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ABSTRACT

LEARNING WITH JOINT INFERENCE AND LATENT
LINGUISTIC STRUCTURE IN GRAPHICAL MODELS

FEBRUARY 2015

JASON NARAD

B.A., B.S., M.A., STATE UNIVERSITY OF NEW YORK AT OSWEGO

M.S., STATE UNIVERSITY OF NEW YORK AT BUFFALO

M.Sc., UNIVERSITY OF EDINBURGH

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David A. Smith and Professor Mark Johnson

A human listener, charged with the difficult task of mapping language to meaning, must

infer a rich hierarchy of linguistic structures, beginning with an utterance and culminating

in an understanding of what was spoken. Much in the same manner, developing complete

natural language processing systems requires the processing of many different layers of

linguistic information in order to solve complex tasks, like answering a query or translating

a document.

Historically the community has largely adopted a “divide and conquer” strategy, choos-

ing to split up such complex tasks into smaller fragments which can be tackled indepen-

dently, with the hope that these smaller contributions will also yield benefits to NLP sys-

tems as a whole. These individual components can be laid out in a pipeline and processed in

v



turn, one system’s output becoming input for the next. This approach poses two problems.

First, errors propagate, and, much like the childhood game of “telephone”, combining sys-

tems in this manner can lead to unintelligible outcomes. Second, each component task

requires annotated training data to act as supervision for training the model. These anno-

tations are often expensive and time-consuming to produce, may differ from each other in

genre and style, and may not match the intended application.

In this dissertation we pursue novel extensions of joint inference techniques for natural

language processing. We present a framework that offers a general method for constructing

and performing inference using graphical model formulations of typical NLP problems.

Models are composed using weighted Boolean logic constraints, inference is performed

using belief propagation. The systems we develop are composed of two parts: one a rep-

resentation of syntax, the other a desired end task (part-of-speech tagging, semantic role

labeling, named entity recognition, or relation extraction). By modeling these problems

jointly, both models are trained in a single, integrated process, with uncertainty propagated

between them. This mitigates the accumulation of errors typical of pipelined approaches.

We further advance previous methods for performing efficient inference on graphical model

representations of combinatorial structure, like dependency syntax, extending it to various

forms of phrase structure parsing.

Finding appropriate training data is a crucial problem for joint inference models. We

observe that in many circumstances, the output of earlier components of the pipeline is

often irrelevant – only the end task output is important. Yet we often have strong a priori

assumptions regarding what this structure might look like: for phrase structure syntax the

model should represent a valid tree, for dependency syntax it should represent a directed

graph. We propose a novel marginalization-based training method in which the error signal

from end task annotations is used to guide the induction of a constrained latent syntactic

representation. This allows training in the absence of syntactic training data, where the

latent syntactic structure is instead optimized to best support the end task predictions. We

vi



find that across many NLP tasks this training method offers performance comparable to

fully supervised training of each individual component, and in some instances improves

upon it by learning latent structures which are more appropriate for the task.
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CHAPTER 1

INTRODUCTION

When humans interpret language they infer a rich hierarchy of linguistic structures prior

to constructing a semantic and pragmatic representation. Many of the tasks commonly ex-

plored in natural language processing (NLP) are approached in the same way: first, the

system recovers the relevant supporting linguistic structure (a parse tree, a tag sequence,

etc.), which it then utilizes it to improve performance on the desired task. However, the

working assumption underlying most NLP research is that linguistic processing can be

modularized (often into lexical, morphological, syntactic, semantic, and pragmatic infor-

mation), and that these modules can be modeled and trained independently. The resulting

models can be composed in a serial fashion, feeding the output of one component forward

to serve as input to the next, in a pipeline, in order to perform complex NLP tasks.

A typical pipeline might comprise a tagger, a parser, and an end task - the goal of the

system. While the notion of an end task varies, we consider tasks like named entity recog-

nition, relation extraction, and semantic role labeling to be sufficiently close to a user’s goal

to be considered end tasks. Beginning with a sentence of raw text, a tagging model might

pair each word with its most probable part-of-speech tag, before passing this information

forward to the parser. The parser, leveraging the additional information provided by the tag

sequence, assigns the most probable tree, and so forth. This provides a great deal of struc-

tured information from which to make end task predictions, but each model pushes forward

only a fraction of the information it captures, and information never flows backward.

Linguistic evidence points to a decidedly different view of the human language pro-

cessor, one in which information can flow more freely between components, helping to
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resolve ambiguity jointly (MacDonald, 1993; Plaut et al., 1996; Trueswell et al., 1994;

Treiman et al., 2003). Similar strategies have been pursued in the NLP community (Poon

and Domingos, 2007; Finkel and Manning, 2009; Lee et al., 2011; Singh et al., 2013a),

yet so-called joint inference techniques have yet to become the standard approach to model

composition. We hypothesize that this may be in part due to the lack of a flexible, gen-

eral framework for constructing models for joint inference, with the ability to efficiently

represent highly-structured models (such as models of syntactic structure). Additionally,

we observe that jointly annotated data – a single data set annotated for multiple tasks, suf-

ficient for training all the models of a pipeline system – is scarce, and in most instances

the outputs of intermediary models are never evaluated nor utilized other than to improve

performance on a singular end task.

To this end we present a general approach for constructing joint models: models which

unite more than one task-specific model, which we refer to as a component model, and

where information is shared freely between them during inference. Unlike the pipeline

approach, information can flow in both directions. In theory this allows a joint model to

recover from errors made by components which appear early in the pipeline, preventing

further errors from accumulating downstream.

We argue that factor graphs (Kschischang et al., 2001) are an ideal formalism for defin-

ing joint models. Factor graphs are a type of graphical model which are capable of repre-

senting many common NLP models, and provide many characteristics which are beneficial

for joint modeling in NLP:

• In a factor graph there exists a natural semantics for modeling dependent compo-

nents, and this provides a principled method for connecting two component models,

using probability theory as the language of coordination. Thus factor graphs provide

a means of constructing joint models from common single-task models.

• In a joint model, dependencies between component models often create cyclic depen-

dencies (loops). In a factor graph, there are inference algorithms (belief propagation,
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Pearl (1988)) which provide approximate solutions for arbitrary graph structures,

even those with cyclic dependencies. Therefore, factor graphs have a mechanism for

reasoning with joint models.

• One of the most common components of an NLP pipeline is a parser, which produces

a syntactic analysis for each sentence. Due to the combinatorial nature of syntactic

structure, incorporating a model of syntax can lead to difficult, if not intractable,

inference. Following the recent work of Smith and Eisner (2008), this problem can

be circumvented in factor graphs through the use of specialized combinatorial factors.

Having addressed the problem of constructing and reasoning with joint models, we

investigate new methods for training them. In order to train an NLP pipeline in the typical

fully-supervised case, each component requires its own training data. For a joint model, the

data requirements are significantly more demanding, as a single data set must be annotated

with the labels for each task. Annotated data is already exceedingly scarce for most tasks

in most languages, making this a very burdensome requirement.

To counter this we propose a paradigm shift away from the traditional motivation for

joint inference, in which two or more tasks benefit mutually from fully-supervised joint

training (Finkel and Manning, 2009), and focus instead on the scenario where joint infer-

ence is applied solely towards improving performance of a single task. In this scenario,

we can reduce the labeled data requirements of joint modeling by treating all supporting

models (component models which are not the end task) as latent, or unobserved during

training, requiring no training data of their own. For these models training supervision

comes only indirectly, through the annotations of the end task, and is propagated through

model dependencies during inference. In this scenario joint inference offers something

new: a principled approach to learning with a combination of supervised and unsupervised

components in a task-directed manner. We show, across a variety of NLP tasks, that this

method provides performance comparable to fully-supervised training while requiring far
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less training data, and in some circumstances even improving over identical models using

gold or parser-produced annotations.

1.1 Overview

1.1.1 Model Combination: Maintaining Uncertainty

The natural language processing community works largely under the assumption that

language can be effectively partitioned into largely independent modules – phonology,

morphology, syntax, and semantics – each of which can be tackled independently. Each

model assumes that all prerequisite steps have already been solved, and the input annotated

accordingly. For example, a parser typically assumes the input has been part-of-speech

tagged, and a semantic role labeling system typically assumes the input has been parsed.

But this strategy is only optimal when the tasks are largely independent of one another,

i.e., that the solution to the latter problem does not influence the former. In the pipeline

approach, errors made by earlier components force the following components to base their

predictions on erroneous information, making it more likely for additional errors to accrue.

If the models are dependent, information from later components could influence these early

decisions. Methods of joint decoding aim to solve this problem. Starting from pre-trained

models for individual tasks, joint decoding methods aim to find the optimal solution by

considering information from all component models jointly. This may be the best solution

for the entire pipeline (i.e., the best global solution), or it could be the optimal solution for

only a subset of these components, conditioned on others.

In order to provide some context in which to discuss the problem of model combination,

let us consider the task of semantic role labeling. Semantic role labeling (SRL) is the task

of identifying basic semantic relationships in text. Given a sentence, the first step is to

identify key verbs, known as predicates, and group them with their associated arguments.

Each argument is given a label to describe the nature of its relationship with the predicate,

known as its semantic role (i.e., agent, patient, instrument, etc..) For the example sentence
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a.)  Part-of-speech Tags b.)  Dependency Parse c.)  Semantic Role Labels

The    cat   scratched   the    man

DET   NN      VB      DET   NN

The    cat   scratched   the    man The    cat   scratched   the    man

AGENT PATIENT

Figure 1.1. Annotations for three common NLP tasks.

“The cat scratched the man”, the correct SRL analysis identifies scratched as a predicate,

cat and man as its arguments, and labels them AGENT and PATIENT respectively. These

annotations are shown in Fig.1.1c.

Current state-of-the-art SRL systems require a parsing component. In turn, because

part-of-speech tags are required to train the parsing model (Fig.1.1a), the system will re-

quire yet another model to tag words with their parts-of-speech. We can define a set of

models that reflect this this hierarchy:

ModelTags =P (Tags|Words,ΘTags)

ModelTree =P (Tree|Tags,Words,ΘTree)

ModelSRL =P (SRL|Tree, Tags,Words,ΘSRL)

(1.1)

where ModelTags, ModelTree, and ModelSRL are models for part-of-speech tagging, pars-

ing, and SRL, Tags, Tree, and SRL are the predicted variables, ΘTags,ΘTree,ΘSRL are

the corresponding model parameters, and Words is a variable representing a sequence of

words provided to each model as input. During training a parameter estimation method

is used to optimize each model’s parameters. In a supervised pipeline approach (Fig. 1.2)

each model is trained independently, and requires its own annotated data set. During testing

these models are utilized to annotate raw text with SRL annotations. Models for tagging,

parsing and SRL will be defined in full detail in Chapters 2, 3 and 6, but for now let us

consider how to decode (i.e., utilize the model’s predictions to assign structure to raw text)

using these models on an arbitrary sentence.
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Tagged
Docs

Part-of-Speech
Model

Text
Docs

Tree
Docs

SRL
Docs

SRL
Output

SRL
Model

Parsing
Model

N-best Tags N-best Trees

Testing Configuration

Training Configuration

Figure 1.2. A pipeline approach to model combination. Individual models are trained in-
dependently from their own task-specific annotations, i.e. tagged documents are annotated
with part-of-speech tags, tree documents with syntactic trees, and SRL documents with
predicate-argument pairs. These data sets may come from difference sources (top). During
testing, where the goal is to use the system to make end task predictions for new data, the
only input to the system is raw text. Each successive model applies an additional layer of
annotation, propagating it forward to be used as input to the next (bottom). This is often the
single most probable analysis, but components can also propagate forward larger lists of
analyses (known as an n-best list, of size n) in order to give later components some chance
at recovering from a poor decision early in the pipeline.

Our goal is to find the most probable SRL analysis, but, due to the hierarchical nature

of the dependencies between these three models, finding this solution requires us to first

consider the values of the Tree and Tags variables. However, in this scenario Tree and

Tag are latent variables: we have models specifying distributions over these variables, but

their actual values are unknown. Here we present and contrast two approaches to dealing

with these latent variables. The first decoding strategy truncates the latent variable distri-

butions to a set of their most probable elements. A second decoding strategy relaxes this

approximation, considering each possible analysis of latent structure and contributing its

probability mass toward the SRL solutions that are most compatible with it.
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1.1.1.1 N-Best Pipelines

Perhaps the most straightforward approach to decoding a set of dependent models is to

process each model in turn, taking the output from each model and using it as input to the

next. Here the model dependencies impose a natural order, beginning with the Tag predic-

tion, proceeding to Tree prediction, before finally reaching the goal, SRL prediction. This

is aptly referred to as an n-best pipeline, where n is the number of analyses put forth by

each component model (Figure 1.2). When the output from each model is its single best

hypothesis, n = 1, this strategy can be summarized by the following equation:

GOAL1−best = arg max
s∈S

P (SRL = s|Tree = t, Tags = p,Words = w,ΘSRL)

max
t∈T

P (Tree = t|Tags = p,Words = w,ΘTrees)

max
p∈P

P (Tags = p|Words = w,ΘTags)

(1.2)

where S, T , and P are the sets of all possible SRL analyses, trees and tag sequences,

respectively, and GOAL1−best is the single-best SRL analysis, conditioned on the single-

best tree and tag sequence.

This is a very practical approach, but when viewing this decoding strategy as a maxi-

mization over each model in turn, it becomes clear that this is merely an approximation of a

more exhaustive search. The approximation used here, known as the Viterbi approximation

(in reference to the Viterbi decoding algorithm for hidden Markov models (Viterbi, 1967)),

replaces each distribution with the most probable element of that distribution. This could

also be viewed as three applications maximum a posteriori (MAP) decoding, one for each

of the three models, or as a case of n-best decoding, where n = 1.

While attractive from a practical perspective, pipeline approaches – both the Viterbi ap-

proximation and the more general n-best list decoding strategy – are severely handicapped

when it comes to finding globally optimal solutions in NLP. In general, if the distribution

of a preceding component is peaked (i.e., concentrated primarily on a small percentage of

the analyses), the Viterbi approximation has a greater chance of selecting the correct hy-
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The    cat   scratched   the    man

DET   NN      VB      DET   NN

The    cat   scratched   the    man

DET   NN      VB      DET   NN

The    cat   scratched   the    man

DET   NN      VB      DET   NN

Syntax Analysis t1: P = 0.3 Syntax Analysis t2: P = 0.2 Syntax Analysis t3: P = 0.2

AGENT PATIENT AGENT PATIENT AGENT PATIENT

Figure 1.3. Failure of the Viterbi approximation. The top three trees of the parsing model’s
distribution are shown, along with the correct SRL analysis below. SRL dependencies that
are supported by the syntactic analysis are shaded in green, and those which do not are
shaded in grey. The solution chosen by the viterbi approximation (leftmost tree) does not
maximally support the correct SRL analysis (shown below each tree), as it shares only
one of the SRL solution’s two arcs. In comparison, if the entire ModelTree distribution is
utilized the correct SRL analysis would receive additional (and greater) support from trees
t2 and t3.

pothesis. If the distribution is flatter, the model is less certain, the most probable analysis

inherently a poorer approximation to the full distribution.

To understand how this affects model combination in practice, consider the example

outlined in Figure 1.3. Here we depict three syntactic trees and their probabilities as spec-

ified by ModelTree, paired with the correct SRL analysis. Let us assume that a syntax tree

provides evidence for an SRL analysis if there exists a corresponding syntactic dependency

for each SRL dependency. When using the Viterbi approximation, ideally the most prob-

able parse tree provides the maximum amount of evidence in support of the correct SRL

analysis. However, here we find that the most probable parse tree, t1 with probability 0.3,

is incorrect, and only partially supports the correct SRL analysis. The most probable SRL

analysis under the distribution P (SRL|Tree = t1, Tags = p,Words = w), conditioning

on incorrect information, is also likely to be incorrect.

In this case, broadening the the approximation to include all three parse trees would

allow the model to include additional information from tree t2 and t3 that would be bene-

ficial to SRL prediction. However, in practice this strategy is flawed: the space of possible

parse trees for a sentence is often too large to tractably pass forward from one component to
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another. We now present an alternative method to decoding in which all syntactic analyses

contribute in part to the decoding of the SRL model.

1.1.1.2 Marginalization-based Decoding

In a 1-best decoding strategy only a model’s most probable analysis will affect the dis-

tributions of later models. All other information about the model distribution is discarded

at each step. An alternative approach, which we will refer to as marginalization-based

decoding, generalizes over the n-best list approach, and provides a method for including

more of the information captured by the latent distributions. It does this by marginalizing

(summing over) all possible values for the latent variables (Tree and Tags):

GOALMarg = arg max
s∈SRL

∑
t∈T

∑
p∈P

P (SRL = s|Tree = t, Tags = p,Words = w,ΘSRL)

P (Tree = t|Tags = p,Words = w,ΘTrees)

P (Tags = p|Words = w,ΘTags)

(1.3)

where GOALMarg is once again the single most probable SRL analysis, but this time con-

ditioning on all possible values of latent trees and tag sequences. This makes it more robust

to the effects of flatter model distributions.

Returning to the example analyzing the effect of parser decoding on the SRL model

(Fig. 1.3), recall that the Viterbi decoding strategy selects the most probable parse tree, t1,

and ModelSRL conditions upon it when finding the most probable SRL solution. Tree t1

provides only partial support for the SRL analysis, with one of the two correct SRL de-

pendencies having a corresponding syntactic dependency. Using the marginalization-based

decoding strategy, summing over trees will provide nearly half (P (t2|Tags = p,Words =

w) + P (t3|Tags = p,Words = w) = 0.2 + 0.2 = 0.4) of the latent distribution’s prob-

ability mass to work in favor of the correct SRL solution. The sum of support for the

correct analysis now outweighs the support for the incorrect analysis, 0.4 to 0.3. For illus-

trative purposes our example here contains just three hypotheses. In practice there are thou-
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sands of possible trees for reasonably-sized sentences, and this mass must be distributed

across many more trees, making the distribution inherently flatter and the Viterbi approach

a poorer approximation of the full distribution.

We conclude with a clarification. The n-best and marginalization-based approach to

decoding are useful for illustrating the difference between how model combination is typ-

ically done in practice, as an approximation, and the more general marginalization-based

approach. However, the models we propose are joint. Joint models unite the advantages

discussed here (maintaining uncertainty at each step) with bidirectional information flow.

This allows the beliefs of the later models to influence other models which would appear

earlier in the pipeline. For instance, bidirectional information flow allows the beliefs of

the SRL model to influence the parsing model, during both decoding and training. Instead

of taking a set of pre-trained models as input to decoding, a joint model provides just one

(individual component models are not factored out).

1.1.2 Marginalization-based Approaches to Training

We have presented an initial set of motivations for preferring a marginalization-based or

joint decoding strategy over alternatives like n-best lists or Viterbi decoding. By operating

on full distributions marginalization-based decoding avoids some of the potential pitfalls

of approximate solutions to the global problem. But if this is our ideal decoding strategy,

then what is the corresponding ideal method for training? Here we describe an analog to

training we refer to as a marginalization-based training, which extends to optimization

the philosophy of working with full distributions.

Let us start by discussing the pipeline approach to training. During training in this

scenario, there are no latent variables. In the case of our SRL example, the SRL model is

given the true values for SRL, Tree, and Tags. The Tree model would observe the true

analyses for Tree and Tags, and so forth. These true analyses are derived not from the

output of a previous model, as it is during testing, but are provided in annotated data. This
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decoupling allows the models to be trained independently of each other, as illustrated in

Fig. 1.2 (top). Optimizing the set of models can then be done as follows:

ΘML−SRL = arg max
ΘSRL

n∏
i=1

P (SRLi|Treei, Tagi,Wordsi,ΘSRL)

ΘML−Tree = arg max
ΘTree

n∏
i=1

P (Treei|Tagi,Wordsi,ΘTree)

ΘML−Tags = arg max
ΘTags

n∏
i=1

P (Tagsi|Wordsi,ΘTags)

where i corresponds to the ith item from the training data. This type of optimization is

known as maximum likelihood estimation (MLE). In MLE the goal is to optimize the

likelihood of the parameters given the data, L(Θ|x). This is equivalent to maximizing

P (x|Θ), and thus the right hand side of each equation is a likelihood. Each instance of the

training data is treated as independently generated, thus the likelihood of generating the

entire data set is the product of all individual likelihoods.

There are some practical advantages to this approach. It is easier to find a separate data

set for training each model than it is to find a single data set annotated for all three tasks,

and it is also easier to train each model independently than to jointly optimize all models

simultaneously. However, the disadvantage to training each model off an unrelated data

set is that there will be some degree of domain or genre mismatch between them. Gildea

(2001) shows that a parser trained on a corpus of newswire performs notably worse when

tested on a mixed-domain data set. A similar problem exists when training systems off

of several task-specific data sets. For instance, both the SRL and parsing models utilize

parse trees during training, each from their own respective data sets. During decoding, the

trees used by the SRL model are obtained from the parsing model. If these trees are not
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representative of the trees the SRL model was trained on, the setting is identical to testing

on out of domain data, and may be subject to similar performance loss.

In this thesis we propose a different strategy for training dependent models. Instead

of training each model toward its own goal (i.e. a tagging model which attempts to best

reproduce the gold tags from a corpus, a parsing model which attempts to reproduce the

gold trees from another), we train all models toward one goal: improving performance on

the end task. In the example case, the end task is SRL. Once we treat component models

as parts of one larger, end-task directed model, there is no need to require task-specific

annotations for each component model.

In theory this allows us to perform a complex end task like SRL, without requiring any

training data for supporting tasks, like part-of-speech tagging or parsing. The resulting

optimization on a joint model has the following form:

ΘML−Marg =

arg max
ΘSRL,ΘTree,ΘTags

∏
i

∑
t∈T ,p∈P

P (SRLi, T reei = t, Tagsi = p|Wordsi,ΘSRL,ΘTree,ΘTags)

(1.4)

where SRLi is the correct SRL structure for the ith training example, and we once again

sum over the latent Tag and Tree variables. But this is during training – if supervision for

these models is not required, what constitutes a probable tree or tag sequence? What these

models will learn to represent is something more abstract, with supervision coming only

indirectly, through the end task annotations. The fact that this is a joint model is what allows

the error signal, originating with end task annotations, to propagate out and influence these

latent structures. Simultaneously, we provide general constraints on the kinds of latent

structures are permissible. For syntax, these constraints force the latent structure to be a

directed graph or a tree. The learned latent structure will be one that optimizes Eq. ??

while adhering to these general structural constraints.
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This discussion has provided a high level view of the approach pursued throughout

this dissertation, leaving open the question of how we construct models, and how this

method compares to other approaches. In the next section we introduce graphical models,

a framework which we argue is convenient for constructing joint models, and performing

joint inference.

1.2 Joint Inference in Graphical Models

We have previously described our marginalization-based approach to both model train-

ing and decoding. This goal requires information to be shared between component models,

but we have not yet discussed how this communication is possible. The answer lies in in-

ference, the process of drawing conclusions from data by using a statistical model. In this

section we introduce graphical models, a powerful framework for representing and reason-

ing with probabilistic models. Here inference will be used to answer the question, for a

variable x and a value q, “Given values for certain variables, what is the probability that

variable x has value q?”. The answer provides a key component, marginals, required for

training these models when using a gradient-based optimization method.

1.2.1 Graphical Models

Graphical models are a family of formalisms that use graph theory to express proba-

bilistic relationships, namely conditional independence assumptions, which are useful for

defining efficient inference algorithms. Here we provide a brief overview of graphical

models, before discussing them at depth in Section 2.2 (pg. 34).

A probabilistic model encodes a problem domain using a set of random variables, the

value of each variable capturing the state of particular aspect of the world. In NLP, a random

variable may represent a word’s part-of-speech tag, a syntactic dependency between two

words, or named entity over a span of words. A probabilistic model defines a distribution
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over these variables, specifying the probability for any possible assignment of values to the

variables in the model.

But a distribution over a set of n variables, each with m values, yields O(mn) config-

urations, growing exponentially with the number of variables in the model. The models

presented in this dissertation will often contain thousands, if not tens of thousands of vari-

ables, and thus working with the distribution directly would be intractable.

Graphical models are a type of probabilistic model which use graph structure to rep-

resent a factorization of this distribution. Variables correspond to nodes in the graph, and

the graph’s edges encode dependencies between variables. More precisely, the absence of

edges in the graph specifies the conditional independence properties of the model (this is

described in detail in Section 2.2 on pg. 34). This allows graphical models to factor the dis-

tribution as the product of many simpler functions, each of which deals with a much smaller

subset of variables. The sparser the connections are in the graph, the more compactly the

distribution can be represented using a graphical model.

This is the key to tractable representations of probabilistic models, but it is also a con-

venient factorization: a sparsely connected graph provides a more compact representation

of the distribution which helps to support efficient inference, but it simultaneously com-

plements the modeler’s goal of applying their expert knowledge to define the problem in a

simple, intuitive manner.

1.2.2 Factor Graphs

In this dissertation we focus on a type of graphical model known as a factor graph.

Factor graphs make the dependencies between variables more explicit using a second set

of nodes known as factors. A factor scores any assignment of values to its neighboring

variables. A factor which neighbors just a single Boolean variable, whose values range

over {true, false}, specifies a score for the variable being true, and a score for the variable
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being false. The model’s score for a configuration of variables is simply the product of all

the corresponding factor scores for that configuration.

The factorization provided by a graphical model only yields a significant reduction in

complexity when edges in the graph are sparse. When graphs are densely connected, the

factorization is not as efficient and inference can become intractable. In NLP, one such

case is that of syntax trees. Two leading syntactic formalisms, phrase structure and depen-

dency structure, can be represented in a factor graph using O(n2) variables. However, to

ensure that all configurations of variables correspond only to valid trees, a large (sometimes

exponential) number of factors is required.

Factor graphs provide a solution to this problem. Instead of constraining variable con-

figurations using many factors over small sets of variables, a single globally-connected

special-purpose combinatorial factor can enforce this constraint. Such a factor encapsu-

lates a function, different from standard inference procedure, to update the values of all

syntactic variables simultaneously. This can be done in a much more efficient manner by

leveraging dynamic programming algorithms developed earlier in the parsing literature,

requiring only O(n3) time. We make use of this strategy throughout this thesis to effi-

ciently represent structured models, primarily syntactic models, and present a novel factor

for efficiently representing phrase structure syntax (Sec. 3.1.2.1).

Special-purpose factors are also useful in constructing joint models. We define Boolean

logic factors to coordinate between corresponding variables from separate component mod-

els. For instance, if an SRL dependency commonly corresponds to a syntactic dependency,

we can model a correlation between the two corresponding variables by connecting them

with a Boolean logic factor. These factors contribute a score when the Boolean logic is vi-

olated. This score can be derived from a set of feature weights, so the model can learn how

strongly these variables correlate. While there may be many such factors used in modeling

the connections between two models, each connecting factor is associated with different

features and will contribute a context-sensitive score to the model.
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1.2.3 Inference

During training, maximum likelihood estimation is used to find the parameters for

which the model most accurately predicts the data. In order to efficiently search the vast

space of all real-valued parameters, we use gradient-based optimization, which in turn re-

quires computing the gradient of the model parameters. This gradient is a ratio between

expectations – one expectation taken deterministically from the labeled training data, a

second expectation calculable via inference. Inference in a factor graph produces factor

marginals, sometimes called beliefs. A factor’s marginal defines a distribution over the

values of its neighboring variables, and is calculated by summing over them, the same

marginalization process discussed earlier in Section 1.1.2 (pg. 10).

It follows that in order to compute the marginal for a single factor, all other factors

must be involved in the computation. To compute the marginal for a second factor, nearly

all of the same factors will be used in an identical manner. A more attractive solution

is offered by message passing algorithms, a family of inference algorithms for graphical

models that operate by distributing and collecting information across the graph. The key

insight of message passing inference is that these otherwise redundant calculations can be

cached locally, allowing for exact inference in just two passes through chain or tree-shaped

graphs. For general graphs inference is intractable, but it can be approximated using loopy

belief propagation, an inference method used repeatedly in this thesis.

Wrapping inference inside a gradient-based learning scheme is a common approach to

supervised training, but to realize the goal of training in the presence of latent variables,

as described in Eq. ??, we only need to slightly modify this procedure. Instead of acquir-

ing the first expectation entirely from labeled training data, this too can be calculated (or

approximated, in cyclic graphs) via inference. For this calculation the subset of observed

variables are set to their true values prior to inference. Inference and gradient calculations

can then be performed normally, with the resulting update reflecting a marginalization over

latent variables whose true values were provided by the training data. By utilizing this
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two-step inference procedure inside gradient-based optimization we are able to train in the

presence of latent variables, optimizing all model parameters toward the goal of improving

end task performance.

1.3 A Comparison of Approaches to Joint NLP

The NLP community has made great strides in improving the performance of NLP

models on single tasks, but the real-world success of these models will hinge on how well

such models work together in the context of an end-to-end NLP system. In response to

this need, model combination has received a great deal of attention in recent years. We

divide these contributions into two groups along the conceptual axis of whether the models

are trained independently and combined only during testing (joint decoding), or if they are

treated jointly throughout (joint training). Common to all combination methods is the need

to communicate or negotiate between model components. However, how models exchange

information is unique to each approach.

1.3.1 Joint Decoding

Perhaps the simplest method of combining models is to train them independently and

aggregate their output in a manner that solves the global problem. We refer to this class of

approaches as joint decoding methods.

1.3.1.1 Comparisons to Pipeline Decoding with n-best Lists

As discussed previously, one of the most straightforward methods of model combina-

tion is the n-best pipeline, in which each model is processed in sequence, the output of one

model – a set containing the n most probable analyses – becoming the input to the next. In

Section 1.1.1 we provided a high-level overview of why an marginalization-based decoding

scheme may be preferable alternative, but having now introduced the machinery by which

we implement and train our models, we discuss the remaining advantages of our approach:
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(1) unidirectional vs. multidirectional information flow, and (2) passing complete analyses

vs. beliefs over parts of analyses.

1.3.1.2 Unidirectional vs. Bidirectional Information Flow

Recall that the pipeline approach fails when the optimal local solution falls outside of

the n-best list. Passing forward a poor set of analyses provides a faulty foundation from

which to make the next stage of predictions, leading to increasingly poorer predictions as

information moves through the pipeline. One solution to this problem is to increase the

size of n, making it more likely that the optimal local solution is contained within the

larger list. In practice this strategy is rarely helpful, as even increasing the list capacity

to hold thousands of elements rarely makes a significant difference when the list items are

heavily structure objects with an enormous number of possible structures, like trees (Huang

and Chiang, 2005). The larger problem is that information in a pipeline only flows in one

direction.

This is a handicap not shared by other approaches. For instance, a joint model can

circumvent these issues because each component model’s contribution accounts for only

part of the global model’s final solution. In this sense, joint inference acts as a discourse in

which all models participate. Like a jury slowly nudging a dissenter toward a unified con-

sensus, inference has the effect of mitigating the weaker sources of conflicting information.

Let us consider how a joint model might recover from a poor local analysis in the con-

text of a joint part-of-speech tagging and dependency parsing model. The sentence “Man

the harpoons.” is lexically ambiguous: both man and harpoons can be either nouns or

verbs. Consider a simple tagging model, a unigram model, which contains no dependen-

cies between adjacent tags. Each word receives its most frequent tag. The word “man”

is not frequently a verb, so the model would incorrectly assign the most probability to

analyses where it is labeled a noun (Fig. 1.4, left).
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Figure 1.4. Bidirectional information flow via belief propagation. The figure depicts three
analyses over tag sequences (a1, a2, and a3) as scored by models prior to global inference
(left and middle) and after (right). In a traditional NLP pipeline information flows in only
one direction: forward. When a component suggests a poor analysis early in the pipeline,
as is the case when taking the 1-best analysis of the tagger (left), downstream models (the
parser, middle) are more likely to make poorer predictions, and errors multiply. A joint
model (depicted within the bounding box) can circumvent confident, erroneous model-
ing components by allowing information to flow backwards in the pipeline, and influence
earlier models. The resulting tagger beliefs favor the analysis most compatible with both
models’ beliefs (right).

However, a parser scores trees based on a separate set of criteria. For instance, a parser

may assign a very low score to a tree that contains no verb, as verbs play an important

syntactic role and trees without them are uncommon (Fig. 1.4, middle). Thus an analysis

that was initially considered very probably under the tagger becomes very unlikely when

placed in the larger context. If these components were connected in a 1-best pipeline, the

system would already be committed to the incorrect tag sequence and leave successive

components little chance to recover. In the Fig. 1.4 example, the resulting parse, a3, would

be highly unlikely.

A joint model circumvents this by allowing information to flow in both directions. Dur-

ing inference, the beliefs that a factor has over its neighbors propagate throughout the

graph, influencing the beliefs of even distantly connected factors. In a joint model of tag-
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ging and parsing, the model’s beliefs over syntactic variables can help guide its beliefs over

part-of-speech variables, and vice versa. In essence, joint inference entirely discards the

notion of a serialized order that was inherent in the pipeline. When inference ends and the

model beliefs have converged to a globally-informed optimum, the resulting solution may

differ from either the tagger or parser’s single most probable independent analysis (Fig.

1.4, right), but will reflect the pooled information of all component models.

1.3.1.3 Units of Exchange

A second point of divergence is scope of the information that is passed between models.

In an n-best pipeline the model components pass forward lists of complete structures. If

the model is a tagger, a list of complete tag sequences is pushed forward. If the model is a

parser, a list of trees. In doing so, n-best lists force the system to multiply out ambiguities.

A joint factor graph model can differ in this respect, as it can coordinate component

models on a much finer level of granularity. In the method we propose, it is not models

that share information, as much as it parts of models that share information. Assume there

is a model of syntax and a model of semantic role labeling. Coordination between these

models occurs at the level of corresponding variables. If we believe that a syntactic span

over a pair of indices is correlated with an SRL relationship over those indices, the variables

representing these structures can be connected via a factor.

During inference, the information shared between component models takes the form of

variable-to-variable interactions. A variable from one model, the source, sends a message

to the coordinating factor. This message represents the variable’s belief about its values

in light of all the evidence it has received from all of its other neighbors. The coordinat-

ing factor receives this message and multiplies in its own score before relaying it to the

destination variable in the opposing model. This score either reflects the modeler’s intu-

ition regarding the nature of the coordinated variables, and we consider the special case

where this intuition is captured by a Boolean logic relationship, or it could alternatively
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be learned entirely from data. The process of coordinating between component models in

factor graphs is described in Section 2.4.3 (pg. 65).

While an n-best list might also pass forward additional information to better describe

the model’s distribution, fine-grained information is still lost. For example, in a pipeline a

parser may push forward a list of trees and their associated probabilities, but the weights of

substructures within each tree are lost. This would be similar to classifier stacking, where

each model outputs a posterior distribution instead of a finite subset of possible analyses.

If knowledge of a particular substructure is useful to the end task prediction, much of this

information may be lost by the n-best approximation.

For instance, in SRL, in determining whether a semantic dependency exists between

two words it is useful to know if there is a corresponding syntactic dependency between

them. When considering the model’s beliefs over all trees, it may be very likely that this

dependency exists in the tree, but this is no guarantee that it will be present in the trees

selected for the n-best list. This is not true of our joint approach, where the corresponding

syntax and SRL variables can be directly connected in the graph. During inference, the

information sent from the syntactic variable to the SRL variable represents precisely what

is desired: the syntax model’s total belief that the syntactic dependency is present.

This also affects the scalability of these models. For a combinatorial structure, like a

syntax tree, the number of possible trees for a given sentence length can be exceedingly

large. This is often an intractable number to pass forward, and motivates approximations

where only a subset of the total number of trees, the n-best, are exchanged. It’s the fine-

grained nature of connecting model variables rather than models, that allows our approach

to remain tractable without approximations.

1.3.1.4 Other Approaches to Joint Decoding

Our approach is not the first method to solve the joint decoding problem. In this section

we discuss two alternatives: Integer Linear Programming, and Dual Decomposition.
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1.3.1.4.1 Integer Linear Programming

Integer linear programming (ILP) is a form of mathematical optimization which can be

used to perform global inference across a set of component models. ILP maximizes a

linear objective function, and requires each model (and the relationships between them) be

expressed as a set of linear constraints. ILP is NP-hard but tractable for many problems,

and when solved ILP provides an exact solution.

When a model is intractable one strategy to circumventing computational inefficiency

is to decompose the problem into many subproblems which may be easier to solve individ-

ually. ILP provides a method for finding the global solution from a set of solvers, each solv-

ing part of the problem. This strategy has been applied to dependency parsing (Riedel and

Clarke, 2006), SRL (Punyakanok et al., 2004), and natural language generation (Marciniak

and Strube, 2005), among others. When these subproblems are component models, ILP

becomes a method of model combination, and an alternative to the pipeline approach. Roth

and tau Yih (2004) show that a global decoding strategy with ILP outperforms a pipeline

approach when applied to named-entity recognition and relation extraction. In SRL, a task

we pursue in Chapter 6, many joint parsing and ILP systems have been proposed and are

included in some of the state-of-the-art systems for this task (Punyakanok et al., 2005; Tsai

et al., 2005).

Not all problems are easily expressible in terms of linear constraints. Riedel and Clarke

(2006) notes that non-projective dependency parsing requires an exponential number of

constraints, making ILP intractable. A similar problem occurs when expressing non-

projective dependency parsing with factor graphs. Riedel and Clarke (2006) avoid this

problem by incrementally introducing constraints into the model, attempting to limit the

number of necessary constraints to a tractable size. In our own approach with factor graphs,

we adopt the method of Smith and Eisner (2008) using combinatorial factors. This method

is discussed further in Section 2.4 (pg. 54).
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1.3.1.4.2 Dual Decomposition

A second and related approach is dual decomposition (DD, also known more gener-

ally as lagrangian relaxation1). DD has the same theoretical underpinnings as ILP, and is

another technique borrowed from the mathematical optimization literature. In DD, mod-

els are coerced into agreement by adjusting Lagrange multipliers. If the exact solution is

found, it also returns a guarantee of optimality.

DD has been applied to a large number of joint tasks ranging from combining depen-

dency parsing and constituency parsing (Rush et al., 2010), language models with syntactic

machine translation (Rush and Collins, 2011), with phrase-based translation models (Chang

and Collins, 2011), CCG super tagging and parsing (Auli and Lopez, 2011), and MT align-

ment models (DeNero and Macherey, 2011). As a decoding strategy, DD is an attractive

framework. It’s fundamental shortcoming as it pertains to our task-directed learning frame-

work is that it is currently unclear how to apply it during training, in the presence of latent

variables.

There are numerous differences between these alternative joint decoding method and

our proposed method. Both ILP and DD have the benefit of exactness: ILP returns an exact

solution if computation terminates, and DD has a high rate of discovering and proving exact

solutions in a number of NLP tasks (Rush et al., 2010). But exactness comes at a cost. ILP

is NP-Hard and while the solution is guaranteed to be exact, the ILP solver may not return

one in a practical amount of time. DD is also somewhat limited, requiring that subproblems

have efficient solutions, and non-overlapping features (such as first order logic features and

features that violate Markov assumptions) . Overcoming some of these difficulties has been

addressed in previous work (Martins et al., 2011), but remains an open area of investigation.

1Dual decomposition refers to a special case of Lagrangian relaxation methods in which two or more
combinatorial algorithms are used.
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In contrast, while loopy belief propagation only finds approximate solutions, this ap-

proximation compares favorably to DD in practice (Auli and Lopez, 2011). Graphical

model representations have already been developed for many NLP problems, alleviating

the need to find novel ways of representing the model in a particular framework. Models

can be overlapping, and dependencies between models can be specified arbitrarily between

any sets of variables.

However, the most distinguishing and most pertinent difference between these ap-

proaches and the joint factor graph approach is that our method can extend beyond test

time, coupling models during training as well. Joint inference during training is a crucial

aspect of the framework, ultimately allowing us to achieve our goal of optimizing latent

structure towards a specific end task.

1.3.2 Joint Training

In Section 2.5.2 (pg. 71) we presented a simple approach to decoding a set of dependent

models, the n-best pipeline, and discussed scenarios where it is unlikely to find the global

maximum. Joint decoding methods like ILP and DD circumvent these shortcomings, but

still assume the models have already been trained, often independently from one another

and using a separate data set for each. In this scenario there may be domain mismatch be-

tween data sets, and models which appear earlier in the pipeline ignore useful information

from later models. In contrast, joint training optimizes all models toward a single objective.

In this section we provide an overview of two methods of joint training, and contrast

them with our own.

1.3.2.0.3 Combining Predictions Instead of Models

One way in which to perform joint training is not to combine models per se, but rather

to combine the structures they predict. The problem then shifts from learning how to co-

ordinate model components, to how to train the more complicated model. Consider the

sentence John saw Mary. A possible parse tree for this sentence is:
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(S (NP (NN JOHN)) (VP (VB SAW) (NN MARY))).

And a corresponding named-entity span to indicate that John and Mary are named entities:

(PER John) saw (PER Mary)

If one wished to pursue a joint approach to named-entity recognition and parsing, one needs

only to modify the grammar used by the parser to incorporate the named-entity information.

The following tree reflects the predictions of both tasks:

(S (NP (NN-PER JOHN)) (VP (VB SAW) (NN-PER MARY))).

Using standard parsing methods with this grammar produce what can be thought of as

a joint analysis, with one problem cleverly nested inside of another (Finkel and Manning,

2009). But this is precisely one of the limitations of the approach: only a problem that can

be conveniently described inside of another can be pursued in this manner. For NER this is

an intuitive method of coupling - a named entity is a specialized noun phrase, but trying to

combine two problems where dependent structures are likely to cross would not be possible

with this method. For instance, prosodic information is commonly characterized as a series

of breaks, or pauses, in a spoken utterance. While the prosody and syntax are correlated,

Ostendorf and Veilleux (1994) notes that prosodic breaks do not always correspond to

syntactic boundaries. A parse tree’s syntactic spans cannot cross, and therefore there is no

way to jointly model prosody and syntax in this manner.

A second disadvantage is that when combining a task with a parser, as described above,

the grammar would grow multiplicatively, as a copy of each nonterminal must be made for

each of the named entity labels. While many cubic time parsing algorithms exist, n as it

pertains to parsing is often very small (< 40), and in practice the complexity of parsing is

largely determined by the size of the grammar. Thus, from an efficiency standpoint, multi-

plicative increases to the size of the grammar affect the parsing algorithm at an especially

susceptible point. This issue is explored in greater detail in Sec. 4.2.
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A third disadvantage of this approach is one common to many joint models: data. In

order to train the joint syntax and NER model there must be a data set jointly annotated with

the structures for both tasks, as joint training hinges on learning the correlation between

two tasks. In proportion to the amount of unstructured data in the world, annotated data is

scarce, and jointly annotated data is still unobtainable in many languages for many pairs

of tasks. Finkel and Manning (2010) show how a joint model can benefit from additional

singly-annotated data. In addition to the joint model, a standalone NER model is trained on

data containing only NER annotations, and a standalone parser is trained on data containing

only syntax trees. During training, a prior can be used to promote agreement between the

standalone and joint models. This may reduce the amount of jointly annotated data required

for comparable performance, but it does not remove the need for it.

1.3.2.0.4 Learning over Constrained Latent Representations

A second approach to joint training, and perhaps the work most closely resembling our

own, is the Learning over Constrained Latent Representations (LCLR) framework of Chang

et al. (2010). Both LCLR and our own approach share similar goals: both aim to learn

the optimal latent structure for a particular end task, where only end task annotations are

observed. This removes the need for jointly annotated data. However LCLR does not define

latent structure to the extent that it can be thought of as a series of intermediate models –

there is only input, a latent representation, and an output. As such there are no analogous

supervised correlates for this algorithm (like the pipeline approach). Our method is more

general and could in theory couple more than two models, yet for the scope of this thesis

the setup is identical to our own.

In LCLR the end task annotations are used to guide the induction the latent structure.

Though LCLR is an attempt to improve upon the ”two stage” learning method, in which a

supporting task is decoded, features are extracted from these structures, and the end task

model is trained to optimize these features (essentially a two-component n-best pipeline),

it can also be thought of in two stages. In the first stage the algorithm proposes a set
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of “feasible” latent representations from a given example and its end task labels. These

are problem-specific, and like the systems we present these could theoretically be syntax.

Previous work has focused primarily on alignments (Chang et al., 2010) and chunking

(Clifton et al., 2013). Current proposals for using LCLR rely on ILP for this step, requiring

that these structures are capable of being phrased as a set of linear constraints.

Features are used to score intermediary structures, and the ultimate end task predictions.

Learning in LCLR attempts to optimize the parameter weights that provide high scores to

intermediary representations, while minimizing loss on the end task. Each latent structure

decomposes, as in our framework, into many substructures. A sentence-level alignment

decomposes into an alignment between words, a parse tree (in dependency syntax) decom-

poses into many pairwise relationships, and so forth. An optimal latent structure is one

whose substructures correspond most directly to the correct substructures of the end task

(each substructure scored via a function outputting {0, 1} with respect to the end task),

while providing the greatest benefit to classification accuracy. Previously SVMs have been

used for learning, and thus the best latent structure is the one which is the most capable of

pushing otherwise incorrect end task predictions across the decision boundary.

A key difference between LCLR and our marginalization-based approach to joint train-

ing is that LCLR is more explicit in the representation of latent structure. Like n-best lists,

LCLR proposes sets of complete latent structures during the first step. In the case of struc-

tures with combinatorial characteristics, and therefore the potential for an intractably large

number of possible latent structures, this step requires heuristic pruning to carefully tune

which structures are proposed in this restricted set. And importantly, the features used for

the end task classification are constructed solely from the single best latent structure. Thus

the most significant difference between these methods may lie in how latent structure con-

tributes to the end task predictions. In our method the set of all possible latent structure are

marginalized over, whereas in LCLR this summation is a maximization.
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1.3.2.0.5 Other Approaches: Task-driven Grammar Induction

A related line of research also seeks to use end task annotations to guide the induction of

a task-specific parser. The major distinction between this and the aforementioned work

is the focus on evaluating the latent structure and not the downstream task. Spitkovsky

et al. (2010) improved unsupervised dependency parsing accuracy by using HTML markup,

viewed as an easily-obtainable noisy semantic annotation. Naseem and Barzilay (2011)

present a generative model which utilizes a small corpus annotated with semantic relations

(of the sort found in the relation extraction task, Chapter 5) to train a joint model of syntax

and relation extraction, with the aim of producing a better parser. The model puts sev-

eral constraints on the relationship between syntax and semantics, noting that the different

types of semantic relations are expressed syntactically in different ways, that semantic ar-

guments of a word often form a syntactic constituent span, and that function words do not

define semantic relations. Inference is done via Gibbs sampling, first sampling the latent

tree, then the semantic structure. This method outperforms other leading grammar induc-

tion approaches, including the HTML-driven training of Spitkovsky et al. (2010), and the

previous state-of-the-art in purely unsupervised approaches (Blunsom and Cohn, 2010).

Gesmundo and Hall (2014), extend the augmented loss framework of Hall et al. (2011)

to include training in the absence of supporting (syntactic) training data. They posit that

parsing errors dealing with coordination (Google and MSR) or apposition (tech giant Google)

are due to a lack of real-world knowledge in the parser, and use facts from Freebase, a pub-

licly available knowledge base, during training. Augmented loss training jointly optimizes

two loss functions: an extrinsic loss function for the downstream task (here, relation ex-

traction) and an intrinsic loss function for the supporting task (parsing). However, because

parse trees are not available during training, the intrinsic loss function is replaced with a

sampling function which, for a given candidate tree and the gold standard relation structure,

is guaranteed to return a tree no worse than the candidate. Within this sampling function,

a classifier, trained from jointly annotated data, is used to correct candidate trees. It is
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similar to LCLR, with both approaches proposing a set of candidate latent structures, and

then selecting the single latent structure which best supports the downstream classifica-

tion. Experiments on parse accuracy show significant improvement in the classification of

coordination and apposition phrases.

These approaches hinge on finding the single parse tree which is most beneficial to the

end task, training jointly but attempting to improve the performance of 1-best decoding in

a task-specific way. Our approach differs in that we marginalize over latent syntax trees,

learning the distribution over latent trees which best supports the end task.

1.4 Outline of Dissertation

• Background (Chapter 2), formally introduces factor graphs, the graphical model

formalism used exclusively throughout the dissertation, discussing common factor

graph architectures and inference techniques. We show how factors can be used to

encapsulate algorithms that would be inefficient or intractable to represent explicitly

in the graph structure, providing a method for representing syntactic formalisms and

useful combinatorial logic. Gradient-based methods for training are described, and

marginalization-based training is shown in greater detail.

• Syntactic Representations (Chapter 3), introduces the model structure used for rep-

resenting constituency and dependency syntax in factor graph models. These rep-

resentations function throughout the dissertation as latent structure for supporting a

variety of end task predictions. We review the variables and factors used for repre-

senting first and second order dependency parsing (a contribution of previous work

Smith and Eisner (2008)), and introduce those used for labeled and unlabeled con-

stituent parsing. We discuss the necessary related issues, like binarization, and show

unique extensions, like how grammatical rules may be represented as factors, and

how these rule factors can be incrementally applied to the model to fix erroneous

predictions. We demonstrate the effectiveness of these parsing models by comparing
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their performance to standard state-of-the-art parsers in a fully supervised parsing

task.

• Named-Entity Recognition (Chapter 4), focus shifts to joint models, and we present

a joint model coupling constituency syntax to a model named-entity recognition. We

again utilize a combinatorial factor, this time for applying a semi-CRF constraint to

the named-entity model, which allows the named-entity variables to represent spans

instead of boundaries. With this design there is a one-to-one correspondence between

syntactic variables and named-entity variables, which can be connected and coordi-

nated via factors expressing logical relationships. We evaluate on the OntoNotes data

set, showing state-of-the-art performance and an improvement even over other joint

approaches to this task.

• Relation Extraction (Chapter 5), we develop a model for joint syntax (both depen-

dency and constituency formalisms) and couple it with simple relation prediction and

labeling. We compare the performance of training with parser-provided tree anno-

tations (from state-of-the-art parsers) to our marginalization-based training method,

and to a baseline consisting of only relation extraction predictions.

• Semantic Role Labeling (Chapter 6), we extend upon the relation extraction model

of Chapter 5 to the similar, but more structured predictions of an SRL task. We

perform a similar series of evaluations, but also compare against models observing

gold-standard parse trees and find that our approach performs comparably, and some-

times even improves upon it by learning a more appropriate latent representation for

the task.

• Conclusion (Chapter 7), summarizes the modeling and algorithmic contributions of

this thesis and describes its implications for future work.
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CHAPTER 2

FACTOR GRAPHS, BELIEF PROPAGATION, AND
COMBINATORIAL CONSTRAINTS

In this dissertation we present a framework for solving NLP problems using joint in-

ference, with special attention paid to joint models in which one component model is a

representation of syntax (either phrase structure or dependency structure), the other is a

representation of the end task, and the two models are coordinated via soft Boolean logic

constraints. We also describe how to train these models in the absence of syntactic anno-

tation, inducing a task-specific syntactic representation to best support the model’s predic-

tions on the end task. We integrate several different techniques from machine learning to

achieve this goal.

This chapter provides a discussion of the requisite material necessary for understanding

the joint models, inference, and training methods used throughout the remainder of the

dissertation.

• Section 2.2 introduces graphical models, a family of models which unify probability

and graph theory to compactly represent distributions over larger numbers of vari-

ables. Here we describe factor graphs, our formalism of choice. We also review

common factor graph models used for NLP tasks, and detail how these models can

be extended to contain rich dependencies in arbitrary graph structures.

• Section 2.3 provides a discussion of belief propagation inference, a method for rea-

soning in graphical models. We discuss the requirements for exact inference, loopy

belief propagation for approximate inference in cyclic graphs, and the effects of order

on convergence.

31



• Section 2.4 provides a detailed analysis of combinatorial factors: specialized factors

for efficiently representing structured constraints, like those found in syntax. We also

provide an inventory of all special-purpose factors used throughout the remainder of

the dissertation.

• Section 2.5 describes parameter estimation using stochastic gradient descent. It il-

lustrates how training with latent variables can be naturally accommodated by the

SGD algorithm, provided the model supports the inference strategies necessary for

computing the gradient (feature expectations). We also discuss more practical issues

in optimization, like regularization.

• Section 2.6 is an application of the theory discussed in this chapter, and the con-

clusion of the running example used throughout. Here we present a joint model of

parsing and tagging, which incorporates long-distance dependencies to supplement

the local sequential dependencies typically used in tagging models.

Many of these concepts may be familiar to a machine learning researcher. We recom-

mend that such a reader review Section 2.4, as this material is unique to our approach and

will be used repeatedly throughout the dissertation.

2.1 A Running Example

Before we delve into the technical details which constitute this chapter, let us consider

an example application of our proposed marginalization-based training method. Here we

motivate a joint model of part-of-speech tagging and syntax, treating the syntax as latent

structure and utilizing it to capture long-range dependencies that would be obscured in a

purely sequential tagging model.

The problem of assigning labels to an ordered sequence of observations, otherwise

known as tagging, is an important task in many fields, including bioinformatics (Culotta
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et al., 2005), speech processing (Jelinek, 1997), and our current topic, computational lin-

guistics (Ratnaparkhi, 1997). Even information extraction tasks have been phrased as tag-

ging problems (McCallum and Li, 2003). Consider the task of part-of-speech tagging,

where we observe a sequence of words W = {w}N1 , and must predict the most likely

part-of-speech tag (or word class) sequence, T = {t}N1 :

pos-tags: D N V D N

words: The cat scratches the man

The pervasive ambiguity of natural language can make this a challenging task. For instance,

the word scratches can be either a noun (N, as in “He was covered in scratches.”) or a verb

(V, as shown above). Humans accomplish this disambiguation through our knowledge of

syntax and semantics, and sometimes with the help of additional linguistic cues. In order

to tag a word without comparable deep linguistic knowledge, computational models must

rely on the word’s local context within the sentence.

A typical part-of-speech tagger models sequential dependencies. For instance, a hid-

den Markov model (HMM) conditions the choice of tag ti on the previous tag, ti−1. With

respect to other dependencies that could be modeled (for instance, a dependency between

ti and t0 or between ti and tN ), these dependencies are very local, and yet using only local

dependencies such models achieve greater than 95% accuracy on standard English data sets

(Charniak et al., 1993). The discriminative analogs of HMMs, linear chain conditional ran-

dom fields (CRFs), can attain over 97% accuracy (Toutanova and Manning, 2000), rivaling

human performance and convincing many that supervised part-of-speech tagging to be a

solved problem (Manning, 2011).

However, long-range dependencies may help improve tagging performance. Consider

Latin, where words in a syntactic relationship often agree in many morphological attributes.

Here morphological tagging would benefit from knowledge of the sentence’s syntactic

structure (Lee et al., 2011). This may seem antichronististic, as tagging is often pursued as
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a prerequisite step for parsing, but if syntax is treated as a latent structure, this structure can

be optimized to best suit the tagging task without requiring any training data of its own.

In this chapter we introduce a joint model of parsing and tagging as a pedagogical

example, using it to explain how we can define joint models, perform inference (even in

cyclic factor graph models), and utilize marginalization during training to induce latent

structures specific to the end task.

2.2 Probabilistic Graphical Models

Natural language is full of ambiguity. Words with identical sounds or identical spellings

may have different parts of speech and entirely different meanings. A sequence of words

may have many syntactic analyses, and yet each may be equally grammatical. Even iden-

tical sentences, with identical syntactic analyses, may mean different things in different

(pragmatic) contexts. How can we model natural language phenomena when uncertainty is

so pervasive, touching nearly all aspects of language?

Graphical models offer a solution. Graphical models are a family of models, encom-

passing Bayesian networks and Markov random fields, which couple probability and graph

theory. As a probabilistic model, a graphical model is well suited to capturing the uncer-

tainty that abounds in language. By relying on graph theory, graphical models are capable

of compactly representing models with rich sets of dependencies. It is our hypothesis that

when placed in an appropriate context – the context offered by modeling NLP tasks jointly

– a better global solution can be found. Efforts to model this richer context benefit from the

compact representation, and for these reasons we choose graphical models as the modeling

formalism of choice throughout this dissertation. We now discuss what it means to be a

probabilistic model.

A probabilistic model encodes a problem in terms of random variables, where each

variable corresponds to one piece of information from the world. In NLP, a random vari-

able may represent a part-of-speech tag, the presence of a syntactic dependency between
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two words, the location of a morpheme boundary, etc. Variables can be continuous and

real-valued, or categorical and discrete. In this dissertation we will be concerned only

with discrete-valued variables, thus each variable has a finite number of distinct values (a

multinomial variable). If a multinomial variable has just two values, true or false, it is a

Boolean variable.

Following the excellent presentation of graphical models in Sutton et al. (2007), we

define a set of variables V , and make an important distinction between observed variables

X , and predicted variables Y . We introduce the set of latent variables Z, such that X ∪

Y ∪ Z ⊂ V . The values of observed variables are given to the model, both during training

and testing. Determining the values of predicted variables is the purpose of the model, thus

their values are provided during training but not during testing. Hidden variables are neither

observed nor predicted – their values must be inferred. Members of these sets are denoted

by lowercase variables, i.e., x ∈ X , y ∈ Y , and z ∈ Z, often indexed with subscripts as

{x0, x1, ..., xn} = X . The subset A ⊆ X is denoted as xA. Let x denote an assignment

of values to the variables in X . We denote a configuration (an assignment of values to all

variables) to the subset A ⊆ X as xA, or explicitly state a variable’s value, x = “cat′′.

The purpose of a probabilistic model is to specify a distribution over the configura-

tions of variables in the model. We refer to this distribution as the model distribution.

If the model aims to capture the probability of randomly generating the observed data, x,

the model distribution will be the joint probability distribution, P (x, y).1 If the aim of the

model is to predict a set of variables given a set of observations, the model distribution will

be the conditional distribution, P (y|x). Models of the latter type are known as discrimina-

tive (or conditional) models, and are the focus of this dissertation.

1A model which specifies the joint probability distribution, P (x, y) can also be used to optimize the
conditional probability, P (y|x), through the application of Bayes rule. It follows from Bayes rule that P (x, y)
is equal to P (x)P (y|x). In a classification task the observed variables are held fixed, and the remaining
quantity is the conditional probability.
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Such a distribution can be represented explicitly as table, with each table entry corre-

sponding to a single distinct configuration of variables (known as either a joint or condi-

tional probability table). This requires m|V | cells, where |V | is the number of variables in

V , and m is the number of values per variable. Models with thousands of variables are not

uncommon, and operating on the model distribution directly quickly becomes intractable.

Fortunately, with respect to the fully-specified model distribution, the dependencies in our

models will tend to be relatively sparse. Graphical models leverage this characteristic to

factorize the model distribution into the product of localized functions, each ideally inter-

acting with only a small number of variables.

2.2.1 Sequence Tagging with Probabilistic Models

Let us define a simple part-of-speech tagging model. Given a sequence of words W =

{w}N1 , we model the choice of part-of-speech tag for word wi using a multinomial variable,

yi. Each tag variable yi ranges over L values, where L = {D, N, V}, the set of part-of-

speech tags. The the model specifies the probability of any configuration of these variables,

and tagging the sentence amounts to finding the set of variable values which maximize this

probability. For a generative model:

GOAL = arg max
y

P (x, y)

where x is the set of observed variables, held fixed for a given sentence. For the sentence

“The cat scratches the man”, the observed variables are:

x = {x1 =“the”, x2 =“cat”, x3 =“scratches”, x4 =“the”, x5 =“man” }.

Consider one configuration of the predicted variables,
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y = {y1 = D, y2 = N, y3 = V, y4 = D, y5 = N}.

A model could assign a probability by storing a table which maps any possible configura-

tion of variables to its probability. For example, the model may score this configuration:

P (x, y) = P (y1 = D, y2 = N, y3 = V, y4 = D, y5 = N,

x1 = “the′′, x2 = “cat′′, x3 = “scratches′′, x4 = “the′′, x5 = “man′′)

= 0.7

Any such table represents a valid distribution provided it contains an entry for every con-

figuration of variables, and that it normalizes as follows:

1.0 =
∑
x,y

P (x, y) (2.1)

However, explicitly representing the model distribution with a table is not very efficient,

as it does not exploit the dependencies, or the lack thereof, inherent between the variables.

Here naively representing the distribution for a fixed sentence length of n requires a table

of size of |L|n for the y variables, times an additional |V |n to account for the x variables.

In this example where there are five words, three possible tags, and four possible words in

the vocabulary, the table would be of size 35 × 45 = 248832.

A graphical model exploits the intuition that actual dependencies between variables

will be relatively sparse, and that variables will not strongly depend on a large number

other variables. In English, the part-of-speech of word wi is often highly indicative of the

part-of-speech of the following word, wi+1. For instance, if a word is a determiner (the),

the following word will likely be a noun or adjective. But knowing this information is

rarely useful when predicting the part-of-speech tag of word wi+5, five words away. We
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can reflect this characteristic in the model by removing dependencies between distant tag

variables.

Given sets of variables A, B, and C, we say A is conditionally independent of B given

C if knowledge about B provides no additional information regarding A, in light of C.

Formally, A is conditionally independent of B given C if P (A,B|C) = P (A|C)P (B|C).

In the tagging model we assume that yi is conditionally independent of yi−2, given yi−1.

This is known as making an independence assumption. The resulting model factorizes as

follows:

P (x, y) = P (x1|y1)
n∏
i=2

P (xi|yi)P (yi|yi−1) (2.2)

In this factorization the probability of any variable configuration can be expressed as the

product of multiple tables, requiring one table with 12 entries for the distribution P (xi|yi)

and 9 entries for the distribution P (yi|yi−1), for a total of 12 × 9 = 108 entries. This is

already a significant computational savings, but in practice it is often orders of magnitude

larger. For instance, in this thesis we will define models which contain thousands of vari-

ables for a typical sentence, and here graphical models make what is often otherwise an

intractable problem, tractable in many cases.

All graphical models factorize the model distribution, but precisely how the distribution

is formally defined is a property of the type of graphical model chosen. We now turn to

discussing a particular class of graphical models, factor graphs, which we will focus on

throughout the dissertation.

2.2.2 Factor Graphs and Log-Linear Models

A factor graph (Kschischang et al., 2001) is a class of graphical model in which de-

pendencies between variables are modeled using a set of additional nodes known as factors.

Formally, a factor graph is an undirected bipartite graph G = {V, F,E} connecting vari-

able nodes v ∈ V and factor nodes f ∈ F , with edges e ∈ E ⊆ V × F . For any sets of
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t2

a.) Bayesian Network (HMM) b.) Markov Network (CRF) c.) Factor Graph

Figure 2.1. Representations of graphical models. Variable nodes are represented as circles,
and factor nodes by boxes. Observed variables are shaded. In the factor graph represen-
tation the observed variables may be absorbed as features into factors, and are depicted as
such throughout the dissertation.

variables A,B,C ⊆ V , A is separated from B if there is no path from a ∈ A to b ∈ B that

does not pass through a variable in C. In a factor graph, if A is separated from B by C, A

is conditionally independent of B given C (see the Hammersley-Clifford (1971) theorem

for more details).

A factor f has a corresponding potential function, Ψf , which assigns a real-valued

weight to any configuration of its neighboring variables. Likely configurations of variables

receive a high weight, unlikely configurations receive a low weight. These weights are

known as potentials. Factor potentials play a pivotal role in how the model distribution is

factorized in a factor graph model:

P (x, y) =
1

Z

∏
f∈F

Ψf (xA, yA) (2.3)

where A is the subset of variables which neighbor f , and where Z, the partition function,

ensures that the model normalizes to produce a proper probability distribution:

Z =
∑
x,y

∏
f∈F

Ψf (xA, yA) (2.4)

In many cases computing this partition function will be intractable, but efficient approxi-

mations exist.

Graphically, factor graphs are depicted using circle nodes for variables and boxed nodes

for factors, as illustrated in Figure 2.1c. Observed variables are shaded.
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2.2.3 Factor Graph Sequence Models

Returning to our discussion of part-of-speech tagging, recall that we wish to leverage

the properties of graphical models to efficiently factorize the model distribution. This can

be accomplished by making an independence assumption, treating some variables as con-

ditionally independent of others. A common independence assumption made in sequence

models is to make yt conditionally independent of all other previous tag variables given

yt−1, otherwise known as a Markov assumption. When represented as a factor graph, this

yields a first-order linear-chain conditional random field, as illustrated in Figure 2.2. For

the sentence “The cat scratches the man”, the model factorizes its distribution as follows:

P (y|x) =
1

Z

n∏
i=1

Ψui(yi)×
n∏
i=2

Ψbi(yi−1, yi) (2.5)

where ui is the factor which neighbors yi, and bi is the factor which neighbors yi and yi+1.

What has happened to the observed variables, x? A factor graph is a conditional model,

and in conditional likelihood training we are interested in finding the model parameters

which maximize the likelihood of the data, assuming the data is generated according to a

conditional distribution. Because x variables are observed, their values are held fixed. Due

to their role only as conditioning context, these variables can be incorporated into the factor

functions themselves, as features, instead of being modeled explicitly. This is reflected in

graphical depictions of factor graph models, as shown in the transition between Fig. 2.1b

and c.

In this model the ui factors each score how likely each tag is for the corresponding yi

tag variable. For u5, Ψu5(y5 = N) = 7, significantly higher than other tags, reflecting

the model’s preference for variable y5 to have the value N. The bi factors score transitions

from one part-of-speech tag to the next. For a common tag sequence, like D N, this score

may be comparatively high, while sequences the model deems as unlikely, like D D, will

be comparatively low. The highest scoring configuration is Ψb4(y3 = D, y4 = N) =

7. However, individual factors may contribute conflicting information. For instance, it is
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The cat scratches the man

y1

D N V

D

N

V

y3
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Figure 2.2. A linear chain CRF represented as a factor graph. A factor’s potential function
scores a configuration of variables, which may be represented by a table whose dimension-
ality corresponds to the number of neighboring variables. Each tag variable yi is connected
to a factor, ui, whose potential table contains a potential for each tag value. The bi fac-
tors, which connect yi−1 and yi model the interactions between adjacent tag variables. We
illustrate a subset of the model’s potential tables, shown for factors u1, u5 and b4.

unlikely that the best solution will contain y3 = D and y4 = N despite being the highest

tag transition score, due to conflicting evidence from u3: scratches does not function as a

determiner so a data driven estimate of Ψu3(y3 = D) will be extremely low.

Finding the global consensus of which variables should have which values is the subject

of inference, and is discussed in Section 2.3 (pg. 42).

2.2.4 Log-linear Models

We have described how a factor graph model uses factor potentials to factorize the

joint distribution, but where do these potentials come from and how does learning occur?

Many factors, which we refer to as soft factors, output a non-negative real-valued potential

derived from feature weights. For the remainder of this section we can assume that each soft

factor potential function has the general form of a log-linear model with a K-dimensional

parameter vector, θ:

41



Ψf (xA, yA) = exp

(∑
k∈K

θk · ξfk(xA, yA)

)
(2.6)

where ξf is a feature function of factor f over a configuration of its neighboring variables

yA, and conditioned on observed variables xA. ξfk returns the count of the feature asso-

ciated with k, an index into the model parameters, for the given configuration. For an

indicator feature, which is either present or not, ξk = {0, 1}. Under this formulation the

model views the data only through factors, which in turn view the data only through sets of

associated features. The weight of each feature is a parameter in the model. During learn-

ing a parameter estimation method is used to fit the model distribution to the empirical

distribution through the adjustment of feature weights.

This concludes the preliminary discussion of factor graph models. However, one of

the advantages of modeling with factor graphs lies in being much more adventurous in the

definition of potential functions. By defining specialized factors, logical or combinatorial

constraints can be imposed in the model. Section 2.4 describes this approach and Section

2.4.2 lists a complete set of factors used throughout the dissertation. These can be thought

of as the building blocks of factor graph models – each factor a modular, reusable com-

ponent – which in sum are capable of representing many sophisticated models, with little

problem-specific implementation. This general approach is largely due to message passing

inference, the subject of the next section, which provides a method for reasoning regardless

of graph structure.

2.3 Inference via Belief Propagation

Inference on factor graph models can be performed using efficient, well-studied message-

passing algorithms, even on large graphs with many interdependent variables. In this sec-

tion we describe the standard sum-product algorithm which provides an exact solution to

inference when the graph is a chain or tree. When the graph contains cycles, a variant of this

algorithm known as “loopy” belief propagation provides a method for performing approx-
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imate inference and has been shown to perform well in practical applications. We present

belief propagation inference in the following section, and discuss the role of inference in

decoding in Section 2.3.5 (pg. 52).

2.3.1 What Inference Accomplishes

When training a model using maximum likelihood estimation, model parameters are

updated to maximize the likelihood of the training data. If the optimization method is

gradient-based, as it is throughout this thesis, the likelihood is maximized by first calculat-

ing the gradient of the likelihood function, and then updating the parameters proportionally.

The key to computing this gradient lies in inference. We will see in Section 2.5.4, (pg. 74)

how the gradient decomposes into a ratio between two expectations over model parame-

ters. Inference produces marginal distributions, which can in turn be used to compute the

expectations necessary for optimization.

A marginal distribution (also referred to simply as a marginal, or as a belief ) is a prob-

ability distribution over a set of variables without any reference to the values of variables

outside of the set. This differs from a conditional probability where the probability of a set

of variables xA is conditioned on an additional set of variables (however, a marginal may

still be conditioned on observed variables in a factor graph, since they can be incorporated

into the model as features).

Let π(xA) be the marginal probability of a set of variables, xA. A marginal probability

can be calculated by summing over (marginalizing) all values of the remaining variables,

yB:

π(xA) = P (xA) =
∑

y

P (xA, y) =
∑

y

P (xA|y)P (y) (2.7)

Consider a marginal computation in the simple linear-chain CRF (of the sort shown in

Fig. 2.1c) with the factorization over three variables: y1, y2 and y3. Let b1,2 be the factor
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that coordinates between y1 and y2, and let b2,3 be the factor that coordinates between y2

and y3:

P (y1, y2, y3) =
1

Z
Ψb1,2(y1, y2)Ψb2,3(y2, y3) (2.8)

We omit the factors over single variables for brevity. For the purpose of training, we will

require a marginal for each variable. To compute the marginal P (y2) we sum over the other

variables:

P (y2) =
∑
y1

∑
y3

1

Z
Ψu1(y1, y2)Ψu2(y2, y3) (2.9)

This can be simplified using the distributive law (Jordan and Bishop, 2004):

P (y2) =
∑
y1

∑
y3

1

Z
Ψu1(y1, y2)Ψu2(y2, y3) (2.10)

=
∑
y1

1

Z
Ψu1(y1, y2)

∑
y3

Ψu2(y2, y3) (2.11)

=
∑
y1

1

Z
Ψu1(y1, y2)m3 (2.12)

=
1

Z
m1m3 (2.13)

substituting temporary m factors in for the marginalized terms. Assuming each variable

has r values, this factorization reduces the complexity from r3 in Eq. 2.9 to r2 in Eq. 2.10,

as noted by a reduction in the maximum number of variables within each summation.

Now consider the marginal computation for y1. Calculating π(y1) requires the same∑
y3

Ψb2,3(y2, y3) term needed for the the computation of π(y2). For training we will re-

quire marginals for every variable (or factor) in the model, and repeatedly computing the

same intermediate terms should be avoided. This is an advantage of belief propagation
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inference, which provides an efficient method for simultaneously computing all marginals

in the graph.

The logic lies in the observation that an ideal elimination order for each variable will

marginalize out its neighbors before marginalizing out itself. To compute the marginal

for y1 we must first eliminate y3, then y2. To compute the marginal for y3 we must first

eliminate y1, then y2. If as we eliminated these terms we were to cache in y2 the temporary

factors produced, when all of its neighbors have been marginalized y2 will contain all the

necessary quantities to compute its marginal. This holds for all intermediate nodes in the

chain. So the quantities required to produce all marginals of a chain or tree can be computed

by one pass through the chain (which is sufficient for calculating the marginal of the chain’s

end, yt, as it only has one neighbor), and one pass back. Because child nodes (and their

successors) are conditionally independent given a shared root node, and a tree is merely a

set of chains with a shared root, this algorithm also generalizes to trees.

It may be more convenient to drop the notion of elimination, and instead view the

operation of recursive elimination and caching as distributing messages across the graph.

Variables which have received messages from all their neighbors have stored the necessary

information to compute their marginal. In Eq. 2.10, the temporary m factors are precisely

these messages. Methods of this sort are known as message-passing algorithms, and can

be thought of as a dynamic programming solution to efficient inference, dating back to

Pearl (1988). Pearl first described belief propagation as a message-passing algorithm for

inference in directed graphical models, though message-passing algorithms subsume or

parallel other model-specific inference algorithms later developed in the NLP community:

the forward-backward algorithm for inference in HMMs (Rabiner, 1989), and the inside-

outside algorithm for PCFGs (Lari and Young, 1990).

In comparison to Gibbs sampling, belief propagation makes use of expectations rather

than discrete choices. As we now turn to the sum-product algorithm, we note that modified

45



versions of this algorithm (Section 2.4, pg. 54) allow for the efficient computation of

highly-structured models that are slow to mix with a sampling-based approach.

2.3.2 Belief Propagation with the Sum-Product Algorithm

The sum-product algorithm is a message-passing inference algorithm for factor graphs

and the standard inference method used throughout this dissertation. We described the

general calculation of marginal messages in Sec. 2.3.1. For factor graphs, which contains

two different types of nodes, there are two different types of messages.

First, messages from variables to factors. Paraphrasing from Smith (2010), the desired

outgoing message from a variable v to its neighboring factors conveys the information, “My

other neighbors jointly suggest I have the posterior distribution mv→u(v) over my values.”

We treat incoming messages as independent, so it follows that the way in which neighbor-

ing factors jointly suggest a variable’s posterior is through the multiplication of their mes-

sages. When dealing with the multiplication of messages and potentials we are referring

to element-wise multiplication: all message components corresponding to the variable’s

value being true are multiplied together, and all message components corresponding to the

variable’s value being false are multiplied together, and so forth for all values in the case

of multinomial variables.

• Messages from a variable node v to a factor node u:

mv→u(v) =
∏

u∗∈N (v)\{u}

mu∗→v(v) (2.14)

whereN (v) is the set of factors which neighbor variable v, and where \{u} omits factor u

from this set. An example variable message calculation is provided in Figure 2.3.

Computing messages from factors to variables is slightly more involved. Here the de-

sired message from a factor u to a variable v conveys “Together with my potential function

and the messages from my other neighbors, I suggest you have the posterior distribution
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0.5 0.5

0.9 0.1

0.135 0.035

u1

u2

u3

u4

0.79 0.21

Normalization

mu→v(v) =

mu→v(v) =

mu→v(v) =
mv→u(v) =

F T

F T

Figure 2.3. BP message calculations: variable to factor. To calculate the outgoing message
from variable v to factor u4 we collect messages from all neighboring factors, excluding
u4, and multiply corresponding elements from all incoming messages, i.e., all message
components corresponding to the value true are multiplied together, and all corresponding
to false are multiplied together.

mu→v(v) over your values.” Again we would like to combine the messages from all neigh-

bors N(u) which are not the destination variable v, but in this case we must combine those

messages with the factor’s own potential function, and marginalize over those beliefs to

produce the desired output message:

• Messages from a factor node u to a variable node v:

mu→v(v) =
∑

˜v

 ∏
v∗∈N (u)\{v}

Ψu ·mv→u(v
∗)

 (2.15)

Here we use Ψu to directly reference u’s potential table, a matrix with |N | dimensions.

Each dimension of Psiu corresponds to one neighboring variable, with the size of the

matrix in that dimension being equal to the number of values the corresponding variable

can take. Thus the term within parenthesis returns a matrix consisting of the u’s original

potential table, multiplied with the incoming messages from each neighboring variable

(excluding v).
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v1 u4
v2

0.263 0.737

 Σ

mu→v(v2) =

0.79

0.21

0.2

0.5

0.8

0.5

Ψu4(v1,v2)mv→u(v1)

Π
Π

 Σ

u4

0.737

0.79

0.21
Π
Π

u4

Π
Π

0.158

0.105

0.632

0.105

Figure 2.4. BP message calculations: factor to variable. To calculate the outgoing message
from factor u4 to variable v2. Factors maintain distributions (in the form of potential tables
in the discrete case) over neighboring variables, so when computing the message to vari-
able v1, all incoming messages are multiplied into the potential table using element-wise
multiplication, excluding the destination variable v2. It should be noted that each incom-
ing message aligns to a different dimension of the potential table (i.e., here the reverse
message from u4 to v1 would multiply down Ψu4). The outgoing message is computed
by marginalizing over the dimensions associated with the incoming message, yielding the
factor’s belief of v2’s values as informed by all other neighboring variables. This is clear in
the case of a two-dimensional potential table: an incoming message may multiply across
rows, making the marginalization operation a sum down columns.

Outside of the parenthesis, the summation over ˜v indicates that the matrix is summed

over, element-wise, in the direction of v. This produces a vector whose length is the num-

ber of possible values v can take (i.e., if v is Boolean, the resulting vector will have two

elements). This is u’s outgoing message to v.

These operations are illustrated visually in the case of a two-dimensional potential table

(Figure 2.3.2). In the example calculation the single incoming message multiplies across

the potential table and the marginalization is a summation downward, producing the desired

binary-valued output message. For more detailed discussion of the basic theory underlying

message-passing inference, we refer the reader to Jordan and Bishop (2004).
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2.3.2.1 Computing Beliefs

Once message passing has terminated the marginals can be computed as follows:

P (v) =
1

Z

∏
u∈N(v)

mu→v(v) (2.16)

P (u) =
1

Z

∏
v∈N(u)

Ψu ·mv→u(v) (2.17)

Marginals are calculated for each type of node in a manner analogous to the messages

they pass, but aggregate the messages from all neighbors, and normalize. Here Z refers to

normalization within this calculation and not the global model normalization. Our earlier

discussion cited marginals as the quantities of interest, necessary for gradient-based opti-

mization. While this is true, it is in fact the factor marginals that are utilized in our work,

as factors serve to connect the graph structure to features.

2.3.3 Loopy Belief Propagation

Belief propagation is only guaranteed to provide an exact solution when the graph is

a chain or tree, but often times our goal will be to perform inference on a graph that con-

tains cycles. Consider the factorial CRF, which models both sequential dependencies and

dependencies between each chain (Fig. 2.5). While the sequential chain structure of the

model is apparent, dependencies between chains create loops, preventing the graph from

containing a single non-repeating order in which to perform message passing. In this situ-

ation one may choose to ignore this fact and use the sum-product algorithm regardless in

what is known as loopy belief propagation (LBP).

Loopy inference differs from standard sum-product in that there is no longer a well-

defined order in which to send messages, and thus there is no guarantee that inference will

converge to the exact solution. Instead, the algorithm is applied for some set number of

iterations, typically with some threshold to signify convergence (i.e., the maximum change

in a single variable’s beliefs in a single iteration, the sum change of variable beliefs in
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Figure 2.5. A factorial CRF. A model whose graph contains many cycles, but where ap-
proximate inference has proven suitable for NLP models (Sutton et al., 2007). The models
presented in this thesis frequently exhibit a similar mix of cyclic dependencies and repeated
substructures which can be used in defining a specialized inference order. The unary factors
which attach to each label variable have been omitted for clarity.

the graph, etc.). If the maximum deviation in marginal beliefs from one iteration to the

next is less than this threshold, the procedure terminates. Aside from these differences, the

algorithm is identical.

This may sound unprincipled. Indeed, the behavior of belief propagation in loopy

graphs is still not well understood. It has been shown that a graph containing only a single

cycle is still guaranteed to converge (Weiss, 2000), and some sufficient conditions for con-

vergence have been identified (Mooij and Kappen, 2005). Convergence in loopy graphs has

been linked to the Gibbs measure (Tatikonda and Jordan, 2002), such that LBP is capable

of reaching a state of convergence whenever the Gibbs measure is unique. There have also

been bounds placed on the propagation of message errors (Ihler et al., 2004). When the

degree of error goes to zero, convergence can be assumed. However, these contributions

remain largely theoretical.

Despite these concerns, LBP has proven exceptionally useful in many tasks. LBP is

equivalent to algorithms developed for efficient turbo decoding and free energy approxima-
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tion (Murphy et al., 1999), and in practice has been used repeatedly in NLP (for sequence

models (Sutton et al., 2007), parsing (Smith and Eisner, 2008)). It also compares favorably

to other approaches to model combination, such as dual decomposition (Auli and Lopez,

2011).

The models presented in this dissertation are significantly more complex than the mod-

els used for performing turbo code decoding and other problems that are exemplary ap-

plications for LBP, and a natural question to ask may be, “how good is the approximation

provided by loopy belief propagation for work in the NLP setting, for the types of models

presented in the following chapters?” We do not attempt to answer this question directly,

and show only that from a practical perspective these models are capable of state-of-the-art

performance in many tasks using this inference strategy.

2.3.4 Message Order

Belief propagation in guaranteed to converge in chains and trees, but the efficient two-

iteration convergence associated with the forward-backward computations is only possible

when messages traverse the graph from end to end. With LBP the ideal message order is

less clear, but can still be an important factor for the performance of inference. For instance,

a factorial CRF is a cyclic model, but it has strong linear constraints, and previous work

has explored the benefits of specialized message queues to exploit this structure (Sutton

and McCallum, 2012).

Message ordering as an important consideration, but defer to future sections where

these details are provided on a model-specific basis. For some models we use an essen-

tially random message-passing order, and in others we try to exploit substructures where a

more efficient ordering can be employed. In all models we prioritize messages from unary

factors, computing these messages first, as these factors have only one neighboring vari-

able and need not be updated until their marginal values are queried at the end of inference.

Repeatedly processing them only leads to redundant computations.
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2.3.5 Minimum Bayes-Risk

In Section 1.1.1 (pg. 4) we discussed a joint decoding strategy which made use of full

model posteriors instead of approximations in which each model contributes only a list of

its most probable solutions, often containing just the single most probable analysis under

the model. Message-passing inference techniques can also be thought of as a generalization

of these special-purpose decoding algorithms.

A common decoding strategy consists of calculating the maximum a posteriori (MAP)

solution, which minimizes the expected loss for an entire structure, yielding the 1-best

solution:

yMAP = arg min
y

EP (ŷ|x)[δ(y, ŷ)] (2.18)

where δ(y, ŷ) is a loss function ranging over {0, 1} (knowns as 0-1 loss):

δ(y, ŷ) =


0, if y = ŷ

1, otherwise
(2.19)

and y is the set of predicted variables which collectively specify a complete structure, and

ŷ is the corresponding gold structure. If the model is a parser, then MAP decoding seeks to

minimize the expected whole-tree loss, with δ(y, ŷ) returning 1 if the entire tree is accurate,

and 0 otherwise. If the model is a tagger, δ(y, ŷ) returns 1 if the entire tag sequence is

accurate, and 0 otherwise. This solution can be computed – either exactly or approximately

– using posteriors produced via max-product inference.2

However, there are many reasons to consider an alternate decoding method. The stan-

dard evaluation measures for many structured prediction tasks rarely score entire structures

with a 0-1 loss, opting instead to decompose evaluation metrics over smaller substructures.

2Max-product inference is a message-passing inference procedure analogous to sum-product, but for
which the summation in the factor-to-variable message computation (Eq. 2.3.2, pg. 47) is replaced with
a maximization.
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For instance, the standard parsing evaluation – precision, recall, and F1 – are calculated

over individual arcs or constituents, not entire trees. In cases like these, a loss function that

more directly reflects the evaluation measure has shown to improve performance. Maxi-

mizing expected recall has been suggested as an alternative loss function for parsing, both

for CCG (Clark and Curran, 2004) and PCFG (Goodman, 1996) parsing.

It is also worth considering how suitable the goal of MAP decoding is for joint models

with hidden structure. If the model is joint, and one or more component models represent

a supporting task which is of no consequence, then a decoding method which includes

these variables in the maximization may not be ideal. An alternate decoding method might

incorporate the beliefs of the supporting models, but maximize only over the posteriors of

the variables associated with the end task. This could again be thought of as choosing a

decoding strategy which more accurately reflects the evaluation measure.

This is precisely the advantage offered by Minimum Bayes-risk decoding (MBR),

which generalizes Eq. 2.18 to an arbitrary loss function, l:

yGOAL = arg min
y

EP (ŷ|x)[l(y, ŷ)] (2.20)

Here the loss function l can be chosen to match the evaluation measure. For instance, the

most common evaluation loss function for a part-of-speech tagger is the number of tag

errors. This can be integrated into an MBR decoding method:

ŷ = arg min
y

EP (ŷ|x)

(
n∑
i=1

l(yi, ŷi)

)
(2.21)

= arg max
y

n∑
i=1

P (yi = ŷi|x) (2.22)

The tag variable posteriors required for Eq. 2.22 can be calculated for the model using

the sum-product algorithm. In the case of joint models, these posteriors inherently reflect

the beliefs of any hidden structure variables, and any hard constraints we may place over
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them. Ultimately this is a question of whether hidden structure variables should be maxi-

mized together with query variables, or summed over. Max-product inference provides the

maximization solution (and the MAP decoding strategy), and sum-product inference pro-

vides the summation solution and posteriors compatible with MBR decoding. When l is a

0-1 loss over entire structures, and there are no hidden variables, these decoding strategies

are identical.

2.4 Structured Models and Combinatorial Constraints

Belief propagation provides an efficient method for performing marginal inference, but

there are situations where this efficiency breaks down. While factor graphs can repre-

sent many NLP models using only basic components, representing combinatorial structures

such as syntactic trees requires densely-connected graphs to rule out invalid structures. In a

graphical model a clique is a subset of variables in which every two variables is connected

in the graph (via factors, in the case of factor graphs). Complexity of inference in graphi-

cal models is a function of the largest clique size, often making inference in combinatorial

structures intractable. A recent innovation allows us to sidestep some of these complexity

problems by incorporating efficient enumerations and dynamic programming algorithms

into factor message computations. We refer to such factors as combinatorial factors.

In Section 2.4.1 we introduce the general method for implementing combinatorial fac-

tors by describing the message computation for the ISATMOST1 combinatorial factor. In

Section 2.4.2 (pg. 59) we list all the special-purpose factors used in the thesis. Once de-

fined, these factors can be thought of as a set of modular building blocks for factor graph

models. It is straightforward to construct new models simply by connecting subsets of

variables with the appropriate factors, and inference and learning can remain largely un-

changed. Section 2.4.3 (pg. 65) describes how Boolean logic factors can be used to define

an interface between two component models, producing a joint model where inference can

be performed jointly over both tasks.
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2.4.1 Message Computation for the IsAtMost1

In this section we introduce the ISATMOST1, a combinatorial factor originally de-

scribed in Smith and Eisner (2008), and describe how the outgoing messages are computed

for this factor. This serves as an overview of the general methodology underlying all com-

binatorial factors presented in this thesis.

The ISATMOST1 factor is useful for representing, with Boolean variables, a labeled

structure which may or may not be present. Such structures occur frequently throughout

this thesis, and include syntactic spans (Chapter 3), named entities (Chapter 4), relations

(Chapter 5) and semantic roles (Chapter 6). Let vI be the Boolean variable indicating the

presence of a structure, and {d1, ..., dm} be a set of label variables. An ISATMOST1 factor

constrains the set of Boolean variables using the following potential function:

ΨISATMOST1(vI , d1, .., dm) =



0, if


vI = false ∧ ∃di ∈ {d1, .., dm} : di = true

vI = true ∧ ∀di ∈ {d1, .., dm} : di = false

vI = true ∧ ∃di, dj : di = true ∧ dj = true ∧ i 6= j

1, otherwise
(2.23)

If the indicator variable is false (vI = false) there is no structure to label, and the factor

imposes a hard constraint preventing any of the label set variables from being true. If

the indicator variable is true (vI = true) exactly one variable from the label set must

also be true. Permissible configurations correspond to an output of 1, and impermissible

configurations correspond to an output of 0. In this sense the factor and its neighboring

variables function like a multinomial variable where one of the multinomial’s values is the

null value, to indicate the lack of a structure.
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Algorithm 1 Computing outgoing messages for an IsAtMost1 factor

1: procedure PROPAGATEISATMOST1(vI , {d1, ..., dm}) . indicator, label variables
2: ¬qvI ← vI(false)/vI(true) . Collect log-odds
3: for v ← {d1, ..., dm} do
4: qv ← v(true)/v(false)
5: end for
6: Z ← ¬qvI . Sum Z
7: for v ← {d1, ..., dm} do
8: Z

⊕←− qv
9: end for

10: mu→vI (vI)← [1.0, Z − ¬qvI ]
11: for v ← {d1, ..., dm} do . Assign messages to edges
12: mu→v(v)← [Z − qv, 1.0]
13: end for
14: end procedure

Figure 2.6. Outgoing message computation for the ISATMOST1 factor. The notation
v(true) references variable v’s belief that it is true, obtained from the incoming message
from v. First the incoming messages are collected and converted to an odds ratio. Second,
Z is computed, using the terms in Eq. 2.25. Finally, outgoing messages are computed as
a ratio with respect to the variable being true or false. A plussed arrow ( ⊕←−) indicates
incremental assignment.

Though this factor imposes a hard constraint, the outgoing messages computed during

inference adjust variable beliefs toward one of these outcomes (i.e., the model does not

force all neighboring variables to adhere to this constraint). In order to compute this gra-

dient, we must compute a normalization function. The following describes this process,

and the intuition which underlies a similar computation in all the combinatorial factors we

present in this dissertation.

What distinguishes combinatorial factors from standard factors is that a combinatorial

factor does not utilize a potential table to compute outgoing messages. Doing so would

be inefficient in most cases, and intractable in others. Consider the ISATMOST1 factor.

All variables which neighbor an ISATMOST1 factor are Boolean, yielding 2n possible as-

signments, but only n + 1 of these configurations do not violate the constraint. Clearly it
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would be burdensome to enumerate all possible 2n assignments, multiplying messages and

marginalizing as defined in Eq. 2.3.2, especially in situations where a model requires a

large number of labels or ISATMOST1 factors.

A more efficient strategy is to compute the normalization function, Z, and the outgoing

messages directly. Assume an ISATMOST1 factor coordinates between four variables: an

indicator variable vI and a set of three label variables ({d1, d2, d3}). The total score of

non-violating assignments under this constraint, Z, can be expressed as:

Z = (1− vI)(1− d1)(1− d2)(1− d3)

+ vI · d1(1− d2)(1− d3)

+ vI · d2(1− d1)(1− d3)

+ vI · d3(1− d1)(1− d2)

The first line is a score pertaining to the satisfying configuration where all variables are

false. The remaining three lines each represent the score for when the indicator variable is

true, and exactly one of the three remaining variables is true.

A factor potential table could be implemented to compute outgoing messages in accor-

dance with Eq. 2.3.2, where ΨISATMOST1(x, y) = 0 for all but the above four cases, in which

case the output of the function should be 1. A combinatorial factor differs in that it has no

explicit potential table, and computes Z directly. In the case of ISATMOST1, note that if

we divide out vI (1−d1) (1−d2) (1−d3), then Z is simply the sum of these four quantities:

Z =
1− vI
vI

+
d1

1− d1

+
d2

1− d2

+
d3

1− d3

(2.24)

with each term having the form of an odds ratio. We denote the odds ratio qv = v(true)
v(false)

and

¬qv = v(false)
v(true)

.This greatly simplifies the computation. As shown in Fig. 2.6, like many
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IsAtMost1i d1

d1

d1

IsAtMost1i d1

d1

d1

IsAtMost1i d1

d1

d1

a.) Collect log odds
      mv→u(i)   = [0.27, 0.73]
      mv→u(d1) = [0.39, 0.61]
      mv→u(d2) = [0.20, 0.80]
      mv→u(d3) = [0.13, 0.87]

b.) Sum Z
      Z   = 0.27 / 0.73
      Z += 0.61 / 0.39
      Z += 0.80 / 0.20
      Z += 0.87 / 0.13
      Z = 1.49

c.) Output Messages
      mu→v(j) = [1.0,  1.05]
      mu→v(j) = [0.8,  1.0]
      mu→v(j) = [1.17, 1.0]
      mu→v(j) = [1.27, 1.0]

IsAtMost1i d1

d1

d1

Figure 2.7. Message Computations for ISATMOST1 Factor. The indicator variable vari-
able begins with a strong lean toward a value of true at 0.73, while the three dependent
variables beliefs are in varying degrees of false. After summing Z (note the reciprocal
fraction to compute i’s contribution) and computing output messages (note that only one
value is computed for each variable as a ratio with respect to 1.0) both i and d1 become
more likely, while d2 and d3 strengthen their false beliefs.

of the combinatorial factor computations, the computation of outgoing messages for ISAT-

MOST1 can now be partitioned into three steps: (1) gather incoming messages and convert

to odds ratios, (2) calculate the normalizing constant Z, (3) compute and propagate each

outgoing message by subtracting the corresponding incoming component from the partition

function. The calculation hinges primarily on the calculation of Z, which is nearly trivial

in this case, but may rely on more complex dynamic programming algorithms to express

structure constraints (see the description of the CKY-TREE factor for phrase structure syn-

tax, Section 3.1.2.1, pg. 109). Here we only substitute the odds ratios terms, qv for variable

v, into Eq. 2.24:

Z = ¬qvI + qd1 + qd2 + qd3 (2.25)

The outgoing messages are computed as ratios with respect to the variable being true or

false. For the indicator variable the outgoing message is:
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mu→vI (vI = true) = Z − vI(false)

vI(true)
(2.26)

mu→vI (vI = false) = 1.0 (2.27)

For the variables representing the label set, the outgoing messages are as follows:

mu→dI (di = true) = 1.0 (2.28)

mu→dI (di = false) = Z − di(false)

di(true)
(2.29)

Figure 2.7 illustrates the calculation of these outgoing messages for a simple model.

This concludes the discussion of how combinatorial factors differ from standard feature-

based soft factors with log-linear potentials. In future chapters we will delve into the im-

plementations behind many other factors while highlighting the contexts in which they are

useful. An overview of all factors contained in this dissertation is presented in the following

section.

2.4.2 Constraint Inventory

The following sections introduce the various special-purpose factors that serve as build-

ing blocks for the models described throughout this dissertation. Here we categorize factors

along three major distinctions:

• Soft Factors

A soft factor f is a factor whose possible outputs cover the entire range of R+, and

whose potential function is learned as a function of parameters in the model. For the

purposes of this dissertation, soft potential functions are always a log-linear combi-

nation of feature functions and model parameters:
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Ψf (xA, yA) = exp

(∑
k

θk · ξfk(xA, yA)

)
(2.30)

where θk is the kth model parameter, and ξf is the feature function for factor f .

The feature function returns the count of each feature that factor f associates with

the configuration of variables, (xA, yA), with ~ξfk(xA, yA) returning the count of the

feature corresponding to parameter θk.

Soft Boolean logic factors, a special case of soft factors, learn a potential only for

configurations which violate a given Boolean logic. Following the conventions out-

lined in Smith (2010), soft Boolean logic factors are named for the case in which the

Boolean logic returns false. For instance, a NAND factor is defined such that its soft

potential applies to the case where both variables are true:

NANDΨA(x1,x2) =


exp

∑
k θk · ξfk(xA, yA), if x1 = true ∧ x2 = true

1, otherwise
(2.31)

Instead of imposing a hard constraint which prohibits configuration of variables that

violate the Boolean logic, a soft Boolean logic factor can learn a real-valued weight

to penalize or promote this configuration. These factors are utilized at the interface

between joint models, as described in Section 2.4.3 (pg. 65).

• Hard Factors

A hard factor f discerns between only two scenarios: a configuration of neighboring

variables is valid, or it is not valid. In the former case the factor does not alter the

model score, multiplying in a potential of 1. In the latter case, it multiplies in a

potential of 0, prohibiting the configuration. These factors are not associated with a

set of features.
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• Combinatorial Factors

A combinatorial factor is a special-purpose factor for efficiently enforcing a combi-

natorial structure constraint on a set of variables. While not a category outside of the

hard/soft distinction – combinatorial factors are a type of hard factor – they are used

in two very distinct ways.

A combinatorial factor is more global in nature (earlier work even goes so far as to

refer to such factors as global factors (Smith and Eisner, 2008)), connecting to all

the variables used to represent the structures of a particular model (span variables

in phrase structure parsing or named entity recognition, and dependency relation

variables in dependency parsing). Therefore it is rare that any one component model

would have more than one combinatorial factor, while a component model may have

many non-combinatorial hard factors, primarily to aid in representing the interface

between models with Boolean variables.

The algorithms implemented by combinatorial factors are also very different in na-

ture and scope, their origins firmly nested in the NLP literature. In contrast, the other

hard factors implement simple algorithms to constrain configurations of variables in

ways expressible by a logical function, with no sophisticated in-domain knowledge.

In short and in practice, a combinatorial factor is used to efficiently encode a single

useful syntactic or otherwise structural constraint, and the factors we refer to as hard

factors are used to repeatedly and locally infuse simple bits of logic into the model.

2.4.2.1 Hard Factors

• EXACTLY1 is a hard factor which coordinates a set of Boolean variables to ensure

that exactly one variable of the set is true. This is useful for situations where the be-

havior of a multinomial distribution is required, but Boolean variables are preferred.
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EXACTLY1Ψ(x1,..,xn) =


0, if either


∀x, y : x = true ∧ y = true ∧ x 6= y

∀x : x = false

1, otherwise
(2.32)

• ISATMOST1 is a hard factor as described in Section 2.4.1 (pg. 55). It constrains a

set of Boolean variables, one an indicator variable, with the following logic: if the

indicator variable is false, all other variables are false. If the indicator variable is

true, exactly one of the remaining variables must be true. This factor is useful for

predicting a labeled structure which may or may not be present.

ΨISATMOST1(vI , d1, .., dm) =



0, if


vI = false ∧ ∃di ∈ {d1, .., dm} : di = true

vI = true ∧ ∀di ∈ {d1, .., dm} : di = false

vI = true ∧ ∃di, dj : di = true ∧ dj = true ∧ i 6= j

1, otherwise
(2.33)

Why not simply model labeled structures using multinomial variables? The primary

motivation of decomposing to Boolean variables is one of convenience. In this the-

sis joint models are constructed by connecting Boolean variables from individual

component models using soft Boolean logic factors (Sec. 2.4.3, pg. 65), but our

intuition is that it is the structures of these models, and not the labels, that are highly

correlated. For instance, in Chapter 4 we describe a joint model of phrase structure

parsing and named entity recognition. Both the constituent spans of phrase structure

trees and named entity spans are labeled structures: for a given pair of indices (i, j),
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a structure may or may not exist, and if it exists it should be labeled. In constructing

a joint model we believe the best constraint

It is therefore more efficient to separate structure and label prediction, so that struc-

ture variables from opposing models can be directly coupled without the inclusion of

the corresponding label variables. In principle it is just as easy to couple two multi-

nomial variables, however it requires larger potential tables. There are also scenarios,

as shown in Section 3.1.3, pg. 129), where this decomposition aids in coarse-to-fine

strategies. We are able to efficiently assess the model’s belief of particular labels,

and attach higher-order factors to select sets of these variables without the need to

include any extraneous ones.

• EPLURIBUSUNUM is a hard factor used to apply a constraint similar to ATMOST1,

but in the situation where the indicator variable is Boolean and the set of depen-

dent variables is represented by a single multinomial, which includes a null value.

When the indicator variable is false, the factor constrains the multinomial to the null

value, i.e., an EPLURIBUSUNUM factor contributes a potential of 0 when the indi-

cator variable is false and the multinomial variable has any non-null value. It also

contributes this potential when the indicator variable is true and the multinomial is

null. It otherwise contributes a potential of 1.

EPUΨA(vI ,x) =


0, if


vI = false ∧ x 6= null

vI = true ∧ x = null

1, otherwise

(2.34)

2.4.2.2 Soft Factors

• NAND factors are soft factors used to learn a correlation between two or more vari-

ables. This factor fires when all of the tethered variables are true, contributing a
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potential derived from its feature function. It otherwise multiplies in a potential of

1.0 to the model score.

NANDΨA(x1,x2) =


exp

∑
k θk · ~ξfk(x1, x2), if x1 = true ∧ x2 = true

1, otherwise
(2.35)

• IMPLIES factors are a similar to NAND factors, but implement the logic of an im-

plies, firing when the indicator variable (antecedent) is true while the remaining

variables (consequents) are false.

IMPLIESΨA(x1,x2) =


exp

∑
k θk · ~ξfk(xA, yA), if x1 = true ∧ x2 = false

1, otherwise
(2.36)

2.4.2.3 Combinatorial Factors

Here we present a series of combinatorial syntax factors which efficiently constrain a

set of Boolean variables representing trees in the chosen syntactic formalism. While some

structures, like dependency trees and constituency trees, are theoretically interchangeable,

within the modeling framework it is often preferable to choose one over another as some

representations are inherently better suited for pairing with certain problems and their cor-

responding factor graph representations.

• CKY-TREE is a global combinatorial factor for imposing a tree-structured constraint

for phrase structure grammar, computing outgoing messages in O(n3) time. It is

discussed in Section 3.1.2.1 (pg. 109).
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• DEP-TREE is a global combinatorial factor, as presented in Smith and Eisner (2008),

used to represent a syntactic analysis in dependency grammar. Like other syntactic

combinatorial constraints, it is O(n3). Dependency grammar constraints are dis-

cussed in Section 3.2.2 (pg. 150).

• PROJ-TREE is a global combinatorial factor and a variant of DEP-TREE, which

additionally requires that the graph be projective. A graph is projective if its edges

do not cross.

• SEMI-CRF is a global combinatorial factor which imposes a 0th-order semi-Markov

constraint (Sarawagi and Cohen, 2004) over a set of Boolean span variables. It is

similar to the CKY-TREE factor in that its primary purpose is to prohibit spans from

crossing, but it differs in that spans do not nest, and there is a maximum span width.

These are useful properties for modeling named entity recognition. It is discussed in

more detail in Section 4.3.1.1 (pg. 168).

Many of these factors are introduced in the work of Smith and Eisner (2008), where

they were applied to the task of dependency parsing. The novel factors are the CKY-TREE

and SEMI-CRF factors, but it is primarily how we combine these components and utilize

structured constraints over latent variables that is novel to this work. We now describe

the construction of joint models using soft Boolean logical constraints, a key aspect of our

approach.

2.4.3 Constructing Joint Models

Joint models couple component models for two or more tasks, allowing inference to be

performed jointly. This is done in the hope that by sharing uncertainty between component

models, the joint model will find a better global solution. In Chapter 1 we discussed many

of the methods used for coupling two or more models: dual decomposition and ILP for

joint decoding, and constrained latent representations and grammar augmentation for joint
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inference during training. Alternatively, factor graphs provide an attractive framework for

constructing joint models. In a factor graph, variables connected via a factor are dependent.

Therefore, a joint factor graph model can be constructed simply by connecting dependent

variables from separate component models with a factor that expresses the nature of their

dependency. The question remains: what kind of factor should be used to connect these

variables?

We argue that it is natural to conceptualize and express many general relationships be-

tween NLP tasks in terms of Boolean logic. In Chapter 4 we examine the relationship

between named entities and phrase structure syntax, where both the entities and syntactic

predictions consist of spans of words. In this domain we assume that the presence of a

named entity from word wi to wj implies the presence of a corresponding syntactic span,

composed of words wi to wj . In Chapter 6 we construct a joint model of semantic role

labeling and dependency syntax. Similarly, we assume that a semantic relationship from

word wi to word wj implies the presence of a syntactic relationship between these words.

Due to the convenience of these types of constraints, we propose the use of Boolean logic

to coordinate between component models. This logic can be easily implemented in a fac-

tor, provided that the variables which sit at the interface between component models are

Boolean.

Natural language is full of ambiguity, and these constraints do not hold universally in

any of the data sets we examine, but this is not a problem. Instead of restricting the po-

tential function’s range to {0, 1}, as in traditional Boolean logic, the factor’s potential can

range over the entire set of non-negative real numbers. The potentials of these soft Boolean

logic factors are derived from an exponentiated sum of feature weights, allowing the model

to learn a context-specific weight of coordination. In situations where variables should be

coordinated (both true), the factor contributes a higher potential. A low potential can be

contributed in situations which prove to be exceptions to the rule. This allows constraints

can be conceptually simple, expressing the logic we believe reflects the interaction be-
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tween these tasks a priori, while simultaneously being robust to noise. This is important

not just for handling true linguistic exceptions, but also mismatches in annotation. In pre-

vious work (Finkel and Manning, 2009), manual pre-processing of the data was required to

eliminate instances where an NER span did not align with a syntactic span, an unnecessary

requirement in our approach to joint modeling.

2.4.3.1 Coordinating Between Tagging and Parsing Models

Returning to the tagging model, our aim in constructing a joint model is to allow for

the beliefs of tag variables ti and tj to influence and be influenced by the beliefs of the

corresponding syntactic dependency variable. For instance, if the model’s beliefs indicate

tha there may be a syntactic dependency between two words, wi and wj , the model may

assign a higher score to the configuration ti = V and tj = N than to ti = N, tj = N , as

it is more likely for a verb and noun to exist in a syntactic dependency than a noun and a

noun.

To model this phenomenon, assume a set of Boolean variables bi,j,Ti,Tj each represent-

ing the presence of a tag combination Ti, Tj such that ti = Ti and tj = Tj when bi,j,Ti,Tj

= true. There is a bigram variable for every tag combination between every pair of words.

Let li,j be a set of Boolean variables representing the presence a syntactic dependency be-

tween word wi and wj when true (details regarding the dependency syntax formalism and

its representation in a factor graph are provided in Section 3.2.2, pg. 150).

We can coordinate variables across component models using a set of soft Boolean logic

factors. Let Ci,j,Ti,Tj be a set of soft NAND factors which connect each li,j variable to

all bi,j,Ti,Tj variables. Though we do not know the precise nature of this relationship, the

“soft” aspect of the coordinating factor provides the freedom to be rather noncommittal

in the choice of coordinating logic by learning a factor potential to capture the degree of

coordination. A potential > 1.0 in a NAND factor will raise the true beliefs of connected

variables, a potential< 1.0 will lower them. Let us examine how these coordinating factors
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affect the neighboring variable beliefs during inference, and the resulting marginal of the

coordinating factor.

Assume two variables at the interface send the following (normalized) messages to a

shared C3,5,V,N factor:

ml3,5→c3,5,V,N
(l3,5 = true) = 0.7

mb3,5,V,N→c3,5,V,N
(b3,5 = true) = 0.2

Thus the syntactic component of the model believes that a syntactic dependency exists from

word w3 to w5, and the tagging component initially has a very low belief that word w3 is a

verb and w5 is a noun.

Assuming that verbs and nouns are very likely to exist in a syntactic dependency, this

intuition will enter the model in the form of a learned potential in coordinating factors.

Assume coordinating factor C3,5,V,N is a NAND factor with a potential φ = 2.5. In this

situation the coordinating factor will drive the beliefs of both variables higher, as illus-

trated in Figure 2.8. Here the use of joint inference increases the marginal (true) belief of

b3,5,V,N from 0.2 to 0.33 (normalizing from the resulting beliefs, b3,5,V,N(true) = 0.4 and

b3,5,V,N(false) = 0.8). While this may not seem like a significant change, this is simply the

result of one round of inference on a single portion of a highly connected model, and even

the addition of this one factor may influence the individual tag variables, which connect to

the B3,5,V,N factor, to more accurate predictions.

Other logics behave in different ways. If the connection between models was imple-

mented as an IMPLIES factor, all model beliefs and parameters remaining constant, infer-

ence would push the two variable beliefs apart in order to adhere to the factor’s logic.

How these feature weights are learned falls under the topic of optimization, and is

discussed in the next section.
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Figure 2.8. Coordinating models with soft NAND factors.

2.5 Parameter Estimation

In previous sections we discussed constructing graphical models of natural language

processing problems, and how to perform inference over these models (exact inference in

the case of trees or chains, and approximate loopy BP inference in graphs with loops). We

also introduced a category of factors with log-linear feature functions known as soft factors,

which in sum comprise the model’s learnable parameters. But how does inference interact

with training, and how do we optimize these feature weights to fit a data set? In this section
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we turn to optimization and describe how marginal beliefs can be utilized to learn a model

from data. We will give special attention to learning in the presence of hidden structure.

2.5.1 Conditional Maximum Likelihood

The first step towards constructing an optimization method is to choose an objective

function to optimize. Here we turn to maximum-likelihood estimation, which defines

an objective function in terms of the model parameters θ and the training data, D =

{x(i), y(i)}Ni=1. Each x(i) is a set of observations, and each y(i) a set of labels. The goal

of optimization is to find the parameter values which maximize the likelihood of the data,

defined as:

L(θ|D) = P (D|θ) (2.37)

With the maximum likelihood estimate we seek to find the values of the model pa-

rameters which maximize the likelihood function L, maximizing the fit of the model – as

defined by L – to the observed data. The maximum likelihood estimate provides a general

framework for discussing estimation, and is well-defined for many families of distributions.

Because the models we present are conditional, we will define the likelihood in terms of

conditional probability. Assuming the observation data is independent and identically dis-

tributed, we can express the conditional likelihood:

L(θ|D) ∝ arg max
θ

∏
i

P (y(i)|x(i), θ) (2.38)

In practice it is often more convenient to phrase this maximization in terms of log likeli-

hood, `, replacing the product form with sums. Because the logarithmic function is mono-

tonic, this yields an equivalent maximizer:

`(θ|D) = arg max
θ

∑
i

logP (y(i)|x(i), θ) (2.39)
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Replacing the general conditional probability with the exponentiated conditional probabil-

ity factorization for factor graphs (Eq. 2.6) allows the log and exponent to cancel, yielding

the following conditional likelihood:

`(θ|D) = arg max
θ

∑
i

∑
f

∑
A

∑
k

θk · ξfk(x(i)
A , y

(i)
A )− logZ(x(i)) (2.40)

where Z(x(i)) is the global normalization term for example x(i) (from Eq. 2.4, pg. 39).

Maximizing the likelihood of the data is identical to finding the model parameters which

maximize the probability of the model on that data. Here the model comprises a set of

weighted feature functions over subsets of variables A.

2.5.2 Optimizing with hidden variables

The likelihood in Eq. 2.40 is only suitable when the set of model variables is fully

observed in the training data. Many of the models we present treat syntactic structure

as a latent variable, and thus we require a likelihood which incorporates a set of latent

variables Z ⊂ V (though we will henceforth reference latent variables only in assignments

to them, z, avoiding confusion with the partition function). However, it is straightforward

to augment the previous likelihood to account for latent variables:

L(θ|D) = arg max
θ

∏
i

∑
z

P (y(i), z(i)|x(i), θ) (2.41)

where z(i) is a configuration of latent variables compatible with the input, x(i). Latent

variables are neither observed, nor the target of supervised training. For this reason they

are sometimes referred to as nuisance variables. We incorporate latent variables into the

likelihood by marginalizing (summing over) all assignments to these variables, z. Thus

maximizing this likelihood searches for the best distribution over latent variables, where

the worth of a latent structure is measured by how much it improves the probability of

generating the correct target variables, y(i).
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Similar approaches have been used previously in NLP. For instance, Koo and Collins

(2005) incorporate latent word senses into a model of parse reranking. Assignments to

these latent variables are marginalized out to obtain a distribution over parse trees.

2.5.3 Stochastic Gradient Descent

Having defined an objective function for models trained in either a fully-supervised

manner or in the presence of hidden variables, the remaining decision is how best to op-

timize this objective. For log-linear models, of the form we present, a common approach

is the class of gradient-based methods. In these approaches the optimizer navigates the

search space by computing the gradient of the objective function, and descending in this

direction until a minimum is found. For convex spaces, like those defined in the fully-

supervised training via conditional likelihood, these methods are guaranteed to find the

global optimum. When the model contains latent variables the space is non-convex, and

gradient-based approaches may become stuck in local minima.

Gradient methods can be classified into batch and online algorithms. Batch algorithms,

like the standard gradient descent, LBFGS (Liu and Nocedal, 1989), and quasi-newton

methods process the entire data set before computing the gradient and performing a param-

eter update. Online algorithms, like stochastic gradient descent or the structured perceptron

algorithm (Rosenblatt, 1958; Collins, 2002), approximate the gradient using only some

subset of the data, typically updating the model parameters after viewing each example.

Here we focus on stochastic gradient decent (SGD). Most of the data sets used for the

tasks presented in this dissertation are large, and most of the joint models presented are

complex enough that updating after each full pass through the data is quite cumbersome.

Online learning methods will often make tens of thousands of updates per iteration, and

reach good solutions after just a few full passes through the data (Bottou, 2004).

Each SGD parameter update takes the form:
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Algorithm 2 Stochastic Gradient Descent

1: function SGD(D = {x(i), y(i)}Ni=1) . data pairs of observed variables x, labels y
2: θ← 0 . Initialize parameters
3: t← 1 . blah
4: repeat
5: for ((x, y) ∈ D) do
6: G← construct graph from x, initializing beliefs w.r.t. θ
7: A∗ ← variable assignment specified by observed labels y.
8: BP(G) . Inference
9: Ep[ξl(x, y, )]←

∑
k log fk(A

∗) . Computed from true labels
10: Ep[ξl(x, , )]←

∑
f ′
∑

Amfk′→(A)∇θfk′(A) . Computed from marginals
11: ∇θL← Ep[ξfl(x, y)]− Ep[ξfl(x, , )] . Gradient as specified in Eq. 2.51
12: θ ← θ − ηt · ∇θL . SGD update, Eq. 2.42
13: t← t+ 1
14: end for
15: until max iterations exceeded or converged
16: return w
17: end function

θ(t+1) = θ(t) − η(t) ∇L(t)
Θ (2.42)

where ∇L(t)
Θ is the approximation of the gradient produced from training example t, and

ηt is the learning rate for example t. The learning rate can be reduced over the course of

learning, as a function of t, to reduce the odds of over-stepping a minimum in the search

space. SGD is guaranteed to converge to a single global minimum in convex spaces when

paired with an appropriate and decreasing rate. When training with hidden variables, the

parameter space is non-convex and SGD may find only a local minimum.

Fig. 2.5.3 describes the SGD algorithm in pseudocode. Placing the SGD update within

the larger algorithm highlights how inference is incorporated into training: inference yields

factor marginals, and these quantities are in turn used to produce feature expectations,

which specify the gradient.
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2.5.4 Computing the Gradient

We now derive the gradient updates for the hidden conditional likelihood shown in Eq.

2.41. For any specific parameter θl in a log-linear term, the gradient of the log likelihood

with respect to θl is:

∂L
∂θl

=
∑
i

∂

∂θl
log
∑
A

∑
f

∑
z

exp(θl · ξfl(x(i)
A , y

(i)
A , z

(i)
A ))− ∂

∂θl
logZ(x(i)) (2.43)

The gradient for any maximum likelihood training method is a ratio between two terms,

each expressible as an expectation. For the numerator (the left term in the log-likelihood in

Eq. 2.43):

∂

∂θl
log
∑
f

∑
A

∑
k

∑
z

exp(θl · ξfl(xA, yA, zA)) =
1∑

z P (y, z|x)

∑
z

∂

∂θl
P (y, z|x) (2.44)

=
∑

z

P (y, z|x) log
∂

∂θl
P (y, z|x) (2.45)

=Ep[ξfl(x, y, )] (2.46)

This follows through an application of the chain rule, and the useful identity ∂f
∂λ

= f(λ)∂ log f
∂λ

(Sutton and McCallum, 2012). The resulting expectation is of parameter θl under the em-

pirical distribution. When there are no latent variables this expectation can be determinis-

tically computed from the data (1 if the predicted structure is present in the gold analysis,

0 if not.).

Differentiating the denominator (the right term in the log-likelihood in Eq. 2.43):
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logZ(x)

∂θl
=
∂

∂θl
log
∑
y,z

exp(θl · ξfl(x, y, z)) (2.47)

=
1

Z(x)

∑
x,y

exp(θl · ξfl(x, y, z))
∂θl · ξfl(x, y, z)

∂θl
(2.48)

=
∑
y,z

p(y, z|x)ξfl(x, y, z) (2.49)

=Ep[ξfl(x, , )] (2.50)

Importantly, this factors into the difference between two expectations:

∂L
∂θl

= Ep[ξfl(x, y)]− Ep[ξfl(x, , )] (2.51)

The first, an expectation of the empirical distribution under the model, the second, the

model’s expectation. This is noteworthy for two reasons. First, when the feature expec-

tations of the model perfectly match the distribution of the data (as viewed through the

features) these expectations cancel and there is no parameter update. This is the optimal

solution the model can reach with respect to the training data. Second, both expectations

are computable with belief propagation (Quattoni et al., 2005). In the case where training

is fully supervised the first term reduces to ξfl(xi, y
∗
i ), where the feature counts of the data

are set deterministically from the provided labels.

2.5.5 Training with Latent Variables

We have now shown how to construct joint models and discussed how to train them

in the fully supervised case. However, this requires jointly annotated training data, with

annotations for all tasks – an unlikely scenario. Here we present a method for training fac-

tor graphs not just in the presence of predicted variables, but in the presence of nuisance

variables: variables which help support end task predictions but are themselves inconse-

quential. In this training procedure we observe only the annotations associated with the

end task, and the goal is to the propagate the error signal (from end task annotations) to

help guide the induction of useful distributions over latent structures. Parameters for latent
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variables are optimized towards improving the model’s performance on end task predic-

tions.

Despite the ambitious nature of these goals, training in this fashion can be done as a

very straightforward extension to the previously-discussed inference and training methods.

In Sec. 2.51 (pg. 75) we described the SGD update as being expressible as the difference

between two expectations. In the fully supervised case we observed that the first expec-

tation, Ep[ξfl(xi, y∗i , )], could be defined solely by the data and the associated true labels,

without the need for inference. This was possible because this is an expectation over fea-

tures when variables are clamped to their true value, and we observe the true value for all

variables. In the case of hidden variable training we must rely on inference to compute this

value.

This makes training a two-step process. In the first step we perform standard sum-

product inference on the model, producing the marginals necessary to compute the denom-

inator of the gradient. Instead of relying on data to compute the numerator, a second round

of inference is performed, beginning by setting observed variables to their true values. This

produces the marginalization described in Eq.2.41, and the denominator of the gradient.

Returning to the tagging example, instead of observing the true value for the now un-

observed coordinating factor, c3,5,V,N , we substitute the factor marginal computed via in-

ference on the clamped graph. The marginal for a coordinating factor will be influenced by

one variable held fixed to its true value, the end task, and one latent variable. Assuming its

marginal is 0.7, the partial derivative is:

∂L
∂θl

= 0.7− 0.8 (2.52)

Leading to the following parameter update:

θt+1
f(‘V B+NN ′) = θtf(‘V B+NN ′) − ηt ∗ −0.1 (2.53)
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moving the parameter in the opposite direction as the supervised update. The resulting

feature weights for syntax and coordinating factor features may be significantly different,

as they are here, than when trained from the true error signal. However, the model learned

in this manner has still honed a distribution over latent variables which supports the end

task.

2.5.6 Learning to Coordinate Between Models

Let us examine the process of computing the gradient and updating a set of parameters

associated with the factors which coordinate between models. Recall that a joint model of

tagging and parsing could be constructed such that the interface between models involves

sets of bigram tag dependencies and syntactic dependencies. A tag transition from Tk

to Tl between words wi and wj is captured by Boolean variable bi,j,Tk,Tl , and a syntactic

dependency between word wi and wj is captured by Boolean variable li,j . These variables

can be connected via a soft Boolean logic factor, in our case a NAND factor, C3,5,V,N , which

learns a weight of coordination between variables from the two models via a set of features.

Ideally the model would learn that a verb is commonly the syntactic head of a noun.

In the sentence “The cat scratches the man”, both the word scratches and the word man

may be either a noun or a verb. In this case scratches is the syntactic head of man, and this

additional evidence could help the model correctly disambiguate the part-of-speech of both

words. From the model standpoint, this occurs when the C3,5,V,N factors’ ‘VB+NN’ feature

weight is sufficiently high, and the feature weight for ‘NN+NN’ is sufficiently low.

After inference converges, the model can be queried to collect factor marginals. The

marginal for the coordinating factor, π(c3,5,V,N), can be computed as follows:
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π(c3,5,V,N) = φ(c3,5,V,N)

∗ml3,5→c3,5,V,N
(l3,5 = true)

∗mb3,5,V,N→c3,5,V,N
(b3,5,V,N = true)

We will assume the following factor belief, continuing from discussion of joint inference

in the joint tagging and parsing model (Section 2.4.3.1, pg. 67):

π(c3,5,V,N) = 0.33

Training attempts to minimize the divergence between the model’s expectation and the em-

pirical expectation, shown in Eq. 2.51. Because this factor’s potential over a configuration

of variables that is observed in the training data, empirically it’s marginal should be 1.0.

∂L
∂θl

= 1.0− 0.33 (2.54)

The update to the parameter vector, with learning rate ηt:

θt+1
f(V B+NN) = θtf(V B+NN) + ηt ∗ 0.67 (2.55)

Everything else remaining constant, during the next iteration of training the model the

new feature weights will result in a new potential function for factor C3,5,V,N , the resulting

marginal for this factor will become higher, and the update smaller, indicating that the

model distribution has become more like the empirical distribution of the training data.

2.5.7 Regularization

Perfectly matching the empirical distribution is a theoretically sound goal when the

training data accurately reflects the test data, but in practice this assumption is rarely met,

making the objective less than ideal. In general the models presented here will have an
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abundance of features: in addition to the standard set of features required for training each

component model independently, the joint model will require an extra set of features for

learning the interactions between these components. To complicate matters, when learning

with latent variables it is difficult to gather useful feature statistics prior to training, making

it difficult to use common feature pruning techniques. As a result, some of the models

presented in later sections will have hundreds of millions of features. Given the large

number of parameters overfitting becomes a concern. As the training procedure overfits the

model to the data, parameters can be driven towards infinity, creating numerical issues.

We can incorporate an additional constraint into the objective function to penalize

weights that are too far from zero, applying a greater penalty the further the, and keep-

ing many values close to zero:

F =
∑
i

log
∑

z

P (y(i), z(i)|x(i)) +
1

2σ2

∑
l

θ2
l (2.56)

where y(i) is the correct predicted structure for the ith training example, z(i) is the set of

hidden structures compatible with that structure, and σ2 is a variance parameter. This par-

ticular form of regularization is known as L2 regularization. Regularized optimization has

connections to Bayesian MAP estimation (Wahba, 1990), and an L2 regularization can be

considered as a Gaussian prior over weights: when the variance is high and the distribution

flat the parameter weights are given more freedom to wander. When the variance is low

the values will tend to cluster close to the mean of zero. For stochastic gradient descent

this equates to multiplicatively applying a constant weight decay over the entirety of the

parameter vector upon each update.

As noted in the literature, when the number of model parameters greatly outnumbers

the number of training examples, as will often be the case in our work, there are theoretical

motivations to instead pursue L1 regularization, as the sample complexity (a measure of the

number of training examples required for satisfactory learning) scales at an asymptotically

slower rate in comparison to L2 (Ng, 2004). While L1 regularization more directly enforces
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sparsity by forcing many parameters to zero, in practice L2 is often sufficient to prevent

overfitting and numerical problems.

2.6 A Hidden Syntax Approach to Tagging

In this chapter we have presented the necessary theoretical background required for

constructing, reasoning with, and training joint factor graph models for NLP tasks. Each

topic is grounded in a running example, and discussed in the context of a joint model of

parsing and part-of-speech tagging. In this section we revisit this example, presenting the

complete tagging model and results on a pair of standard data sets.

2.6.1 The Role of Syntax in Tagging

While the relationship between syntax and morphology (which includes part-of-speech)

is often over-simplified in the NLP community, where they are commonly treated as sepa-

rate tasks, the two are inherently linked. Morphological information is useful for parsing,

but morphological attributes are simultaneously constrained by these same syntactic depen-

dencies. Bresnan (2001) points out that these two information sources exist in a competitive

relationship, each vying for roles in the process of linguistic expression. Languages with

relatively free word-order often have rich systems of morphology that facilitate capturing

long-range dependencies between distant words, and languages with relatively fixed word

order can forgo rich morphology by having more predictable local dependencies. Rush and

Petrov (2012) show that for English, a language which is considered to have a more fixed

word order, a majority of syntactic dependencies exist between adjacent words.

We find empirical evidence of this trade-off in a study of conditional tag probabilities

in English and Latin text. The heatmaps in Figure 2.6.1 depict the conditional probability

of an arbitrary tag ti, conditioned on either the preceding tag, ti−1 (top), or the tag of

the syntactic head word, thead(i) (bottom). For English (left) the tag of interest is part-of-

speech. For Latin (right) we focus on morphological case, which is often described as
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English - Part-of-Speech Latin - Morphological Case
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Figure 2.9. Heatmaps of conditional tag probabilities. Each cell represents the probability
of the x-axis tag conditioned on the y-axis tag (rows normalize), with red indicating a high
probability. Heatmaps at the top of the figure condition on the tag of the previous word,
heatmaps at the bottom of the figure condition on the tag of the syntactic head.

being syntactically-assigned. Cells that are more heavily shaded indicate high conditional

probabilities, and instances where the conditioning tag is highly informative of current tag.

For English, knowing the tag of the preceding word, ti−1, often narrows the choice

of ti down to just one or two candidates. In Latin these adjacent tag statistics are not

as informative, as a single tag, the null case marking (—) is the most likely tag in any

context. Ignoring this tag, the conditional distributions are less concentrated, implying that

knowledge of the previous tag is less informative for this task in Latin than in English.
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Conditioning on syntactic dependencies tells a very different story. In English, the

distributions remain about equally as concentrated, providing more confident information

regarding some tag combinations, and less about others. However, in Latin a statistical

correlation that was subtly present before is now strikingly clear: given the tag of the syn-

tactic head, the most probable tag will almost always be the identical tag. A morphological

phenomenon, noun-modifier agreement, is the underlying cause. In Latin, adjectives must

agree with the nouns they modify in case, gender, and number, making syntactic informa-

tion especially useful to the tagging task. Lee et al. (2011) have shown previously that a

joint model of these tasks can improve the predictions of morphological attributes (and, to

a lesser extent, parse accuracy), substantiating this claim.

If syntax is a useful cue for tagging, why is it not used more often? There are two

likely justifications for eschewing models of syntax when performing any morphological

tagging. First, a disproportionate amount of the research community’s attention has fo-

cused on part-of-speech tagging, and subsequent tasks like parsing, for English, where

such dependencies are not as useful. Second, part-of-speech tagging is often considered to

be a preprocessing step for tasks like parsing, and so in the most common scenario syn-

tactic information is unavailable to the tagger. Even when inducing a model of syntax in a

fully unsupervised manner, part-of-speech tags are usually assumed as input to the model,

or are learned through distributional cues in an independent induction process (Klein and

Manning, 2002b).

2.6.2 A Joint Model of Tagging and Syntax

In previous sections we introduced this model piecewise. We now present the complete

joint model, described by the components below where T is the tagging label set, and n is

the length of the sentence. As in future sections, variables and factors are named to help

distinguish their roles in the graph. Variable names are shown in italics, factors in SMALL

CAPITALS:
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Tagging Components

• Let Unigram(i, Tk), k ∈ |T | be O(n|T |) Boolean unigram tag variables, with cor-

responding unary factors. Unigram(i, Tk) = true if and only if word wi has the tag

Tk.

• Let UNIGRAM(i, Tk)k ∈ |T | be O(n|T |) factors, each connected to the correspond-

ing Unigram(i, Tk) variable. Each UNIGRAM(i, Tk) factor has a pair of features:

the word and tag combination, wi + Tk, and the tag, Tk.

• Let EXACTLY1(i) be O(n) combinatorial logic factors which constrain the set of

Unigram(i, Ti) variables at each i, forcing exactly one variable to have a true value.

Each word receives one tag.

• Let Bigram(i, j, Tk, Tl) be O(n2 × |T |2) Boolean bigram tag variables each repre-

senting whether words wi and wj have tags Tk and Tl respectively. There are no

corresponding unary factors for these variables.

• Let BIGRAM(i, j, Tk, Tl) be O(n2 × |T |2) soft NAND factors which coordinate be-

tween Unigram(i, Tk), Unigram(j, Tl), and Bigram(i, j, Tk, Tl) variables. Each

BIGRAM(i, j, Tk, Tl) factor has a pair of features: the combination of words and

tags, wi + wj + Tk + Tl, and the pair of tags, Tk + Tl.

Syntactic Components

• Let Link(i, j), 0 <= i <= n; 1 <= j <= n be O(n2) syntactic dependency vari-

ables. Link(i, j) = true iff there is a syntactic dependency from word wi to wj .

• Let LINK(i, j), 0 <= i <= n; 1 <= j <= n be O(n2) factors which connect to

corresponding Link(i, j) variables. These factors are associated with many features,

which are listed in McDonald (2006).
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Figure 2.10. A joint model of tagging and parsing. The unigram (a.) and bigram (b.)
sections constitute a typical bigram tagging model, albeit expressed entirely using Boolean
variables. The syntactic representation is constrained by a combinatorial DEP-TREE factor,
and syntactic variables coordinate with bigram tag variables via a set of soft logic factors
(c.). Names have been abbreviated.

• Let DEP-TREE be a single global combinatorial factor connecting to O(n2) syntactic

Link(i, j) variables and enforcing a hard constraint, requiring the connected vari-

ables to form a valid syntactic structure. In this instance a structure is valid if it is a

non-cyclic directed graph. This syntactic formalism is discussed in detail in Section

3.2.2 (pg. 150).

Connecting Components

• Let CONNECT(i, j, Tk, Tl) beO(n2×|T |2) logical factors implementing a soft NAND

logic, and connecting Bigram(i, j, Tk, Tl) and Link(i, j). These factors fire when

the values of both variables are true, contributing a non-negative potential, φ, to the

model score. The variables are more likely to be true as φ increases beyond 1, and

other configurations more likely as φ moves closer to 0.

The foundation of this model is a typical linear-chain CRF tagging model, with one

exception: in a tagging model the choice of tag at each i is commonly represented with a

multinomial. Here each multinomial variable has been decomposed into a set of Boolean
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variables. This necessitates some additional logic, and EXACTLY1 factors are utilized to

constrain each set of Boolean variables such that exactly one variable is true.

This strategy extends to bigram dependencies. In this model, bigram dependencies

between pairs of tag variables are modeled with a set of Boolean variables, and are coor-

dinated with the corresponding unigram tag variables with soft NAND factors. Here the

motivation for decomposing the model may become clear. By representing bigram de-

pendencies as Boolean variables, the interface between the two models consists solely of

Boolean variables, allowing corresponding sets of these variables to be coordinated via soft

Boolean logic factors.

In places where syntactic variables are true, the Bigram variables for likely syntactic tag

combinations will be reinforced. A verb is frequently the syntactic head of a noun, so the

(true) belief of Bigram(i, j, V,N) will be increased when Link(i, j) is true. The beliefs

of bigram variables propagate to unigram tag variables, which are queried at decoding time

to produce the predicted output.

2.6.3 Experimental Design and Results

2.6.3.1 Data

Models are evaluated on two languages: English and Latin. The English data is derived

from a subset of the standard Penn Treebank Wall Street Journal corpus (Marcus et al.,

1993), converted to dependency syntax, as outline by Johansson and Nugues (2007) for use

in the 2007 CoNLL shared task (Buchholz and Marsi, 2006). For Latin we make use of the

Latin portion of the Ancient Greek and Latin Dependency Treebanks (Bamman and Crane,

2006). This corpus is an ongoing effort, and consists of roughly 3500 Latin sentences at

the time of processing. We reproduce the training and test splits proposed in previous work

(Lee et al., 2011).

2.6.3.2 Model Configurations

We evaluate five separate models:
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• Unigram

The unigram model consists only of Unigram(i, Tk) variables, a corresponding set

of unary factors, and a set of EXACTLY1 factors to force one tag variable to be true

for each position i ∈ n.

• Bigram

The bigram model extends upon the unigram model with bigram variables and coor-

dinating factors.

• Joint

In the joint model connects bigram variables to corresponding syntactic dependency

variables using Boolean logic (NAND) factors. The correct trees are observed during

training, but not testing time. Lee et al. (2011) present a similar joint model, but

one which uses the logic factors to explicitly model agreement phenomena between

words.

• Oracle

The oracle model relies on gold, or oracle syntax. The full joint model, as de-

scribed in Figure 2.10, is constructed, but during inference the syntactic variables

are clamped to their true values. This is done during both training and testing. It is

meant to serve as a ceiling for the performance of the joint model if the joint model

could perfectly predict trees at test time, though there is no guarantee that these trees

are ideal for the task.

• Hidden

In this scenario the full joint model is constructed, but all syntactic components (and

consequently all coordinating factors) are treated as unobserved. The marginalization-

based training method (Section 2.5.5, 75) induces a distribution over latent syntactic

variables to improve the conditional maximum likelihood on the data.
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2.6.3.3 Design

Each model was trained using 500 iterations of gradient descent, with learning rate

η = 0.1, and using L2 regularization as described in Section 2.5.7 (pg. 78). We impose a

50 iteration maximum of belief propagation inference, which is exact in the UNIGRAM and

BIGRAM models and approximate in all others. In models with syntactic components, we

alternate between forward-backward sweeps along the chain of tag variables, and inference

across the syntactic and connection components. The model is decoded by taking the tag

Tk of the Unigram(i, Tk) with the highest true belief, for all i ∈ n.

The features associated with each UNIGRAM(i, Tk) factor are simply the tag (Tk) and

the word concatenated with the tag (wi+Tk). The only feature for the BIGRAM(i, j, Tk, Tl)

factors is a concatenation of the tags involved (Tk +Tl). This type of feature is also used in

the CONNECT factors. In this case there is no need to use a feature which specifies an i, j,

tag at position i, tag at position j, and whether the syntactic arc is present, because the only

potential in the CONNECT factor that is derived from features is for when both variables are

true. However we do differentiate between features for CONNECT and BIGRAM factors,

i.e., features are mapped to different parameters in the model.

2.6.3.4 Results

The results of these experiments are shown in Table 2.1. We find that the BIGRAM

model provides significant gains over the UNIGRAM tagging model in both languages. In

English, where sequence models have a long and successfully history, we find that bigram

dependencies between adjacent words are more useful than dependencies between words

in syntactic relationships – both when using gold standard syntax, and when predicting

syntactic variables. However, for morphological case prediction in Latin we find that the

JOINT and ORACLE, which are trained from gold syntactic dependencies, provide more

useful information than local bigram dependencies alone. This supports the general claim
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English Latin
Unigram 91.5 95.3

Bigram 96.9 96.2
Joint† 96.4 96.6

Oracle†† 96.7 96.7
Hidden 94.3 96.1

Table 2.1. Tagging accuracy for English and Latin. When applied to the English data,
the model which uses local (adjacent) dependencies achieves the highest accuracy. For
morphological case prediction in Latin, syntactic information produces superior results.
Models which observe syntactic annotations during training are marked with a † symbol,
and models which observe syntactic annotations during both training and testing with a ††

symbol.

that syntactic information is a potentially useful source for information for tagging tasks in

morphologically rich languages.

In this example we find that the HIDDEN model is not able to induce a latent syntac-

tic representation that improves tagging accuracy over the BIGRAM model. This may be

attributed to many potential causes (increased model complexity, a non-convex parameter

space, under-training, or the lack of a sufficiently strong signal from the tagging annota-

tions), but we will show in the remaining sections that for many NLP tasks an induced

syntax can provide a significant improvement over models which do not utilize syntactic

information. In many cases these latent syntax joint models often rival the performance of

systems which make use of gold trees or trees produced by a state-of-the-part parser.

2.7 Conclusions

Our hypothesis is that coupling a model of syntax to a downstream NLP task and train-

ing the models jointly will improve performance on that task. Further, we believe that

in many instances where data limitations would prevent fully supervised training of joint

models, useful distributions over latent syntactic structure can be induced from the limited

annotations that are available.
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In this chapter we introduced the basic theory and techniques used repeatedly through-

out the dissertation to accomplish these goals. In Section 2.2 we introduced factor graphs,

and described the set of factors that serve as the building blocks for the complex, joint mod-

els presented in the following chapters. In Section 2.3 we described the message-passing

inference techniques that underly exact inference strategies for many common NLP models

(HMMs, PCFGs, etc.). The same inference strategy, when performed repeatedly, provides

a useful approximate method for inference in cyclic graphs. This is particularly important

when modeling two tasks jointly, as the dependencies between component models often

create cycles in the graph.

However, structured constraints – like those necessary for representing syntax –can in-

troduce an exceedingly large number of factors into the graph, creating large cliques of

densely connected variables, and hindering inference. We discuss combinatorial factors

(Section 2.4) as a way of introducing special-purpose algorithms into the inference proce-

dure to circumvent these issues.

In Section 2.5 we discuss how to optimize model parameters on a set of training data us-

ing gradient-based methods, in both the fully supervised case and when there is no syntactic

training data available (i.e., in the presence of latent variables). We conclude by illustrating

the use of these techniques to create and train a joint model of tagging and parsing (Section

2.6), inducing a latent syntactic representation to influence tagging performance.

In the following chapter we delve in greater detail into syntax, and the combinatorial

factors used to model syntactic constraints. We introduce two syntactic formalisms: phrase

structure grammar and dependency grammar. For phrase structure grammar, in which a

syntactic analysis is represented by a tree, we provide a novel combinatorial factor for

efficiently prohibiting invalid structures in the model. We then show how such a factor

can be utilized at the core of a standalone grammarless phrase structure parsing model,

and show performance comparable to well-established parsers. For dependency grammar

we review the work of Smith and Eisner (2008) which introduces a similar combinatorial

89



factor for constraining syntactic variables to form directed graphs. These factors are the

principle components of the latent syntactic representations we use throughout the thesis.
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CHAPTER 3

FACTOR GRAPH REPRESENTATIONS OF SYNTAX

Syntactic structure is essential to the understanding of natural language. Consider the

sentence, “The cat scratched the man with claws”. There are at least two equally valid

syntactic analyses for this sentence (Fig. 3.1), with each analysis corresponding to a dif-

ferent interpretation of the events1. If the prepositional phrase attaches high, to the verb

scratched, the sentence has a semantics akin to The cat scratched the man with its claws.

If it attaches low, to the NP headed by man, it should be interpreted as The cat scratched

the man who has claws. Syntactic analysis removes some of the ambiguity inherent in

language and is therefore crucial for capturing deep linguistic understanding. Knowledge

of the data’s syntactic structure has long been considered a prerequisite for NLP tasks like

semantic role labeling (Punyakanok et al., 2005) and relation extraction (GuoDong et al.,

2005a), and methods which incorporate syntactic features or syntactic structure are becom-

ing increasingly more common (Finkel and Manning, 2009).

In this thesis we explore the use of syntax as a form of latent scaffolding: structure

that serves little purpose in and of itself, but provides a useful platform from which end

task predictions can be more effectively made. In order to achieve this goal we rely on

a marginalization-based approach to training (Section 2.5.2, pg. 71) to induce a syntac-

tic structure specific to the end task. This removes the need for syntactic annotations, but

requires that both the syntactic and end task models be represented within the same frame-

work. Here the chosen framework, factor graphs, are capable of representing a wide variety

1A syntactic theory does not determine how a sentence should be interpreted, but many compositional
theories of semantics have a strong correlation with syntactic structure (see rule-to-rule hypothesis, (Cann,
1993, pg. 5, 26)).
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Figure 3.1. A phrase structure tree. High PP-attachment (left) vs. low PP-attachment
(right).

of models commonly used in NLP, but are not well-suited for efficiently representing the

structured constraints found in syntax.

In this chapter we discuss graphical model approaches to representing two major syn-

tactic formalisms: phrase structure grammar, in which a syntactic analysis must form a

tree, and dependency grammar, in which a syntactic analysis must form a directed acyclic

graph (DAG). Naive approaches to representing either can lead to a troublesome, and some-

times exponential growth in the number of factors necessary to rule out invalid structures.

To circumvent this we introduce to combinatorial factors which override the default mes-

sage passing algorithm and calculate the outgoing factor messages in a different and often

more efficient manner. A single globally-connected factor can efficiently ensure, through

dynamic programming algorithms, that the syntactic variables represent only valid parses.

Thus the syntactic structure induced by these models obey general syntactic structure con-

straints, but may not correspond well to linguists’ notion of syntax nor capture the subtleties

of phenomena like the previously-discussed PP-attachment. However, it may nonetheless

resolve ambiguity and constrain the problem space in a manner befitting the end task.

The remainder of this chapter is organized as follows. In Section 3.1 we discuss the

context-free grammar models that constitute the dominant approach in the field, and the

Inside-Outside algorithm for parameter estimation in these models. Much of the theory

introduced in this section underlies our own work. In Section 3.1.2 we present a factor
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graph representation of phrase structure trees. Efficient inference requires the introduc-

tion of a combinatorial tree constraint factor, CKY-TREE, which can compute outgoing

messages in O(n3) time (Section 3.1.2.1). It is possible to use these components as an un-

labeled parser, producing a tree structure with no tree labels. In Section 3.1.2.4 we present

a set of modeling extensions for performing labeled phrase structure parsing. In Section

3.1.3 we propose a method for introducing grammatical rules into the model, coupled with

a perceptron-based learning method for estimating rule weights. We evaluate the perfor-

mance of these models in Section 3.1.4,where we show that they perform comparably to

more established state-of-the-art parsers while remaining asymptotically faster. In the fol-

lowing chapters we utilize this phrase structure representation to construct joint models for

named entity recognition (Chapter 4) and relation extraction (Chapter 5)

Section 3.2 summarizes the contributions of Smith and Eisner (2008), who present a

combinatorial factor for efficient dependency parsing within a factor graph model. We rely

on this approach in later chapters when constructing joint models of relation extraction

(Chapter 5) and semantic role labeling (Chapter 6).

3.1 Phrase Structure Parsing

Phrase structure grammar, a syntactic formalism perhaps most commonly associated

with Chomsky (1962), is built around the notion of a constituent: a contiguous span of

words that functions as a single syntactic unit within a hierarchical structure. Constituents

nest within one another, and the resulting structure known as a phrase structure tree. A

pair of phrase structure trees is shown in Fig. 3.1. The spans of words which constitute

a constituent often align closely to the desired predictions in NLP tasks. For instance, it

is exceedingly common for named entities (Chapter 4) to correspond to noun phrases, and

the words at constituent boundaries play an important part in constructing a semantic role

labeling analysis (Chapter 6). Therefore in order to perform many NLP tasks at a state-of-
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the-art level, it is necessary to first produce a phrase structure tree using a statistical parsing

model.

Statistical methods revolutionized the field of natural language processing, leading to

significant and rapid advances in the accuracy of probabilistic phrase structure parsers.

Aided by the development of large, tree-annotated corpora (Marcus et al., 1993), computers

began to produce high-quality parses of natural language for the first time. A majority of

these approaches assume that a sentence’s syntactic structure can be described by a set

of weighted production rules collectively known as a probabilistic context-free grammar

(PCFG). We will now discuss how probability distributions are defined over trees using

PCFGs, and how the parameters of these models can be efficiently learned. While our

own approach to phrase structure parsing is unique in that it does not require a grammar, it

nonetheless shares many of the same underlying concepts.

A probabilistic parser defines a distribution over trees and parses a sentence s by find-

ing the tree t which maximizes this distribution. If the parser is a generative model, this

distribution will be the joint distribution, P (t, s). If the parser is a conditional model, this

distribution will be the conditional distribution, P (t|s). As Charniak (1997) notes, maxi-

mizing the joint distribution is equivalent to maximizing the conditional distribution:

tBest = arg max
t

P (t, s)

P (s)
= arg max

t
P (t|s) (3.1)

The question then becomes one of how to define P (t|s). For a majority of statistical

parser research, the answer is to specify this distribution using a PCFG. Formally a PCFG

G is a 5-tuple:

G = {V,Σ, R, SD}

1. V is a finite set of nonterminal symbols. In the context of natural language these

represent syntactic categories (i.e., noun phrase, verb phrase, etc.). A nonterminal
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is characterized by its ability to be rewritten in accordance with a set of production

rules, R.

2. Σ is a finite set of terminal symbols, disjoint from V . In the domain of natural

language, the terminal set typically comprises the words of the language, though

they may also refer to part-of-speech tags if tags are observed. Terminal symbols

cannot be rewritten.

3. R is a finite set of rules of the form V → {V ∪ Σ}+, mapping a single nonterminal

symbol to a sequence of nonterminal and/or terminals. As it pertains to trees, V

corresponds to a parent node, and {V ∪Σ}+ a sequence of children. The Kleene plus

(+) requires that at least one nonterminal be present in the right-hand side of the rule.

4. S is a start symbol, S ∈ V , which is used to initially represent the sentence. It is

transformed during parsing by the application of rules in R.

5. φ, is a function of the form R → [0, 1], assigning a probability to each rule in the

grammar.

Each rule r has the form X → Y , where X is the parent nonterminal, and Y is a

sequence of terminal or nonterminal children. For a PCFG, φ(r) = P (X → Y |X → ),

i.e., the probability of rule r is the conditional probability of the parent X expanding to Y ,

given that X has already been chosen as the parent. Thus in a PCFG, for all rules which

share the same parent, the sum of their corresponding rule weights must equal 1:

1 =
∑

Y ∈{V ∪Σ}+
φ(X → Y ) (3.2)

With the addition of rule weights we can calculate the probability of any parse, from

a potentially infinite set of trees. We denote the derivation of tree t, the sequence of rule

applications that transforms the start symbol Σ into the tree t, with leaf nodes corresponding
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The      cat    scratched     the    man  

NP

S

DET         NN

DET          NN NP

VP

VB

a.) A Phrase Structure Tree b.) A Probabilistic Context-Free Grammar

V = {S, NP, VP, DET, NN, VB} 

Σ = {The, cat, scratched, the, man} 
S = S

1.0     S              NP  VP
1.0     NP           DET  NN
0.6     VP           VB  NP
0.4     VP           VP  PP
0.3     DET         The
0.2     NN           cat
1.0     VB           scratched
0.7     DET         the
0.8     NN           man

R =

to the words in s, as δ(t). Using the chain rule, we define the probability of tree t and

sentence s as the product of all rule weights used in its derivation:

P (t, s) =
∏
r∈δ(t)

φ(r) (3.3)

Figure 3.1 presents a PCFG and phrase structure tree t for the sentence “the cat scratched

the man”. Using this PCFG we can calculate the probability of the tree t as follows:

P (t, s) =φ(S→ NP VP)× φ(NP→ DET NN)

×φ(VP→ VB NP)× φ(NP→ DET NN)

×φ(NN→ cat)× φ(VB→ scratched)

×φ(DET→ The)× φ(DET→ the)

×φ(NN→ man)

P (t, s) =1.0× 1.0× 1.0× 0.6× 0.3× 0.2× 1.0× 0.7× 0.8

P (t, s) =0.02016

In summation, PCFGs define the joint probability of any parse tree and sentence as the

product of the rule weights (conditional probability of children given their head) used in its
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derivation. Finding the tree that maximizes this distribution is often accomplished through

chart-based decoding, and we refer the interested reader to the excellent presentation of the

CKY algorithm found in Jurafsky and Martin (2008) for further details.

3.1.0.4.1 Extensions and alternatives to PCFGs

PCFGs were common in many of the early successful statistical parsing systems.2 A lex-

icalized PCFG is a simple extension to standard PCFGs which embellishes the grammar

with lexical (head) information. A headword is the word which directly determines the

type of the encompassing phrase. For instance, “cat” is the head of the noun phrase “the

cat”, and “scratched” is the head of the verb phrase “scratched the man” (See also X’

theory Chomsky (1970); Jackendoff (1977)). The work of Collins (1996) modeled bigram

dependencies between headwords, and outperformed previous state-of-the-art decision-tree

approaches (Magerman, 1995). They have since become a staple in the field. Collins (1997)

further extended this model to include a probabilistic treatment of subcategorization frames

for headwords (i.e., the number and type of children a parent constituent is likely to have),

improving upon previous results by 2.3% on average.

PCFGs are still a component in many state-of-the-art parsing systems. PCFGs can be

used to provide an initial set of parse trees and their posteriors under the model, which can

be further refined using discriminative re-ranking (Koo and Collins, 2005; Charniak and

Johnson, 2005). Lexicalized re-ranking parsers currently provide the best parse accuracy

on the WallStreet Journal corpus. Another state-of-the-art parsing approach which uses

PCFGs are latent variable grammars, in which a fine-grained grammar is induced automat-

ically from the data (Matsuzaki et al., 2005; Petrov et al., 2006). These methods use the

treebank annotation as an initialization, but iteratively refine the grammar nonterminals to

maximize the likelihood of the data, capturing useful patterns.

2Notable exceptions are Jelinek et al. (1994) and Magerman (1995), which use decision trees to estimate
P (t|s).

97



Approaches to parsing which do not rely on PCFGs include log-linear grammars, which

derive rule weights from the sum of exponentiated feature weights (Petrov and Klein, 2008;

Finkel et al., 2008). Unlike a PCFG, whose use of conditional probabilities as rule weights

guarantees that the product of those weights yields a probability, a log-linear grammar must

explicitly normalize tree scores to ensure the sum of all scores for all possible trees is 1.0.

It does this through the use of the normalizing constant, Z:

P (t|s) =
1

Z

∏
r∈δ(t)

φ(r) (3.4)

This is known as a globally normalized model. The method we propose is similar to previ-

ous work in log-linear parsing, but with an important distinction: our approach is grammar-

less. We train a log-linear model to predict the presence and type of constituent directly,

without rules, and in this respect the parser functions as a set of log-linear classifiers, one

for each span. However, a globally-connected combinatorial factor constrains the con-

stituent variables, prohibiting configurations which do not represent valid trees. It is this

interaction between local and global information, facilitated through belief propagation,

which makes accurate parsing without a grammar possible. In the next section we discuss

parameter estimation in grammar-based models and an important algorithm for inference

in tree structures, before discussing analogs in the combinatorial factor we propose (Sec.

3.1.2.1, pg. 109).

3.1.1 The Inside-Outside Algorithm

How are rule weights estimated? For standard PCFG models trained from a tree-

annotated corpus, the maximum likelihood estimate can be computed simply by counting:

φMLE(X → Y ) =
count(X → Y )

count(X)
(3.5)
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where count(X → Y ) is the number of times the rule with parent X and children Y occurs

in the training data, and count(X) is the number of times a rule with parent X occurs in the

training data.

However, an EM-based (expectational maximization) approach provides a more general

solution for estimating these parameters when there are rules which are not observed in

the data. This scenario is common in grammar induction, discriminative parsing, semi-

supervised training for parsers, and the factor graph representation presented in this chapter.

The EM algorithm alternates between two procedures: an E-step, which computes the

expectation of the log-likelihood calculated under the model using the current parameters

Θ(t), and an M-step, which updates the model parameters to maximize the E-step’s log-

likelihood.

In this section we are interested only in the calculation of the E-step for grammars,

as it is also the foundation of our approach to grammarless parsing. We refer the reader

interested in the M-step or any of the wider applications of the EM algorithm to one of the

many in-depth tutorials on the topic, such as Bilmes (1998).

In the context of parsing, the EM algorithm takes as input a set of sentences s, of size

m, with the ith sentence denoted by si. In the E-step we must compute the expected counts,

E[count(r)], for each rule r:

E[count(r)] =
m∑
i=1

∑
t∈Ti

P (t|si,Θt−1) count(r, t) (3.6)

where Ti represents all possible parse trees for sentence si, and count(r, t) is the num-

ber of times rule r occurs in the derivation of tree t. Explicitly enumerating these trees

is not tractable, but this problem can be efficiently solved using a dynamic programming

algorithm known as the Inside-Outside algorithm (Baker, 1979; Lari and Young, 1990),

a generalization of the Forward-Backward algorithm for exact inference in tree-structured
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models.3

The input to the algorithm is:

• A sentence s = (w0, ..., wn−1) of n words. The substring wi, ..., wj−1 is denoted by

the pair of indices (i, j), where 0 <= i <= j <= n.

• A CFG (V,Σ, R, S) in Chomsky normal form. A grammar is said to be in Chomsky

normal form if all rules are of the form (X → Y Z) or (X → x), where X, Y, Z ∈ V

and x ∈ Σ. The conversion to binary-branching trees is discussed further in Section

3.1.2.2 (pg. 117).

• A potential function φ(r) for each r ∈ R. In a standard PCFG the rule weights will

normalize locally (Eq. 3.5), but here we define a more general potential for a tree t

as φ(t) =
∏

r∈δ(t) φ(r). This is not guaranteed to normalize and must be divided by

Z.

When the algorithm terminates we are left with three important quantities:

1. µ(X → Y Z, i, k, j), the sum of all potentials φ(t) for all t ∈ T which contain the

rule X → Y Z over span indices i, j, and k. Let a span (i, j) denote a constituent

which dominates words wi, ..., wj−1. Here the rule states that child Y spans (i, j),

and child X spans (j, k).

2. µ(X → x, i, k), the analogous sum of potentials for terminal rules, which expand to

words in the sentence.

3. Z, the total probability of all parse trees T :

Z =
∑
t∈T

φ(t) (3.7)

3Belief propagation (Sec. 2.3.2, pg. 46) is a generalization of both algorithms, and performs exact infer-
ence for models with chain or tree-structured graphs, or approximate inference in arbitrary graph structures.
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From these quantities we can calculate the expected counts of both nonterminal and

terminal rules, and use these counts for computing the gradient necessary for maximizing

the log-likelihood (the M-step). These three desired quantities are expressible in terms

of two intermediate ones: the inside score, α(i, k, v), and the outside score, β(i, k, v),

v ∈ V . Both the inside and outside scores contain the span (i, j) rooted at a nonterminal

v (which we refer to as Span(i, k, v). The inside score is the sum of potentials of all trees

rooted at this span, generating the words within it. The outside score is the sum of the

potentials for all trees rooted at S which generate words w1, .., wi−1 and wk+1, .., wn and

ultimately a context for Span(i, k, v). Fig. 3.2 depicts these quantities. We now discuss

the computation of these terms via the Inside-Outside algorithm.

3.1.1.0.2 Inside Computation

To define α(i, k, v) formally, let τ(i, k, v) be the set of all trees which begin with the non-

terminal v and span (i, k), generating all words wi, .., wk beneath it. Figure 3.1 (pg. 92)

depicts two phrase structure trees. Both trees contain span (2, 7,VP), but differ in the inter-

nal structure within these spans. As such, both subtrees over the span (2, 7) represent two

distinct elements of the set τ(2, 7,VP). Using τ(i, k, v) we can define α(i, k, v) as follows:

α(i, k, v) =
∑

t∈τ(i,k,v)

φ(t) (3.8)

Enumerating all trees in set τ(i, k, v), for all i, k, would be intractable. Instead, note

that the calculation of α(i, k, v) depends on α(i, j,X), where i < j < k and X is any

nonterminal such that there exists a rule of the form v → X . A similar relationship exists

between α(i, k, v) and α(j, k,X). For instance, the computation of α(2, 5, V P ), using the

grammar provided in Fig. 3.1, decomposes as follows:
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a.) Inside Tree

wi wj wnw0
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b.) Outside Tree

Figure 3.2. Inside & Outside trees. Shaded areas depict the space of trees which are
summed over for each quantity.

α(2, 5, V P ) = φ(V P → V B NP )× α(2, 3, V B)× α(3, 5, NP )

+ φ(V P → V B NP )× α(2, 4, V B)× α(4, 5, NP )

+ φ(V P → V P PP )× α(2, 3, V P )× α(3, 5, PP )

+ φ(V P → V P PP )× α(2, 4, V P )× α(4, 5, PP )

The binary-branching structure of the input trees and grammar eliminates the need to

consider decompositions over the three or more spans (i.e., a single decomposition to

(2, 3), (3, 4), and (4, 5) in the above example).

Thus, the computation of α(i, k, v) for any i, k, v can be defined recursively, thus

avoiding the inefficiency of brute force enumeration. The algorithm begins by calculat-

ing α(i, k, v) for the smallest spans first, and proceeds to increasingly larger spans. Each

α(i, k, v) is cached to eliminate redundant calculations. This strategy allows the Inside-

Outside algorithm to compute updated expected counts for rules in O(n3) time.

3.1.1.0.3 Outside Computation

Similarly, to formally define the corresponding outside score we introduce the notion of an

outside tree. An outside tree O(i, j, v) is a tree which a.) is rooted at the start symbol, S,
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b.) generates Span(i, k, v), and c.) generates the words that precede (w0 to wi) and follow

it (wk+1 to wn). In other words, an outside tree generates a context for span Span(i, k, v).

We define the outside term β(i, j, v) as the sum of the potentials for trees t ∈ O(i, j, v):

β(i, j, v) =
∑

t∈O(i,j,v)

φ(t) (3.9)

The outside scores can be calculated in a similar manner, however the algorithm begins

by computing the outside score for the top-level span, and recursively calculating the β

values for progressively smaller spans. However, note that to compute the β values one

must rely on α values calculated in the previous step. To calculate β(i, k, v) we must

examine the outside score for span (0, n) and the inside score for the remainder, (0, i) and

(k, n). We momentarily forgo the details of this calculation, and discuss instead only the

outside calculation as it pertains to the grammarless factor graph parsing in Section 3.1.2.1

(pg. 109).

3.1.1.0.4 Computing the Gradient

Once the inside and outside scores have been computed, the desired quantities can be ex-

pressed in terms of these quantities. Z, the partition function, is the total probability of

all parses for a given sentence x of length n. It is required to normalize rule potentials to

produce expected counts. Note that this is equal to the inside probability of the top-level

span, beginning with the start symbol S:

Z = α(0, n, S) (3.10)

To compute µ(X → Y Z, i, k, v) we combine the outside score of the span (i, k) and

the inside score for the two analyses within the span, (i, j) and (j, k):
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µ(X → Y Z, i, k, j) = φ(X → Y Z, i, k, j)

× β(i, j,X) (3.11)

× α(i, k, Y )× α(k, j, Z)

Summing over the span indices and normalizing yields the expected counts for the rule,

and the necessary quantity for computing the parameter update:

E[count(X → Y Z)] =
∑
i,j,k

µ(X → Y Z, i, k, j)

Z
(3.12)

Rules of the form X → x are handled analogously. These expected counts can then be

utilized in the M-step to compute the gradient and update the model parameters.

The Inside-Outside algorithm is used in a wide variety of applications. Pereira and

Schabes (1992) use the Inside-Outside algorithm to infer the parameters of a PCFG from a

partially-annotated treebank, containing a mix of full parsed, partially-parsed, and unparsed

sentences. Chiang and Bikel (2002) utilize the algorithm in an attempt to adapt hand-

written parse rules to new corpora. Conditional random field parsing (Finkel et al., 2008),

and latent variable grammars (Matsuzaki et al., 2005; Petrov and Klein, 2007) also rely on

variants of this algorithm for parameter estimation.

This concludes our discussion of the Inside-Outside algorithm and the theory underly-

ing efficient computation of rule expectations. In the following section we present a factor

graph representation of phrase structure trees and show how the principles described in

this section can be used to construct a new variant of the Inside-Outside algorithm which

does not compute rule expectations, but rather the expectation that a given (unlabeled) con-

stituent span is present in the tree. From within a globally-connected combinatorial factor,

this algorithm can compute outgoing messages during inference which guide variable be-

liefs towards representing a valid phrase structure tree.
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3.1.2 Representing Phrase Structure in Factor Graphs

In the previous section we discussed PCFG-based parsing and parameter estimation

for discriminative or latent variable parsing models (including unsupervised models and

training from partially-annotated corpora) using EM and the Inside-Outside algorithm. In

this section we now contrast these methods with our own approach to parsing. Here we

demonstrate how to represent phrase structure syntax in a factor graph, and how to perform

efficient inference using a combinatorial factor. This produces an unlabeled tree structure

which may be well-suited for use as a syntactic component in joint models. We then detail

extensions necessary for competitive performance in parsing tasks, which includes labeled

parsing and unary chain prediction, before discussing more practical considerations, like

pruning heuristics. We begin with the factor graph representation.

For a sentence with n words there are O(n2) possible constituent spans. Recall that

if a constituent spans (i, j) its leaf nodes are words wi to wj−1, and thus there is one

possible constituent span for each 0 ≤ i < j ≤ n. In order to represent a model of phrase

structure syntax as a factor graph, we use O(n2) Boolean variables, each representing the

presence of a constituent span when true, and the absence of a constituent span when

false. This provides the a representation for any possible unlabeled phrase structure tree,

but the suitability of each variable is scored locally by potentials, calculated via features,

in corresponding unary factors. Formally, we describe this structure as follows:

• Let {Span(i, j) : 0 ≤ i < j ≤ n} beO(n2) Boolean variables such that Span(i, j) =

true iff there is a span beginning at index i and ending at index j in the constituent

structure.4

• Let {SPAN(i, j) : 0 ≤ i < j ≤ n} be O(n2) unary factors, each attached to the

corresponding Span(i, j) variable. These factors score, via a set of exponentiated

4In practice, we do not need to include variables for spans of width 1 or n, since they will always be true.
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feature weights, the suitability of each span to appear in an unlabeled phrase structure

tree.

This collection of variables is capable of representing all possible unlabeled phrase

structure trees, provided that these trees do not contain multiple spans over the same pair of

indices (i.e., a unary chain). However, it is also capable of representing many invalid struc-

tures. For instance, two variables representing overlapping spans (Span(i, j), Span(k, l) :

i < k < j < l) cannot be in a valid phrase structure tree. We now discuss the formal

properties of a restricted class of trees, and a combinatorial factor which constrains config-

urations of Span variables to form valid members of this set.

For our purposes of defining a phrase structure representation for joint inference, the

usefulness of syntax lies purely in its structure (i.e., whether or not a span is in the tree)

and not in its ability to reproduce treebank-style annotation. Therefore we do not aim

to predict unary chains (though a method for reintroducing unary chains is discussed in

Section 3.1.2.5, pg. 123). Similarly, an unlabeled constituent spanning a single word

is not informative to other tasks, as we assume their presence (part-of-speech tags and

words are observed). Therefore only spans of width two or greater are necessary. Our

inference methods share the same underlying principles as previous parsing work, and

similarly require binary-branching structure. Thus the class of phrase structure trees we

are interested in modeling are unlabeled, binary-branching trees with constituents of width

two or greater, and no more than one constituent per pair of indices.

Formally a tree drawn from this restricted set of phrase structure trees is any set of spans

Span(i, j) where 0 <= i <= j <= n, and 5:

1. Span(0, n) = 1

All trees must contain a root constituent spanning the entire sequence of terminal

nodes.

5These are variants of the more extensive set of axioms described in Backofen et al. (1995)
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2. ∀(i < j < k < l) : ¬(Span(i, k) ∧ Span(j, l))

Spans are not permitted to cross.

3. ∀(i < j < k; k − i > 3) : Span(i, k) =⇒ ∃j : Span(i, j) ∧ Span(j, k)

All spans of width 4 or greater must have exactly two children.

4. ∀(i < j < k; k− i = 3) : Span(i, k) =⇒ k− i = 3∧ (∃j : Span(i, j)∨ Span(j, k)

All spans of width 3 will have exactly one child, aligning either to the left or right

side of the encompassing span. Spans of width 2 act as terminal nodes, in that they

have no children.

The top level span variable, Span(0, n), can be explicitly set to true, satisfying axiom

#1. The Inside-Outside algorithm operates on binary-branching trees, and this binariza-

tion, which we do to all trees prior to training and is assumed throughout the entire algo-

rithm, guarantees that axiom #3 and #4 is satisfied (single word spans do not need to be

represented in the model, so 2-word spans become the smallest in the tree). However, there

is no mechanism for preventing variable configurations in which two variables representing

overlapping spans are simultaneously true. This would violate axiom #2, which requires

that spans properly nest. Thus the crux of expressing a constituent tree as a factor graph

lies in finding an efficient way to provide this constraint, preventing violations to axiom

#2, and guaranteeing that the collection of Span variables describes a valid tree.

One approach to solving this problem is to tackle it piecewise, attempting to capture a

global constraint through the interactions of many simple local constraints. This approach

is illustrated in Fig. 3.3. An invalid tree is formed when two overlapping spans are present,

and therefore factors may be inserted between each pair of overlapping Span variables

to prohibit these configurations. Such a factor would be implement by a logical NAND,

contributing a score of 0 when both variables are true, penalizing the configuration, and 1

otherwise. But note that the number of such factors necessary to accomplish this grows at

a rate quartic, O(n4), in the length of the sentence, as a factor is required for all pairs of
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the         cat       scratched       the        man

NAND

Span
(0,2)
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(1,3)
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(2,4)

Span
(2,5)

Span
(3,5)

NAND

Figure 3.3. Variables for phrase structure syntax. The variables here represent the con-
stituent tree for the sentence “The cat scratched the man”, adapted from the example in
Fig. 3.1. Shaded variables indicating a true value and the presence of a constituent span
in the tree. The grid may aid readers who are familiar with chart parsing to grasp the cor-
respondence between the factor graph representation and the traditional parsing literature.
Hard NAND factors can be used to prohibit two overlapping span variables from being true
simultaneously, but a quartic number of such factors would be required.

Span(i, j) and Span(k, l) variables such that i < k ≤ j < l. Not only does this drastically

increase the number of factors in the graph, but it creates a highly cyclic graph which may

significantly hinder inference. This makes it an unfavorable option.

In the same way we propose MRFs as a common language for joint models, McAllester

et al. (2012) propose case-factor diagrams (CFDs) as a common language for structured

models, including PCFGs. CFDs subsume MRFs, can represent a PCFG using O(|G|n3)

Boolean variables, and can calculate variable marginals (or a corresponding Viterbi solu-

tion) in time linear in the number of variables. A CFD decomposes structured models into

Boolean variables, and uses factors to coordinate between these variables in order to ex-

press the compositionality of constituent spans in the tree. To represent a PCFG it requires

|V |n2 variables of the kind presented above to represent a nonterminal v ∈ V spanning

from i to j for all 0 ≤ i < j ≤ n (we propose an identical set of variables for performing
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labeled parsing in Sec. 3.1.2.4, pg. 120), and a branch variable “Xi,k → Yi,j, Zj,k” for

each production rule in the grammar. The key insight of CFDs is that by decomposing

the PCFG representation out into Boolean variables, inference in the graph can function

in a zero-suppressed manner, meaning that the hierarchical structure of the tree can be ex-

ploited and portions of the graph which represent invalid configurations do not need to be

explicitly searched. This makes them well-suited to sparse problems of the sort common

in NLP. Therefore CFDs provide another method of providing a tree constraint, but require

specialized inference.

Yet another approach for providing this constraint is to use a single globally-connected

factor. Smith and Eisner (2008) previously used this approach to efficiently represent de-

pendency syntax in factor graphs, where variables must be constrained to prohibit cycles.

In comparison to modeling the constraint through many pairwise factors, this has the ben-

efit of not producing such a densely connected graph. In fact, inference is exact. Unlike

CFDs, the constraint logic is encoded in a single factor, and not distributed throughout the

graph. With the exception of this one factor, standard inference algorithms can be used.

In the next section we present our application of this design to constituent parsing, the

CKY-TREE factor.

3.1.2.1 Description of the CKY-TREE Factor

Given a set of Boolean variables, each representing the presence of a constituent span,

a single global factor can be used to constrain these variables to form valid phrase structure

trees. We introduce this factor formally as follows:

• Let CKY-TREE be a global combinatorial factor attached to all the Span(i, j) vari-

ables. This factor contributes a potential of 1 to the model’s score if the span variables

collectively form a legal, binary-branching tree (as specified in the axioms in Section

3.1.2, pg. 105)and a potential of 0 otherwise. It enforces, therefore, a hard constraint
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on the variables. All outgoing messages from this factor are computed simultane-

ously by a variant of the Inside-Outside algorithm, described in Fig. 3.4.

In order to provide the necessary constraint, the desired factor needs to collect the be-

liefs of all Span variables, and efficiently produce for each variable Span(i, j) an outgoing

message mCKY-TREE→Span(i,j) which reflects (1) the beliefs of all other Span variables, and

(2) their role within the hierarchical structure. This is an expectation of the Span variable’s

value taking into account the beliefs of all other Span variables. Note that this goal is sim-

ilar to that of general marginal inference (Section 2.3, pg. 42). Here we rely on a variant of

the Inside-Outside algorithm (originally discussed in Section 3.1.1, pg. 98).

First, because we aim to encapsulate this algorithm inside a factor, the algorithm needs

to function over the type of information captured by the variables in the model. Thus the

input to the algorithm is a message from each Span variable, i.e., the expectation of its

value given the beliefs of its other neighbors. In this initial parsing model Span variables

have no neighboring variables, and their beliefs are informed solely by unary SPAN factors.

As in earlier work in dependency parsing (Smith and Eisner, 2008) and using a strategy

detailed in Section 2.4 (pg. 54), the algorithm begins by gathering all incoming messages,

mSpan(i,k)→CKY-TREE, and converting each to an odds ratios, u(i, k), to allow for efficient

computation of the partition function:

u(i, k) =
mSpan(i,k)→CKY-TREE(true)

mSpan(i,k)→CKY-TREE(false)
(3.13)

As described in Section 3.1.1, the Inside-Outside algorithm decomposes the complete

computation into two parts. The inside pass computes α(i, k), for all i, k : 0 ≤ i < k ≤ n,

the score for the span at (i, k) generating the words wi, ..., wk. The outside pass computes

β(i, k), for all i, k : 0 ≤ i < k ≤ n, the score for generating the words w0, ..., wi−1 and

wk+1, ..., wn immediately outside of the span at (i, k), from the top-level span at (0, n). To
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Algorithm 3 Bracket inside algorithm
1: function INSIDE(u, n)
2: for w ← 2, ..., n do
3: for i← 0, ..., (n− w) do
4: k ← i+ w
5: s← 0
6: for j ← (i+ 1)..(k − 1) do
7: s

⊕←− α(i, j)⊗ α(j, k)
8: end for
9: α(i, k)← s+ u(i, k)

10: end for
11: end for
12: return α
13: end function

14:

Algorithm 4 Bracket outside algorithm
1: function OUTSIDE(u, α, n)
2: β(0, n)← α(0, n)
3: for w ← n, ..., 2 do
4: for i← 0, ..., (n− w) do
5: k ← i+ w
6: for j ← (i+ 1)..(k − 1) do
7: β(i, j)

⊕←− β(i, k)⊗ α(j, k)⊗ u(i, k)

8: β(j, k)
⊕←− β(i, k)⊗ α(i, j)⊗ u(i, k)

9: µ(i, k)
⊕←− β(i, k)⊗α(i, j)⊗α(j, k)

10: end for
11: end for
12: end for
13: return µ
14: end function

Figure 3.4. Pseudocode for CKY-TREE. The inside algorithm is responsible for comput-
ing inside scores α(i, k) from input odds ratios u(i, k). The outside algorithm similarly
computes outside scores β(i, k), and uses both inside and outside scores to compute the
gradient µ(i, k). The ⊕←− denotes incremental assignment.

reiterate, in other words, for a given span (i, k) the inside score refers to the total score of

all analyses capable of generating the words within the span, while the outside score refers

to the total score of all analyses which generate the words outside of the span. The desired

outcome, gradient µ(i, k), is the normalized product of β(i, k) and α(i, k).

After running the Inside-Outside algorithm to compute the gradient µ(i, k) in O(n3)

time, we calculate the O(n2) outgoing messages from CKY-TREE as:

mCKY-TREE→Span(i,j)(true) = µ(i, j)

mCKY-TREE→Span(i,j)(false) = 1− u(i, j) · µ(i, j)

The resulting variable beliefs reflect the beliefs of all other Span(i, j) variables and their

roles within the hierarchical tree structure.

3.1.2.1.1 Proof

How do we know that the algorithm presented in Fig. 3.4 computes the constraint described
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in Section 3.1.2.1? First, we show that the outgoing messages can be derived from the

outside scores.

As shown in the ISATMOST1 factor discussion of Section 2.4.1, efficient computation

of outgoing messages in a combinatorial factor relies on expressing the partition function,

Z, in terms of incoming variable messages. This avoids explicitly summing over entries

in a potential table. In the ISATMOST1 factor message computation it was straightforward

to define Z in terms of odds ratios from incoming messages. Here we can apply the same

technique, but over a hierarchical structure.

We once again turn to the notion of an inside score, which we define recursively as:

α(i, k) =


if k − i = 2 : u(i, k)

if k − i > 2 : u(i, k)
∑

j:i<j<k α(i, j)× α(j, k)

(3.14)

We can then define Z in terms of inside scores:

Z = α(0, n) (3.15)

where α(0, n) is the sum score of all possible trees for a sentence of length n.

As described in Eq. 2.3.2 (pg. 47), in order to calculate outgoing messages to a vari-

able v we must marginalize over the contributions of neighboring variables, excluding those

from v. In the CKY-TREE factor, we exploit the hierarchical nature of the dependencies

to more efficiently perform this same calculation. As shown in Eq. 3.14, the inside score

computation for a span (i, k) marginalizes over the contributions of potential subspans. The

marginalization over messages from spans larger than (i, k) occurs in the outside computa-

tion:

β(i, k) =
∑

s1:0≤s1<i

β(s1, k)× α(s2, i)× u(s1, k) +
∑

s2:k<s2≤n

β(i, s2)× α(k, s2)× u(i, s2)
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where s1 and s2 range across all possible indices for constructing a left and right context

respectively. As in the example exact marginal computation in Eq. 2.10 (pg. 44), multiply-

ing all incoming marginalized messages and normalizing produces the variable’s marginal.

Here multiplying these two quantities yields the expectation of the variable’s marginal, the

desired quantity, gradient µ:

µ(i, k) = α(i, k)× β(i, k)

Thus the desired quantities can be expressed in terms of α and β scores, computed by

incoming variable messages.

Second, we show that the gradient, µ(i, k), for any span can be computed via a dy-

namic programming transformation, provided the algorithm exhibits the dynamic program

property of optimal substructure, i.e., that the solution the entire problem can be computed

efficiently from the solutions to its subproblems. It is straightforward to show that the In-

side variant algorithm presented in Fig. 3.4 exhibits this property, using the definitions

provided in the previous section.

Any inside score α(i, k) reflects the sum score for all possible trees within (i, k). By the

definition in Eq. 3.14 we see that this can be computed efficiently by summing the scores

for all possible child trees, using a single split point j : i < j < k to divide (i, k) into

(i, j) and (j, k). Each analysis of subtrees contributes u(i, k)×α(i, k)×α(j, k) to the sum

score, and summing over all such analysis can be shown to be an exhaustive search, as we

assume trees to be binary-branching.

Therefore we have shown that this problem adheres to the optimal substructure property

of dynamic programs. We can therefore apply a mechanical transformation which trans-

forms the Inside algorithm (Algorithm 3 of Fig. 3.4) into the Outside algorithm (Algorithm

4 of Fig. 3.4), which produces the desired messages. We refer the reader to (see Smith,

2011, pg. 150-161) for further discussion of this method.
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3.1.2.1.2 CKY-TREE: An Example

Let us examine the CKY-TREE computation on an example sentence, “The cat scratched

the man”, with the correct binarized tree shown in Fig. 3.6, (left). We focus on the behav-

ior of three spans: Span(0, 2), Span(2, 5), and Span(1, 5), covering the cat, scratched the

man, and cat scratch the man. The following table contains the quantities computed during

the algorithm, and the rows corresponding to the spans of interest are highlighted:

π(Span(i, k)) m(Span(i,k) π(Span(i, k))
Span before u(i, k) α(i, k) β(i, k) µ(i, k) (true) after
0,2 0.80 4.00 4.00 0.18 0.18 0.37 0.70
1,3 0.20 0.25 0.25 0.25 0.25 0.21 0.06
2,4 0.20 0.25 0.25 0.23 0.23 0.19 0.06
3,5 0.80 4.00 4.00 0.23 0.23 0.80 0.94
0,3 0.10 0.11 0.47 0.15 0.65 0.41 0.07
1,4 0.10 0.11 0.06 0.06 0.03 0.03 0.00
2,5 0.50 1.00 4.25 0.20 0.87 0.87 0.87
0,4 0.10 0.11 0.17 0.04 0.06 0.05 0.01
1,5 0.60 1.50 7.96 0.04 0.20 0.22 0.29

Each of the three Span variables begins with either a neutral belief or a strong belief of

its own value being true, shown in the second column, but not all of these spans can be

present in the predicted tree: Span(1, 5) conflicts with Span(0, 2). How does the CKY--

TREE constraint alter the variable beliefs in this case?

The algorithm begins by converting variable beliefs to odds ratios, as shown in Eq.

3.13 6 Note that the top-level span is omitted from this calculation, as it must always be

true. The inside scores, α(i, j), are computed as the product of the odds ratio, u(i, j),

and the inside scores of any properly nesting spans within it. Span(0, 2) is the smallest

representable in the model, and therefore cannot be decomposed further. Its inside score is

simply its odds ratio:

6In practice it is prudent to convert to log-space prior to computing the odds ratio to avoid underflow
errors.
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α(0, 2) = u(0, 2)

= 4.0

For span (2, 5) there are two possible split points (j = 3, and 4)7:

α(2, 5) = u(2, 5)× ((α(2, 3)× α(3, 5)) + (α(2, 4)× α(4, 5)))

= 1.0× ((1.0× 4.0) + (0.25× 1.0))

= 4.25

For span (1, 5) there are three possible split points (j = 2, 3, and 4):

α(1, 5) = u(1, 5)× ((α(1, 4)× α(4, 5)) + (α(1, 3)× α(3, 5)) + (α(1, 2)× α(2, 5)))

= 1.5× ((0.06× 1.0) + (0.25× 4.00) + (1.0× 4.25))

= 7.96

Each group of inner parentheses indicate the contributions from a different analysis of the

tree structure under (i, k), i.e. calculations using a different split point j. In cases where

the split point j produces a single width span (i.e., j − i = 1 or k − j = 1), it does not

contribute to inside term α(i, k). In contrast to the Inside-Outside algorithm as presented

for grammar-based parsing in Sec. 3.1.1 (pg. 98), note that the odds ratio substitutes for

the rule weight: we no longer have any rules or beliefs pertaining to rules, but we do have

a belief regarding each span’s presence in the tree.

We calculate outside scores β(i, j) similarly, working from larger to smaller spans:

7Intermediary terms are rounded to the nearest hundredth.
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β(0, 2) = (u(0, 5)× β(0, 5)× α(2, 5))

+ (u(0, 4)× β(0, 4)× α(2, 4))

+ (u(0, 3)× β(0, 3)× α(2, 3))

= 0.18

β(2, 5) = (u(0, 5)× β(0, 5)× α(0, 2))

+ (u(1, 5)× β(1, 5)× α(1, 2))

= 0.2

β(1, 5) = (u(0, 5)× β(0, 5)× α(0, 1))

= 0.04

The computation of the gradient:

µ(0, 2) = (α(0, 1)× α(1, 2)× β(0, 2)

= 0.18

µ(2, 5) = (α(2, 3)× α(3, 5)× β(2, 5))

+ (α(2, 4)× α(4, 5)× β(2, 5))

= 0.87

µ(1, 5) = (α(1, 3)× α(3, 5)× β(1, 5))

+ (α(1, 4)× α(4, 5)× β(1, 5))

= 0.2

And the outgoing messages:
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mCKY-TREE→Span(0,2)(true) =µ(0, 2) = 0.18

mCKY-TREE→Span(0,2)(false) =1− u(0, 2)× µ(2, 5) = 0.3

mCKY-TREE→Span(2,5)(true) =µ(2, 5) = 0.87

mCKY-TREE→Span(2,5)(false) =1− u(2, 5)× µ(2, 5) = 0.13

mCKY-TREE→Span(1,5)(true) =µ(1, 5) = 0.20

mCKY-TREE→Span(1,5)(false) =1− u(1, 5)× µ(1, 5) = 0.71

Normalizing produces the final outgoing messages. Examining the posteriors of the

three variables reveals the influence of the CKY-TREE constraint: Span(1, 5) is heavily

penalized, altering it’s beliefs across the threshold from true to false. This is not surprising

given that the span conflicts not only with Span(0, 2), but other variables with strong true

beliefs as well. But this conflict also influenced the beliefs of Span(0, 2), and its true belief

has been reduced to 0.7. The remaining span, Span(2, 5), did not conflict with any span

with a strong true belief, and its own true belief increased significantly to 0.87. Thus the

CKY-TREE factor took as input a set of variable beliefs which did not represent a valid tree

structure, and adjusted these beliefs using global information. Here the resulting beliefs,

when decoded, would produce the desired gold tree.

3.1.2.2 Binarization

When computing inside and outside scores in the CKY-TREE factor, there is an as-

sumption made regarding the structure of the tree. By searching for just a single split point

j within the bounds of span (i, k), we assume that the tree has a binary-branching structure.

This is a general assumption prevalent in CKY parsing, necessary for achieving an O(n3)

complexity, and thus we must transform all trees in the training data to be binary-branching.

However, there is not a consensus on precisely the best method for converting n-ary

branching trees to their binary-branching counterparts. The choice of binarization strategy
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Algorithm 5 Binarization algorithm
1: function BINARIZE(t)
2: if |children(t)| > 2 then
3: l← if (labelOf(l)[0, 1] = “@′′) then labelOf(l) else “@′′+labelOf(l)
4: return (labelOf(t),

(binarize(head(children(t))), . Left Child
(l, tail(children(t)).map{c→ binarize(c)}))) . Right Child

5: else
6: return (labelOf(t), children(t).map{c→ binarize(c)})
7: end if
8: end function

Figure 3.5. Pseudocode of a right-branching binarization. The algorithm assumes that a
tree is a tuple consisting of a label and a list of child trees.

has shown to be important for efficiency considerations in parsing (Song et al., 2008), and

with synchronous grammars (Huang et al., 2009), but Petrov (2009) find only small dif-

ferences in performance across different binarization schemes. We adopt a right-branching

0-Markov binarization strategy (pseudocode for this method is provided in Fig. 3.5), and

convert all trees prior to training. English has a predominantly right-branching structure,

potentially making it a more appropriate choice than a simple left-branching scheme, as it

improves the rate of agreement between syntactic spans and spans for other NLP tasks, like

named entity recognition (4.1.1, pg. 160)

Figure 3.6 illustrates the trees produced by right-branching binarization, as applied to

the n-ary branching trees shown in Fig. 3.1. To reiterate how these trees would be repre-

sented within the model, the true-valued variables which would produce each tree are as

follows:
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The      cat    scratched     the    man   with   claws

NP

S

DET         NN

DET          NN

NP

VP

VB

  PP         NN

PP

a.) High PP-attachment

The      cat    scratched     the    man   with   claws

NP

S

DET               @NP

DET          NN NP

VP

VB

  PP         NN

PP

b.) LowPP-attachment

@VP

NN

Figure 3.6. Binarized trees. The above trees are produced using right-branching binariza-
tion on the sentences shown in Fig. 3.1. Nonterminal labels with the @ prefix have been
introduced in the binarization process.

High PP-attachment Low PP-attachment

Span(0, 2) Span(0, 2)

Span(3, 5) Span(5, 7)

Span(5, 7) Span(4, 7)

Span(3, 7) Span(3, 7)

Span(2, 7) Span(2, 7)

Span(0, 7) Span(0, 7)

All binary-branching trees over an identical number of leaf nodes will have an identical

number of spans.

3.1.2.3 Decoding

The CKY-TREE factor prohibits configurations of Span variables which do not repre-

sent members of the restricted class of trees presented in Section 3.1.2. However, it does

not accomplish this goal immediately; it only adjusts Span variable beliefs toward a valid

configuration. To ensure that the model predicts valid trees it is necessary to decode using

a special procedure, not unlike the decoding methods of traditional chart-parsing systems.

While the CKY-TREE factor can be thought of as a variant of the sum-product algorithm
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for marginal inference which adheres to the axioms Section 3.1.2 (pg. 105), our decoding

strategy can be thought of as the analogous max-product algorithm.

Figure 3.7 provides pseudocode for the decoding procedure. The first step is to find the

set of split points which yields the highest weighted subtrees, using the procedure described

in the BRACK-DECODE function. Here we rely once again on the inside scores, α(i, k). For

a span over (i, k) we examine all possible inner structures, split points j where i < j < k.

We define the score of each decomposition, s(i, j, k), as the product of α(i, j) and α(j, k).

Note that for any two split points j and j′, if s(i, j, k) > s(i, j′, k), and if the most probable

tree contains a span over (i, k), then it must contain s(i, j, k). Thus by processing spans

from smallest to largest and finding for each span the split point that yields the highest

score, we ensure that the maximum split point over (0, n) is the max tree.

Once the maximum split points have been calculated, it is only a matter of backtracking

through these points to determine which spans should be present in the maximum tree. The

BACK-TRACE function performs a recursive search beginning at the top-level span and

exploring progressively smaller spans, taking the maximum split point at each step. Thus

all spans visited in this search are present in the final tree. The observed words and part-

of-speech tags are then inserted into the tree, functioning as leaf nodes.

3.1.2.4 Labeled Parsing in Factor Graphs

The previous section discussed a factor graph approach for unlabeled phrase structure

parsing. This structure can be useful in the context of a joint model, but the parsing evalua-

tion measures labeled accuracy: a constituent is not considered correct unless the gold tree

contains a span over the same indices, and both constituents share the same label. We now

propose a model of labeled phrase structure parsing, which we evaluate against previous

state-of-the-art parsers in Section 3.1.4 (pg. 134).

Extending the unlabeled parsing model to predict constituent types requires: a.) a set

of variables to represent the constituent label set L for each span, and b.) a set of factors to
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Algorithm 6 Bracket Parser Decoding
1: function BRACK-DECODE(n)
2: for w ← 2..n do
3: for i← 0..(n− w) do
4: k ← i+ w
5: for j ← (i+ 1)..(k − 1) do
6: s← α(i, j)⊗ α(j, k)
7: if s > inside then
8: best-inside← s
9: best-split← j

10: end if
11: end for
12: α(i, k)← best-inside +P (Span(i, k) = true)
13: splits(i, k)← best-split
14: end for
15: end for
16: best-inside← 0
17: for j ← 1..n do
18: s← α(0, j)⊗ α(j, n)
19: if s > inside then
20: best-inside← s
21: best-split← j
22: end if
23: end for
24: splits(0,n)← best-split
25: return BACK-TRACE(0, n, splits, bracks)
26: end function

Algorithm 7 Finding the Best Path
1: function BACK-TRACE(i, k, splits, bracks)
2: j ← splits(i, k)
3: if j > i+ 1 then
4: bracks(i, j) = true
5: BACK-TRACE(i, j, splits, bracks)
6: end if
7: if j < k − 1 then
8: bracks(j, k) = true
9: BACK-TRACE(j, k, splits, bracks)

10: end if
11: end function

Figure 3.7. Pseudocode for unlabeled parser decoding

coordinate between corresponding span and label variables. We formally introduce these

components below:

• Let {Label(i, j, λ) : λ ∈ L, and 0 ≤ i < j ≤ n} be O(|L|n2) Boolean variables

such that Label(i, j, λ) = true iff there is a span from i to j with constituent label λ.

• Let {ISATMOST1(i, j) : 0 ≤ i < j ≤ n} be O(n2) factors, each coordinating

between a single Span(i, j) variable and the set of corresponding Label(i, j, λ) vari-

ables, as illustrated in Fig. 3.8. This factor constrains these variables such that iff

Span(i, j) = true, a single Label(i, j, λ) variable will also be true. Otherwise all

variables are false.
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CKY-TREE

Span
(0,2)

Span
(0,3)

Span
(0,N)

Span
(1,3)

Span
(1,N)

Span
(N-1,N)

Span
(0,4)

Span
(1,4)

Span
(2,4)

IsAtMost1

ADJP
(0,2)

ADVP
(0,2)

VP
(0,2)

WHNP
(0,2)

Figure 3.8. Graphical depiction of the labeled parsing model. Double-boxed rectangles
refer to the labeling structure shown in the cut out (left). For the sake of clarity, label
variable names are replaced with their corresponding label value.

It may seem unnecessary to represent each label as its own Boolean variable, when

a single multinomial would suffice. This representation has the disadvantage that it also

requires an additional combinatorial logic factor, ISATMOST1, to coordinate between cor-

responding Span and Label variables. However, representing each label as a separate

Boolean variable allows simple Boolean logic factors to have individual access to each la-

bel variable. This will prove to be convenient when implementing certain extensions, such

as incorporating grammatical rule factors into the model (Section 3.1.3, pg. 129), or con-

structing joint models which use logical factors to coordinate between an NLP task and a

set of Label variables.

It is important to understand that incorporating a set of label variables does not merely

assign a label to the unlabeled tree structure. The addition of label variables is more signif-

icant, influencing and potentially altering the unlabeled structure predicted by the model

via the bidirectional information flow during inference. Corresponding Label and Span

variables are coordinated using an ISATMOST1 factor, implementing a hard constraint:

when Span is true, a single corresponding Label variable must also be true. Otherwise,

122



all variables are false. Consequently, if the model strongly believes that a particular Label

variable must be true, this may sway an unlikely Span variable’s beliefs to become true in

order to satisfy the ISATMOST1 constraint.

3.1.2.5 Unary Chains

While our primary motivation for introducing factor graph parsing models is for their

use as a latent component in a larger joint model, in this chapter we also aim to show that

this model, when treated as a standalone parser, is competitive with state-of-the-art parsers.

However, the standard evaluation for phrase structure trees scores spans that are present

in treebank annotation but not represented in our model. These spans, known as unary

chains, occur when there are multiple spans for a given pair of indices (i, j). A example of

a common unary chain in English is NP→ NN, due to the noun playing two roles in the

tree: a lexical role as a leaf node, and an NP at a higher point in the tree. Evaluating our

parser without modeling at least some of these spans would significantly hinder our efforts

to be competitive with state-of-the-art models on standard evaluations.

In grammar-based approaches the prediction of unary chains falls out naturally from

the recursive definition of the model, but in our span-factored formulation they must be

handled by a separate prediction. Similarly, Bodenstab et al. (2011) predict leaf-level unary

chains separately from the main model, albeit for the purpose of improving decoding speed.

Focusing on leaf-level unary chains is a good compromise between not predicting any, as

it only requires predicting an extra n possible spans, instead of the n2 that may appear

elsewhere, with a majority of unary chains occur at leaf-level (only 11% to 15% of all

unary chains found in the newswire sections of the OntoNotes occur at non-leaf spans). We

adopt this approach and forfeit the performance gains that might come from successfully

predicting unary chains in the remainder of the tree.

To accomplish this we train two models. For the label parser, described above, all unary

rewrites have been removed from the data. In cases where a tree contains a unary chain,
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it is collapsed into its top-most node (e.g., NP→ NN→ “cat” becomes NP→ “cat”). A

second model is trained on the original data, and is used solely for predicting leaf-level

unary chains. The goal of this model is to predict (NN → “cat”, which would then be

added into the parser-produced tree). This model is described below:

• Let {Unary-Span(i) : 0 ≤ i < n} be O(n) Boolean variables such that Unary-

Span(i) = true iff there is a unary chain immediately above the part-of-speech tag

at word wi.

• Let {Unary-Label(i, λ) : λ ∈ L, and 0 ≤ i < n} beO(|L|n) Boolean variables such

that Label(i, j, λ) = true iff there is a unary chain span around the part-of-speech

preterminal at word i with constituent label λ.

• Let {UNARY-ATMOST1(i) : 0 ≤ i < n} be O(n) logical factors, each coordinating

Unary-Span(i) with the corresponding set of label variables, Unary-Label(i, λ).

When Unary-Span(i) = true, a single Unary-Label(i, λ) is also true. Otherwise

all variables are false.

Unlike the Span variables of the unlabeled parser, the beliefs of the Unary-Span vari-

ables do not influence each other. In this sense they function as independent log-linear

classifiers for predicting the presence and label of each leaf-level unary chain.

3.1.2.6 Decoding

When decoding the labeled parsing model, decoding begins with the unlabeled parser

decoding (Sec. 3.1.2.3, pg. 119) to yield an unlabeled tree. For each span in the tree

the corresponding Label variable with the maximum belief is taken as the span label. The

unary classifier then predicts the presence (or absence) of a unary chain above each terminal

node for all words in the sentence. If a unary rewrite is predicted, it is labeled by taking the

Unary-Label variable with the maximal belief as its label.
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Unlike the unlabeled parsing model, constituents introduced through binarization can

be identified and removed from the final tree. Spans of this sort are identified by the “@”

prefix attached to their labels, and easily removed.

3.1.2.7 Features

In this section we discuss the features used to compute potentials for many of the factors

in the model. Features are required for SPAN, LABEL, UNARY-SPAN, and UNARY-LABEL

factors.

3.1.2.7.1 Features for Parsing

Experiments on development data indicate that the information most useful for determining

the presence of a constituent span is also an effective indicator of the type (label) of that

span. Therefore we present one set of features for both the identification and labeling of

constituent spans. When these features are used for calculating a potential for a LABEL fac-

tor, the label is attached as a prefix to the string representation of the feature, i.e., a feature

for identification is “width − 5”, where one of the corresponding features for labeling is

“NP−width−5”. Thus the factor potentials for SPAN and LABEL factors (for all possible

labels) are each calculated from mutually exclusive sets of features, but are derived from

the same information.

We divide the set of features into three conceptual categories: unigram, bigram, and

span-based features. Unigram features (1) are derived from a single index i, and contain

information related to the word, part-of-speech tag, capitalization, previous or following

tags, etc., at a given index. For a span (i, j) we construct unigram features around indices

i, j, i − 1, and j + 1. Bigram features (2) are constructed over pairs of indices. Here we

use a subset of the cross-product of unigram features over each index. Many of these fea-

tures are similar, if not identical to, the features used in edge-factored dependency parsing

(McDonald et al., 2005).
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Unigram Constituent Span Features
Feature String Comment

[width]-3 Width of the span.
[span-start]-2 Index of the start of the span.
[span-end]-5 Index of the end of the span.

[start-word]-scratched Word at the start of the span.
[start-tag]-VB POS tag at the start of the span.

[start-cap]-false Whether the word at the start of the span is capitalized.
[start-word-tag]-scratched-VB Word and POS tag of the start of the span.

Bigram Constituent Span Features
Feature String Comment

[bigram-w-w]-scratched-man The words at the start and end of the span.
[bigram-w-p]-scratched-NN The word at the start of the span and POS tag at the end of the span.

[bigram-p-w]-VB-man The POS tag at the start of the span and word at the end of the span.
[bigram-p-p]-VB-NN The POS tags at the start and end of the span.

Span-based and Miscellaneous Constituent Span Features
Feature String Comment

[bias] For capturing the prior belief of a span being present
[tags-from-start-2]-DET-NN POS tags from (and excluding) the start of the span.
[words-from-start-2]-the-man Words from (and excluding) the start of the span.
[tags-from-end-2]-END-END POS tags from (and excluding) the end of the span.

[words-from-end-2]-END-END Words from (and excluding) the end of the span.
[outside-pos-2]-DET-NN-END-END POS tags outside of the start and end of the span.
[start-footprint-1-2]-NN-VB-DET-NN A number of preceding and following POS tags.

[contains-tag]-VB Feature for if span contains the POS tag.
[contains-tag-no]-PRP Feature for if span does not contain the POS tag.

Table 3.1. Features for span-factored constituent parsing. Tables list the features used
in our parsing model. All example feature strings are computed for a span (2, 5), on the
sentence The cat scratched the man.

Finally, span-based features (3) capture useful information over the entire span, reduc-

ing it to events that are observed sufficiently frequently in the data to be useful. Span-based

features include (a) POS tag concatenations over the entire span, (b) the presence of a par-

ticular POS tag anywhere in the span, (c) the absence of a POS tag from the span, and

(d) the span width. Many of these features can be extremely informative for labeling. For

instance, a span which does not contain a verb is unlikely to be a verb phrase, but that

classification might not be captured well by relying solely on information at the edges of

the span. A more complete description of these features is provided in Table 3.1.
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Features composed of words tend to be sparse, and part-of-speech tags provide a useful

back-off for creating a more robust statistic. The use of part-of-speech tags in the con-

struction of features is enabled by either relying on gold part-of-speech tags, or by first pre-

processing the data with a statistical part-of-speech tagger (Toutanova and Manning, 2000).

While these annotations are quite common, it should be noted that grammar-based parsing

systems can, and typically do, include grammar rules which generate part-of-speech tags

and words. Thus these models do not require this information.

3.1.2.7.2 Features for Unary Rewrite Prediction

Features for unary predictions are much simpler, largely due to our decision to focus solely

on leaf-level unary spans (i.e., spans of the form (NP (NN cat))). This not only reduces

the number of edges for which it is necessary to predict unary spans from n2 to n, but

it eliminates the need for more sophisticated span-based features drawn from tree struc-

ture. Instead the unary prediction features are simply n-grams over a three-word window,

including both words and POS tags. For the labels of unary chains, the labels are again

concatenated onto the feature string prior to being converted into a parameter vector index.

3.1.2.8 Pruning

The labeled parsing model instantiates a single Span variable and an L-sized set of

Label variables for each pair of indices (i, j). However, many of these spans are unlikely

to be present in the predicted tree, and many can be pruned away using simple corpus

statistics, removing them from the model’s consideration. For instance, constituent label

variables can be heuristically pruned from the graphical model based on span width, yield-

ing significant improvements to training and decoding speed while having no discernible

effect on performance. We observe that the number of distinct constituent labels found at

each span width decreases quickly as the width of the span increases (Fig. 3.9). For in-

stance, spans which contain more than 15 words are extremely unlikely to be noun phrases,
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Figure 3.9. Number of distinct span labels at varying span widths. Statistics were col-
lected from the OntoNotes version of the WallStreet Journal Corpus, converted to binary-
branching trees, described in Sec. 3.1.4.1 (pg. 135).

and the size of the graph can be greatly reduced by choosing not to instantiate NP Label

variables for such spans.

Following this strategy we construct a pruned label set for each span width. Each set

includes all constituent labels observed at that width in the training data, and all labels ob-

served in spans with larger widths. We find this approximately triples the speed of graph

construction and inference, while still guaranteeing that the correct label will not fall out-

side of the pruned space during training. The effect on performance is negligible, and often

positive.

Another method of improving the speed of the parser is to reduce the set of span labels

introduced in the conversion to binary-branching trees. This process creates a correspond-

ing “binarized” label for most nonterminals (@NP, for NP), and therefore nearly doubles

the size of the label set. Reducing this set to a single @ label can also significantly reduce

the size of the graph and improve decoding speed. Both methods are simple to implement,

and produce multiplicative increases in efficiency while having little effect on performance.
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3.1.3 Grammatical Rules as Factors

Almost without exception8, research in constituent parsing has focused on grammar-

based approaches. This is not surprising, as grammars have a long-established history in

the linguistics literature, and probabilistic grammars have been used with great success

as the basis of many probabilistic parsers. In contrast, the approach to parsing presented

in this chapter is entirely grammarless: the model’s variables are constrained such that

any configuration of variables must represent a valid tree, but there are no dependencies

between constituent labels (as there are in a grammar). This leads to very efficient parsing,

as the size of the grammar can otherwise contribute significantly to the parsing algorithm’s

complexity. But this architecture is not without its disadvantages.

Constituents can be predicted with great accuracy when spans are small, and features

are both informative and well-represented in the data. These features become sparser as

span widths increase, making span-factored prediction more difficult and less accurate. In

these circumstances, modeling dependencies between parent and child constituent spans

may improve accuracy in ways that would be difficult to capture with word or tag-based

features alone. These are the kind of dependencies captured by a grammar.

In this section we discuss how factors may be used to represent grammatical rules, and

how the weights of these factors can be learned using the perceptron algorithm. These rule

factors can then be added to the model selectively during inference. This approach offers a

unique solution to the parsing problem: shorter spans can be predicted from local features

alone, while wider spans benefit from a sparse set of rule factors.

3.1.3.1 Rule Representation

In a binary-branching tree with no unary chains, a grammatical rule r ∈ R has the

form X → Y Z, where X, Y, Z ∈ V , the nonterminal label set. Rule r represents a parent

8Shallow parsing (Sha and Pereira, 2003) and NP-chunking (Shen and Sarkar, 2005) do not rely on gram-
mars, but both rarely attempt to define a deep constituent tree from top to bottom, and therefore are not
parsing in the same sense.
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Figure 3.10. Grammatical rules as factors. A RULE factor connecting three Label vari-
ables. Not every span or constituent label must participate in a rule and the number of rules
added to the labeled bracket model may be quite small. Rules act only to fix up mistakes
made by the labeled parsing model, where features derived from the input string lead it to
incorrect solutions. Here shaded variables are Boolean variables with true values.

constituent (i, k) with label X , and its two child constituents, one of type Y over indices

(i, j) and one of type Z over indices (j, k). In a weighted context-free grammar (WCFG)

each rule r is paired with a real-valued non-negative weight φ(r). Representing a grammar

rule as a factor provides a natural analog for this weight: the factor’s potential. Formally

we define this type of factor as follows:

• Let {RULE(i, j, k,X, Y, Z) : 0 ≤ i < j < k ≤ n;X, Y, Z ∈ L}, be a set of ternary

factors which connectLabel(i, k,X), Label(i, j, Y ) andLabel(j, k, Z) Boolean vari-

ables. Each rule factor implements a soft NAND logic, contributing a potential of

φ(r) when all three variables are true and mimicking a weighted CFG ruleX → Y, Z

with a weight of φ(r).

A rule factor connects a triple of Label variables as described above (and as illustrated

in Fig. 3.10), contributing its potential to the model’s score. If any of the three variables is

false, the factor contributes a potential of 1.0 and the score is unchanged. However, if all
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three variables are true the factor contributes a non-unit potential. The higher the potential,

the higher the model’s score for this variable configuration. Like other soft factors, this

potential is the sum of exponentiated feature weights. Here we rely only on simple features:

the string representation of the rule (“X→ Y Z”), and a pair of back-off features (“X→ Y

LEFT” and “X→ Z RIGHT”).

In theory rule factors could coordinate between every valid triplet of Label variables

(valid in the sense that the indices of the three spans are (i, k), (i, j), (j, k), such that

i < j < k). This would still differ from a grammar-based model, like a weighted CFG

(Smith and Johnson, 2007), as the score of the tree is also calculated from unlabeled span

variables, in addition to the rule factors over labeled span variables. However, what is truly

unique about our approach to grammar-based parsing is that grammatical rules do not need

to specify this full derivation, and can instead be selectively added to the graph. There

are many ways in which this might be accomplished. The method presented here can be

thought of as a coarse-to-fine strategy for grammar-based parsing with factor graphs: first,

the factor graph for the labeled parsing model is constructed and inference is run on this

graph. Second, subject to some criteria, rule factors are placed over selected triples ofLabel

variables. Third, inference is run on the full graph and the model is decoded identically to

the labeled parsing model (Sec. 3.1.2.6, pg. 124).

To understand how such an architecture might improve parse accuracy, consider the

example sentence “The cat scratched the man” and the beliefs of four label variables after

inference:

The      cat    scratched     the    man  

NP

S

DET         NN

DET          NN NP

@VP

VB

Label(0,5,S)        
Label(0,2,NP)      
Label(2,5,VP)      
Label(2,5,@VP)  

1.0
0.7
0.2
0.3
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A common mistake made by the labeled parser is the mis-labeling of constituents as

their binarized counterpart. In this example the VP scratched the man is erroneously pre-

dicted as the binarized VP, @VP. This is a difficult problem to solve when relying solely

on information in the input string to predict constituent spans. However, the rule S →

NP VP is common in many English corpora. If a rule factor is added to the graph which

connects Label(0, 5, S), Label(0, 2, NP ), and Label(2, 5, V P ) variables, and the factor’s

non-unity potential is high enough, the model’s beliefs regarding the label of span (2, 5)

can be significantly altered to predict the correct label.

What criteria should be used to determine where to add rule factors? There are many

possible solutions, but the approach pursued in this dissertation is to threshold label vari-

able beliefs. We inspect all variable beliefs, calculating the product of all true beliefs for

variables in each triple whose indices form a valid parent/child relationship. For every

product that is above some set threshold (which we set to 0.1), a rule factor is added to

that location in the graph. Other sources of information that might serve as useful criteria

are the span widths (to focus on more problematic sections of the tree), the types of labels

being considered (whether any are introduced via binarization), or the presence of certain

word or tag combinations, but exploring these criteria is beyond the scope of this disserta-

tion. We now turn to a discussion of how to learn the feature weights associated with RULE

factors in a coarse-to-fine setting.

3.1.3.2 Learning Rule Weights

We use the perceptron algorithm to learn a set of weights for grammar rules. This

approach assumes a pre-trained labeled parsing model, and the parameters of this model

are held fixed while rule weights are learned. For each sentence in the training data, we

begin by constructing a labeled parsing model, performing belief propagation inference,

and obtaining posteriors for Label variables. Initially the set of rules is empty and does

not contain any rules. Otherwise, a rule is placed over any triplet of Label variables whose
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1: function LEARN-RULES(x,w, iters, ε) . data, parameters, iterations and leaning rate
2: for i←iters do
3: for x← ~x do
4: Ttest ←LABEL-DECODE(RUN-BP(GRAMMAR-MODEL(x)) . Tree predicted by model
5: Tgold ← x . Tree from training data
6: for r ← δ(Ttest) ∪ δ(Tgold) do . All rules from both trees’ derivations
7: for f ← φ(r) do
8: w(f)

⊕←− (count(r, Tgold)− count(r, Ttest)) ∗ ε
9: end for

10: end for
11: end for
12: end for
13: return w
14: end function

Figure 3.11. Pseudocode for rule factor learning with the Perceptron algorithm. The pa-
rameter vector w is initialized by training a labeled parsing model, and these parameters
are held fixed during rule learning. Rule weights are updated proportional to the difference
in the number of times the rule should occur in the tree, as specified by the gold standard,
and the number of times it actually does occur in the predicted tree.

product of beliefs is above a threshold (0.1). We refer to the resulting model as GRAMMAR-

MODEL. We then decode the model using the same strategy used for decoding the labeled

parsing model.

The perceptron algorithm is error-driven. The parse tree decoded in the previous step

is decomposed into a set of constituent spans, which are compared against the spans of

the gold tree. Rule weights receive an update proportional to the amount of times they

appear in the gold tree and not the test tree, multiplied by some learning rate ε. Rule factors

can affect Label variable beliefs in both ways: they can either increase the beliefs of the

connected variables, or decrease them to prohibit unfavorable combinations. For instance,

in the previous example the rule S → NP @V P is implied by the tree produced by the

labeled parsing model. In comparison to the gold tree, it occurs once more than it should,

and it is corrected with an adjustment of -ε, penalizing this configuration. In addition, the

perceptron method has a advantageous base-case property: learning starts with an empty

grammar, and rules are added to the grammar when their weights are first updated. We cap
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the size of the grammar at 1,000 rules. Further updates continue to update rule weight but

do not introduce new grammatical rule factors. Pseudocode for this algorithm is listed in

Fig. 3.11.

Why pursue an alternate form of optimization when this could be done using the same

belief propagation inference and SGD optimization used in other models? This is due

to the sheer number of potential variables that need to be scored by the model even before

optimization. One strategy for circumventing the massive is to heuristically prune the graph

prior to instantiating the full set of rule factors. This can be achieved using relaxed marginal

inference (Riedel and Smith, 2010), or the more recent delayed row and column generation

strategies (Riedel et al., 2012) which retain a guarantee of optimality. A second strategy,

and the one we pursue, is to use an alternative optimization strategy where the set of rules

can be explored piecewise, starting with an empty grammar and adding rules incrementally,

without immediately including a large number of rule factors in the model. The error-driven

nature of the perceptron algorithm offers this, and has the additional benefit of being very

fast in practice.

3.1.4 Experiments

In the previous sections we introduced three factor graph models of phrase structure

syntax. The first model is an unlabeled parser presented in Section 3.1.2 (pg. 105), which

consists only of the span variables necessary to represent the desired tree structure, the

corresponding set of unary factors, and a globally-connected combinatorial CKY-TREE

factor. The second model extends upon this to produce a labeled parser, and predicts unary

chains using a separate classifier (Section 3.1.2.4, pg. 120). We refer to this model here as

the labeled bracket model (LBM). Finally, we augment the label parser with a sparse set

of grammatical rule factors with weights learned via the perceptron algorithm (which we

refer to as +RULES). In this section we compare the performance of models, both in terms

of parse accuracy and in decoding speed, to more established state-of-the-art parsers.
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Train Test
ABC 1195 199
CNN 5092 1521
MNB 509 245
NBC 552 245
PRI 1707 394
VOA 1512 383
WSJ 10793 1262

Table 3.2. OntoNotes data statistics. The train and test split is a recreation of previous work
(Finkel and Manning, 2009). For the OntoNotes distribution of the Wall Street Journal
corpus, which was not used for evaluation in previous work, we use the standard partition
of sections 0-21 for training and section 23 for testing.

3.1.4.1 Data Sets

For evaluating parse accuracy we use the OntoNotes (v.2) data set (Hovy et al., 2006),

which has been used in previous work to evaluate discriminatively trained factor graph pars-

ing models (Finkel and Manning, 2009). We reproduce the data preprocessing pursued in

that work, partitioning the data to achieve an approximate 3:1 train to test set ratio, remove

sentences longer than 40 words, remove empty leaf nodes, and coarsen all nonterminal la-

bels (e.g., NP, not NP-PRD). Statistics for the resulting data set are shown in Table 3.2. In

supplementary parsing experiments we make use of the version Wall Street Journal (WSJ)

Corpus distributed in the OntoNotes data set, again filtering out sentences with more than

40 words, and adopt the standard train/test split. Note that the annotations found in this

corpus differ somewhat from the standard Penn Treebank distribution, and therefore the

parse accuracy of the state-of-the-art models will differ from the well-established results

published on the Penn data.

3.1.4.2 Parsers

We compare against three parsers representing the state-of-the-art in parsing in tradi-

tional grammar-based parsing, and a CRF parser which most closely resembles our own.
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• Stanford-PCFG: A reference implementation of a PCFG parser (Klein and Man-

ning, 2003), as found in the Stanford Parser distribution 9. PCFGs are at the heart of

many of the advances in parse accuracy made over the last two decades. They are

simple and well-understood, and we therefore consider them a good candidate for a

baseline parsing model.

• Stanford-Lex: An early improvement to standard PCFGs was the inclusion of lexi-

calization: additional markup which annotates constituents with their head word. We

include results from the lexicalized parser included in the Stanford Parser (Klein and

Manning, 2002a).

• Berkeley: The Berkeley Parser iteratively refines grammar nonterminals, splitting

coarse labels to more specific ones, and aiming to capture more subtle phenomena

with a more sophisticated grammar (Petrov and Klein, 2007).

• F&M09: Finkel and Manning (2009) present a CRF-based parser which discrimi-

natively learns rule weights, and like traditional PCFG-based approach relies on a

dynamic programming chart for efficient decoding.

3.1.4.3 Evaluation

The standard metrics for evaluating phrase structure parsing are precision, recall, and

F1, as calculated over constituent spans. Precision describes what percentage of the pre-

dicted spans are correct:

precision =
true spans

predicted spans
(3.16)

Recall describes what percentage of the gold standard spans are predicted by the model:

9V. 1.68, http://nlp.stanford.edu/software/lex-parser.shtml
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recall =
true spans

gold spans
(3.17)

The F1 score is the harmonic mean of precision and recall:

F1 =
2× precision× recall
2 + precision+ recall

(3.18)

For labeled evaluation, a span is considered correct if an identical span is found in the

gold tree, matching in start index, end index, and label. In unlabeled evaluation a span is

considered correct if it matches a span from the gold tree in just start and end index.

An additional metric is the crossing bracket score (CB) indicating the percentage of test

spans (sometimes referred to as brackets) which cross gold spans:

CB =
1

|Ttest|
∑

Span(i,j)∈Ttest


1, ∃Span(k, l) ∈ Tgold : i < k < j < l

0, otherwise
(3.19)

where Ttest is the parser-produced tree, Tgold is the gold standard tree, and |T | denotes

the number of spans in tree T . Crossing bracket errors are sometimes considered more

serious than mislabeling a span, or predicting an extra span that nests properly within the

surrounding structure. A final metric, no-crossing (NC), is the percentage of all sentences

which contain no crossing brackets. We score parse trees using Evalb10, a reference imple-

mentation of these metrics.

10Evalb, http://nlp.cs.nyu.edu/evalb/
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Unlabeled Evaluation
Binarized Trees Gold Trees

Data Feats CB NC P R F1 CB NC P R F1

ABC
CCM 4.4 26.1 73.1 62.4 67.3 3.4 33.3 53.0 54.7 53.8

BM 3.5 32.2 78.5 67.1 72.3 3.0 40.6 56.1 57.8 57.0
LBM 2.9 11.6 80.8 69.1 74.5 2.5 5.5 57.2 58.9 58.4

CNN
CCM 3.5 30.1 74.3 61.7 67.4 2.9 37.8 53.5 52.7 53.1

BM 2.6 41.2 80.7 66.9 73.2 2.2 47.9 57.5 56.5 57.0
LBM 2.6 40.8 82.2 68.4 74.7 2.1 51.2 59.1 60.7 59.9

MNB
CCM 2.6 24.1 70.0 58.2 63.6 3.6 34.4 50.5 49.7 50.1

BM 3.9 28.7 73.4 60.8 66.5 3.3 37.4 51.9 51.0 51.4
LBM 2.8 25.5 76.7 63.9 69.7 2.4 19.6 43.5 53.7 54.1

NBC
CCM 4.9 16.5 71.5 61.6 66.2 3.8 24.8 48.6 53.2 50.8

BM 4.1 24.0 76.1 65.4 70.3 3.4 28.9 50.8 55.5 53.0
LBM 3.7 27.7 78.2 67.3 72.3 3.2 32.7 52.9 57.5 55.1

PRI
CCM 4.4 21.5 72.1 61.2 66.2 3.7 27.0 53.4 53.8 53.6

BM 3.0 39.7 80.8 68.6 74.2 2.7 45.7 58.4 58.7 58.5
LBM 2.5 41.0 84.3 72.2 77.8 2.4 48.8 60.0 60.3 60.1

VOA
CCM 4.0 17.8 78.8 70.5 74.4 3.4 21.4 57.3 61.3 59.3

BM 2.9 29.5 84.5 75.6 79.8 2.5 32.4 61.1 65.4 63.2
LBM 2.5 5.7 87.2 78.1 82.4 2.1 18.2 62.6 67.4 64.9

Table 3.3. Performance of the parsers in an unlabeled evaluation. Not surprisingly, the fea-
ture rich unlabeled parser (BM) significantly outperforms the feature poor variant (CCM).
More interestingly, the labeled parser (LBM) produces more accurate parse trees, demon-
strating the influence of Label variable beliefs on corresponding Span variables. Naturally,
all parsers perform better when compared against the binary-branching variants of the gold
trees, with unary chains filtered out (left), than to the original gold trees.

3.1.4.4 Unlabeled Parsing

In this section we present results for an unlabeled parsing task. This serves three goals:

(1) it allows us to gauge approximately how accurate unlabeled tree structure will be in

a joint model, (2) it demonstrates how sensitive the parser’s performance is to different

feature sets, and (3) we can determine whether information from Label variables in the

labeled parser improves the model’s prediction of unlabeled structure.

Without constituent labels, evaluating parsed trees against gold trees puts the model at

a severe disadvantage, as it is not possible to identify which spans are introduced through

binarization. Therefore we present two sets of evaluations. One set of evaluations is per-
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formed against gold trees. Performance, measured in terms of F1, is expectedly lower in

this scenario as all test trees are binarized, and all binarized trees have an identical number

of constituent spans, n-1. The number of spans found in the gold trees will never exceed this

number, and is in all likelihood much smaller than in their parser-produced counterparts.

These results are presented in Table 3.3 (right).

A second evaluation uses binarized gold trees in place of the true gold trees. We also

prune all unary chains from the tree, making these results more closely reflect the per-

formance of the model on its training objective. These results are presented in Table 3.3

(left).

We evaluate three model configurations. To demonstrate the importance of rich fea-

ture sets we present one variant of the unlabeled model which uses very simple features,

and one that uses the rich feature set presented in Section 3.1.2.7. In the simple feature

model we use two features: the concatenation of all part-of-speech tags within the span,

and the concatenation of the two part-of-speech tags immediately outside of it, making

it a discriminatively-trained version of the constituent context model (Klein and Man-

ning, 2002b). We refer to this model as CCM, and the unlabeled parser as BM (bracket

model). Additionally we include results from the labeled parsing model (LBM), without

unary chain prediction, but evaluate it solely on the accuracy of its (unlabeled) structure.

The results reveal the importance of a rich feature set. The rich features of the BM

model result in an average F1 of 56.68% (gold evaluation), a 3.23% F1 improvement over

the CCM model. This is not surprising: without a grammar, these features are the sole

source of information assessing how likely a sequence of tokens corresponds to a con-

stituent span. The global CKY-TREE constraint merely provides an optimal way of filter-

ing out incongruent spans.

Perhaps the most interesting observation from these results is the significant improve-

ment in unlabeled accuracy gained from incorporating a set of Label variables into the

model. The LBM performance is 2.0% F1 (gold) higher than the BM. Recall that the LBM
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contains a set of Label variables, but in this evaluation these variable beliefs are not con-

sidered during decoding. This means that the beliefs of the Label variables, determined in

part from a distinct set of label features, influence the beliefs of Span variables in a very

significant, and positive way. As it pertains to joint inference, these results provide a rea-

son to train a labeled parsing model even when Label variables are not used in coordinating

between the two models.

3.1.4.5 Label Parsing

Evaluating the labeled parsing model can be done in a more standard manner. Here we

present the traditional labeled evaluation (precision, recall, and F1), where a constituent

span is considered correct only if there is a corresponding span in the gold tree with a

matching start index, end index, and label (Table 3.4, right). We also present a correspond-

ing unlabeled parsing evaluation in order to isolate the parser’s ability to predict constituent

span boundaries from its ability to label these spans (Table 3.4, left).

In comparison to the CRF-based approach of F&M09, the labeled parsing model (LBM)

performs significantly better in terms of labeled F1, 78.47 vs. 71.13 average across the

six smaller newswire corpora, an improvement of 7.34. Augmenting the model with rule

factors increases performance by an average of 1.4 F1, to 79.43. These results are the

highest reported for this data set. While we cannot explain why our model performs so

much better than the F&M09 parser, there are two likely hypotheses. First, as illustrated

in Section 3.1.4.4, different feature sets can lead to significantly different performance

measures. A comparatively uninformative feature set could cause the F&M09 parser to

perform poorly, but this is unlikely. Rich feature sets are one of the biggest attractions of

discriminative models like the LBM and F&M09, we have done our best efforts to remain

generally comparable to F&M09 in terms of features. Our feature set is far from exhaustive,

and we have not deliberately incorporated any unorthodox or exceedingly sophisticated

features.
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Bracket Evaluation Labeled Evaluation
Data Model Prec Recall F1 CB NC Prec Recall F1

ABC
LBM 82.80 79.65 81.20 1.72 50.78 79.75 76.72 78.20
+Rules – – – – – 80.66 77.92 79.26
F&M ‘09 – – – 2.28 46.88 70.18 70.12 70.15

CNN
LBM 86.40 83.12 84.73 0.96 67.41 83.30 80.14 81.69
+Rules – – – – – 84.66 80.88 82.72
F&M ‘09 – – – 1.11 70.06 76.92 77.14 77.03

MNB
LBM 80.77 76.18 78.41 1.40 59.26 76.98 72.61 74.73
+Rules – – – – – 79.09 73.05 75.96
F&M ‘09 – – – 1.88 59.03 63.97 67.07 65.49

NBC
LBM 80.77 77.37 79.04 1.41 49.66 74.81 71.67 73.20
+Rules – – – – – 76.94 72.34 74.57
F&M ‘09 – – – 2.67 48.92 59.72 63.67 61.63

PRI
LBM 85.01 82.15 83.56 1.44 57.40 82.70 79.92 81.29
+Rules – – – – – 81.90 80.44 81.17
F&M ‘09 – – – 1.72 56.70 76.22 76.49 76.35

VOA
LBM 85.71 81.96 83.80 1.63 43.34 83.55 79.89 81.68
+Rules – – – – – 83.07 82.69 82.88
F&M ‘09 – – – 2.44 38.89 76.56 75.74 76.15

Onto WSJ

LBM 84.88 80.33 82.54
+Rules 84.32
Stanford-PCFG 80.71 79.86 80.28
Stanford-Lex 81.64 81.65 81.64
Berkeley 86.61 85.81 86.21

Table 3.4. Labeled parsing performance. The feature-rich labeled parsing model (LBM)
provides significant gains over previously published CRF parsing scores (F&M09), and the
inclusion of rule factors provides a 0.96 average improvement in labeled F1. The state-of-
the-art Berkeley parser still offers better performance than any of the factor graph-based
parsing models, yielding an 1.89 labeled F1 improvement on the OntoNotes distribution
of the Wall Street Journal corpus, but it is unclear how to perform joint training with the
Berkeley parser as a component model. Factor graph-based approaches offer competitive
performance, and are proven to work in a joint setting.
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A second hypothesis is that the model structure itself is responsible, and there are many

aspects of the system which inherently differ from the F&M09 system (e.g., an alternate

inference method, the span-factored vs. rule-factored nature of the model, the alternate

method of labeling spans, or the separate classification of unary chains). However, it is

beyond the scope of this work to perform piecewise analysis against the F&M09 system.

We can only conclude that, in comparison to parsing models used previously for joint

inference, our model produces more accurate parse trees when functioning as a standalone

parser. Given that it is also part of a more flexible framework (and is capable of connecting

to other models in ways that F&M09 cannot), it fulfills our needs as an attractive syntactic

representation for joint inference.

3.1.4.5.1 In Comparison to State-of-the-art Parsers

The CRF-based parser of F&M09 produced the best previous results on the set of six

smaller OntoNotes newswire corpora, prior to our work, but how do these CRF/factor

graph-based approaches compare against more established parsers? Table 3.4 shows the

performance of the Stanford-PCFG, Stanford-Lex (lexicalized), and Berkeley parsing mod-

els on the WSJ section of the OntoNotes. The LBM outperforms both Stanford parsers by

2.24 and 0.9 labeled F1. This is a surprising result: without relying on a probabilistic gram-

mar, the LBM offers better performance than two reference implementations of previous

grammar-based state-of-the-art models. Current state-of-the-art models, like the Berkeley

parser, still offer better performance than the LBM or +Rules models. While this amounts

to a very significant improvement of 3.67 over the LBM and 1.89 over the +Rules models

in terms of labeled F1, it is still unclear how to perform a grammar-refining training method

in the context of joint optimization.

But recall that our intent in pursuing the factor graph representation of phrase structure

syntax is not to improve parse accuracy, but to improve performance on other NLP tasks

which might benefit from joint training with this syntax. In that respect, there may be other

aspects of the tree that are more important to our goals than labeled F1. If we restrict our
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Model NP-P NP-R NP-F1
LBM 90.07 90.02 90.42
+Rules 90.15 91.07 90.60
Stanford-PCFG 83.88 85.74 84.80
Stanford-Lex 85.07 87.83 86.43
Berkeley 89.17 90.96 90.06

Table 3.5. NP prediction results on WSJ. While some established parsers outperform LBM
in general parsing F1 (82.54 LBM vs. 86.21 Berkeley), the LBM outperforms all evaluated
parsers on a measure more reflective of its potential in NP-based joint modeling scenarios,
while remaining asymptotically faster.

evaluation to focus solely on noun phrase detection, we find the factor graph parsers, LBM

and +Rules, outperform all other parsing models on the NP identification task (Figure 3.5).

This result is of particular importance to joint inference, as tasks like named entity recog-

nition hinge on the successful identification of noun phrases. For these tasks, a model of

syntax which excels at NP identification may prove more valuable than one which sacri-

fices NP identification to improve general parse accuracy. This issue is discussed further in

Section 4.1.1. However, one must concede that all margins, though statistically significant,

are rather small. The ability to use the LBM representation as a component in a joint model

is the principal advantage of these new models.

How does the LBM outperform the Berkeley parser on this task? The span-factored na-

ture of the model, and the rich set of features used to make span predictions, leads to better

parsing accuracy on smaller span widths where these features are extremely informative

and less sparse. Noun phrases occur frequently at smaller span widths, and thus benefit

more heavily from the LBM parser’s strengths.

3.1.4.6 Grammar-based Parsing

In the previous section we showed the performance of the LBM parser exceeded that of

traditional grammar-based approaches (Stanford-PCFG and Stanford-Lex), and other dis-

criminatively trained log-linear parsing models ((Finkel et al., 2008)). If NLP tasks are

to benefit from joint inference, as previously illustrated by Finkel and Manning (2009),
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then grammarless parsing may provide a suitable syntactic representation. However, com-

peting with modern parsers without the high-level dependencies, of the sort captured by

grammatical rules, may not be a realistic goal.

In preliminary work, orthogonal to our goals in joint inference, we describe a method

for incorporating a set of grammatical rule factors into the labeled parsing model (Section

3.1.3, pg. 129). We cap the maximum grammar size at 1000 rules, and train the model

using 30 iterations of the perceptron algorithm with a learning rate of ε = 0.1. For each

training instance the LBM is used as a coarse parsing model, and grammatical rule factors

are inserted into the model for all applicable 3-tuples of Label variables where the product

of variable beliefs exceeds 0.1.

On the six newswire corpora used in F&M09 we see a significant improvement in av-

erage labeled parse accuracy, from 78.5% to 79.4%, when incorporating rule factors into

the model. This improvement is due to both better parse accuracy in the general sense,

and also due to better identification of binarized nonterminals, a problem more endemic

to our span-factored parsing models. On the largest corpus, the OntoNotes distribution of

the Wall Street Journal, we find the largest increase in labeled parsing performance, from

82.54 to 84.32, a 1.78 improvement. While these results are still lower than the results of

the Berkeley parser, there are many possible avenues for future work including different

rule features, a more sophisticated criteria for determining where to add rule factors, and

the prospect of integrating LBM and rule model training, without the need for a separate

perceptron-based training procedure.

3.1.4.7 Decoding Speed

The grammarless factor graph parsers presented here differ drastically from previous

grammar-based approaches, and the effects of these differences extend to parsing speed.

In this section we analyze the decoding speed of these parsers in comparison to more es-

tablished grammar-based parsing models. We begin by comparing the decoding speed of
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grammarless parsers to PCFG and lexicalized parsers and examining the effect of sen-

tence length on decoding spend. In addition we also examine the decoding speed of the

rule-based parsing model, and how it compares to the PCFG parser as the grammar size

increases.

3.1.4.7.1 Grammarless Parsing vs. PCFG Parsing

The complexity of parsing using a PCFG model is O(|G|n3), where G is the grammar size

(the number of rules in the grammar) and n is the length of the sentence. Like the PCFG

model, the grammarless approach uses the same chart-based decoding strategy (responsible

for cubic complexity), but without the grammar its decoding speed is simply O(n3) in the

unlabeled case. Adding the machinery for labeled parsing increases this to O(|L|n2 + n3),

where L is the set of nonterminals used to label constituent spans. This is because when

using belief propagation, adding additional factors to the model increases the complexity

additively, reflecting the additional messages which need to be computed.

In practice this alternative complexity results in an improvement in decoding speed

across all sentence lengths. The plot in Figure 3.12 (left) depicts the decoding times of

four models: the Stanford lexicalized and PCFG models, the labeled parsing model, and

the labeled parsing model using the pruning techniques described in Section 3.1.2.8 (pg.

127). With pruning the grammarless parsing model decodes four times faster than the

lexicalized parser, while simultaneously producing more accurate parses. It is also evident

from the plot that the grammarless parsing models scale to longer sentences better than their

grammar-based counterparts, with the pruned model having a much lower delta between

n = 30 and n = 40 (0.18) than the PCFG parser (0.98).

However, it must be noted that for each example feature extraction must be performed

before the model can be constructed, and the sentence decoded. The position of the carets,

shown above each data point for the labeled and pruned parsers, indicate the total decoding

speed when including the feature extraction cost. In the case of the labeled model, the
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Figure 3.12. A comparison of parser decoding speeds. Comparing the decoding efficiency
of the labeled parsing model, in both its standard and pruned configuration, with standard
PCFG and lexicalized parsing baselines (left), shows that the factor graph models generally
decode faster than their grammar-based counterparts. While feature extraction cost (illus-
trated by the inverted caret) hinders the speed of factor graph models, the pruned model
remains the fastest across sentences of all lengths. Examining the effects of grammar size
(right), the rule-based factor graph approach, decoded using five iterations of BP, offers
better asymptotic performance than the PCFG model as the grammar size tends to infinity.
The models are comparable when using grammars containing approximately 7,000 rules, a
reasonable grammar size by modern standards.

feature extraction cost eliminates any advantage over the PCFG in terms of decoding speed,

but it still significantly outperforms this model in parse accuracy.

The unlabeled parsing model (not shown in the plot) offers exceptional parsing speed,

decoding length 40 sentences at more than 10 per second, inclusive of feature extraction

cost. In joint models, where the cost of inference is inherently larger, the trade-off between

speed and accuracy may make the unlabeled parsing model a more attractive option.

3.1.4.7.2 Decoding Speed vs. Grammar Size

Incorporating grammatical rules as ternary factors has an additive effect on the cost of

runtime, resulting in a complexity of O(|G|+ |L|n2 + n3), in comparison to the O(|G|n3)

complexity of PCFG parsing. In practice n is often quite small, and the size of the grammar,
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|G|, orders of magnitude larger. For parsers which use latent variable grammar refinement

techniques (Petrov and Klein, 2008), |G| can be in excess of tens of thousands of rules.

In this scenario, the additive vs. multiplicative relationships between the cubic n3 factor

and the grammar constant can have a pronounced effect on the decoding times of these

two models. We now analyze the effect of varying grammar sizes on decoding speed,

comparing the +RULES factor graph and PCFG models.

The plot in (Figure 3.12, right) shows the average decoding speed as the grammar

is artificially inflated in size from a thousand to fifty thousand rules. We present results

from three models: the same reference PCFG implementation used throughout this section

(Stanford-PCFG), the rule-based factor graph model decoded after two iterations of belief

propagation (as if it was performing exact inference in a non-cyclic graph), and the same

model decoded after five iterations of belief propagation, the average number required for

convergence. The factor graph-based parsers suffer from a higher overhead, and initially

do not decode as efficiently as the PCFG model, when grammars are small. As the gram-

mar size climbs above five thousand, both factor graph models quickly begin to outpace the

PCFG model, and as the grammar reaches sizes of fifty thousand, the asymptotic perfor-

mance for these models becomes much more compelling.

We conclude this section having shown that the grammarless factor graph models pre-

sented in this chapter are capable of producing more accurate parses than previous CRF-

based parsing models, and both lexicalized and unlexicalized variants of PCFGs. In ad-

dition, grammarless models outperform all tested parsers on the task of NP-identification.

We also demonstrate how rule factors can be incorporated into the model to provide a sig-

nificant increase in parse accuracy, though we leave this area largely unexplored. Finally,

we show that our factor graph parsing models decode faster than PCFG models (which

they outperform in accuracy), and that representing rules as factors in a factor graph model

offers better asymptotic behavior, in terms of decoding speed, than PCFGs as grammar size

increases.
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3.2 Dependency Parsing

Theories of phrase structure grammar, which posit that the constituent serves as the

basic unit of syntactic structure, represent only a fraction of the many hypotheses regard-

ing the nature of the human syntactic process. An alternate theory, dependency grammar

(Tesnière, 1959), shifts the emphasis away from constituents, stressing instead the role

of word-to-word relationships. In this section we formally introduce dependency grammar,

and restate a method for efficiently representing dependency grammar within a factor graph

model, originally presented by Smith and Eisner (2008) . We also discuss the advantages of

this formalism and the corresponding model representation as it pertains to joint modeling.

3.2.1 Dependency Grammar

In dependency grammar, a syntactic analysis centers around the notion of a dependency

relation, a syntactic relationship between a pair of words. Typically, and consistent with

the presentation of dependency grammar here, a dependency relation expresses a syntactic

head-modifier relationship. Recall from previous discussion (Section 3.1, pg. 93) that a

syntactic head, also known as a headword, is the word which defines the syntactic type

of the encompassing phrase. Thus dependency grammar formulates a syntactic analysis

not by the explicit grouping of words into phrases, but by the head words which implicitly

define them. Such an analysis may be expressed solely in terms of these pairwise head-

modifier relationships. The resulting structure is a directed acyclic graph (DAG) known as

a dependency tree:

The    cat   scratched   the    man
DET        NN            VB             DET        NN

In a dependency tree all words are connected by a directed path to the finite verb, which

serves as the root of the graph. Such an analysis does not represent phrases, only pairwise
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head-modifier relations, but it does implicitly acknowledge their presence. To illustrate this

point, consider the phrase “man”. As a noun phrase, we can expect the head of the phrase to

have a noun part of speech. In this simple case, the is a determiner and man a noun, leaving

only one reasonable choice, man, for the head of the phrase.11 When represented as a

pairwise relationship, man is considered the syntactic head of the, the syntactic modifier.

Broadening our focus to the encompassing verb phrase, “scratched the man”, the word

scratched is the head of the phrase. The head of the phrase is the syntactic head for any

word under the dependency which does not already specify one. Thus scratched becomes

the syntactic head of man, demonstrating how a dependency analysis can be constructed

from a corresponding phrase structure tree.

On a more theoretical note, not all dependency trees have a corresponding phrase struc-

ture tree. A projective tree, dependencies are not permitted to cross one another. For

non-projective trees this constraint is relaxed, allowing the graph to capture a broader set

of phenomena which, although rare in English, are common in languages with free word

order (Fig. 3.13). As a consequence, non-projective trees do not have a corresponding

phrase structure analysis.

For our purposes, in the context of a joint model for another NLP task, there are many

instances where a dependency representation of syntax may be preferable to phrase struc-

ture grammar. For instance, it may be more convenient to model an NLP problem with

variables whose semantics capture a head-to-modifier relationship. In this situation it is

natural to use dependency grammar, as it allows for the two models to be connected using

Boolean logic and a one-to-one mapping. We find this to be the case for the task of seman-

tic role labeling (Chapter 6), where the goal is to identify pairs of words which occur in

a predicate-argument relationship. Predicates are often verbs and together with their argu-

ments align closely with the head-modifier semantics of dependency structure. Capturing

11The rules governing which word acts as the head of the phrase in more ambiguous circumstances are
specific to each language.
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The    cat   scratched    a      man   this   morning   who   wanted    to   sleep
DET        NN            VB             DET        NN       DET            NN            WP           VB            TO       VB                        

Figure 3.13. A non-projective dependency tree. Non-projective phenomena are rare in
English, but prevalent in many of the world’s languages. Here a dependency across a
relative clause boundary makes this tree non-projective.

this in a span-factored model of phrase structure is difficult, as the verb is “hidden” within

the constituent span and not immediately accessible by the model’s SRL component.

3.2.2 Representing Dependency Syntax in Factor Graph Models

We propose representing dependency parsing in the edge-factored manner originally

presented in Smith and Eisner (2008). This allows a one-to-one correspondence between

syntactic variables and the variables of other edge-factored models (like semantic role la-

beling). As in phrase structure grammar, it will be convenient to represent the atomic units

of syntactic analysis, in this case edges, with Boolean variables. This allows variables of

each component model to be combined with using Boolean logic factors.

• Let {Link(i, j) : 0 ≤ i < n, 1 ≤ j ≤ n, n 6= j} be O(n2) Boolean variables

corresponding to the possible arcs in a dependency parse. Link(i, j) = true implies

that there is a dependency from parent i to child j.

• Let {LINK(i, j) : 0 ≤ i < n, 1 ≤ j ≤ n, n 6= j} be O(n2) unary factors, each paired

with a corresponding Link(i, j) variable and expressing the independent belief that

Link(i, j) = true.

As was the case for phrase structure parsing Section 3.1.2 (pg. 105), these components

provide the necessary structure for predicting, independently, the basic components of a

syntactic analysis, but they also permit many invalid structures. A configuration of vari-

ables could represent a graph which contains cycles, multiple heads for a single word, or
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multiple roots. As before, these problems could be addressed using many pairwise factors,

but would require an exponential number of such factors, and would hinder the effective-

ness of inference. We instead rely upon combinatorial factors to provide an efficient solu-

tion to this problem. Depending on the type of syntactic analysis desired, Smith and Eisner

(2008) provide two constraints:

• DEP-TREE, a global combinatorial factor, as originally presented in Smith and Eis-

ner (2008). A DEP-TREE factor attaches to all Link(i, j) variables, contributing a

potential of 1 iff the configuration of variables results in a valid non-projective depen-

dency graph. It otherwise contributes a protential of 0, prohibiting the configuration.

The calculation of outgoing messages is based on the Matrix Tree Theorem (Koo

et al., 2007).

• PROJ-TREE, a global combinatorial factor, also originally presented in Smith and

Eisner (2008). It is similar to DEP-TREE, but further requires that the resulting

structure form a valid projective dependency graph, prohibiting edges from crossing.

Both constraints calculate outgoing messages in O(n3) time. For implementation details

of these algorithms, we defer to Smith and Eisner (2008). The features we utilize for

this model are derived from the McDonald (2006) feature set for graph-based dependency

parsing, and only differ in that we do not construct features from coarse part-of-speech

tags. We similarly refer the interested reader to the detailed description provided in that

work.

This representation also allows for higher order models of dependency parsing through

the use of additional factors. For instance, second order models, which coordinate between

two Link variables, can capture grandparent or sibling relationships. This has been shown

to significantly improve parser performance McDonald (2006). However, when treated as

latent structure in a joint model, a first order representation of syntax may learn a more di-

rect form of syntax, collapsing longer directed paths into single dependencies, and approx-
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imating the benefits of a higher order model by capturing the types of structure most useful

to the end task. In the context of semantic role labeling (Chapter 6), if a semantic relation-

ship exists between word wi and wk, but the syntax has a directed path wi → wj → wk, the

desired latent syntactic representation might directly capture this relationship, assigning a

strong belief that Link(i, k) = true.

3.3 Conclusions

In this chapter we introduced factor graph formulations of two leading syntactic for-

malisms: phrase structure, in which a syntactic analysis is a hierarchy of nested constituent

spans, and dependency structure, where a syntactic analysis is expressed via pairwise de-

pendencies between a headword and modifier. Both are difficult to efficiently represent in a

factor graph, with phrase structure requiring a quartic number of logical factors to prohibit

constituents from crossing, and dependency grammar requiring an exponential number of

logical factors to prohibit cycles in the graph. But complexity is only part of the problem.

The multitude of logical constraint factors required to rule out invalid structures would also

introduce many cycles into the graph, resulting in poor inference. To circumvent this we

described three global, combinatorial factors which reduce the complexity of representing

such structured models.

Our novel contributions are specific to phrase grammar. We begin by introducing the

CKY-TREE factor and a factor graph representation of unlabeled phrase structure. This

structure is perhaps of little use from a traditional parsing perspective, but may be a suit-

able representation for joint inference where models are connected across unlabeled com-

ponents (e.g., a constituent span variable connected to a named entity span variable, both

variables representing the boundaries of the span and not the type). We then introduce a

set of factors and variables to provide labels to these constituent spans, and the necessary

components to create a labeled phrase structure parser. On the OntoNotes data set we out-

perform a similar CRF-based parser, and against PCFGs and their lexicalized variants we

152



show that our parser provides a significant improvement in parse accuracy while remain-

ing asymptotically faster. We also demonstrate that the labeled parsing model produces

better unlabeled tree structure than the unlabeled variant, motivating the use of label vari-

ables even when they are not evaluated directly. This representation is used throughout the

dissertation to construct joint models and to serve as latent structure.

Also included in this chapter is preliminary work toward incorporating grammar rule

factors into the model. In this approach we utilize the perceptron algorithm to learn a set of

rule factor weights in a coarse-to-fine manner on top of the labeled phrase structure parsing

model. We show significant improvements in parse accuracy over the corresponding gram-

marless model, but the answers to many pertinent questions are beyond the scope of this

work. These questions include what criteria should determine how rule factors are added

to the model, what rule factor features are most useful, what is an optimal grammar size,

and how might the learning of rule weights be incorporated into the same procedure which

optimizes the other model parameters. In reference to the latter, recent work in delayed

row and column generation solves a similar problem (Riedel et al., 2012), where it is com-

putationally difficult to score the number of structures prior to optimization, and may be a

promising line of research for addressing this issue.

In the second section we introduced dependency structure, and positioned it as an al-

ternative to phrase structure which may be more convenient when the end task relies on

head-modifier type relationships. The combinatorial properties of dependency structure

again poses a problem for representation in factor graph models, and we turn to the ap-

proach of Smith and Eisner (2008) for a solution. We summarize the contributions of this

work, introducing a projective and non-projective dependency tree constraint factor. We

rely on these constraints to construct joint models for relation extraction and semantic role

labeling.

We conclude with a final thought: is it necessary to have factor graph representations of

both phrase and dependency structure? Both structures encode similar information, which
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may at first seem to lessen the need for more than a single representation. The underlying

headwords of a phrase structure tree can be recovered using a set of language-specific

heuristics, of the sort described in Collins (1997). Similarly, a projective dependency tree

implicitly defines constituent spans in the nesting of its dependency arcs, and an unlabeled

phrase structure trees can be constructed from such a tree, making these representations

largely isomorphic. Many NLP systems treat syntax trees as observed, skirting the issue

by utilizing rich feature sets which can capture many of the strengths of each formalism,

without the need to convert manually from one to another.

However, when pursuing joint models it is difficult to be ambivalent. While it is trivial

to convert between dependency and constituent trees when trees are observed, it is far

more difficult when trees are represented by hidden variables. It is then necessary to add

additional model structure, including higher level dependencies or combinatorial factors.

We believe the cost of attempting this kind of “on the fly” conversion to be prohibitive. It

follows that if such conversion is ruled out, then some representations will naturally lend

themselves better to particular NLP models.

This will become apparent throughout the remainder of the dissertation, where we lever-

age the syntactic representations introduced here in order to construct joint models of NLP

tasks. Chapter 4 combines the phrase structure syntax with a span-factored model of named

entity recognition, and we demonstrate state-of-the-art performance on the OntoNotes data

set, outperforming both our own baseline and a previous joint model. In Chapter 5 we de-

velop two joint models for relation extraction, one using phrase structure, the other using

dependency structure. Our focus in this chapter is on comparing the effectiveness of each

representation on the task. We conclude in Chapter 6, where we develop the most sophis-

ticated joint model presented in the dissertation, applying it to the task of semantic role

labeling. Here we show competitive results against participating systems in a shared task

competition, without observing any syntactic annotation.
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For each of these tasks we provide more traditional results, where the joint model is

trained in a supervised manner, either predicting syntax jointly or setting the syntactic vari-

ables to reflect gold syntactic analyses. However, we also provide results where syntactic

structure is induced via marginalization-based training in a joint model, learning a syntax

specific to each task and data set. Learning syntax without the need for syntactic annota-

tions is a more scalable approach to joint modeling in NLP, and we show there is little loss

in performance from doing so.
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CHAPTER 4

JOINTLY MODELING SYNTAX AND NAMED ENTITY
RECOGNITION

In this chapter we apply our joint modeling framework to the task of named entity

recognition (NER), coupling a phrase structure parser to a span-based NER model. The

motivation for this coupling is clear: in theory, named entities should correspond to syntac-

tic noun phrases. Thus knowledge of a sentence’s syntactic structure constrains the possible

locations of named entities, and knowledge regarding the location of a named entity span

eliminates the possibility of any syntactic span that would cross it. We aim to leverage this

interdependent relationship to improve performance on both tasks using joint inference.

This is a goal shared shared by previous work. Finkel and Manning (2009) also present

a joint model of phrase structure parsing and NER, coupling the two tasks by augmenting

the parser’s grammar with named entity labels. A grammar rule NP → DET NP might

be replaced with an augmented rule NP-ORG → DET NP-ORG, which augments the

purely syntactic NP grammar rule with the entity label for organizations. Here the use

of joint inference resulted in a 3.92% average F1 improvement (8.95% max) in named

entity recognition accuracy, and a modest 0.71% average F1 improvement (1.36% max)

in parsing. However, in this approach augmented rules must exist for each entity label,

and this yields a multiplicative increase in the grammar size (Section 4.2, pg. 162 details

the adverse effect this has on overall complexity). Additionally, any mismatches between

syntax and named entity annotations in the training data need to be filtered out during

preprocessing as only entities which nest within the syntax tree can be represented. Our

approach circumvents the need for such preprocessing, connecting the syntax and named
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entity models with soft Boolean logic constraints, and the model’s label set grows only

additively.

We present two models. One model is a span-based NER model with no syntactic in-

formation, to serve as a baseline. The second is the same model, coupled with a model

of phrase structure syntax, trained and decoded using joint inference. We refer to these

as NER-ONLY and NER-JOINT respectively. For each model we experiment with two

feature sets: one intended to more closely compare to the linear-chain CRF features used

in previous work (Finkel and Manning, 2009), and one meant to showcase the full capa-

bilities of the model. Evaluating on the OntoNotes corpus (Hovy et al., 2006) our joint

model with linear-chain features significantly improves accuracy over the baseline with

linear chain features, resulting in a 4.6% F1 increase in NER accuracy. When using the full

feature set the gains provided by joint inference are less pronounced, but the performance

of the feature rich model is comparable to all previous results, and is even able to outper-

form a system trained in a semi-supervised manner on additional labeled data (Finkel and

Manning, 2010) on some data sets.

We present two additional training scenarios for the joint model. One, which we refer

to as the NER-ORACLE model, can observe the “true” values, given in the training data,

of syntactic variables during both training and testing. Another, the NER-HIDDEN model,

treats syntax as a latent variable during training and testing. We find that the NER-ORACLE

model provides the highest overall accuracy, but inducing a latent syntactic structure using

marginalization-based training is more accurate than the NER-JOINT model on most data

sets.

We begin by presenting an overview of the named entity recognition task, and dis-

cuss the relationship between named entities and constituent syntax. We then present our

span-based NER model (Section 4.3, pg. 165), which relies on a combinatorial factor for

implementing a semi-CRF constraint. Extending this to a joint model with a phrase struc-

ture parser is straightforward, and relies only on the inclusion of the parsing architecture
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presented previously (in Section 3.1.2, pg. 105) and a set of logical factors to coordinate

between variables of opposing models. We conclude with a set of experimental results on

the OntoNotes data set (Section 4.4, pg. 176), in which we revisit respresent results from

feature rich and feature poor variants of our baseline and joint models, and compare against

previous work. The models presented in this Chapter were first described in Naradowsky

et al. (2012b).

4.1 Overview of Named Entity Recognition

Named entity recognition (NER) is a fundamental task in the field of information ex-

traction. The goal of NER is to identify and categorize the important entities that participate

in the sentence. Entities may be loosely defined as “things of interest”, including people,

places, organizations, events, dates, times, and so forth. Consider the sentence:

[The Darjeeling Limited]MISC reviews on [metacritic]ORG prove overwhelmingly positive

Here, “The Darjeeling Limited” is an entity of type MISC (a film), and “metacritic” an

entity of type ORG (a movie review website).

The identification of such entities is a prerequisite step for other IE tasks. For instance,

NER is considered an important prerequisite step to relation extraction (Chapter 5), which

often begins with the entity boundaries defined, and seeks to identify the relationships be-

tween them. NER is also important to coreference, a task in which the underlying entities

are identified and linked, even though the form of their mentions may differ (i.e., the presi-

dent, President Obama, Barack Obama, Barack).

Named entities are typically small, often comprising only a couple of words, and mod-

els making use of local dependencies have performed very well on the task. HMMs were

among the earliest statistical models applied to the task (Bikel et al., 1999; Zhou and Su,

2002; Zhao, 2004), but feature-rich discriminative methods represent the current state-of-

the-art, with approaches based on SVMs (Isozaki and Kazawa, 2002), linear chain CRFs
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The   Darjeeling   Limited   reviews  on   metacritic  prove   overwhelmingly  positive 

NP

ADJPNP

NP

ADV

DET 
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NN

NN NN
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NN
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PRP ADJ

VB
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MISC ORG

Figure 4.1. A sentence annotated with syntax and NER. A simple NER model which
looks only at words and word contexts may be mislead by the lexical ambiguity of the
phrase limited reviews and the rarity of words like darjeeling, which form the complex NP
The Darjeeling Limited, a feature film. When viewed in light of the sentence’s syntactic
structure, these aspects are less confounding as the NP-structures provide strong cues as to
where the named entities might lie.

(McCallum and Li, 2003; Finkel et al., 2005), and extensions which capture some long-

distance dependencies, like skip-chain CRFs (Sutton and McCallum, 2012; Liu et al.,

2010).

However, while sequence models can accurately predict named entities, these models

do not reflect the hierarchical nature of syntactic structure. For small entities, this may not

be problematic. A sequence model for NER may identify tag sequences like DET NN

NN as likely named entity candidates. These patterns occur frequently enough that they

can be successfully learned by the model, and the model may attain high NER accuracy

over short entities. However, when named entities are longer, these types of sequential

statistics naturally become much sparser. If a named entity is truly a type of noun phrase

then knowing the underlying syntax could be beneficial: does the proposed entity span

align with a syntactic span? Does it align with an NP? As motivation for a joint model of

NER and phrase structure syntax, we now discuss the relationship between these two tasks.
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NP NML QP ADJP ADVP PP TOTAL BIN
ABC 59.15 2.77 5.36 1.66 1.66 0.37 72.35 94.15
CNN 52.28 8.38 5.49 1.97 2.10 0.39 71.33 92.94
MNB 59.00 8.79 4.18 0.42 1.67 0.0 77.41 93.48
NBC 54.22 8.44 4.55 0.00 0.65 0.00 77.86 93.02
PRI 51.97 4.37 3.76 1.14 2.89 0.0 64.48 91.24

VOA 39.93 9.51 4.04 2.15 1.17 0.07 50.01 93.91

Table 4.1. NER and constituent syntax alignment statistics. The table entries contain
the percentage of named entities corresponding to constituent spans of varying kinds in
the newswire sections of the OntoNotes (v.2) corpus. Transforming trees using a right-
branching binarization strategy (BIN) raises the total percentage of correlation significantly.

4.1.1 The Relationship Between Syntax in NER

Joint inference may be warranted in situations where tasks are interdependent, and

knowing the solution to one problem can assist in solving the other. In the case of named

entity recognition, entities, being things, often closely correspond to the syntactic notion of

a noun phrase (NP). In theory, whenever there is a named entity from i to j, there must be

an NP from i to j. In practice this is not always the case. Table 4.1.1 shows the extent of

this correlation in selections of the OntoNotes (v. 2) data set.

The statistics describe the percentage of named entity spans that align to particular con-

stituent spans. The leading assumption, that named entities correspond to noun phrases,

occurs approximately half the time. There is some degree of correlation to other con-

stituents, notably NMLs, which mark NP-internal structure, and quantifier phrases (QPs),

which describe a complex measure or amount. Both could be considered variants of NPs.

Between 30 to 50% of the named entities do not align to any constituent span in the

gold data. Examining these mismatches reveals that this is more a product of the style

of treebank annotation than it is a failure of our linguistic intuition that all named entities

should correspond to NPs. Treebank-style parse trees occasionally lack structure that would

produce a greater degree of correlation between the two tasks. For instance, many NPs fail

to explicitly show right-branching internal structure (Fig. 4.2, left). Ideally a phrase like

an additional 265 million dollars should not only correspond to an NP, but should also
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include an additional NP (265 million dollars) nested inside. Instead, many NPs found in

the OntoNotes treebanks are much flatter structures, similar to the base-NPs of Ramshaw

and Marcus (1995). Here the nested structure is not explicitly marked, and the correlation

between constituent and named entity span is lost.

However, this may not be as detrimental to joint inference as it may at first seem, be-

cause the trees used to train the model are binarized: each nonterminal constituent forced

to have at most two children. This process introduces many more constituent spans, and

consequently increases the chance that a syntactic span will align to a given entity. Trees

are predominantly right-branching in English, and by using a right-branching binarization

strategy many of the constituents (those which share a right edge with the entity) that are

not explicitly annotated in the data are reintroduced. Table 4.1.1 shows that using bina-

rized trees raises the degree of correlation to over 90%. The significance of a correlation is

reduced, but the degree to which there is a correlation is strengthened.

We also note that the extent to which nested NP structure is made explicit is not con-

sistent. For instance, the name Al Gore forms an NP when in isolation, and often forms

an NP when nested within a larger structure. Yet there are still many exceptions in which

they are not grouped into a single constituent (Fig. 4.2, right). While the joint model we

present (Sec. 4.3.2, pg. 171) is robust to a lack of correlation in cases where we theorize

one should exist (via soft Boolean logic factors handling the coordination between models),

the inconsistent nature of the annotation scheme may have some effect on the performance

of joint models in general.

A constraint that does hold true in nearly all cases is that named entity and constituent

spans should not cross. This constraint is less susceptible to tree annotation style, though

Finkel and Manning (2009) note that there are some inconsistencies based on whether trail-

ing punctuation is treated as inside or outside the entity span. We now turn to a discussion

of joint models, outlining the approach used by Finkel and Manning (2009) and presenting

our own joint model both of which aim to capture the relationships presented above in an
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seek     an     additional   265    million  dollars

NPVB

VP

NNPQP

NN NN

NMLDET

NP

PRP

MISC

NNS

CD CD

Vice   President   Al  Gore

NNP

PER

Figure 4.2. Unaligned entities. Flat NP structure prevents the entity (265 million dollars)
from directly aligning to any syntactic constituent (left). Other annotation inconsistencies
also contribute to the mismatch (right). Here the entity Al Gore does not correspond to a
syntactic constituent, but is otherwise considered an NP in many other locations in the data,
even when positioned similarly within a larger NP structure.

effort to improve NER and parsing performance. Finkel and Manning (2009) exploits de-

pendencies between labeled syntactic constituents and NER labels. Our approach differs

in that it models dependencies between unlabeled syntactic and NER spans, chosen based

on the statistics above.

4.2 Joint Modeling via Grammar Augmentation

In this section we turn to discussing previous work which focuses on the joint modeling

of NER and parsing. Despite previous work showing the usefulness of parse features in

predicting NER (Finkel et al., 2004), we are aware of only one other line of research which

aims to perform both tasks jointly. This work, described primarily in Finkel and Manning

(2009) 1, and here on referred to as F&M09, serves as the primary comparison to our work.

The model presented in F&M09 couples NER and parsing using a method we refer to as

grammar augmentation. A phrase structure parser groups words into constituent spans and

associates each span with a constituent label. The intuition behind the F&M09 approach

1Finkel and Manning (2010) present a hierarchical joint model which incorporates the F&M09 work, but
trains the model using additional data annotated solely for either task.
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Figure 4.3. Grammar transformations for joint parsing and NER. Such transformations are
used in Finkel and Manning (2009).

is that this label need not only indicate the span’s syntactic category. A constituent label

can also describe, in addition to syntactic category, the type of named entity of the span

if applicable. This can be accomplished by augmenting the parser’s grammar to include

specialized nonterminal symbols (Fig. 4.3). The rule NP → NP PP might be augmented

with entity information to produce the rule NP→ NP-MISC PP to generate an entity of a

miscellaneous type. Instead of PP → PRP NN the rule might be PP → PRP NN-ORG.

This follows the pioneering work of Miller et al. (2000), which makes use of a similar

technique to phrase relation extraction as a parsing task.

However, this approach has unfortunate computational complexity. Starting with a

grammar G of size |G|, expanding all grammar rules to accommodate the entity label set

L produces a grammar of size |G| ∗ |L|. This is a multiplicative growth in the model’s

label set size.2 Having embedded NER labels within the grammar, both tasks can be solved

simultaneously using standard statistical parsing techniques. Here the issue of label size

comes to bear. The complexity of chart-based parser decoding is O(|G|n3). However, in

2In practice and for the case of joint named entity recognition and phrase structure parsing, this need
not be the case. Some nonterminals, like S, are unlikely to ever exactly dominate a named entity, making
nonterminals like S-PER or S-ORG unnecessary.
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the context of parsing, n, being the sentence length, is often quite small, whereas the gram-

mar can often contain thousands of rules. In the case of grammars induced via nonterminal

refinement techniques like split-merge (Petrov and Klein, 2008), this can be closer to a

hundred thousand. Thus the efficiency of decoding is particularly susceptible to the size of

the grammar, and multiplicative increases can significantly slow the algorithm. Pursuing

joint inference in this manner can be computationally burdensome, and F&M09 are forced

to reduce the data’s more refined label set of 18 entity types to a more smaller 4-label set.

The grammar augmentation approach is also limited in what types of problems it can

represent. This approach is only a viable option for joint inference when one problem

is capable of nesting within the phrase structure tree – the structures of the end task cor-

responding to constituent spans in the parse tree. For named entity recognition, this as-

sumption is an appropriate one, but consider a problem that might also benefit from joint

inference, but where the problem structure does not overlap. For instance, evidence sug-

gests that the interaction between syntax and prosodic information (intonational phrases)

is one such problem. In natural speech the pitch of one’s voice rises and falls, providing

many important intonational cues which have been shown to aid in disambiguating syn-

tactic ambiguities (Lehiste, 1973; Ostendorf et al., 1990), and in parsing (Veilleux et al.,

1992; Clifton et al., 2002). Syntactic structure may also help identify prosodic boundaries

(Rayner et al., 1983).

The interdependent nature of syntax and prosody indicates that the two tasks may be a

good candidate for joint inference, but the relationship between the two is fuzzy. Selkirk

(2005) argues for the existence of linguistic constraints which favor left or right alignment

of intonational phrases to constituent phrases, but importantly the boundary of one task is

permitted to cross a boundary of the other. It is possible in a factor graph model to capture

dependencies between an end task and phrase structure syntax that agree in just one edge,

and whose other edge crosses syntactic boundaries. The grammar augmentation approach
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cannot represent the possibility of this type of structure as the prediction of one task is

rigidly constrained on both sides by the syntactic structure.3

We now present a joint factor graph model of NER and phrase structure parsing. Not

only does this model rely on a combinatorial factor to prohibit invalid trees in the syntactic

component, but it also features a new combinatorial factor to prohibit overlapping NER

spans. The two models are connected via soft Boolean logic factors between corresponding

NER and syntactic spans. In comparison to the grammar augmentation approach for joint

inference, label set size suffers only additive growth when the two tasks are combined, and

the soft nature of the constraints which connect the two models alleviates the need to filter

out mismatched training data (as done in Finkel and Manning (2009)).

4.3 Description of Joint Model

NER is well-suited to sequence models, and many state-of-the-art approaches combine

sequential dependencies with the rich feature sets associated with discriminative training

McCallum and Li (2003); Finkel et al. (2005). In this section we present two NER models.

The first is a standalone NER model, utilizing a combinatorial factor to implement a semi-

CRF constraint which ensures that named entities do not cross one another. This is unlike

many previous NER models in that it is span-factored: variables represent spans and not

boundaries. This proves to be a convenient property when extending the standalone model

to produce the second model: a joint model of NER and phrase structure syntax. Due to

the span-based representation of NER, each NER span variable can be directly coupled to

a corresponding syntactic span variable.

3One exception is combinatorial categorical grammar (CCG), where a joint model could potentially avoid
this issue because CCG can explicitly represent structures that are not complete constituents (Steedman,
2000).
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4.3.1 Modeling Named Entity Prediction

We present a simple span-factored model for handling NER span and label predictions.

This model serves as a baseline and a basis of comparison for assessing the usefulness of

joint inference. The basic model structure consists of three components: span variables,

label variables, and factors which coordinate between them.

The presence of an NER span is represented by a Boolean variable, one for each O(n2)

pairs of indices. This is almost identical to the manner in which we model constituent spans

in the factor graph phrase structure parser (Sec. 3.1, pg. 93), differing only in that entities

with more than ten words are exceedingly unlikely and so we impose a maximum value on

the width of a span, µ = 10. The method for labeling these spans also differs slightly, as

constituent span labels were represented with Boolean variables (one per label) in order to

make it more convenient to instantiate sparse grammatical rule factor connections. Here

this is no longer necessary, and the set of NER labels for a particular span is represented as

a single multinomial variable. The logic coordinating the multinomial label variable to the

Boolean span variable is handled by a special-purpose “e pluribus unum” factor, introduced

in Smith (2010), and described below.We formally describe these components:

• Let {NER-Span(i, j) : 0 ≤ i < j ≤ n, and j − i ≤ µ} be O(n2) Boolean

variables such that NER-Span(i, j) = true if and only if there is a named entity in

the sentence spanning from i to j (encompassing words i to j − 1). The maximum

span width, µ, is set to 10 in all experiments.

• Let {NER-Label(i, j) : 0 ≤ i < j ≤ n and j − i ≤ µ} be O(n2) multinomial

variables ranging over values λ ∈ L, whereL is the NER label set. The setL includes

two additional values. One of these is a false value. NER-Label(i, j) = false when

NER-Span(i, j) is false, and j− i > 1. The second of these is a null entity label O.

NER-Span(i, j) = O when j− i = 1. This ensures that all tokens which are not part

of an entity are treated identically, i.e., there is presumably no regularities in non-

entity tokens that would justify predicting non-entity spans of varying lengths. For
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all other labels NER-Label(i, j) = λ if and only if the span from i to j corresponds

to a named entity of type λ.

• Let EPU(i, j) : 0 ≤ i < j ≤ n and j − i ≤ µ} be O(n2) “e pluribus unum” factors

coordinating between NER-Span(i, j) and NER-Label(i, j) variables. This factor

guarantees that NER-Label(i, j) = false if and only if NER-Span(i, j) is false.

Each NER-Span and NER-Label variable has a corresponding unary factor, associ-

ated with a set of features (described in Table 4.2, pg. 174), which locally provide each

variable’s local beliefs. Thus every variable and unary factor pair is equivalent to a log-

linear (maximum entropy) classifier. However, unlike many previous approaches to NER

that utilize similar classifiers (McCallum and Li, 2003), beliefs are shared between pairs

of corresponding span and label variables during inference. One set of features is used to

calculate a potential for an NER-Span(i, j) variable, and a second set of features, disjoint

from the first, is used to calculate a potential for each of the labels in the corresponding

NER-Label(i, j) variable. In our approach it is possible for the propagation of beliefs to

sway the model’s predictions in ways that wouldn’t be possible in a pipelined approach to

NER prediction.

For instance, a NER-Span variable may have a strong belief that its value is false if

the tokens in the span, and the features derived from them, are not generally indicative of a

named entity. However, there may be features indicative of a particular type of entity. This

would lead to a strong belief that a NER-Label variable is true. In the pipelined approach

this span would be classified as a non-entity span, and no further predictions would be

necessary. In the factor graph approach, global inference makes it possible for the beliefs

of NER-Label variables to influence NER-Span beliefs, allowing for correct prediction

in such a scenario.
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a.) Hidden Semi-Markov Model b.) Global Semi-CRF Factor

Figure 4.4. Semi-Markov models. The Semi-Markov HMM (left) has three rows of vari-
ables: observation variables (bottom row), segmentation variables (middle row), and label
variables (top row). Label variables depend on a number of previous segmentation vari-
ables (up to a max segmentation length, γ), allowing the model to jointly assess likely
segmentations and labels, while inherently preventing spans from overlapping. In con-
trast, the combinatorial factor technique (right) implements similar logic within a globally
connected factor. Variables in this model are span-factored, and the combinatorial factor
prevents variable configurations in which spans overlap.

4.3.1.1 A Combinatorial Factor for Semi-CRFs

A recurring problem when representing structured outputs in factor graph models is the

need to incorporate global information to prohibit invalid structures. In the case of NER

the model needs to ensure that entity spans do not overlap. Hidden semi-Markov mod-

els (Baum and Petrie, 1966; Naradowsky and Toutanova, 2011) and semi-Markov CRFs

(Sarawagi and Cohen, 2004) offer this guarantee, but are not span-factored. Instead these

models use a Boolean variable chain to represent segmentation points, implicitly defining

spans, in conjunction with a second variable chain for labeling. A parameter γ specifies

a maximum segment width. Variables from the second chain depend on the γ-1 previous

segmentation variables, allowing these variables to predict labels in light of the model’s

predicted segmentation. Fig. 4.4 (left) illustrates a model with this type of structure.

For our goals of coupling NER and syntactic span variables, we propose an alternate

strategy for implementing this constraint which replaces structural dependencies with a

globally-connected combinatorial factor. This allows us to efficiently prevent invalid struc-

tures in a span-factored NER model. NER span variables can then be connected to the span
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variables of a phrase structure grammar model in a convenient 1-to-1 correspondence (for

all spans with widths < γ. We introduce this semi-CRF constraint factor formally as:

• Let SEMI-CRF be a combinatorial constraint connected to allNER-Span(i, j) vari-

ables. The factor implements a weighted 0th order Semi-CRF with a maximum

span width γ, as described in Sarawagi and Cohen (2004), over the log-odds of

each NER-Span variable’s Boolean values. Unlike the valid-bracketing constraint

imposed by the CKY-TREE factor, this effect can be achieved with a polynomial

number of binary factors, but the O(γ2n2) such pairwise factors would result in an

extremely loopy graph and inefficient inference.

ΨSEMI-CRF(NER−Span(i, j)) =


0, if ∃i, j, k, l : NER-Span(i, j) = true ∧

NER-Span(k, l) = true ∧ i < k < j < l

1, otherwise

Pseudocode for computing the out-going messages from this factor is provided in Fig.

4.5. The goal of preventing overlapping NER spans is similar to the goal of prohibiting

invalid trees, and naturally the SEMI-CRF factor logic is similar to that of the CKY--

TREE factor. In both algorithms the calculation of out-going messages is decomposed into

two steps: in the first step the computation sweeps forward through the chain computing

forward scores (analogous to the inside scores used in the CKY-TREE factor), and a second

step that sweeps backward through the chain (analogous to the outside scores used in the

CKY-TREE). The forward and backward scores can then be multiplied to produce the

gradient, µ(i, j), which is used.

The forward computation answers the question, “For any state k representing whether

or not an entity span begins at position i, 1 ≤ i ≤ n, what is the probability of beginning
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Algorithm 8 Propagator for Semi-CRF Factor

1: procedure PROPAGATE SEMI-CRF(n, γ) . Sentence Length, Max Segment Size
2: for v ← {v1, ..., vm} do
3: qv ← v(true)/v(false)
4: end for
5: α(0)← 0 . Forward Computation
6: for k ← 1 to n do
7: for w ← 1 to min(γ, k) do
8: i = k − w
9: α(k)

⊕←− α(i) + score(i)(w)
10: end for
11: end for
12: β(n) = −α(n) . Backward Computation
13: for i← n− 1 to 0 do
14: for w ← min(n− i, γ) to 1 do
15: k ← i+ w
16: β(i)

⊕←− β(k) + score(i)(w)

17: µ(i)(w)
⊕←− β(k) + α(i) . Gradient Calculation

18: end for
19: end for
20: end procedure

Figure 4.5. Pseudocode for the SEMI-CRF factor propagator. Let score(i)(w) be the
odds ratio of incoming messages from variable NER-Span(i, i + w). The ⊕←− indicates
incremental assignment.

at the start of the sentence and generating up to state k?” We define this quantity by

the forward score, α(k). This can be computed efficiently using dynamic programming,

beginning at the start of the chain (k = i), caching each α(k), and proceeding through to

the end of the chain. As illustrated in the semi-Markov HMM in Fig. 4.4, the computation

of each α(k) involves looking back at only the forward scores that fall within the maximum

span width’s distance away.

The goal is reversed for the backward computation. Each backward term, β(k), is the

score of all possible analyses beginning at state k and continuing through to the end of

the chain. To compute this efficiently, a procedure analogous to the forward computation
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begins at the end of the chain, moving backward to the beginning of the sentence, incorpo-

rating the sum of all span analyses at each step. The gradient for a span, µ(i)(k) with width

w, can be computed by combining the forward score for the start of the span, α(i), and the

backward score for the end of the span, β(k). The gradient can then be used to calculate

out-going messages in a manner identical to their use in the CKY-TREE computation (pg.

109). Message computation for this factor has a time complexity of O(γ2).

Together with the modeling components presented in Section 4.3.1 (pg. 166), this con-

stitutes the NER-ONLY model.

4.3.2 A Joint Model of NER and Constituent Syntax

The factor graph parsing model we present in Sec. 3.1 (pg. 93) is an improvement over

previous CRF-based parsers, but it is not competitive with state-of-the-art re-ranking or

latent variable grammar models. The advantage of parsing with this factor graph model is

not absolute F1 performance, but rather the ease with which it can be combined with other

models to create a joint model, with the guarantee that there is an approximate inference

strategy (belief propagation) for whatever the resulting graph structure may be. Here we

describe the construction of a joint model of phrase structure parsing and NER. This exten-

sion requires only an additional set of pairwise logical factors to coordinate the variables

from the opposing component models.

First, in addition to the named entity model described above, we assume the presence of

the phrase structure variables and factors described in Sec. 3.1.2 (pg. 105). This includes

Span(i, j) and Label(i, j, k) variables to represent the space of all possible labeled parses,

the corresponding unary factors to locally score these variables, and a CKY-TREE factor

to globally constrain Span(i, j) variables to form a valid tree.

Previous work has argued that every named entity should correspond to a noun phrase

(Finkel and Manning, 2009). Following this logic we might implement a joint model which

connects the NER-Span(i, j) variables to Label(i, j, k = NP) variables. However, an
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Figure 4.6. A joint model of NER and phrase structure syntax. Depicted in a plate diagram,
the baseline NER model (right) is a span-factored model for predicting NER boundaries
(using NER-Span variables) and NER labels (using NER-Label variables). The SEMI-
CRF factor constrains NER-Span variables to prohibit overlapping spans. The model of
phrase structure syntax (left) is as described in Section 3.1.2 (pg. 105). The two mod-
els coordinate across pairs of unlabeled span variables, using NER-CONNECT factors to
implement a soft Boolean NAND logic. The number in the bottom corner of each plate
indicates the number of times the contained structure repeats.

analysis of the data shows that this correlation only holds for slightly more than half of all

entities (Table 4.1.1), motivating us to choose a more general coupling between models in

which solely the structural components of each model, Span and NER-Span variables,

are coupled using soft Boolean logic factors.

Here the motivation for using a combinatorial factor for modeling the semi-CRF con-

straint becomes clear: although a traditional semi-Markov model can be expressed strictly

through many pairwise factors and would also rule out over-lapping entity spans, spans

are not explicitly represented in the model. By using a combinatorial factor to express the

semi-Markov logic we adopt a span-based representation for the NER model, which allows

a convenient mapping between the NER and syntactic models. Thus for every Boolean

NER-Span(i, j) variable there is a corresponding syntactic Span(i, j) variable, and these

variables can be coordinated using a Boolean logic factor.

172



The factors which coordinate between models impose a soft NAND logic. If either input

is false, a logical NAND outputs true. Similarly, if either coordinated variable is false,

the NAND factor contributes a potential of 1.0 and does not affect outgoing messages.

When both variables are true the NAND factor applies in a potential derived from a set

of associated features and feature weights. Optimization adjusts these feature weights,

learning the degree of coordination between variables.

Formally we introduce this factor as follows:

• Let {NER-CONNECT(i, j) : 0 ≤ i < j ≤ n; 1 < j − i ≤ γ} be a set of at

most O(n2) soft NAND factors coordinating syntactic Span(i, j) and named entity

NER-Span(i, j) variables. A NAND factor (multiplicatively) contributes a potential

of 1 to the model score unless both variables are true, in which case it multiplies a

connective potential φ(i, j) derived from its features.

Intuitively the joint model might learn features weights such that φ(i, j) > 1, i.e., con-

stituents and NER spans are more likely to be coterminous. The number of these coordi-

nating factors is constrained to the number of NER span variables, subject to the maximum

span-width γ = 10.

The soft aspect of this factor is critical to the performance of the joint model. Only

a small number of constituent spans will correspond to named entities, and even using

binarized trees there will still be a significant number of named entities that, due to anno-

tation style, do not correspond to a constituent span. To capture noisy correlations of this

nature we introduce a set of features, described in Sec. 4.3.3, which are used to learn a

context-specific weight for each NER-CONNECT factor’s potential.

To illustrate how this might function, consider the feature comprising the concatenation

of the sequence of part-of-speech tags for each word in the span. For shorter spans, many

instantiations of this feature will occur many times in the data and this feature will often

be a good indicator of 1.) what type of constituent is at that span, and 2.) whether or not

the span is a named entity. In cases where there is a syntactic span and it is NP-like, this
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Span Features
Feature String Comment

BIAS A bias factor to capture how likely any span is to be an entity.
The-Darjeeling-Limited A concatenation of all words in the span.

DET-NN-NN A concatenation of all tags in the span.
C-C-C A concatenation of capitalization (C for yes, c for no).

The-DET-Darjeeling-NN-Limited-NN A concatenation of words and tags.
w-3 Span width.

DET-NN Part-of-speech tags of boundary words (inside the span).
Unigram Features

Word Feature String Comment
Darjeeling Darjeeling The word.
Darjeeling NN The part-of-speech tag.
Darjeeling is-capitalized Capitalization feature.
Darjeeling darjeeling word to lowercase.
Darjeeling Darjeeling-NN Word and tag.
Darjeeling s-ngram-1-3-Dar Character grams. Substrings of 2-5 letters from start of word.
Darjeeling e-ngram-1-3-ing Character grams. Substrings of 2-5 letters from end of word.

Dec. MONTH Month-matching regex.
12:59PM TIME Time-matching regex.

third ORDINAL Ordinal-matching regex.
fourteenth FRACTION Fraction-matching regex.

Wed DAY Day-matching regex.
E.T. INITIAL Initial-matching regex.
ET CAPS All-capitalized-matching regex.
et LOWER All-lowercase-matching regex.
IV ROMAN Roman-numeral-matching regex.
!? PUNC Punctuation-matching regex.

Table 4.2. Features for NER factors. Span-based features (top) provide a barebones set
of features for entity prediction. Unigram features (bottom) are included for each of the
boundary words i and j for a span over i, j, as well as a previous token and following token
when applicable. These features are concatenated with the word’s location in the span.

feature may strengthen the connection, assigning a high potential to the model score. In

cases where there is a syntactic span and it is NP-like, this feature may elicit the opposite

effect, assigning a low score to the configuration where both the syntactic span and named

entity are present. Thus, despite having no connections between Label(i, j, k) variables

and NER-Span(i, j) variables, features in the NER-CONNECT (i.e., NAND) factor can

approximate the information that would be gained from connections with a constituent

label predictions.

We now discuss the feature sets used in these soft constraints, as well as the rest of the

features used in the NER model.
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Feature String Comment
Agree-BIAS A bias feature governing the general degree of agreement between variables.

Agree-3 Span width.
Agree-The-Darjeeling-Limited A word concatenation feature.

Agree-DET-NN-NN A part-of-speech concatenation feature.
Agree-DET Initial part-of-speech tag.
Agree-NN Final part-of-speech tag.

Agree-DET-NN Start and end part-of-speech tag.

Table 4.3. Features for coordination factors.

4.3.3 Features

Five distinct sets of factors in the joint model rely on features: SPAN(i, j) and LABEL(i, j, k)

parsing factors, NER-SPAN(i, j) and NER-LABEL(i, j) NER factors, and NER-CONNECT(i, j)

coordinating factors.

4.3.3.1 Features for NER factors

We use an identical set of features for both identifying and labeling NER spans. Due

to the need to identify and classify strings of names, the NER features are more lexically

oriented than features used for parsing, and include word shape, character n-grams (win-

dows of 2 to 5), capitalization, normalization, and regular expressions for initials, numerics,

times, dates, and Roman numerals. Other features are included to capture more span-level

information, including the combined part-of-speech of all words in the span, combined

capitalization of all words in the span, span width, and the part-of-speech tags at the edge

of each span. When used in NER-LABEL(i,j) factors, the associated label of the span, λ, is

concatenated onto each feature string before being converted into an integer representation

to produce a distinct set of features for each label. NER features are summarized in Table

4.2.

4.3.3.2 Features for parse factors

The features utilized by the parsing factors are identical to those used in the standalone

parsing model (See Section 3.1.2.7, pg. 125).
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4.3.3.3 Features for coordinating factors

The data statistics (shown in Table 4.1.1) reveal only an average degree of correla-

tion between named entity and syntactic spans, and the feature set for coordinating factors

(described in Table 4.3.3.1) is necessary for providing a context-specific coordination po-

tential. These features are essentially identical to the span-based features used for named

entity identification. Tag concatenation features were good predictors of constituent span

and constituent type for short spans. Since a majority of named entity spans contain only

a few words, it is possible that similar features will be well-represented in the data and

suitable for learning soft weights for the correlation between entity and syntactic spans.

4.4 Experiments

In this section we evaluate a number of model configurations, demonstrating the use-

fulness of joint inference, and the usefulness of inducing a latent syntactic representation

in situations where gold syntax does not correlate highly with the end task.

4.4.1 Data

Data which is jointly annotated for NER and parsing is exceedingly rare. For evalua-

tion purposes we rely on a selection of six corpora drawn from the English broadcast news

section of the OntoNotes 2.0 dataset(Hovy et al., 2006), the only data set we are aware of

which is jointly annotated for both NER and phrase structure syntax. Each corpus corre-

sponds to a different news broadcast organization (ABC, CNN, MNB, NBC, PRI, VOA).

We partition each corpus to achieve an approximate 3:1 ratio between training and test sets,

reproducing the partitioning found in F&M09. Corpus statistics are presented in Table 4.4.

As in that work, we remove empty leaf nodes and coarsen nonterminal labels in the parse

trees (NP, not NP-PRD), and filter out sentences longer than 40 words. We map the fine-

grained entity label set found in OntoNotes into the four-label entity set found in F&M09.
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Training Testing
Range #Sent Range #Sent

ABC 0-55 1195 56-69 199
CNN 0-375 5092 376-437 1521
MNB 0-17 509 18-25 245
NBC 0-29 552 30-39 149
PRI 0-89 1707 90-112 394

VOA 0-198 1512 199-264 383

Table 4.4. F&M09 OntoNotes data statistics. Ranges indicate the file IDs of files used to
construct each data set.

PER, GPE, and ORG are kept as is, while all other named entity labels are collapsed into

MISC.

4.4.2 Experimental Design

Each set of experiments compares four different model configurations:

• NER-Only, a baseline model consisting only of the NER component as described in

Section 4.3.1 (pg. 166). This includes the SEMI-CRF combinatorial factor.

• NER-Joint, the joint model described in Sec. 4.3.2 (pg. 171) using an unlabeled

phrase structure parser and factors which coordinate between syntax and NER spans.

• NER-Oracle, the same joint model, but with constituent span variables set to their

observed values as specified in the hand-annotated gold parse trees included in the

OntoNotes corpus. These are observed and used both during training and testing.

• NER-Hidden, the same joint model, but syntactic annotations are ignored and the

model learns a distribution over a latent syntactic representation using the marginalization-

based training method described in Section 2.5.5 (pg. 75).

We train each model using 100 iterations of stochastic gradient descent, using a learning

rate η = 0.1. We use L2 regularization, corresponding to a Gaussian prior with a variance

of 1.0. A maximum of 40 iterations of belief propagation are used for each example, but
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convergence often occurs much earlier. Decoding is performed by taking the entity set

which maximizes the score of the SEMI-CRF factor. If the SEMI-CRF computation is

thought of as sum-product inference with a structured constraint, decoding is done simply

through max-product inference with the structure constraint, an application of minimum

Bayes-risk decoding. All NER results were scored using macro-averaged F1, as used in

conlleval, and all parse results scored using Evalb.

We perform two sets of experiments, each using a different feature set. First, the linear-

chain feature set (Chain Feats) does not contain any features which require both a start and

an end index of the span, and instead contain sliding windows of word/tag/capitalization

n-grams along either the start or end index. This more closely approximates the features

of F&M09. Formally the linear-chain feature set is the Unigram set described in Table

4.2 (pg. 174), at both the start and end index of the span, and as bigrams between pairs

of indices in a 3-word index around either of the span indices. The second feature set

(Span Feats) is composed of span-based features, which includes span width, bigrams of

information from the start and end of the span, and word/tag/capitalization concatenations

from all of the tokens within the span, and both the tokens immediately outside the span. It

is exactly the feature set described in Table 4.2.

The size of each model and its computational requirements for the smallest (MNB)

and largest (CNN) data sets is given below. Training times listed are the amount of time

necessary to perform one iteration of SGD.
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Chain Feats Span Feats

MNB CNN MNB CNN

#Feats Time #Feats Time #Feats Time #Feats Time

NER-Only 30k 40s 150k 4m 35k 50s 180k 1m

NER-Joint† 115k 2m 770k 8m 123k 10m 800k 8m

NER-Oracle†† 75k 1.5m 540k 6m 110k 2m 680k 7m

NER-Hidden 750k 7m 6.3M 19m 890k 7m 9.5M 23m

Models which require syntactic annotations during training are marked with a † symbol.

Models which rely on syntactic annotations for both training and decoding are marked with

†† symbol.

4.4.3 Results

4.4.3.1 The Case for Joint Inference

In this section we discuss the performance results of the baseline and joint models using

the linear-chain feature set. We also revisit the results of previous work from Naradowsky

et al. (2012b), which are more directly comparable to F&M09.

The results of the NER accuracy experiments are given in Table 4.5. Included in these

results is a set of experiments using the linear chain features (left), which were performed

in an effort to more closely reproduce the baseline system of F&M09. In comparison to

this system, our own baseline, the NER-ONLY system, performs much lower overall, with

an averaged label F1 of 70.67% vs. F&M09’s 73.17%. However, this lower performance

baseline does help highlight the differences between the various chain feature models.

For all data sets, joint inference results in significant increases in labeled and unlabeled

F1. The standard joint model, NER-JOINT, provides an average improvement of 2.71%

labeled F1 (73.38% average F1). Perhaps unsurprisingly, the use of the observed trees leads

to still higher performance in the ORACLE model, a gain of 3.33% F1 over NER-ONLY
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and 0.64% F1 over NER-JOINT. This is not always the case: predicting trees, rather than

observing them, yields to higher performance for the NER-JOINT model for the NBC and

PRI data sets, but these margins are small.

While the average labeled F1 scores would rank the overall system performance as

NER-HIDDEN, NER-ORACLE, NER-JOINT, NER-ONLY, best to worst, the relative per-

formance of these systems varies largely from data set to data set. For the NBC data set,

NER-JOINT outperforms NER-ORACLE. On the MNB data set, NER-ORACLE outper-

forms all other systems by at least a 1%F1.

What causes these discrepancies? It does not appear to be a factor of data size, as

the MNB and NBC data sets are similarly small and produce two very different rankings.

However, the ranking of the NER-ORACLE model appears to be correlated with the degree

to which entity spans align to syntactic constituents, as presented in Table 4.1.1. The two

datasets with the lowest correlations – NBC and PRI – are the same data sets where NER-

HIDDEN has the highest relative performance over NER-ORACLE. If the gold standard

syntax constituents are highly correlated with named entities, the NER-ORACLE model is

able to take the best advantage of it. When the degree of correlation between NER and syn-

tax is not as strong, the NER-HIDDEN model can induce a better syntactic representation.

This also follows for the NER-JOINT model: when gold syntax is not strongly correlated

with named entities, it can be better to predict trees which are similar, but not exactly the

same as the gold trees.

4.4.3.1.1 Comparing Joint Inference Techniques

We more closely replicated the baseline results of F&M09 in previous work (Naradowsky

et al., 2012b). This was largely due to the use of dictionaries of proper names, cities, etc.,

when constructing features, as done in F&M09, which significantly improves the model’s

ability to correctly label entity spans. With these experiments we are able to better compare

the two approaches to joint inference: soft Boolean logic factors in factor graphs, and

grammar augmentation with CFGs. In this work our baseline model achieved an average
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labeled F1 of 73.67% across all corpora, while the F&M09 baseline has an average labeled

F1 of 73.18%. This is a difference of 0.49 F1%, making the two baseline systems quite

comparable.

While both systems benefit greatly from joint inference with a model of phrase struc-

ture syntax, the grammar augmentation approach of F&M09 results in an average F1 of

76.38% across all corpora, a 3.2 F1% increase over the F&M09 baseline. In comparison,

our joint model not only provides a higher average absolute F1, at 78.27% F1, but also a

higher margin, improving NER accuracy by 4.6% F1 over our own higher accuracy base-

line model. In comparison, our joint model not only provides higher absolute performance,

a 78.27% average labeled F1, but also a higher margin, improving NER accuracy by 4.6%

average labeled F1 over our own higher accuracy baseline model.

These results alone cannot reveal the exact cause of the performance difference. One

possible hypothesis is that there are inherent advantages to our approach to joint inference.

Our soft Boolean logic constraints allow for a more flexible, context-specific coupling.

However, it is difficult to assess how many F&M09 errors might be attributed to the limita-

tions of the “hardness” of its coordinating constraints, or the extent to which our approach

overcomes them. In an additional set of experiments we reduce the feature set for coor-

dination factors to a single bias feature, thus forcing the model to learn a single weight to

uniformly govern all coordination between syntax and NER models. This results in a 3.1

decrease in average F1 when compared to our full joint model, showing the importance of

the more flexible coordinating factors.

A second, and perhaps more likely explanation of why our joint model outperforms

F&M09 is the higher parse accuracy of our parser. The factor graph parser (Sec. 3.1.2, pg.

105) has an average parse F1 of 78.47, significantly higher than F&M09’s average F1 of

71.13. This constitutes a 7.34 difference in F1. Perhaps more pertinent to NER accuracy

is the crossing bracket score, which measures the average number of constituents in the

predicted tree which cross a constituent in the gold tree. An entity whose boundaries cross
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a predicted constituent span is unlikely to be found in the model solution, and is ruled out

entirely in the case of the grammar augmentation approach to joint inference. Our parser

has an average of 1.71 crossing brackets per sentence, whereas the baseline parser used in

F&M09’s has an average of 2.02, representing a15.3% reduction in crossing bracket errors

over F&M09.

4.4.3.2 A motivating example for Joint Inference

How does coupling these tasks benefit NER prediction? Fig. 4.7 provides some insight

into the types of errors which joint inference can avoid. In this example the baseline NER-

Only system incorrectly predicts the entity Social Party of type ORG. This is not serious

error: Social Party would likely be an entity span in another context, and the entity label is

correct. The model only fails because it does not capture the encompassing entity, Social

Party of Serbia. The tree produced by the standalone parser makes an similar mistake,

correctly predicting Social Party as an NP but failing to predict the second encompassing

NP.

By sharing beliefs between the syntax and NER models, the joint model finds a better

global solution. The parse tree correctly groups Social Party of Serbia into its own NP,

attaching the following VP to the root of the tree. The named entity model receives stronger

evidence for the entity span Social Party of Serbia, and is able to correctly predict the full

entity span. Both predictions are aided by a potential from the coordinating factor that is

> 1, and thus increases the model’s belief that they are both true. This example is also

interesting because the two erroneous analyses of the standalone models are in agreement.

This is the type of problem where a context-specific weight, provided by the features for

the NER-CONNECT factor, may be a critical factor in reaching the correct solution.

4.4.3.3 The Effect of Joint Inference on Parsing Performance

The traditional motivation for joint inference argues that both tasks stand to benefit

from being performed jointly. However, while the previous example illustrates an instance
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It is true he is the President of Social Party, but Social Party of Serbia has 400,000 members .

ORG ORG MISC

It is true he is the President of Social Party, but Social Party of Serbia has 400,000 members .

ORG MISCORG

NP

CD NNS

VP

VBZIN

NNP

NP

PP

NNP NNP

NP

NPCC

S

. . .
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NP

CD NNS
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NP
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NPCC

Sb.) NER-Joint Output

a.) NER-Only/Parse-Only Output

Figure 4.7. An example of joint inference improving both syntax and NER analyses. The
standalone NER model (a) is attracted to the shorter NP, Social Party, predicting the correct
entity label but failing to recognize that it is part of a larger entity. The parse-only model
makes a similar mistake, correctly classifying Social Party as an NP, but failing to correctly
recognize its role in an encompassing NP. The joint model (b) correctly predicts this larger
NP, and the aligning named entity.

where joint inference being mutually beneficial to both tasks, we find these occurrences

to be rare when using our joint model on this data set. While joint inference significantly

improves NER prediction across all corpora, the net effect of joint inference on parse accu-

racy is negative: joint inference decreases the average parse accuracy across all corpora by

0.35 F1. Across the six corpora, joint inference is just as likely to hurt parser performance

as it is to help. This effect is most pronounced in the ABC corpus, one of the smaller cor-

pora, where it decreases performance by 0.98 on the 199 sentence test set. The maximum

improvement is 0.28 F1 on the NBC data set, another of the smaller corpora. Table 4.6 lists

these results.
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Prec Recall F1 F&M ‘09

ABC
Parse Only 79.75 76.72 78.20 70.15
Parse Joint 78.15 78.15 77.17 69.99

CNN
Parse Only 83.30 80.14 81.69 77.03
Parse Joint 83.41 80.09 81.72 77.71

MNB
Parse Only 76.98 72.61 74.73 65.49
Parse Joint 75.10 71.47 73.20 65.59

NBC
Parse Only 74.81 71.67 73.20 61.63
Parse Joint 75.15 71.88 73.48 62.93

PRI
Parse Only 82.70 79.92 81.29 76.35
Parse Joint 82.98 80.03 81.48 77.41

VOA
Parse Only 83.55 79.89 81.68 76.15
Parse Joint 83.43 79.91 81.63 77.51

Table 4.6. Standalone and joint parsing performance on the OntoNotes corpus. Results are
calculated in terms of labeled accuracy using Evalb. In comparison to F&M09 (right) our
models offer better parsing performance, but joint inference provides less significant and
less consistent improvements.

Our findings differ from those of F&M09, where joint inference provides significant

gains on five of the six corpora, with an average improvement of 0.73 F1. Both approaches

to joint modeling improve parsing the most on the NBC corpus, where the approach of

F&M09 increases parse accuracy by 1.36 F1 (in comparison to our 0.28 F1 increase). How-

ever, our baseline parser outperforms the F&M09 joint model on all parsing tasks, and it

is possible that we are observing a ceiling effect, with decreases in performance caused by

incorrect generalizations and what is essentially overfitting. In spite of efforts to regularize

the model to prevent this, these data sets are quite small, and more complex joint models

may be prone towards finding generalizations in the training data that are not as present in

the test set.

4.4.3.4 Advancing the State-of-the-Art

In the previous section we showed that joint inference can produce significant improve-

ments in performance, raising labeled F1 performance by 2.71% with linear-chain features,

4.6% with the feature set of Naradowsky et al. (2012b), and 3.2% in F&M09. However,
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in practice it is hard to outperform a discriminatively-trained sequence model with good

feature selection. In this section we examine the difference features can make on model

performance, attempting to achieve the highest labeled F1 scores.

Purely sequential models, like the linear-chain CRF, make one prediction, an entity

label (which could be null), for each token. The identities of entities can then be determined

from these purely local labels, but without the notion of a span, the model’s features are

limited. Our model is span-based, making a prediction for each possible span, and thus

the features used in our model can be constructed around spans. The performance of these

models is provided in Table 4.5 (right).

Here, by using span-based features, we are able to improve the performance of our

baseline model to levels significantly beyond that of the joint F&M09 model, and mitigating

most of the performance improvements of our own joint model. The average labeled F1

performance of the model is 85.7% for NER-ONLY, 86.1% for NER-JOINT, 86.2% for

NER-HIDDEN, and 86.4% for NER-ORACLE. The margin of performance between the

NER-ONLY and NER-JOINT models falls to just 0.7% average labeled F1.

There are several factors that contribute to this: the small data size, the predominantly

short NER spans, and perhaps most importantly, the similarity between the information

captured by the baseline and joint models. The small data size limits what can be learned,

and pushes the accuracy of the span-featured models close to a performance ceiling: only

a handful of mistakes are made by any model, and most occur when labeling the spans,

not when identifying the spans, which is where joint inference may be most useful since

we couple unlabeled span variables. The tendency for NER spans to be short, and their

position at the leaves of the tree, do limit the extent to which a joint model can improve

over a strong baseline sequence model. However, when using the span-based feature set,

the information captured by the NER-ONLY and joint models is quite similar, the only

significant difference being the structural constraints imposed on each component in the
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model. Even here, the constraint imposed on NER variables by the SEMI-CRF factor is

very similar to the constraint imposed on syntactic variables by the CKY-TREE factor.

While this is largely a negative result, we still observe some interesting behavior. In

terms of labeled accuracy, all joint models improve compared to the baseline, but the advan-

tage of the NER-HIDDEN model is reduced. Inducing a syntax using the marginalization-

based training method renders the optimization search space non-convex, introducing the

possibility that optimization will not find the optimal set of model parameters. We find

this to be a recurring problem: the hidden syntax models perform better on the unlabeled

tasks, which are most directly affected by the coupling of the models, but do not manage

to label these structures quite as well as the model configurations with convex objectives.

Here a hybrid approach which predicts structure using the NER-HIDDEN and labels it us-

ing the predictions of one of the remaining models. Another alternative would be tune the

optimization parameters on development data, though we do not pursue that approach here.

4.5 Conclusions

In this chapter we discussed the task of named-entity recognition and showed how a

model which performs this task jointly with phrase structure parsing can outperform the

performance of the NER model alone. Our NER baseline model is essentially a common

CRF-based model, though it utilizes a span-based representation and a novel semi-Markov

combinatorial constraint to prohibit NER spans from crossing. This model is connected to a

representation of phrase structure syntax using Boolean logic factors which learn a context-

specific coordination potential: the strength of the coordination between NER and syntax

differs based on the width of the span and the words and part-of-speech tags contained

within it.

Our baseline model outperforms a comparable baseline from previous work, our joint

model outperforms the joint model from previous work, and the margin of improvement

associated with joint inference are greater in our framework (Naradowsky et al., 2012b).
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Additionally, the joint models which induce a latent syntactic representation outperform

the joint model trained on gold syntactic annotations on most of corpora. However, these

very positive findings are ultimately met with a negative result: a feature-rich baseline can

all but eliminate the benefit of the joint inference on our test data set. We identify several

causes contributing to this effect.

In the feature-rich setting, using the gold syntax provides the best performance, but in

terms of unlabeled accuracy the joint model which induces a latent syntax is the next best

configuration, implying that there is hope of outperforming the joint NER model without

the need for data jointly annotated with syntactic trees. These are the best results ever

reported for this data set, and it is possible that we are observing a ceiling effect, reduc-

ing the performance differences between models as we approach the maximum achievable

performance with these kinds of methods.

The data is also problematic. As noted in F&M09, there are many instances where

a named entity should correspond to a syntactic constituent, but doesn’t. This includes

nested entities, which aren’t explicitly annotated in the data. Given the right data, other

joint models may yield better results. A simple and intuitive extension would be to connect

NER labeling to syntactic structure or to syntactic labels. For instance, it is straightforward

to add a dependency between the named entity span and the set of syntactic label variables

which can correspond to entities. We leave this model as future work, as it would be

better suited to a data set that more accurately reflected our intuitions about the relationship

between named entities and constituents.

NER couples naturally to phrase structure syntax, as both tasks aim to identify con-

tiguous spans of words, and NER spans frequently correspond to constituent spans. In the

next chapter we explore the task of relation extraction, where it is less clear which syntactic

representation best suits the problem. We present two joint models, one coupling to phrase

structure, the other to dependency structure, and show that it is possible to induce a latent
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syntax which allows the model to outperform the use of gold trees, provided by pre-trained

state-of-the-art parsers.
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CHAPTER 5

JOINT MODELS FOR RELATION EXTRACTION

In the preceding chapter we demonstrated that our factor graph modeling framework

can be used to produce a state-of-the-art baseline NER model, and accuracy can be im-

proved by incorporating a model of phrase structure grammar and performing inference

jointly. However, we also find that these improvements can be alternatively achieved

through careful feature selection and rich feature sets. But NER is unique among the tasks

we present in this dissertation, as many state-of-the-art approaches to NER do not utilize

any syntactic information. Many traditional approaches to NER rely on purely sequential

models, often relying on nothing more than lexical and part-of-speech information.

The tasks we turn to now – relation extraction and semantic role labeling – often require

syntactic information in order to achieve state-of-the-art performance. Often this informa-

tion will be incorporated into the system via features or kernels, and not explicitly modeled,

as in the pipelined approach discussed in Chapter 1. We argue that, unlike NER, the task

and syntactic structures are more inherently coupled, and thus both the potential benefits

from joint modeling will be greater.

In this chapter we take advantage of the inherently coupled relationship that exists be-

tween syntax and relation extraction, modeling these tasks jointly, and using relation ex-

traction annotations to guide the induction of a latent syntactic structure. We devise two

methods for coupling syntax to relation extraction, one with phrase structure grammar and

one with dependency grammar, and examine the effect of this choice on relation extrac-

tion performance. We contrast the effectiveness of these joint models with a model which

makes use of syntactic predictions from a state-of-the-art parser, as would be common
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in the pipelined approach. Models which utilize syntax outperform the RE-only base-

lines, and, on the larger English data set, we find that inducing a latent syntax using the

marginalization-based training method outperforms the use of parser-produced trees.

5.1 An Overview of Relation Extraction

Relation extraction (RE) is the task of identifying semantic relationships between sets

of entities in text. Typically the entities in the text are assumed to be identified and labeled,

making the goal of an RE system to identify which pairs of entities share in a relation, and

to classify the type of relationship it is. Common relation types include1:

• PHYSICAL, where an entity is situated with respect to another.

ex: The Bridge Tavern is north of Riverrun.

• PART-WHOLE, expressing a hierarchical relationship between entities.

ex: NBC is a subsidiary of Sheinhardt Wig Company.

• PER, for personal or social relationships.

ex: She’s my sister and my daughter!

• ORG, for affiliation or ownership.

ex: Elon Musk is the Chief Product Architect of Tesla Motors.

• AGENT-ARTIFACT, when an agent has possession of or creates an item.

ex: The Lady of the Lake, her arm clad in the purist shimmering samite, held aloft

Excalibur from the bosom of the water.

This kind of structured information can then be used to populate databases and answer

queries, making it a useful task which may align closely with a user’s goal.

Now consider the role that syntax might play in expressing these relationships. We

identify two common relationships, depending on the nature of the relation:

1These types are drawn from the ACE 2005 taxonomy (Walker et al., 2005)
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Shigeru-Miyamoto   currently     manages    the     Nintendo-EAD-branch
PER ORG

EMPLOYS

Nobuo-Uematsu  ,  Squaresoft -’s  most  prolific composer  ,  joined in  1986
PERORG

EMPLOYS

NP

ADJRBS NNPOSNN

NP

NP

a.)  Verbal Relation

b.)  Possesive Relation

ADJP

Figure 5.1. Relationships between syntax and relation extraction. Verbal relations (top) are
a class of relations in which the relationship is generally captured by a verb (manages). This
relation is expressible using a dependency graph, as the arguments are typically syntactic
modifiers, either directly or indirectly, to the verb that defines the relation. Nominal rela-
tions (bottom) still have predictable underlying dependency structure, but also frequently
occur at the edges of constituent spans. In this case it may be preferable to utilize phrase
structure grammar when making RE predictions.

• Verbal Relations

In English, verbs play a central role in expressing many relations. A verb may carry

a meaning which is highly informative of the relation type, and the arguments of

the verb are commonly the entities which share in the relation. For instance, in the

sentence “Shigeru Miyamoto currently manages the Nintendo EAD branch” the verb

manages is very indicative of an EMPLOYS relation, as to manage an organization

implies employment by that organization.

But the correlation we focus on here is between syntactic structure and relations.

Figure 5.1a illustrates the syntactic analysis of this sentence using dependency gram-
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mar. In relations of this type, it is common for the verb which specifies the relation

to be the syntactic head, either directly or indirectly, of the relation’s arguments.

ACE English relation annotation guidelines categorizes this set of relations as verbal

relations.

• Nominal Relations

We classify another set of relations into the category of nominal relations. These are

relations the ACE guidelines describe as being possessive, prepositional, or formu-

laic, among other miscellaneous types. In the sentence “Nobuo Uematsu, Square-

soft’s most prolific composer, joined in 1986.”, the relation between the entities

Squaresoft and composer does not involve any verb, and is instead expressed through

the use of the possessive particle (’s). There are many relations of this sort, each type

having its own method (or methods) of being expressed syntactically. We refer to

relations of this type as nominal relations.

Some examples of nominal relations are the POSSESSIVE relation, as described above.

Relations of this type can also be expressed through the use of a preposition (the

hounds of Baskerville). Relations classified as FORMULAIC have the cookie-cutter

constructions of newswire headlines (April O’Neil, News Channel 6, Northampton

MA), and COORDINATION relations are expressed using conjunctions (The Starks

and the Lannisters). Despite each type being expressed syntactically in slightly dif-

ferent ways, in many of these cases the two entities will each correspond to a syntactic

noun phrase, and a noun phrase will begin at the first entity and end with the second

entity. This correlation is illustrated in Figure 5.1b

In previous work the inclusion of syntax in RE systems has produced mixed results.

The work of GuoDong et al. (2005b) utilizes multiclass SVMs to make RE predictions,

and finds that syntactic information is only marginally useful. The authors reason that this

is due to the large number of highly local relations in the ACE data set, citing more than
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70% of relation extraction instances as being nested entity mentions, or adjacent terms,

separated by no more than one word. In contrast, syntactic information has shown to be

very useful in graph-based approaches to relation extraction (Mcdonald et al., 2005), and

systems which rely on graphical models (Zhao and Grishman, 2005). And in unsupervised

and distantly-supervised work, dependency path features are one of the important kinds of

information (Yao et al., 2011; Riedel et al., 2013)

In our approach we model syntax explicitly, and connect syntactic variables to relation

extraction variables using soft Boolean logic constraints. We now propose two methods

for integrating syntax and relation extraction, motivated by the two types of correlations

discussed above.

5.1.1 Factor Graph Models for Relation Extraction

We represent relation extraction as a pairwise model: a set of Boolean variables is used

to predict the presence or absence of a relation between any two entities, and a separate

set of variables is used to classify the type of relation if one exists. This is implemented in

a manner which is nearly identical in structure to way constituent spans are predicted and

labeled in the phrase structure parser from Section 3.1.2.4 (pg. 120).

We observe a sequence of words W = {w}N1 . Entities have been identified and col-

lapsed into single word expressions.

• Let {Rel(i, j) : 0 ≤ i < j ≤ n} be O(n2) Boolean variables such that Rel(i, j) =

true iff a relation is present between the entity at position i and the entity at position

j. We treat relations as undirected pairwise relationships.

• Let {Rel-Label(i, j, λ) : λ ∈ L, and 0 ≤ i < j ≤ n} beO(|L|n2) Boolean variables,

where L is the relation label set. Rel-Label(i, j, λ) = true iff a relation of type λ is

present between the entity at position i and the entity at position j.

• Let {ISATMOST1(i, j) : 0 ≤ i < j ≤ n} be O(n2) factors, each coordinating

between a relation prediction variable Rel(i, j) and the set of corresponding label
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variables Rel-Label(i, j). This factor ensures that a single label variable is true if

the corresponding relation variable is true, otherwise all variables are false.

Here the Rel(i, j) and Rel-Label(i, j) variables simply express the representation of the

problem, while the ATMOST1 factors are logical constraints ensuring that only one label

will apply to a particular relation. There is also a corresponding set of unary factors for

each of the variables mentioned above, but their definitions are omitted for clarity.

In practice this space is heavily pruned: only a small subset of words in a sentence are

likely to be entities, and because we observe the location of entities and their labels, only

variables for each potential pairwise relation between variables will be instantiated. If there

are m entities in a sentence, the factor graph for this sentence will contain m(m+1)
2
− 1 sets

of Rel(i, j) and corresponding Rel-Label(i, j, λ) variables.

5.1.2 Factors for Coordinating Relation Extraction and Syntax

The novelty of our approach hinges on our ability to easily and effectively couple end

tasks, like relation extraction, to syntactic representations. In this section we detail two

methods of coupling syntax with relation extraction, one with dependency grammar, the

other with phrase structure grammar, reflecting our prior beliefs of the nature of their rela-

tionships (as described in Section 5.1, pg. 191).

• Coupling with Dependency Structure

We first assume a representation of dependency syntax, identical to the model pre-

sented in Section 3.2.2, including the DEP-TREE factor. We coordinate between this

structure and the relation extraction model with the addition of the following factors:

Let {D-CONNECT(i, j, k) : 0 ≤ i < k ≤ n; 0 ≤ j ≤ n} be O(n3) ternary soft

NAND factors, each coordinating between two syntactic dependencies, represented

with Link(j, i) and Link(j, k) variables, and a single relation variable, Rel(i, k).

In this context word j functions as a latent syntactic head shared by both entity i
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and k, based on the assumption that two entities which appear in a relation will be

the syntactic children of the same head word, as may be the case with many verbal

relations.

As in previous sections, the connections between components models are learned

via the weights of the features associated with the coordinating factors. Extending

the Boolean logic to the ternary case, when all three variables are true, the factor

contributes a potential φ to the model score. It otherwise contributes a potential of

1.0. If φ is > 1.0, we might learn something akin to, “entity i of type ti is likely

in a relation with entity k of types tk when they share the syntactic head j, and j

is the word ‘employs’.” Note that each Link variable will be connected to many

D-CONNECT factors.

• Coupling with Phrase Structure

We first assume the presence of a labeled phrase structure representation, identical to

the model presented in Section 3.1.2, including the CKY-TREE factor. We coordi-

nate between this structure and the relation extraction model with the addition of the

following factors:

Let {C-CONNECT(i, j) : 0 ≤ i < j ≤ n} be O(n2) soft NAND factors coordinating

between syntactic Span(i, j) and relation Rel(i, j). This coupling is identical to the

method used to coordinate between Span and NER variables in Section 4.3.2 (pg.

171): one variable from the syntactic representation pairs directly with one variable

from the end task.

The logic behind the D-CONNECT approach to dependency syntax coupling is that by

decomposing a relation into a two dependency arcs, each specifying a syntactic head/modifier

relationship, we make explicit the notion of a head word in the model. This head word may

contain important cues for determining whether a relation is present, and what type of

relation it is (though our model captures only the former).
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For instance, in the example sentence (Fig. 5.1a) the model may already have a strong

belief that Shigeru-Miyamoto, of type PER, and Nintendo-EAD-branch, of type ORG,

may share a relation, because PER and ORG entity types are often related. The addi-

tional knowledge that these two entities share a syntactic head strengthens this hypothesis.

Similarly, entities of type PER and ORG may frequently occur in relations, but know-

ing that they are both headed by the verb manages is indicative of its relation type label,

EMPLOYS, though we leave this modeling extension as future work.

This information can be used in a constituent-based model, but it is not simple to obtain.

Here we collect features based on the words and word types that fall between the entities

that define the the span. This may work well for nominal relations, but may also capture

local verbal relations via rich features. For instance, in many cases the span will contain

just a single verb, and thus a feature can embody the ORG-EMPLOYS-PER information

we aim to capture in the dependency variant for verbal relations. For larger spans this

approximation is less useful, as spans will be more likely to contain multiple verbs. In

sentences with multiple entities the relationship between entities and their heads will be

lost as the notion of a syntactic head is not made explicit in the model.

5.2 Experiments

Our experiments contrast three modeling scenarios, based on how a real-world NLP

system might be constructed to perform relation extraction. In the simplest case, a relation

extraction system would have no syntactic information. Instead the model would rely only

on information like word and part-of-speech information that can be reliably predicted

using pre-trained models. In one scenario, a model might be trained solely from part-

of-speech and named entity information. Few data sets which are annotated with both

syntactic trees and relations, and thus the most realistic method for incorporating syntactic

annotations into the model is to first parse the training data using a pre-trained parser, and
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then use these trees to construct features for training the relation extraction model (i.e., the

pipeline approach).

Alternatively, in our approach the relation extraction annotations are used to guide the

induction of a latent syntactic structure. This eliminates the need for syntactic annotations

in the training data. Another advantage of this approach is that the syntactic representation

learned by the model is guaranteed to be well-suited to the training data. Pre-trained parsers

can suffer from domain drift, where the data used to train the parser is not representative

of the test data causing the parser to generalize poorly to new data. A disadvantage of this

approach is that the learning signal from the relation extraction annotations may not be

strong enough to induce a useful latent structure (unsupervised approaches to syntax are

significantly less accurate than their supervised counterparts).

We examine the performance of these three configurations on English and Chinese

relation extraction data. This allows us to compare the effectiveness of our two proposed

syntactic coupling methods.

5.2.1 Data

We evaluate these models using the 2005 Automatic Content Extraction (ACE) data

set (Walker et al., 2005), using the English (dual-annotated) and Chinese (annotator #1

only) sections. Each corpus is annotated with entity mentions using a seven-type entity

label set: PER, ORG, LOC, as introduced in Section 4.1, as well as GPE for geo-political

entity, FAC for facility, VEH for vehicle, and WEA for weapon. In addition, many of

these entities are annotated with entity subtypes, e.g., a government organization has type

ORG and subtype GOV.

Formatting the data and generating the necessary annotations is a lengthy process, and

we relied heavily on the Stanford CoreNLP toolkit. The data was first split from raw text

paragraphs into sentences, and then tokenized. The English data was tokenized according

to the Penn Treebank standardization, and the Chinese according to Penn Chinese Treebank
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standards (Xue et al., 2005). Sentences were then annotated with part-of-speech tags using

a pre-trained, state-of-the-art CRF-based tagging model (Toutanova and Manning, 2000),

and parsed using the Stanford factored parsing model (Klein and Manning, 2002a). The

pre-trained grammar is trained from a variety of sources, including biomedical, translation,

and question data in addition to the standard Wall Street Journal corpus. We annotate two

versions of the corpus, one using the unaltered constituent trees produced by the Stanford

parser, and a second corpus annotated with the dependency trees taken from the corre-

sponding Stanford typed dependencies.

We then reintroduced the entity and relation annotations to the data, collapsing multi-

word entities into a single term. Unfortunately in many instances the tokenization, tagger

or parser would fail, or we could not guarantee that the alignment between the ACE anno-

tations and the resulting text was correct. In these cases, the sentence was discarded from

the data set. In addition, we filter out sentences with fewer than two entities (which are in-

capable of containing relations) and sentences with more than 40 words (because they may

be unreliable). This yields 6966 sentences in the English data, and 747 sentences for the

Chinese. Nine of every ten sentences constitute the training set, with every tenth sentence

reserved for test.

5.2.2 Model Configurations

We evaluated six different systems. Two were variants of a baseline system, two sys-

tems use parses produced by the pre-trained Stanford parser (one for each formalism), and

two systems infer syntax in a joint model:

• Baseline

The baseline model is the edge-factored model described in Section 5.1.1, consist-

ing of Rel(i, j) variables, corresponding Rel-Label(i, j, λ) variables, and the set of

factors that attach to them and coordinate between them. Features for this system,

which are common to all model configurations, are combinations of lexical informa-
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tion (i.e., the words that form the entity, the pos-tags of the entities, etc.) as well

as the distance between the relation. This is a simple model and does not attempt

to exhaustively leverage all proven sources of useful information (GuoDong et al.,

2005a).

• Baseline-Ent

The features in the BASELINE model are very simple, but represent a reasonable

choice when an NER system is not available, or not reliable. As noted previously,

ACE data annotations specify an entity type and a fine-grained entity subtype. This

information is very useful for determining the presence of relations and their rela-

tion types. BASELINE-ENT represents a variant of the BASELINE model in which

additional features are added using entity type and sub-type information.

• Oracle-DP

In this configuration we instantiate the joint dependency syntax model, as described

in Section 5.1.2. We set the syntax variables to their observed values in the data, as

determined by the Stanford parser-produced dependency trees, allowing the DEP--

TREE factor to be omitted from the model. Training is fully supervised manner, and

the values of syntactic variables are observed both during training and testing.

• Oracle-CP

A constituent syntax analogue of ORACLE-DP, using the constituent parses provided

by the Stanford factored parser.

• Hidden-DP

A model in which dependency syntax is induced using marginalization-based train-

ing. It is structurally identical to ORACLE-DP, except that the DEP-TREE factor is

required, as it is needed to constrain the set of latent syntactic variables. Because

syntax is treated as a latent variable, no syntactic annotations are required during

training or testing.
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• Hidden-CP

The constituent syntax analogue of HIDDEN-DP.

As in previous results, models which require syntactic annotations during training are

marked with a † symbol and models which rely on syntactic annotations during both train-

ing and testing are marked with †† symbol.

5.2.3 Features

The features in the BASELINE system are simple, and are used only for predicting the

presence of a relation and its type. These features include the words, part-of-speech tag, and

capitalization information of each entity in the candidate relation, as well as the distance

between them. For the relation from w1 to w5 in the sentence “Shigeru-Miyamoto currently

manages the Nintendo-EAD-Branch”, these features are:

Feature Comment

[e1]-Shigeru-Miyamoto String form of left entity

[e2]-Nintendo-EAD-Branch String form of right entity

[e1-w]-Shigeru Each word contained within left entity

[e2-w]-Nintendo Each word contained within right entity

[e1-pos]-NN-NN Concatenated POS-tags of left entity

[e2-pos]-NN-NN-NN Concatenated POS-tags of right entity

[e1-e2-pos]-NN-NN-NN+NN-NN Concatenated POS-tags of both entities

[dist]-4 Distance between entities

[e1-e2]-Shigeru-Miyamoto-Nintendo-EAD-Branch Entity bigram

[e1-w-e2-w]-Miyamoto-Nintendo Word-level Bigram

The BASELINE-ENT model extends upon the BASELINE model to incorporate entity

label and sub-type label features.
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Feature Comment

[e1-t]-PER Left entity type

[e2-t]-ORG Right entity type

[e1-e2-t]-PER-ORG Entity type bigram

[e1-st]-EMPLOYEE Left entity sub-type

[e2-st]-COMPANY Right entity sub-type

[e1-e2-st]-EMPLOYEE-COMPANY Entity subtype bigram

In models with syntax, the features associated with the syntactic factors are those de-

scribed previously in Chapter 3. For dependency parsing this is the McDonald et al. (2005)

feature set, and for phrase structure parsing we use the features listed in Section 3.1.2.7

(pg. 3.1.2.7).

The remaining features are those which govern coordination between component mod-

els.

Feature Comment

[co-dist]-4 Distance between entities

[co-e1-e2]-Shigeru-Miyamoto-Nintendo-EAD-Branch Entity bigram

[co-e1-w-e2-w]-Miyamoto-Nintendo Word-level Bigram

[co-e1-t]-PER Left entity type

[co-e2-t]-ORG Right entity type

[co-e1-e2-t]-PER-ORG Entity type bigram

[co-e1-st]-EMPLOYEE Left entity sub-type

[co-e2-st]-COMPANY Right entity sub-type

[co-e1-e2-st]-EMPLOYEE-COMPANY Entity subtype bigram

For the coordination factors in the dependency syntax models, we add the following fea-

tures which include information about the latent head word:
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Feature Comment

[co-e1-e2-t-hw3]-PER-ORG-manages Type bigram with headword

[co-e1-e2-st-hw3]-EMPLOYEE-COMPANY-manages Subtype bigram with headword

In initial experiments we found the baseline models were able to outperform the syntactic

models when coordination features consisted solely of distance, word, and part-of-speech

information. The inclusion of entity label features appears to be crucial for learning a useful

latent syntax.

5.2.4 Design

All models are trained using 20 iterations of stochastic gradient descent, each with a

maximum of 10 iterations of belief propagation inference for each example. Models which

contain a representation of dependency syntax are cyclic and loopy belief propagation is

used to find an approximate inference solution. For the remaining models the graph is

acyclic and inference is exact, requiring two iterations of BP. We use a learning rate η =

0.01, and regularize using L2 regularization (a Gaussian prior, i.e., variance = 1.0). Models

are decoded by positing a relation for all i, j where the beliefs of Rel(i, j) > 0.5, and

taking the label λ which maximizes Rel-Label(i, j, λ) for each predicted relation span.

On a quad-core 2.8GHz intel processor, calculating parameter updates in parallel (mini-

batches of size 4), training for the BASELINE model takes 45 seconds per iteration (21k

features), 55 seconds per iteration for the ORACLE-CP model (26k features), 3.2 min-

utes for the ORACLE-DP model (44k features), 1.7 minutes for the HIDDEN-CP model

(81k features), and 5.4 minutes HIDDEN-DP model (120k features). The BASELINE and

BASELINE-ENT models have approximately identical training times despite the BASELINE-

ENT model containing some additional features.

Models are evaluated in terms of precision, recall, and F-measure, for both labeled and

unlabeled cases. An unlabeled prediction for (i, j) is considered correct if there is a relation
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between the entities at i and j in the gold data. A labeled prediction is considered correct

if this is true, and the predicted label matches the label of the relation type in the gold data.

5.2.5 Results

The results of our experiments are presented in Table 5.1. In both languages we find

that at least one joint model significantly outperforms the baseline, demonstrating the use-

fulness of the marginalization-based training method when no syntactic training data is

available. In some circumstances these models even outperform those which rely on the

parses produced by the pre-trained Stanford parsing model, indicating that this method’s

usefulness is not limited only to low-resource languages and domains.

5.2.5.1 Performance of Latent Syntactic Structure Models

On the English data we find that all models which utilize syntactic information outper-

form their respective syntactically-uninformed baselines. This results in an 1.9% average

F1 improvement for the dependency-based models, and a 3.2% improvement for phrase

structure models. Here we find that both HIDDEN models, which learn a latent syntax,

outperform their ORACLE counterparts, which use trees produced by the Stanford parser.

There are many possible explanations for this. Because the parser is pre-trained, it is

possible that the data used to train the Stanford parser may differ greatly from the ACE

data sets we use in our evaluations, and the parse trees it produces are not very accurate.

Performance drops in out of domain parsing is well-documented (Gildea, 2001), and while

both the ACE data set and the Stanford parser training data consist largely of newswire, it

may still affect the parser’s performance. This is a disadvantage of a traditional pipeline

approach where models are trained independently from different data sources.

It is also possible that the assumptions made by the models – that a constituent span or a

pair of dependency edges align directly to a relation – may be too constraining for the OR-

ACLE systems. Note that in Fig. 5.1 the dependency from Shigeru-Miyamoto to manages is

represented with two dependency arcs, and is therefore not captured by the D-CONNECT-
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ACE Results
English Chinese

Unlabeled Labeled Unlabeled Labeled
Model P R F1 P R F1 P R F1 P R F1
Baseline 85.4 57.0 68.4 83.0 55.3 66.4 42.9 26.8 33.0 42.6 21.3 28.4
Baseline-Ent 87.2 65.4 74.8 85.8 64.4 73.6 55.2 31.1 39.8 51.2 29.4 37.4
Oracle D-P†† 89.3 67.4 76.8 89.3 66.2 75.4 60.0 32.6 42.2 58.1 31.3 40.7
Hidden D-P 87.8 69.8 77.7 85.3 67.8 75.6 48.0 32.0 38.4 47.2 30.0 36.7
Oracle C-P†† 89.1 68.7 77.6 87.5 67.5 76.2 66.8 37.8 48.3 63.8 37.0 46.8
Hidden C-P 90.5 69.9 78.9 88.8 68.6 77.4 56.3 32.3 41.0 53.4 31.6 39.7

Table 5.1. Relation extraction results on ACE. Models using hidden phrase structure syn-
tax provide significant gains over the syntactically-uniformed baseline model in both lan-
guages, but the advantages of the latent syntax were mitigated on the smaller Chinese data
set.

style of model coordination. A model would need to utilize higher-order connections to

capture this phenomena. In other words, D-CONNECT coordinates between Rel(i, j) with

latent head k, and all possible pairs of directed arcs between (i, k) and (j, k). A higher

order version of this factor would need to connect triples of syntactic dependencies before

it could correctly capture the relationship between the relation and the gold syntax in the

example above. Prior work has shown how to model higher-order connections with addi-

tional factors (Smith and Eisner, 2008), but we leave these extensions unexplored. Thus it is

possible that the parser-produced trees are of high quality, but these modeling assumptions

cannot take full advantage of them. A pipeline approach would avoid this shortcoming by

allowing the construction of arbitrarily complex features from the parser-produced trees,

which can then be used to aid relation extraction. In order to directly compare identical

models with various training methods, we do not pursue this method here.

On the smaller Chinese data set the HIDDEN-CP model still provides significant im-

provements over the baseline, but is outperformed, by a large margin, by the ORACLE-CP

model. The HIDDEN-DP model does not improve over the BASELINE-ENT. The lower

absolute performance, relative to the English data, may be indicative of having too little

training data to generalize to new data, and this effect may be more pronounced in the

latent syntax models which have far more parameters to learn.
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5.2.5.2 Dependency Structure vs. Phrase Structure

Models based on phrase structure consistently outperform their dependency structure

counterparts. This may be due to the larger number of factors and parameters that constitute

the interface between relation extraction and dependency grammar, an issue that may be

exacerbated by the small size of the training data. Alternatively, GuoDong et al. (2005b)

cite the large number of local relations in the ACE data as a contributing factor to the

lack of significant performance increases by incorporating syntactic information into their

model. It is possible that constituent spans are more useful in identifying and supporting

these local nominal relation predictions than dependency structure is able at successfully

identifying verbal predictions.

On the Chinese data we again find the phrase structure models produce the highest ac-

curacy, but here the parser-produced trees significantly outperform both the induced syntax

models. The Chinese data set is very small, and potentially too small to learn the large

number of parameters associated with latent syntax and coordination between component

models. The small data is also likely a cause of the low overall performance of all models.

Even in this scenario, the HIDDEN C-PARSE model still represents a low-resource method

for recovering some of the gains associated with syntactic information, in situations where

pre-trained parsers and syntactic annotations are unavailable.

5.3 Conclusion

In this section we demonstrated the usefulness of the marginalization-based approach

for training joint models in the presence of latent syntactic variables. We also compared the

effectiveness of different syntactic representations in the context of a joint model. For the

task of relation extraction, at least on these relatively small data sets, we find the simplest

approach to latent syntactic structure to be the best: latent phrase structure outperforms

latent dependency structure by between 1-3% labeled F1.
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For the larger English data set we find that inducing a latent syntax is not merely an at-

tractive approach for when syntactic training data is unavailable, but the highest performing

approach in general. This is a promising result: in practice the use of pre-trained parsers is

necessary for providing parse trees for downstream NLP, with the only alternative being the

use of fully unsupervised models with significantly lower accuracy. Outperforming these

models with marginalization-based training indicates that it may be an approach suitable

for both low-resource domains, and for NLP in general. For languages or domains where

syntactic training data is scarce or unavailable, the latent syntax approach may offer a level

of performance that would otherwise be unattainable.

A limiting factor in these experiments is the size of the data. The need to heavily pre-

process the raw text to produce high-quality tokenized, part-of-speech tagged data with

parse, entity, and relation annotations meant that a disappointingly large amount of the

original text was discarded. Producing the data set for these experiments has yet another

disadvantage: because the resulting data set is unique to our work, we cannot compare to

current state-of-the-art systems. In the next chapter we aim to address these concerns by

evaluating our joint modeling framework and marginalization-based training method on a

standardized task, with a standardized data set.
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CHAPTER 6

SEMANTIC ROLE LABELING WITH LATENT SYNTAX

In this dissertation we present several joint models, covering a number of common NLP

tasks. We have shown previously how our belief propagation approach to joint inference

in factor graphs can produce state-of-the-art results on a fully supervised named entity

recognition task, outperforming other joint inference methods. We then demonstrated the

effectiveness of marginalization-based training with hidden structure, using it to induce

latent syntactic representations and improving a model of relation extraction. The models

which induced a latent syntax were also shown to be preferable to models which utilized

parse trees produced by a pre-trained state-of-the-art parser, which might be used in an

NLP pipeline.

Our aim in this chapter is to demonstrate the effectiveness of marginalization-based

training with latent variable syntax models, but in a more sophisticated model and on a

task with standard data sets and evaluation. Here we turn to semantic role labeling, where

we present a simple factor graph model for the task, and describe novel extensions for

capturing unique aspects of the problem – sense prediction and valency – by using variable

chains with specially-defined transition matrices. We extend this baseline to produce a joint

model of SRL and dependency syntax.

We use a standard data set in this chapter which was constructed for a shared task com-

petition. This allows us to directly compare our system to many other systems. As in the

relation extraction experiments (Section 5.2.2, pg. 199), we compare the performance of

our latent syntax model using marginalization-based training to an “oracle” system and a

syntactically-uninformed baseline model. The latent syntax and oracle models are struc-
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turally identical, but differ in that the oracle is given the true parse trees during training and

at testing. Unlike the relation extraction scenario, where these trees were produced from a

pre-trained state-of-the-art parser, the shared task data contains very accurate dependency

parses. For most languages these trees are hand-annotated, making them a potentially more

reliable source of syntactic information than the trees used in the previous chapter.

Despite this, we obtain results similar to those for relation extraction presented in Chap-

ter 6. For most languages the latent variable syntax models perform comparably to the ob-

served syntax models, achieving on average more than 90% of the performance difference

between the baseline models and the oracles. In some languages, for reasons we explain

below (pg. 239), the use of marginalization-based training with latent syntax provides an

improvement over the models which use of gold parses.

We begin by reviewing the task, and discussing the relationship between dependency

structure and the predicate-argument structure involved in semantic role labeling. In Sec-

tion 6.2 (pg. 217) we introduce a series of factor graph models for semantic role labeling.

A simple edge-factored model serves as the baseline, an extension improves upon this by

modeling valency and sense prediction jointly. The full joint model couples this structure

with a dependency parsing model. We conclude (Section 6.3.5, pg.234) by comparing the

performance of our model to competing systems in the 2009 CoNLL shared task (Hajič

et al., 2009), and examining the syntactic structures induced by the latent syntax model.

6.1 Semantic Role Labeling

The application of statistical methods to syntactic parsing resulted in significant im-

provements to parse accuracy (Collins, 1997; Eisner, 1996), but aside from the construction

of treebanks, these parse trees serve little practical purpose in and of themselves 1. In the

1Notable exceptions include much of the work pursued in corpus linguistics, from both historical (Bam-
man and Crane, 2010) and psychological (Roland et al., 2007) perspectives. Treebanks can also be utilized to
train models which do not aim to predict trees, as is the case in tree-based MT systems (Tinsley et al., 2009).
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The      cat     scratched     the       man

AGENT PATIENT

scratch.01

Figure 6.1. An example sentence with dependency tree and SRL annotations. Here the
semantic dependencies of the SRL analysis correspond directly to syntactic dependencies
over the same indices. The identity of a particular predicate sense is generally marked with
a numeric suffix on the predicate’s lemma. Here scratch.01 indicates that this sense of
scratch is the first out of a potentially larger set of senses, distinguishing the current sense
“to score the surface (of something) with a sharp or pointed object” from alternatives like
“to cancel or strike out (writing) with a pen or pencil.”

case of Penn Treebank style annotations, constituent trees are complicated structures with a

large sets of constituent labels that precisely define the syntactic relationships present in the

corpus, but ultimately this is still far removed from a theory of meaning. For practical NLP,

where tasks like question answering and database construction require knowledge of the

semantic relationships between entities, a syntactic tree only provides part of the answer.

In contrast, the aim of semantic role labeling (SRL) is to capture the core meaning of a

sentence. SRL annotations (Fig: 6.1), inspired by the frame semantics of Charles Fillmore

Fillmore (1982), decompose the semantics of a sentence into a set of semantic frames.

Each frame is built around a predicate, an important verb or verb-functioning word. Due to

homonyms and subtle semantic variation even within the same word, one token can refer to

a number of possible underlying senses. Verbs like saw are ambiguous, and can refer to the

act of seeing or to the act of cutting – two different predicates with the same orthographic

form. To identify the semantics of the sentence it is necessary to identify precisely which of

these senses is intended. This is indicated using a numeric suffix attached to the predicate’s

lemma (i.e. saw.01 vs. saw.02).
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Each predicate takes zero or more words as arguments. Typically these are nouns or

noun-functioning words which play a particular semantic role within the frame. Figure 6.1

describes a semantic frame where the word scratched is the predicate, and cat and man

are arguments. In this context the cat is the one who has inflicted the scratches, and hence

the role it plays is that of the AGENT. The man has been scratched by the cat, and as the

victim of the scratching he plays the role of PATIENT. Note that the semantic roles are

identical regardless of whether the sentence is phrased in active voice, as illustrated, or

in the passive voice, as in“The man was scratched by the cat”. That is, SRL annotations

abstract over simple grammatical alternations like voice 2.

6.1.1 The Role of Syntax in SRL

In many ways SRL is a simpler task than parsing. Parse trees, especially constituent

trees, are often more deeply structured than SRL analyses, which are multi-rooted trees

of height one. Simple SRL models do not enforce the same structural constraints that ne-

cessitate the use of dynamic programming for efficient parsing, and many SRL systems

predict and label predicate-argument pairs with maxent classifiers (Blunsom, 2004; Sutton

and McCallum, 2005) or SVMs (Ngai et al., 2004). However, the presence of semantic re-

lationships is still heavily constrained by the underlying syntactic structure of the sentence,

and thus the two tasks are inherently linked: to solve SRL at a state-of-the-art level, one

must first obtain syntactic analyses.

Evidence of this comes from the CoNLL shared tasks, which helped define SRL as

a standard task and where early competitions even included a set of parses, for use at

both train and test time, to provide a level playing field in the competition (Carreras and

Marquez, 2005). The highest performing system in the competition made use of parse

2Though it also common for this distinction to be made in syntax, where constituent labels often discrim-
inate between subject NPs and object NPs. For instance, the Penn Treebank II guidelines suggest including
annotations for these grammatical roles (Bies et al., 1995). However, semantic role labels exist for specifying
many additional roles not addressed by syntax alone.
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Gold Trees Parse Trees
Language # sents 1 ≤ 2 ≤ 3 % cross 1 ≤ 2 ≤ 3 % cross
Catalan 13200 100.00 100.00 100.00 0.0 91.12 93.82 94.80 1.05
Chinese 22277 78.09 78.58 78.68 4.97 64.98 68.83 70.13 7.08
Czech 38727 63.90 86.26 89.97 2.74 61.21 80.26 83.84 4.29

English 39279 63.62 64.56 64.70 2.42 59.08 61.29 62.09 3.52
German 36020 77.22 77.98 78.03 3.99 72.34 75.55 76.48 4.12
Japanese 4393 14.32 51.52 60.79 14.68 13.13 48.30 56.74 16.65
Spanish 14329 100.00 100.00 100.00 0.0 91.12 93.99 95.29 0.85

Figure 6.2. Correspondence between syntax and SRL predicate-argument pairs. Statistics
calculated from the CoNLL 2009 shared task data set. This table indicates the % of SRL
predicate-argument pairs that correspond to directed paths in the dependency tree. The
statistics in the left partition reflect the correlation between SRL and the gold trees provided
by the data set, while the trees used in the right partition are from parser-produced trees,
also provided in the data set (HEAD vs. PHEAD fields).

structure to prune away conflicting analyses from the space of solutions, making it feasible

to use a global model for SRL predictions (Punyakanok et al., 2005), while the use of

additional parsers in the open challenge further improved performance in that track. In

addition, many researchers have sought to improve SRL performance by better exploiting

syntactic analyses, either by incorporating new syntactic information from other syntactic

formalisms (Liu and Sarkar, 2006), or by training a joint model to rerank parses to best suit

SRL (Sutton and McCallum, 2005).

What is the precise nature of the relationship between SRL and syntax? For the sake

of continuity with the models that will follow, let us focus on the relationship between

semantic role labeling and dependency parsing. Recall that verbs play an important role

in dependency grammar – a verb serves as the root of the dependency graph, and verbs

serve as the parents, either directly or indirectly, of the other word classes which modify

them. The nature of its correlation with semantic role labeling is therefore straightforward:

predicates are often verbs, and thus function, directly or indirectly, as the syntactic heads

of their arguments. If two words exist in a predicate-argument relationship, then we can

expect that a directed path exists from argument to predicate in the dependency syntax.
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We formally define the order of the relationship between syntax and SRL as follows:

Let A(i, j) represent an SRL predicate-argument pair from predicate i to argument j

and head(i) denote the syntactic head of word wi. For a given pair of indices i and j, a first

order correlation between SRL and syntax exists if A(i, j) =⇒ head(j) = i, where A(i, j)

specifies j is an argument of i, and head(j) returns the syntactic head of the word at index

j.

A second order relationship can be defined similarly:

For a given pair of indices i and j, a second order correlation between a dependency

tree and an SRL argument pair exists if A(i, j) =⇒ ∃k : head(j) = k ∧ head(k) = i.

The table in Figure 6.1.1 specifies the extent to which this correlation holds for depen-

dency paths of various lengths (1 = first order, 2 = second order, etc.) across a collection

of seven corpora. For a majority of the languages represented there is a strong implica-

tion between the two task structures: if word i is a predicate and word j its argument,

there is likely a direct correspondence in the dependency syntax, with word i functioning

as the syntactic head of word j. This is especially true of the Catalan and Spanish data

sets, where it holds without exception. However, there are instances where the degree of

first order correlation can be exceedingly low. This is the case for Japanese, where a mere

14.32% of SRL predicate-argument pairs have a corresponding dependency path of length

1.

It is worth noting that the extent of the correlation between syntax and SRL is as much a

product of the annotation style as it is one of language characteristics. This is highlighted in

the Japanese data, where the annotation style causes a low degree of first-order correlation,

and a relatively high degree of second-order correlation. Japanese marks topic, subject, and

object using suffix particles, and in Japanese language processing it is common to tokenize

these separately. If a syntactic dependency exists between two words, these particles are

included in the analysis and will intervene in the dependency path. In contrast, SRL de-
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その           様子       を         見て               観客         は                 拍手            喝さい      を         送る       .

 DDM           NN        PPM          VV                   NN             PPR               NNV              NNV        PPM          VV           .

GAGA
GA

GA

WO

WO

 the             state + [OBJ]         see            audience + [TOPIC]        applaud         cheer + [OBJ]        send        .

Figure 6.3. An example of crossing syntactic and SRL dependencies. Syntactic depen-
dencies are shown above the syntax, semantic dependencies below. Predicates are shown
in red, multi-morpheme expressions boxed in grey. In Japanese, where the correlation be-
tween syntax and SRL is the weakest in the CoNLL data, morphological segmentation is
a common pre-processing step which precedes parsing and other NLP tasks. A syntactic
analysis will often attach a word to its head-word’s particle before the head-word’s root,
while roots can be linked directly in the SRL analysis. This leads to a high degree of mis-
match between the two annotations, including a larger degree of crossing dependencies.

pendencies link directly between the roots of words, often omitting their particles. Thus

few SRL dependencies correspond to a single syntactic dependency in Japanese, but many

correspond to 2-arc dependency paths. This phenomenon also contributes to the higher de-

gree of crossing brackets, where for an SRL dependency over (i, j), there exists a syntactic

dependency (k, l) such that i < k < j < l. Both types of mismatch are illustrated in Fig.

6.3.

In a many situations it is difficult to obtain high-quality syntactic analyses, and so the

possibility of SRL without parse trees is a promising endeavor. Marginalization-based

training with latent syntax provides one method to accomplish this, and also circumvents

problems associated with ill-suited syntactic representations. In the following sections we

will show that in cases of extreme mismatch, as in the CoNLL 2009 Japanese data set, an

induced syntax can align more directly with the end task of SRL and improve performance

over similar models which use the parses specified in the data.
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6.1.2 Related Work

SRL has benefitted greatly from being the focus of a series of shared task compe-

titions. An initial surge of work occurred in response to the 2004 CoNLL shared task

on SRL(Carreras and Màrques, 2004), and many systems used simple maximum entropy

(Blunsom, 2004) or SVM classifiers (Ngai et al., 2004). These classifiers predict “Is there

a predicate-argument relationship between a given pair of words?” and “What is the most

likely label for this relation?” The shared task data set paired SRL annotations with hand-

annotated constituent trees from the Wallstreet Journal Treebank, often reducing the SRL

task to one of mapping trees to useful features for these pairwise classifications.

However, there are disadvantages to modeling these predictions independently. Natu-

rally the sense of the predicate is inherently linked to the number and type of roles that

predicate takes, which in turn influence each other. A predicate scratch may tend to have

one sense if there is an agent and patient who are likely to claw and be clawed, and a dif-

ferent sense if it has only an agent, and that agent is a billiards player. Modeling these

dependencie jointly significantly improves accuracy compared to independent predictions.

Popular approaches for performing or approximating global inference in SRL includes in-

teger linear programming Punyakanok et al. (2004), n-best lists (Toutanova et al., 2008),

and Markov Logic, which reduces such constraints to weighted first-order logic formulas

(Riedel and Meza-Ruiz, 2008; Meza-Ruiz and Riedel, 2009). The Markov Logic approach

has connections to our own, as we express weighted logic constraints in terms of factors

whose potential tables encode such logic, and both approaches rely on graphical models

(though it is common to perform inference via sampling in Markov Logic). We discuss this

issue in further detail in Section 6.2.2 (pg. 219).

The goals of the final SRL shared task broadened to focus on the joint predicting both

semantic roles and syntax (Hajič et al., 2009). Annotations for both SRL and dependency

syntax are provided at training, but competitors were encouraged to predict both at test time

(joint track). Optionally, competitors could also observe syntactic annotations at test time
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(SRL-only track). It might stand to reason that a competition of this nature would serve to

demonstrate the usefulness of joint inference over pipelined system architecture, but, echo-

ing the negative results of earlier joint SRL and parsing systems (Sutton and McCallum,

2005), was not the case. The top system in both tracks were based on pipelined systems.

In the joint track, Che et al. (2009) utilized a second order graph-based parser in the

style of Eisner (1996) to provide a syntactic analysis. Based on features derived from

these parses, a maximum entropy classifier scores the potential of each word to serve as

an argument, and to function as a particular semantic role. An ILP solver attempts to find

the global optimum by coordinating these independent scores, subject to a series of high-

level constraints. Sense labeling is done separately by an SVM. Many systems use similar

approaches, but differ in the type of parser, the method of solving the global optimization,

and their respective feature sets. The best system in the SRL-only track, Zhao et al. (2009b)

was largely an exploration of automatic feature discovery, again using maximum entropy

models, but relying on a state-of-the-art transition-based dependency parser to serve as a

source of features guiding the SRL predictions.

Thus the general approach common amongst many of the current state-of-the-art sys-

tems is to first obtain the most accurate syntactic analyses as possible, extract features

from these parses, and utilize these features in a global solver. Few systems attempt to

solve SRL without the use of syntactic training data. Two notable exceptions include the

work of Goluchowski and Przepiórkowski (2012) and Boxwell et al. (2011). Goluchowski

and Przepiórkowski (2012) present a system for SRL in Polish, where both syntactic and

SRL annotations are scarce. They circumvent the lack of syntactic training data by hand-

crafting a shallow (“chunk-based”) parser. Argument identification improves significantly

when using features derived from the shallow parser, but this still requires manual creation

of a grammar for the parser. More similar to our approach, Boxwell et al. (2011) propose

utilizing SRL annotations to find useful parse trees without requiring a pre-trained parser.

During training a baseline parser produces a forest (an efficient packed representation of
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trees), and the SRL annotations are used to heuristically identify and prune away the most

incompatible entries. However, the syntactic formalism used in this work, combinatorial

categorical grammar (CCG), places a great deal of syntactic information in the lexicon.

While this approach does not require a pre-trained parser, it does require a dictionary of

lexical terms (which also specifies part of its syntactic role), it is not clear to what degree

this method can be considered unreliant on syntactic training data.

More recently, the work of Gormley et al. (2014) builds upon our own method to explore

training SRL models in the absence of syntax, as we do, as well as other information like

part-of-speech tags and morphological attributes, which we assume to be provided in the

data.

6.2 Factor Graph Models of SRL

We now present a series of factor graph models for SRL. The first model, the base-

line, incorporates no syntactic information, and treats argument/role prediction and sense

prediction as entirely independent processes. To address some of the shortcomings of the

baseline model, we describe extensions to capture valency (the number and type of argu-

ments a predicate takes) and link argument prediction to sense prediction. We then present

a joint model of dependency syntax and SRL, connecting these two models with logical

factors.

6.2.1 Baseline Model: SRL without syntax

We present a simple edge-factored SRL model as a baseline. It is similar to our previous

edge-factored models (5.2.2, pg.199) in that for each pair of indices i, j ∈ n there is a

Boolean variable representing the presence of a dependency, which is then labeled via a

set of corresponding Boolean label variables (each representing one label from the set of L

possible labels). In this context, the dependency is a predicate-argument pair from predicate

i to argument j, and L is the set of possible semantic role labels. These are connected by
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a factor ensuring that at any predicted argument receives exactly one role label. Formally

we define this model as follows:

• Let {Arg(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) Boolean variables such that

Arg(i, j) = true iff predicate i takes token j as an argument 3.

• Let {Role(i, j, λ) : λ ∈ L, and 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(|L|n2) Boolean

variables such that Role(i, j, λ) is true iff there is a semantic role of type λ between

predicate i and argument j. This implies that Arg(i, j) is also true, a property guar-

anteed by the following factor.

• Let ISATMOST1(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) factors coordinating

between Arg(i, j) and all Role(i, j, λ) label variables. This factor guarantees that

iff Arg(i, j) is true, exactly one Role(i, j, λ) will be true. If Arg(i, j) is false, all

Role(i, j, λ) are false.

• Let {Sense(i, σ) : 1 ≤ i ≤ n, σ ∈ S}, be O(|S|n) Boolean variables, where S is the

set of senses observed for the lemma of predicate i. Sense(i, σ) is true iff predicate

i has sense σ.

The Boolean Arg(i, j) and Role(i, j, λ) variables, and the multinomial Sense(i, σ)

variables can represent any SRL analysis. Each of these variables each have a correspond-

ing unary factor, referred to as ARG(i,j), ROLE(i,j,λ), and SENSE(i,σ) respectively, which

locally score the values of the corresponding variable. When there are no other connections

in the model, these are equivalent to a set of maximum entropy classifiers.

This baseline is similar to the system proposed by Sutton and McCallum (2005), which

uses a maximum entropy model to classify whether or not there is a predicate-argument

3On a practical note, the SRL task is often defined as including the position of predicates in the data at
both training and test time. This means that in practice there are a much smaller number of Arg variables
than implied by the O(n2) maximum as described above.
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relationship for any pair of indices i, j. If an argument is present, it uses a separate maxi-

mum entropy model to predict its role label. Our baseline differs slightly, in that argument

and role prediction are linked. If the features associated with a ROLE(i,j,λ) factor strongly

indicate that variable Role(i, j, λ) should be true, then these beliefs may influence the

corresponding Arg(i, j) during inference. This can have the effect of altering variable

Arg(i, j)’s value to true, when its own local features would have otherwise classified it as

false.

Few other systems rely solely on a similar maximum entropy or factor graph architec-

ture, though maxent classifiers have been used in conjunction with other methods. Che

et al. (2009) propose using maxent classifiers as a preliminary classification step to assist

in pruning, filtering out unlikely analyses whose posterior probabilities are below a spec-

ified threshold. This reduces the search space for a more complex global model, which

performs inference using an ILP solver. ILPs and other global inference techniques often

outperform other approaches to SRL that make more independence assumptions, and we

do not claim the baseline system is a state-of-the-art system. We now propose an extension

to the baseline model which predicts the number of arguments and roles predicted for each

predicate jointly, and and which couples role labeling to sense prediction.

6.2.2 Joint Approaches to Sense and Role Prediction

The baseline model proposed above has a number of limitations. There are no depen-

dencies between pairs of Arg(i, j) variables in the baseline model, nor are there depen-

dencies between pairs of Role(i, j, λ) variables. Each set of predicate-argument and role

label predictions (variables which share the same j index) is independent from next. Sim-

ilarly, the variables and factors for sense prediction are isolated from the rest of the graph.

The lack of dependencies between these aspects of the model leads to many unfavorable

outcomes:
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1. The values of other argument variables (for the same predicate) cannot be considered

byArg(i, j), and thus a predicate can be assigned many more or many less arguments

than is likely. Many predicates take only a couple of arguments, and even analyses

which feature dozens of arguments per predicate are not penalized by the baseline

model.

2. The lack of dependencies between role variables gives rise to a similar problem, and

a predicate may erroneously have multiple arguments with an idenitical role label.

There are valid scenarios (for instance, coordination) in which a predicate might have

two or more arguments assigned the same role label, but these are rare occurrences

in our data. To illustrate where this would be the correct analysis, in the sentence

“Jack and Jill ran up the hill.” both Jack and Jill perform the action of running and

therefore have identical semantic role labels (AGENT).

3. The predicate sense determines the roles which are associated with that predicate.

Naturally predicate sense and predicate roles should be considered jointly, and inde-

pendent prediction of these variables can easily lead to mismatches. A sense which

has only been observed taking a single argument (for instance, an intransitive verb

like thrive does not take a direct object), may erroneously take too many arguments,

or in other cases, too few.

Both theoretical and empirical sources alike suggest that these decisions should be made

jointly. From the theoretical side, Fillmore’s theory of frame semantics strongly supports

the need for joint inference by conceptualizing argument, role, and predicate sense as a

single unit: a semantic frame4. According to frame semantics a predicate is associated with

a particular set of roles “characterizing a small abstract ‘scene’ or ‘situation’, so that to

4Frame semantics was preceded by Fillmore’s case grammar (Fillmore, 1968), which perhaps even more
directly addresses the concerns of valency. As it pertains to joint versus independent processes, both theories
take similar positions.
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understand the semantic structure of the verb it was necessary to understand the properties

of such schematized scenes” (Fillmore, 1982, pg. 115).

From a more practical and empirical standpoint, the case for joint inference is illustrated

by the performance of SRL systems in shared competitions. In the most recent shared

task competitions, top performing systems have consistently relied on global inference

strategies. A precursor to many current state-of-the-art SRL systems, Toutanova et al.

(2008) has shown that modeling dependencies between arguments can greatly improve

performance over a comparable baseline consisting only of local predictions. This trend

has continued with a variety of global inference strategies, including ILP (Che et al., 2009),

Markov Logic (Riedel and Meza-Ruiz, 2008), and dual decomposition (Lluı́s et al., 2013).

The intuition underlying why joint inference is useful for SRL is readily apparent, even

in the simple example sentence from Fig. 6.1. In a joint model that couples sense and

argument prediction, it is useful to know how many arguments the predicate sense will

take. If there is a single argument, we may have strong evidence for the billiards sense

of scratched, as an intransitive verb. If there is more than one argument, the predicate’s

sense is likely that of clawing an object, which is a transitive or ditransitive verb. In either

case, the sense of the predicate determines how many arguments are likely, and vice versa.

Similarly, the predicate sense determines which roles these arguments are likely to have.

A shortcoming of the baseline model is that it can easily overpredict a particular role,

often creating predicates with multiple AGENT or PATIENT roles. This is only acceptable in

limited circumstances, like coordination, and is not frequently represented in the CoNLL

2009 data. For instance, both men and cats are capable of scratching, with men tending

to scratch objects like touchscreens, and cats having a natural inclination for scratching

things in general. An SRL model trained on the right data (perhaps with a combination of

gadget blogs and veterinarian logs) could reasonably predict that either is the AGENT of

scratched. If two similar predicates appear in the same sentence, it is just as likely that both

would be labeled as AGENT by the baseline model. In the following section we propose an
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extension to the baseline model which predicts argument, role, and sense variables jointly,

and penalizes analyses where a particular role is uncharacteristically duplicated for the

same predicate.

6.2.2.1 Modeling Valency with Accumulating Chains

Modeling predicate valency requires an additional set of factors beyond those previ-

ously discussed in this dissertation. The problem lies in how Role(i, j, λ) variables have

index-specific semantics, of the sort “Does predicate i have an argument j with role la-

bel λ?”, when the question most relevant to sense prediction is “Does predicate i have an

argument (anywhere) with role λ?”, and arguably, “If so, how many?”. Our approach to

defining variables with these semantics is to construct chains of V (i, j, λ) variables, one

chain for each predicate/role combination. Each V (i, j, λ) variable acts as a counter over

a limited number of bins (here, 0, 1, and > 1). At any point j, V (i, j, λ) represents the

number of times that Role(i, k, λ) has been true, 0 < k ≤ j. The final variable in the

chain, V (i, j = n, λ), captures the intended semantics.

We implement this by deterministically defining the factors which connect chain vari-

ables, only allowing variable configurations which represent valid transitions from one

chain variable to the next. It is straightforward to capture this logic by explicitly defining

the potential table values for these factors, as illustrated in Fig. 6.2.2.1. To grasp the intu-

ition, consider three variables, V (i, j, r), Role(i, j, r), and V (i, j+1, r), all connected by a

factor VC(i, j, r). If V (i, j, r) holds a count of 0, and Role(i, j, r) is true, the count should

be incremented to 1 in V (i, j + 1, r). To accomplish this we set all potential table entries

which correspond to invalid transitions to 0, and those which correspond to valid transitions

to 1, enforcing the count logic as a hard constraint. This is equivalent to implementing a

simple finite state machine, and the logic analogously extends to counting beyond 1. The

final variable in the chain connects to the corresponding sense variable using the SENSE-
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Figure 6.4. Modeling valency in SRL. Each V variable has three count states: no roles,
1 role, and more-than-1 role. Explicitly specified potential tables in R factors process the
counting logic, rule out any invalid transitions between V variables. SV factors attach to
the final V variable of each chain, allowing coordination between the set of observed roles
and the different senses which might be in use.

FRAME factors outlined below, allowing the count and type of each role label to influence

sense prediction, and vice versa.

We argue for a 3-way binning for count variables, where the values of V variables

correspond to a count state of 0, 1, or more-than-1 of a particular role at the current position

in the chain. While few senses will have more than one of a particular role, having a bin

for more than one occurrence creates competition between Role variables. If it is highly

likely that the predicate sense has just a single occurrence of role label r then this will be

accounted for as beliefs propagate backwards through the chain, reducing the likelihood

that more than one role variable will be true. We find that a 3-way binning significantly

outperforms a 2-bin model, which distinguishes only between seen and unseen (0 and> 0).

These results are presented in Section 6.3.5 (pg. 234).

Formally we define the valency modeling structure as follows:
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• Let {V (i, j, r) : 0 ≤ i < j ≤ n, r ∈ R} be O(|R|n2) ternary variables, where |R|

is the number of role labels, forming |R| chains. These variables capture the number

of predicate-argument pairs of role r between pair (i, 0) and (i, j), using three bins:

0, 1, and more than 1. While there are few instances where a predicate will have

multiple arguments with the same role label, using a bin of 3 or more helps create

competition between role variables for the more typical event where a particular role

occurs only once for each predicate.

• Let VC(i, j, r) : 0 ≤ i < j ≤ n, r ∈ R} be O(|R|n2) factors that deterministically

implement the logic for calculating the values of V variables. These factors are

binary at the start of the chain, and ternary elsewhere. The potential tables of these

factors are described in Fig. 6.2.2.1.

• Let SENSE-VALENCY(i, r) : 0 ≤ i ≤ n, r ∈ R} be O(|S||R|n) binary factors which

connect the final V variable of each chain, V (i, n, r), to the Sense(i) variable for

each predicate i. The features of these factors capture correlations between predicate

senses and the number of particular roles associated with each.

Other models have also implemented forms of valency modeling, most notably the gen-

erative models of constituent parsing (Collins, 1997; Klein and Manning, 2004; Charniak

and Johnson, 2005) and dependency parsing (Eisner, 1996). Valency information has also

been utilized in discriminative models as part of the conditioning context in transition-based

parsing (Zhang and Nivre, 2011), and in ILP models of the same task (Martins et al., 2009).

However we are unaware of previous work modeling valency in factor graph models.

6.2.3 A Joint Model of Dependency Parsing and SRL

Considering the limited attention that joint models have received in recent years, a

comparably large number of approaches exist for joint parsing and semantic role labeling.

There is no doubt that this is due to the CoNLL 2008/9 shared tasks, which focused on joint
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parsing and semantic role labeling and featured many participating systems. The best joint

results were attained with graph-based approaches for the synchronous derivation of both

structures (Titov et al., 2009), and later explored with cube-pruning (Johansson, 2009).

ILP models and Markov Logic Riedel and Meza-Ruiz (2008) also performed well in the

competition. More recently, dual decomposition approaches have improved upon these

results for English data Lluı́s et al. (2013) and Chinese data (Luo Yanyan, 2012).

Our approach to model combination relies on logical factors in a joint factor graph

model, and belief propagation for inference. Given the modeling structure we have out-

lined in previous chapters, it is a straightforward extension to construct a fully joint model

of SRL and dependency parsing. We first assume the presence of a dependency syntax rep-

resentation, identical to the first-order model presented in Section 3.2.2 (pg. 150, including

a projective DEP-TREE factor). We coordinate this structure and the SRL model through

the use of an additional set of factors:

• Let {SRL-CONNECT(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) soft NAND fac-

tors coordinating a single dependency parse edge variable, Link(i, j), with a single

predicate-argument variable, Arg(j, i). This factor is associated with a set of fea-

tures, and learns a potential to determine the degree of coordination dependent on

the context.

A graphical depiction of this model is shown in Figure 6.5.

This method for coordinating the models is essentially identical to the approach used in

Chapter 4 to coordinate constituent spans and named entity spans. Unlike NER, SRL does

not require a combinatorial constraint. Therefore, unlike the joint NER model, there are

no cycles in the graph (i.e., the graph for SRL and joint SRL form a tree) and inference is

exact. This is not the case for any model with the valency modeling extensions.
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Figure 6.5. A joint model of SRL and dependency syntax. Depicted as a plate diagram, the
baseline SRL model (left) connects to the combinatorially-constrained dependency parse
model (right) via a series of SRL-CONNECT factors. Valency modeling is omitted here,
and senses are predicted independently.

6.3 Experiments

6.3.1 Data

We evaluate our SRL models using a subset of the data developed for the CoNLL 2009

shared task competition for joint semantic and syntactic dependency prediction (Hajič et al.,

2009), which consists of data from seven languages: Catalan, Chinese, Czech, English,

German, Japanese, and Spanish. This diversity in language provides a unique opportunity

to examine the type and effect of the induced syntactic structure across a wide variety of

different languages and annotation styles.

The data provides word, lemma, part-of-speech, and morphological feature informa-

tion, along with both gold and parser-produced dependency trees. Predicates are identified,

but the particular sense is intended to be predicted by the model. Sense labels are provided

in the training data, along with their arguments and role labels.

6.3.2 Features

We now describe the feature set associated with ARG, ROLE, SENSE, LINK, SRL-

CONNECT, and, in the case of valency models, SV factors.
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• ARG and ROLE factors

For the ARG and ROLE factors, which aim to capture arc-factored information, we

use an identical feature set. These features are described below for the example

sentence “the cat scratched the man”, wi = “scratched”, wj = “cat”.

Feature String Comment

arg-bias A general bias for a pred-arg pair.

scratch-cat Predicate word and argument word pair.

VB-NN Predicate POS-tag and argument POS-tag.

scratch-NN Predicate word and argument POS-tag.

VB-cat Predicate POS-tag and argument word.

VB-scratch-NN-cat Predicate and argument words and POS-tags.

VB-NN-1 Predicate POS-tag, argument POS-tag, and distance (|j − i|).

VB-NN-LEFT Predicate POS-tag, argument POS-tag, and direction.

VB-LEFT-1 Predicate POS-tag, direction and distance to argument.

NN-LEFT-1 Argument POS-tag, direction and distance to argument.

For labeling, the role label is concatenated onto each feature so that otherwise iden-

tical features correspond to different parameters in the model (i.e., scratch-cat, a

feature used in the ARG(i, j) factor, is used as a basis for PATIENT-scratch-cat, a

feature used in the ROLE(i, j, r = PATIENT) factor.) In other words, there is no

feature sharing between any pair of the argument, role, sense, valency, syntax, or

connection sets of factors.

• SENSE factors.

Sense labeling is done with the following set of features:
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Feature Comment

scratched Sense word.

scratch Sense lemma.

VB Sense POS-tag.

cat Neighboring word. Each word within a 5-word window.

cat-1, the+1 Contextual word with offset. Each word within a 3-word window.

cat-scratched-1 Sense word and previous word. Chinese only.

the-scratched+1 Sense word and following word. Chinese only.

Each feature string will also be concatenated with the sense label (i.e., “VB” be-

comes “VB-scratched.01”, “VB-scratched.02”, etc.) to produce a new feature for

each sense.

• SENSE-VALENCY factors.

The valency variables store the total count for each predicate and role (the final vari-

ables in each chain). They are connected with the sense prediction variables through

SENSE-VALENCY factors, using the following features. Here we illustrate features

for just one sense, one role, and one count value:

Feature Comment

scratched.01-bin-ARG0-1 A predicate sense with a role and its count.

scratched.01-bin-ARG0-1-scratched Same, but including word form.

scratched.01-bin-ARG0-1-scratch Same, but including word lemma.

scratched.01-bin-ARG0-1-VB Same, but including word POS tag.

bin-ARG0-1 The role and its count.

bin-ARG0-1-scratched Role and count with word form.

bin-ARG0-1-scratch Role and count with word lemma.

bin-ARG0-1-VB Role and count with word POS tag.
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The first four features are intended to help model the interactions between senses

and role counts. The latter four features are backoffs, intended to help strictly with

influencing the counts of each role and penalizing them when their values are higher

or lower than expected.

• SRL-CONNECT factors

Features for coordinating between SRL and dependency syntax are the following:

Feature Comment

sli-bias A bias for the coordination factor.

sli-scratched-cat Predicate word, argument word.

sli-VB-NN Predicate POS-tag, argument POS-tag.

sli-scratched-NN Predicate word, argument POS-tag.

sli-VB-cat Predicate POS-tag, argument word.

sli-VB-scratched-NN-cat Predicate and argument words and POS-tags.

sli-LEFT Attachment direction.

sli-1 Attachment distance.

sli-LEFT-1 Attachment distance and direction.

sli-scratched-cat-LEFT-1 Predicate and argument words, distance and direction.

sli-VB-NN-LEFT-1 Predicate and argument POS-tags, distance and direction.

sli-VB-NN Predicate and argument POS-tags, distance.

sli-VB-LEFT-1 Predicate POS-tag, distance and direction.

sli-NN-LEFT-1 Argument POS-tag, distance and direction.

sli-VB-NN-LEFT Predicate and argument POS-tags, direction.

Because these features are orthographically similar to those used in other factors, the

string representation of each connection feature includes an “sli” prefix to indicate it

belongs to this feature set.

229



The features for dependency syntax (LINK factors) are a subset of the McDonald

feature set for supervised graph-based dependency parsing (McDonald, 2006), omit-

ting features that include coarse part-of-speech (as these are not provided in the data

sets). Even though the SRL data contains a great deal of morphological information

for some languages, we were not able to make use of these attributes in any manner

that improved performance on development data. We tried incorporating morpholog-

ical classes into sense, argument and role features, essentially creating new features

where part-of-speech tags were replaced by morphological classes, but this often

decreased SRL prediction accuracy.

6.3.3 Experimental Design

We perform a set of experiments to compare the latent syntax model to comparable

models which instead rely on gold syntactic parses, and to models which do not observe

parses. We refer to these four models as BASELINE, ORACLE, VALENCY, and HIDDEN.

Due to the increased complexity of the model, valency modeling is used only as an exten-

sion to the baseline and not in conjunction with syntactic joint models.

• BASELINE: A model which contains no syntactic information, and is strictly argu-

ment, role, and sense prediction, as described in Section 6.2.1 (pg. 217). This model

is intended to represent the best achievable performance from fully-supervised train-

ing on a resource-poor language where syntactic annotations are unavailable.

• ORACLE: A joint model (pg.224) with both SRL and syntax variables. Syntactic

variables are set to their observed values based on the gold standard trees provided

by the data, both during training and testing. Features are still learned for the SRL-

CONNECT factors which sit at the intersection of the two models, giving the model

the flexibility to utilize or ignore the syntactic information depending on the imme-

diate context as captured by the coordinating feature set.
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• HIDDEN: A joint model which treats all syntactic components as latent variables.

Syntactic annotations are not used, and the true labels of SRL-CONNECT factors are

not known. Instead this model is trained using the marginalization-based training in

order to induce an latent syntactic representation specific to the task of SRL and the

particular training data set.

• VALENCY: Valency modeling (pg.222), which connects role and sense prediction,

and counts the number of times each role is taken by a given predicate. The 2-bin

model count distinguishes only between 0 and greater than 0. The 3-bin model counts

0, 1, and greater than 1.

We include results from two additional systems from the CoNLL 2009 shared task:

• Che-09: The system described in Che et al. (2009) is the highest performing system

in the joint track of the CoNLL 2009 shared task 5, . In the joint task no syntactic

annotations are provided for the test data, making it comparable to the JOINT or

HIDDEN models. Che et al. (2009) present a heavily pipelined system. Sentences

are parsed using a 2nd-order graph based parser (McDonald, 2006), with pseudo-

projective extensions for the more non-projective languages: Czech, German, and

English. An SVM is used to predict predicate senses. A log-linear classifier is used

to predict a candidate set of semantic role dependencies, and ILP is used to for global

inference over this candidate set. The feature set is carefully configured for each

language, and different depending on whether the SRL predicate is a noun or verb.

• Zhao-09: The system described in Zhao et al. (2009b) is the highest performing sys-

tem in the SRL-only track of the CoNLL 2009 shared task. In the SRL-only task

5Technically Zhao et al. (2009a) is the highest performing system in terms of SRL performance, but it is
largely identical to ZHAO-09 (and was submitted by the same team), and produces results in line with Che
et al. (2009).
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syntactic annotations are provided for the test data, making it comparable to the OR-

ACLE model. Zhao et al. (2009b) is self-described as a “huge feature engineering

method” for SRL, and the novelty of the approach lies in the automatic feature dis-

covery method. An SRL analysis consists of many predictions: sense prediction,

predicate-argument prediction, and role labeling, each requiring a set of features.

The huge space of potential features motivates systems like Che et al. (2009) and

Zhao et al. (2009b) which focus more on feature engineering than on new model-

ing approaches. For predictions Zhao et al. (2009b) utilizes a 2nd-order parser, and

makes SRL predictions using log-linear classifiers.

All models are trained using 30 iterations of stochastic gradient descent (SGD) with a

Gaussian prior (L2 regularization) with a variance of 1.0. We use a maximum 40 iterations

of belief propagation inference for each example, but only the valency models are cyclic,

meaning that inference will be exact and converge in 2 iterations for the remaining models.

The model is pruned, and only arguments that are within 20 words of each predicate are

considered. A dictionary is constructed containing all sense labels seen in the training data,

indexed by each predicate’s lemma. For unknown predicates it is common to use a default

sense label, which is typically the lemma with an “.01” suffix (the most frequent sense label

in the data).

We implement feature pruning for the fully-supervised models, removing all features

which are not associated with a single correct instance in the training data. For the smallest

data set, German, there are 12M features for the BASELINE model, 14M for the VALENCY

model, 15M for the ORACLE model, and 72M for the HIDDEN model. Using 4 cores on

a 2.6 GHz Intel Xeon processor, the average amount of time required for performing one

iteration of SGD on the German data is 2 minutes for the BASELINE model, 2 minutes for

the ORACLE model, 12 minutes for the VALENCY model, and 31 minutes for the HIDDEN

model. On the largest data set, Chinese, a single iteration of SGD requires on average 2

hours for the BASELINE model (120M features), 2.5 hours for the ORACLE model (145M
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features), 9 hours for the VALENCY model (185M features), and 14.5 hours for the HIDDEN

model (885M features). This requires 6GB of RAM to train on the German data, and 24GB

of RAM to train on the Chinese data.

As in previous chapters, models which require syntactic annotations during training

are marked with a † symbol, and models which rely on syntactic annotations during both

training and testing are marked with a †† symbol.

6.3.4 Evaluation

Models are evaluated in three different ways, as performed in the CoNLL 2009 shared

task competition:

1. Sense prediction accuracy (SA). Each predicate has a predicate sense, and is evalu-

ated using accuracy:

SA =
true senses

# of predicates

2. Unlabeled evaluation. We report precision, recall and F1 (harmonic mean of preci-

sion and recall) on classifying predictate-argument pairs. The unorthodox aspect of

this evaluation is that the number of predicates is included in the calculation. For

instance, precision of the unlabeled case is calculated as follows:

PrecisionUnlabeled =
# of predicates+ true predicate argument pairs

# of predicates+ test predicate argument pairs

3. Labeled evaluation. Precision, recall, and F1 for predicting semantic roles (where

a semantic role is a 3-tuple comprising the predicate, argument, and label). Sense

accuracy is included in this metric. For instance, precision in the labeled case is

calculated as follows:

PrecisionLabeled =
true senses+ true roles

# of predicates+ test roles
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Labeled F1 is the score used in the CoNLL 2009 shared task competition for the purpose

of ranking competing systems. Table 6.1 provides a set of summary statistics from the

competition, including the maximum, mean, and median results for each language.

6.3.5 Results

Here we present the results of our model configurations with respect to the systems

entered in the CoNLL 2009 shared task (Hajič et al., 2009). Not surprisingly, the BASE-

LINE model, with its independent predictions and lack of syntactic information, performs

poorly. The inclusion of reliable syntactic information in the ORACLE model leads to per-

formance that is generally comparable with the average CoNLL scores, and competitive

with other joint models. Though the connections between SRL and syntax are based on

first-order (parent-child) relationships, the average scores compare favorably with more

powerful second-order approaches (Lluı́s et al., 2012). Despite their overall simplicity,

these models still manage to perform at state-of-the-art levels in a few instances, most no-

tably on Chinese. Here, even without observing any syntactic annotation, the HIDDEN

model manages to outperform nearly all of the competing systems.

The most compelling results come from comparing ORACLE and HIDDEN models with

the BASELINE. Here the unlabeled results are the most revealing evidence for assessing

the effectiveness of hidden syntactic structure. Abstracting away from the performance

comparisons against other systems, the average unlabeled HIDDEN model score (86.22%

F1) is even higher than the ORACLE model (83.15% F1, and vs. BASELINE’s 67.72% F1).

This is mostly due to large margins over the ORACLE system on the unlabeled Japanese

scores. The strong independence between sense prediction and argument prediction hinders

performance on the labeled task, but on all languages we find an extremely significant

improvement from the use of hidden syntactic structure — the HIDDEN model recovers

94.74% of the gap between the baseline and the observed syntax model.
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Unlabeled Labeled CoNLL 2009 F1
Data Model SA P R F1 P R F1 MAX. MEAN MED.

Catalan

BASELINE 84.3 94.7 77.5 85.3 77.8 63.7 70.0
ORACLE†† 84.3 98.5 96.2 97.3 75.7 73.4 74.5
ZHAO-09†† 83.4 96.6 90.7 93.6 82.9 77.9 80.3 80.3 71.0 74.1
HIDDEN 82.7 95.2 92.8 94.0 73.2 70.8 72.0
CHE-09† 80.1 94.6 91.1 92.8 78.6 75.7 77.1

Chinese

BASELINE 94.8 72.5 64.8 68.4 66.0 59.0 62.3
ORACLE†† 94.8 98.6 78.9 87.7 87.6 70.2 78.0
ZHAO-09†† 94.7 86.8 81.2 83.9 80.4 75.2 77.7 78.6 72.2 70.4
HIDDEN 94.8 90.8 79.1 84.5 81.97 71.4 76.3
CHE-09† 94.8 88.9 79.2 83.6 81.7 73.1 77.2

English

BASELINE 90.1 92.5 71.6 80.7 84.6 65.5 73.8
ORACLE†† 90.2 96.7 82.3 88.9 85.5 72.7 78.6
ZHAO-09†† 91.3 94.3 91.3 88.5 88.2 82.8 85.4 85.6 75.6 72.1
HIDDEN 89.9 95.1 79.1 86.3 83.8 69.7 76.1
CHE-09† 91.4 92.9 90.5 91.7 86.7 84.4 85.5

German

BASELINE 82.6 93.3 62.9 75.1 79.1 53.3 63.7
ORACLE†† 82.6 96.4 79.8 87.3 80.4 66.6 72.9
ZHAO-09†† 78.4 92.3 89.4 90.8 77.2 74.8 76.0 79.7 68.1 67.8
HIDDEN 82.1 93.2 88.1 90.5 77.0 72.8 74.8
CHE-09† 82.4 95.2 87.5 91.2 82.1 75.4 78.6

Japanese

BASELINE 100 93.9 62.8 75.3 85.7 57.3 68.7
ORACLE†† 100 94.4 62.4 75.1 86.1 57.0 68.6
ZHAO-09†† 99.1 87.6 80.4 83.8 81.7 74.9 79.2 80.5 70.4 73.4
HIDDEN 100 90.6 75.7 82.5 78.3 65.4 71.3
CHE-09† 99.1 93.2 75.8 83.6 87.3 71.0 78.3

Table 6.1. SRL Results on CoNLL 2009 data sets. Without observing any syntactic an-
notation the HIDDEN model excels on the unlabeled prediction results, often improving
on scores obtained with the ORACLE model. Both the ORACLE model and the systems
represented in the CoNLL column could use gold standard parses.

There is one caveat to bear in mind when interpreting HIDDEN vs. ORACLE results, and

that lies in how the SRL and dependency parsing models are connected. We have discussed

the degree of agreement between SRL predicate-argument dependencies and corresponding

dependency tree paths of varying lengths (Fig. 6.1.1), showing that for most languages the

largest correlation exists when looking at paths of length 1. Our ORACLE model takes

advantage of this correlation, as SRL-CONNECT factors link single predicate-argument to

single dependency parent-child arcs. It is clear, from the same statistics, that this does

not hold true for all languages, and Japanese in particular has a stronger correspondence

between predicate-argument pairs and dependency tree paths of length 2. It could be argued
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Unlabeled Labeled
Data Model SA P R F1 P R F1

Catalan
BASELINE 84.3 94.7 77.5 85.3 77.6 63.7 70.0
VALENCY 2-BIN 82.3 92.3 80.0 85.7 77.4 67.6 72.7
VALENCY 3-BIN 82.2 93.7 83.4 88.3 77.8 68.5 72.9

Chinese
BASELINE 94.8 72.5 64.8 68.4 66.0 59.0 62.3
VALENCY 2-BIN 94.4 73.2 71.1 72.1 69.8 64.5 67.1
VALENCY 3-BIN 94.5 74.8 75.2 75.0 71.9 66.3 69.0

English
BASELINE 90.1 92.5 71.6 80.7 84.6 65.5 73.8
VALENCY 2-BIN 89.1 92.3 71.2 80.4 84.6 65.1 73.6
VALENCY 3-BIN 88.6 92.5 73.4 81.9 84.8 67.6 75.3

German
BASELINE 82.6 93.3 62.9 75.1 79.1 53.3 63.7
VALENCY 2-BIN 79.7 92.2 65.1 76.3 75.2 54.8 63.4
VALENCY 3-BIN 79.5 91.4 70.4 79.6 74.9 57.7 65.2

Japanese
BASELINE 100 93.9 62.8 75.3 85.7 57.3 68.7
VALENCY 2-BIN 100 92.1 61.7 73.9 85.5 58.7 69.6
VALENCY 3-BIN 100 92.1 64.3 75.7 85.0 60.1 70.4

Table 6.2. SRL Valency Model Results. The 2-bin model (counting 0 or more-than-1)
improves average labeled accuracy by 1.58 F1 over the baseline. The 3-bin model (counting
0, 1, or more-than-1) improves accuracy even further, a 2.86 F1 average improvement over
the baseline.

that using method of model connection based on first-order dependencies on this data puts

the ORACLE model at an inherent disadvantage.

However, determining which types of syntactic dependencies are most useful to SRL

is a responsibility that should fall on the model, not the modeler. Higher order models are

more robust to the syntactic variations we see here, but it is not always feasible to imple-

ment models of increasingly higher order simply to suit the idiosyncrasies of each data set.

There are also clear benefits to learning which first-order syntactic representations are most

useful. Compared to models with higher-order syntactic representations, the first-order la-

tent syntax models are smaller in terms of the number of factors necessary to represent

them. They do not contain cycles, which allows for more efficient exact inference. The dis-

advantage of this model is the greater cost of training, as the marginalization-based training

requires two sets of marginals and thus two rounds of inference.
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6.3.6 Valency Results

Modeling valency structure makes all argument predictions for a given predicate depen-

dent on one another, and allows argument and role prediction to affect sense prediction (and

vice versa). Figure 6.2 shows the effect of including this structure in the baseline model. In

the 2-bin model, the variables in the valency chains have two states, and expressing whether

a particular role has or has not been observed in the chain. The 3-bin model extends this

to an extra state, to represent having seen 0, 1, or more than 1 occurrence of a particular

role. The intuition is that if a predicate has one sense which prefers one argument (i.e., an

intransitive verb), and another prefers two (a transitive verb), this phenomenon would be

better captured by the 3-bin valency model.

In contrast with the baseline, modeling valency nets significant improvements in both

labeled and unlabeled F1 across all languages. The 2-bin model provides a 0.72% F1

gain in average unlabeled accuracy, and 1.58% F1 in labeled accuracy. The 3-bin model

improves performance by 3.14% F1 in the unlabeled case and 2.86% F1 in the labeled case,

in some cases closely approximating the gains we achieved previously through modeling

syntactic structure.

Interestingly these additions, which were originally intended to improve sense accuracy,

are unhelpful to this aspect of the model. The reason for this is uncertain but in preliminary

experiments we find that the valency models are particularly sensitive to feature sets, espe-

cially those used for coordinating between the Sense(i, r) and V (i, j = n, r) variables. It

is possible that different features or a different method of connecting these variables would

remedy this issue.

Additionally, we do not know if the improvements from valency modeling are com-

plimentary to the improvements from syntactic modeling, and whether combining these

models would result in still greater accuracy. The reason we do not pursue this here is the

greater complexity of these models, and its effect on inference and training. The model

which contains both valency and syntactic variables contains many cycles, and often takes
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Figure 6.6. SRL frame arity across models. Statistics were collected from experiments on
the German CoNLL 2009 data set. In terms of the number of arguments they contain, the
SRL frames predicted by the HIDDEN more closely reflect the frames of the training data
(Gold).

more than 20 iterations of inference to reach convergence. This results in very long train-

ing times, and we do not have the computationally resources to explore the effectiveness of

these models on large CoNLL 2009 data sets. Future work could explore these issues, or

pursue additional pruning techniques to limit the number of valency chains and the result-

ing cycles.

6.3.7 Performance on SRL Frames

We have discussed the performance of the various models in terms of their accuracy

in making pairwise predictions, evaluating models in terms of their ability to correctly

identify predicate-argument pairs and the corresponding role label, as is standard in the

CoNLL shared tasks. We now examine the performance of these models from a different

angle, assessing their ability to accurately identify the correct number of arguments for

each predicate, sometimes referred to as an SRL frame.

The plot in Fig. 6.6 depicts the number of frames with n arguments predicted by each

model, where n varies between 0 and 4, for experiments on the German data set. Very few

238



predicates in the data lack arguments altogether (n = 0), but there is no explicit constraint,

either in the model structure or in the decoding procedure, to prohibit our SRL system from

predicting SRL frames without arguments. This is where the lack of syntax hinders the

model: without any syntactic information to aid the BASELINE model, it must rely solely

on lexical information between the predicate and candidate word. The results indicate that

in many cases the model is not confident enough to predict any predicate-argument pair,

severely reducing the model’s performance.

When n > 0, the frame predictions of the HIDDEN model are most closely correlated

to the GOLD model (170 vs. 109 for one argument, 281 vs. 362 for two arguments, 71 vs.

73 for three arguments, respectively). Interestingly, for n > 0, the ranking of how similar a

model’s frame prediction matches the gold frame prediction is constant, from best to worst:

HIDDEN, ORACLE, VALENCY (denoting the 3-bin system), and BASELINE. The inclusion

of valency modeling offers a significant improvement over the BASELINE reducing the

margin from the number of gold predictions by 99 (n = 0), 11 (n = 1), 82 (n = 2), but

does not outperform the syntactic models. We conclude that syntactic information, even

when induced, is a more useful source of information than what is offered by the valency

chain modeling.

6.3.7.1 An Analysis of Induced Syntactic Structure

Exactly what kinds of structure does the HIDDEN model learn and why do the ORACLE

models perform poorly on Japanese and German data? Before we dive into this question

in detail, it is interesting to note that the unusually low performance of the ORACLE joint

model on these data sets is not without precedent: in the CoNLL 2009 shared task com-

petition, results on the German and Japanese data sets consistently had the highest gaps

between parsing F1 and SRL labeled F1. Systems produced accurate parses, but were not

able to leverage the strength of their parsing models to produce accurate SRL analyses. We

conclude through an analysis of our own results that the style of syntactic annotation is a
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Figure 6.7. Examining the induced dependency syntax for SRL. In this Japanese example
the syntactic dependency arcs derived from gold standard syntactic annotations are entirely
disjoint from the correct predicate/arguments pairs (left, SRL relations depicted by black
cell outlines, probability of syntactic relations depicted by strength of red cells). In contrast,
the hidden model structure (right) learns a representation that closely parallels the desired
end task predictions, helping it recover three of the four correct SRL predictions.

poor match for joint models with first-order connections, and that this may have contributed

to the poor performance of SRL prediction relative to syntactic prediction.

6.3.7.1.1 Japanese

Despite having been trained without any access to gold syntactic annotation, the HID-

DEN system outperforms both the BASELINE and ORACLE models by significant margins

(2.6% F1 and 2.7% F1 respectively). In previous work, which differed only in feature sets

and training method, the numbers reflected a greater divide between baselines and syn-

tax, with the HIDDEN model providing a 13.99% and 4.57% improvement in labeled F1

Naradowsky et al. (2012a). What type of syntactic structure does this model induce to be
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preferable even to hand-annotated syntax? We examine this structure by constructing a

heatmap (Fig. 6.7, a gloss for this example is provided in Fig. 6.8). A heatmap is ca-

pable of illustrating the correlation between the real-valued syntactic dependency variable

beliefs and the discrete-valued (true or false) syntactic arcs found in the gold standard

data. Shaded cells indicate the model’s beliefs regarding each Link(i, j) variable, i on the

x-axis and j on the y-axis. A red square indicates a belief closer to 1.0 (true), and a solid

grey square to a belief closer to 0.0. The correct SRL analyses are depicted by black box

borders. Gold syntax is shown on the left, the latent syntax of the HIDDEN model on the

right.

In addition, tree diagrams (top) provide an alternative visualization, showing the de-

coded syntactic dependencies above the sentence with predicted SRL dependencies below

(red). The dependency tree for the HIDDEN model is produced by classifying all depen-

dency variables whose beliefs are greater than 0.5 as true. This is purely for illustrative

purposes. In comparison to the minimum Bayes risk decoding used in other chapters, this

decoding strategy more accurately reflects the beliefs of the model but does not prevent

cycles or non-projective dependencies.

In this example there are four SRL predicate-argument relations specified in the gold

data. Our model uses first-order connections between SRL and syntax, and therefore the

model coordinates between an SRL relation from predicate i to argument j and a syntactic

dependency from headword i to child word j. None of these SRL relations has a corre-

sponding syntactic arc in the gold syntax, and, given this low degree of correlation corpus-

wide, this provides an explanation for low performance of the ORACLE model on Japanese

data. Due to this fact it is also unsurprising that none of the correct SRL dependencies are

predicted by the ORACLE model in this example.

We now examine why the Japanese data lacks this correlation between syntax and SRL.

While none of the SRL relations in this example have a directly corresponding syntactic arc,

two have a corresponding syntactic path consisting of two dependency arcs, which together
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封じ手 総 互先 の 制度 も 本因坊 戦 から 始まっ

The sealed move, as well as the all-even-match system, started with the Honinbou Tournament.

sealed move    even match    case-marking   system    binding    Honinbou   tournament     case-marking      began  
                                          particle                    particle                                           particle                    
    

( ( ( )))

Figure 6.8. English gloss for Japanese example in Fig. 6.7.

link the predicate word to the argument word. A third relation has a corresponding path

of three arcs, and the last a path of four arcs. Why are words which are directly linked by

a SRL relation separated by so many arcs in the syntactic structure? We touched on the

primary reason for this when discussing the correlation statistics in the data (Sec. 6.1.1, pg.

211): in Japanese particles intercede in the dependency path, while SRL relations directly

link root words.

For instance, the case-marking particle の functions here as a adjectival modifier for

the preceding word. In this example it intercedes between総互先 (even match) and制度

(system), to describe even match as a kind of system. This is also the case for the binding

particle, も . In short, particles in this data act as the syntactic heads of the words they

modify. 6 This places them between the predicate and argument words in the syntactic de-

pendency path, increasing the dependency parse length. In contrast, in the English CoNLL

data a similar modifier would attach to the word it modifies, allowing the predicate and ar-

gument words to link more directly. This is the syntactic analysis induced by the HIDDEN

model for the Japanese data.

But particles are not the only tokens that hinder the correlation between syntax and

SRL. Punctuation can also intervene in these dependency paths. For instance, a comma

intervenes in the dependency path between 封じ手 (sealed move) and 制度 (system),

6This syntactic analysis may seem objectively incorrect, given the usual head-modifier semantics of de-
pendency trees. However, by marking the gramamtical case of the headword, these particles provide impor-
tant information about the headword’s syntactic role in the sentence. It is therefore reasonable to annotate
particles as syntactic heads, while the semantic dependencies of the SRL analysis generally ignore them.
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extending the dependency path from three words to four. Again, punctuation could just as

easily function as a modifier to the head of the clause, in which case it would not extend

the dependency path. The HIDDEN model proposes an interesting solution to punctuation:

it consistently anchors punctuation to the last token of the sentence, which, in this data set,

is always itself a punctuation character. This prevents it from interfering with any syntactic

path from predicate to argument.

It may be possible to address these issues by preprocessing the data and heuristically

modifying the syntax to better suit the model. One could attempt to adjust the syntactic role

of Japanese particles, setting the preceding root word as the syntactic head and therefore

removing the particle from the predicate-argument dependency path. The preprocessing

tactic may provide a simpler method for improving joint model performance than inducing

a latent syntax, but this may be somewhat of a slippery slope. Performing such preprocess-

ing would solve the correlation problem for two of the four spans, but even if we were to

remove punctuation (reducing the dependency path of a third SRL relation) it would still be

necessary to use second-order connection factors to capture the relationship between SRL

and syntax in the data.

Ultimately the question of which approach is preferable may be an ideological one:

is it the responsibility of the researcher to ensure that the data is tokenized or parsed in

the manner which best suits the end task (and how does one determine this?), or is it the

responsibility of the model and the optimization method to circumvent poor agreement

between two sources of information. We argue for the latter: the marginalization-based

may be slower than fully-supervised training, and inference in the joint model may be more

costly than in the baseline, but utilizing this approach we are able to run our model across

a wide variety of languages (and domains), with little to no language-specific treatment.

This reduces the number of hours a human must spend preprocessing the data, feature

engineering, and modifying the syntactic annotations to suit the model.
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6.3.7.1.2 German

In the Japanese corpus the syntactic annotation style reduces the degree of first-order corre-

lation between syntax and semantics, but in this case the syntactic trees are intentionally an-

notated, by hand, to conform to a set of annotation guidelines. But the correlation between

syntax and semantics can also be skewed by automated pre-processing and conversion. We

find that this is prevalent in the NP structures in the German data set.

The Tiger Corpus (Brants et al., 2002) is a German corpus comprising 50,000 sen-

tences of German newswire from the Frankfurter Rundschau, a German daily newspaper.

The corpus includes POS tags, phrase structure syntax, and a set of morphological infor-

mation. These annotations were produced in a semi-automatic fashion, but corrected by

human annotators. However, problems arise when adapting this data set to new tasks and

formalisms. For the CoNLL 2007 and 2009 shared tasks, each data set contained depen-

dency syntax annotations. To meet this requirement the Tiger Corpus’s phrase structure

syntax was converted to dependency structure using the Tiger2Dep conversion tool7, re-

sulting in a number of unusual annotations.

In Figure 6.9 we present two dependency trees, one taken from the CoNLL 2009 data

set (left), the other induced by the HIDDEN model (right). The gold standard tree treats the

prepositional phrase headed by auf as a flat structure: all words contained in the NP take

auf as their heads. This removes the possibility of a directed path between any two of the

words contained within the span, excluding the phrase’s head. Consequently, if two of the

non-head words within the span are in a predicate-argument relation, it is impossible to find

a corresponding dependency in the syntax. This can hinder performance of the ORACLE

model, as this is precisely the constraint that the model implements. 8

7http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/
Tiger2Dep.en.html

8Smith and Eisner (2006) also observe that flat structure within NPs governed by PPs is a widespread
artifact of the conversion process, and alter these trees prior to evaluating against them.
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Hoffnung    auf    einen    erneuten    UrknallHoffnung    auf    einen    erneuten    Urknall

a.) Gold German Syntax a.) Induced German Syntax
 Hope        for      a         new       big bang     Hope        for      a         new       big bang    

Figure 6.9. German NP structure. The gold syntax NP is completely flat, but the HIDDEN

SRL model induces a richer NP structure.

In contrast, the trees recovered by the HIDDEN model capture a deeper NP structure

in which einen and erneuten are children of the inner noun, Urknall. Not only does this

structure aid the model in recovering more accurate SRL analyses, but in many cases it is

more representative of the syntactic structure found in the Tiger Corpus prior to conversion.

To examine how these trees matched native speaker intuitions, we presented pairs of trees,

one from the CoNLL German data and the other produced by the HIDDEN model, to three

native German speakers proficient in computational linguistics and tree annotation. HID-

DEN model syntax was decoded by placing all arcs corresponding to Link(i, j) variables

with beliefs greater than 0.5 into the final tree. All speakers selected the HIDDEN model

trees as being more representative of a correct linguistic analysis of the sentence.

6.3.7.1.3 English

Unlike the results on the two previously discussed languages, the HIDDEN system did not

outperform the ORACLE system on the English data set. There are however several notable

cases where the use of latent syntax consistently led the model to better solutions. One set

of improvements stems from the HIDDEN model finding an alternate internal structure for

noun phrases that would sometimes better align with semantic role dependencies. This is

similar to the issue with the ORACLE model and gold syntax for the CoNLL German data

discussed previously, although here it is not the result of a constituent-to-dependency tree

conversion. We refrain from discussing this particular issue further and focus instead on

more novel phenomena.
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a.)  Syntactic/Semantic mismatch due to coordination

b.)  Syntactic/Semantic mismatch due to modal/auxiliary interference

The    proposed    changes     also    would     allow   executives    to
A0 P

Bell   makes    and     distributes    electronic  and   computer    products
A0 PP A1

Figure 6.10. English ORACLE error analysis. Both coordination and the inclusion of
modal verbs along the dependency path reduces ORACLE prediction accuracy (missed SRL
predictions are indicated with red spans.)

A second major cause of missed syntactic role predictions stems from coordination.

Figure 6.10a shows a sentence from the English data set, the gold syntax provided with that

data, and a subset of the semantic roles that should have been predicted by the ORACLE

model. In this example Bell is described as a company which both makes and distributes

electronic products. Therefore a semantic analysis should identify makes and distributes

as predicates, with Bell and products as roles (subject (A0) and direct object (A1), respec-

tively) in both cases. The gold syntactic tree directly supports this analysis for the makes

predicate, but not for distributes. Instead, the head of distributes is the coordinate and, and

is connected to Bell only through makes.

The HIDDEN model learns to correctly predict both sets of semantic roles. It accom-

plishes this by avoiding making any hard decision regarding which edges should be in the

syntactic tree. Like the gold syntax, the most probable tree according to the HIDDEN model

also lacks a dependency between distributes and products. However, there is a strong pair-
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wise, the marginal belief corresponding to that edge is µ = 0.63 (strong enough to be

included in a tree using simple µ > 0.5). This belief provides the necessary evidence

to correctly predict products as an argument of distributes, despite the edge not existing

in the most probable tree according to this model, thus demonstrating the advantages of

marginalization within a joint inference framework.

A third source of errors is the behavior of modal verbs. In Fig. 6.10b, the model verb

would creates a conditional statement with its syntactic child, allow. Thus would intercedes

in the syntactic path between actions like allow and participants like changes, preventing

a direct dependency path between them. This hinders the ability of the ORACLE model

to make the correct semantic role prediction. The marginal corresponding to that edge is

low, µ = 0.39, but this is still significantly more evidence of a syntactic dependency than

offered by the gold tree, and through influencing the corresponding semantic argument

variable allows the model to correctly capture this semantic frame. While the HIDDEN

model performs better in this case, it’s important to note that a pipelined model which uses

richer path features (“changes ← would → allow”) when making SRL predictions may

also be less prone to these errors.

6.4 Conclusion

In this section we presented several models of SRL, ranging from simple baselines to

fully joint models of dependency parsing and SRL, and outlined how additional modeling

structure could be added to capture valency. We find that the most sophisticated of these

models perform comparably to the other joint systems from the 2009 CoNLL shared task

competition, in some instances reaching state-of-the-art performance, and thus demonstrat-

ing the general usefulness of our approach to joint model construction and inference.

When combined with marginalization-based training, the latent syntactic joint model

convincingly recovers a majority of the performance gains offered by observing gold syn-

tactic annotations, a result that is consistent across all languages. We find that not only is
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the hidden syntax model competitive in its own right, outperforming nearly all previous

systems on the Chinese data set, but it also outperforms the gold syntax joint models on

German and Japanese. In these instances the syntactic annotation style of the corpora did

not offer good support for the end task predictions.

This emphasizes an underlying assumption of this dissertation: a syntactic representa-

tion cannot be maximally informative for all end tasks, and thus any fully supervised joint

model which aims to leverage its structure toward a single end task is susceptible to poorly

suited supporting annotations. A well-designed model can avoid some of these problems,

as might a second-order model in the case of the Japanese data, but a latent variable ap-

proach can guarantee that the induced syntactic representation is well-suited to the task.

In examining the labeled vs. unlabeled performance of our models, it is clear that weak

role labeling and sense prediction is the primary cause of low overall performance. The

unlabeled performance, which most directly reflects the effect of syntactic correspondence,

often exceeds 90% F1, but the model is unable to maintain such performance gains through

to the labeled evaluation. Future work could improve upon the labeling aspect of the model,

either through additional model structure and features, or by inducing a labeled syntax

so that labeling could leverage syntactic cluster information to help identify the types of

predicted roles.
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CHAPTER 7

CONCLUSION

This thesis has considered how to construct joint models for NLP tasks. As syntactic

information is crucial for many of these problems, and parsing a prerequisite step in many

systems, we focus on models which include a syntactic component. This raises a number

of questions:

1. How can we represent syntactic structure in graphical models in a manner that en-

ables efficient and effective inference?

2. How do we formulate the connections between the component models in a joint

model?

3. The data requirements for joint inference are high, requiring a single data set with

annotations for each task. In most languages and for most combinations of tasks, this

data is not available. This imposes a severe limitation on the potential widespread

adoption of joint inference for practical applications, and begs the question: can we

better utilize the annotated data we do have to help alleviate this requirement? More

specifically, if we ultimately care only about the predictions for a single task, and we

have annotated data for this task, can we utilize these annotations to aid in learning

unobserved representations?

4. It is unlikely that a single type of linguistic annotation style can be ideal for all tasks.

Statistical parsers are trained in a supervised manner with the aim of reproducing

the syntactic annotation style of their training data. However, there is no guarantee
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that those trees will be be maximally beneficial for making end task predictions.

Rather than attempting to train parsers to produce this kind of syntactic structure,

can we instead induce a task-specific “syntactic” structure, subject to very general

constraints, that is better suited to the desired task?

To this end we have presented a framework for constructing and reasoning with joint

models using factor graphs. Our hypothesis is that factor graphs are especially well-suited

to joint inference:

• Factor graphs are a well-established framework. From conditional random fields

for sequence labeling, to semi-Markov CRFs for information extraction, to more

arbitrary graphs for large-scale problems like coreference, factor graphs have led to

state-of-the-art discriminatively-trained models in nearly all aspects of NLP.

• Factor graphs naturally provide a means for coordinating component problems, through

the shared language of probability theory. If we have reason to believe that two vari-

ables from separate component models are dependent, they can be connected via a

factor in the graph, with the factor specifying the nature of their relationship. Here

soft Boolean logic constraints provide a particularly intuitive method of coupling

models while remaining robust to exceptions that would likely hinder models with

hard constraints.

• Factor graphs offer alternative ways of performing inference in otherwise densely

connected structured models. A major shortcoming of factor graphs in NLP is that

for modeling combinatorial structures, like those found in syntax, in order to impose

the correct structural constraint it may be necessary to include a large, sometimes ex-

ponential, number of additional factors. By using globally-connected combinatorial

factors, this approach leverages the results of decades of research, taking efficient

dynamic programming inference algorithms for structured models, and inserting this
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logic into model where it can be used in conjunction with standard message passing

algorithms.

• Factor graphs support well-established inference algorithms, sum-product and max-

product, which are exact in chain or tree-structured models, and approximate in

cyclic graphs. We show that while the loopy variant of such algorithms is only ap-

proximately correct, these approximations yield good results in practice. Most im-

portantly, belief propagation inference provides a principled method for dealing with

latent structure, and we marginalize over latent variables during training to induce

syntactic distributions that suit the end task.

Among the contributions of this thesis is a novel combinatorial factor for phrase struc-

ture grammar, which we utilize to construct a factor graph parser. We show that a variant

of the Inside-Outside algorithm can be used during inference, from within such a globally-

connected combinatorial factor, to compute out-going messages for constituent span vari-

ables in O(n3) time. Extending this representation with label variables increases the com-

plexity to O(|L|n3) where L is the set of constituent labels. Surprisingly the lack of a

traditional grammar, one with dependencies between constituent labels, does not signif-

icantly hinder this model’s performance on the task of parsing. Our parser outperforms

comparable discriminative grammar-based parsers (Finkel et al. (2008)) by a large margin.

While our intent is primarily to develop a representation to aid in joint inference, we also

show how grammatical rules can be represented as factors and how they can be selectively

added to the model to correct mistakes of the labeled parsing model alone.

Having provided a method for representing syntactic models in factor graphs, we con-

struct several novel joint models for a diverse set of common NLP tasks. In named entity

recognition, relation extraction, and semantic role labeling we demonstrate the effective-

ness of joint inference by outperforming baselines trained without syntactic information.

We outperform the best reported results for named entity recognition on the OntoNotes
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data set1, though joint inference does not provide a significant advantage for all OntoNotes

newswire corpora when compared to a feature-rich span-based NER baseline. The useful-

ness of joint inference is again demonstrated on a relation extraction task (primarily on the

English data set), where we present two joint models, one coupled to phrase structure and

the other to dependency structure. In SRL our system is competitive with the top perform-

ing systems entered in the CoNLL 2009 shared task competition, many relying on heavy

language-specific feature engineering and tuning.

Most importantly, factor graphs not only provide a method for joint inference, but also

for joint training. For our most central contribution, we have shown how to train joint

models with syntactic components in the absence of syntactic training data. Across a wide

variety of tasks, joint models trained with latent syntactic structure provide performance

comparable to or better than analogous models which utilize gold syntax trees (either from

hand-annotated data or produced by pre-trained state-of-the-art parsers).

More staggering is the performance difference between models with induced syntactic

structure and the baseline models, which do not utilize any syntactic information. Outside

of the academic domain, where the syntactic training data necessary to train a parser is

scarce or altogether absent, there are but two options: use an unsupervised grammar induc-

tion method as the parsing component in a pipeline, or forgo modeling syntax altogether.

We have shown that our method offers substantial improvements over baselines which do

not utilize any syntactic information and Gormley et al. (2014), in a continuation of our

work (using identical models), show that our method outperforms pipelines with unsuper-

vised parsers in an SRL task.

The degree of success associated with this method depends on a variety of factors.

We find the largest gains in performance from the joint model occur when the end task

relies on long-range syntactic dependencies. In the case of NER, entities are often simple

1Finkel and Manning (2010) present better results, but utilize additional singly-annotated training data.
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noun phrases and occur toward the leaves of the tree, often spanning only a few tokens. A

span-based model is able to predict these entities with such a high degree of accuracy that

it leaves little room for improvement in our joint models. In this case, both the NER and

syntax models capture similar information, and the gains are minimal. When the features of

the two models are complementary (i.e., NER model is a linear-chain, with no span-based

information), syntax can help a great deal in identifying entity spans.

Data can also be problematic. In the OntoNotes data the lack of explicit nested NP

structure and inconsistent inclusion of sentence-final punctuation in entities greatly reduces

the degree of correlation between entities and NPs, and likely hurts supervised joint model

performance. For relation extraction on the ACE data set, where heavy preprocessing was

necessary to tokenize and annotate the data with part-of-speech tags, syntax trees, entities,

and relations, the accumulation of errors in the preprocessing pipeline left many sentences

unusable. For the Chinese data in particular, the data amounted to only a few hundred

sentences. This is likely too small to accurately estimate the parameters of a joint model,

especially when treating syntax as a latent variable.

Ultimately we concede that a pipeline approach still offers some advantages over fully-

supervised joint inference. It is easier to find many data sets, each annotated for a single

task, than it is to find a single data set annotated for many. Furthermore, because the output

of previous components is a complete decoded structure (i.e., all uncertainty is lost), it is

easy to construct arbitrarily complex features from these structures with little additional

computational cost. Consider a higher-order dependency parse feature, a feature indicating

the presence of a “grandparent” relation. For a triple of indices, (i, j, k), k is the grand-

parent of i if there exists a j such that j is the parent of i and k is the parent of j. To

incorporate this feature into an SRL model in the pipeline approach, one merely needs to

search the tree produced by the parser component for an appropriate structure. In the joint

model, where the model maintains a belief over syntactic dependencies, modeling this de-

pendency requires an additional set of factors. For every (i, j, k) triple, a ternary NAND
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(the strategy taken in Smith and Eisner (2008)) factor can capture whether the grandparent

relation exists, and this information could be propagated to the SRL model by connecting

these factors to variables in the SRL model. Thus in cases where heavy feature engineering

is beneficial, and many of the features are difficult to efficiently represent in a joint model,

there is some performance benefit to pipelined components. This explains why pipelined

models often outperform joint models in shared task competitions, even ones which are

designed with joint models in mind.

However, our joint models offer competitive performance, and couple it with the unique

ability to leverage end task annotations to induce latent structure for supporting tasks. This

completely removes the need for syntactically annotated data and makes the system robust

to annotation error and domain mismatch between the various training data sets often used

in a pipeline. This is an advantage with potentially far-reaching implications, which may

help bring state-of-the-art NLP to many languages and domains where syntactic annota-

tions are unavailable.

7.1 Future Directions

In this dissertation we present a framework for joint inference with the intent of making

it as general and widely-applicable to other NLP problems as possible. As such, there

are many interesting research directions still to be investigated. We categorize these areas

broadly as exploring upstream, into new latent structure below syntax, downstream, into

applying these methods to new end tasks, and speed, utilizing pruning and coarse-to-fine

strategies to allow for more sophisticated modeling structure.

7.1.1 Additional Latent Linguistic Structure

Of the many areas of formal study within the field of linguistics, not all have shared

in receiving the same degree of attention as syntax. Syntactic information has become a

critical component in many NLP systems, and for many NLP tasks. Its widespread use
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and combinatorial nature motivate our decision to focus on syntax as the latent component

in joint models throughout this dissertation. However, there are many other aspects of

linguistic theory that might be borrowed, and many other structures which might be learned

in an unsupervised manner, in order to improve the performance of NLP systems.

7.1.1.1 Morphology

For morphology, the study of sub-word structure, this may be a very natural transi-

tion. Learning morphology segmentations has received considerable research attention,

with a particular focus given to unsupervised methods, where models are developed from

a cognitive slant. Many of these models are based around the minimum description length

principle: assume a set of data, composed of words types or tokens, and a codebook which

represents it. Representing each type or token as its own entry will have a set cost. The

words “throw”, “throwing”, “throws” would occupy three entries in the codebook. An al-

ternative solution is to break up these words and store substrings. For instance, storing

“throw” as its own entry in the codebook reduces this cost to one, assuming the codebook

already contains the suffixes “+s”, “+ing”, and “+s”. The model prefers smaller code-

books, thus favoring a sparse solution. This is the same intuition underlying Goldwater’s

morphology work, where a Bayesian interpretation of MDL is used (Goldwater, 2006).

This type of model is not particularly well-suited to a factor graph: if the data is rep-

resented as a consecutive string, ranging from 1 ≤ i ≤ n, a segmentation model could

place a boolean variable at each index i, representing the presence of a morphological (or

word) boundary, but all of these variables must then connect to a global factor to impart the

combinatorial MDL constraint. Such a combinatorial factor could also implement a similar

semi-Markov constraint, limiting the size of segmentations, or of particular segment types

(stems, prefixes, suffixes, etc.). However, there are no theoretic hurdles to overcome, and

there are many benefits that could come from transitioning from unsupervised morphology

learning to task-directed morphology learning.
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This is especially true when thinking of NLP outside of English. Morphological repre-

sentations have been shown to be important when parsing morphologically-rich languages.

Similarly, parse information has been shown to guide morphological assignments (Lee

et al., 2011). Morphology has been shown to improve automatic speech recognition quality

in Arabic (Vergyri et al., 2004). It has also been a useful component in MT, both in pre-

processing (Goldwater and McClosky, 2005) and in jointly inferring an alignment model.

Importantly, each of these tasks can be tackled with discriminative end-to-end models, and

are all models where we observe some form of end task supervision, whether it be parse

trees, properly transcribed speech, or parallel text. We can phrase them as a discriminative

joint model where morphological segmentations, and perhaps other structures, are treated

as unobserved variables, and the corresponding parameters learned as to optimize perfor-

mance on the end task. This could also be true of morphological paradigms, which have

already been learned in a fully unsupervised manner (Dreyer and Eisner, 2011), and these

models could be adapted to task-directed training.

7.1.1.2 Orthography and Phonology

Another source of linguistic information which might be accurately captured in a task-

driven manner is phonology. Phonetics is the study of the physical properties of speech

sounds the articulations that produce them, morphology studies the minimal meaningful

linguistic units, and in between the two is phonology, which studies how speech sounds

are categorized internally. For instance, the l sound (as at the start of linguistics) and the

r sound (as in rule) are indistinguishable most Japanese native speakers, as the phonology

of Japanese maps the physical sound associated with each to the same internal unit, knows

as phoneme.

Just as humans internalize the speech stream as a sequence of phonemes, a computa-

tional model could learn a latent clustering of observed speech sounds. This latent struc-

ture could be constrained according to phonological theory. For instance, previous work
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has marginalized hidden metrical structures (Naradowsky et al., 2010), and a rich latent

phonological structure (including morae, syllable structure, and stress) could be modeled

and marginalized over to aid in tasks like speech recognition or speech-to-speech machine

translation.

But phonological theory is not entirely limited to speech processing, and even text bears

artifacts of phonological processes. In English there are many predictable orthographic

transformations, often mimicking phonological transformations. For instance, when the

word bet is the basis of a gerund, formed by adding the +ing suffix, the ‘t’ is duplicated.

Systems that attempt to reduce words to their stems or lemmas need to capture this kind of

information to perform well. Naradowsky and Goldwater (2009) show that this information

can be induced in an unsupervised manner jointly with morphological segmentations, but it

could also be induced in a task-directed manner guided by the annotations of a downstream

task.

7.1.2 Exploring New End Tasks

In this thesis we have explored many potential end tasks, including part-of-speech tag-

ging, named entity recognition, relation extraction, and semantic role labeling. Still, there

are many other tasks which typically rely upon syntax and syntactic features to achieve

state-of-the-art performance, and could potentially benefit from our approach. Here we

will detail one such task, disfluency detection, but others may include machine translation

or natural language generation.

In all tasks presented in this dissertation, the input is text, and is pre-processed to re-

move many of the noise, errors, and back-tracking found in natural human speech. Consider

the sentence:

I want to uh book a flight to Boston , uh , I mean to New York
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The speaker’s intention is to inform the listener of his desire to fly to New York, but a

performance error causes him to mistakenly replace “New York” with “Boston”. What we

observe is a common pattern in disfluent speech: an error is made (the reparandum), a noise

or phrase indicates the desire to backtrack (the interregnum, “uh, I mean”), and the speaker

ultimately substitutes the correct phrase (the repair). There is a long research history study-

ing disfluent speech, and many characteristics which could serve as the basis of a modeling

constraint. For our purposes, a disfluency has syntactic and semantic dependencies which

can be modeled in our factor graph framework.

In terms of syntax, the connections between model variables might be similar to that

of the joint named entity model of Chapter 4. However, the right edge of the reparandum

may have uniquely important cues, as the abrupt speech error leaves a constituent fragment

whose left side is typical and whose right side is unusual. Our feature-rich discriminative

parser may be able to cope well with identifying these spans.

Often a subset of the words in the reparandum are semantically related to the a subset

of the words in the repair, or serve similar syntactic functions. We can model this simi-

larity through decomposition. Intuitively the degree to which a span is similar to another

is the degree to which its subspans are similar to subspans in the opposing span. For span

(7,9), to Boston, and span (14,17), to New York, the similarity measure could be taken as

the sum or max of all possible alignments between subspans. Span (7,8) and (14,15) are

identical, contributing a high similarity score. Spans (8,9) and (15,17) are both places, and

this could either be learned in a supervised manner, or through clustering or distributional

cues in training data or additional raw text. This is the intuition behind previous approaches

(Johnson and Charniak, 2004), but instead of modeling the similarity with a tree-adjoining

grammar, the alignment could be decomposed and expressed in terms of (hard) logic fac-

tors. In the complete joint model, syntax could be marginalized over to improve disfluency

detection, or disfluencies could be marginalized over to improve parsing.
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7.1.3 Incorporation of Approximate or Pruned Approaches to Inference

In this work we have focused primarily on demonstrating the effectiveness of joint in-

ference and its use in inducing task-directed latent syntactic structure. However, it has

become apparent throughout the course of this work that the efficiency of inference and

training, though not our primary concern, may warrant additional attention. In general we

believe our architecture has many advantageous properties in this area. Adding factors to

the model increases the complexity of belief propagation inference additively (instead of

multiplicatively), less tractable model structures can be replaced with combinatorial fac-

tors, and training can be performed in an online manner. Yet, the training time for the

latent syntax models on larger data sets can be exorbitant. For the English and Chinese

data sets for the SRL task, training can easily exceed a week’s worth of time.

Thus an important area of future research would seek to perform inference and training

more efficiently. Many of the procedures for this have already been outlined. In terms of

training, there are limited ways in which to improve significantly upon stochastic gradient

descent. Parallelism is difficult in online methods, and while it has been suggested that

parameter updates can be done in an entirely non-locking manner (Hogwild!, Recht et al.

(2011)) we are limited in the number of cores readily available (16 cores) and we do find

small performance drops in preliminary experimentation with this method. Parallelism

during inference (parallelism in message computation) could also be a viable method for

improving efficiency.

Another approach is to limit the number of model parameters by hashing features into

a lower dimensional space. Here we find significant improvements in speed with little

performance degradation in many of the fully supervised models, but more notable per-

formance loss when hashing models with latent structure. Additionally, in the supervised

case features which do not appear on correct structures can be removed, but this cannot be

exploiting in the unsupervised case. There may be ways to similarly prune this space (one

could use frequency as a simple criterion).
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A promising approach to drastically speeding up inference is to construct the graph in-

crementally. This can be done in many ways, but most involve first constructing a coarse-

grained or simplified version of the full graph. The usefulness of new factors and variables

is then scored, and structure that meets a given criterion is added to the graph. Riedel

and Smith (2010) present one method, relaxed marginal inference, where KL divergence

is used to score candidate factors. For dependency parsing (second order models) this

approach resulted in a ten-fold increase in inference speed. Similarly, delayed row and col-

umn generation (Riedel et al., 2012) provides another approach to selectively constructing

the graph, with guarantees of optimality. A phrase structure parser could have as its sim-

plest model an unlabeled parser, adding labeling components for a select set of brackets,

and adding a sparse set of rules over select constituent labels. A tagger might begin by

tagging with a coarse tagset, add variables representing a subset of fine tags (or variable

values in the multinomial case), before adding connections to other morphological tag vari-

ables, or to syntactic dependencies. One might also leverage this technique to build models

that go beyond the sentence level, performing parsing, relation extraction, or semantic role

labeling over paragraphs or small documents.

The opposite may also be true: inference could start by operating on the full graph, and

nodes may be selectively removed once their beliefs have converged to reduce the number

of messages which must be calculated. Many joint models couple just two tasks, but Singh

et al. (2013b) present a joint model of three – named entity labeling (where boundaries are

already identified), relation extraction, and coreference. To reduce the speed of inference,

variables whose beliefs are sufficiently close to 1 or 0 are pushed to the nearest value.

Factors which connect only fixed variables can be removed from future computations.

There is a vast space of possible directions to take this in which might result in improved

efficiency, but the importance of this improvement is to incorporate additional modeling

structure. As we observe in the SRL models, both syntactic structure and valency modeling

improve SRL performance. However, inference becomes too slow to train models with both
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for the same number of iterations on all but the smallest of CoNLL data sets. While we

have not yet achieved state-of-the-art results in the SRL scores we present, it is possible that

we have already presented state-of-the-art models. Further exploration into more efficient

inference techniques may serve to verify this, and provide more compelling evidence for

joint inference over pipelined approaches with heavy feature engineering.

7.2 Final Thoughts

Language is a trait unique to our species, and we excel at the acquisition and under-

standing of language to a degree not yet matched by the most powerful computers or the

most sophisticated algorithms. Part of the explanation for our proficiency in all aspects of

language processing is our ability to integrate linguistic information from varying sources.

A misinterpreted word, an incorrect attachment, or a phrase out of context are potential

sources of errors which consistently cause NLP systems to fail, but rarely pose any signifi-

cant problem to the human listener. It stands to reason that computational models will also

require this ability in order to succeed at mastering language processing.

What will these models of the future look like? How will they be trained? In such a

fast-paced field it is too early to even begin to answer these questions, but in this thesis we

have attempted to push the current state-of-the-art toward this vision of integrated language

processing. It is exceedingly unlikely that we will ever have annotations to train interme-

diary models, like syntax, for all the domains and languages which we hope will benefit

from state-of-the-art NLP systems. By utilizing the error signal of end task annotations,

we aim to reduce the annotation burden associated with joint inference, and eliminate the

possibility of training data that is poorly matched in domain or style. We believe this work

serves as both a proof of concept of this approach and an outline of a flexible architecture

for future exploration into ever more complex, ever more practical joint models.
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