammars learned from data.

Recently, Probabilistic Context-Free Grammars with latent annotations (

PCFG-LA) (Matsuzaki et al., 2005; Petrov et al., 2006) have been proven to be an

effective model for syntactic parsing. Specifically, this approach requires less train-

ing material, making it a suitable tool for parsing low-resource languages (Liang

et al., 2009; Shindo et al., 2012). Previous PCFG-LA work focuses on algorithms

for parameter estimation, including expectation-maximization (EM) (Matsuzaki

et al., 2005; Petrov et al., 2006), spectral learning (Cohen et al., 2012, 2013), and

variational inference (Liang et al., 2009; Wang and Blunsom, 2013). But all pre-

vious work uses a standard Viterbi parse to label a new sentence (Matsuzaki et al.,

2005). The work presented in this thesis provides both a new estimation method, as

well as a new method for labeling new sentences.

The main contributions of this thesis to this problem are: 1) a novel algo-

rithm for labeling new sentences using a PCFG-LA, based on a Gibbs sampler 2)
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a novel algorithm for estimating PCFG-LA parameters from training data 3) ex-

periments that demonstrate a parser resulting from the first two contributions is

on par with state-of-the-art parsers. Specifically, our algorithms provide excellent

results in low resource settings – both artificially limited in the case of English,

and naturally limited in the case of Italian, Malagasy, and Kinyarwanda. Further-

more, the novel methods do not depend on supporting materials such as parallel

corpora, linguistic universals, or language-specific modifications. This indepen-

dence of supporting materials make the algorithmic approach a valuable tool for

parsing low-resource languages.

This work is published in Sun et al. (2014). The main contributions of

this thesis are the models and algorithms presented. The main contribution of the

coauthor, Jason Mielens, is data acquisition and performing experiments.

2.2 Gibbs sampling for PCFGs

Johnson et al. (2007) built a Bayesian model for PCFG, and developed a

Gibbs Sampler for inferencing rule probabilities. This work extends the model and

algorithms for parsing PCFG-LA, see Section 2.3. For better understanding of the

models and algorithms in Section 2.3, we summarize the Bayesian PCFG and Gibbs

sampler defined by Johnson et al. (2007).

The main purpose of this section is to review the Gibbs sampling steps out-

lined in Johnson et al. (2007). A smaller, secondary purpose is to highlight the fact

that these steps can be used for labeling a new sentence. Johnson et al. (2007) use

the Gibbs sampling steps solely for estimating the unknown rule probabilities.

6



The inputs of the Gibbs sampling algorithm are a corpus of unlabeled sen-

tences and a prior for the rule probabilities. The prior can be an uninformed prior,

or an informed prior derived from a corpus of labeled sentence. To use the algo-

rithm for labeling a new sentence, one could output the parse tree that appears most

often during the sampling process. This labeling technique works particularly well

for sentences where relatively few parse trees are possible.

2.2.1 Bayesian PCFG

Given an input corpus of sentences w=(w(1), · · · , w(n)), we introduce two

quantities that require estimation: 1) a latent variable t=(t(1), · · · , t(n)), represent-

ing one parse tree for each sentence and 2) a vector of rule probabilities, one for

each production rule in the PCFG, θ =< θr >r∈R. The joint posterior distribution

of t and θ conditioned on w is:

p(t,θ | w) ∝ p(θ)p(w | t)p(t | θ)

= p(θ)(
∏n

i=1
p(w(i) | t(i))p(t(i) | θ))

= p(θ)(
∏n

i=1
p(w(i) | t(i))

∏
r∈R

θfr(t
(i))

r ) (2.1)

Here fr(t) is the number of occurrences of rule r in the derivation of t; p(w(i) |

t(i)) = 1 if the terminals of t(i) are the sequence w(i), and 0 otherwise. The above

expression assumes independence of: the individual sentences, given their parse

trees; the individual parse trees, given production rule probabilities; and of the in-

dividual rules within a parse tree.

Define p(θ | α) as prior on θ – a product of Dirichlet distributions, param-
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eterized by a vector α, p(θ | α) =
∏

A∈N Dir(θA | αA). Here each non-terminal

A ∈ N is associated with one Dirichlet distribution parameterized by αA, so that

each production expandingA: A→ β ∈ R has a corresponding Dirichlet parameter

αA→β .

This Dirichlet parameterization allows for easy updates to the conditional

posterior. Specifically, the Dirichlet distribution is conjugate to the Multinomial

distribution, which we used in (2.1) to model the likelihood a tree given rule prob-

abilities. The conjugate prior update produces posteriors on the parameters θA as

follows:

pG(θ | t,α) ∝ pG(t | θ)p(θ | α)

∝ (
∏

r∈R
θfr(t)r )(

∏
r∈R

θαr−1
r )

=
∏

r∈R
θfr(t)+αr−1
r (2.2)

which is still a Dirichlet distribution with updated parameter fr(t) + αr for each

rule r ∈ R.

2.2.2 Gibbs sampler

To sample the joint posterior p(t,θ | w), Johnson et al. presents a Gibbs

sampler to sample production probabilities θ and then trees t iteratively from these

conditional distributions:

p(θ | t,w,α) =
∏

A∈N
Dir(θA | fA(t) + αA) (2.3)

p(t | θ,w,α) =
∏n

i=1
p(t(i) | w(i),θ) (2.4)

8



Require: A is parent node of a binary rule; wi,k is a span of words: i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes of A:B,C do
P (j, B, C) = θA→BC ·pB,i,j ·pC,j,k

pA,i,k

end for
Sample j∗, B∗, C∗ from multinomial distribution for (j, B, C) with probabili-
ties calculated above

return j∗, B∗, C∗
end function

Algorithm 1: Sampling split position and rule to expand parent node. The proba-
bilities pA,i,j for all A ∈ N and 0 ≤ i < j ≤ l are pre-computed using the recursive
rules in Equation 5 and 6.

Step 1: Sample Rule Probabilities. Given trees t = (t(1), · · · , t(n)) for sentences

1, · · · , n and prior α, the production probabilities θA for each nonterminal A∈N

are sampled from a Dirichlet distribution with parameters fA(t) + αA. fA(t) is

a vector, and each component of fA(t) is the number of occurrences of one rule

expanding nonterminal A in all trees.

Step 2: Sample Tree Structures. There exists an efficient sampling scheme to sample

trees from p(t(i) | w(i),θ) introduced in previous work (Goodman, 1998; Finkel

et al., 2006; Johnson et al., 2007). To describe this algorithm, consider a particular

sentence w and its associated tree t. There are two parts to the algorithm: The

first constructs an inside table as in the Inside-Outside algorithm for PCFGs (Lary

and Young, 1990); The second selects the tree by recursively sampling productions

from top to bottom.

Consider a sentence w made of terminals (w0, · · · , wl), with sub-spans

wi,k = (wi+1, · · · , wk). Given θ, for each nonterminal A and each word span

9



wi,k : 0 ≤ i < k ≤ l, compute the probability, pA,i,k, that words i through k are

produced by A. The table is computed recursively by

pA,k−1,k = θA→wk
(2.5)

pA,i,k =
∑

A→BC∈R

∑
i<j<k

θA→BC · pB,i,j · pC,j,k (2.6)

for all A,B,C ∈ N and 0 ≤ i < j < k ≤ l.

The resulting inside probabilities are then used to generate trees from the

distribution of all valid trees of the sentence. The tree is generated from top to

bottom recursively with the function TreeSampler defined in Algorithm 1.

2.3 PCFG with latent annotations

In this section, we extend the Gibbs sampling algorithm to PCFG-LA. This

is the first work that uses algorithms based on Gibbs sampling for parsing new

sentences with PCFG-LA. PCFG-LAs have been shown to be a very effective model

for phrase structure parsing (Matsuzaki et al., 2005). Most related work focuses on

inference methods, while using Viterbi parse to parse new sentences.

When training data, i.e. parsed trees, are available, rule frequencies can be

directly extracted and used as priors for the Gibbs sampler for PCFG. However,

the same is not true for PCFG-LA. Because the data does not include the latent

annotation label, there is no direct way to get a prior for PCFG-LAs. We develop a

novel algorithm to assign latent annotations to trees that have no latent annotations.

The output of the algorithm allows us to then use rule counts to construct a prior for

a Gibbs sampler for PCFG-LA.

10



2.3.1 PCFG-LA

A Context-Free Grammar with latent annotations (CFG-LA) (Matsuzaki

et al., 2005; Petrov et al., 2006) refines the non-terminals of a CFG. Define a CFG-

LA model as a tuple (T,N,H, S,R), which consists of:

1. T is a finite set of terminal symbols, the symbols that appear in the final

strings.

2. N is a finite set of non-terminal symbols, that are expanded into other sym-

bols.

3. H is a finite set of latent annotations symbols, H = {1, · · · , K}. And N [H]

denotes the set of complete non-terminal symbols, i.e. N [H] = {A[x] | A ∈

N, x ∈ H}.

4. S is a special non-terminal called the start symbol, for example, S.

5. and R is a finite set of production rules. It contains rules with the following

forms:

(a) S → S[x] where x ∈ H

(b) A[x]→ BC or A[x]→ w, where A,B,C ∈ N , x ∈ H and w ∈ T

(c) A[x]B,C → y, z, where B,C ∈ N are child nodes of A[x], and y, z ∈

H are latent annotations assigned to B,C.

11



A CFG-LA can be extended into a PCFG-LA by associating production rule

with a probability. Given three forms of rules listed above, we use πS→S[x] to denote

the probability of rule S → S[x] for x ∈ H; θA[x]→U to denote the probability of

rule A[x]→ U , where U ∈ (N ×N)∪T ; βA[x],B,C→y,z to denote the probability of

assigning latent annotation y, z to child nodes B,C of A[x]. The probabilities for

all the rules that expand the same left-part must sum to one.

2.3.2 Bayesian PCFG-LA

Given an input corpus of sentences w=(w(1), · · · , w(n)), we introduce two

variables for representing latent tree structures. The first one t=(t(1), · · · , t(n)) de-

notes the complete trees with latent annotations; the second one τ=(τ (1), · · · , τ (n))

denotes observable incomplete trees, for example, trees without latent annotations.

The joint posterior distribution of t and π,θ,β conditioned on w and τ is:

p(t,π,θ,β | w, τ ) ∝ p(π,θ,β)p(w, τ | t)p(t | π,θ,β)

= p(π)p(θ)p(β)(
∏n

i=1
p(w(i), τ (i) | t(i))p(t(i) | π,θ,β))

Here p(w(i), τ (i) | t(i)) = 1 if the terminals of t(i) are the sequence w(i) and partial

structure of t(i) is τ (i), and 0 otherwise. The above expression assumes indepen-

dence of: the individual sentences, given their parse trees; the individual parse trees,

given production rule probabilities; and of the individual rules within a parse tree.

Also assume that π, θ and β are independent to get p(π,θ,β) = p(π)p(θ)p(β).

To learn parameters π, θ, β, we use products of Dirichlet distributions as
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priors for π θ and β. The distribution for all rules expanding A[x] is:

p(θ | αθ) =
∏

A∈N,x∈H

Dir(θA[x] | αθA[x])

The distribution for latent annotations associated with child nodes ofA[x]→

BC is:

p(β | αβ) =
∏

A[x],B,C∈N [x]×N×N

Dir(βA[x],B,C | αβA[x],B,C).

And the distribution for latent annotations associated to S is:

p(π | απ) = Dir(π | απ)

This Dirichlet parameterization allows for easy updates to the conditional

posterior. For all unary and binary rules expanding A[x]:

θA[x] | t, αθ ∼ Dir(fA[x](t) + αθA[x])

Here fA[x](t) is a vector, and each component of fA[x](t), fr(t), is the number of

occurrences of rule r expanding nonterminalA[x] in all trees. Also, for combination

of latent annotations assigned to B,C in rule A[x]→ B,C:

βA[x],B,C | t, αβ ∼ Dir(fA[x],B,C(t) + αβA[x],B,C)

Here, each component of fA[x],B,C((t)), fd(t), is the number of occurrences of com-

bination d ∈ {y, z : y ∈ H, z ∈ H} in t. And similarly π can be updated by:

π | t, απ ∼ Dir(fS(t) + απ)

Here, each component of fS(t), fS[x](t), is the number of occurrences of S[x] in t.
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Require: w1, · · · , wn are raw sentences; θ0, β0 are initial values; αθ, αβ are pri-
ors; M is the number of iterations
function PARSE(w1, .., wn, θ0, β0, α

θ, αβ,M )
for iteration i = 1 to M do

for sentence s = 1 to n do
Calculate Inside Table
Sample tree nodes and associated latent annotations, get tree struc-

ture t(i)s
end for
Sample θ(i), β(i)

end for
for sentence s = 1 to n do

Remove the latent annotations to get unannotated trees T (1)
s , · · · , T (M)

s

Find the mode of T (1)
s , · · · , T (M)

s : Ts
end for
return T1, · · · , Tn

end function

Algorithm 2: Parsing new sentences with PCFG-LA
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2.3.3 Gibbs sampling for PCFG-LA with no observed incomplete trees

When no observed incomplete trees are available, i.e. to parse raw text, the

sampler in Section 2.2 is extended to PCFG-LA. Given priors αθ,αβ,απ and raw

text, the algorithm alternates between two steps. The first samples trees for the

entire corpus; the second samples θ, β and π from Dirichlet distributions with up-

dated parameters, combining priors and counts from sampled trees. The algorithm

then alternates between these steps until convergence. The outputs are samples of

θ, β, π and annotated trees.

The parsing process is specified in Algorithm 2. The first step assigns a

tree to a sentence, say w0,l, l is the length of this sentence. An inside table is

constructed first (see Section 2.2). Each entry in the table stores the probability that

a word span is produced by a given annotated nonterminal. For root node S one

annotation is sampled based on all pS[x],0,l, x ∈ H and π. Assume that x is sampled

for S, a rule to expand S[x] and possible splits of the span w0,l is further sampled

jointly. Assume that nonterminals B,C are sampled to expand S[x], where B is

responsible for w0,j and C is responsible for wj,l. Annotations for B,C are further

sampled together, say y, z. Then rules and split positions are sampled to expand

B[y] and C[z], and continue until reaching the terminals.

Once trees (with latent annotations) are available, the step of sampling θ,

β and π from a Dirichlet distribution is direct. The algorithm needs to count the

number of occurrences fr(t) for each rule r like A[x] → U , U ∈ (N × N) ∪ T

in updated annotated trees t, and draw θA[x] from the updated Dirichlet distribution

Dir(fA[x](t) + αθA[x]). The algorithm also needs to count the number of occur-
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rences of fd(t) for each combination of (y, z) ∈ H × H assigned to B,C given

A[x] → B,C in t, and draw βA[x],B,C from the updated Dirichlet distribution

Dir(fA[x],B,C(t) + αβA[x],B,C) similarly. And finally the algorithm needs to draw

π from Dirichlet distribution Dir(fS(t) + απ).

To parse a sentence first calculate the inside table. Then sample a tree using

the inside table. The algorithm iterates between these two steps. The details of

these two steps are shown below.

Calculate the inside table. Given θ,β,π and a string w=w0,l, a table is

constructed with entries pA[x],i,k for each A∈N , x ∈ H and 0 ≤ i < k ≤ l, where

pA[x],i,k is the probability that words i through k were produced by the annotated

nonterminal A[x]. The table can be computed recursively, for all A ∈ N , x ∈ H ,

by

pA[x],k−1,k = θA[x]→wk

pA[x],i,k =
∑

A[x]→BC:BC∈N×N

∑
j:i<j<k

∑
yz∈H×H

θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k

Sample the tree, top to bottom. First, from start symbol S, sample latent

annotation from multinomial with probability πS[x]pS[x],0,l for each x ∈ H . Next,

given annotated non-terminal A[x] and i, k, sample possible child nodes and split

positions from multinomial with probability:

p(B,C, j) =
1

pA[x],i,k

∑
y,z∈H

θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k

Here the probability is calculated by marginalizing all possible latent annotations

for B,C, and θA[x]→BCβA[x]BC→yz is the probability of choosing B[y], C[z] to ex-
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pand A[x], and pB[y],i,jpC[z],j,k are the probabilities for B[y] and C[z] to be respon-

sible for word span wi,j and wj,k respectively. And pA[x],i,k is the normalizing term.

Third, given A[x], B, C, i, j, k, sample annotations for B,C from multino-

mial with probability:

p(y, z) =
βA[x]BC→yzpB[y],i,jpC[z],j,k∑
y,z βA[x]BC→yzpB[y],i,jpC[z],j,k

A crucial aspect of this procedure is that all trees can be sampled indepen-

dently. This parallel process produces a substantial speed gain that is important

particularly when using more latent annotations. After all trees have been sampled

(independently), the counts from each individual tree are combined prior to the next

sampling iteration.

2.3.4 Gibbs sampling for PCFG-LA with observed incomplete trees

When observed incomplete trees are available, we develop an algorithm

based on Gibbs sampling to learn the probabilities of production rules. In this

work, the observed incomplete trees are given by training data: parse trees without

annotations. Gibbs sampling is performed on the training data by first iteratively

sampling probabilities and then assigning annotations to tree nodes. The average

counts of annotated production rules from sampled trees is used to produce the prior

αθ αβ and απ incorporated into parsing raw sentences.

First index the non-terminal nodes of each tree T by 1, 2, · · · from top to

bottom, and left to right. Then the sampler iterates between two steps. The first

samples θ, β and π given annotated trees (as in Section 2.3.3). The second samples
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Require: T1, · · · , Tn are fully parsed trees; θ0, β0 are initial values; αθ0 , αβ0 are
priors; M is the number of iterations
function ANNO(T1, · · · , Tn, θ0, β0, αθ0 , αβ0 ,M )

for iteration i = 1 to M do
for sentence s = 1 to n do

Calculate inside probability
Sample latent annotations for each node in the tree, get tree with

latent annotations t(i)s
end for
Sample θ(i), β(i)

end for
return Mean of number of occurrences of production rules and associated

latent annotations from all sampled annotated trees
end function

Algorithm 3: Learning prior from training

latent annotations for nonterminal nodes in parsed trees, which also takes two steps.

The first step is to calculate and store the probability that the node is annotated by

x for each node in the tree. The second step is to jointly sample latent annotations

for child nodes of root nodes, and then continue this process from top to bottom

until reaching the pre-terminal nodes. The main difference from the procedure

above is that we know the unannotated tree structure, and we know the spans for

each unannotated non-terminal. This reduces the problem to simply sampling latent

annotations.

Step one: inside probabilities. Given tree T , compute biT [x] for each non-

terminal i recursively:

1. If node Ni is a pre-terminal node above terminal symbol w, then for x∈H

biT [x] = θNi[x]→w
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2. Otherwise, let j, k be two child nodes of i, then for x ∈ H

biT [x] =
∑
y,z∈H

θNi[x]→NjNk
βNi[x]NjNk→y,zb

j
T [y]bkT [z]

Step two: outside sampling. Given inside probability biT [x] for every non-

terminal i and all latent annotations x∈H , the algorithm samples latent annotations

top to bottom:

1. If node i is the root node (i = 1), then sample x ∈ H from a multinomial

distribution with f iT [x] = π(Ni[x]).

2. For a parent node with sampled latent annotation Ni[x] with children Nj, Nk,

sample latent annotations for these two nodes from a multinomial distribution

with

f iT [y, z] =
1

biT [x]
· θNi[x]→NjNk

βNi[x]NjNk→y,zb
j
T [y]bkT [z]

After training, the average counts of sampled annotated rules, combinations

of latent annotations and latent annotations for S are collected. They are used as

priors αθ,αβ,απ in the algorithm for parsing raw sentences.

2.4 Experiments

We perform experiment on five languages with varying amounts of train-

ing data in order to understand parsing efficacy using PCFG-LA for low-resource

languages. The results are compared to previously established baselines: for all

languages, both a standard unsmoothed PCFG and the Bikel parser; additionally,

19



for English and Chinese, to state-of-the-art parsers. Specifically, for Chinese, the

comparison is with Huang & Harper (2009), using their results that only use the

Chinese Treebank (CTB) without domain knowledge. For English, the comparison

is with Liang et al. (2009).

2.4.1 Data

English (ENG) and Chinese (CHI) are the two main languages used for this

work; they are commonly used in parser evaluation and have previous examples

of statistical parsers using a Bayesian framework. Because this work primarily is

interested in parsing low-resource languages, we include results for Kinyarwanda

(KIN) and Malagasy (MLG) – languages without substantial existing treebanks.

Finally, Italian (ITL) is used as a middle-ground language.

For English, Chinese, and Italian, we use pre-existing treebanks. For En-

glish, this work uses the Wall-Street Journal section of the Penn Treebank (WSJ)

(Marcus et al., 1993). The data split is sections 02-21 for training, section 22 for de-

velopment, and section 23 for testing. For Chinese, the Chinese Treebank (CTB5)

(Xue et al., 2005) was used. The data split is files 81-899 for training, files 41-80

for development, and files 1-40/900-931 for testing. The ITL data is from the Turin

University Treebank (TUT) (Bosco et al., 2000) and consists of 2,860 Italian sen-

tences from a variety of domains. It was split into training, development, and test

sets with a 70/15/15 percentage split.

For the low-resource languages, we use significantly smaller but also pre-

existing data sources. We use section 02 of the WSJ data as small data set for ENG
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data in order to compare to the results of Liang et al. (2009). We further create

an artificially small data set for ENG data containing about 200 sentences from

WSJ data. This dataset has similar size of KIN and MLG data. And this dataset

is used to demonstrate the convergence behavior and performance of our algorithm

on extremely low-resource languages.

KIN and MLG are naturally low-resource languages. KIN data comes from

transcripts of testimonies by survivors of the Rwandan genocide provided by the

Kigali Genocide Memorial Center, along with a few BBC news articles. MLG data

are articles from the websites Lakroa and La Gazette and Malagasy Global Voices.

Both datasets are described in Garrette and Baldridge (2013). These languages

have significantly smaller datasets than English and Chinese. Specifically, the KIN

dataset contains 677 sentences, while the MLG dataset has only 113. In compari-

son, the English data set has about 25000 sentences, and the Chinese data set has

about 20000 sentences.

2.4.2 Practical refinements

Data preprocessing As a preprocessing step, binarization and normaliza-

tion of data is performed. All trees are converted into Chomsky Normal-Form

(CNF) such that all non-terminal productions are binary and all unary chains are

removed. Additional standard normalization is performed. Functional tags (e.g.

the SBJ part of NP-SBJ), empty nodes (traces), and indices are removed. The bina-

rization is simple: given a parent, select the rightmost child as the head and add a

stand-in node that contains the remainder of the original children; the process then

21



System K=1 K=2 K=4 K=8 K=16
Unsmoothed PCFG 40.2 — — — —
Bikel Parser 57.9 — — — —
Liang et al. 07 60.5 71.1 77.2 79.2 78.2
Berkeley Parser 60.8 74.4 78.4 79.1 78.7
Gibbs PCFG-LA 61.0 71.3 76.6 78.7 78.0

Table 2.1: F1 scores for small English training data experiments. ‘K’ is the number
of latent annotations – K = 1 represents a vanilla, unannotated PCFG.

recurses. This simple technique uses no explicit head-finding rules, which eases

cross-linguistic applicability. From this normalized data, latent PCFGs are trained

with K = 1, 2, 4, 8, 16, 32 (where K = 1 is equivalent to the standard PCFG de-

scribed in Section 2.2).

Unknown word handling A similar unknown word handling procedure to

Liang et al. (2009) is used in this work. Features associated with every word from

the raw corpus are extracted, these features include surrounding context words as

well as substring suffix/prefix features. Using these features fifty clusters are pro-

duced using k-means. Then, as a pre-parsing step, all words occurring less than

five times are replaced with their cluster label - this simulates unknown words for

training. Finally, during evaluation, any word not seen in training was also replaced

with its corresponding cluster label. This final step is simple because there are no

‘unknown unknowns’ in the corpus, as the clustering has been performed over the

entire corpus prior to training. This approach is similar to methods in Dasgupta &

Ng (2007).
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2.5 Results

In this section the performance is evaluated with F1 scores. Every parse

tree can be represented by a series of brackets. Take the sentence in Figure 1 as

example, the gold standard brackets for The dog ate the food are (S− (0, 5), NP −

(0, 2), V P − (2, 5), NP − (3, 5)), where, for example, NP − (3, 5) means that

Noun − Phrase is responsible for words the food. The ratio of the number of

correct brackets to the total number of golden brackets is labeled precision. And

the ratio of the number of correct brackets to the total number of brackets sampled

is labeled recall. And F1 score is the harmonic mean of precision and recall.

Tables 2.1 and 2.2 show performance when training on smaller amounts of

data: section 02 of the WSJ, pretending that English is a low-resource language.

The results show that the basic Gibbs PCFG-LA (where K=1), with an F1-score

of 61.0, substantially outperforms not only an unsmoothed PCFG (the simplest

baseline), but also the Bikel parser (Bikel, 2004b) trained on the same amount

of data. Table 2.1 also shows further large gains are obtained from using latent

annotations—from 60.5 for K=1 to 78.7 for K=8.

System WSJ Sec. 02 KIN MLG
Berkeley Parser 78.3 ± 0.93 60.6 ± 1.1 52.2 ± 2.0
Gibbs PCFG-LA 76.7 ± 0.63 67.2 ± 0.92 57.5 ± 1.1

Table 2.2: F1 scores with standard deviation over ten runs of small training data,
K=4.

The Gibbs PCFG-LA also compares quite favorably to the PCFG-LA of

Liang et al. (2009)—slightly better for K=1 and K=2 and slightly worse for K=4
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System F1 / StDev
Berkeley Parser 77.5 ± 2.1
Gibbs PCFG 77.0 ± 1.4

Table 2.3: F1 scores with standard deviations over twenty runs, training on individ-
ual WSJ sections (02-21).

and K=8. Table 2.2 shows that the Gibbs PCFG-LA is able to produce results with

a smaller amount of variance relative to the Berkeley Parser, even at low training

sizes. This trend is repeated in Table 2.3, which shows that the Gibbs PCFG-LA

also produces less variance when training on different single sections of the WSJ

relative to the Berkeley Parser, although it again produces slightly lower F1 scores.

The Gibbs PCFG-LA is able to produce results on sentences-level with a

smaller amount of variance relative to the Berkeley Parser, especially for extremely

low resource languages. We use ENG data with 200 sentences for demonstration.

Figure 2.2 shows F1 scores for every single sentence produced by Gibbs PCFG-

LA and Berkeley Parser respectively. We can see that Gibbs PCFG-LA, compared

to Berkeley Parser, has significant smaller variance on F1 scores across all test

sentences. Moreover, for K=2 and K=4, we can see Gibbs PCFG-LA also pro-

duces higher average F1 scores on this extremely low resource languages, which is

in line with the good performance of Gibbs PCFG-LA on naturally low resource

languages- KIN and MLG.

To investigate the convergence of Gibbs samplers, we plot one parameter,

the probability of a specific annotated production rule over 50 training iterations and

10 testing iterations. The experiment is trained with WSJ data with 200 sentences
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(a) K = 2

(b) K = 4

Figure 2.2: Histograms for F1 scores produced by Gibbs PCFG-LA and Berkeley
Parser, K = 2, 4. The red vertical lines are average F1 scores.

and the number of latent annotations is 2. Figure 2.3 shows the trace plots, the auto-

correlation function plots and the histograms of sampled values from Gibbs PCFG-

LA in training (Figure 2.3a) and Gibbs PCFG-LA in testing (Figure 2.3b). The

lag-k auto-correlation function (acf) estimates correlation between observations k

steps apart. We can see that in training, the acf drops quickly, which indicates fast

convergence, and allows us to choose small number of iterations for training. In

testing, the plot also shows fast decay of acf.
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(a) Rule probability sampled in training

(b) Rule probability sampled in testing

Figure 2.3: Plots of one sampled rule probability produced by Gibbs PCFG-LA, K
= 2
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Figure 2.4: Boxplots of F1 scores produced by Gibbs PCFG-LA, K = 2 after 1
testing iteration and 10 testing iterations

Figure 2.4 shows the boxplots for F1 scores for every single sentence pro-

duced by Gibbs PCFG-LA with K=2 after 1 testing iteration and 10 testing itera-

tions. From the plot we can see that the average F1 score only increases a little with

more iterations due to strong prior we get from training stage. However, we can see

with more testing iterations, we have smaller variance on F1 scores across all test

sentences, and more sentences achieved good performance (> 0.9) in parsing. So

we choose 10 iterations for testing here due to time limit in practice.

Figure 2.5 shows how F1 score varies with increasing number of training

iterations. We trained the Gibbs PCFG-LA with K = 4 with full ENG data. And the

figure shows the performance increases steadily with more training iterations.

We introduce a new parameter λ to denote the ratio of the counts extracted

from training data as prior to the counts extracted from current parse trees. In

(2.3), we update rule probabilities by sampling from a Dirichlet distribution with
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Figure 2.5: F1 scores produced by Gibbs PCFG-LA, K = 4, varying full-set training
iterations

parameters fA(t)+αA. Here fA(t) are counts from current updated parse trees. And

αA is a prior that learned from rule counts from training data, which can be viewed

as λ · fA(ttrain). Larger λ indicates that we are not willing to move away from

prior. It is possible that the value of lambda can make a difference in performance,

as evidenced by Figure 2.6 (with an optimal value was obtained with an λ value of

5 for this small training set).

Figure 2.6: Accuracy by varying λ levels for small English data.

Table 2.4 shows the results for the main experiments. Due to long training

time per iteration for large training data sets, in practice, this work takes 25 itera-
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Condition ENG CHI ITA KIN MLG
Unsmoothed PCFG 69.9 66.8 62.1 45.9 49.2
Liang et al. 07 87.1 — — — —
Huang & Harper09 — 84.1 — — —
Bikel Parser 86.9 81.1 74.5 55.7 49.5
Berkeley Parser 90.1 83.4 71.6 61.4 51.8
Gibbs PCFG,K=1 79.3 75.4 66.3 58.5 55.1
Gibbs PCFG,K=2 82.6 79.8 69.3 65.0 57.0
Gibbs PCFG,K=4 86.0 82.3 71.9 67.2 57.8
Gibbs PCFG,K=16 87.2 83.2 72.4 68.1 58.2
Gibbs PCFG,K=32 87.4 83.4 71.0 66.8 55.3

Table 2.4: F1 scores for experiments on sampled PCFGs. Note that Wang and
Blunsom (2013) obtain an ENG F1-score of 77.9% using collapsed VB for K=2.
Though they do not give exact numbers, their Fig. 7 indicates an F1-score of about
87% for K=16.

tions for sampling after 15 burning iterations for full data sets. And for small data

sets, this work takes 100 sampling iterations after burning 100 iterations. Sampling

a vanilla PCFG (K=1) produces results that are not state-of-the-art, but still good

overall and always better than an unsmoothed PCFG. The benefits of the latent an-

notations are further shown in the increase of F1 score in all languages, as compared

to the vanilla PCFG. Experiments were run up to K=32 primarily due to time con-

straint. Although previous literature results report increases up to the equivalent

of K=64, it may be the case that higher K values with no merge step more easily

lead to overfitting in this model – reducing the effectiveness of those high values,

as shown by the overall poorer performance on several languages at K=32 when

compared to K=16 as well as the general leveling-off seen at the high K values.

For English and Chinese, the previous Bayesian framework parsers outper-

form this work, but only by around two points. Additionally, parsing of Chinese in
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this work improves on the Bikel parser on the training data despite the fact that the

Bikel parser makes use of language specific optimizations. The parser in this work

needs no changes to switch languages.

The Gibbs PCFG with K=16 is superior to the Bikel and Berkeley Parser

benchmarks for both KIN and MLG. This provides a promising result for future

work on parsing low-resource languages in general. The parser in this work exhibits

less variance than Berkeley Parser especially for KIN and MLG, which supports the

fact that the variance of Berkeley Parser is higher for models with few subcategories

(Petrov et al., 2006).

2.6 Conclusion

In this project, a Gibbs sampler is used to collect sampled trees theoretically

distributed from the true posterior distribution in order to parse. Priors in a Bayesian

model can control the sparsity of grammars (which the inside-outside algorithm

fails to do), while naturally incorporating smoothing into the model (Johnson et al.,

2007; Liang et al., 2009). This work also builds a Bayesian model for parsing with

a treebank and incorporate information from training data as a prior. Moreover, this

work extends the Gibbs sampler to learn and parse PCFGs with latent annotations.

The experiments demonstrate that sampling standard PCFGs, as well as

PCFGs with latent annotations, is feasible with the use of a Gibbs sampler tech-

nique and produces results that are in line with previous parsers on controlled test

sets. The results also show that the methods in this work are effective on a wide

variety of languages with no language-specific model modifications needed, in-
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cluding two low-resource languages. Additionally, although not a uniform winner,

the Gibbs-PCFG shows a propensity for performing well on naturally small corpora

(here, KIN/MLG).
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Chapter 3

Parse imputation for dependency annotations

Having established the Bayesian framework for parsing and its relative tol-

erance for low amounts of data, this chapter extends the model to dependency pars-

ing. In this chapter, an algorithm is proposed for imputing missing dependencies

from sentences that have been partially annotated, such that a standard dependency

parser can then be trained on all annotations. This can be viewed as an extension of

the results in the previous chapter. A dependency grammar can be viewed as an in-

stance of a CFG. However, in this chapter, we consider receiving partial information

on the tree structure.

3.1 Background

The parse trees discussed in Chapter 2 fall into a category known as con-

stituency grammars. There is another way to describe sentence structure in natu-

ral language: by drawing links connecting individual words, which is called de-

pendency grammar. Unlike constituency parsing, which focuses on identifying

phrases and their recursive structure, dependency parsing focuses on relations be-

tween words. An example dependency representation of a sentence is shown in

Figure 3.1, where a dependency link is an arrow pointing from head to dependent.
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A ROOT symbol is automatically generated for each sentence, and it generates the

head of the sentence. In this example, barks is the head of the sentence, which is

generated from ROOT first. Then barks generates a left dependent dog, and dog has

two left dependents.

Figure 3.1: Dependency Structure of sentence The big dog barks

State-of-the-art unsupervised dependency parsers often require large amount

of training data and/or additional prior knowledge. For instance, Naseem et al.

(2010) reported an unsupervised approach which does not require dependency an-

notations, but makes use of the raw version of the full Penn Treebank. The approach

presented by Marecek and Straka (2013) requires extra unlabeled texts to estimate

parameters. The additional requirement of prior knowledge and training data be-

comes a problem for low-resource languages which do not have a clean, digitized

corpus of sentences.

Supervised dependency parsers are expected to produce more accurate pars-

ing results than unsupervised ones, as linguistically annotated data provides addi-

tional information. However, in most annotation projects, the availability of fully

annotated data is limited. It is important to make efficient use of available annota-

tors, particularly in the early stage of the annotation project when the total available

corpus is small.

Parsers with minimal amounts of supervision or expert knowledge, or “weak
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supervision”, have been proven as an effective approach to improve the insufficient

accuracy of unsupervised parsers. For example, Naseem et al. (2010) demonstrated

parsers with a set of universal dependency rules and showed substantial gains over

unsupervised methods in many languages. Spitkovsky et al. (2010, 2011) used web

mark-up and punctuation as additional annotations to improve parser performance.

Graph Fragment Language (GFL) has been developed as a light-weight de-

pendency annotation scheme (Schneider et al., 2013; Chris and Smith, 2014). It

allows relatively inexperienced annotators to partially annotate a sentence that they

are unsure of. By allowing annotators to specify the major structure of a sentence

without specifying lower-level structure, it is possible to develop a computational

parser targeting annotations that maximize helpful information.

This work takes advantage of this fact and develops a two-stage system for

parsing. The first stage takes partial GFL annotations as input, and outputs complete

parse trees – in effect filling in the missing dependency information. This algorithm

is based on a Gibbs sampling approach from Johnson et al. (2007) and further devel-

oped by Sun et al. (2014). The GFL annotations constrain the tree sampling space

by using both dependencies and the constituent boundaries they express. Thus, the

system is essentially performing missing dependency arc imputation using Gibbs

sampling – refer to this approach as the Gibbs Parse Completer (GPC). The second

stage uses the full dependencies output by the GPC to train Turbo Parser (Martins

et al., 2010), and evaluation is done with this trained model on unseen sentences.

The two-stage system has the benefit of needing a small amount of data

and a part-of-speech tagger. The system requires only a rather small number of
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sentences, less than one hundred, and relies on no outside tools or corpora. The

part-of-speech tagger used in this system is also constructible with just two hours of

annotation time (Garrette et al., 2013). Experimental results show that completing

the partial annotations is able to provide gains of up to ten points of Unlabeled

Attachment Score, and that two hours of annotation effort is in fact a sufficient

amount of time to construct a useful dependency parser.

The main contributions of this work are: 1) an algorithm for imputing miss-

ing dependency information from partial annotations; 2) a two-stage system for

generating dependency structures for unlabeled sentences – where in the first stage,

complete annotations for a partially annotated corpus are created, and in the second

stage the resulting fully annotated corpus and standard training methods are used

for a dependency parser. Results show this two-stage system outperforms a sys-

tem that only uses completely labeled examples. Moreover, the experiments show

that remarkably small amounts of data can, with this label completion method, rival

much larger training data sets. This work is especially applicable to low-resource

languages.

This work is published in Mielens et al. (2015). The main contributions of

this thesis are the models and algorithms presented. The main contribution of the

coauthor, Jason Mielens, is data acquisition and performing experiments.

3.2 Data

Four languages from three language families are used. The data comes from

English (ENG ), Chinese (CHI ), Portuguese (POR ), and Kinyarwanda (KIN ). They
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are used in experiments to verify the cross-linguistic applicability of this system,

accounting for variations in linguistic properties. They also helps to realistically

simulate a real-world, low-resource environment.

For ENG and CHI we collect data from pre-existing treebanks. For ENG the

Penn Treebank (Marcus et al., 1993), converted into dependencies by the standard

process, is used. Section 23 is used as a test set, and a random sample of sentences

from sections 02-21 are selected for annotation with GFL as described below and

subsequently used as the minimal training set. For CHI the Chinese Treebank

(CTB5) (Xue et al., 2005) is used, also converted to dependencies. The testing set

consists of files 1-40/900-931, and the sentences presented for GFL annotation are

randomly sampled from files 81-899.

The POR data is from the CoNLL-X Shared Task on Multilingual Depen-

dency Parsing and is derived from the Bosque portion of the Floresta sintá(c)tica

corpus (Afonso et al., 2002), using the standard provided splits for training and

testing. The KIN data is a corpus consisting of transcripts of testimonies by sur-

vivors of the Rwandan genocide, provided by the Kigali Genocide Memorial Center

– this data is described by Garrette et al. (2013).

3.2.1 GFL Annotation

This work uses a small number of sentences annotated using the Graph Frag-

ment Language (GFL), a simple ASCII markup language for dependency grammar

(Schneider et al., 2013). Unlike traditional syntactic annotation strategies requiring

trained annotators and great effort, rapid GFL annotations can be collected from
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Figure 3.2: GFL example for Mr. Conlon was executive vice president and director
of the equity division.

annotators who have minimal training. Kong et al. (2014) demonstrate the feasi-

bility of training a dependency parser based on a GFL-annotated corpus of English

tweets.

An example of GFL is shown in Figure 3.2: (a) is the GFL markup itself and

(b) is a graphical representation of the dependencies it encodes. Figure 3.2 speci-

fies several dependencies: of is a dependent of director; (executive vice president)

and director are conjuncts and and is the coordinator. However, complete internal

structure of the phrase the equity division remains unspecified, other than division

being marked as the head (via an asterisk). The graphical representation shows both

of these, the equity division* and (executive vice president), as FE nodes, for fudge

expression, indicating they are grouped together but otherwise underspecified. Fi-

nally, Mr. Conlon in square brackets indicates it is a multiword expression.

This work takes advantage of underspecified sentences, while other work

might fail to. For example, Kong et al. (2014) stipulate that the GFL annotations

in their corpus must be fully-specified. They are thus unable to make use of such
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underspecified sentences, and we address that limitation here. From the GFL an-

notations we can extract and deduce dependency arcs and constraints (see Section

3.3.2 for full details) in order to guide the Gibbs sampling process.

3.2.2 Time-bounded annotation

As described in Section 3.1, a primary goal of this work was to consider the

time in which a useful number of dependency tree annotations might be collected,

such as might be required during the initial phase of a language documentation

project or corpus build. To this end the annotators were operating under a strict two

hour time limit. Two further hours for English were also collected.

CHI ENG KIN POR

Sentences Annotated 24 34 69 63
Tokens Annotated 820 798 988 1067
Fully Specified Sentences 4 15 31 20

Table 3.1: Two Hour GFL Annotation Statistics

The annotators were instructed to annotate as many sentences as possible

in the two hours, and that they should liberally use underspecification, especially

for particularly difficult sequences in a given sentence. This was done to facilitate

the availability of partial annotations for experimentation. All of the annotators

had some previous experience providing GFL annotations, so no training period

was needed. Annotation was done in 30-minute blocks, to provide short breaks for

the annotators and so that learning curves could be generated. Each language was

annotated by a single annotator. The ENG and CHI annotators were native speakers

of their annotation language, while the POR and KIN annotators were non-native
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though proficient speakers.

Table 3.1 shows the size of the GFL corpora that were created. Typically

over 50% of the sentences were not fully specified. The partial annotations provided

in these are useless to Turbo Parser unless the missing dependencies are imputed.

3.3 Gibbs Parse Completer (GPC)
3.3.1 Gibbs sampler for CFG-DMV Model

CFG-DMV model One of the most popular unsupervised dependency models

is Dependency Model with Valence (DMV) by Klein and Manning (2004). This

model generates one sentence by generating the head of the sentence first, and

then each head recursively generates its left and right dependents. Previous re-

search shows that dependency parses can be mapped to context free grammar (CFG)

derivations, using a split-head construction (Eisner and Satta, 1999; Blunsom and

Cohn, 2010; Johnson, 2007). This work uses this particular variety of CFGs for the

DMV model (CFG-DMV), which enables the use of a Gibbs sampler algorithm for

estimating PCFGs (Johnson et al., 2007; Sun et al., 2014).

Denote the input corpus as ω = (ω(1), · · · ,ω(n)), where each ω(s) is a

sentence consisting of words and in a sentence ω, word ωi has an corresponding

part-of-speech tag τi. The split-head construction represents each terminal, part-of-

speech τi in this work, by two unique terminals τi,L, τi,R in the CFG parse. Hence-

forth, the yield of sentenceω in this split-head CFG parse is τ1,l, τ1,r, · · · , τm,l, τm,r,

where m is the length of original sentence ω (e.g., the terminals for the dog walks

are DTL DTR NL NR VL VR). Denote this yield as w = w0,l, l is the length of the
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terminals.

Denote the set of all words as Vω and the set of all parts-of-speech as Vτ .

Define the following context-free grammar rules to generate a dependency parse

tree. Note that these rules are for ∀H ∈ Vτ , that is, for each part-of-speech there is

an instance of that rule. We show a parsing of “The big dog barks” using some of

these rules in Figure 3.3.

• S → YH used to generate the head H of the sentence.

• YH → LHRH shows that YH splits words into left and right parts.

• LH → HL means H has no left dependents and linking to terminal HL;

LH → L1
H means H has at least one left dependents.

• L′H → HL means H stops generating left dependents and linking to terminal

HL; L′H → L1
H meaning H has another left dependent.

• L1
H → YAL

′
H means that A is a left dependent of H , ∀A ∈ Vτ .

• RH → HR means H has no right dependents and linking to terminal HR;

RH → R1
H means H has at least one right dependents.

• R′H → HR means H stops generating right dependents and linking to termi-

nal HR; R′H → R1
H meaning H has another right dependent.

• R1
H → R′HYA means that A is a right dependent of H , ∀A ∈ Vτ .
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Figure 3.3: DMV-CFG parse of “The big dog barks.”

Gibbs sampler The split-head representation encodes dependencies as a CFG.

This enables the use of a Gibbs sampler algorithm for estimating PCFGs (Johnson

et al., 2007; Sun et al., 2014). To incorporate constraints from partial annotations

into this sampler, the tree-sampling step is modified to incorporate constraints de-

rived from GFL annotations and thereby impute the missing dependencies.

Require: A is parent node of binary rule; wi,k is a valid span of terminals and i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes of A:B,C do
P (j, B,C) = θwA→BCc(i,j)c(j,k)·pB,i,j ·pC,j,k

pA,i,k

end for
Sample j∗, B∗, C∗ from multinomial distribution for (j, B,C) with probabilities cal-
culated above

return j∗, B∗, C∗
end function

Algorithm 4: Sampling split position and rule to expand parent node
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Given a stringw = (w1, · · ·wl), define a span ofw aswi,k = (wi+1, · · · , wk),

so that w = w0,l. Pereira and Schabes (1992) firstly introduces an inside-outside

algorithm to learn rule probabilities with partially bracketed corpus. A bracketing

B of a sentence w is a finite set of spans on w satisfying the requirement that no

two spans in a bracketing may overlap unless one span contains the other. For each

sentence w = w0,l Pereira and Schabes (1992) defines the auxiliary function for

each span wi,j , 0 ≤ i < j ≤ l:

c(i, j) =

{
1 if span wi,j is valid for B;

0 otherwise.

Here one span is valid for B if it doesn’t cross any brackets. This algorithm uses the

same idea that incorporating information of constraints by introducing the auxiliary

function. Section 3.3.2 describes how to derive bracketing information from GFL

annotations and how to determine if a span wi,j is valid or not. Note that for parsing

a corpus without any annotations and constraints, c(i, j) = 1 for any span, and the

algorithm is equivalent to the Gibbs sampler in Chapter 2.

There are two parts to the tree-sampling. The first constructs an inside table

as in the Inside-Outside algorithm for PCFGs and the second selects the tree by

recursively sampling productions from top to bottom. Consider a sentence w, with

sub-spans wi,k = (wi+1, · · · , wk). Given θw (modified rule probabilities θ given

constraints of sentencew, see Section 3.3.2), construct the inside table with entries

pA,i,k for each nonterminal and each span wi,k: 0 ≤ i < k ≤ l. Introduce c(i, j)

into the calculation of inside probabilities:

pA,i,k = c(i, k) ·
∑

A→BC∈R

∑
i<j<k

θwA→BC · pB,i,j · pC,j,k (3.1)
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Here, pA,i,k is the probability that terminals i through k were produced by the non-

terminal A. Probability θA→BC∈R is the probability of the rule to expand A and

B,C are two child nodes of A in that rule. The inside table is computed recursively

using (3.1).

The resulting inside probabilities are then used to generate trees from the

distribution of all valid trees of the sentence. The tree is generated from top to

bottom recursively with the function TreeSampler defined in Algorithm 4, which

introduces c(i, j) into the sampling function.

Require: Arcs is the set of all directed arcs extracted from annotation for sentence w
function RULEPROB-SENT(w, θ, Arcs)

θw = θ
for each directed arc wi < wj do

if i < j then
for nonterminal A 6= Lτj do

θwA→β = 0 if β contains Yτi
end for

else
for nonterminal A 6= Rτj do

θwA→β = 0 if β contains Yτi
end for

end if
end for
return θw

end function

Algorithm 5: Modifying Rule Probabilities for w to ensure parse tree contains all
directed arcs. The algorithm essentially forces all rules where j has a parent other
than i to have zero probability.
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3.3.2 Constraints derived from GFL

This work exploits one dependency constraint and two constituency con-

straints from partial GFL annotations. Partial annotations produce constraints on

the tree sampling procedure. Some of the partial annotations produce constraints in

the inside probabilities construction step – specifically through defining valid spans,

c(i, j). Other partial annotations give arcs, which force a particular sampling path

in producing a tree.

Dependency Rule Directed arcs are indicated with angle brackets pointing from

the dependent to its head, e.g. black > cat. Once a directed arc is annotated, say

word j is modifying word i (ωi < ωj), if i is greater than j, which means word i has

a left child, the correct parse tree must contain rule L1
τi
→ YτjL

′
τi

, where τi, τj are

part-of-speech tags of word i, j (similarly if i is smaller than j, the parse tree needs

to contain R1
τi
→ R′τiYτj ). This is enforced by modifying the rule probabilities for

sample sentence w to ensure that any sampled tree contains all specified arcs, see

Algorithm 5.

Brackets GFL allows annotators to group words with parenthesis, which pro-

vides an explicit indicator of constituent brackets. Even when there are not many

annotations indicating the full internal structure(e.g. (the equity division*) in Fig-

ure 3.2 (a), the head is usually marked with *, and this can be used to infer sub-

constituents. Given such a set of parentheses and the words inside them, brackets

can be generated over the split-head representations of their parts-of-speech, based
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on possible positions of the head. Figure 3.4 shows how to generate brackets for

three situations: the head is the leftmost word, rightmost word, or is in a medial

position. For example, the first annotation indicates that under is the head of under

the agreement, and the rest of words are right descendants of under. This leads to

the bracketing shown over the split-heads.

Figure 3.4: Generating brackets for known head

Half Brackets One-sided half brackets can also be derived from dependency arcs

by assuming that dependencies are projective. For example, in Figure 3.5, the an-

notation a > dog specifies that dog has a left child a, which indicates that there is

a right bracket before the right-head of dog. Thus, invalid spans can be detected

using the half brackets; if a span starts after a and ends after dog, this span is in-

valid because it would result in crossing brackets. This half bracketing is a unique

advantage provided by the split-head representation. The details of this algorithm

are shown in Algorithm 6.

We use both half bracket and full bracket information, B, to determine

whether a span is valid. We set c(i, j) = 0 for all spans over w detected by Al-
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Figure 3.5: Generating half brackets

Require: Arcs is the set of all directed arcs extracted for sentence,wa,b is a span to detect
function DETECTINVALIDSPAN(a, b, Arcs)

for each directed arc ωi < ωj do
if i < j then

if a < 2i− 1 < b < 2j then
c(a, b) = 0

end if
else

if 2j − 2 < a < 2i− 1 < b then
c(i, j) = 0

end if
end if

end for
return c(a, b)

end function

Algorithm 6: Detect whether one span is invalid given all directed arcs.

gorithm 6 and violating B. Then, in the sampling scheme, we’ll only sample parse

trees that satisfy these underlying constraints.

Figure 3.6 shows the resulting blocked out spans in the chart based on both

types of brackets for the given partial annotation, which is Step 1 of the process.

The black dog is a constituent with dog marked as its head, so we generate a full

bracket over the terminal string in Step 2. Also, barks has a right child loudly; this

generates a half bracket before VR. In Step 3, the chart in Figure 3.6 represents all

spans over terminal symbols. The cells in black are invalid spans based on the full
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Figure 3.6: Process of generating brackets and detecting invalid spans

bracket, and the hatched cells are invalid spans based on the half bracket.

3.4 Results

There are two points of variation to consider in empirical evaluations of

this approach. The first is the effectiveness of the GPC in imputing missing de-

pendencies and the second is the effectiveness of the GFL annotations themselves.

Of particular note with respect to the latter is the reasonable likelihood of diver-

gence between the annotator and the corpus used for evaluation—for example, how

coordination is handled and whether subordinate verbs are dependents or heads of

auxiliary verbs. To this end, this work performs simulation experiments that remove

increasing portions of gold dependencies from a training corpus to understand im-

putation performance and annotation experiments to evaluate the entire pipeline in

a realistically constrained annotation effort.

In that regard, one thing to consider are the part-of-speech tags used by the

unlexicalized GPC. These do not come for free, so rather than ask annotators to

provide part-of-speech tags, the raw sentences to be annotated were tagged. In the
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case of English and Kinyarwanda, taggers trained with resources built in under two

hours (Garrette et al., 2013) are used, so these results are actually constrained to the

GFL annotation time plus two hours. Such taggers were not available for Chinese

or Portuguese, so the Stanford tagger (Toutanova et al., 2003) was used for these.

After imputing missing dependencies, the GFL-GPC outputs a fully resolved

set of dependencies that are in turn used to train TurboParser (Martins et al., 2010).

In all cases, the experiments compare out approach to a right-branching baseline

(RB), which always takes the first word as head of sentence, then generates the next

right word as dependent until generating the last word. For the GFL annotation

experiments, two additional baselines are used. The first is simply to use the sen-

tences with full annotations and drop any incomplete ones (GFL-DROP). The second

is to make any partial annotations usable by assuming a right-branching completion

(GFL-RBC).

3.4.1 Simulated Partial Annotations

Figure 3.7 shows the learning curve with respect to number of annotated

tokens when retaining 100%, 75%, and 25% of gold-standard training dependen-

cies and using the GFL-GPC to impute the removed ones. A supervised dependency

parser, Turbo Parser, then is used to train on these full dependencies, and evaluation

is done on unseen sentences. The performance is evaluated by unlabeled attach-

ment score (UAS), which is the percentage of words that have the correct head.

Figure 3.7 demonstrates the degradation of performance by the GFL-GPC: the curve

for a given removal proportion tracks with the curve for the full data with a more or
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less constant penalty paid for being provided less human guidance.

Figure 3.7: English Oracle and Degradation Results

Table 3.2 shows the unlabeled attachment scores obtained for English, Chi-

nese, and Portuguese with varying proportions of dependencies removed for the

GFL-GPC to impute. Note that these are based on the same sentences used in the

GFL annotation experiments for each language discussed in the next experiment.

Similar patterns are seen across languages: degradation as dependencies are re-

moved.

Language ENG CHI POR

RB 25.0 11.6 27.0
GFL-GPC-25 58.7 33.5 60.2
GFL-GPC-50 75.0 46.1 71.4
GFL-GPC-75 77.8 50.1 73.7

Full 81.6 56.2 78.1

Table 3.2: Results with simulated partial annotations, GFL-GPC-X indicates X per-
cent of dependencies were retained.

Additionally, the simulations of degraded data indicate that, given an equiv-

alent number of total annotated arcs, running the GFL-GPC is more beneficial than
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requiring annotators to fully specify annotations. In other words, imputing fifty

percent of the dependency arcs from sentences containing 1000 tokens is typically

more effective by a few points than using the full gold-standard arcs from sen-

tences containing 500 tokens. This simulation leaves out consideration of the time

and effort required to actually obtain those full gold-standard arcs, which would be

considerable relative to the partial annotations.

3.4.2 GFL Annotations

This work conducted three sets of experiments on the GFL annotations. The

experiments are evaluated on sentences of all lengths, less than 10 words, and less

than 20 words for all languages. This was done to determine the types of sentences

that this method works best on and to compare to previous work that evaluates on

sentences of different lengths.

The data in Table 3.3 shows how our results on ENG compare to results

from the literature. Blunsom and Cohn (2010) was selected for their state of the

art unsupervised result on all lengths, while Naseem et al. (2010) was chosen as

a previous weakly-supervised approach. The GFL-GPC achieves similar results on

the ‘all lengths’ criterion as the state of the art unsupervised result and substantially

outperforms the previous weakly-supervised approach on sentences less than 20

words.

Poor performance on short sentences of this work is slightly surprising, and

may result from an uneven length distribution in the sentences selected for annota-

tion, as discussed by Spitkovsky et al. (2010). To correct this problem, both long
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(a) English (b) Chinese

(c) Kinyarwanda (d) Portuguese

Figure 3.8: GPC results by annotation time for evaluation sentences of all lengths.

and short sentences should be included to construct a more representative sample

for annotation.

In practice, GFL-RBC performs very similarly to RB. The relatively large

number of under-specified sentences may have led to the right-branching quality of

GFL-RBC dominating, rather the more informed GFL-based annotations.

The results of the ENG annotation session can be seen in Figure 3.8a. The
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Eval Length < 10 < 20 all
GFL-DROP (4hr) 54.5 55.0 52.6
GFL-GPC (4hr) 60.1 61.8 55.1

Blunsom and Cohn, 2010 67.7 – 55.7
Naseem et al., 2010 71.9 50.4 –

Table 3.3: English results compared to previous unsupervised and weakly-
supervised methods

GFL-GPC is quite strong even at thirty minutes, with only seven sentences anno-

tated. The GFL-DROP approaches the GFL-GPC towards two hours. This is likely

explained by the fact that the end block contained many short sentences, meaning

there was suddenly more fully-specified GFL annotations available. The learning

curves for the other languages can be seen in Figures 3.8b-3.8d, with a summary

available in Table 3.4.

Comparing the CHI curves to ENG shows that both languages demonstrate

similar results. Of particular note is that the CHI annotations contained many fewer

fully-completed sentences than the ENG annotations. Thus, the GFL-GPC was called

upon to do more work in the case of CHI but it still managed to improve on the

baseline of simply taking the fully-specified sentences (GFL-DROP in the figures).

The KIN results in Figure 3.8c exhibit a pattern unlike the other languages;

specifically, the KIN data has a very high right-branching baseline (RB in figures)

and responds nearly identically for all of the more informed methods. Upon investi-

gation, this appears to be an artifact of the data used in KIN evaluation and perhaps

some domain transfer issues. The gold data consists of transcribed natural speech,

whereas the training data consists of sentences extracted from the Kinyarwanda
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Wikipedia located at http://rw.wikipedia.org.

The POR data in Figure 3.8d shows a similar pattern to the ENG and CHI

results, with the GFL-GPC once again improving on the raw GFL annotations despite

an even greater number of partial annotations to handle (see Table 3.1).

Language KIN CHI POR

RB 52.6 11.6 27.0
GFL-DROP (2hr) 64.4 36.7 59.8
GFL-GPC (2hr) 64.5 38.8 65.0

Table 3.4: Non-English results summary

All of the results sets display a large initial jump after the first round of

annotations. This is encouraging for approaches that use annotated sentences: just

a small number of examples provide tremendous benefit, regardless of the strategy

employed.

3.5 Conclusion

This work has described a modeling strategy that takes advantage of a Gibbs

sampling algorithm for CFG parsing plus constraints obtained from partial annota-

tions to build dependency parsers. This strategy’s performance improves on that

of a parser built only on the available complete annotations. In doing so, the ap-

proach in this work supports annotation efforts that use GFL to obtain guidance

from non-expert human annotators and allow any annotator to put in less effort than

they would to do complete annotations.

Our algorithms enable a remarkably small amount of supervised data to rival
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existing unsupervised methods. While unsupervised methods have been considered

an attractive option for low-resource parsing, they typically rely on large quanti-

ties of clean, raw sentences. The method in this work uses less than one hundred

sentences, so in a truly low-resource scenario, in has the potential to require much

less total effort. For instance, a single native speaker could easily both generate

and annotate the sentences required for our method in a few hours, while the many

thousands of raw sentences needed for state-of-the-art unsupervised methods could

take much longer to assemble if there is no existing corpus. This also means the

method in this work would be useful for getting in-domain training data for domain

adaptation for parsers.

Finally, the method in this work has the ability to encode both universal

grammar and test-language grammar as a prior. This would be done by replacing

the uniform prior used in the work with a prior favoring those grammar rules during

the updating-rule-probabilities phase of the GPC. This essentially has the effect of

weighting those grammar rules.
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Chapter 4

Bayesian Factor Model for mixed-type outcomes

In this chapter, we describe a factor model for uncovering latent factors

among mixed-type outcomes. The proposed factor model is capable of discovering

correlations among many types of variables, including binary, count, and continu-

ous. We create an algorithm to inference the model parameters, and demonstrate

that the algorithm successfully recovers correlation structure on simulated data. The

algorithm also provides valuable insights from political science data. Finally, we

implement the algorithm as an R package, which enables R users to perform factor

analysis of data with mixed-types in a fully automatic way.

4.1 Introduction

Quantitative variables can be classed into several different types. In this

chapter, we consider three types in specific: continuous data, binary data, and count

data. Data of many variables with mixed types is common. For example, a heath

survey may contain: a) binary outcomes: patient gender, currently suffering from

diabetes, etc. b) continuous outcomes: patient age, body weight, etc. c) count out-

comes: number of cigarettes consumed per day. We think of a data set as consisting

of rows, for example each row containing the answers for one patient. We call a
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single column of the data a feature.

Factor analysis has been widely used to uncover underlying latent factors

and capture patterns of association among features. However, most research focuses

on models and methods applied to features with single type. For example, Shi and

Lee (1998) applied Bayesian estimation in order to perform factor analysis with

continuous observations. Richard Hahn et al. (2012) built a Gaussian/probit model,

a Gaussian factor model embedded inside a multivariate probit model for analyzing

binary observations. Zhou et al. (2012a) introduced Poisson Factor Analysis (PFA)

for exploring correlation among features with count data through factor analysis.

Several works have dealt with factor models with mixed-type features. Quinn

(2004) developed a Gaussian/probit model for continuous and ordinal data. The

model relates the data with mixed-type to underlying continuous variables, and im-

pose a Gaussian factor model on the latent variables. For ordinal data, the model

relates it to underlying continuous variables through a probit model. However, this

model cannot directly applied for count data. For example, word count features in

a corpus, ranging from zero to several hundred, often have many empty count cate-

gories. It is not proper for the model to treat such count data as ordinal categorical

data. Murray et al. (2013) extends the Gaussian/probit model. Instead of model-

ing feature with specific distribution, Murray et al. (2013) used the extended rank

likelihood (Hoff, 2007) for modeling features with different types. Basically, they

are using the inverse empirical cumulative density function to relate all features

to an underlying continuous scale, and build factor model on it. However, since

this model only use partial order information embedded in the data, which makes
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the model unable to estimate parameters characterizing the properties of individual

outcomes.

The work in this chapter provides a framework for exploring association

among features with mixed-types. In this work, a logistic model applied to link

discrete observations to latent continuous variables. A Gaussian factor model is

further built on the these latent continuous variables. Furthermore, we describe a

Gibbs sampler for inferencing all parameters in a closed form as in Gaussian/probit

model. The framework and the algorithm also works for probit link with minimum

tuning.

The main contributions of this chapter are: 1) a flexible framework for un-

covering underlying latent factors and exploring interdependency among features

with mixed-types; 2) a Gibbs sampler in closed form for inferencing parameters in

this framework; and 3) an R package developed for analysis. This work provides a

factor model for mixed-type data by allowing for logit link functions linking binary

and count observations to latent variables, and allowing for count data as opposed

to solely categorical data. Furthermore, we provide the first Gibbs sampler for fac-

tor models of mixed types, which is based on a key insight of using Pòlya-Gamma

distributions.

4.2 A Factor Model for Mixed Data

The main purpose of this section is to present a framework that is able to

perform factor analysis on mixed types: continuous, binary and count. For ease of

presentation, we first present the model as it would appear constrained to each of
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the three types. This allows us to generalize to mixed types of data.

4.2.1 Factor model for continuous outcomes

Bayesian factor analysis for continuous data has a significant amount of pre-

vious literature (Geweke and Zhou, 1996; Aguilar and West, 1998). In this section,

we present these existing models and their applications to capturing patterns of as-

sociation among features. And the ability of summarizing multivariate observations

using a lower-dimensional variable makes factor models useful for data reduction.

Suppose we have n continuous observations, denoted by {yci , i = 1, · · · , n},

where yci is a pc-vector, and pc is the number of continuous features in each observa-

tion. In other words, the data set has n rows and pc columns. We assume that these

n observations on pc related features are randomly sampled from a multivariate

normal distribution denoted by N(αc,Ω), where Ω denotes an pc×pc non-singular

covariance matrix. Our goal is to explore the covariance matrix Ω, and one popular

approach is by imposing a factor structure on Ω that Ω = BcBcT + Σ, where Σ

is a pc-by-pc diagonal matrix with non-negative elements and rank(B) = k < pc.

This factor structure can be rewritten in a standard Gaussian k-factor model by

introducing latent factors.

The standard Gaussian k-factor model relates each observation yci to the

k common factors fi, an underlying k-vector of random variables. The model is

given by

yci = αc +Bcfi + εi
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where pc-vector αc is intercept; Bc is a pc × k matrix of factor loadings,

and k < pc is a specified positive integer; the factors fi are independent with fi ∼

N(0, Ik); and εi ∼ N(0,Σ) are idiosyncratic noise with Σ = diag(σ2
1, · · · , σ2

pc).

Marginalizing out the latent variables, we have yci ∼ N(αc,BcBcT + Σ). The

model relates the common structure in yci to underlying factors, and isolates vari-

ation that is purely idiosyncratic in the εi terms. In this way, the common factors

explain all the dependence structure among the pc continuous features.

It is useful to re-write this standard form of a continuous factor model in an

alternate form. This alternate form allows us to relate the continuous factor models

to factor models for discrete outcomes. To do this, we introduce a latent continuous

quantities zci such that:

zci = αc +Bcfi

for i = 1, · · · , n. We then write yci ∼ N(zci ,Σ). In this way, we can think of

the factors in the factor model as determining the parameters of the distribution of

yci . We will use the same idea for other types of data – specifically the factors will

determine the parameters of the data’s distribution.

Estimating the covariance structure of yci directly requires estimating ap-

proximately pc(pc − 1)/2 parameters. On the other hand, for a factor model with

k < pc factors, we only need to estimate approximately pc × k terms, primarily

the loading matrix Bc. The difference in the number of parameters can be great,

especially for practical problems where k � pc.
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4.2.2 Factor model for binary outcomes

In this section, we present a factor model for strictly binary features. The

model assumes that for each feature the observations are following a Bernoulli dis-

tribution, and a factor structure is further imposed on the log-odds of Bernoulli

distributions for all features to capture the association among them. We also show

how our model relates to Gaussian/probit model.

Suppose we have n binary observations, denoted by {ybi , i = 1, · · · , n},

where ybi is a pb-vector, and pb is the number of binary features in each observa-

tion. In this model, we assume that ybij is distributed Bernoulli with probability

of success pij . The pij are related to a set of unobserved continuous quantities

zbi = (zbi,1, · · · , zbi,pb) via a logit link function:

pij =
exp(zbij)

1 + exp(zbij)

We further relate the unobserved continuous quantities zbi to underlying fac-

tors fi. We suppose that zbi = αb + Bbfi with αb is a pb-vector intercept term,

Bb is a pb × k loading matrix and the factors fi are independently distributed with

fi ∼ N(0, Ik).

Our model can be turned into a Gaussian/probit factor model by linking

pij to zbij through a probit link function: pij = Φ(zbij), where Φ(·) denotes the

standard Normal cumulative distribution function. Gaussian/probit factor model

is widely used in analyzing the underlying correlation structure of binary features

(Richard Hahn et al., 2012). We show below that our model can be thought of as a

variant of these pre-existing factor models, except with a logit link.
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Relation to Gaussian/probit model To further show the relationship between our

model and previous Gaussian/probit model, we can do several steps of re-writing.

First, we present a latent-variable model. Then we show this formulation is equiva-

lent to using a logit link function, highlighting the connection to the existing Gaus-

sian/probit models.

We introduce a continuous latent variable y∗ij for all i, j for this alternative

formulation. We then link y∗ij to zbij by:

y∗ij = zbij + εij (4.1)

where εij are independently distributed with a standard logistic distribution εij ∼

Logistic(0, 1). We relate y∗ij to observation ybij via:

ybij | y∗ij =

{
1, if y∗ij > 0

0, otherwise.
(4.2)

Equations (4.1) and (4.2) present another formulation of factor model for binary

features. When ε is following a standard normal distribution: ε ∼ N(0, 1), this for-

mulation is equivalent to Gaussian/probit model for binary features in Richard Hahn

et al. (2012). Furthermore, this model can be considered as a variant of the model

of Quinn (2004): fixing cut-point to be 0 for ordinal data with two categories.

We show that this alternative formulation is equivalent to our model above.

Two properties of standard logistic distribution are used: a) it is symmetric about 0;

and b) for ε following standard logistic distribution

Prob(ε < x) =
exp(x)

1 + exp(x)
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With these facts, we have:

Prob(ybij = 1 | zbij) = Prob(y∗ij > 0 | zbij)

= Prob(zbij + εij > 0)

= Prob(εij > −zbij)

= Prob(εij < zbij)

=
exp(zbij)

1 + exp(zbij)

which is equivalent to the original model between ybij and zbij .

Furthermore, we show that the correlation of ybi can be captured by estimat-

ing cov(y∗
i ), which is equivalent to estimating cov(zbi ). Scaling the latent quanti-

ties y∗
i preserves the distribution of ybi , by (4.2). This implies that we can capture

the correlation of ybi by estimating cov(y∗
i ). From (4.1), we have cov(y∗is, y

∗
it) =

cov(zbis + εis, z
b
it + εit), where 0 < s, t ≤ pb. So cov(y∗is, y

∗
it) = cov(zbis, z

b
it) if s 6= t,

and cov(y∗is, y
∗
it) = cov(zbis, z

b
it) + cov(εis, εit) = cov(zbis, z

b
it) + π2/3 if s = t. So

estimating cov(y∗
i ) can be achieved by estimating cov(zbi ).

4.2.3 Factor model for count data

The Poisson distribution X ∼ Pois(λ) is widely used for modeling count

data. However, one property of Poisson distribution that its variance is equal to its

mean makes it not well-suited in many data sets (Ventura et al., 2005). To relax

this assumption, a negative binomial distribution is considered in our model. Sup-

pose we have n count observations, denoted by {ydi , i = 1, · · · , n}, where ydi is

a pd-vector, and pd is the number of count features in each observation. We relate
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observations ydij , where i = 1, · · · , n, j = 1, · · · , pd to a continuous latent quantity

zdij via:

ydij ∼ NB(hj, p
d
ij), (4.3)

where the negative binomial distribution for us is parameterized through hj failures,

and probability of success pij . We further relate pij to zdij via the logistic function:

pij =
exp(zdij)

1 + exp(zdij)
(4.4)

The parameter hj allows for over-dispersion compared to the Poisson, with the

count ydij having a variance hjpij/(1− pij)2 larger than the mean hjpij/(1− pij).

Similar to standard factor model, we further relate the unobserved continu-

ous quantities zdi to underlying factors fi. We suppose that zdi = αd +Bdfi with

intercept term αd, a pd-vector, a pd × k loading matrix Bd and the factors fi are

independently distributed with fi ∼ N(0, Ik).

The factor models for count features and binary features both relate the

probabilities of success of the distributions to latent continuous quantities through

a logit link. For both types of features, the same factor structures are built on the

latent continuous quantities. The continuous quantities, the zbij and zdij , express the

log-odds of the corresponding Bernoulli distributions and Negative Binomial dis-

tributions. Understanding the covariance of the log-odds captures the association

between the features.

The factor model for count features only imposes factor structures on the

log-odds of Negative binomial distributions. Parameter hj only contributes the
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variation among jth feature, which is similar to σ2
j in factor model for continu-

ous features. In other words, hj captures idiosyncratic variance associated with

each feature. These parameters are also known as single factors in factor analysis.

4.2.4 Factor model for continuous, binary and count data

Figure 4.1: Factor model for continuous, binary and count data

Now a factor model for mixed-type data is presented, see Figure 4.1. Here

the data is collected with continuous features, binary features and count features.

Suppose we have n observations, denoted by {yi, i = 1, · · · , n}, where yi is a

(pc + pb + pd)-vector, which combines continuous, binary and count observations:

yci , y
b
i and ydi . We relate observations yi to a set of continuous latent quantity

zi. The latent quantities zi is also a (pc + pb + pd)-vector, and it combines three

sets of latent quantities: zci , zbi and zdi which relates to yci , y
b
i and ydi through

three classes of distributions: Gaussian distributions, Bernoulli distributions and

Negative Binomial distributions respectively.

We further relate the unobserved continuous quantities zi to underlying fac-
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tors fi. We suppose that zi = α+Bfi with intercept termα, a pc+pb+pd-vector,

a (pc+pb+pd)×k loading matrixB and the factors fi are independently distributed

with fi ∼ N(0, Ik). The loading matrixB can be partitioned into three blocks via:

B =

 Bc

Bb

Bd


The loading matrix B must be further constrained to ensure that cov(zi) =

BBT has a unique solution inB. ConsideringB∗ = BP T and f∗
i = Pfi, where

P is any orthogonal k × k matrix, then B∗ is also a solution to cov(zi). We adopt

the approach of Geweke and Zhou (1996) here, to constrainB to be zero for upper-

triangular entries {bjs = 0 : j < s, 1 ≤ s ≤ k} and positive along the diagonal

{bss > 0 : 1 ≤ s ≤ k}.

4.2.5 Related Work

In this section, a semiparametric latent variable model for mixed outcomes

is described (Murray et al., 2013). The model is using the inverse empirical cu-

mulative density function to relate all features to an underlying continuous scale,

and build factor model on it. We would like to briefly introduce the model, then

compare our model to their approach.

Murray et al. (2013) developed a Bayesian factor model for mixed data.

They also relate all observations to corresponding underlying continuous variables.

In their model, let yij denote the observed jth feature of observation iwith marginal

distribution Fj for all i = 1, · · · , n, j = 1, · · · p, then yij can be represented with

respective to latent variable zij as yij = F−1j [Ψ(zij)], where Ψ(·) denotes the normal

65



CDF and zij is distributed standard normal. Let zi denote the ith row of matrix Z.

The Gaussian copula model assumes that:

z1, · · · , zn | C ∼ i.i.d.N(0,C)

yij = F−1j [Ψ(zij)]

where C is a p-by-p correlation matrix.

Murray et al. (2013) uses the extended rank likelihood (Hoff, 2007) for mod-

eling marginal distributions F1, · · · , Fp. The extended rank likelihood depends only

on the ranks of the observations, which means that yij < yi′j implies zij < zi′j .

Therefore the model has Z ∈ D(Y ), where

D(Y ) = {Z ∈ Rn×p : maxk{zkj : ykj < yij} < zij < mink{zkj : yij < ykj}∀i, j}

And a factor structure similar to ours is imposed on the latent matrix Z that zi =

α+Bfi.

Compared to their approach, instead of using extended rank likelihood for

modeling marginal distributions, our model specifies marginal distributions for dif-

ferent data type. We use Gaussian distribution to model continuous feature, Bernoulli

distribution to model binary feature, and Negative binomial distribution to model

count feature. All these distributions are widely used in modeling corresponding

data type in regression models.

There are some disadvantages of using extended rank likelihood (ERL) for

modeling discrete features. Firstly, using only partial order information cannot

model the exact nature of binary and count features. ERL approach may not be
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useful for a practitioner who is primarily interested in parameters characterizing

the properties of individual outcomes. However, in our model, the latent variables

z’s are the log odds of Bernoulli distribution and Negative Binomial distribution

for modeling binary observations and count observations. This makes our model

more interpretable for analyzing data from real world. Secondly, ERL approach

does not provide a model for the probability that two outcomes will be tied. ERL

approach permits ties by considering the data to be only partially ordered, while

it cannot properly model the conditional probability Pr(yij = yi′j | zij, zi′j) for

two observations i and i′ on jth feature having a tied response. Thirdly, as ERL is

distribution-free, a practitioner cannot calculate the model evidence or other eval-

uation metrics based on it, which makes it hard to evaluate the model even with

simulation data.

4.3 Bayesian model and inference

We write a complete model that allows for the specification of a Gibbs

sampler. The model includes data, parameters, and prior distributions. Let p =

pc + pb + pd. The model can be thought of as having:

1. data y = {yi, i = 1, · · · , n} ∈ Rn×p, yi is ith row of observation matrix y

2. parameters σ2
j for j ∈ {1, · · · , pc}, associated to continuous features

3. parameters hj for j ∈ {1, · · · , pd}, associated to count features
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4. parameter F = {fi, i = 1, · · · , n} ∈ Rn×k, representing the latent factors.

Each fi is ith row of matrix F

5. parameter α ∈ Rp, representing the intercept term

6. parameterB ∈ Rp×k, representing the loading matrix

7. and the prior over the model parameters :

σ2
j ∼ IG(λj, λjτj/2) where j = 1, · · · , pc (4.5a)

hj ∼ Gamma(a0, 1/rj) rj ∼ Gamma(u0, 1/g0) (4.5b)

where j = 1, · · · , pd

fi ∼ N(0, Ik) where i = 1, · · · , n (4.5c)

αj ∼ N(0, να) where j = 1, · · · , p (4.5d)

bjs ∼ N(0, νs) νs ∼ IG(cs, csds/2) (4.5e)

where j = 1, · · · , p, s = 1, · · · , k

and IG represents Inverse-Gamma distributions. These prior distributions for

model parameters are designed for conjugacy to their likelihood, which al-

lows for efficient inference. Our experiments was performed with hyperpa-

rameters λj = 2, τj = 1 for all j; a0 = 0.01, u0 = 0.01, g0 = 0.01 ; να = 10;

cs = 2 and ds = 1 for all s; and hyperparameters νs and rj inferred by the

Gibbs sampler for all s and j.
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4.3.1 Inference

In this section, we introduce a Gibbs sampler used to estimate the model pa-

rameters. The sampler iteratively updates estimates for each parameter in Section

4.3 based on current values of all other parameters. Specifically, each parameter

is drawn from its posterior distribution, conditioned on all other parameters. For

parameters associated with continuous features, their conditional posterior distri-

bution are well-defined distributions due to conjugacy. In other words, the Gibbs

sampler can draw directly from those posterior distributions. For parameters as-

sociated with binary and count features, their conditional posterior distribution are

not easy to draw from. We introduce Pòlya-Gamma latent variables to allow for

conjugacy and easy Gibbs sampling of these parameters.

For ease of describing the Gibbs sampler, we first introduce some back-

ground knowledge. Section 4.3.1.1 summarizes key facts about Pòlya-Gamma dis-

tributions. This section also summarizes how to sample coefficients from condi-

tional posterior for a linear regression model, which will be used in our Gibbs sam-

pler. Section 4.3.1.2 shows how the Gibbs sampler works. And finally, Section

4.3.1.3 shows how to impose sparse prior for inferencing large datasets.

4.3.1.1 Preliminaries

Pòlya-Gamma distribution To efficiently inference for binary and count data,

we introduce the latent variables distributed with Pòlya-Gamma distribution. Pol-

son et al. (2013) first introduced the Pòlya-Gamma distribution. The distribution

has two parameters, we begin by specifying the distribution of ω ∼ PG(b, 0), which
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is equal to an infinite sum of gammas:

ω
D
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2

,

where each gk is an independentGamma(b, 1) random variable. The general PG(b, c)

class is constructed via exponential tilting of the PG(b, 0) density:

p(ω | b, c) ∝ exp(−c
2

2
ω)p(ω | b, 0) (4.6)

Polson et al. (2013) further proved the following property:

L(ψ) =
{exp(ψ)}a

{1 + exp(ψ)}b
∝ eκψ

∫ ∞
0

e−ωψ
2/2 p(ω) dω (4.7)

= eκψEω[exp(−ωψ2/2)] (4.8)

where κ = a− b/2 and p(ω) = PG(ω | b, 0).

There are some interesting facts arising from the formulas above:

1. From (4.8), we have, conditional upon ω:

L(ψ) ∝ eκψexp(−ωψ2/2) (4.9)

∝ exp{−ω
2

(
κ

ω
− ψ)2} (4.10)

Notice (4.10) is exactly the likelihood of a Gaussian distribution with κ/ω as

the random variable, ψ as the mean and ω−1 as the variance. In other words,

we have:

(κ/ω | ψ, ω) ∼ N(ψ, ω−1) (4.11)
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2. Conditioning ω on ψ again gives a Pòlya-Gamma distribution as follows:

p(ω | ψ) ∝ p(ψ | ω)p(ω)

∝ exp(−ωψ2/2)p(ω | b, 0) (4.12)

= p(ω | b, ψ) (4.13)

Here for (4.12) we use the fact in (4.9) that p(ψ | ω) ∝ exp(−ωψ2/2); and

for (4.13) we use the definition of general case of Pòlya-Gamma distribution,

(4.6).

3. Both Bernoulli and negative binomial likelihoods of logistic parameters can

be written in the form of the left-hand-side of (4.7). If we denote p = exp(ψ)
1+exp(ψ)

then the Bernoulli likelihood is given by p(x | p) = exp(ψ)x

1+exp(ψ)
, which matches

(4.7) with a = x, and b = 1. This allows us to rewrite (4.11) and (4.13) with

respect to Bernoulli likelihood as:

((2x− 1)/2ω | ψ, ω) ∼ N(ψ, ω−1) (4.14)

p(ω | ψ) ∼ PG(1, ψ) (4.15)

Similarly, the likelihood of negative binomial distribution can be written as

p(x | h, p) ∝ exp(ψ)x

(1 + exp(ψ))x+h
,

which matches (4.7) with a = x, and b = x + h. This allows us to rewrite

(4.11) and (4.13) with respect to Negative Binomial likelihood as:

((x− h)/2ω | ψ, ω) ∼ N(ψ, ω−1) (4.16)

p(ω | ψ) ∼ PG(x+ h, ψ) (4.17)
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There are two reasons for introducing Pòlya-Gamma latent variable ω into

inference. The construction of Pòlya-Gamma distribution allows us to easily update

ω with Pòlya-Gamma prior in a Gibbs sampler, as described in Section 4.3.1.2. Also

(4.11) indicates that conditional on ψ and ω, the parameters of both the Bernoulli

and negative binomial can be written in a Gaussian form. This property allows us

to efficiently inference models, and the details are shown in Section 4.3.1.2.

Inference coefficients in a linear regression model Suppose we have working

responses z, design matrix X , and coefficients β and diagonal covariance matrix

Σ. They form a standard Gaussian linear model:

z ∼ N(Xβ,Σ) (4.18)

with Gaussian prior on β that

β ∼ N(m0,V0)

Then to update coefficients β in Gibbs sampler, the conditional posterior for β

(Koop et al., 2007, pp 108,192) is :

(β | z,X,Σ) ∼ N(m,V )

where

V = (XTΣ−1X + V −1
0 )−1 (4.19a)

m = V (XTΣ−1z + V −1
0 m) (4.19b)
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4.3.1.2 Gibbs sampler for inferencing parameters

In this section, a Gibbs sampler (Geman and Geman, 1984) is presented to

draw correlated samples from the joint posterior distribution of all parameters in

(4.5). The notation (Y | −) refers to the full conditional distribution of a ran-

dom variable Y conditional on everything else. Besides the parameters in (4.5),

we introduce new latent variables ωbij , i = 1, · · · , n, j = 1, · · · , pb and ωdij , i =

1, · · · , n, j = 1, · · · , pd. And the priors for ωbij and ωdij are:

ωbij ∼ PG(1, 0) (4.20)

ωdij ∼ PG(ydij + hj, 0) (4.21)

A single iteration of the Gibbs sampler performs the following steps:

1. Calculate the latent continuous quantities zi = α+Bfi for i = 1, · · · , n

2. Update ωbij and ωdit for i = 1, · · · , n, j = 1, · · · , pb and t = 1, · · · , pd with:

(ωbij | −) ∝ PG(ωbij | 1, zbij)

(ωdit | −) ∝ PG(ωdit | ydit + ht, z
d
it)

As shown in preliminaries, every term of the likelihood for binary features

can be written in the form of the left-hand-side of (4.7), with a = ybij , b = 1,

ψ = zbij; and similarly with a = ydit, b = ydit + ht and ψ = zdit for count

features. Replacing corresponding parameters in (4.15) and (4.17) leads us to

updating ω.
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3. Update σ2
j for j = 1, · · · , pc with

σ2
j ∼ IG((λj + n)/2, (λjτj + (ycj − zcj )

t(ycj − zcj ))/2) (4.22)

The conditional posterior of σ2
j is:

(σ2
j | −) ∝ p(σ2

j | λj, τj,ycj , zcj ) ∝ p(σ2
j , λj, τj,y

c
j , z

c
j )

∝ p(ycj | −)p(σ2
j | zcj , λj, τj)p(zcj , λ,τj)

∝ p(ycj | −)p(σ2
j | λj, τj)

∝ IG((λj + n)/2, (λjτj + (ycj − zcj )
t(ycj − zcj ))/2),

where ycj and zcj are jth column of yc and zc. The third step uses the fact that

zcj is independent of σj and zcj , λj , τj are considered as known. The last step

uses the fact that Gaussian distribution is conjugate to Inverse-Gamma distri-

bution, which allows to draw σ2
j from an updated Inverse Gamma distribution

(Koop et al., 2007, pp 17).

4. Update (hj, rj) for j = 1, · · · , pd. Zhou et al. (2012b) provides a solution to

inference hj as well as rj based on compound-Poisson augmentation of the

negative binomial distribution. Their main result shows that with we could

update hj by drawing from an updated Gamma distribution with prior shown

in (4.5b).

5. Update fi for i = 1, · · · , n with:

(fi | −) ∼ N(m,V ) (4.23)
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where

V −1 = BTΩiB + Ik (4.24)

m = V (BTxi−α) (4.25)

Here we define a n × p matrix Ω−1 with the ith row given by the quantities

ω−1
i = (σ2

1, · · · , σ2
pc , ω

b−1

i1 , · · · , ωb−1

ipb
, ωd

−1

i1 , · · · , ωd−1

ipd
). Furthermore, we de-

fine a diagonal matrix in (4.24) as Ω−1i = diag(ω−1
i ). We also define a p× k

matrixX that could be partitioned to 3× 1 blocks that:

X =

 Xc

Xb

Xd


where Xc is a matrix with entries xcij = ycij for i = 1, · · · , n and j =

1, · · · , pc; Xb is a matrix with entries xbij =
2ybij−1
2ωb

ij
for i = 1, · · · , n and

j = 1, · · · , pb; and Xd is a matrix with entries xdij =
ydij−hj
2ωd

ij
for i = 1, · · · , n

and j = 1, · · · , pd.

Recall that conditional on ω, we have Gaussian relationship for binary fea-

tures as in (4.14), and for count features as in (4.16). Replacing corresponding

parameters, we have:

xbij ∼ N(zbij, ω
b−1

ij ) (4.26)

xdij ∼ N(zdij, ω
d−1

ij ) (4.27)

Combining (4.26), (4.27) and xcij = ycij ∼ N(zcij, σ
2
j ), we write them in a

multivariate form that for i = 1, · · · , n:

xi ∼ N(α+Bfi,Ω
−1
i ) (4.28)
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where xi is ith row of matrixX . This can be considered as a standard linear

model with observations xi − α, design matrix B and covariance matrix

Ω−1i . And the regressor fi has a Gaussian prior: fi ∼ N(0, Ik). As shown in

(4.19), the conditional posterior distribution for fi is also Gaussian, and can

be updated as shown above.

6. Update αj for j = 1, · · · , pc with:

(αj | −) ∼ N(mα, Vα) (4.29)

where

Vα = (ν−1α +
∑
i

Ωij)
−1 (4.30)

mα = Vα
∑
i

Ωij(xij −Bjf
T
i ) (4.31)

We rewrite (4.28) column-wisely for j = 1, · · · , p:

xj ∼ N(1 · αj + FBT
j ,Ω

−1
j ) (4.32)

where xj is the jth column of matrixX; 1 is a n-vector with all entries 1;Bj

is the jthe row of matrix B; and Ω−1j = diag(ω−1
j ), ω−1

j is jth column of

matrix Ω−1. This is a special case of Gaussian linear model (4.18) with z =

xj−FBT
j ,X = 1 and Σ = Ω−1j . And the prior for αj is αj ∼ N(0, να). This

allows us to draw αj from a Gaussian distribution as in (4.19). Notice here

we write out the matrix multiplication into element-wise summation form in

updates.
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7. Update elements bjs for s = 1, · · · , k, j = s, · · · , p with:

(bjs | −) ∼ N(mb, Vb) bjs > 0 if j = s

(bjs | −) ∼ N(mb, Vb) if j > s

where

Vb = (ν−1s +
∑
i

Ωijf
2
is)
−1

mb = Vb
∑
i

fisΩijx̃ij.

Here, we draw bss from a truncated normal distribution with constraint that

bss > 0 as mentioned in Section 4.2.4. And x̃ij = xij − αj −
∑

t6=s bjtfit.

Rewrite (4.18) for all i = 1, · · · , n, j = 1, · · · , k:

xij ∼ N(αj +Bjfi,Ω
−1
ij )

≡ N(αj +
∑
t

bjtfit,Ω
−1
ij )

Then for given s, 1 ≤ s ≤ k, we have:

x̃ij = (xij − αj −
∑
t6=s

bjtfit) ∼ N(fisbjs,Ω
−1
ij ) (4.33)

Rewrite (4.33) in multivariate form, for given j, s, we have:

x̃i ∼ N(fsbjs,Ω
−1
j ) (4.34)

where x̃i = (x̃i1, · · · , x̃ip); fs is the sth column of matrix F and Ω−1j =

diag(ω−1
j ) with ω−1

j being the jth column of matrix Ω−1. This is a special

case of Gaussian linear model (4.18) with z = x̃i, X = fs and Σ = Ω−1j .
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And the prior for bjs is bjs ∼ N(0, νs). This allows us to draw bjs from

a Gaussian distribution as in (4.19). Notice here we write out the matrix

multiplication into element-wise summation form in updates.

8. Update hyperparameter νs for s = 1, · · · , k with

(νs | −) ∼ IG((cs + ns)/2, (csds +BT
sBs)/2) (4.35)

where ns be the number of unconstrained elements in sth column of B, Bs

for s = 1, · · · , k. The prior for νs is Inverse-Gamma distribution, and the

likelihood of νs is Gaussian, which makes conditional posterior distribution

of νs is also Inverse-Gamma.

4.3.1.3 Inferencing in large data sets

In this section, we introduce a sparse prior imposed on loading matrix,

which permits some of the loadings to be exactly zero. The sparse prior has been

used in previous factor models (Bernardo et al., 2003; Carvalho et al., 2008; Richard

Hahn et al., 2012), and we adopt the approach of Richard Hahn et al. (2012) here.

These models assume that each latent factor will be associated with only a small

number of features. Introducing sparse prior can be considered as performing fea-

ture selection automatically when we estimate the loading matrix. This is useful

when we have a large number of features and want a more parsimonious covariance

structure.
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The sparse prior we impose on the loading matrixB is:

(bjs | νs, qs) ∼ qs ·N(0, νs) + (1− qs)δ0(bjs)

νs ∼ IG(cs/2, csds/2)

qs ∼ Beta(1, 1)

where δ0(bjs) denotes a point-mass measure at bjs = 0, and qs is a hyperparameter

so that large qs indicates a high likelihood for bjs to be 0.

We also need some modification in our Gibbs sampler for updating bjs, νs,

and an extra step for updating qs. The steps are described in detail in (Richard Hahn

et al., 2012), and we summarize here:

1. Update bjs with

(bjs | −) ∼ (1− q̂js)δ0 + q̂jsN(mb, Vb) (4.36)

where

Vb = (ν−1s +
∑
i

Ωijf
2
is)
−1

mb = Vb
∑
i

Ωijfs,ix̃ij

ρ̂js =
N(0 | 0, νj)
N(0 | mb, Vb)

q̂js =
ρ̂js

1−qs
qs

+ ρ̂js

Here N(0 | y, z) is the value of pdf of normal distribution N(y, z) at 0.

2. Update νs as in (4.35) except that ns be the number of unconstrained elements

inBs currently set to non-zero.
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3. Update qs with:

(qs | −) ∼ Beta(1 + ns, 1 + ñs − ns) (4.37)

where ñs is the number of unconstrained elements inBs.

4.4 Experiments and Results

To demonstrate the proposed factor model for mixed-type data can approx-

imately re-construct the covariance structure underlying the observations, two ex-

periments are conducted in this section. The first experiment is performed on sim-

ulation data, showing the behavior of the factor model under different parameters.

The second experiment is performed on real-world data from political science and

provides valuable insights for the data set.

4.4.1 Simulated Data

We simulate data with various combinations of N/P/K, where N is the

number of observations, i.e. number of rows of observation matrix; P is the total

number of mixed-type features, with P/3 count features, P/3 binary features and

P/3 continuous features; and K is the number of underlying factors. For each case,

we simulate the intercept α, loading matrix B by drawing iid normal values. The

factor scores fi are sampled independently from N(0, IK) for each observation.

We than calculate the latent states zi for each observation by zi = α + Bfi. As

described in Section 4.2, we use the latent states as a mean to simulate continuous

observations; use the latent states as log-odds to simulate binary observations; and
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simulate the count observations with the latent states as log-odds along with pre-set

over-dispersion parameter h = 1.

For each case, we use a 3-factor model, and Gibbs sampler for estimating

the model parameters. In each case, the model was estimated using 2000 Gibbs iter-

ations after a 500 iteration burn-in, keeping every 5th sample for a final sample size

of 300. We use the mean of those 300 samples to estimate the model parameters. We

assess the performance of our model by computing root mean squared error between

true latent states z and estimated latent states ẑ: [ 1
N ·P

∑
1≤i≤N,1≤j≤P (zij− ẑij)2]1/2.

Results are in Table 4.1. Given fixed number of latent factors in the true

models, RMSE decreases when there are more features or more observations for

each feature. This is expected, as more information is provided given the same

complexity of underlying covariance structure. When K is larger in the true model

vs. the estimated model, comparing left and right columns of the table, we also get

increasing RMSE.

N/P/K RMSE for Fitted Model N/P/K RMSE for Fitted Model
50/15/3 0.92 50/15/5 1.04
50/60/3 0.57 50/60/5 0.74
50/150/3 0.45 50/150/5 0.67
200/15/3 0.82 200/15/5 0.67
200/60/3 0.35 200/60/5 0.64
200/150/3 0.27 200/150/5 0.59

Table 4.1: Root Mean Squared Error (RMSE) on latent z values for variousN/P/K
combinations. We always estimate a model with K = 3, and the N/P/K above
describe the model for generating the true data.

In some of these examples, N/P/K = 50/60/3 and N/P/K = 50/150/3,

we have more features than observations. Estimating correlation structure in data
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sets like these is challenging (Berger and Sun, 2008). Our model, however, is able

to estimate the correlation structure even with a small amount of observations. This

is because of the factor-structure in the model we’ve created. Figure 4.2 shows

that as we have more observation data (N ), the estimation of correlation structure

of features is improved. The figure shows true values of the correlation of BBT

plotted against estimated values at different amounts of data.

(a) N/P/K = 50/60/3 (b) N/P/K = 200/60/3

Figure 4.2: Plots of estimated correlations cor( ˆBBT ) versus true correlations
cor(BBT ). Red solid lines are regression lines.

Figure 4.3 further shows that our model is able to re-construct the latent

correlation among all features. Figure 4.3a shows the actual correlation among

latent states that we want to reconstruct. Figure 4.3b shows reconstructing it by

naive correlation of raw data. The correlation of the raw data in Figure 4.3b shows

an attenuation effect compared to actual correlation as in Figure 4.3a. This effect is

dramatic in count features and binary features because of the non-linear relationship

between the observations and the latent states. However the correlation structure

of the latent features is uncovered by our model, see Figure 4.3c. This improved
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performance is attributed to the parametrized model.

(a) Actual Correlation among latent
states

(b) Raw Correlation from Data (c) Estimated Correlation among latent
states

Figure 4.3: Results for case N/P/K = 50/15/3. (a) shows the actual correlation
among latent states (b)shows the raw correlation among features (c) shows the esti-
mated correlation among latent states. Feature 1− 5 are count features, 6− 10 are
binary features, and 11− 15 are count features.

This section shows via simulation that our factor model for mixed-type data

is capable of re-constructing the covariance structure of the latent states. We per-

form various experiments on data simulated with different number of observations,

features and latent factors. And we compare our estimated results to the true model

parameters, and show that our model is able to re-construct the latent correlation

among features with mixed-types.
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4.4.2 Real data

In this section we perform factor analysis on real-world data with mixed-

types. The data we use are 534 speeches in the House of Commons in 1866

about the Second Reform Act. Moser and Reeves (2014) describe the dataset in

details. The data contains three types of features: a) 8467 count features - each

one represents the number of occurrences of that word in one speech; 2) 4 bi-

nary features - “party2c” feature equal to 1 indicating the speaker is conserva-

tive; “type.county” feature and “type.university” feature are indicators for two con-

stituency types; “miniTRUE” feature indicates the speaker is a minister or not; 3)

1 continuous feature - “malaportionment” feature is a score representing overrepre-

sented if greater than 0 and underrepresented if smaller than 0.

We use a 10-factor model on the data set to see how our model discovers

the underlying factors. We also use a sparse prior on the parameters of the loading

matrix to make each observation depend on only a few factors. As a result, all the

underlying correlation can be captured by estimated loading matrix and 10 factors.

The features associated with each latent factor have similar patterns of re-

sponses. As a result, features under the same latent factor are closely correlated

and convey similar concepts. It is confirmed by the experimental results that fea-

tures in the same factor have closely related to the factor. The first row of Table

4.2 shows the features having highest loadings in two sample factors out of the ten

factors. Words with highest loadings in the first sample factor include names of

foreign countries and cities, like “melbourn”, “spain”, “canada”; and words related

to foreign policy, like “militari”, “nonintervent”. Thus we define this sample factor
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as diplomatic. The second factor talks about political typology, like “democraci”,

“economi”, “societi”, “darwen”, “conserv”, etc.

Another analysis is to investigate features’ proportions of variance (PoV)

explained in one factor. For one feature i, PoV explained by a certain factor j is

computed by its squared loading divided by the total squared loadings of the feature,

i.e. PoVij = b2ij/(
∑

1≤s≤k b
2
is). For one factor, features with high PoV explained

by this factor specifically represent the concept of this factor. Here we are not

interested in words with low total squared loading, i.e. words contributing little to

common variance.

Features with high PoV can be different from features with high loadings in

a factor. The second row of Table 4.2 shows the words having highest PoVs in two

sample factors. For factor diplomatic, word “cowper” has the highest PoV, which

means most of its variance is captured by factor diplomatic. The word “cowper” is

most likely from Charles Cowper, who was the premier of New South Wales back

to 1866. That makes it specifically related to factor diplomatic. For factor politi-

cal typology, we also see words like “commonwealth”, “freedom” that specifically

relate to the factor.

Our factor model allows for analysis of the complexity of semantics of

words within the speeches. We define the dimension of a word as the number

of non-zero loadings of the word. The dimension of a word represents the num-

ber of latent factors describing the word feature. Figure 4.4 shows the histogram

of dimensions of 8467 words. Words with low dimension include: “like”, “good”

, “most”, “more” , “everi” , “great” etc. High dimension words include “return”,
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Features Sample Factor 1
(diplomatic)

Sample Factor 2
(political typology)

High loading “hain” “melbourn” “girond”
“nonintervent” “furious”
“spain” “cricket” “victoria”
“militari” “besot” “canada”
“narrat” “juror” “franc”
“poland” “type.university”
“wallingford” “woodstock”

“democraci”,“economi”,
“democrat”, “societi”, “pros-
per”, “upper”, “nation”,
“mechan”, “fellow”, “dar-
wen”, “conserv” “amongst”
“cent” “workingclass” “trade”
“genuin” “whig” “american”
“class” “artizan”

High PoV “cowper” “melbourn” “bandon”
“besot” “enniskillen” “spain”
“furious” “kinsal” “narrat”
“cork” “girond” “odonoghu”
“hain” “athlon” “michi” “syd-
ney” “unhandsom” “stawel”
“inver” “waterford”

“serv” “deci” “british” “nation”
“popular” “suggest” “event”
“import” “commenc” “institut”
“greec” “generous” “common-
wealth” “document” “freedom”
“preced” “obstacl” “disposit”
“anterior” “upper” “imperil”

Table 4.2: Features with highest loading and highest PoV in two sample factors

“conserv”, “wednesburi”, “redeem”, etc.

A word with low dimension is essentially independent from any latent fac-

tors and other words. Knowing the occurrence rate of this word in a speech, would

not tell you very much about the content of the speech. On the other hand, a word

with a high dimension depends on many of the latent factors and is correlated with

many other words. The number of occurrences of a high dimension word, would

tell you more about the content of the speech. This is potentially useful for fea-

ture selection in text classification. One could throw out the zero-dimension words,

because they have very low correlations with other words.

As a summary, we analyze the speeches in the House of Commons in 1866

about the Second Reform Act with proposed factor model for mixed-type data. The
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Figure 4.4: Histogram of average dimensions of all features

results provide valuable insights. Perform unsupervised clustering of similar words

by considering words associated with the same factor. A factor may indicate a

particular concept. The concept can be identified by looking at words with high

loadings or high proportion of variance. The semantic complexity of a word can be

represented by dimension of the word, which may be useful in text classification.
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4.5 Conclusion

We present a factor model as a framework to explore the correlation struc-

ture of mixed-type outcomes, including continuous, binary and count data. The

model links discrete observations of various types to latent continuous variables.

The correlation structure of the mixed-type observations is inferred by a Gaussian

factor model which is built on these latent continuous variables. We use a Gibbs

sampler to estimate the parameters of the Gaussian factor model. We validate the

algorithm by successfully reconstructing the correlation matrix of simulated data.

The algorithm also unsupervisedly discovers patterns in political science data. Fi-

nally, we implement the proposed algorithm as an open-source R package which

allows factor analysis for any mixed-type data sets.

4.6 Future work

Our factor model can further incorporate ordinal data and unordered cat-

egorical data. For ordered categorical data, we use Gaussian/probit model. For

unordered categorical data, we build a Gaussian factor model embedded inside a

multinomial probit model. Both models can be easily combined with our current

model.

4.6.1 Factor model for ordinal data

In this section, we present a factor model for strictly ordinal features. The

model assumes that for each feature the observations are taken to reflect an latent

continuous variable with some cut points. Then we impose a factor structure on the
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latent continuous variable.

Suppose we have n ordinal observations, denoted by {yoi , i = 1, · · · , n},

where yoi is a po-vector, and po is the number of ordinal features in each observation.

For ease of describing the model, we only take one ordinal feature as example, say

y. Suppose y has J categories, and the observations y are defined according to the

value of an underlying continuous variable y∗:

yi = 1 if −∞ < y∗i ≤ κ1

yi = j if κj−1 < y∗i ≤ κj j = 2, · · · , J − 1

yi = J if κJ−1 < y∗i ≤ ∞

Here κj, j = 1, · · · , J − 1 are J − 1 cut points. We relate y∗ to our latent quantity

z by for i = 1, · · · , n:

y∗i = zi + εi

where εi ∼ N(0, 1). Now considering all ordinal features, we have a n× po matrix

zo, and we further impose a factor structure on zo that for i = 1, · · · , n:

zoi = αo +Bofi (4.38)

with αo is a po-vector intercept term,Bo is a po × k loading matrix and the factors

fi are independently distributed with fi ∼ N(0, Ik).

This model is essentially the Gaussian/probit model for ordinal data (Quinn,

2004). And this model can be combined to our current model in the same way that

we combine our model for binary and count features.
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4.6.2 Factor model for unordered categorical data

In this section, we present a factor model for strictly unordered categori-

cal (multinomial) features. The model builds a Gaussian factor model embedded

inside a multinomial probit model for analyzing categorical features. And can be

incorporated into our current model.

Suppose we have nmultinomial observations, denoted by {ymi , i = 1, · · · , n},

where ymi is a pm-vector, and pm is the number of categorical features in each obser-

vation. For ease of describing the model, we only take one multinomial feature as

an example, say y. Suppose y has J categories, and the observations y are defined

according to the value of J − 1 underlying continuous variables y∗ via:

yi | y∗ij =

{
0, if max(y∗

i ) < 0

j, if max(y∗
i ) = y∗ij > 0

(4.39)

for i = 1, · · · , n, where y∗
i = (yi1, · · · , yi,J−1), and max(y∗

i ) is the largest element

of the vector y∗
i . The latent variables y∗ is related to the latent quantities z by:

y∗ij = zij + εij (4.40)

where εij is following a standard normal distribution for i = 1, · · · , n and j =

1, · · · , J − 1.

Now take all categorical features into consideration. Suppose for each multi-

nomial feature j, we have Jj categories, for j = 1, · · · , pm. Then we have Jj − 1

latent variables and latent quantities associated to yij for i = 1, · · · , n. Thus we

have a n × pM matrix zm, where pM =
∑

j=1,··· ,pm(Jj − 1). We further impose a
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factor structure on zm that for i = 1, · · · , n:

zmi = αm +Bmfi (4.41)

with αm is a pM -vector intercept term, Bm is a pM × k loading matrix and the

factors fi are independently distributed with fi ∼ N(0, Ik).

This model can also be incorporated to our current model. We can combine

the loading matrix, intercept terms and the latent quantities for all features with all

types to form a combined Gaussian factor model. And this is exactly the same way

that we combine all other features as in Figure 4.1.

4.6.3 Software Development

These two models can be considered as Gaussian factor models embedded

in a probit model for ordered/unordered categorical data. Albert and Chib (1993)

and Johnson and Albert (2006) described Gibbs samplers in details about inferenc-

ing parameters in a probit model for ordered/unordered categorical data. We follow

their steps for inferencing all parameters mentioned above except parameters re-

lated to factor structure: B, f and α, which can be inferenced the same way as in

Section 4.3.1.2.

Currently, we developed an R package for analysis on mixed data, with at

most five types: continuous, binary, count, ordinal and multinomial. We would like

to improve the package in several ways:

1. to use a Gaussian approximation to the Pòlya-Gamma random variable for

faster inference (Glynn et al., 2015). This will make our package to perform
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more efficiently for high dimensional data set.

2. to further develop the algorithm for different link functions. This will al-

low users to choose different link functions (logit or probit) for modeling

binary/ordinal/multinomial data based on specific data set.

3. to benchmark our package to other packages that works on similar, but more

constrained data types.
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Chapter 5

Future Directions

A key draw-back of the Bayesian model for latent annotations described in

Chapter 2 is the processing time required to do syntax reconstruction. This pro-

cessing time increases significantly with the number of latent annotations, and the

number of sentences in the training set. This can be potentially improved with par-

allelization. Nevertheless, the algorithm provides for potential significant advances

in parsing low resource languages.

One way the auto-completer in Chapter 3 can be improved is through the

incorporation of universal grammar rules. The auto-completer has the ability to en-

code both universal grammar and test-language grammar as a prior. This would be

done by replacing the uniform prior used in the work with a prior favoring those

grammar rules during the updating-rule-probabilities phase of the GPC. This essen-

tially has the effect of making those grammar rules more likely during reconstruc-

tion. This can provide significant improvement in annotation projects where very

little annotation data is available.

One draw-back of the algorithm described in Chapter 4 is that Gibbs sam-

pling is slow. This is primarily due to sampling the Pòlya-Gamma random vari-

ables. We would like to improve this by using a Gaussian approximation to the
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Pòlya-Gamma random variable for faster inference. Furthermore, we would like

to improve the methodology by extending the algorithm to different link functions.

This would be especially helpful with binary, ordinal, and multinomial data. The

factor model for exploring covariation among multiple outcomes of mixed types

described in Chapter 4 has already been implemented as an R package, which cur-

rently supports five types: continuous, binary, count, ordinal and multinomial.
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treebank for portuguese. In Proceedings of the 3rd International Conference on

Language Resources and Evaluation (LREC), pages 1698–1703. LREC.

Aguilar, O. and West, M. (1998). Bayesian dynamic factor models and variance

matrix discounting for portfolio allocation. Institute of Statistics and Decision

Sciences, Duke University.

Aho, A. V. and Ullman, J. D. (1972). The theory of parsing, translation, and com-

piling. Prentice-Hall, Inc.

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous

response data. Journal of the American statistical Association, 88(422):669–679.

Alicante, A., Bosco, C., Corazza, A., and Lavelli, A. (2012). A treebank-based

study on the influence of Italian word order on parsing performance. In Chair),

N. C. C., Choukri, K., Declerck, T., Doan, M. U., Maegaard, B., Mariani, J.,

Odijk, J., and Piperidis, S., editors, Proceedings of LREC’12, Istanbul, Turkey.

European Language Resources Association (ELRA).

Bender, E. M., Flickinger, D., and Oepen, S. (2002). The Grammar Matrix:

An Open-Source Starter-Kit for the Rapid Development of Cross-Linguistically

Consistent Broad-Coverage Precision Grammars. In Carroll, J., Oostdijk, N., and

95



Sutcliffe, R., editors, Proceedings of the Workshop on Grammar Engineering and

Evaluation at the 19th International Conference on Computational Linguistics,

pages 8–14, Taipei, Taiwan.

Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model.

The Annals of Statistics, pages 963–982.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and

West, M. (2003). Bayesian factor regression models in the large p, small n

paradigm. Bayesian statistics, 7:733–742.

Bikel, D. (2004a). On The Parameter Space of Generative Lexicalized Statistical

Parsing Models. PhD thesis, University of Pennsylvania.

Bikel, D. M. (2004b). Intricacies of Collins’ parsing model. Computational Lin-

guistics, 30(4):479–511.

Black, E., Jelinek, F., Lafferty, J., Magerman, D. M., Mercer, R., and Roukos, S.

(1992). Towards history-based grammars: Using richer models for probabilistic

parsing. In Proceedings of the workshop on Speech and Natural Language, pages

134–139. Association for Computational Linguistics.

Blunsom, P. and Cohn, T. (2010). Unsupervised induction of tree substitution gram-

mars for dependency parsing. In Proceedings of the 2010 Conference on Empiri-

cal Methods in Natural Language Processing, pages 1204–1213. Association for

Computational Linguistics.

96



Booth, T. L. and Thompson, R. A. (1973). Applying probability measures to ab-

stract languages. Computers, IEEE Transactions on, 100(5):442–450.

Bordes, A., Bottou, L., and Gallinari, P. (2009). Sgd-qn: Careful quasi-newton

stochastic gradient descent. The Journal of Machine Learning Research,

10:1737–1754.

Bosco, C., Lombardo, V., Vassallo, D., and Lesmo, L. (2000). Building a Treebank

for Italian: a Data-driven Annotation Schema. In In Proceedings of the Second

International Conference on Language Resources and Evaluation LREC-2000

(pp. 99, pages 99–105.

Carroll, G. and Charniak, E. (1992). Two experiments on learning probabilistic

dependency grammars from corpora. Department of Computer Science, Univ.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., West, M., et al.

(2008). High-dimensional sparse factor modeling: Applications in gene expres-

sion genomics. Journal of the American Statistical Association, 103(484):1438–

1456.

Charniak, E. (1996). Tree-bank grammars. In Proceedings of the National Confer-

ence on Artificial Intelligence, pages 1031–1036.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the

1st North American chapter of the Association for Computational Linguistics

conference, pages 132–139. Association for Computational Linguistics.

97



Chomsky, N. (1956). Three models for the description of language. Information

Theory, IRE Transactions on, 2(3):113–124.

Chris, M. T. M. N. S. and Smith, D. N. A. (2014). Simplified dependency annota-

tions with gfl-web. ACL 2014, page 121.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L. (2012). Spectral

learning of latent-variable PCFGs. In Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics: Long Papers-Volume 1, pages

223–231. Association for Computational Linguistics.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L. (2013). Ex-

periments with spectral learning of latent-variable PCFGs. In Proceedings of

NAACL-HLT, pages 148–157.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In

Proceedings of the 35th Annual Meeting of the Association for Computational

Linguistics and Eighth Conference of the European Chapter of the Association

for Computational Linguistics, pages 16–23. Association for Computational Lin-

guistics.

Collins, M. (2003). Head-driven statistical models for natural language parsing.

Computational linguistics, 29(4):589–637.

Collins, M. J. (1996). A new statistical parser based on bigram lexical dependen-

cies. In Proceedings of the 34th annual meeting on Association for Computa-

tional Linguistics, pages 184–191. Association for Computational Linguistics.

98



Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine Learning

Research, 12:2121–2159.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed out-

comes. Journal of the Royal Statistical Society. Series B, Statistical Methodology,

pages 355–366.

Dunson, D. B. and Herring, A. H. (2005). Bayesian latent variable models for

mixed discrete outcomes. Biostatistics, 6(1):11–25.

Eisner, J. and Satta, G. (1999). Efficient parsing for bilexical context-free grammars

and head automaton grammars. In Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on Computational Linguistics, pages

457–464. Association for Computational Linguistics.

Finkel, J. R., Manning, C. D., and Ng, A. Y. (2006). Solving the problem of cascad-

ing errors: Approximate Bayesian inference for linguistic annotation pipelines.

In Proceedings of the 2006 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 618–626. Association for Computational Linguistics.

Garrette, D. and Baldridge, J. (2013). Learning a Part-of-Speech Tagger from Two

Hours of Annotation. In Proceedings of NAACL, Atlanta, Georgia.

Garrette, D., Mielens, J., and Baldridge, J. (2013). Real-World Semi-Supervised

Learning of POS-Taggers for Low-Resource Languages. In Proceedings of the

99



51th annual meeting on Association for Computational Linguistics. Association

for Computational Linguistics.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, (6):721–741.

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing

theory. Review of Financial Studies, 9(2):557–587.

Glynn, C., Tokdar, S. T., Banks, D. L., and Howard, B. (2015). Bayesian analysis

of dynamic linear topic models. arXiv preprint arXiv:1511.03947.

Goodman, J. T. (1998). Parsing Inside-Out. PhD thesis, Harvard University Cam-

bridge, Massachusetts.

Gueorguieva, R. V. and Agresti, A. (2001). A correlated probit model for joint

modeling of clustered binary and continuous responses. Journal of the American

Statistical Association, 96(455):1102–1112.

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula esti-

mation. The Annals of Applied Statistics, pages 265–283.

Huang, Z. and Harper, M. (2009). Self-Training PCFG grammars with latent anno-

tations across languages. In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing: Volume 2-Volume 2, pages 832–841.

Association for Computational Linguistics.

100



Hwa, R. (1999). Supervised grammar induction using training data with limited

constituent information. In Proceedings of the 37th annual meeting of the Associ-

ation for Computational Linguistics on Computational Linguistics, pages 73–79.

Association for Computational Linguistics.

Hwa, R., Resnik, P., and Weinberg, A. (2005). Breaking the Resource Bottleneck

for Multilingual Parsing. In The Proceedings of the Workshop on Linguistic

Knowledge Acquisition and Representation: Bootstrapping Annotated Language

Data. Conference on Language Resources and Evaluation.

Johnson, M. (1998). PCFG models of linguistic tree representations. Computa-

tional Linguistics, 24(4):613–632.

Johnson, M. (2007). Transforming projective bilexical dependency grammars

into efficiently-parsable cfgs with unfold-fold. In ANNUAL MEETING-

ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, volume 45, page 168.

Johnson, M., Griffiths, T., and Goldwater, S. (2007). Bayesian inference for PCFGs

via Markov Chain Monte Carlo. In Human Language Technologies 2007: The

Conference of the North American Chapter of the Association for Computational

Linguistics; Proceedings of the Main Conference, pages 139–146.

Johnson, V. E. and Albert, J. H. (2006). Ordinal data modeling. Springer Science

& Business Media.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceed-

101



ings of the 41st Annual Meeting on Association for Computational Linguistics-

Volume 1, pages 423–430. Association for Computational Linguistics.

Klein, D. and Manning, C. D. (2004). Corpus-based induction of syntactic struc-

ture: Models of dependency and constituency. In Proceedings of the 42nd Annual

Meeting on Association for Computational Linguistics, page 478. Association for

Computational Linguistics.

Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C., and Smith, N. A.

(2014). A dependency parser for tweets. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, Doha, Qatar, to appear.

Koop, G., Poirier, D. J., and Tobias, J. L. (2007). Bayesian econometric methods.

Cambridge University Press.

Kuhn, J. (2004a). Applying computational linguistic techniques in a documentary

project for Qanjobal (Mayan, Guatemala). In In Proceedings of LREC 2004.

Citeseer.

Kuhn, J. (2004b). Experiments in parallel-text based grammar induction. In Pro-

ceedings of the 42nd Annual Meeting on Association for Computational Linguis-

tics, page 470. Association for Computational Linguistics.

Lary, K. and Young, S. J. (1990). The estimation of stochastic context-free gram-

mars using the inside-outside algrithm. Computer, Speech and Language, 4:35–

56.

102



Liang, P., Jordan, M. I., and Klein, D. (2009). Probabilistic grammars and hierar-

chical Dirichlet processes. The handbook of applied Bayesian analysis.

Littlestone, N., Warmuth, M. K., and Long, P. M. (1995). On-line learning of linear

functions. Computational Complexity, 5(1):1–23.

Magerman, D. M. (1995). Statistical decision-tree models for parsing. In Proceed-

ings of the 33rd annual meeting on Association for Computational Linguistics,

pages 276–283. Association for Computational Linguistics.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large

annotated corpus of english: The penn treebank. COMPUTATIONAL LINGUIS-

TICS, 19(2):313–330.

Marecek, D. and Straka, M. (2013). Stop-probability estimates computed on a large

corpus improve unsupervised dependency parsing. In ACL (1), pages 281–290.

Martins, A. F., Smith, N. A., Xing, E. P., Aguiar, P. M., and Figueiredo, M. A.

(2010). Turbo parsers: Dependency parsing by approximate variational infer-

ence. In Proceedings of the 2010 Conference on Empirical Methods in Natural

Language Processing, pages 34–44. Association for Computational Linguistics.

Matsuzaki, T., Miyao, Y., and Tsujii, J. (2005). Probabilistic CFG with latent an-

notations. In Proceedings of the 43rd Annual Meeting on Association for Com-

putational Linguistics, pages 75–82. Association for Computational Linguistics.

Mielens, J., Sun, L., and Baldridge, J. (2015). Parse imputation for dependency

annotations. In Proc. of ACL.

103



Moser, S. and Reeves, A. (2014). Taking the leap: Voting, rhetoric, and the deter-

minants of electoral reform. Legislative Studies Quarterly, 39(4):467–502.

Murray, J. S., Dunson, D. B., Carin, L., and Lucas, J. E. (2013). Bayesian gaus-

sian copula factor models for mixed data. Journal of the American Statistical

Association, 108(502):656–665.

Naseem, T., Chen, H., Barzilay, R., and Johnson, M. (2010). Using universal lin-

guistic knowledge to guide grammar induction. In Proceedings of the 2010 Con-

ference on Empirical Methods in Natural Language Processing, pages 1234–

1244. Association for Computational Linguistics.

Pereira, F. and Schabes, Y. (1992). Inside-outside reestimation from partially brack-

eted corpora. In Proceedings of the 30th annual meeting on Association for

Computational Linguistics, pages 128–135. Association for Computational Lin-

guistics.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning accurate, com-

pact, and interpretable tree annotation. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meeting of the As-

sociation for Computational Linguistics, pages 433–440. Association for Com-

putational Linguistics.

Petrov, S. and Klein, D. (2007). Improved Inference for Unlexicalized Parsing. In

HLT-NAACL, pages 404–411.

104



Petrov, S. and Klein, D. (2008). Sparse multi-scale grammars for discriminative

latent variable parsing. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pages 867–876. Association for Computational

Linguistics.

Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic
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