3 research outputs found

    An object-oriented model for adaptive high-performance computing on the computational GRID

    Get PDF
    The dissertation presents a new parallel programming paradigm for developing high performance (HPC) applications on the Grid. We address the question "How to tailor HPC applications to the Grid?" where the heterogeneity and the large scale of resources are the two main issues. We respond to the question at two different levels: the programming tool level and the parallelization concept level. At the programming tool level, the adaptation of applications to the Grid environment consists of two forms: either the application components should somehow decompose dynamically based on the available resources; or the components should be able to ask the infrastructure to select automatically the suitable resources by providing descriptive information about the resource requirements. These two forms of adaptation lead to the parallel object model on which resource requirements are integrated into shareable distributed objects under the form of object descriptions. We develop a tool called ParoC++ that implements the parallel object model. ParoC++ provides a comprehensive object-oriented infrastructure for developing and integrating HPC applications, for managing the Grid environment and for executing applications on the Grid. At the parallelization concept level, we investigate the parallelization scheme which provides the user a method to express the parallelism to satisfy the user specified time constraints for a class of problems with known (or well-estimated) complexities on the Grid. The parallelization scheme is constructed on the following two principal elements: the decomposition tree which represents the multi-level decomposition and the decomposition dependency graph which defines the partial order of execution within each decomposition. Through the scheme, the parallelism grain will be automatically chosen based on the available resources at run-time. The parallelization scheme framework has been implemented using the ParoC++. This framework provides a high level abstraction which hides all of the complexities of the Grid environment so that users can focus on the "logic" of their problems. The dissertation has been accompanied with a series of benchmarks and two real life applications from image analysis for real-time textile manufacturing and from snow simulation and avalanche warning. The results show the effectiveness of ParoC++ on developing high performance computing applications and in particular for solving the time constraint problems on the Grid

    Fault-tolerant dynamic parallel schedules

    Get PDF
    Dynamic Parallel Schedules (DPS) is a high-level framework for developing parallel applications on distributed memory computers such as clusters of PCs. DPS applications are defined by using directed acyclic flow graphs composed of user-defined operations. These operations derive from basic concepts provided by the framework: split, merge, leaf and stream operations. Whereas a simple parallel application can be expressed with a split-leaf-merge sequence of operations, flow graphs of arbitrary complexity can be created. DPS provides run-time support for dynamically mapping flow graph operations onto the nodes of a cluster. The flow graph based application description used in DPS allows the framework to offer many additional features, most of these transparently to the application developer. In order to maximize performance, DPS applications benefit from automatic overlapping of computations and communications and from implicit pipelining. The framework provides simple primitives for flow control and load balancing. Applications can integrate flow graph parts provided by other applications as parallel components. Since the mapping of DPS applications to processing nodes can be dynamically changed at runtime, DPS provides a basis for developing malleable applications. The DPS framework provides a complete fault tolerance mechanism based on the dynamic mapping capabilities, ensuring continued execution of parallel applications even in the presence of multiple node failures. DPS is provided as an open-source, cross-platform C++ library allowing DPS applications and services to run on heterogeneous clusters

    GRID superscalar: a programming model for the Grid

    Get PDF
    Durant els darrers anys el Grid ha sorgit com una nova plataforma per la computació distribuïda. La tecnologia Gris permet unir diferents recursos de diferents dominis administratius i formar un superordinador virtual amb tots ells. Molts grups de recerca han dedicat els seus esforços a desenvolupar un conjunt de serveis bàsics per oferir un middleware de Grid: una capa que permet l'ús del Grid. De tota manera, utilitzar aquests serveis no és una tasca fácil per molts usuaris finals, cosa que empitjora si l'expertesa d'aquests usuaris no està relacionada amb la informàtica.Això té una influència negativa a l'hora de que la comunitat científica adopti la tecnologia Grid. Es veu com una tecnologia potent però molt difícil de fer servir. Per facilitar l'ús del Grid és necessària una capa extra que amagui la complexitat d'aquest i permeti als usuaris programar o portar les seves aplicacions de manera senzilla.Existeixen moltes propostes d'eines de programació pel Grid. En aquesta tesi fem un resum d'algunes d'elles, i podem veure que existeixen eines conscients i no-conscients del Grid (es programen especificant o no els detalls del Grid, respectivament). A més, molt poques d'aquestes eines poden explotar el paral·lelisme implícit de l'aplicació, i en la majoria d'elles, l'usuari ha de definir aquest paral·lelisme de manera explícita. Una altra característica que considerem important és si es basen en llenguatges de programació molt populars (com C++ o Java), cosa que facilita l'adopció per part dels usuaris finals.En aquesta tesi, el nostre objectiu principal ha estat crear un model de programació pel Grid basat en la programació seqüencial i els llenguatges més coneguts de la programació imperativa, capaç d'explotar el paral·lelisme implícit de les aplicacions i d'accelerar-les fent servir els recursos del Grid de manera concurrent. A més, com el Grid és de naturalesa distribuïda, heterogènia i dinàmica i degut també a que el nombre de recursos que pot formar un Grid pot ser molt gran, la probabilitat de que es produeixi una errada durant l'execució d'una aplicació és elevada. Per tant, un altre dels nostres objectius ha estat tractar qualsevol tipus d'error que pugui sorgir durant l'execució d'una aplicació de manera automàtica (ja siguin errors relacionats amb l'aplicació o amb el Grid). GRID superscalar (GRIDSs), la principal contribució d'aquesta tesi, és un model de programació que assoleix elsobjectius mencionats proporcionant una interfície molt petita i simple i un entorn d'execució que és capaç d'executar en paral·lel el codi proporcionat fent servir el Grid. La nostra interfície de programació permet a un usuari programar una aplicació no-conscient del Grid, amb llenguatges imperatius coneguts i populars (com C/C++, Java, Perl o Shell script) i de manera seqüencial, per tant dóna un pas important per ajudar als usuaris a adoptar la tecnologia Grid.Hem aplicat el nostre coneixement de l'arquitectura de computadors i el disseny de microprocessadors a l'entorn d'execució de GRIDSs. Tal com es fa a un processador superescalar, l'entorn d'execució de GRIDSs és capaç de realitzar un anàlisi de dependències entre les tasques que formen l'aplicació, i d'aplicar tècniques de renombrament per incrementar el seu paral·lelisme. GRIDSs genera automàticament a partir del codi principal de l'usuari un graf que descriu les dependències de dades en l'aplicació. També presentem casos d'ús reals del model de programació en els camps de la química computacional i la bioinformàtica, que demostren que els nostres objectius han estat assolits.Finalment, hem estudiat l'aplicació de diferents tècniques per detectar i tractar fallades: checkpoint, reintent i replicació de tasques. La nostra proposta és proporcionar un entorn capaç de tractar qualsevol tipus d'errors, de manera transparent a l'usuari sempre que sigui possible. El principal avantatge d'implementar aquests mecanismos al nivell del model de programació és que el coneixement a nivell de l'aplicació pot ser explotat per crear dinàmicament una estratègia de tolerància a fallades per cada aplicació, i evitar introduir sobrecàrrega en entorns lliures d'errors.During last years, the Grid has emerged as a new platform for distributed computing. The Grid technology allows joining different resources from different administrative domains and forming a virtual supercomputer with all of them.Many research groups have dedicated their efforts to develop a set of basic services to offer a Grid middleware: a layer that enables the use of the Grid. Anyway, using these services is not an easy task for many end users, even more if their expertise is not related to computer science. This has a negative influence in the adoption of the Grid technology by the scientific community. They see it as a powerful technology but very difficult to exploit. In order to ease the way the Grid must be used, there is a need for an extra layer which hides all the complexity of the Grid, and allows users to program or port their applications in an easy way.There has been many proposals of programming tools for the Grid. In this thesis we give an overview on some of them, and we can see that there exist both Grid-aware and Grid-unaware environments (programmed with or without specifying details of the Grid respectively). Besides, very few existing tools can exploit the implicit parallelism of the application and in the majority of them, the user must define the parallelism explicitly. Another important feature we consider is if they are based in widely used programming languages (as C++ or Java), so the adoption is easier for end users.In this thesis, our main objective has been to create a programming model for the Grid based on sequential programming and well-known imperative programming languages, able to exploit the implicit parallelism of applications and to speed them up by using the Grid resources concurrently. Moreover, because the Grid has a distributed, heterogeneous and dynamic nature and also because the number of resources that form a Grid can be very big, the probability that an error arises during an application's execution is big. Thus, another of our objectives has been to automatically deal with any type of errors which may arise during the execution of the application (application related or Grid related).GRID superscalar (GRIDSs), the main contribution of this thesis, is a programming model that achieves these mentioned objectives by providing a very small and simple interface and a runtime that is able to execute in parallel the code provided using the Grid. Our programming interface allows a user to program a Grid-unaware application with already known and popular imperative languages (such as C/C++, Java, Perl or Shell script) and in a sequential fashion, therefore giving an important step to assist end users in the adoption of the Grid technology.We have applied our knowledge from computer architecture and microprocessor design to the GRIDSs runtime. As it is done in a superscalar processor, the GRIDSs runtime system is able to perform a data dependence analysis between the tasks that form an application, and to apply renaming techniques in order to increase its parallelism. GRIDSs generates automatically from user's main code a graph describing the data dependencies in the application.We present real use cases of the programming model in the fields of computational chemistry and bioinformatics, which demonstrate that our objectives have been achieved.Finally, we have studied the application of several fault detection and treatment techniques: checkpointing, task retry and task replication. Our proposal is to provide an environment able to deal with all types of failures, transparently for the user whenever possible. The main advantage in implementing these mechanisms at the programming model level is that application-level knowledge can be exploited in order to dynamically create a fault tolerance strategy for each application, and avoiding to introduce overhead in error-free environments
    corecore