
THÈSE NO 3079 (2004)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut des systèmes informatiques et multimédias

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Bachelor of Computer Sciences, University of Technology, Ho-Chi-Minh city, Viêt-Nam
et de nationalité vietnamienne

acceptée sur proposition du jury:

Prof. G. Coray, directeur de thèse
Prof. B. Chopard, rapporteur

Dr P. Kuonen, rapporteur
Prof. R. Perrot, rapporteur

Prof. J.-P. Thiran, rapporteur

Lausanne, EPFL
2005

AN OBJECT-ORIENTED MODEL FOR ADAPTIVE
HIGH-PERFORMANCE COMPUTING ON

THE COMPUTATIONAL GRID

Tuan Anh NGUYEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The dissertation presents a new parallel programming paradigm for developing high per-
formance (HPC) applications on the Grid. We address the question ”How to tailor HPC
applications to the Grid?” where the heterogeneity and the large scale of resources are the
two main issues. We respond to the question at two different levels: the programming tool
level and the parallelization concept level.

At the programming tool level, the adaptation of applications to the Grid environment
consists of two forms: either the application components should somehow decompose dy-
namically based on the available resources; or the components should be able to ask the
infrastructure to select automatically the suitable resources by providing descriptive infor-
mation about the resource requirements. These two forms of adaptation lead to the parallel
object model on which resource requirements are integrated into shareable distributed objects
under the form of object descriptions. We develop a tool called ParoC++ that implements
the parallel object model. ParoC++ provides a comprehensive object-oriented infrastructure
for developing and integrating HPC applications, for managing the Grid environment and for
executing applications on the Grid.

At the parallelization concept level, we investigate the parallelization scheme which pro-
vides the user a method to express the parallelism to satisfy the user specified time constraints
for a class of problems with known (or well-estimated) complexities on the Grid. The paral-
lelization scheme is constructed on the following two principal elements: the decomposition
tree which represents the multi-level decomposition and the decomposition dependency graph
which defines the partial order of execution within each decomposition. Through the scheme,
the parallelism grain will be automatically chosen based on the available resources at run-
time. The parallelization scheme framework has been implemented using the ParoC++. This
framework provides a high level abstraction which hides all of the complexities of the Grid
environment so that users can focus on the ”logic” of their problems.

The dissertation has been accompanied with a series of benchmarks and two real life
applications from image analysis for real-time textile manufacturing and from snow simula-
tion and avalanche warning. The results show the effectiveness of ParoC++ on developing
high performance computing applications and in particular for solving the time constraint
problems on the Grid.

A

Résumé

Cette thèse présente un nouveau paradigme pour le développement d’applications de calcul
de haute performance (HPC : High Performance Computing) dans des environnements de
type GRILLE (GRID). Nous nous intéressons plus particulièrement à adapter les applications
HPC à des environnements où le nombre et l’hétérogénéités des ressources est importantes
comme c’est le cas pour la GRILLE. Nous attaquons ce problème sur deux niveaux : au
niveau des outils de programmation et au niveau du concept de parallélisme.

En ce qui concerne les outils de programmation, l’adaptation à des environnements de
type GRILLE est de deux formes : les composants de l’applications doivent, d’une manière
ou d’une autre, se décomposer dynamiquement en fonction des ressources disponibles et
les composants doivent être capables de demander à l’infrastructure disponible de choisir
automatiquement des ressources adaptées à leur besoin; pour cela elles doivent être capables
de décrire leur besoin en terme de ressources nécessaires. Ces deux formes d’adaptation nous
ont conduit à un modèle d’objets parallèles. Grâce à ce modèle nous pouvons exprimer les
exigences en terme de ressources sous la forme de descriptions d’objets intégrées dans un
modèle d’objets distribués partageables. Nous avons développé un outil appelé ParcoC++
qui implémente le modèle des objets parallèles. ParoC++ fourni l’infrastructure nécessaire
pour développer et intégrer des applications HPC, pour gérer un environnement GRID afin
d’exécuter une telle application.

Au niveau du concept de parallélisme, nous avons introduit la notion de schéma de par-
allélisation (parallelization scheme) qui fourni à l’utilisateur un moyen d’exprimer le par-
allélisme afin de satisfaire à des contraintes de temps d’exécution pour des problèmes dont
la complexité est connue ou peut être estimée. La notion de schéma de parallélisation est
construite sur les principes suivants : l’arbre de décomposition qui représente les différents
niveaux de décomposition du problème et le graphe de dépendance de la décomposition qui
défini un ordre partiel d’exécution pour une décomposition donnée. Grâce à ces notions nous
pouvons automatiquement adapter le grain du parallélisme aux ressources choisies au mo-
ment de l’exécution. A l’aide de ParoC++ nous avons réalisé un environnement intégrant la
notion de schéma de parallélisation. Cet environnement fourni un haut niveau d’abstraction
qui cache à l’utilisateur la complexité de la GRILLE de manière à ce qu’il puisse se concentrer
sur la ” logique ” de son problème.

Pour valider notre environnement, nous avons effectué une série de tests de performance
et nous l’avons utilisé pour réaliser deux grosses applications : une application industrielle
dans le domaine du traitement d’image et une application pour la recherche dans le domaine
de la prédiction des avalanches. Les résultats montrent que ParoC++ est un outil adéquat
pour le développement d’applications HPC ayant des contraintes de temps d’exécution et
s’exécutant sur une GRILLE.

C

Acknowledgements

Five-year studying and working in Switzerland has been the source of great pleasure for me
and I would like to acknowledge the people who helped and supported me during this period.

I am most indebted to Professor Giovanni Coray and Professor Pierre Kuonen for their
valuable guidance and encouragement. Their vision, their creativeness, their enthusiasm and
their personalities have inspired my life and my research. I am also grateful to them for
giving me complete freedom in my research work although they have always been there to
help me when necessary; giving me a huge support since the first day I was in Switzerland.
Working with them is extremely enjoyable and rewarding experience.

One of the most beautiful experiences of my research in Switzerland is traveling and
working on different projects where I met great people from different fields of science. I
express my gratitude to Professor Jean-Philippe Thiran for his help and his guidance in the
field of image processing. I am thankful Prof. Bastien Chopard for his precious comments to
improve the quality of text of the thesis. I am also thankful to Dr. Michael Lehning for his
comments and his help in my work. I learn from him about the snow process and the snow
research which I would never experience in Vietnam.

The Department of Information Technology at the Ho Chi Minh city University of Tech-
nology is the place where I have had long time studying and working. I express my gratitude
to professors and colleagues of the department for their help and their collaboration. In par-
ticular, I am greatly thankful to Professor Nguyen Thanh Son and Professor Phan Thi Tuoi
who have encouraged and guided me on my research career.

My first two years in Switzerland was supported by a scholarship from the Swiss Federal
Commission for Scholarships. I gratefully acknowledge them for giving me an opportunity to
study and to know about the people and the country of Switzerland.

I appreciate my friends and colleagues at EIA-FR for their generous support, especially
Jean-François Roche and Dominik Stankowski. I have the company of many people during
this period. I also take this opportunity to thank them for their fruitful friendship and their
help. In particular, I am thankful to Nguyen Ngoc Anh Vu, Cao Thanh Thuy, Nguyen Ngoc
Tuan, Vo Duc Duy, Vu Xuan Ha, Le Lam Son, Le Quan, Vu Minh Tuan and Do Tra My for
their great encouragement and support.

I owe deeply my parents, my grand father and my sister. They are always a bright light
of my life and I would like to dedicate this dissertation to them as a gift for their constant
support and encouragement.

E

Contents

Abstract A

Résumé C

Acknowledgements E

Table of Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the dissertation . 2

1.2.1 The parallel object model and the ParoC++ system 2
1.2.2 Parallelization scheme for problems with time constraints 3

1.3 Dissertation outline . 4

I State-of-the-art and the parallel object model 5

2 Background and related work 7
2.1 The computational Grid . 7

2.1.1 Grid definition . 7
2.1.2 Domains of Grid computing . 8
2.1.3 Challenges . 9
2.1.4 Grid evolution . 10
2.1.5 Grid supporting tools . 11

2.1.5.1 Globus Toolkit . 11
2.1.5.2 Legion toolkit . 11

2.2 Programming models . 12
2.2.1 Message passing model . 13
2.2.2 Distributed shared memory . 14
2.2.3 Bulk synchronous parallel . 15
2.2.4 Object-oriented models . 16

2.2.4.1 Language approach . 17
2.2.4.2 Supporting tool approach . 18

i

ii CONTENTS

2.3 Requirements for high performance Grid applications 18
2.3.1 New vision: from resource-centric to service-centric 18
2.3.2 Application adaptation . 19

2.4 Summary . 19

3 Parallel object model 21
3.1 Introduction . 21
3.2 Parallel object model . 21
3.3 Shareable parallel objects . 22
3.4 Invocation semantics . 23
3.5 Parallel object allocation . 25
3.6 Requirement-driven parallel objects . 25
3.7 Summary . 26

4 Parallelization scheme 29
4.1 Introduction . 29
4.2 Parallelization scheme . 29
4.3 Solving time constrained problems . 34

4.3.1 Problem statement . 34
4.3.2 Algorithm . 35

4.4 Time constraints in the decomposition tree 36
4.4.1 Algorithm to find the sequential diagram 36
4.4.2 Time constraints of sub-problems . 38

4.5 Summary . 39

II The ParoC++ Programming System 41

5 Parallel object C++ 43
5.1 ParoC++ programming language . 43

5.1.1 ParoC++ parallel class . 43
5.1.2 Object description . 44

5.2 Parallel object manipulation . 45
5.2.1 Parallel object creation and destruction 45
5.2.2 Inter-object communication: method invocation 46
5.2.3 Intra-object communication: shared data vs. event sub-system 47
5.2.4 Mutual exclusive execution . 48
5.2.5 Exception support . 49

5.3 ParoC++ compiler . 50
5.4 Putting together . 50

5.4.1 Programming . 51
5.4.2 Compiling . 52
5.4.3 Running . 53

5.5 Summary . 54

CONTENTS iii

6 Data intensive computing in ParoC++ 55
6.1 Introduction . 55
6.2 Data access with ParoC++ . 56

6.2.1 Passive data access . 56
6.2.2 Data Prediction . 58
6.2.3 Partial data processing . 58
6.2.4 Data from multiple sources . 59

6.3 Summary . 59

7 ParoC++ runtime architecture 61
7.1 Overview . 61
7.2 ParoC++ execution model . 61
7.3 Essential ParoC++ services . 63
7.4 ParoC++ code manager service . 65
7.5 ParoC++ remote console service . 67
7.6 Resource discovery . 67

7.6.1 Overview . 67
7.6.2 ParoC++ resource discovery model . 69

7.6.2.1 Information organization . 69
7.6.2.2 Resource connectivity . 70
7.6.2.3 Resource discovery algorithm 71

7.6.3 Access to the ParoC++ resource discovery service 73
7.7 ParoC++ object manager . 74

7.7.1 Launching the parallel object . 74
7.7.2 Resource monitor . 75

7.8 Parallel object creation . 76
7.9 Fault tolerance of the ParoC++ services . 77

7.9.1 Fault tolerance on the resource discovery 77
7.9.2 Fault tolerance on the object manager service 78

7.10 ParoC++ as a glue of Grid toolkits . 79
7.10.1 Globus toolkit integration . 80

7.10.1.1 Application scope service for Globus 80
7.10.1.2 Resource discovery service for Globus 80
7.10.1.3 Object manager service for Globus 81
7.10.1.4 Interaction of Globus-based ParoC++ services 81

7.11 Summary . 82

8 ParoC++ for solving problems with time constraints 85
8.1 The Framework . 85
8.2 Expressing time constrained problem . 85

8.2.1 Creating the parallelization scheme . 86
8.2.2 Setting up the time constraint . 87
8.2.3 Instantiating the solution . 88
8.2.4 Executing the parallelization scheme 89

8.3 Elaborate the skeleton to the user’s problem 89
8.4 Summary . 91

iv CONTENTS

III Experiments 93

9 Experiments 95
9.1 Introduction . 95
9.2 ParoC++ benchmark: communication cost 95
9.3 Matrix multiplication . 96
9.4 Time constraints in a Grid-emulated environment 99

9.4.1 Emulating Grid environments . 99
9.4.2 Building the parallelization scheme . 100
9.4.3 Time constraints vs. execution time 101

9.5 Summary . 102

10 Test case 1: Pattern and defect detection system 103
10.1 System overview . 103
10.2 The algorithms . 104
10.3 The parallelization . 104
10.4 Experiment results . 105

10.4.1 Computation speed . 105
10.4.2 Adaptation . 106

10.5 Summary . 107

11 Test case 2: Snow modeling, runoff and avalanche warning 109
11.1 Introduction . 109
11.2 Overall structure of Alpine3D . 111
11.3 Parallelization of the software . 111

11.3.1 First part: Coupling modules . 113
11.3.2 Second part: parallelization inside modules 114

11.4 Experiment results . 116
11.5 Summary . 118

12 Test case 3: Time constraints in Pattern and Defect Detection System 121
12.1 Algorithms . 121
12.2 The parallelization scheme construction . 121
12.3 The results . 124
12.4 Summary . 126

13 Conclusion 127

A Genetic algorithm for the Min-Max problem 129
A.1 The Algorithm . 129
A.2 Experimental results . 131

Bibliography 133

List of Figures

2.1 Service architecture in GT3: OGSA defines the service semantics, the standard
interfaces and the binding protocol that is independent of the programming
model that implements the service in the hosting environment 12

3.1 A usage scenario of shareable objects in the master-worker model 23
3.2 Object-side invocation semantics when several other objects (O1, O2) invoke

a method on the same object (O3) . 24

4.1 Decomposition Tree . 30
4.2 Decomposition Dependency Graph . 31
4.3 Decomposition cuts . 32
4.4 The decomposition dependency graph and its corresponding sequential diagram 37

5.1 ParoC++ exception handling: PC1 makes a method call to object O on PC2.
The exception occurred on PC2 will be handled on PC1 with the pair ”try”
and ”catch” on PC1 . 49

5.2 ParoC++ compilation process . 50
5.3 ParoC++ example: parallel class declaration 51
5.4 ParoC++ example: parallel object implementation 52
5.5 ParoC++ example: the main program . 53
5.6 Three objects ”O1”, ”O2” and ”main” are executed in separated memory

address spaces. The execution of ”o1.Add(o2)” as requested by ”main” . . . 54

6.1 Passive data access illustration . 57
6.2 Passive data access in ParoC++ . 58

7.1 ParoC++ as the glue of low level Grid toolkits 62
7.2 ParoC++ layer architecture . 63
7.3 Global services and application scope services in ParoC++. Users create ap-

plication scope services. Global services access application scope services to
perform application specific tasks. 64

7.4 Example of an object configuration file . 66
7.5 A recommended initial resource connectivity. During the resource discovery

process, the master might not be necessary due to the learning of local resources. 71
7.6 Parallel object creation process . 77
7.7 Resource graph partitioning due to failures 78
7.8 Interaction of Globus-based ParoC++ services during a parallel object creation 81

v

vi LIST OF FIGURES

8.1 The UML class diagram of the framework . 86
8.2 Example of constructing a parallelization scheme using the framework 87
8.3 Initializing the parallelization scheme . 88

9.1 Parallel object communication cost . 96
9.2 Matrix multiplication speed up on Linux/Pentium 4 machines 97
9.3 Initialization part: distributing of one matrix to all other Solvers (workers) . 98
9.4 Computation part: each Solver (worker) will request for A-rows from the data

source (master) and performs the multiplication 98
9.5 Initial topology of the environment . 99
9.6 Distribution of computing power of heterogeneous resources 100
9.7 Decomposition Dependency Graph for each decomposition step 100
9.8 Emulation results with different time constraints 102

10.1 Overview of the Forall system for tissue manufacturing 103
10.2 PDDS algorithm . 104
10.3 ParoC++ implementation of PDDS . 105
10.4 Speed up of PDDS implemented using ParoC++ with active data access mode 106
10.5 Passive access vs. direct access in PDDS . 106
10.6 Adaptation to the external changes . 107

11.1 A complex system of snow development(source: M. Lehning et al., SLF-Davos) 109
11.2 Model coupling for studying snow formation and avalanche warning 110
11.3 The overall architecture of Alpine3D . 112
11.4 UML class diagram of parallel and sequential objects in the parallel version of

Alpine3D . 113
11.5 The data flow between SnowPack, SnowDrift and EnergyBalance during a

simulation time step . 114
11.6 Coupling Alpine3D modules using ParoC++ 115
11.7 Parallelization inside the SnowDrift module 116
11.8 UML sequence diagram of the parallel snowdrift computation 117
11.9 Parallel snow development simulation of 120 hours 118

12.1 Decomposition tree: dividing the image to sub-images 122
12.2 The parallel object diagram . 122
12.3 The time constraint vs. the actual computation time 125

A.1 Mutation operation . 130
A.2 Crossover operation between two individuals 130

List of Tables

7.1 Standard information types of resource . 70

A.1 Genetic Algorithm on Simple Data Set . 131
A.2 Genetic Algorithm on Complex Data Set . 131

vii

Chapter 1

Introduction

1.1. Motivation

Parallel high performance computing has been an active subject of research during the last
decades. With the development of microprocessor techniques and later the rapid growth
of the Internet, the purpose and the methodology of high performance computing (HPC)
have been changed. Old fashion HPC applications built on high-cost, high-power consump-
tion and special purpose systems start to be replaced by applications running on low-cost,
highly integrated, high-speed processors and fast Ethernet and/or Internet communications.
Computing power is not any more centralized but it is rather geographically distributed on
the Internet. Grid computing, a new concept, is emerged by coordinating HPC computing
and data resources (computers, supercomputers, workstations, storage,. . .) over the world
to form a world-scale virtual supercomputer. This will lead to the need to build new system
software, tools to support: multi-level parallelism, large scale HPC applications with com-
plex data structures, complex, dynamic, volatile and unpredictable environments with high
heterogeneity.

The emerging of computational grid [29, 31] and the rapid growth of the Internet technol-
ogy have created new challenges for application programmers and system developers. Spe-
cial purpose massively parallel systems are being replaced by loosely coupled or distributed
general-purpose multiprocessor systems with high-speed network connections. Due to the
natural difficulty of the new distributed environment, the programming methodologies that
have been used before need to be rethought.

Many system-level toolkits such as Globus [28], Legion [38] have been developed to manage
the complexity of the distributed computational environment. They provide services such as
resource allocation, information discovery, user authentication, etc. However, since the user
must deal directly with the computational environment, developing applications using such
tools still remains tricky and time consuming.

At the programming level, there still exists the question of achieving high performance

1

2 Introduction

computing (HPC) in a widely distributed heterogeneous computational environment. Some
efforts have been spent for porting existing tools such as Mentat Programming Language
(MPL) [41], MPI [27] to the computational grid environment. Nevertheless, the support for
adaptive usage of resources is still limited in some specific services such as network band-
width and real-time scheduling. MPICH-GQ [69], for example, uses quality of service (QoS)
mechanisms to improve performance of message passing. However, message passing is a quite
low-level library that the user has to explicitly specify the send, receive and synchronization
between processes and most of parallelization tasks are left to the programmer.

The above difficulties lead to a quest for a new programming paradigm and a new pro-
gramming model for developing HPC applications on the Grid. We will go a step further
to develop a parallelization model that allows the user to tackle time constrained problems-
problems that require the solution be obtained within a user specified time interval.

1.2. Contributions of the dissertation

This dissertation addresses the question: ”How to tailor applications with a desired perfor-
mance to the Grid?”. The answer is obtained at two different levels, following the meaning of
”desired performance”: the low-level performance in which the desired overall performance
is constituted by the desired performance of different application components; and the high-
level performance in which the user requests explicitly the overall application performance in
terms of the required computation time.

The main contributions of this dissertation are: a requirement-driven object-oriented

model to address the low-level performance of application components for the Grid; the

parallelization scheme to solve time constrained problems on the Grid; and the ParoC++

tool which provides a new programming paradigm based on the object-oriented model for
the Grid.

1.2.1. The parallel object model and the ParoC++ system

The contributions in this part include:

• The parallel object model that generalizes the traditional sequential object model by
adding the resource requirements, different method invocation semantics, remote dis-
tribution and transparent resource allocation to each parallel object. Parallel object
provides a new programming paradigm for high performance computing applications.
According to the model, parallel objects are the elemental processing units of the ap-
plication.

• ParoC++ programming language that extends C++ to support the parallel object
model. ParoC++ adds some extra keywords to C++ allowing the programmer to
implement:

1.2 Contributions of the dissertation 3

– Parallel object classes.

– Object descriptions (ODs) that describe the resource requirements for each parallel
object. OD is used to address the application adaptation to the heterogeneous
environment.

– The inter-object and intra-object communication.

– The concurrency control mechanism inside each parallel object.

– Exception mechanism for distributed parallel objects.

• ParoC++ compiler to compile the ParoC++ source codes.

• ParoC++ runtime system to execute ParoC++ applications. The ParoC++ design
principle is to glue other low-level distributed toolkits for executing HPC applications.
The ParoC++ run-time architecture is an abstract architecture that allows the inte-
gration of new system into the existing one in the plug-and-play flavor.

– ParoC++ execution model that describes the binary organization structures of a
ParoC++ application and how a typical application operates.

– ParoC++ service model that introduces the application scope service type.

– ParoC++ resource discovery model- a fully distributed resource discovery for par-
allel object allocation. This model takes into account issues of fault-tolerance and
dynamic information states of the Grid.

– ParoC++ object manager service to allow dynamic parallel object allocation.

– A guideline for the integration of other low-level toolkits into the ParoC++ system
with an example of Globus integration.

• Passive data access method using ParoC++. The method provides an efficient way to
access data with the ability to predict, to partially process and to synthesize data from
multiple data sources.

• Set of experiments and test cases to demonstrate different aspects of the ParoC++
system.

1.2.2. Parallelization scheme for problems with time constraints

In this part, we will address the time constraint issues for a class of problems with known
complexities on the Grid. First, we provide the programmer a parallelization scheme to
describe the time constrained problems:

• A way the user decomposes his time constrained problem and the relationship between
each decomposition.

4 Introduction

• Algorithms to find a suitable solution (solution whose computation time satisfies the
time constraint) on the Grid.

Then, we develop an object-oriented framework that uses ParoC++ to implement the
parallelization scheme. The user can concentrate on decomposing the problem and defining
the relationship of sub-problems in each decomposition. The framework will dynamically
solve the problem with a suitable grain of parallelism in order to satisfy the required time
constraint based on the currently available resources inside the environment.

Finally, we discuss some experiments and a test case using the framework.

1.3. Dissertation outline

The rest of the dissertation is divided into three parts: the first part from chapter 2 to chap-
ter 4 is the theory part of the dissertation. We first present the state-of-the-art of the Grid
computing and its challenges in chapter 2. Then we will move on to chapter 3 to present our
parallel object model which provides programmers an object-oriented programming paradigm
based on requirement-driven objects for high performance computing. Expressing the paral-
lelism in time constrained applications is addressed through the parallelization scheme that
we will present in chapter 4.

Part 2, from chapter 5 to chapter 8 discusses the ParoC++ programming system which
implements the parallel object model and a framework for developing time constrained appli-
cations. We discuss different features of the ParoC++ system from programming language
aspects (chapter 5), programming methods using ParoC++ to improve data movement in
HPC (chapter 6), to the ParoC++ infrastructure and the integration with other environ-
ments with Globus toolkit as an integration example (chapter 7). Chapter 8 deals with
developing time constrained applications, and real-time applications in particular. Based on
the parallelization scheme in chapter 4 and the ParoC++ system in chapter 5, we develop
a ParoC++ framework for solving problems with time constraints and illustrate how to use
this framework for solving such problems on the Grid.

Part 3 presents the experiment results of the ParoC++ system and the parallelization
scheme that we described in part 2. Chapter 9 describes the benchmarks of the ParoC++
system and some small experiments on ParoC++ as well as on an emulated-time constrained
application with the framework. Chapter 10 starts the first test case of ParoC++ on the pat-
tern and defect detection system for textile manufacturing. Chapter 11 gives a demonstration
of how to use ParoC++ not only as a tool to parallelize but also the tool to integrate and
to manage a complex system of snow modeling, run off and avalanche warning system. The
experiment part ends with chapter 12 as the last test case on how to use the parallelization
scheme for a real-time image analysis application.

Chapter 13 is the conclusion of the dissertation.

Part I

State-of-the-art and the parallel

object model

5

Chapter 2

Background and related work

In this chapter, we will review the state-of-the-art of Grid computing. We focus on two sub-
jects: the supporting infrastructures and the programming models. From the infrastructure
aspects, after introducing the Grid concepts, we will examine the evolution of the Grid and
some well-known Grid supporting toolkits. Currently, there is no programming model par-
ticularly designed for the Grid. Most of programming models used on the Grid are extended
from traditional programming models. Therefore, for programming models, we will present
some practical programming models for distributed environments and their use on the Grid.

2.1. The computational Grid

2.1.1. Grid definition

The term ”computational Grid” (or the Grid for short) emerged in the mid of 1990s has
been used to refer to the infrastructure for advanced science and engineering. By borrowing
the idea of the electric power grid, Ian Foster and Carl Kesselman, the two pioneers in Grid
computing, give the definition of computational Grid in [29]: ”A computational grid is a
hardware and software infrastructure that provides dependable, consistent, pervasive and
inexpensive access to high-end computational capabilities”. The definition mentions different
characteristics of the Grid. The infrastructure of the Grid means we need to deal with a
large confederation of resources which can be the computing capabilities such as computers,
supercomputers, clusters, etc.; data storages, sensors or even human knowledge involving
in the computational environment to provide services. Dependable service means the user
who uses the Grid should be guaranteed on the quality, the reliability and the stability of
the services that constitute the Grid. The resources in the Grid are heterogeneous that
can be differed on hardware architectures, hardware capacities, operating systems, software
environments, security policies, etc. The Grid user should be able to gain a consistent access
via some standard interfaces to the Grid service regardless of such differences. The resources
tend to be distributed over the Internet and are connected with high-speed connections, so

7

8 Background and related work

pervasive access enables users to access to the service no matter where they are located or what
environments they are working on. Finally, inexpensive access, despite not a fundamental
characteristic, is also an important factor in wide spreading the use of the Grid like that of
the electric power Grid today.

2.1.2. Domains of Grid computing

One question we need to answer in order to understand the Grid is ”what is it used for?”. The
application field of the Grid is variety in science and engineering. The Grid covers 4 categories
of applications: collaborative engineering, data exploitation, high-throughput computing and
distributed supercomputing [29].

In collaborative engineering, scientists at different sites work together interactively through
the Grid, doing some experiments or discussing the results in a ”virtual laboratory” located
somewhere else. They can manipulate the virtual device as if the device were located lo-
cally at their site. Applications in this category can be virtual reality systems, simulations,
visualizations, astronomic observations, etc.

Data exploitation allows scientists to explore and to access a huge volume of data produced
by some sources remotely. For instance, experiments in the field of high energy physics
at Large Hadron Collider (LHC) [17], the most powerful particle physics accelerator ever
constructed at CERN which will be finished in 2007, will produce petabytes of data annually.
Nevertheless, for a specific group of scientists, only part of this data really needs to be
efficiently accessed and modified while the rest are kept untouched. The amount of data is
usually too big to fit into a single storage device. Instead it is likely distributed over several
places. Therefore, the Grid can help to manage, to move, to aggregate and to access the data
remotely in a secure manner.

High-throughput computing uses the Grid to schedule large numbers of relatively inde-
pendent tasks on idle resources for solving problems. Making use of free processor cycles
over the Internet can lead to a large amount of computations to be performed in order to
tackle computational hard problems. However, only problems that can be decomposed into
loosely coupled sub-problems with little data exchange between components can benefit from
high-throughput computing. The probably most typical example is the use of SETI@Home
(Search for Extraterrestrial Intelligence) network [81] to analyze data from space. The user
contributes the idle cycles under a screen saver program. In October, 2003, more than 4.7
million users have contributed their cycles and the aggregate performance is more than 60 Ter-
aflops/sec, faster than the most powerful computer ever constructed to date. Folding@home
[71, 87, 83] is another example of large-scale high throughput computing to study protein
folding process in biology where users donate their CPU time under a screen saver. Since
2000 when the project was started, almost 1 million CPU throughout the world have been
used with the accumulated computing power of more than 10000 CPU-year work.

2.1 The computational Grid 9

Distributed high performance computing (DHPC) is used to combine the computing power
of computers, clusters and supercomputers that are geographically distributed to tackle big
problems that can not be solved in a single system. Differ from high-throughput computing,
DHPC applications place high requirements on distributed resources such as the peak com-
puting power, the memory size or the external storage. In addition, different computational
modules can be tightly coupled that require high speed communication among distributed
resources. The Grid services coordinate these distributed resources and may be used as a
portal to locate, to reserve and to access remote resources.

2.1.3. Challenges

The Grid is an emerging technology. It has been growing very rapidly during the past few
years but it is not mature yet. The Grid computing infrastructure is still in the research
phase. At the moment, it is too early to define a standard for the Grid. In order to become
a standard, many challenges need to be overcome.

The first challenge is on how to exploit the power of the Grid. Because Grid computing
differs from conventional parallel distributed computing in a number of fundamental ways,
the programming model and programming methodology should be rethought. Conventional
applications based on a resource-centric approach should be changed to the service-centric
approach as did the Grid services. Grid applications should adapt to the heterogeneity of the
environment. Fault tolerance which is not the major problem in the conventional environment
should be carefully taken into account. The success of the Grid also depends on how easily
the user can develop and deploy his Grid applications. High level programming tools specially
designed for developing Grid applications are not available yet.

Secondly, the connectivity of resources and of application components is also a major
concern. We know that Internet is an unreliable and untruthful environment where resources
can be attacked by hackers all the time. Firewalls have been established to prevent such
attacks. However, these firewalls also prevent the ability to establish direct connections
between components. How to enable full scale resource sharing as well as to guarantee the
privacy and the security is a technology challenge.

The third challenge is on the scalability of the Grid. Managing resources within a single
organization does not usually face with the scalability issue. However, when the geograph-
ically distributed resources reach millions and belong to different organizations, an efficient
management mechanism becomes a main issue. Current toolkits such as Globus [28] or Legion
[38] only address some issues such as security issues and distributed information management.
Issues such as resource discovery, resource reservation, self management, fault tolerance still
need to be further investigated

Next, we have to deal with how to evaluate the Grid and its applications. At the time
being, no suitable method for measuring the efficiency of the Grid and its applications is

10 Background and related work

available. The traditional measurement of system efficiency as the effective performance (e.g.
the number of floating point operations per second) over the peak performance of the system
is not correct in the Grid. The parallel efficiency measurement of the application as the
ratio between the speedup and the number of processors fails to work on the Grid due to the
heterogeneous nature of the environment.

Finally, accounting is also an important issue of the Grid system. The wide usage of the
Grid will not be able to depend only on the free donation of resources. To guarantee the
success of the Grid, it is necessary to have ”Grid companies” that can sell their resources.
”What is the price policy?” and ”how to charge the Grid user for using the resources?” are
among the questions needed to be investigated. The answers should be in consensus between
the provider and the user.

In this dissertation, we will focus on the challenge of how to efficiently exploit the power of
the Grid for high performance applications and particularly applications with time constraints
through the application adaptation. We will not develop a new metric to measure the parallel
efficiency of applications on the Grid but we will consider the efficiency in our sense as the
maximum amount of speedup that an application can gain from the Grid environment and
the ability of an application to satisfy the user time requirements.

2.1.4. Grid evolution

Up to now, the evolution of the Grid goes through the two major phases. The first phase
focused on finding the answers for: ”Is that feasible to build a Grid infrastructure?” and
”Which Grid services are needed inside this infrastructure?”. In this phase, major Grid
services have been identified and tested: the resource management service, the information
service, the security service, etc.. A number of middleware have been built up. Among
them, two of the well-known ones are Globus, Legion. GUSTO-a Globus testbed, has been
constructed to test the feasibility of the Grid concept. In the year 2000, more than 125
universities and institutions over the world joined the GUSTO testbed with the aggregate
computing power of over 5 Teraflops/sec.

The second phase of the Grid evolution is on-going, focusing on the technology challenges
such as the portability and the inter-operability of Grid components. The new web technolo-
gies such as Web services [16], Java and SOAP [84] have been used in Grid components that
improve considerably the operability of the Grid. The emerging of the Open Grid Service
Architecture (OGSA) [30] from the Global Grid Forum is an important step toward the stan-
dardization of Grid components and services. OGSA is based on Web service technologies
for defining interfaces to discover, to create, to publish and to access Grid services. OGSA
does not address on its own any security mechanism such as authentication or secure service
invocations. Instead, it relies on the security of the Web services.

2.1 The computational Grid 11

2.1.5. Grid supporting tools

We describe in this section two important toolkits that support Grid computing at present:
Globus and Legion. The development of these toolkits has strongly reflected the tendency of
Grid computing.

2.1.5.1. Globus Toolkit

The Globus toolkit is one of the most important tools for Grid computing at present. It
is the result of a joint project between University of Southern California, Argonne National
Laboratory and The Aerospace Corporation started in 1997. Globus Toolkit provides services
to manage the computational Grid (software and hardware) for distributed, high-throughput
super-computing. The first birth version 1.0 of the toolkit in 1998 was deployed on the
GUSTO testbed which involved more than 70 universities and institutes over the world in
1999. In 2000, more than 125 institutes over 3 continents joined the GUSTO. Version 2 of the
toolkit, released in 2002, marked an important point in the first wave of Grid development
where basic Grid services have been identified and tested. Version 3 of the toolkit (2003) starts
the second wave of the Grid evolution focusing on the inter-operability and the integration
of distributed services. Growing rapidly, Globus has become a powerful grid-enabled toolkit
and is considered as a reference implementation of Grid components.

The toolkit comprises a set of basic services for the Grid’s security, resource location,
resource management, information, remote data management, etc. The services are designed
with the principle of an ”hourglass”: the neck of the hourglass provides a uniform interface
to access various implementations of local services [29]. The developer uses this interface to
develop high-level services for his own needs.

The up-coming of Web services recently has considerably changed the inter-operability of
Globus services. From the Global Grid Forum, an Open Grid Service Architecture (OGSA)
[30] using Web services technologies has been proposed. Service architectures used in the old
Globus toolkit version 1 and 2 (GT1 and GT2) have been rewritten to use OGSA (Globus
Toolkit version 3- GT3). OGSA does not only provide a uniform way to access Grid services
but it also defines the conventions in which new Grid services can be described (based on
Web Service Description Language-WSDL) and integrated into the existing Grid system.

2.1.5.2. Legion toolkit

Legion is another toolkit for Grid computing. The first public release was made at Supercom-
puting ’97 in San Jose, California, on November, 1997. In 2000, the Grid Portal for Legion
has been in operation on npacinet- a worldwide grid managed by Legion on NPACI (the US
National Partnership for Advanced Computational Infrastructure) resources.

Legion [39, 40], developed by University of Virginia also provides similar services as Globus
but follows an object-oriented approach. From the Legion point of view, everything inside

12 Background and related work

OGSA

Hosting environment (C++, J2EE, .NET,...)

Discovery Factory Notification
Other

services

XML service descriptions

Service implementation

Figure 2.1: Service architecture in GT3: OGSA defines the service semantics, the stan-
dard interfaces and the binding protocol that is independent of the programming model
that implements the service in the hosting environment

the environment, from a resource, a service to a running process, is an object. Legion defines
a protocol and a message format for remote method invocation.

Legion contains a set of core objects. Each core object defines a specific functionality in
the distributed system. Host object, for instance, is responsible for managing a resource such
as making resource reservation or executing other objects on the resource. The user-defined
object is based on the core objects to access the system. Between the core objects and the
user objects there are object-object services which improve the performance of the system.
The cache object, for example, is used to reduce the loading time of a user object from a
persistent storage.

In the Legion object model, Class objects, differ from traditional object oriented models,
are themselves active entities that play the role of the object containers. These containers
are responsible for managing and placing objects instances on remote resources.

2.2. Programming models

Programming models are directly related to the application development. They define the way
to describe the parallelism, the problem decomposition, the interactions, etc. Programming
models cannot live apart from the environment. To exploit the power of a computational
environment, programming models have to be carefully designed. The literature shows that
currently there is no specific programming model specially designed for the Grid. Most models
used on the Grid nowadays come from those used in the traditional parallel and distributed
environments. Therefore we will focus on the distributed computing models and how suitably
can we use them for the Grid.

Distributed computing has a quite long history of development of over 20 years. Many
models have been investigated. We present in this section four important styles of parallel
programming: the message passing, the distributed shared memory, the bulk synchronous
parallel and the object-oriented approach.

2.2 Programming models 13

2.2.1. Message passing model

Message passing is one of the most widely used models for parallel distributed programming.
The model consists of tasks (or processes) running in parallel. The communication between
tasks is explicitly specified by the programmer via some well-defined send and receive primi-
tives. The message passing model provides programmers with a very flexible generic mean to
develop parallel application. It can also deal well with the heterogeneity of the environment.
However, message passing is a quite low-level programming model in which programmers
have to manage all communication and synchronization among tasks.

Two well-known message passing tools up-to-date are the parallel virtual machine (PVM)
[34] and the message passing interface (MPI) [42]. PVM was first developed in 1989 at Oak
Ridge National Laboratory to construct a virtual machine that consists of network nodes.
PVM allows the user to dynamically start or stop a task, add or delete a host to or from
the virtual machine, send and receive data between two arbitrary tasks. On the Grid, PVM
has two disadvantages. First, PVM does not provide any mean to manage the task binary
codes. It is up to the programmer to specify the correct executable file and the corresponding
hardware architecture, and to ship the codes to the proper place on the target PVM host.
This considerably limits the flexibility in exploiting the performance from heterogeneous
environments. Secondly, PVM does not provide any mean for resource discovery and users
have to add/delete hosts manually to the system. The two disadvantages limit the scalability
of the system as the number of nodes constituting the virtual machine grows.

MPI standard was born in April, 1993 with the first specification. MPI defines both the
semantics and the syntax for the core message passing primitives that could be suitable for a
wide range of distributed high performance applications. MPI is not a tool. It does not specify
any information about the implementation of these primitives. Each vendor can provide his
own implementation of the primitives that best fits his hardware architecture. Since MPI
intends to just provide a common interface for message passing routines, it does not include
any specification on process management, input/output controls, machine configuration, etc.
All of these necessities depend on the vendor of the tool. The main advantage of MPI is
the portability of MPI applications to various architectures. Nowadays, MPI-based tools and
libraries have been the dominant factors in high performance computing.

Along with the rapid development of Grid computing and Grid infrastructures, some ex-
isting tools have been successfully ported to the Grid environment. MPICH-G [27, 50], a
Globus [28]-based version of MPICH has been developed, allowing the current MPI appli-
cations to run on the Grid without any modification. The heterogeneity of the Grid can
considerably affect the performance of MPICH-G if the tasks are not carefully placed. The
quality of services has been taken into account in MPICH-GQ [69]. PVM and MPI have
also been implemented on the Legion toolkit [40] via the emulation of the libraries to use
the underlying Legion run-time library. Porting existing libraries to the Grid preserves users

14 Background and related work

from rewriting the whole applications from scratch, so that existing applications only need
to be recompiled to run on the Grid.

2.2.2. Distributed shared memory

Shared memory is an attractive programming model for designing parallel and distributed
applications. Many algorithms have been designed based on the shared memory model. In
the past, shared memory models were quite popular on massive parallel processing systems
with the physical support of memory architectures. Following the amazing development of the
networking technologies and the advances on microprocessors, high performance computing
has a bias toward distributed processing with clusters, network of workstations, etc. To make
use of exiting algorithms and applications on the distributed environment, an abstraction of
shared memory on physically distributed machines has been built. This abstraction is known
as Distributed shared memory (DSM).

Although DSM offers the programmer to freely use standard programming methods that
exist on traditional multi-processor systems such as multi-threading or parallel loops but
DSM usually results in poor performance and limits the scalability of applications compared
to other distributed models such as message passing [14]. The DSM-based applications often
work better if the programmer can specify the layout of memory and customize the memory
access scheme.

Many DSM systems have been reported in the literature [61]. Some of the well-known
ones are Munin [13], DiSOM [63] and InterWeave [76]. Munin is a software DSM system that
implements the shared memory by some special annotations of access patterns on shared
variables (e.g. read-mostly, write-once, write-many, etc.). Munin manages the memory con-
sistency by choosing a suitable consistency protocol based on the access pattern. To reduce
the communication overhead, Munin provides the release-consistent memory access interface
[35] in which the memory consistency is only required at specific synchronization points. One
big disadvantage of Munin is that it lacks heterogeneous support, a fundamental character-
istic of the Grid. DiSOM is a distributed shared object memory system. Shared data items
in DiSOM are represented as objects with type information. This information is used to deal
with the heterogeneity of the environment. The memory consistency model in DiSOM is
entry consistency [59] in which each data item has a synchronization variable and all access
on that item will be quoted by the acquire/release operations on its corresponding synchro-
nization variable. InterWeave model assumes a distributed collection of clients-the ones that
use shared memory and servers-the ones that supply shared memory. Shared memory is orga-
nized as strongly typed blocks within a segment and is referred via the machine-independent
pointer which consists of the host name, the path, the block name and the optional offset
within that block. Interweave allows to access the shared memory as if it is local memory by
trapping the signal upon a page fault. To reduce the communication overhead, InterWeave

2.2 Programming models 15

dates the shared data, tracks changes on the data and transmits only the changed parts to the
client upon requested. InterWeave supports the heterogeneity by converting data into wire
format before the transmission. One disadvantage of InterWeave is that it does not provide
any mean for remote process creation. Hence, Interweave should be combined with other
distributed tools to form a complete development environment for distributed applications.

Although DSM can facilitate the development of distributed applications. Its main dis-
advantage is the performance. Many issues, especially the granularity of shared data, the
location of shared data and the heterogeneity support still need to be solved in order for the
DSM model to be efficiently used on the Grid.

2.2.3. Bulk synchronous parallel

Bulk Synchronous Parallel (BSP) was proposed by L.G. Valiant in 1990 [82]. The BSP com-
putation is defined as a set of components that perform some application tasks and a router
that routes the point-to-point messages between pairs of components. The computation con-
sists of a sequence of supersteps. Each superstep comprises three separate phases: first, all
or a subset of components simultaneously does the computation on their local data; secondly,
each component exchanges its data with other components (communication); and finally, all
components are synchronized before moving to the next superstep (synchronization).

The separation of computation, communication and synchronization makes BSP a generic
model that is clear and easy to manage. BSP is efficiently applicable on various kinds of
architectures from shared memory multiprocessors to distributed memory systems. It offers
a general framework to develop scalable and portable parallel applications. While the mixed
communication-computation in other models such as in PVM, MPI makes it hard to predict
the application performance, the separation of computation-communication gives the BSP
model several advantages: the performance and the program correctness are easier to predict;
the deadlock does not occur in a BSP program. However the disadvantages of BSP are: the
different sizes of tasks can decline the possibility of overlapping between computation and
communication; the overhead for synchronization is big; and the mapping between sub-
problems of a decomposition into sequence of components/supersteps is not obvious.

Since BSP was born, number of BSP tools has been developed. BSPlib [46] provides a de-
facto standard implementation of the BSP communication library. BSPlib consists of about
20 primitives that manage all communication between components. Two communication
models supported in BSPlib are: direct remote memory access (DRMA) and bulk synchronous
message passing (BSMP). In DRMA, a component (process) will explicitly register a local
memory to the BSP system so that other components can put/get data to/from this memory
remotely. In BSMP, each component explicitly uses the send/receive primitives to send or
receive messages to/from other components.

ParCel-2 [11, 10, 52] developed at LITH/EPFL extends the BSP model in several ways.

16 Background and related work

First, ParCel-2 is a cellular programming language which allows the user to express the
computation in cells. Several cells can be grouped together to form a bigger cell. Secondly
the communication between cells has been typed with some specifications. Finally, ParCel-2
allows the synchronization to be performed after an integer multiple of the global superstep
counter.

Heterogeneous Bulk Synchronous Parallel (HBSP) [86] extends the BSP model for het-
erogeneous computing by incorporating parameters that reflect the relative speeds of com-
ponents. These parameters are used as the guideline for choosing a suitable size of work
units for each component. BSP-G [79] expands BSPlib to the Grid by using the Grid services
of the Globus toolkit for authenticating, executing BSP components. BSP-G provides an
interesting portal of BSP application to the Grid environment although it does not solve the
heterogeneity issue of both the Grid and the BSP components.

2.2.4. Object-oriented models

The object oriented approach is a promising solution to manage the complexity of developing
HPC applications. While the object-oriented method has become a revolutionary concept
that changes the rules in computer software engineering, in the domain parallel and dis-
tributed processing, the main use of object oriented techniques is focused on distributed
client-server applications with some standards such as the Common Object Request Broker
Architecture (CORBA) [4], Remote Method Invocation (RMI) [75] or Distributed Compo-
nent Object Model (DCOM) [58]. The limitations of these standards are on the scalability
and non-HPC design. There are also efforts to port non-object tools such as PVM, MPI to
object oriented languages: JavaPVM [77], MPJ [12] but they are just the wrapper classes
of the available functions and procedures. We will not consider such tools as following the
object-oriented approach.

From the view of object activity, distributed object-oriented models can be categorized
into two types: active objects and passive objects [19]. Active objects are resulted in the
integration of processes and objects. Each active object possesses one or more processes that
handle all object activities such as the acceptance of method invocations, synchronization, etc.
When an active object is destroyed, all processes bound to this object are also terminated.
Active objects are natural and simple in distributed systems.

Passive objects, on the other hand, are separated completely from the process. A single
process can be used to execute several passive objects during its life time. The advantage of
passive object model is that there is no limit number of processes bound to an object. How-
ever, it may be difficult and expensive to map objects to processes in distributed environments
where the objects does not usually share the same memory address space.

There are number of researches on parallel and distributed object systems. They focus on
two directions: developing object-oriented languages and constructing supporting libraries-

2.2 Programming models 17

tools for existing systems.

2.2.4.1. Language approach

On the language approach, Orca [3], MPL [41], PO [22, 21] and Synchronous C++ (sC++)
[64] are some examples. Orca provides a new language based on shared data objects in
distributed environments. The programmer has to explicitly create processes. Orca objects
are passive objects that can be passed from one process to another process upon process
creation. Shared data inside objects can be manipulated from processes via high-level object
interfaces. Some important properties of object-oriented programming such as inheritance,
polymorphism are not explicitly supported.

MPL is an extension of C++ with some so-called metat classes for parallel execution.
MPL follows the active-object data-driven model. The parallelism is achieved by concurrent
invocations on these objects. The Mentat runtime system is responsible for instantiating men-
tat objects, invoking methods and keeping objects consistency. The metat object supports
only asynchronous invocation and is not shareable.

PO also follows the active object model with the capability of deciding when and which
invocation requests to serve. Inside each PO object, a parallel part is responsible for in-
terfacing between the methods and the outside world. Method invocations are carried out
by using one of three communication modes: synchronous, asynchronous and future mode.
In the asynchronous mode, the client is not blocked for the results of the invocation. The
synchronous mode blocks the client until the method execution returns. The future mode is
a non-blocking mode in which the client provides a ”call back” address to which the server
will store the return values of the invocation. One innovation of PO is the ability to specify
the high-level directives for the object allocation for each PO class through the Abstract
Configuration Language (ACL). The run-time system will use these directives to choose a
suitable resource for a PO object.

Synchronous C++ (sC++) is yet another object oriented programming language that
follows the active object model. Synchronous C++ extends C++ to distributed environments
by adding a special part to each object class called the class body. In each sC++ object, the
body is executed on the control thread of the object. It is responsible for scheduling methods
that are ready to be invoked. Any method invocation can only occurs when the corresponding
body explicitly accepts the method (server side) and the client makes a call to that method.
The sC++ body part of the object provides a flexible way for checking the constraints and
the integrity of methods. However, the execution in each sC++ object is atomic which limits
the ability to achieve the intra-object parallelism.

18 Background and related work

2.2.4.2. Supporting tool approach

COBRA [65] and Parallel Data CORBA [51] extend the CORBA standard by encapsulating
several distributed components (object parts) within an object and by implementing the data
parallelism based on data partitioning. Data input on an object will be automatically split
and distributed to several object parts that can reside in different memory address spaces.
The user can access high performance computing services provided by these tools as if they
accessed standard CORBA objects. Both COBRA and Parallel Data CORBA concentrate
on interfacing parallel computation services with the outside world, rather than focusing on
the parallel elements of the application.

HPC++ [49] is a C++ library and language extension of C++ for portable and distributed
C++ programming. The HPC++ library consists of primitives to register methods, to pack
or unpack data and to invoke remotely registered methods. HPC++ is a quite low level
library that should be used with other tools to facilitate the manipulation of objects.

2.3. Requirements for high performance Grid applications

Along with the rapid development of the Grid and distributed computing, one main question
has emerged: How to exploit the performance from the highly distributed heterogeneous envi-
ronment? Clearly, the answer should come from both the infrastructure and the application
structure.

2.3.1. New vision: from resource-centric to service-centric

The computational Grid makes the traditional assumption of performance as the number of
processors involved in the computation become obsolete due to the heterogeneity of resources.
The traditional resource-centric approach in which the user requests to run the application
on some explicitly specified resources has become hardly feasible on the Grid environment
due to the large number of dynamic resources. New issues of the Grid lead to the quest for
a new method for executing and developing applications. The service-centric approach is to
answer this quest. The application following the service-centric approach will not ask for the
resources but for the services. It will ask the infrastructure to obtain necessary services as the
abstractions of functions regardless the service location. The infrastructure then performs
the service discovery to find a suitable service, to authenticate the service and to grant the
access of the service to the user.

Services are usually developed by system developers that hide the complexity of the
environment from the user by allowing the user to access high-level functionalities of the
environment. All details of the implementation are encapsulated inside the services. By
this way, the application programmer can focus on the implementation parts of the problem
domain.

2.4 Summary 19

2.3.2. Application adaptation

In addition to the change of the infrastructure from the resource-centric to service-centric
approach, programming models for the Grid also need to be further investigated.

The literature shows that programming models depend very much on the execution envi-
ronment of the applications. Each programming model is usually fit to a specific environment.
The shared memory model, for example, is suitable for SMP systems or distributed systems
with very high speed inter-network connections while the message passing model is widely
used in rather distributed environment such as clusters or networks of workstations with
slower communication.

Programming models on the Grid should be able to deal with the Grid issues such as the
heterogeneity, the communication latency, the dynamic and instability, etc. The application
needs to adapt itself to the environment. The adaptation can be:

• Dynamic task sizes. The size of a task should be parameterized. Each task has different
requirements on the resource. In other words, we use the heterogeneity of application
components to deal with the heterogeneity of the environment.

• Different level of parallelism. Each application consists of several configurations. Each
configuration represents a level of parallelism. Depending on the availability of resources
at run-time, a suitable configuration will be executed. This is crucial to real-time
applications on the Grid since the dynamics and volatility of the Grid oppose the fixed
run-time configuration of the application.

• Dynamic utilization of resources. The resource will be assigned to the application on
demand and the application should not occupy resources if it does not really need them.
When a component completes its task, the resource should be released.

• Active reaction to failures. The application should be able to detect failures of compo-
nents and to replace the failed component by a new one on a different suitable resource.

To allow the adaptation, high performance Grid applications should somehow be able to
describe the requirements of distributed components and to use the infrastructure services,
according to the service-centric approach, to discover the suitable resources and to execute
the components on those resources.

2.4. Summary

We have surveyed the state-of-the-art of the Grid computing at two different levels: the
infrastructure development and the programming model. There are still many challenges need
to be overcome. In our opinion, one of the key challenges is the efficient exploitation of the
seamless power of the Grid for high performance computing applications. This challenge needs

20 Background and related work

to be addressed at both levels. The traditional assumption of performance as the number
of processes has become obsolete due to the highly heterogeneous resources. Traditional
scheduling algorithms seem not to be suitable to the Grid due to the unpredictable and volatile
properties of the environment. Traditional programming models pose many difficulties and
limitations to be efficiently used on the Grid.

To extract the high performance of the Grid for applications, application adaptation is
required. Such adaptation is addressed in different ways: different task sizes, different grain
of parallelism, dynamic resource utilization and active reaction to failures.

Throughout the dissertation, we will focus on the main challenge of how to efficiently
achieve the power of the Grid for high performance applications and particularly applica-
tions with time constraints through the application adaptation. The state-of-the-art of Grid
computing shows that at the moment, there is no metric to measure the efficiency of the Grid
application. The old definition of efficiency as the ratio between the speedup over the total
number of processors is not suitable in this context due to the heterogeneity. We will not
develop a new metric to measure the efficiency but we will consider the efficiency in our sense
as the maximum amount of speedup that an application can gain from the Grid environment
and the ability of an application to satisfy the user time requirements.

We study the adaptation from two different points: from the level of infrastructure to the
programming language and programming paradigm to the conceptual level of parallelization.

Around the main endeavor that we address in the thesis, we also cover some related issues
of the Grid such as resource management and fault tolerance. Although we will not study
other issues like resource connectivity, security, information safety, etc. but we still count
them as important problems of the Grid.

Chapter 3

Parallel object model

3.1. Introduction

Object-oriented methods provide high level abstractions for software engineering. The nature
of objects shows many possibilities of parallelism: a) the parallelism among a collection of
objects where each object may live independently from others; b) the parallelism inside
each object: some operations on the same object can occur concurrently. In distributed
environments such as the Grid, having all objects running remotely usually is not efficient
due to the communication bottle-neck problem. Thus, we need to answer the two questions:

• Question 1: which objects will be remote objects?

• Question 2: where does each remote object live?

The answers, of course, depend on what objects are doing and how they interact with
each other and with the outside world. In other words, we need to know the communication-
computation requirements of objects. The parallel object model that we present in this
chapter provides an object-oriented approach for requirement-driven high performance ap-
plications in the distributed heterogeneous environment.

3.2. Parallel object model

We envision parallel objects as the generalization of the traditional object such as in C++.
One important support for parallelism is the transparent creation of parallel objects by dy-
namic assignments of suitable resources to objects. Another support is various mechanisms
of invocation concurrency: concurrent, sequential and mutex (see section 3.4).

In our model, a parallel object has all properties of traditional objects plus the following
ones:

21

22 Parallel object model

• Parallel objects are shareable. References to parallel objects can be passed to any
method regardless wherever it is located (locally or remotely). This property is de-
scribed in section 3.3.

• Syntactically, invocations on parallel objects are identical to invocations on traditional
sequential objects. However, parallel objects support various method invocation seman-
tics: synchronous, asynchronous, sequential, mutex and concurrent. These semantics
are discussed in section 3.4.

• Objects can be located on remote resources and in a separate address space. Parallel
objects allocations are transparent to the user. The object allocation is presented in
section 3.5.

• Each parallel object has the ability to dynamically describe its resource requirement
during its lifetime. This feature is discussed in detail in section 3.6.

It has to be mentioned that by default, the parallel object is in the inactive state. The
object can only be activated upon executing a method invocation request. The waiting for
and accepting incoming requests at the server side are performed implicitly and transparently
to the user. Hence the user does not have to implement himself the object body to schedule
the acceptance of method invocations. We believe by this way, users can simplify the control
of the object execution, thus allowing a better integration into other software components.

3.3. Shareable parallel objects

All parallel objects are shareable. Shared objects with encapsulated data provide a means
for users to implement global data sharing in distributed environments. Shared objects can
be useful in many cases. For example, Fig. 3.1 illustrates a scenario of using shared objects:
Input and Output objects are shareable among Worker objects. Worker gets work units from
Input which is located on the data server, performs the computation and stores the results
on the Output located at the user workstation. The results from different Workers can be
automatically synthesized and visualized inside Output.

In order to share a parallel object, our model allows parallel objects to be arbitrarily
passed from one place to the other as arguments of method invocations. It is the run-time
system, not the user, which is responsible for setting up the interface and managing the object
references so that the object is only physically destroyed if there is no reference to the shared
object.

One important issue of object sharing is data consistency. The parallel object model
provides different method invocation semantics (section 3.4) to allow users to define the
desired level of consistency.

3.4 Invocation semantics 23

Workstation

Data server

Input

Worker

Worker

Worker

Worker

Output

User

Input data flow Output data flow

Figure 3.1: A usage scenario of shareable objects in the master-worker model

3.4. Invocation semantics

Syntactically, method invocations on parallel objects are identical to those on traditional
sequential objects. However, each method in a parallel object is associated with different
invocation semantics. These semantics are defined at both sides of the parallel object:

• Interface semantics-the semantics that affect the caller of method invocations:

– Synchronous invocation: the caller waits until the execution of the requested
method on the object side is finished and returned the results. This corresponds
to the traditional method invocation.

– Asynchronous invocation: the invocation returns immediately after sending the
request to the remote object. Asynchronous invocation is important to exploit
the parallelism because it enables the overlapping between computation and com-
munication. However, at the time the execution returns, no computing result is
available yet. This excludes the invocation from producing results. The results can
be actively returned to the caller object if the callee knows the ”call back” interface
of the caller. This feature is well supported in our parallel object model by the
fact that the interface of a parallel object can be passed as an argument to other
parallel objects during the method invocation (the call back object interface).

• Object-side semantics-execution semantics of methods inside each parallel object:

– Sequential invocation: the method is executed sequentially, i.e. when several other
parallel objects invoke simultaneously sequential methods on one parallel object,
these requests will be served sequentially (Fig. 3.2(a)). Nevertheless, other con-
current methods that have been previously started can still continue their normal
works (Fig. 3.2(b)). The executions of sequential methods guarantee the serializ-
able consistency of all sequential methods in the same object.

24 Parallel object model

– Mutex invocation: this is the most restricted form of method invocation that
guarantees the atomic execution of the method within a parallel object. The
request is executed only if no other instance of methods is running. Otherwise, the
current method will be blocked until all the others (including concurrent methods)
are terminated (Fig. 3.2(c)). Mutex invocations are important to synchronize
concurrencies and to assure the correctness of shared data state inside the parallel
object (e.g. to implement mutual exclusive write on the same data).

– Concurrent invocation: the execution of the method occurs in a new process
(thread) if no sequential or mutex invocation is currently invoked (Fig. 3.2(d)). All
invocation instances of the same object share the same object data attributes. The
concurrent invocation is important to achieve the parallelism inside each parallel
object and to improve the overlapping between computation and communication.

O3O1 O2

Sequential

Sequential

d
e

la
y

(a) Sequential invocations

O3O1 O2

Sequential
Concurrent

(b) Sequential invocation ar-
rives when a concurrent invo-
cation is executing

O3O1 O2

Mutex

Concurrent

d
e

la
y

(c) Mutex invocation is de-
layed until all concurrent invo-
cations are terminated

O3O1 O2

Concurrent

Concurrent

Concurrent

execution

(d) Concurrent invocations

Figure 3.2: Object-side invocation semantics when several other objects (O1, O2) invoke
a method on the same object (O3)

3.5 Parallel object allocation 25

All invocation semantics are specified by the programmer at the design phase of parallel
objects.

3.5. Parallel object allocation

To achieve the goal of dynamic utilization of computational resources and the ability to adapt
to the changes from both the environment and the user, an object system should be able to
dynamically create and destroy objects. In our parallel object model, the creation of parallel
objects is driven by the high-level requirements on the resource where the object runs (see
section 3.6). The user only needs to describe these requirements. The allocation of parallel
object is then transparent to users and should be managed by the run-time system. The
allocation process consists of three phases: first, the system finds a resource where the object
will live; then the object code is transmitted and executed on that resource; and finally, the
corresponding interface is created and connected to the object.

3.6. Requirement-driven parallel objects

Along with changes in parallel and distributed processing toward web and global computing,
there is a challenging question of how to exploit high performance in highly heterogeneous
and dynamic environments. We believe that for such environments, the high performance
can only be obtained if the two following conditions are satisfied:

• The application should be able to adapt to the environment.

• The programming environment should somehow enable application components to de-
scribe their resource requirements.

The application adaptation to the environment can be fulfilled by multi-level parallelism,
dynamic utilization of resources or adaptive task size partitioning. One solution is to dy-
namically create parallel objects on demand that will be expressed in section 5.1 of chapter
5 where we describe the ParoC++.

Resource requirements can be expressed in the form of quality of services that components
require from the environment. Number of researches on the quality of service (QoS) has been
performed [32, 47, 36]. Most of them focus on some low-level services such as network
bandwidth reservation, real-time scheduling, etc.

Our approach integrates the user requirements into parallel objects in the form of high-
level resource descriptions. Each parallel object is associated with an object description
(OD) that depicts the characteristics of resource used to execute the object. The resource
requirements in OD are expressed in terms of:

26 Parallel object model

• Resource name (host name) (low level description, mainly used to develop system ser-
vices).

• The maximum computing power that the object needs (e.g. the number of MFlops
needed).

• The maximum amount of memory that the parallel object consumes.

• The communication bandwidth/latency with its interfaces.

An OD can contain several items. Each item corresponds to a type of characteristics of
the desired resource. The item is classified into two types: strict item and non-strict item.
Strict item means that the designated requirement must be fully satisfied. If no satisfying
resource is available, the allocation of parallel object fails. Non-strict item, on the other hand,
gives the system more freedom in selecting the resource. A resource that partially matches
the requirement is acceptable although a full qualification resource is the preferable one. For
example, the following OD:

"power= 150 MFlops ?: 100MFlops; memory=128MB"

means that the object requires a preferred performance 150MFlops although 100MFlops is
acceptable (non-strict item) and a memory storage of at least 128MB (strict item).

The construction of OD occurs during the parallel object creation. The user will provide
an OD for each object constructor. The OD can be parameterized by the input parameters
of the constructor. This OD is then used by the runtime system to select an appropriate
resource for the object.

It can occur that, due to some changes on the object data or some increase of the compu-
tation demand, the OD needs to be re-adjusted during the life time of the parallel object. If
the new requirement exceeds some threshold, the adjustment may invoke the object migra-
tion. Object migration consists of three steps: first, allocating a new object of the same type
with the current OD, then, transferring the current object data to new object (assignment)
and finally, redirecting and re-establishing the communication from the current object to the
newly allocated objects. The migration process should be handled by the system and be
transparent to the user. The current implementation of the parallel object model, which we
will describe in chapter 5, does not support the object migration yet.

3.7. Summary

Adaptive utilization of the highly heterogeneous computational environment for high per-
formance computing is a difficult goal. The adaptation consists of two forms: either the
application components should somehow decompose dynamically, based on the available re-
sources of the environment, or the components allow the infrastructure to select suitable
resources by providing descriptive information about the resource requirement.

3.7 Summary 27

We have addressed these two forms of adaptation by introducing the parallel object model:
dynamic parallel object creation and deletion; and requirement-driven object allocation. Par-
allel object is a generalization of traditional sequential object model with the integration of
user requirements via object-description into the shareable object. Although parallel ob-
jects are distributed, they clear the resource boundary of the distributed environments inside
the application by the ability to be arbitrarily passed from one place to the others inside the
application transparently via method invocations. The parallelism can be achieved by concur-
rent operations inside each parallel object (intra-object parallelism) as well as simultaneous
operations among objects (inter-object parallelism).

In chapter 5, we will present an implementation of our parallel object model in an object-
oriented programming system called ParoC++.

28 Parallel object model

Chapter 4

Parallelization scheme

4.1. Introduction

Many practical problems require that the execution should be completed within a user-
specified amount of time. We refer such problems as time constrained problems or problems
with time constraints. Real-time applications are a special kind of these time constrained
problems.

Number of on-going researches on time constrained problems focus on various aspects
of scheduling issues such as in real-time CORBA [62], heterogeneous task mapping [9, 57]
or multiple variant programming methodology. Multiple variant programming, for instance,
enables the user to elaborate a number of versions to solve the problem into a single pro-
gram. Each version has a different level of computational requirements. Depending on the
environment, a suitable version will be automatically selected for execution. In [48], the
author describes an evolution approach for scheduling several variances of independent tasks
on a set of identical processors to minimize the total violations of deadline. Gunnels, in
[44], presents variances of matrix multiplication algorithms and the evaluation of required
performance based on the shape of matrices.

In this chapter, We present an original approach for solving time constrained problems
based on the dynamic parallelism. Dynamic parallelism enables applications to exploit au-
tomatically and dynamically a suitable grain of parallelism, depending on the available re-
sources. This is an important issue to efficiently exploit the computing power of the Grid
since the applications should adapt themselves to the heterogeneity of resources inside the
environment.

4.2. Parallelization scheme

We introduce the notion of parallelization scheme that allows expressing potential parallelism
and time constraints for a given problem. A ”problem” in this context means a program that

29

30 Parallelization scheme

P1

P11 P12 P13

P
a

rallelism
 grain

�������

������ 	
�������� ��������

Figure 4.1: Decomposition Tree

the user needs to execute. The process of executing the problem to produce the outcome is
called a solution to the problem.

Definition 4.1 (Parallelization scheme). A parallelization scheme consists of a decom-
position tree (DT) defining how to decompose the problem at different levels and a set of
decomposition dependency graphs (DDG), one for each non-leaf node of DT, defining the
partial order of executions of sub-problems within each decomposition. If P is the original
problem to solve, then the parallelization scheme of P is denoted:

S(P) =< DT (P), {DDG(Pi)|Pi ∈ DT (P)} >

The DT and the DDG are defined bellow.

Definition 4.2 (Decomposition tree). If we can replace the solution of a problem Pi by
the solution of the set of problems {Pi1, Pi2, . . . Pin} then we denote this set as D(Pi) =
{Pi1, Pi2, . . . Pin} and we call it the decomposition set of Pi. The process of deriving D(Pi)
from Pi is called a decomposition step.

The decomposition tree of a problem Pi, denoted DT (Pi), is constructed by recursively
applying decomposition steps to each element of the decomposition set until no more de-
composition step is possible.

The decomposition tree DT(P) represents one possible way to decompose a given problem
P at all different levels with the following properties:

• The relationship between P and D(P): a solution can be obtained by solving P alone
or by solving D(P).

• The relationship among problems within the same decomposition set D(P). Consider
D(P) = {P1, P2 . . . Pn}, solving D(P) means solving all P1 and P2 and P3 and . . .

and Pn. Here we do not take into account yet the dependencies between problems
Pi ∈ D(P).

4.2 Parallelization scheme 31

Definition 4.3 (Decomposition Dependency Graph). Consider the decomposition set
D(P) of a problem P. The decomposition dependency graph of P is defined as a directed
acyclic graph DDG(P) =〈D(P), E〉 with the set of vertices D(P) and the set of edges E ⊆
D(P) × D(P). Each edge e = 〈Pi, Pj〉 ∈ E means Pj should be executed only after Pi has
been solved.

���

�������
�

�	
���������

������������

��

�

�!

�"

�#

�$

Figure 4.2: Decomposition Dependency Graph

DDG(Pi) represents the partial order in which the set of sub-problems D(Pi) must be
solved in order to solve Pi. While the decomposition tree gives an overall view of the par-
allelization process, the DDG expresses the sequential constraints of sub-problems within a
decomposition step. DDG is similar to the data flow graph however, DDG is not a data flow
graph because the execution of two sub-problems connected by an edge in DDG must be in se-
quential order: one must be completed before the other can start. For instance, two pipelined
sub-problems form an edge in the data flow graph but not an edge in DDG because these two
pipelined sub-problems are executed simultaneously, not in strictly sequential order. Figure
4.2 shows a decomposition step; the original problem is decomposed into 7 sub-problems.
The graph on the right side illustrates a possible DDG of the original problem: sub-problem
1 should complete before sub-problems 2 and 3 can start and so on.

Definition 4.4 (Decomposition cut). A decomposition cut of a tree is a sub-set χ of
nodes of the decomposition tree having the following property: for every path from the root
to any leaf, the set ζ of nodes on this path has the following property: | ζ ∩ χ |= 1.

Any path from the root to a leaf cuts each decomposition cut at exact one point. Figure
4.3 illustrates several decomposition cuts of a decomposition tree. In the figure, the sets
{B, C, G,H, I} and {E,F, C,D} are two decomposition cuts. The set {E, F, G, H, I} is not
a decomposition cut since it does not cut the path A − C. The set {E,F, C,D, G, H, I} is
not either because it cuts the path A−D −H at two points (D and H).

Theorem 4.5. Each decomposition cut of the decomposition tree is a solution to the prob-
lem.

32 Parallelization scheme

� � �

�

� � � ��

�	
���������

���

Figure 4.3: Decomposition cuts

Proof:

We first define the predicate solve on a problem and a set of problem as following: if P

is a problem then solve(P) means executing the problem P on a computing system. Let S
be a set of problems, solve(S) means solving all problems in S:

solve(S) ⇔ ∀Pi ∈ S, solve(Pi)

Let χ be a decomposition cut, we construct a finite series of decomposition cuts χ1, χ2, . . . , χm

as following:

χ1 = χ

Let:

χL
i = {Pk : Pk ∈ χi and Pk is a leaf} : the sub-set of leaf nodes of χi,

χN
i = χi − χL

i : the sub-set of non-leaf nodes of χi and

D∗(χN
i) =

⋃
Pk∈χN

i

D(Pk): the union of all decomposition sets of non-leaf nodes of χi.

The next set χi+1 in the series is constructed from χi as:

χi+1 = χL
i ∪ D∗(χN

i) (4.1)

The series is constructed by increasing i and applying equation 4.1 until χi+1 does not
contain any non-leaf node (χL

i+1 = ∅).
In other words, we replace each non-leaf node in χi by its decomposition set to produce

χi+1.

If χi is a decomposition cut, for any path from the root to a leaf of DT(P), let ζ be the set
of nodes on this path:

| ζ ∩ χi |= 1

⇒| ζ ∩ (χN
i ∪ χL

i) |= 1

⇒| (ζ ∩ χN
i) ∪ (ζ ∩ χL

i) |= 1

⇒| (ζ ∩ D∗(χN
i)) ∪ (ζ ∩ χL

i) |= 1 (non-circle property of the tree)

⇒| ζ ∩ (D∗(χN
i) ∪ χL

i) |= 1

⇒| ζ ∩ χi+1 |= 1

Hence χi+1 is also a decomposition cut.

4.2 Parallelization scheme 33

From the definition of the decomposition tree, if Pi is a non-leaf node of DT(P). We have:

solve(Pi) ⇔ solve(D(Pi))

solve(χi+1) ⇔ solve(χL
i ∪ D∗(χN

i))

⇒ solve(χi+1) ⇔ solve(χL
i) and solve(D∗(χN

i))

⇒ solve(χi+1) ⇔ solve(χL
i) and solve(χN

i)

⇒ solve(χi+1) ⇔ solve(χL
i ∪ χN

i)

⇒ solve(χi+1) ⇔ solve(χi)

⇒ solve(χ) ⇔ solve(χm)

Due to the way we construct the series, the decomposition cut χm contain all leaf nodes of
DT(P). From the construction of the DT, it is obvious that all leaf nodes form a solution to
the problem. Therefore χ is also a solution to the problem.

¤

Now we will evaluate the number of potential solutions that can be obtained from the
decomposition tree. We will consider a special case where each decomposition step of a
problem produces the same number of sub-problems. As we know that each decomposition
cut is also a solution to the original problem, the following definition and theorem give
estimation about the number of potential solutions.

Definition 4.6 (N-complete decomposition tree of degree δ). An N-complete decom-
position tree of degree δ, denoted T (δ,N) is a B-tree [7] of degree δ whose height is N and
each node except the leaf nodes has exactly δ child nodes.

Theorem 4.7. The total number Un of decomposition cuts of T (δ,N) satisfies:
Un ≥ 2δ(n−1) for n ≥ 1)

Proof: We notice that T (δ,N) is constructed by δ trees T (δ,N − 1). Therefore the number
of cuts Un can be calculated as the combination of all of cuts of δ trees T (δ,N − 1) plus the
cut at the root: Un = (Un−1)δ + 1. For n ≥ 1, we can easily see that Un ≥ 2δ(n−1). ¤

Solving a problem with the parallelization scheme is a multi-choice problem: the user
has to choose among all potential solutions the best one. We choose the solving time as
the criterion to consider for the best solution-the solution that runs fastest. The dynamics,
the volatility and the heterogeneity of resources inside computational environments such as
the Grid prevent the user from performing the selection in advance. Instead, the user must
perform the selection at run-time. From theorem 4.7, we can deduce that an exhaustive search
for the best solution is an NP-algorithm. Therefore, instead of finding the best solution,
we will focus on finding an acceptable solution, i.e. the solution that is solved within a
user specified amount of time. In the next section, we will present an algorithm to find

34 Parallelization scheme

such acceptable solutions based on a parallelization scheme that uses user estimates for the
complexity inherent in (sub-)problems.

4.3. Solving time constrained problems

This section presents an approach for solving problems with time constraints on the Grid.
The user will specify the amount of time within which he wants his problem to be solved
and we need to find a solution that satisfies this time constraint. Given a time constraint,
a solution that satisfies this time constraint if the total execution time of that solution is
smaller than or equal the time constraint.

4.3.1. Problem statement

Given problem P with the time constraint T . We assume:

1. The parallelization scheme S(P) of P is known (we know how to construct it).

2. For each sub-problem Pi in DT (P), the complexity C(Pi) of Pi is known (or can be
estimated).

3. The set of available resources as well as their characteristics are not known in advance.

The first assumption requires the programmer to specify the parallelization scheme. The
second assumption describes the type of problems (known complexity). In such problems,
for a given input, we should be able to compute the total computing power needed (e.g. in
terms of MFlops). In many cases, the exact number is not known, therefore, an estimation
is acceptable.

The third assumption is about the computational environment. We tend to develop a
model for some uncertainty environments such as Grid [31] or Peer-to-Peer [5]. In such envi-
ronments, the user needs to discover resources on the fly. Based on the discovery results, the
model should automatically apply a suitable grain of parallelism to execute the application.

We state our objective as follow: given a problem P and its parallelization scheme S(P),
solve P within the user specified time constraint T .

We need to deal with how to find a suitable solution (among all potential solutions) that
satisfies the time constraint. This is a lack information problem since we do not know about
the resource characteristics. In addition, we only know the time constraint T0 = T of the
root problem P0 in S(P).

This is similar to the task scheduling problem in which the user needs to choose, among
possible assignments, the one that satisfies some criteria. However, our problem is more
complex since we have to find a suitable decomposition cut that fits the computational en-
vironment. Moreover, since the computational environment is dynamic and the resource
discovery is only performed at run-time, the instance of the solution can vary during time.

4.3 Solving time constrained problems 35

4.3.2. Algorithm

Input:

• A decomposition tree whose root is P0.

• The time constraint T0.

Output: A solution that satisfies the time constraint.

Algorithm:

S1 Let P = P0 (the root of the decomposition tree).

Let T = T0 (the time constraint provided by the user).

S2 Find a resource with the effective power C(P)/T .

If success, assign P to that resource to solve sequentially and return.

If not, go to step S3.

S3 If D(P0) = ∅ then return fail.

For each child node Pi of D(P):

• Evaluate the time constraint Ti of Pi (see section 4.4).

• Perform recursively the algorithm with inputs: the decomposition tree whose
root is Pi and the time constraint Ti

The algorithm shows how time constrained problems can be solved. We start with the
root P0 where we know the time constraint. From the assumption of knowing the complexity
C(P0), we can estimate the computing power of the resource needed. We first try to solve
the problem at the root sequentially by allocating the resource in the environment(S1). If
no such a resource exists, we need to find an alternative solution based on the composition
set D(P0). We know the time constraint T0 to solve D(P0). However, the time constraint
for each problem Pi ∈ D(P0) is unknown at the moment. If the DDG(P0) has no edge (all
sub-problems are independent), all sub-problems can be solved in parallel. Hence the time
constraint of sub-problems in this case is also the time constraint T0 of the original problem
P0. Otherwise, edges in DDG(P0) infer the solving dependencies among sub-problems: some
sub-problems must be solved before others. Because all sub-problems must be solved within
the time T0, an increase of the time constraint of a sub-problem may cause the decrease of
the time constraint of other sub-problems. In other words, time constraints of sub-problems
in this case are dependent. We provide a method to estimate these time constraints in section
4.4. When all time constraints of problems in D(P0) are evaluated, we can repeat this process
for the sub-trees whose roots are in D(P0).

36 Parallelization scheme

4.4. Time constraints in the decomposition tree

Let us consider a decomposition step of problem P into sub-problemsD(P) = {P1, P2, . . . , Pn}.
Suppose that we know the time constraint T of P . We need to find the time constraints
T1, T2, . . . , Tn for P1, P2, . . . , Pn.

First, we will build the sequential diagram from the decomposition dependency graph
(DDG). Sequential diagram and DDG are two different presentations of sub-problem de-
pendencies within a decomposition step. While the DDG directly shows the dependencies
between two sub-problems, the sequential diagram represents the best start time of a sub-
problem without taking into account of the resource requirements. Section 4.4.1 will present
an algorithm to construct the sequential diagram from the decomposition dependency graph.

Definition 4.8 (Sequential diagram). Given a DDG(P) of problem P, a step is the
minimum execution unit so that at least one sub-problem is solved. The sequential diagram
is a directed acyclic graph < V, E > where V = {S1, S2, . . . , Sm} is the set of steps and E is
the set of n =| D(P) | edges whose labels are P1, P2, . . . , Pn such that:

• If Px is the label of an edge < Si, Sj > (denoted: < Si, Sj >
.= Px) then Px must not

start before the step Si and Pk must complete before the step Sj .

• ∀ < Si, Sj >∈ E ⇒ i < j: the start time cannot be after the finish time of the same
sub-problem.

• ∀i < m ⇒< Si, Si+1 >∈ E: between two consequent steps, there exists at least one
problem to be solved.

• ∀ < Si, Sj >
.= Px, < Sl, Sm >

.= Py ∈ E, if < Px, Py >∈ DDG(P) ⇒ j ≤ l. That
means if Py depends on Px, it can not be executed before Px is solved.

Note that it is possible to have multiple edges between two steps.

Figure 4.4 shows an example of DDG and its sequential diagram. The sequential diagram
specifies the start points and the end points of sub-problems. For example, sub-problem P1

is executed in step S1 and completed before step S2. Sub-problems P2 and P3 are started
in step S2. P2 must complete before step S3 and P3 must complete before step S4 and so
on. The sequential diagram is used to compute the time constraints of sub-problems and to
schedule the tasks in order to satisfy the overall time constraint.

4.4.1. Algorithm to find the sequential diagram

Input A DDG of problem P.

Output A sequential graph G.

4.4 Time constraints in the decomposition tree 37

���

�������
�

�	
���������

������������

��

�

�!

�"

�#

�$

�� �� �� ���� �� ��

�	

�

��

�� �

� �� �� �� ��

����

��� ��� ��� ���

Figure 4.4: The decomposition dependency graph and its corresponding sequential dia-
gram

Algorithm

S1 Let L(Pi) be the mark status of vertex Pi in DDG(P).

Initially, ∀Pi, L(Pi) = 0 (”unmarked”).

S2 For every unmarked vertex Pi with no unmarked input vertex

• Let s = 0 if Pi has no ingoing edge,
otherwise s = max{L(Pk)| < Pk, Pi > is an edge in DDG(P)}.

• Mark Pi as L(Pi) = s + 1

Repeat this step until all vertices are marked.

S3 Let m = max{L(Pi)}. The sequential diagram consists of (m + 1) vertices S1, S2,
. . . , Sm, Sm+1 = Ss and n edges in D(P) = {P1, P2, . . . , Pn}. Each edge Pj starts
at vertex SL(Pj) and ends at Sx where x is the minimum value of mark status of
all output vertices of Pj in DDG(P) or (m + 1) if Pj has no output vertex.

The idea is to find the earliest step in which the problem can be started (S1, S2). This step
is defined as the next step of the latest step of all problems that this problem depends on. S2
will always terminate because DDG(P) is a graph without cycle. S3 constructs the sequential
diagram that satisfies the definition since from the way we mark the vertices in DDG(P), the

38 Parallelization scheme

index of start node is always greater than the index of the end node; there always exists an
edge that connects Si with Si+1 (if (i < m)).

4.4.2. Time constraints of sub-problems

Until now, we only know the time constraint T of the root problem P. The question is, if we
can not solve P sequentially within the time T, we will need to solve the decomposition set
D(P). Hence we need to calculate the time constraint for each Pi ∈ D(P).

We define the time constraint of a step Si as the amount of time in which all problems
Pk

.=< Si, Si+1 >∈ E have been solved.
We define the constraint guard coefficient as the chance that the execution of the decom-

posed sub-problems could satisfy the overall user-specified time constraint T . Let α be the
constraint guard coefficient (0 < α ≤ 1), if the original problem is replaced by the decomposed
sub-problems, all sub-problems are expected to be solved within αT time unit.

Let assume T s
1 , T s

2 , . . . , T s
m are the time constraints of steps S1, S2, . . . , Sm. In order to

satisfy the overall time constraint T, the following conditions must hold:

∀i, T s
i > 0 (4.2)

m
Σ

j=1
T s

j ≤ αT (4.3)

In the worst case, (4.3) becomes:
m
Σ

j=1
T s

j = αT (4.4)

The time constraint Ti of problem Pi is determined based on the time constraints of steps:

Ti =
l−1
Σ

j=k
T s

j where Pi is the label of edge < Sk, Sl > (4.5)

There are many solutions satisfying (4.2) and (4.4). In section 4.3.1, we assume that the
number and the characteristics of resources in the environment are unknown. We need to
find the time constraint of each step which maximizes the chance to find resources for sub-
problems. In the Grid, it is likely that when the level of requirement on the resources decreases,
the probability to find a resource that satisfies the requirement increases. Therefore, we
choose the following criterion: find the time constraints of steps such that they minimize the
maximum computation power required by all sub-problems Pi of a decomposition.

Let C ⊂ R+ and T ⊂ R+ be the complexity space and the time constraint space of the
problem. Let Re be the resource characteristic space. If we only consider the computing
power of resources, the resource characteristic space can be defined as Re ≡ R+. For each
problem Pi, we define the resource function gi as C × T 7→ Re which maps a sequential
solution of problem with the complexity c and the time constraint t to the requirement of
resource gi(c, t). In the simple case where the complexity of problem is the total number of

4.5 Summary 39

operations, Re ⊂ R+ represents the number of operations/sec, the resource function can be
evaluated as:

gi(c, t) =
c

t
(4.6)

We need to find T s
1 , T s

2 , . . . , T s
m satisfying the conditions (4.2) and (4.4) such that:

[T s
1 , T s

2 , . . . , T s
m] = arg min max{g1(C(P1), T1), g2(C(P2), T2), . . . , gn(C(Pn), Tn)} (4.7)

where C(Pi) is the complexity of problem Pi, Ti is the time constraint of problem Pi that
satisfies (4.5).

This is a min-max problem with constraints. Now we consider a special case where
each problem spans exactly one step (i.e. n=m). The solution to (4.7) can be obtained by
considering the complexity C(Pi) as the ”weight” for the time constraint T s

i :

T s
i =

C(Pi)∑ C(Pj)
αT (4.8)

Although solving min-max problems as in Eq.(4.7) is not the objective of this dissertation,
we have developed a generic algorithm to find an approximate solution for Eq.(4.7). Details
on this algorithm are described in appendix A.

4.5. Summary

Solving problems within a required time bound is a hard question. It is event more difficult
to find a feasible solution on the Grid computing environments where resources in the pool
can join or leave in time.

We have presented a parallelization scheme as a feasible approach to the time constrained
problems on the Grid. The scheme consists of a decomposition tree defining possible decom-
positions of a problem into sub-problems and the decomposition dependency graph showing
the relative order of execution of sub-problems. The scheme provides a way for programmers
to specify their time constrained applications.

An algorithm based on the decomposition tree was constructed, showing how time con-
strained problems can be solved. It can be designed as a supporting framework or can be
integrated into programming languages. The parallel object model can be used to build a
framework for the parallelization scheme. We will describe this framework in chapter 8.

40 Parallelization scheme

Part II

The ParoC++ Programming

System

41

Chapter 5

Parallel object C++

5.1. ParoC++ programming language

ParoC++ is an extension of C++ that implements the parallel object model as defined in
chapter 3. We try to keep this extension as close as possible to C++ so that programmers can
easily learn ParoC++ and that existing C++ libraries can be parallelized using ParoC++
without too much effort.

We claim that all C++ classes with the following restrictions can be implemented as
parallel object classes without any changes in object’s semantic:

• All data attributes of object are protected or private.

• The object does not access any global variable.

• There is no user-defined operator.

• There is no method that returns the memory address references.

These restrictions are not a major issue in object-oriented programming and in some cases
they can improve the legibility and the clearness of programs. The restrictions can be worked
around by adding get/set methods to access data attributes and by encapsulating global data
and shared memory address variables in other parallel objects.

Since parallel object is a generalization of the sequential object, so unless the term ”se-
quential object” is explicitly specified, we refer our parallel object as object.

5.1.1. ParoC++ parallel class

Developing ParoC++ programs mainly consist of designing and implementing parallel classes.
The declaration of a parallel class begins with the keyword parclass following the class name
and the optional list of derived parallel classes separated by a comma (”,”):

43

44 Parallel object C++

parclass myclass {...};
or
parclass myclass: baseClass1, baseClass2,... {...};

As sequential classes, parallel classes contain methods and attributes. Method accesses
can be public, protected or private while attribute accesses must be either protected or private.
For each method, the user should define the invocation semantics. These semantics, described
in section 3.4, are specified by two keywords, one for each side:

• Interface side:

sync: Synchronous invocation. This corresponds to the traditional way to invoke meth-
ods and is the default value. For example:

sync void method1();

async: Asynchronous invocation. For example:

async int method2();

• Object side:

seq: Sequential invocation. This is the default value. For example:

seq void method1();

mutex: Mutex invocation:

mutex int method2();

conc: Concurrent invocation. The invocation occurs in a new thread.

The combination of the interface and the object-side semantics defines the overall seman-
tics of a method. For instance, the following declaration defines an asynchronous concurrent
method that returns an integer number:

async conc int mymethod();

It has to be mentioned that as in C++ language, multiple inheritance and polymorphism
are supported in ParoC++. A parallel class can be a stand-alone class or it can be derived
from other parallel classes. Some methods of a parallel class can be declared as overridable
(virtual methods).

5.1.2. Object description

The object description used to describe the resource requirements is declared along with
parallel object constructor statement. Each constructor of a parallel object associates with
an OD that resides directly after the argument declaration between ”@{...}”. An OD contains
a set of expressions on the reserved keywords power (for the computing power), network

(for the communication bandwidth between the object server and the interface), memory

5.2 Parallel object manipulation 45

(for the memory) and host (user-specified resource). Each expression is separated by a
semi-colon (”;”) and has the following format:

[power | memory | network] [>=|=] <number expression 1>

[”?:” number expression 2];
or host = <string expression>;

The number expression 2 phrase is only used in non-strict OD items to describe the low-
bound of the acceptable resource requirements. The existence of host expression will make
all other expressions be ignored.

Example: the constructor for the parallel object MyObj :

parclass MyObj

{

public:

MyObj(float P) @{ power=P; memory=60; };

...

};

Following this constructor, the MyObj object will be created on a resource with at least
P MFLOPS (parameterized OD) and a memory available of at least 60MB.

The OD is used by the ParoC++ run-time system (chapter 7) to find a suitable resource
for the parallel object. Matching between OD and resources is carried out by the multi-layer
filtering technique: first, each expression (item) in OD will be evaluated and categorized (e.g.,
power, network, memory). Then, the matching process consists of several layers; each layer
filters single category within OD and performs matching on that category. Finally, if the OD
can pass all filters, the object is assigned to that resource.

5.2. Parallel object manipulation

5.2.1. Parallel object creation and destruction

ParoC++ manages the parallel object life time by an internal object counter. This counter
defines the current number of references to the object. A counter value of 0 will make the
object be physically destroyed.

Syntactically, the creation and the destruction of a parallel object are identical to those
of C++. A parallel object can be implicitly created by just declaring a variable of the type
of parallel object on stack or using the standard C++ new operator. When the execution
goes out of the current stack or the delete operator is called, the reference counter of the
corresponding object will be decreased.

46 Parallel object C++

The object creation process consists of several steps: locating a resource satisfying the OD
(resource discovery), transmitting and executing the object code, establishing the communi-
cation, transmitting the constructor arguments and finally invoking the corresponding object
constructor. Failures on the object creation will raise an exception to the caller. Section 5.2.5
will describe the ParoC++ exception mechanism.

5.2.2. Inter-object communication: method invocation

The conventional way to communicate between distributed components in ParoC++ is through
method invocations. The invocation semantics are specified during the class declaration (sec-
tion 5.1.1). The user can add optional argument descriptors to each argument to provide
additional information for ParoC++ to marshal data: the argument is input or output or
both; the number of elements inside the argument (in the case of array); the custom procedure
to marshal/demarshal data, etc. In the current prototype of ParoC++, all standard C++
data types are automatically marshaled. For user-defined data types, the user should also
specify the function to marshal data by an optional descriptor [proc= <marshal function>].
If an argument of method is an array, it is also necessary that the user provide a hint on the
number of elements by the expression [size= <number expression>].

For example, to define a method Foo that has two arguments: an array of integer data
(input and output) and the size n of data:

parclass MyObj {

...

void Foo([in, out, size=n] int *data, int n);

...

};

//main program....

...

MyObj obj;

int data[10];

obj.Foo(data,10);

...

The current prototype of ParoC++ implements the communication using the TCP/IP
socket and the Sun XDR as its data representation. All data transmitted over the network
conforms to the XDR format.

5.2 Parallel object manipulation 47

5.2.3. Intra-object communication: shared data vs. event sub-system

In parallel objects, there are two ways for concurrent operations to communicate: using
shared data attributes of the object or using the event sub-system. Communication between
operations using shared attributes is straightforward because all operations on the same object
share the same memory address space. The programmer should verify and synchronize the
data access manually. Nevertheless, ParoC++ provides different method invocation semantics
(see section 3.4) for the programmer to control the level of concurrency of data access inside
each parallel object.

An alternative method is to communicate via the event sub-system. In ParoC++, each
parallel object has its own event queue. Each event is a positive integer whose semantic is
application dependent. A parallel object can raise or can wait for an event in its queue.
Waiting for an event will check on the object event queue whether the event has arrived or
not. If not, the execution of the current method will be blocked until the event occurs in
the queue. An event ”n” can be raised by the operation eventraise(n). A method can wait
for an event by the operation eventwait(n). Raising an event in a parallel object does not
affect the waiting-for-event in other parallel objects.

The following example demonstrates the use of the event sub-system to signal the arrival
of the new data of the parallel object MyObj. The concurrent method SetData will store the
data to the object and then raise an event. The method WaitData will be blocked until the
SetData method has been completed.

parclass MyObj

{

...

conc async void SetData(...);

conc sync void WaitData();

...

};

void MyObj::SetData(...)

{

//store the data here....

...

eventraise(1);

}

void MyObj::WaitData()

{

eventwait(1);

}

48 Parallel object C++

The event sub-system is a very powerful feature to deal with signaling and synchronizing
in distributed environments. For instance, it is used in conjunction with the shared data
attributes to notify the changes in data states during the concurrent invocations of read/write
operations. It can also be used to tell the others about occurrence of failure or the changes
inside the executing environment.

5.2.4. Mutual exclusive execution

When concurrent invocations occur, some parts of executions might access an attribute con-
currently. To deal with this situation, it is necessary to provide a mutual exclusive mechanism.
ParoC++ supports this mechanism by providing the keyword mutex. Inside a given object,
all block of codes starting with the keyword mutex will be executed mutual exclusively. In
the example bellow, methods Set and Get on the attribute val are performed atomically.

parclass MyObj

{

...

conc async void Set([in] int data[10]);

conc async void Get([out] int data[10]);

... private:

int val[10];

};

void MyObj::Set(int data[10])

{

....

//MUTEX1

mutex {

for (int i=0;i<10;i++) val[i]=data[i];

}

...

}

void MyObj::Get(int data[10])

{

....

//MUTEX2

mutex {

for (int i=0;i<10;i++) data[i]=val[i];

}

...

5.2 Parallel object manipulation 49

}

5.2.5. Exception support

The exception is an efficient mechanism for handling errors. Instead of handling each error
separately based on the ”error code” returned by a function call, exception mechanisms allow
the user to filter and centrally manage the errors within the calling stacks. Upon an error
occurs, the user will ”throw” an exception which will be caught somewhere else.

The exception mechanism in sequential applications where all components run within the
same memory address space is fairly simple since the compiler just need to pass a pointer to
the exception from the place where it is thrown to the place where it is caught. However, in
the heterogeneous distributed environment where each component is executed in a separate
memory address space and the native data representations are different due to the hardware
heterogeneity, the propagation of exception back to a remote component is more difficult. The
supporting system should know the type of exception, marshal the exception data, transmit
the data and demarshal the data on the remote component. On the remote component, the
exception should be en route until it is caught by the user.

ParoC++ supports transparent exception propagation: the exception occurs in a parallel
object will be automatically propagated back to the remote caller (Fig. 5.1). The current
prototype ParoC++ allows the following types of exceptions: all standard types (except
opaque type), parallel object types (user customizable exceptions) and the ”paroc exception”
type (system exception).

O:

OBJECT

OBJECT::Func(...)

{

int x;

...

throw x;

...

}

try

{

...

O.Func(...)

...

}

catch(int x)

{

//handle exceptions here

...

}

O.Func(...)

PC1 PC2

Figure 5.1: ParoC++ exception handling: PC1 makes a method call to object O on
PC2. The exception occurred on PC2 will be handled on PC1 with the pair ”try” and
”catch” on PC1

Two invocation semantics affect the propagation of exception: with synchronous invoca-
tions, the exception will be immediately propagated back to the caller; with asynchronous
invocations, since the caller does not wait for the results, the exception will be propagated

50 Parallel object C++

back to the caller the next time the caller accesses that object.

Beside the user exceptions, ParoC++ uses a special exception type paroc exception to
notify the user about the system failure:

• Parallel object creation fails due to the unavailability of suitable resources, an internal
error on ParoC++ services, or the failures on executing the corresponding object code,
etc.

• Parallel object invocation fails due to the network failure, the remote resource down,
etc.

All exceptions of type parallel object are propagated by reference, i.e., only the interface
of the exception is sent back to the caller. Other exceptions are transmitted to the caller by
value.

5.3. ParoC++ compiler

The compilation process is illustrated in Fig. 5.2. The ParoC++ compiler contains a
ParoC++ parser which translates the ParoC++ code to the ANSI C++ code; the ParoC++
service libraries that provide APIs for accessing various run-time services such as communica-
tion, resource discovery and object allocation, etc.; and an ANSI C++ compiler to generate
binary executables from the C++ code and the service libraries. The ParoC++ compiler
generates a main executable and several object executables for each ParoC++ application.
The main executable provides an entry point for the user to run the application. Object ex-
ecutables are not used directly by the user but they are accessed by the ParoC++ run-time
system during the parallel object creation.

ParoC++

parser

ParoC++

source

code

ParoC++

Service

Libraries

ANSI C++

compiler

ANSI C++

source

code

Main

binary

executable

Object

binary

executablesParoC++ compiler

Figure 5.2: ParoC++ compilation process

5.4. Putting together

We show in this section an example of writing a ParoC++ program in the following scenario:
the user sits in front of his computer, create two ”remote” objects. He then, from the main

5.4 Putting together 51

program, passes the interface of one object to the other. The other object will perform some
operations on the object provided by the user. The ”object” in the example is represented
for an integer and the operation is to increase the integer by a value remotely stored in the
other integer.

5.4.1. Programming

Figure 5.3 shows the declaration of a parallel class in ParoC++. From the language aspect,
this part contains the major differences between the ParoC++ and the C++. However, the
example shows that ParoC++ syntax is very similar to the C++ class declaration except
some new keywords (in bold letters). A parallel class consists of constructors (line 3-4),
destructor (optional), interfacing methods (public) (line 5-7), and a data attribute (private)
(line 9).

File: integer.ph

1: parclass Integer {
2: public:
3: Integer (int wanted, int minp) @{power>=wanted ?: minp;};
4: Integer(char *machine) @{host=machine;};
5: seq async void Set(int val);
6: conc int Get();
7: mutex void Add(Integer &other);
8: private:
9: int data;
10: };

Figure 5.3: ParoC++ example: parallel class declaration

The user defines a parallel class called Integer starting with the keyword parclass (line
1). Two constructors (line 3 and 4) of Integer are both associated with two ODs which
reside right after the argument declaration, between ”@{...}”. The first OD (line 3) specifies
the parameterized high level requirement of resource (i.e. computing power). The second
OD (line 4) is the low-level description of the location of resource on which the object will
be allocated.

The invocation semantics are defined in the class declaration by putting corresponding
keywords (sync, async, mutex, seq, conc) in front of the method declaration. In the example,
the Set method (line 5) is sequential asynchronous, the Get method (line 6) is concurrent
and the Add method (line 7) is mutual exclusive execution (atomic execution). Although it is
not shown in the example but the user can also use standard C++ features such as virtual,
const, or inheritance with the parallel class.

The implementation of the parallel class Integer is shown in Fig. 5.4. This implementa-
tion does not contain any invocation semantic and looks similar to a C++ code except at line

52 Parallel object C++

File: integer.cc

1: #include "integer.ph"
2: Integer::Integer(int wanted, int minp)
3: {
4: }
5: Integer::Integer(char*machine)
6: {
7: }
8: void Integer::Set(int val) {data=val;}
9: {
10: data=val;
11: }
12: int Integer::Get()
13: {
14: return data;
15: }
16: void Integer::Add(Integer &other)
17: {
18: data=other.Get();
19: }
20: @pack{Integer};

Figure 5.4: ParoC++ example: parallel object implementation

20 where we provide a directive ”pack” to tell the ParoC++ compiler the place to generate
the parallel object executable for Integer (integer.cc).

The main ParoC++ program (Fig. 5.5) looks exactly like a C++ program. Two parallel
objects of type Integer o1 and o2 are created (line 3). The object o1 requires a resource
with the desired performance of 100MFlops although the minimum acceptable performance
is 80MFlops. The object o2 will explicitly specify the resource location (local host). After
the object creations, the invocations to methods Set and Add are performed (line 4-5). The
invocation of Add method shows an interesting property of the parallel object: the object o2
can be passed from the main program to the remote method Add of parallel object o1. Lines
8-11 illustrate how to handle exceptions in ParoC++ using the keyword pair try and catch.
Although o1 and o2 are distributed objects but the way to handle the remote exceptions is
the same as in C++.

5.4.2. Compiling

We generate two executables: the main program (main) and the object code (integer.obj).
ParoC++ provides the command ”parocc” to compile ParoC++ source code.

Compile main program We use the following command:

parocc -o main integer.ph integer.cc main.cc

5.4 Putting together 53

File: main.cc

1: #include "integer.ph"
2: int main(int argc, char **argv) {
3: try { Integer o1(100,80), o2("localhost");
4: o1.Set(1); o2.Set(2);
5: o1.Add(o2);
6: cout<<"Value="<<o1.Get();
7: }
8: catch (paroc exception *e) {
9: cout<<"Object creation failure";
10: return -1;
11: }
12: return 0;
13: }

Figure 5.5: ParoC++ example: the main program

Compile the object code Use parocc with option ”-object” to generate the object code:

parocc -object -o integer.obj integer.ph integer.cc

The user has to compile the declaration of parallel class (integer.ph) explicitly. The user can
also generate intermediate code (.o) that can be linked using a C++ compiler by using the
option ”-c” (compile only) with ”parocc”.

5.4.3. Running

After the two executables are generated, we need to create the object map file named ob-
ject.map that will be used by the code manager service (chapter 7). The object map file
contains all mappings between (object name, platform) and the executable location. The
executable location can be an absolute path or an URL (HTTP or FTP). We assume to
compile the program on Linux machines and to put the executable on the web server at the
following address:

http://icwww.epfl.ch/∼tanguyen/paroc/

The object map file should look like:

Integer Linux http://icwww.epfl.ch/∼tanguyen/paroc/integer.obj

If you compile the object code for another platform (e.g. Solaris), just add a similar line
to object.map.

Now it is ready to run the program. ParoC++ provides the command ”parocrun” to do
that. From the local machine, the user starts the ParoC++ main program by executing:

parocrun object.map main

54 Parallel object C++

o1O1.Add(O2)o2

main
User

O2.Get

“localhost"

Figure 5.6: Three objects ”O1”, ”O2” and ”main” are executed in separated memory
address spaces. The execution of ”o1.Add(o2)” as requested by ”main”

Figure 5.6 shows the execution of Integer::Add method on line 4 in Fig. 5.5 of the example.
The system consists of three running processes: the main, object o1 and object o2. The main
is started by the user. Objects o1 and o2 are created by the main. Object o2 and the main
program run on the same machine although in two separate memory address spaces; object
o1 runs on a remote machine. The main invokes the ”Add” method on o1 with the interface
o2 as an argument. Object o1 will then connect to o2 automatically and invoke the method
”Get” on o2 to get the value and to add this value to its local attribute ”data”. ParoC++
system manages all object interactions in a transparent manner to the user.

5.5. Summary

We presented in this chapter the language aspects of Parallel Object C++ (ParoC++).
ParoC++ is an extension of C++ language that implements the parallel object model (chap-
ter 3). Rather than presenting all aspects of the ParoC++ language, we only focus on the
extension part of ParoC++ for parallel objects. We describe features of parallel objects in
ParoC++: declaration, implementation, manipulation, concurrent synchronization, excep-
tion handling, etc. The overall architecture of ParoC++ compiler is also presented. A com-
plete example of ParoC++ illustrates how to write a parallel object program in ParoC++.
ParoC++ allows applications to put the object executables on the web so that remote ma-
chines, through the ParoC++ runtime system, can download and execute the parallel object
automatically and transparently to the user. ParoC++ programming is simple and it can be
used as a good portal to achieve the seamless power of the Grid.

The language aspect of ParoC++ is just one link of the chain user-application-infrastructure.
The other link that completes the chain is the supporting infrastructure-the ParoC++ run-
time system that will be described in chapter 7.

Chapter 6

Data intensive computing in

ParoC++

6.1. Introduction

Data-intensive high performance computing applications can be grouped into two categories.
The first category refers to applications that need to manage and to access a huge data set.
For instance, Large Hadron Collider (LHC) [17] can produce annually petabytes of data.
Nevertheless, for a group of scientists, only a part of this data really needs to be efficiently
accessed, modified and computed while the rest are kept untouched. Users are usually not
located at the site where the data are stored but they rather work in some collaborative
environments over the world. Many techniques for managing data movement have been
developed. In [1, 18, 70, 73], the authors describe some issues in the context of Data Grids
such as the GridFTP [2] mechanism for data transport and replica management.

The second category of data-intensive computing is communication-intensive applications.
These applications require that efficient communication be achieved in addition to compu-
tational tasks. We are more facing with the communication intensive issue rather than the
large data management issue. Some techniques such as data caching [54, 78], replica catalog
[73] have been implemented to deal with communication intensive problems.

In this chapter, we focus on the second class of data intensive computing, i.e., parallel
computing with communication intensive. In the framework of ParoC++, we propose a
technique called passive data access for efficient data movement in high performance data
intensive computing.

55

56 Data intensive computing in ParoC++

6.2. Data access with ParoC++

6.2.1. Passive data access

Communication intensive applications usually use two main techniques to improve the per-
formance of data movement: moving the computation toward the data source or moving the
data toward the computation process.

In ParoC++, moving the computation to the data source can be implemented by al-
locating parallel objects ”near” the data source in order to fulfill the object description
requirements. However, if the computation involves multiple distributed data sources, it is
often difficult, even impossible, to locate a resource near all data sources. Another situation is
when a heavy computation task is required and no resource near the data source can provide
the satisfying computing power. In such situations, moving the computation toward the data
source is not appropriate and we have to move the data toward the computation process.

A widely used technique to increase the performance of data movement in parallel com-
puting is to overlap computation and communication. A number of studies has been focused
on this issue such as asynchronous sending and combining non-blocking receive with polling
in MPI [72] and PVM [34], pipelining large data in C++// [33], etc.

We propose a technique called passive data access (or passive access for short) to
improve the overlap between computation and communication. Passive access allows a data
source to directly store the data to a user-specified address without intervening in other user’s
operations. It is the data source that decides when to initialize data transferring. This is
similar to DSM systems [8, 67]. However, while DSM aims at providing a model for parallel
programming, passive access is a technique to efficiently access data in the Grid or distributed
environments. In addition, the user-specified address in passive access is not only limited to
the memory, but it can also be a secondary storage, a network device or other media.

Passive access in ParoC++ is described as follow: a computational object C requires a
series of data pieces from one or several distributed data source objects S1, S2, . . . Sn. The
data that C needs is stored in a parallel object D. Object D and object C can be the same or
they can be different. Object C will invoke asynchronously the method ”request-for-data” on
the source objects with an argument containing the reference of the data destination object
D. Then it continues its operation. At the source Si, the ”request-for-data” method will
prepare the data and initialize the data storing to object D (attributes) directly without
notifying C (if C and D are the two different objects). When the data is needed on C, C will
access directly D to acquire the needed data.

Figure 6.1 shows an example of remote copying file from machine B to machine C. The
user on machine A will create two objects of type ”File” on B and C. Then he performs
copying. In the example 6.1(a), the user uses ”Read” to read from B and ”Write” to write
data to the destination file on C. Example 6.1(b) shows passive data access in which the user
implements the method ”Copy” with a destination file object as the argument. The ”Copy”

6.2 Data access with ParoC++ 57

�

�

�

������ 	
��

����� ����

����

����

������
� ! """#

�$%&'�(�)***+

(a) Traditional approach

�

�

�

�����
� 	
��

����� ����

����

����

������
� !�

"#
$%&'(
)*+,-.../

(b) New approach

Figure 6.1: Passive data access illustration

operation on B with a reference to C as the argument will make the data transfer directly
from B to C without going through the user machine.

Figure 6.2 shows different possibilities to access data using passive access in ParoC++.
ParoC++ provides various mechanisms for data access: synchronous, asynchronous, sequen-
tial, mutex and concurrent. In the first 2 cases (6.2(a) and 6.2(b)), the data is acquired
from a single data source. Figure 6.2(a) shows a traditional method to synchronously access
data: the ”main” requesting data for the parallel object ”dest” is blocked until the data
arrive at ”dest” from the source. Synchronous access is usually not a preferable method in
parallel computing because it reduces the possibility to overlap between computation and
communication. In figure 6.2(b), the ”main” does not wait for the data. Instead, it calls
an asynchronous invocation on the data source and continues the execution. At a certain
time, when the ”main” needs the data, it checks for the data at the ”dest” and waits for the
availability of this data. Figure 6.2(c) introduces the concurrent data access. Data can be
obtained from several data sources concurrently. When the ”main” needs the data, it just
invokes a ”check” method on the parallel object ”dest”. The check runs concurrently with
the data storing process. Figure 6.2(d) illustrates the situation where ”dest” and ”main” are
the same object. This illustrates the ability to store data directly into the computational
memory address space.

One important issue of passive access is how the data consumer knows if the data is ready
for use or not. The arrival of data can be triggered by raising an event (event sub-system).
In Figure 6.2(d), when the computational task requires the data, it just waits for an ”arrival”
event which will be produced by the set-data methods (”PutData” method in the example).
The event sub-system is only one way to check for the availability of data. An alternative
way is to use a ”flag” attribute as the meta-information (status) of the data. ”PutData” will
change the flag while the computational method will check on this flag the status of data
arrival.

58 Data intensive computing in ParoC++

���� �����	

	��

������ ���� ��� ��
����

(a) Synchronous/Sequential

����

�����	

	��

������ ���� ��� ����
��

����� !"!

(b) Asynchronous/Sequential

���� ���� ���� 	
������ ������

���� ������

�� !

"#$%#&' ()') *+, -.#&'/

012345676
������

89:;9<= >?=? @AB CD9<=E

FGHIJ
HJK

LMNOPNPQ

(c) Asynchronous/Concurrent
without mutex on multiple
data sources

����

�����	

����� ���� ��� �
�����

�����
��	��

�������	

!"#$%#%

&'&()*+,-&./01023456378

(d) Passive access: check for
data arrival

Figure 6.2: Passive data access in ParoC++

6.2.2. Data Prediction

Passive access allows users to request for the data prior to the computation. In other words,
users can predict the data needed in their applications and then signal the data source to
prepare for their data in advance. The computation is not blocked during this preparation.
Therefore, passive data access can reduce the time waiting for data and gives a better overlap
between computation and communication.

In many applications, the data is not raw data but it is rather computed. Preparing data
can be a time-consuming process. So passive access offers an efficient method to increase the
overlap between the data preparation and the computation.

6.2.3. Partial data processing

When users need to process a large amount of data and the computation can take place
when a portion of the data is available, one possible way to increase the overlap between
computation and communication is to split the data into smaller chunks and transfers these
chunks one by one. This idea can be implemented in ParoC++ using passive data access
with multiple data buffer at the computational objects. Each buffer corresponds to a data
chunk. When a given amount of the data in the current buffer has been used up, requests for

6.3 Summary 59

data will be invoked on the data source to prepare for the next data. Then the computation
continues on the remaining buffer. During this computation, the new chunks are expected to
arrive, avoiding the computational process to be blocked when all the data in the buffer has
been consumed.

6.2.4. Data from multiple sources

The data needed for the computation may come from multiple data sources or data providers.
Data management and aggregation is a complex process that might increase the cost of par-
allelism. The object-oriented framework in ParoC++ allows the needed data to be acquired
and be aggregated automatically from multiple data sources. Each data source is responsible
for putting its data to a proper place by invoking an appropriate method on the destination
object.

In CAVE [23] virtual reality system, for instance, the user needs the data from several
cameras, sensors in order to produce a virtual interactive environment. One possible way
using ParoC++ is to create computational parallel objects. Each object will introduce itself
to the data sources. At a data source, as the data become available, the attribute of the com-
putational object will be updated by the corresponding method invocation (”set” method).
Doing this way makes the data transfer transparent to the data consumer.

6.3. Summary

The chapter presented an approach for efficient data access in distributed data intensive
applications called passive data access. The main difference between passive data access and
other methods is the ability for an entity (usually a data source) to initiate the transfer and to
store data directly to the user-specified address without interrupting other user’s operations
running in that address.

Passive data access with ParoC++ provides a new way to develop distributed commu-
nication intensive applications. The user focuses on constructing different kinds of parallel
objects and on defining the roles, the resource requirements, the relationships among par-
allel objects rather than on defining the messages exchanged between processes. Data can
be actively brought and synthesized from data sources to data consumer objects in advance
and in an efficient way. Passive data access also improves the overlap between communica-
tion and computation which leads to the improvement of the overall performance of parallel
applications.

Some experiments with ParoC++ data access will be described in chapter 10.

60 Data intensive computing in ParoC++

Chapter 7

ParoC++ runtime architecture

7.1. Overview

The ParoC++ runtime system is used to execute ParoC++ applications. We do not intend to
address all issues of Grid computing, instead, we will provide essential services for ParoC++
applications and a mechanism to integrate other low-level Grid computing toolkits such as
Globus [28, 29] or XtremWeb [25] into ParoC++. Each ParoC++ service is implemented as a
parallel object. We define a high-level abstraction of the service functionalities though the ob-
ject interface without any specification on how to implement it. The default implementation
is provided as a reference. The user can implement his own service such as the Globus-based
service by replacing the object implementation or by inheriting the new service (new object)
from the existing service (existing object). The latter possibility is recommended since it
corresponds better to the object-oriented programming style. A new system can be inte-
grated automatically into the ParoC++ environment in a Plug-and-Play flavor that existing
ParoC++ applications can immediately use without being recompiled.

Figure 7.1 illustrates the role of ParoC++ in the Grid environments. Rather than pro-
viding low-level services for direct access to computational resources, the ParoC++ runtime
system consists of an abstraction of services and the customizable and extensible implemen-
tations of the abstraction on the Grid-enabled toolkits. Hence we can use ParoC++ to glue
Grid tools for executing HPC applications.

7.2. ParoC++ execution model

The execution model of ParoC++ applications is MIMD (Multiple Instructions Multiple Data
stream). Thank to the asynchronous and concurrent invocations, the executions on different
parallel objects can simultaneously occur. The executions of concurrent methods on the same
object are also performed in parallel.

Unlike the SPMD (Single Program Multiple Data stream) model where instructions are

61

62 ParoC++ runtime architecture

Grid computing:

Globus

Web computing

ParoC++

abstraction

ParoC++ standalone

Future environment
?

Figure 7.1: ParoC++ as the glue of low level Grid toolkits

stored inside a single program, ParoC++ applications are truly MIMD. Each application
consists of a main program and several object executable files. Object files store the im-
plementation of parallel objects which are managed by the ParoC++ runtime system. In
ParoC++, an object implementation can reside in several object files compiled for different
hardware architectures. The availability of an object implementation for a specific architec-
ture will be considered during the object allocation phase. The difficulty of using multiple
code files is that we need to either explicitly or implicitly manage the files. The ParoC++
system manages this automatically and transparently to the user. In the Grid, splitting the
whole application into multiple code files has two advantages. First, we only need to transfer
the code over the network that is really used to perform the task. Second, each part of the
application can be optimized for several specific architectures and hence it can increase the
robustness of applications.

When the user starts the ParoC++ main program, there is only one execution stream.
Then, parallel objects are created and destroyed dynamically as if we do on sequential objects.
The parallel object creation accesses ParoC++ services to perform resource discovery, to
download and to launch suitable object file on the remote resource, to establish the interface-
object connection, etc. The object creation process can be invoked anywhere inside the
application: in the main program or in a remote parallel object, transparently to the user.
The object destruction occurs when the execution goes out of the stack where the parallel
object is declared or the ”delete” operator on the object is explicitly called (in the case the
object is created by the ”new” operator).

Since the parallel object is shareable, each parallel object is only physically destroyed
when there is no more reference to the object. This feature is automatically managed by the

7.3 Essential ParoC++ services 63

ParoC++ system.

7.3. Essential ParoC++ services

We do not intend to build a complete system to deal with all issues of the Grid environment.
Instead, we will construct high level services that are essential to run ParoC++ applications.
These high level services should provide:

• A high-level abstract and uniform interface for ParoC++ applications without any
specific implementation details.

• A customizable and extensible implementation that lays on other Grid computing toolk-
its.

Figure 7.2 shows the architecture of ParoC++ services. The ParoC++ application is on
the top of the architecture. It uses the standard interface defined by the ParoC++ essen-
tial service abstraction to perform operations on parallel objects such as object creations,
object destructions, method invocations, etc. This abstraction layer defines the desired func-
tionalities of services, not how these services are implemented. The customizable service
implementation layer provides different implementations of the abstraction on different envi-
ronments.

������������	
�������
��

������
��
����	 �
�� ��
 ������������

������ ��� ���� ����� �� !�"#$" ��#�%"��&''

���$ ��
(��)���#*

�����#*
+���������$
�#, ���#��#�

-�.�� ��������

-�.��
$���������$
�#, ���#��#��

������ ���	�������

/0123456789:
1:;<5=:
54>9:4:?27253?1

%"��&''
���, �(�� @��
������

%"��&''
���, �(�� @��
����� ��

%"��&''
���, �(�� @��
�����#*

-�.��
(������A"���
���, �(��

Figure 7.2: ParoC++ layer architecture

Our favor in building the ParoC++ runtime system is to glue other Grid or distributed en-
vironments such as Globus, XtremWeb, etc. into a single virtual system that is exploitable by
ParoC++ applications. When a new environment is integrated into ParoC++, its resources
will be automatically available to all ParoC++ applications.

From the execution model in section 7.2, ParoC++ services focus on supporting the
dynamic creation of parallel objects. Parallel objects can reside in different executable files.

64 ParoC++ runtime architecture

The same parallel object can be compiled for several hardware architectures. Therefore, we
need a service to manage different parallel object code files. We call this service the ParoC++
code manager service (section 7.4). Rather than specifying the exact location of resource,
each parallel object describes the characteristics of the resource where the object will live.
ParoC++ provides the ParoC++ resource discovery service to find a suitable resource for
the object based on the object description (section 7.6). Besides the object description,
the resource discovery service also accesses the code manager service to acquire information
about supported platforms for the given object. When a suitable resource is identified, the
system should be able to launch the object server on the remote resource and to manage
the execution status. This functionality is provided by the ParoC++ object manager service
(section 7.7).

Sometimes the user needs to log some information. Writing out messages in a readable
way to the user’s screen is a problem in distributed environments. The ParoC++ runtime
system provides the ParoC++ remote console service that sends back all log information to
the local console where the user starts the application. Section 7.5 describes this service.

ParoC++ services are accessible via the service access points through the TCP/IP pro-
tocol. Currently, each access point consists of the name of the machine where the service is
running and the port on which the service listens for requests.

������� ���	���
���

���� ���� ��� ����� ��� �

�������
������� ���

���� ��� �

�������
������� ���

������

������

 !"#!$%

&'()'*+

Figure 7.3: Global services and application scope services in ParoC++. Users create
application scope services. Global services access application scope services to perform
application specific tasks.

We categorize ParoC++ services into two classes: global services and application scope
services. Figure 7.3 gives an illustration of two kinds of services.

Global services: The global services provide common functionalities for all ParoC++ ap-
plications. These services must run on each resource (a computer, a cluster, a su-

7.4 ParoC++ code manager service 65

percomputer, etc.). They exist permanently even if there is no ParoC++ application
running. When a parallel object is remotely created, the ParoC++ runtime system will
automatically initialize the global service access point on the object. That makes the
global service accessible from any parallel object inside the application. Global service
access points do not need to be the same on all parallel objects within the application.
The ParoC++ system can provide different global access points for different objects.
The object manager and the resource discovery are two ParoC++ global services.

Application scope services: Differ from other systems, we introduce a new type of services
called the application scope services: services that serve specifically for each application.
Application scope services are instantiated by the user who runs the application. These
services can be used by any application components or by other services to perform
application-related tasks. Instances of these services are associated with each appli-
cation. They are started when the application starts and are terminated when the
application terminated. All components of the same application have the same access
point to the application scope services. The ParoC++ code manager and the ParoC++
remote console are application scope services.

One important feature of the ParoC++ service architecture is the inter-operability be-
tween global services and application scope services. Global services can dynamically access
to application scope services to obtain necessary application specific information for perform-
ing the requested tasks for the application. ParoC++ manages these inter-operabilities by
defining the well-known interfaces for accessing services. Global services only know the appli-
cation scope service abstractions. They do not know how the application scope services are
implemented. The implementation of services can be customizable and extensible by users.

7.4. ParoC++ code manager service

The code manager service is an application scope service used by other global services such
as the resource discovery (section 7.6) or the object manager (section 7.7) to locate the object
executable for a specific object on a specific platform. This service is accessible via the parallel
object interface CodeMgr.

Each ParoC++ application has its own object mappings, so the code manager service
is defined as an application scope service. This service is instantiated separately for each
application. By default, CodeMgr is started on the local machine where the user starts
his application. The ParoC++ runtime system then makes it automatically available to
all distributed components within the application. CodeMgr is not used directly by the
programmer. It is internally used inside the system libraries to discover a suitable resource
and to start the object execution on that resource.

66 ParoC++ runtime architecture

��������� �	�
������ ��� �������� �������������	�������������
�������� �	�
������ ��� �������� �������������	���������������	��
������������� �	�
������ ��� �������� �������������	����������������	��
�������� ��	! ����������	�������	!������������	��
��������� ��	! ����������	�������	!��������������	��
������������� ��	! ����������	��������	�������	!�������������	��

"#$#%%&%
'()&*+ ,#-&

.#$/0#$&
1%#+23$-

43/& %3*#+53, 6789 3$ #(:3%;+& 1#+<=

Figure 7.4: Example of an object configuration file

When a ParoC++ application is started, the user needs to provide an object configuration
file (Fig. 7.4) which lists all object mappings between (object name, supported platform) and
the location of the object code. The object configuration file is a text file in which each line
contains three fields separated by one or more spaces: the parallel object name, the platform
and the location of the parallel object code compiled for this platform. The location can be
an absolute path inside the local file system (in the case where the ParoC++ environment
shares the same file system) or an URL that is accessible via some standard web protocols
such as HTTP or FTP. Information in this object configuration file will be automatically
registered to the CodeMgr via the method RegisterCode by ParoC++ when the user starts
the application:

void CodeMgr::RegisterCode(char *objname, char *platform, char *codefile);

in which the user provides the parallel object name in objname, the platform on which the
object code file was compiled (e.g. SunOS-sparc or Linux) in platform and the location of
the code file in codefile. This information is the same as those in the object configuration file
illustrated in Fig. 7.4.

The object mapping can be queried via the operation QueryCode where the user should
provide the object name (objname) and the hardware architecture (platform) as the inputs; if
the object code exists, its location is stored in the codefile argument and the method returns
1 (TRUE). If the object code is not available, the return value is 0 (FALSE) and the content
of codefile is undefined.

int CodeMgr::QueryCode(const char *objname, const char *platform, char *codefile);

To get the list of supported hardware architectures for a specific object, the user uses the
operation GetPlatform with two arguments: objname (the object name) as the input and
platforms (list of platforms for objname, separated by a space) as the output. GetPlatform
returns the number of supported platforms for the object.

int CodeMgr::GetPlatform(char *objname, char *platforms);

7.5 ParoC++ remote console service 67

7.5. ParoC++ remote console service

Sequential C/C++ applications usually print out messages to the console using standard
functions (or objects) such as printf, puts or the C++ iostream interface cout. However, on the
Grid, to collect output messages from remote components, rather often the standard output
and standard error files are redirected into a socket which at other end will be connected
to the local standard output and standard error files. This approach does not work well in
ParoC++ application because the place where the parallel object is created is usually not
the local machine where the user starts the application. Therefore, the ”local” console is not
known by the parallel object.

We provide the remote console service that is accessible through the parallel object inter-
face RemoteLog by all parallel objects to print back the message on the local user’s console.
RemoteLog is an application scope service that is started on the same machine where the user
starts the application. The main operation of RemoteLog is to print out a message (string of
characters) to the local console:

async virtual void RemoteLog::Log(char info[256]);

Log is a virtual method. The user can overwrite this method to implement his desired
behavior (e.g. output the information to a file).

To facilitate the use of this service, ParoC++ provides a printf -like function that uses
RemoteLog to print back the message to the user console:

void rprintf(const char *format,...);

7.6. Resource discovery

Resource discovery and reservation is an important service in the ParoC++ runtime environ-
ment. It is used to locate a suitable resource which satisfies the object description (OD) (see
section 3.6 for OD) during the parallel object creation and to reserve the resource for that
object. Unless the low-level OD, which explicitly specifies the resource (host) name, is used
this service is accessed every time a parallel object is created.

7.6.1. Overview

Resource discovery is a hard but important problem for wide area resource management,
typically of Grid environments. It is not efficient, even impossible for a user to manually find
best resources for his application among thousands or even millions of nodes. The resource

68 ParoC++ runtime architecture

discovery can be stated as following: within the computational environment, identify (some
or all) available resources that satisfy user-specified constraints.

The state-of-the-art of resource discovery systems can be classified into three approaches:

Broadcast/multicast approach: this is the traditional model used mainly in small flat
networks such as LAN environments based on broadcast or multi-cast protocols. Each
resource listens for a request message from the network. When the user looks for
resources he just broadcasts or multi-casts the request to all (or a group of, in the case
of multi-cast) resources. A willing-to-serve resource receives and verifies the request
from the user with its local policy. If the request is matched, the resource replies
back to the user with its information (location). This method is called active resource
discovery. The advantage is the ability to automatically and dynamically discover
resources inside the environment with the up-to-date dynamic information. However,
the limitation of this approach is on the scalability of the system only to a small
network (institution scale). Increasing the number of resources can seriously degrade
the performance of the system. In wide area environments where resources can belong to
different administrative domains, such as on the Internet, this model is not applicable.

Centralized approach: all information of resources is stored in one or several servers. The
resource discovery process will query the server to find a suitable resource. The match-
ing between user requirement and a resource can be performed on the central server
or at the user site. In the latter case, the server only plays the role of an information
provider. Centralized management is simple and easy to maintain but we argue that
it is not suitable for a widely distributed environment such as the Grid. Firstly, it
limits the scalability of the system as the number of users and the number of resources
grows. A centralized system can in principle apply many optimization techniques such
as using search trees, hash structures, indexing or caching data, for efficient data ac-
cess. However, many criteria from the user are not simply concerned with the name
but rather with a set of constraints, which may lead to the inappropriate use of these
techniques. Secondly, dynamic information in the Grid such as CPU load, CPU idle,
number of processes or free memory size might change rather fast. This will lead to the
need to verify the validity of information on the server. The server can periodically poll
the status from resources or a resource can update its information as its internal state
changes. Again, we face with the scalability problem here. In addition, a resource might
go down without any notification, making the information on the server uncertain. An
alternative technique is to use a ”pull” model so that dynamic information is acquired
directly from resources only when it is needed. Nevertheless, all of the above techniques
are not sufficient in wide area distributed environments where the bandwidth might be
low. Finally, with the centralized approach, the system is not fault tolerant. A crash
on the server or a network-partitioning event might lead to the stop functionality of the

7.6 Resource discovery 69

system.

Distributed approach: distributed approach differs from centralized approach in the way
the information is managed. Rather than storing information in a common place,
information is distributed over the network. We argue that this approach is suitable
to the resource discovery in widely distributed environments such as the Grid. First
of all, distribution of information will increase the availability of the whole system.
The failure of one information source will not interfere with the function of the others.
Next, when a user performs resource discovery, it is reasonable to find resources near his
place first (within his institution). It is only necessary to discover resources that do not
belong to his institute when local resources do not satisfy the requirement. Therefore,
putting information sources near resources can improve the overall performance of the
system. Finally, because the information source is placed near resources, the distributed
approach can handle dynamic information more efficiently based on the high-speed
connections between resources.

We propose a fully distributed resource discovery for the ParoC++ runtime system. It
differs from the centralized approach such as in Globus [26], NetSolve [15] or Condor [66]
in the way the information is stored. Information about the resource in ParoC++ is fully
distributed and is accessed on demand. This is somehow similar to P2P models [20, 68, 74]
in the information distribution, but we add to our system the ability to self-adapt and to
deal with dynamic information that does not exist in such P2P systems. Agent’s and ours
are comparable in the ability of learning but we use passive learning while agents use active
learning by advertising themselves to the others periodically. The next section gives detailed
information on our resource discovery model.

7.6.2. ParoC++ resource discovery model

7.6.2.1. Information organization

ParoC++ does not have any centralized server to manage resource information. Information
about each resource is stored and accessed locally. Each information item is a pair of (type,
value). In principle, the user can define any type of information he wants. However, in
order for the ParoC++ resource discovery to work, some standard information types must
be available. This information is listed in Table 7.1.

Information can be static or dynamic. Dynamic information can change fast, hence it
is obtained on demand. Static information does not change during the life time of the
service. Therefore, it is loaded from a configuration file when the service is started. In
this configuration file, each line stores one information element, consisting of two text fields
separated by a space: the type of information and the value.

70 ParoC++ runtime architecture

Name Value Type Description
host string The full qualified host name of the local resource (static).

platform string The hardware architecture of the local resource (static).

maxjobs integer The maximum number of ParoC++ jobs (objects) can run
simultaneously (static).

np integer Number of processors of the resource (in the case of SMP
machine) (static).

jobmgr string The name of the job management system of the resource
(static).

ram integer Maximum memory size, in MB (dynamic).

power real number Maximum available computing power for each processor of
resource (dynamic).

jobs integer Number of jobs (objects) managed by ParoC++ that are
currently running on the local resources (dynamic).

Table 7.1: Standard information types of resource

Information about the resource is queried via the protected method Query on the ParoC++
global service- a parallel object of type JobMgr. JobMgr inherits all global services (parallel
objects) and it is a composite parallel object to access services.

virtual int Query(char *name, char *value);

If the information ”name” is available, Query stores the corresponding value in the output
argument ”value” and returns true. Otherwise, Query returns false to the caller.

New dynamic information can be added to the existing system by just simply deriving
a new class from JobMgr and by overwriting the method Query inside the new class. By
this way, the user can also customize the calculated dynamic information such as providing
a different benchmark method to fit the specification on his own resource.

7.6.2.2. Resource connectivity

Resource connectivity shows the knowledge of each resource about other resources inside the
environment. In ParoC++, each resource is represented by a parallel object. We model the
resource connectivity by a dynamic direct graph of objects. Edges of the graph represent
the knowledge that one resource has over the others. Each resource learns about the others
through the resource discovery process and hence it can add or remove edges to/from the
graph.

In principle, the ParoC++ environment can be depicted as an arbitrary graph. However,
the initial organizational structure of resources is recommended to be divided into two main

7.6 Resource discovery 71

levels:

• Local level: resources inside a single organization. At this level, some resources are
chosen as the ”masters” that manage the join of resources within the institute. A new
resource joins the environment by registering itself to the masters.

• External level: the initial connectivity among institutes. The masters, also known as
the ”gateways” of one institute should know some resources (usually the masters) of
some other neighbor institutes. This level tries to glue institutes to form a bigger
connected graph of resources.

Institute B Institute C

New resource

Institute A

Local level

External level

re
g
is

tr
a
ti
o
n

Figure 7.5: A recommended initial resource connectivity. During the resource discovery
process, the master might not be necessary due to the learning of local resources.

Figure 7.5 shows an example of the initial resource connectivity graph consisting of three
institutes A, B and C. Although resources within A do not know the resources of C but thank
to the ParoC++ mechanisms, it is possible for the institute A to use the resources of institute
C.

Inside each domain, the administrator should specify the initial connectivity among the
resources within his domain as well as the outbound connectivity with other domains. The
information obtained from the resource discovery process will make the system to be evolved
and new connections will be automatically added and updated.

In order for a new resource to join the environment, it is necessary that the resource
should initially know some others (usually the masters) inside the environment (vertices of
the graph). The resource then registers itself to any nodes of the graph to create a new
edge. Currently, this information is explicitly specified by the user through a configuration
file when the service is started.

7.6.2.3. Resource discovery algorithm

The resource discovery algorithm of ParoC++ is based on three major steps: matching,
forwarding and adapting. Upon receiving the resource request, each node (resource) will
perform:

1. Matching: the OD is parsed and separated into several atomic items. Each atomic
item contains a single requirement on a specific category of resource information (such

72 ParoC++ runtime architecture

as computing power, memory available, etc.). The atomic item is then matched with
the corresponding local information of resource. Matching is performed via the virtual
protected method Match of the parallel object JobMgr :

virtual int Match(const char *requirements, float &fitness);

The method requires two inputs: the user requirements on the resource and the fitness
(a non-negative number, fitness ≥ 1 means the resource is completely satisfied) showing
the previous evaluation of the current requirements on other traversed resources.

If the resource satisfies the OD and the local fitness is bigger than the previously eval-
uated fitness, Match method returns successful. In this case, the resource discovery
process then cancels the previous resource reservation, makes the local resource reser-
vation, updates the fitness value. Otherwise, Match returns 0 and the fitness value is
unchanged.

The evaluation of fitness value is based on the equation: fitness = min { Ti
Ri
}, where Ti

and Ri are the total amount of resource currently available and the amount of resource
required for the atomic item i in the requirement.

In addition to matching the requirement, authorizing the user for using the resource is
also performed via the method MatchUser :

virtual bool MatchUser(const paroc accesspoint &appservice);

MatchUser requires the access point to the application scope service (appservice) for
which the resource discovery service can obtain necessary information about the user to
perform the authorization. The default implementation of MatchUser always returns
”true” (successful). The user will overwrite this method to implement himself the
authorization mechanism.

If both matchings are successful and the fitness is greater than or equal 1, the resource
discovery finishes successfully; the reservation ID and the local service access point are
returned to the caller.

Otherwise, forwarding step is executed.

2. Forwarding: forward the request to the neighbor nodes by invoking the synchronous
resource discovery methods. Information to forward includes:

• The user requirements.

• The current fitness value.

• The current corresponding global service access point that partially satisfies the
requirements.

• The trace of nodes previously traversed (to avoid the forwarding loop).

7.6 Resource discovery 73

Only neighbor nodes that are not listed in the trace will be considered for forwarding.
The local node will add itself into the trace before forwarding. As the resources are
likely organized in a tree-like structure, the number of resources that can be traversed
is an exponent number to the depth of the tree (the size of the trace). So we will not
need a big size of the trace. Currently, the maximum trace length is 32.

Forwarding process terminates successfully if a fully qualified resource is identified.

3. Adapting: Each node maintains a priority list of neighbor nodes that defines the
order of forwarding. The newly discovered resource can also be added to this list. A
node in the list can be static which means the user explicitly specifies or the neighbor
node explicitly registers itself to this node; or it can be dynamic which means the
neighbor node is added to the list by learning from the discovery. Static nodes are used
to maintain the connected resource graph while dynamic nodes are used to improve
the performance of the resource discovery process. We have three scenarios of node
forwarding:

• The resource is discovered by this forwarding. The factors used to calculate the
priority of a node are: the time spending to find a resource and the fitness value
of the found resource. We choose the priority H(A) of the neighbor node A as:

H(A) = old H(A)+ T
F

2 where the old H(A) is the current priority of node A before
forwarding, T is the time waiting for the result from this forwarding and F is
the fitness value of this forwarding. The smaller value of H(A) means the higher
priority of node A in the list. The position of A in the list is updated after
this calculation. If the newly discovered resource is not in the list, it will be
automatically added to the list.

• The resource is not discovered by this forwarding. The new priority of the node
is updated based on the time spent on this forwarding: H(A) = old H(A) + T

• The forwarding fails due to the failure on the network or on the to-be-forwarded
neighbor node: if the neighbor node is static, it will be temporarily removed from
the list for a specific amount of time; otherwise, the node is permanently removed
from the list.

We also limit the maximum number of dynamic nodes in the list. When the number
of dynamic nodes in the list passes this limit, the lowest priority dynamic node will be
suspended from the list.

7.6.3. Access to the ParoC++ resource discovery service

The resource discovery service is accessible via the parallel object interface JobMgr using the
virtual concurrent method:

74 ParoC++ runtime architecture

virtual conc int AllocResource(paroc_accesspoint &appservice,

const char *objname, const char *OD,

char *codefile, paroc_accesspoint &jobcontact);

To find a resource for a parallel object, the user needs to provide three inputs: the ap-
plication scope service access point of the application (appservice) for the ParoC++ code
manager service, the name of parallel object (objname) and the evaluated object description
string (OD). If the resource which satisfies the OD is identified, AllocResource stores the
ParoC++ object manager access point (see section 7.7) of the discovered resource in jobcon-
tact, the corresponding object code location in codefile and returns the reservation identifier
(a positive number) of the parallel object allocation request on the discovered resource. All
of these outputs are used by the ParoC++ object manager to launch the parallel object. If
no such a resource is available, AllocResource returns -1.

7.7. ParoC++ object manager

The ParoC++ object manager is used as a portal to access the local resource. It provides
two main functionalities: launching the parallel object and managing the resources.

7.7.1. Launching the parallel object

As a suitable resource for a parallel object is discovered through the resource discovery service,
the next action is to launch the object using the object manager service on that resource.
Launching a parallel object consists of the following steps:

1. Locate the corresponding binary code of the parallel object and download the code if
necessary. The code file can be stored in the local file system or it can be put on a
remote server that is accessible via some well-known protocols by any resource inside the
computational environment. Currently, ParoC++ supports HTTP and FTP protocols.

2. Setup the call back service. The call back service is a temporary network service to
receive the access point of the to-be-created parallel object.

3. Submit the object code to the local job manager of the resource. The submission is
performed in a separate process. Information passed by the object manager during the
submission includes:

• The global service access point. ParoC++ provides two options: the global service
access point can be the same as the one at the interface part of the ParoC++
application or it can be the access point of the resource where the object is to be
created.

7.7 ParoC++ object manager 75

• The application scope service access point. This should be the same for all parallel
objects of the same ParoC++ application.

• The parallel object name. Since each code file may contain the code for several
parallel objects, so the object name is necessary for the ParoC++ runtime system
to choose the proper parallel object code to start.

• The call back access point so that the parallel object access point, upon created,
can be transferred back to the object manager.

ParoC++ is designed to deal with the heterogeneity. It allows a job to submit to
different ”local” job management systems such as LSF [88], PBS [45] or even Globus
[24] (Section 7.10 describes the Globus integration into ParoC++). ParoC++ is a
high level infrastructure. Rather than providing its own authentication/authorization
services, ParoC++ is based on the security infrastructure of the underlying resource
management system.

4. Wait on the call back service for the access point from the parallel object.

Launching a parallel object is performed through the virtual method ExecObj of the
global service interface JobMgr :

virtual int JobMgr::ExecObj(const char *codefile, const char *objname,

int reserveId, const paroc_accesspoint &globalservice,

const paroc_accesspoint &appservice, paroc_accesspoint &objcontact);

The interface should provide the object name (objname), the code location (codefile),
the reservation ID on the discovered resource (reserveId), the global service access point
(globalservice) and the application scope service access point (appservice). ExecObj will
execute the object server and return the execution status. If the parallel object is successfully
started, the access point to that object will be stored in the output argument objcontact. This
access point is used later by the interface to establish the connection to the object server.

7.7.2. Resource monitor

The resource monitor is internally used to manage the state of resource during the object
allocation and the object execution. It consists of:

• Manage the resource reservation for parallel objects. During the resource discovery
process, as soon as a better fit resource is discovered, the reservation is moved from the
old resource to the new one.

• Monitor the termination of parallel objects. When a running object terminates, the
resource monitor should free immediately all resources occupied by the object so that
other objects can be allocated.

76 ParoC++ runtime architecture

7.8. Parallel object creation

The interaction between ParoC++ services is illustrated in Fig. 7.6. In the figure, the number
on each edge shows the order of tasks which will be performed to create a parallel object.
Each parallel object comprises two parts: the interface part from which the user creates the
object and the server part that can run remotely on a different resource. Manipulations
on the parallel object from outside are handled by the ParoC++ compiler via the object
interface. The creation of an object is managed by the ParoC++ system and is transparent
to the programmer. This process consists of the following steps:

1. Create the parallel object interface.

2. The interface evaluates the object description (OD) and calls the ParoC++ resource
discovery service to find a suitable resource.

3. The resource discovery service running on the resource checks if the local resource
satisfies the OD and the corresponding object code is available for the local platform.

4. If the local resource does not fit the OD, the request is then forwarded to other neighbor
nodes.

5. As a suitable resource is identified, the access point of the object manager is returned
to the interface

6. The interface connects to the object manager on the newly discovered resource and
invokes ExecObj to launch the object server.

7. The object manager can also access the application scope service to performed extra
tasks such as obtaining user identity for authentication and authorization. These extra
tasks are customizable by overriding the suitable methods of the JobMgr parallel object.

8. If the object code is stored on a web server, the object manager downloads it.

9. Setup the temporary call back service and execute the object code on the local resource.

10. The object server creates an access point and transmits it back to the object manager
via the call back service. The object server then starts waiting and serving invocation
requests.

11. The object access point is returned to the interface.

12. Thank to the access point, the interface creates a TCP/IP connection to the object
server. It then transfers all data under the Sun XDR format through this connection
to the object server and perform the object construction (constructor invocation). All
invocations on the object afterward will also go through this connection directly to the
object server.

7.9 Fault tolerance of the ParoC++ services 77

������
�����	
�� ���������������

�����������
���� ������������� ������
������ ��! """#

$����� ����!��

%

&

' ()*+,--
./01*+/2./3

4

56
7

()*)88.8
+9: .;3

������ <��=��

>

?@@A BCDECD

F

GH

5

II

J

Figure 7.6: Parallel object creation process

7.9. Fault tolerance of the ParoC++ services

Application scope services are application dependent, so any failure on these services does
not affect other applications. Therefore we will focus on the fault-tolerance of global services
of ParoC++: the resource discovery service and the object manager service.

In ParoC++, a failure can come from the network or an internal error on the machine
where the ParoC++ service is running. We describe here how the ParoC++ services handle
these two types of failures.

All ParoC++ services are implemented as parallel objects, so we depend on ParoC++
exception mechanisms to detect system failures. Any system failure on object invocations
will raise an exception of type paroc exception.

7.9.1. Fault tolerance on the resource discovery

ParoC++ follows the fully distributed approach for resource discovery. The resource topology
is represented as an arbitrary dynamic graph where the vertices stand for resources and the
edges stand for the knowledge of one resource over its ”neighbor” resources. No centralized
server is required to perform the resource discovery. Each node rather plays an equal role
inside the system.

The failure can occur on forwarding the resource discovery request from one node to a
neighbor node. If the neighbor is static, i.e. the neighbor is explicitly specified by the user,
the edge is temporarily removed from the graph. Because static nodes maintain the connected
property of the resource graph, so upon the occurrence of failures on a neighbor, the node
will pause the forwarding on this neighbor for a period of time before re-adding the neighbor
to its neighbor list. Otherwise, the edge is permanently removed from the graph.

78 ParoC++ runtime architecture

��������� ����� ����� �

	
�

	

������ �� ��������� ���� � �� �

Figure 7.7: Resource graph partitioning due to failures

The failure can lead to the graph partitioning as illustrated in Fig. 7.7. In the figure, we
assume that there is no other edges but < A,B > connecting the left and right sub-graphs.
The failure on < A,B > will cause network partitioning. How the ParoC++ system reunifies
when the failure is recovered? There are two possibilities:

Case 1 The edge < A, B > is initialized by B through the self-registration of B to A when
B is started. In ParoC++ system, a node will periodically register itself to its static
neighbors. Hence, either the failure of A or B or the network partition is recovered, the
edge will be automatically re-initialized.

Case 2 The edge < A,B > is initialized explicitly by A when A is started. If A is down,
when it is recovered, the edge will be automatically initialized. If B or the network
connection between A and B is down, B is temporarily removed from the neighbor list
of A. A will periodically try to add B to its neighbor list until it can do that successfully.

During the resource discovery process, some temporary resource reservations can take
place and these reservations will be canceled when a better matched resource for the object
is discovered. Failures can occur during the cancellation. Such failures do not affect the
integrity of the system and are handled by aging each reservation inside the object manager
service.

7.9.2. Fault tolerance on the object manager service

The object manager service is directly used by the object interface during the object creation.
Failures related to this service will prevent the parallel object server from starting correctly.

7.10 ParoC++ as a glue of Grid toolkits 79

It is mainly caused by the three following reasons:

1. The parallel object server side does not start successfully on the local resource due to
an internal fault (such as out of memory, maximum number of processes reached or
fail to download the object code). This fault leads to the time out error on the object
manager service on waiting for the parallel object access point. The local resource is
temporarily out-of-service (the matching process in the resource discovery service of
the local node will return false) for a specific amount of time. The object manager will
return an error code to the interface.

2. The object server side fails to start because the resource reservation has been canceled
due to the time out event. An error code is also returned to the interface.

3. The service is unreachable. In this case an exception will be thrown on the interface.

At the interface side, when an error on the object manager service occurs, it retries the
object creation process from the beginning (see section 7.8).

7.10. ParoC++ as a glue of Grid toolkits

In the ParoC++ service architecture, we focus on the abstraction of the ParoC++ service
semantics: what the outcome of the service is, not how the service is implemented. ParoC++
services are represented as abstract parallel object classes. Users will implement the services
on their own systems, either directly or implicitly via some low-level toolkits, by deriving
new classes from these abstract classes. By doing this, we try to hide the implementation
heterogeneity of the whole system behind the abstract service classes.

From the abstract level, ParoC++ applications require from the execution environment
two basic functionalities:

• Find and reserve a resource that satisfies the requirements (OD).

• Execute a program (object) on a specific resource.

Depending on the toolkit, there are two possible levels of integration of the Grid toolkits
into ParoC++: the complete integration or the partial integration. In the complete integra-
tion, the user needs to completely implement the ParoC++ global service interfaces using
the low-level functionalities of his toolkit. Many practical toolkits do not provide enough
functionality required by ParoC++ such as requirement-based resource discovery or advance
resource reservation. In order to use these toolkits in the ParoC++ system, the partial in-
tegration allows the user to re-implement only portions of the service architecture that are
well-supported by the toolkit while still keeps the overall architecture of the system. For
example, we can use the security service of the low-level system to authorize the user as an
extra task on launching a parallel object.

80 ParoC++ runtime architecture

Depend on the toolkit, the user may also need to extend the application scope services to
provide additional functionalities that are required by the new global service implementations.
For instance, in order to identify the user, the application scope service should be extended
to provide the user certificate which requires by the new global services.

7.10.1. Globus toolkit integration

We describe an example of the integration of the Globus toolkit [28, 30] into ParoC++. Cur-
rently, the Globus toolkit version 3 (GT3) does not provide an automatic resource discovery
mechanism based on the resource requirements yet, so we will try the partial integration
approach: we keep the resource discovery architecture but we additionally implement the
security support for ParoC++ object allocation using the Globus security infrastructure [85]
and the Globus Resource Allocation Manager (GRAM) [24] for executing the parallel object
server.

7.10.1.1. Application scope service for Globus

Globus is currently based on X.509 certificates [80] for authentication and authorization
users. The private key for the certificate is stored on the user’s local machine and will not
be transmitted over the network. Therefore, any functionality that uses the Globus security
infrastructure should be performed locally. The new application scope service for Globus
extends the abstract application scope service with the following functionalities:

• Provide (but not check) the user identity (the Globus’s subject name).

• Submit a job on a remote Globus node. We use the Globus GRAM API [37] to submit
a parallel object to a Globus node.

• Monitor the status of the Globus submitted jobs.

All of these functionalities can not be performed on remote resources since they require
the user’s private key for the authentication.

7.10.1.2. Resource discovery service for Globus

We keep the same resource discovery architecture as described in section 7.6. For each Globus
node in the resource graph, we extend the resource discovery service by overwriting the user
matching method:

virtual bool MatchUser(const paroc accesspoint &appservice);

MatchUser will obtain the user’s subject name from the Globus implementation of the
application scope services and look for the subject name in the list of authorized subject
names of the local Globus node from the Globus map file. MatchUser is successful if the

7.10 ParoC++ as a glue of Grid toolkits 81

subject name exists in the list. MatchUser does not change any thing in the local system, so
no security method is required.

7.10.1.3. Object manager service for Globus

This is the most complicated part of the integration. We overwrite the two virtual protected
methods:

1. ExecObj : execute the object server. This is done through the newly created interface
of the application scope service for Globus. If the parallel object is successfully started,
the Globus job ID is returned. We will store this ID as well as the access point to the
application scope service to monitor the object status later.

2. Update: check and update the parallel object execution status. Each time a resource
discovery request is received, the object manager updates the resource information first
by calling Update method before performing matching. For the Globus implementation,
the status of each running parallel object is checked by accessing the corresponding
Globus application scope service to acquire the status from this service.

7.10.1.4. Interaction of Globus-based ParoC++ services

Figure 7.8 shows how the ParoC++ system interfaces with the Globus toolkit for a parallel
object allocation. This is similar to the general object creation scheme in Fig. 7.6 that we
have presented in section 7.8.

������
�����	
��

�������
�������� ���

�����

�����������
���� ������

��� �����

�� ��� !���"��
��� �����

#

$

%&'()**
+,-.'(,/+,0

1

22 3

%&'&44+4
(56+70

������ 8��9��

:;<

2

=>

����� ���?

@

AB

CDEFGHH EIJKLMNO PQPKNM

R4(5ST ,(U+

Figure 7.8: Interaction of Globus-based ParoC++ services during a parallel object cre-
ation

The object creation process consists of the following steps:

1. Creation of the parallel object interface.

82 ParoC++ runtime architecture

2. The interface accesses the resource discovery service for Globus.

3. The resource discovery acquires the Globus user name (subject name) from the ap-
plication scope service and checks if the Globus user is authorized to use the local
resource.

4. The resource discovery updates the information about Globus jobs by accessing the
Globus application scope service.

5. The application scope service accesses the Globus GRAM to obtain the necessary job
information.

6. If the local resource does not satisfy the requirement or the authorization fails, the
request is forwarded to other ParoC++ nodes.

7. When a suitable resource is identified, suppose that the resource is managed by the
Globus, the interface invokes the virtual method ExecObj on the object manager service,
which has been customized for the Globus, to launch the object.

8. The object manager has the Globus application scope service submit the Globus job
on behalf of the user who has started the application.

9. The application scope service access the Globus GRAM to submit the job.

10. The Globus GRAM actually executes the parallel object.

11. The parallel object access point is transferred to the object manager which is, in turn,
returned to the interface.

12. The interface connects to the server and the creation process is completed.

7.11. Summary

This chapter completes the discussion of the chain user-application-infrastructure started
from chapter 5 with the ParoC++ runtime infrastructure. We define two types of services in
this infrastructure: the application scope services and the global services. Application scope
services are bound to the application to serve application specific tasks. Different applica-
tions will have independent instances of the same application scope services. Two application
scope services: code manager service to manage multiple object code files of the ParoC++
application and remote console service to collect and print out messages from remote dis-
tributed components to the local application console are described. Global services provide
access to the infrastructure. Resource discovery to locate a resource with a required perfor-
mance and object manager to remotely execute parallel objects and to monitor the object
execution are two essential services for running ParoC++ application. One important aspect

7.11 Summary 83

of the ParoC++ runtime architecture is the inter-operability between the global services and
the application scope services to perform application related tasks. The fault tolerant issue
of these services is also discussed.

We design ParoC++ services as the high level abstractions that separate the service
interfaces from the service implementations. Each service is represented as a parallel object
with a well defined object interface. The user can provide different implementations for
different platforms or he can overwrite some functionalities (methods) by deriving a new
service object from the existing one. Representing services as parallel objects makes the
services more customizable and extensible to different Grid environments. The last part of
the chapter discussed about how to use the ParoC++ system to access other Grid computing
environments with an example of the Globus toolkit integration. By this way, the ParoC++
runtime system can be used as the glue of different Grid environments.

84 ParoC++ runtime architecture

Chapter 8

ParoC++ for solving problems

with time constraints

8.1. The Framework

We built on top of ParoC++ a framework for developing time constrained applications using
the parallelization scheme presented in chapter 4. The framework provides users a tool
to represent their problems and their decomposed sub-problems, the dependencies of sub-
problems, the complexities of problems and the time constraint within which the whole
problem must be solved. To solve the problem, the framework will perform the following
tasks automatically and transparently to the user: estimate the time constraints of sub-
problems; compute the resource requirements; instantiate a suitable solution based on the
currently available resources; and schedule the problems to be executed. This framework
frees users from the complexities of the execution environment.

The framework is developed based on the two main object abstractions: the sequen-
tial ”node” object that represents a node in the decomposition tree and the parallel object
”problem” that represents a sequential solution to the problem or the sub-problem at the
corresponding node. These two types of abstractions co-exist and co-operate to the execu-
tion of the application. Sequential objects are used as the skeleton for constructing nodes
of the decomposition tree and the decomposition dependency graphs in the parallelization
scheme. It is also responsible for creating the problem’s parallel object. The programmer
will construct the parallelization scheme by deriving new classes from these abstractions.

8.2. Expressing time constrained problem

The skeleton, illustrated in Fig. 8.1 consists of two main classes: DTreeNode and ProbObj.
DTreeNode is a sequential class representing a node (a problem or sub-problem) of the de-
composition tree (DT). Each DTreeNode object associates with at most one parallel object

85

86 ParoC++ for solving problems with time constraints

of type ProbObj which implements the problem solving on a remote resource.

�������
�������	
����
�����������
�����������

���������

�������
�������	
����

��������� �������	
����

�������������� �� �����!

�������
�������	
����

���������

�
��������� !

�"	�#� ��

$��%&%'

� ())�
�"	 �#� ��

����$��%*�+

,-./.012 3/455.5

"�67����8�
9�8

�8�8 ���� 9�8

:;<=>?<> ;?>@A

B@C@<D

EF<=>GHI>
>J@ KKL

EF<=>GHI>
>J@ KM

N=@G
IO?==@=

Figure 8.1: The UML class diagram of the framework

The user gets his problem solved by following the four steps bellow:

• Create the parallelization scheme.

• Set the time constraint.

• Instantiate the solution.

• Execute the parallelization scheme.

The rest of this section will explain these steps.

8.2.1. Creating the parallelization scheme

The framework allows the user to construct the parallelization scheme which consists of a
decomposition tree (DT) and a set of decomposition dependency graphs (DDGs). The DT
and DDG can be constructed locally on the machine where the user starts the application.

First, the user needs to derive new sequential ”node” classes from DTreeNode. Each node
class represents a type of nodes in the user’s DT and is associated with a parallel class derived
from ProbObj. The parallel class implements the actual problem solving of the node. Inside
each node class, the user should overwrite the skeleton InitProblem method. InitProblem

tries to create a corresponding parallel object of the problem (or sub-problem) with a given
computing power requirement, which has been automatically computed by the skeleton. Any
failure on the parallel object creation (out of resource) in InitProblem leads to the ”NULL”
value returned which tells the framework to perform the ”decompose” step.

8.2 Expressing time constrained problem 87

Secondly, the user should construct node objects for each node of the DT from the node
classes. On constructing a node object, in addition to the initialization data for the node,
the user also needs to provide the complexity of the underlying problem on that node. This
complexity will be used by the framework to compute the time constraints for all DT nodes
later on.

As all DT nodes have been constructed, the next step is to connect these nodes together
to form the parent-child edges by calling the method AddChild on the parent node of DT:

void DTreeNode::AddChild(DTreeNode *child);

The user can control the constraint guard coefficient (see section 4.4.2) for each decompo-
sition step from a parent to the child nodes by invoking the method SetCoeff on the parent
node of DT:

void DTreeNode::SetCoeff(float coeff);

Finally, the user needs to define the decomposition dependency graphs (DDGs)- depen-
dencies between direct child nodes of the same parent by invoking the method DependOn:

void DTreeNode::DependOn(DTreeNode *prior);

P1

P11 P12 P13

P
ara

lle
lism

 g
rain

������� ��� 	
� �
����

���
 �����
����	
� �
����

���
 ������
��

��	
� �
����

���
 ������
����	
� �
����

���
 ������
���
����

������ � ����
��

����
������ � ���

���
����

������ � ����
��

���
��

����
!
	�"	 ����
��

������
!
	
�"	 ����

��
���

#$% &'('))%)*+',*-. /0$%1% #$% 0-((%/&-.2*.3 0-2%

456789:;8 <=

456789:;8
<<>7

Figure 8.2: Example of constructing a parallelization scheme using the framework

Figure 8.2 shows a parallelization scheme and a sample code to construct this scheme:
UserDTreeNode is a user-defined sequential class derived from DTreeNode. We illustrate the
code for only one decomposition step from the ”root” problem P1 to 3 sub-problems P11, P12
and P13. After constructing the nodes, we call the method AddChild to construct the DT
and finally, the method DependOn to construct the DDG(P1).

8.2.2. Setting up the time constraint

After the parallelization scheme has been constructed, the user can set the time constraint
for his problem by invoking the SetTimeConstraint method on the root of the DT:

void DTreeNode::SetTimeConstraint(float time);

in which time is the number of seconds that the user expects the problem to be solved.
For all non-root nodes, the time constraints, when necessary, will be automatically com-

puted based on the time constraint of the root, the decomposition dependency graphs and

88 ParoC++ for solving problems with time constraints

the complexities given by the user upon constructing the DT nodes.

8.2.3. Instantiating the solution

This step is to instantiate a suitable solution to the problem on the Grid by just performing
a simple call to DTreeNode::Init on the root of the DT.

R

A B C

ED K L M F G

H I J
An instance of

the solution

DDG edge

I

H

J

E B

F

G

I

H

J

E B

F

G

I

H

J

E B

F

G

Global d
ependencies

Final dependencies

Execution Diagram

Instance

dependencies

(a) (b)

(c) (d)

Figure 8.3: Initializing the parallelization scheme

DTreeNode::Init will do the following tasks:

• Find an instance of the solution with respect to the availability of resources in the com-
putational environment (Fig. 8.3.a). As we have described in section 4.3.2 of chapter 4,
a try-and-decompose process will be performed on the DT starting from the root. ”Try”
on a node (method InitProblem) will compute the resource requirements regarding the
time constraint and the complexity of the node. It then tries to allocate a parallel object
with the computed resource requirements. The ParoC++ runtime system will perform
the resource discovery and the resource matching. If ”try” succeeds, the initialization
for the parallel object is called. If not (the resource is not available),”decompose” will
be executed. First, ”Decompose” evaluates the time constraints for all child nodes
based on the DDG, the time constraint of the parent node and the complexities of
all child nodes. Then, the try-and-decompose is performed again on each child node.
Decompose fails if the child node is a leaf. In this case, DTreeNode::Init will return
”out of resource”. Otherwise, in the end, an instance of the solution is identified.

• Find the global dependencies of problems within the instance of the solution. When
an instance of the solution is found, DTreeNode::Init will construct the global depen-
dencies of problems within that instance by merging all hierarchical DDGs (Fig. 8.3.b)

8.3 Elaborate the skeleton to the user’s problem 89

to generate a unique dependency graph of all problems (Fig. 8.3.c). All redundant
dependencies will be removed from this graph to generate the final dependency graph:
the execution diagram (Fig. 8.3.d).

• Elaborate the execution diagram to each problem’s parallel object. Each ProbObj-based
parallel object (problem) contains: a counter that counts the number of problems that
this problem directly depends on; and a set of parallel objects that will be executed next
as this problem is completely solved. For example, in Fig. 8.3.d, the counter value of
problem ”F” is 2 since F depends on ”J” and ”E”; and the ”next” parallel object of ”F”
is ”G”. DTreeNode::Init updates this information based on the execution diagram.

8.2.4. Executing the parallelization scheme

The last step is to call the DTreeNode::Solve method on the root of the DT to get the
problem solved. DTreeNode::Solve looks for all ”ready” nodes (nodes with no coming edge)
in the execution diagram and then asynchronously invokes ProbObj::Exec on all ready nodes.
Each time a problem (ProbObj-based parallel object) finishes, it will ”fire” all next problems
in its list (by invoking the remote concurrent method Exec). A problem, when being fired
(waiting for a ”FIRE” event from its event sub-system), will check its counter. The counter
value of 0 means all previous problems have been solved. In this case, it will start solving by
invoking its local virtual method ProbObj::Solve (the user needs to overwrite this method).
Otherwise, the counter is decreased and the parallel object waits for the next ”being fired”.
The execution process is similar to that of a neural network.

8.3. Elaborate the skeleton to the user’s problem

The user implements his problem by deriving two classes from DTreeNode (sequential class)
and ProbObj (parallel object class-or parallel class for short). Each DTreeNode-based class
should be associated with a parallel class. The user’s program should look like:

//Declaration part of sequential objects and parallel objects

class MyDTreeNode : public DTreeNode

{

public:

MyDTreeNode(..., float complexity);

virtual ProbObj *InitProblem(float mflops);

};

parclass MyProbObj: public ProbObj //problem’s parallel object

{

public:

MyProbObj(..., float mflops) @{ power=mflops;...other OD items here... }

90 ParoC++ for solving problems with time constraints

private:

virtual void Solve();

};

//Implementation part

MyDTreeNode::MyDTreeNode(...,float complexity):DTreeNode(complexity)

{

....

}

ProbObj *MyDTreeNode::Initproblem(float mflops)

{

MyProbObj *prob;

try

{ prob=new MyProbObj(...,mflops);

}

catch (paroc_exception *e)

{ printf("Creation of parallel object fails\n");

return NULL

}

//do additional initialization of MyProbObj here....

return prob;

}

MyProbObj::MyProbObj(...,float mflops)

{

//do initialization here..

}

void MyProbObj::Solve() {

//The user implements how to solve his problem here

}

The user overwrites two virtual methods: InitProblem (in the DTreeNode-based sequen-
tial class) to create his own problem (parallel object) and Solve (in the ProbObj-based
parallel class) to implement how the problem is remotely solved. Inside InitProblem, the
user performs the ”try” step by creating the problem’s parallel object (MyProbObj). If no
resource with the required power is available, thank to the exception mechanism of ParoC++,
a system exception of type paroc exception will be automatically thrown. The user will
”catch” this exception in order to know if ”try” step is successful or not. InitProblem then
returns to the framework a pointer to the newly created parallel object (try succeeds) or
”NULL” (try fails). The latter case means the problem can not be solved sequentially and
therefore, the ”compose” step will be automatically performed by the framework.

Next, the user needs to build the parallelization scheme. The user creates MyDTreeNode
objects and connects these objects together by using AddChild and DependOn.

8.4 Summary 91

Finally, he needs to call: SetTimeConstraint to set the time constraint for the original
problem and to have the framework automatically compute the time constraints for sub-
problems; Init to instantiate a suitable solution based on the available resources and to
compute the execution diagram for that configuration (see section 8.2); and Solve on the
root node (MyDTreeNode) of the DT to actually start solving the problem.

8.4. Summary

The chapter completes the parallelization scheme that we described in chapter 4 with a
ParoC++ framework for solving time constrained problems on the Grid. This framework
provides users a tool to express: the problem and decomposed sub-problems, the dependen-
cies of sub-problems in each decomposition. The idea is to represent the user’s problems as
the abstractions of parallel objects and the parallelization scheme as the abstractions of se-
quential objects. The user will provide his own implementations of problem and sub-problem
solutions by deriving new parallel objects from the existing ones inside the framework. The
dependencies of sub-problems within a decomposition step should be explicitly specified by
the user. The framework will automatically compute the time constraints of sub-problems
and instantiate a suitable solution depending on the availability and the characteristics of
resources inside the Grid environment. By this way, the user can concentrate on the ”logic” of
the problems rather than taking into account the complexities of the executing environment.

Some experiments on using this framework have been performed. The results will be
presented in chapter 9 and chapter 12.

92 ParoC++ for solving problems with time constraints

Part III

Experiments

93

Chapter 9

Experiments

9.1. Introduction

We present in this chapter various experiments on the ParoC++ system and the paralleliza-
tion scheme framework. First, we test the communication cost of ParoC++ method invoca-
tions and make the comparison with that of MPICH on the same hardware. The second one
is to use ParoC++ to compute big matrix multiplication with passive data access (chapter 6).
We will demonstrate in this test how ParoC++ with different data access methods is used to
achieve the performance. The first two tests are performed in a homogeneous environment of
Pentium 4, 1.7 GHz, Linux network of workstations with 100Mbit fast Ethernet connections.

The last test is running on an environment of sparc/Solaris and Pentium/Linux machines
where we try to emulate the heterogeneity of the Grid and to illustrate how the time constraint
problems can be solved in such environments.

9.2. ParoC++ benchmark: communication cost

We wrote a program containing two objects called ”Ping” and ”Pong” running on two dif-
ferent machines. Ping invokes methods of Pong with different arguments (size and type) and
with two different invocation semantics: synchronous and asynchronous. Invocation speed,
invocation latency and the communication bandwidth are measured. We then compare the
results with a similar ping-pong program written in the de facto standard implementation of
Message Passing Interface-MPICH [42, 43].

Figure 9.1(a) shows the invocation speed of objects on 8-bit and 32-bit integer messages.
Asynchronous invocations are more efficient than synchronous ones, especially for small mes-
sages due to the message aggregation. The average latency of asynchronous invocation is
rather low, about 6.9 µsec because of the possible overlap between invocations (MPICH: 43
µsec) and of synchronous one is about 94 µsec (MPICH: 123 µsec).

The communication bandwidth of ParoC++ method invocations is then compared to

95

96 Experiments

ParoC++ Invocation speed

1

10

100

1000

10000

100000

1000000

0 1000 2000 3000 4000 5000 6000 7000 8000

DWORDS

N
u

m
b

er
 o

f
in

vo
ca

ti
o

n
s

p
er

 s
ec

o
n

d CHAR(asynchronous)

CHAR(synchronous)

INT(asynchronous)

INT(synchronous)

Network Bandwidth

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000

DWORD

K
b

yt
e/

s

ParoC++(asynchronous)

ParoC++(synchronous)

MPICH(1 way)

MPICH(2 ways)

(a) (b)

Figure 9.1: Parallel object communication cost

the MPICH implementation. Figure 9.1(b) shows that asynchronous invocations, due to the
overlap, utilize better bandwidth than synchronous invocations. This bandwidth is slightly
better than the asynchronous send (one way) of MPICH. The bandwidth of asynchronous
calls almost reaches the limit of the Fast Ethernet throughput (11.3 MB/s). For synchronous
invocation, MPICH achieves somehow better bandwidth in our experiment (15-20% better
for large messages). This is due to the extra cost for marshalling data and multiplexing
remote methods in ParoC++ that can not be overlapped at both interface and server sides.
Although ParoC++ is less efficient than MPICH in synchronous communication operations
but it provides much higher abstraction based on objects than MPICH. Moreover, in parallel
computing, overlapping between computation and communication is important to achieve the
performance. Therefore, asynchronous communication should be used whenever it is possible.

9.3. Matrix multiplication

We have performed a test with passive data access (chapter 6) on a matrix multiplication.
The matrix sizes used in the test are 5000x5000 and 4000x4000. The parallel algorithm for
multiplying matrices AxB consists of a data object that stores all matrices data (A, B and
the output matrix). The algorithm is divided into two phases: initialization phase: matrix
B will be distributed to all workers (Solver objects); and computation phase: Solver objects
will acquire some rows of A from the data object, perform the multiplication with matrix B,
and send back the results to the data object. In each Solver, there are two buffers, size of 20
A-rows each, and a local copy of B. When a buffer is used up, a request for new data for that
buffer is invoked on the data object while the computation will continue on the other buffer.
The data object, upon receiving the request, will send A-rows to the corresponding Solver.
This processing is repeated until all rows in A have been sent out to Solvers.

We also compare the results with a similar algorithm using MPICH. In the MPICH-based
version, the master distributes data to workers and receives back the results from workers.
Workers play the role of Solvers. The only difference is that in the MPICH-based version,

9.3 Matrix multiplication 97

Matrix multiplication overall speedup
(Initialization + computation)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of Solvers (Workers)

S
p

e
e

d
u

p

MPICH: 4000x4000

MPICH: 5000x5000

PAROC++: 4000x4000

PAROC++: 5000x5000

Figure 9.2: Matrix multiplication speed up on Linux/Pentium 4 machines

each worker has only one buffer to store rows of A from the master for the computation. The
reason of using only one buffer in the MPICH version is that it is harder and probably unsafe
to control the concurrency inside each MPICH process as required by the passive data access.

Figure 9.2 shows the speedup results of the algorithm in compare to the sequential al-
gorithm. The graph shows that with both MPICH and ParoC++, we can achieve almost
linear speedup up to 8 processors. Since the computation time is much bigger than the time
for distributing matrices to solvers (workers), the speedups with 1 processor are 0.97 (matrix
4000x4000) and 0.95 (matrix 5000x5000) in the ParoC++ version; 0.95 (matrix 4000x4000)
and 0.88 (matrix 5000x5000) in the MPICH version. With 8 processors, the speedups are al-
most the same in both versions (ParoC++ and MPICH): 7.4 (92.5% efficiency) for 4000x4000
matrix size and 7.2 (90 % efficiency) for 5000x5000 matrix size. Although ParoC++ pro-
gramming abstraction is much higher than that of message passing, ParoC++ can achieve a
comparable performance with MPICH in the test.

The overall performance illustrated in Fig. 9.2 can be decomposed into two parts: the
initialization part in which one matrix will be sent to all Solvers (one-to-one sending via
method invocations in the case of ParoC++ and broadcasting in the case of MPICH); and
the computation part in which the matrix multiplication on each Solver (worker) is performed.

Figure 9.3 shows the time spent for distributing one matrix to all Solvers (workers). The
initialization time in the case of ParoC++ is almost linear to the number of Solvers due to
the sequential property of the method invocation while the MPICH broadcast primitives is
more efficient since it uses a tree-like broadcasting algorithm. We could also implement a
similar algorithm but for simplicity, we did not implement it in this experiment.

The second part that contributes to the overall speedup in Fig. 9.2 is the computation
time described in Fig. 9.4. As the number of Solvers (workers) increases, the computation

98 Experiments

Initialization time (Distribute matrix B)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Number of Solvers (Workers)

T
im

e
 (

s
)

MPICH: 4000x4000

MPICH: 5000x5000

PAROC++: 4000x4000

PAROC++: 5000x5000

Figure 9.3: Initialization part: distributing of one matrix to all other Solvers (workers)

time in the ParoC++ version is smaller than that of the MPICH version. That is because the
ParoC++ version uses double buffers of A-rows with passive data access which improves the
overlap between computation and communication and hence can enhance the performance.
With 8 processors, the computation time in the ParoC++ version is 5-7% faster than that
in the MPICH version on the same hardware architecture.

Computation time

100

1000

10000

1 2 3 4 5 6 7 8

Number of Solvers (Wortkers)

T
im

e
 (

s
)

MPICH: 4000x4000

MPICH: 5000x5000

PAROC++: 4000x4000

PAROC++: 5000x5000

Figure 9.4: Computation part: each Solver (worker) will request for A-rows from the
data source (master) and performs the multiplication

The experiment shows that passive data access can be easily used in ParoC++ to prepare
data in advance and hence to enhance the overlap between communication and computation
for high performance.

9.4 Time constraints in a Grid-emulated environment 99

9.4. Time constraints in a Grid-emulated environment

The last test in this chapter is to demonstrate how ParoC++ with the parallelization scheme
is used to solve time constrained problems. We first build a Grid emulated environment with
130 machines. A parallelization scheme with different time constraints is then constructed
and executed in that emulated environment.

9.4.1. Emulating Grid environments

For the experiment, we built an environment with the following characteristics:

• High heterogeneity in computing power of processors

• Different hardware architectures

• Different operating systems

• Different network topologies

Da ta Gen eral

Da ta Gen eral

latigid

Da ta Gen eral

������� �� 	
���������� ������� �� ������������ �

������� �� ����� 	
�����
��� �����

������� �� ����� 	
�����
��� �����

Figure 9.5: Initial topology of the environment

The environment consists of 130 machines running Linux and Solaris, divided into 4
heterogeneous clusters. The network topology is described in Fig. 9.5. Each cluster has one
”master” machine that controls the job submissions for that cluster (resource discovery and
resource allocation). Initially, one master has no knowledge about machines in other clusters
except the other masters. The effective computing powers of nodes in the environment are
emulated, ranging from 60MFlops up to 1GFlops (Fig. 9.6). Some machines are SMPs with
2 or 4 processors. Each node runs the ParoC++ services which are required for the resource
discovery and the parallel object execution.

100 Experiments

Computing power distribution

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

resource ID

M
F

lo
p

/s

Figure 9.6: Distribution of computing power of heterogeneous resources

By building such an environment, we want to somehow simulate the wide area distributed
environment such as the Grid: each cluster can be considered as one organization where we
know all resources. However, we usually do not know in detail about resources of other
organization except the ”gateway” (the master machine). The resource allocation should be
performed within the ”local” organization first. Only when no resource is locally available,
then the request will be forwarded to its ”neighbor” organizations via the gateways. The
ParoC++ job service also learns new resources from the resource discovery results.

9.4.2. Building the parallelization scheme

We assume that the problem to-be-solved requires 50GFlop (total number of floating point
operations). We also assume that for each problem , we can decompose it into 4 sub-problems
(the degree of DT) and the depth of the DT is 4. Hence, our DT contains 341 nodes (problems
or sub-problems).

P MFlop

P/4

 MFlop

P/4

 MFlop

P/4

 MFlopDecompose
P/4

 MFlop

P

MFlop

P/4

 MFlop

P/4

 MFlop

P/4

 MFlop

P/4

 MFlop

Decomposition Tree DDG

Figure 9.7: Decomposition Dependency Graph for each decomposition step

In order to classify the decompositions based on the dependencies of sub-problems, we
introduce a new metric called Parallel factor. Parallel factor is defined as the ratio between the

9.4 Time constraints in a Grid-emulated environment 101

maximum number of problems that can be solved in parallel and the total number of problems.
The parallel factor is a number in between 0 and 1. The parallel factor is 1 if all problems
within a decomposition step are independent and can be solved in parallel; is 0 if all problems
are dependent and they must be solved sequentially one after the other.

In the first test, all sub-problems within a decomposition step are independent and each
sub-problem requires 1/4 computing power of its parent. The parallel factor is 1. In many
practical problems, dependencies are inevitable due to the nature of the decomposition. Such
dependencies will degrade the degree of parallelism. So, in the second test, we create a DDG
for each decomposition step as in Fig. 9.7: in each decomposition step, 25% of the operations
is spent to solve one sub-problem sequentially and after that three other sub-problems can
be solved in parallel. In this case, the parallel factor is 75%.

We constructed 3 classes: MyDTreeNode (sequential, from DTreeNode), MyProbObj (paral-
lel, from ProbObj) and LogDataObj (parallel class used to log execution progress information).
The first two classes are used to construct the parallelization scheme. LogDataObj is a shared
parallel object among all MyProbObj object. Each MyProbObj object will invoke methods on
the shared LogDataObj object to store information about its execution states. In many real
applications, LogDataObj can be replaced by the data source, the output or the monitoring
parallel objects. The MyProbObj object will simulate the real computation by a counting
loop. The time for running the loop depends on the computing power of the resource and
the complexity (total computing power) of the object (this information is obtained from the
parallelization scheme).

9.4.3. Time constraints vs. execution time

We run the tests on the built heterogeneous environment with different time constraints.
The selected constraint guard coefficient (see section 4.4.2) for each node is 0.95. The real
computation time is measured and compared with the time constraint. For each run, the
number of parallel objects that reflects the degree of parallelism is also counted.

Figure 9.8 shows the experiment results. When the time constraint is greater than or
equal to 50 seconds, the problem is solved sequentially because there exists some 1GFlops
machines. The actual solving time in this case depends on the resource discovery process
but it is always smaller than the required time. As the required time decreases, the problem
starts to be decomposed (number of parallel objects increases). For tests with the parallel
factor of 100% (there is no dependency of sub-problems), the problem can be solved with
the time constraint of 2 seconds (67 sub-problems). Below that, the problem can not be
solved due to the lack of resources. In the case where the parallel factor is 75% (see 9.4.2),
the dependencies reduce the capacity of parallelism and increase the demand for resources.
Therefore, we got ”out of resource” message when the time constraint is less than 10 seconds.
The time constraint of 10 sec leads to a decomposition of 64 sub-problems and the actual

102 Experiments

Actual computing time vs required time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Run No

Ti
m

e
 (s

)

0

10

20

30

40

50

60

70

80

90

N
u

m
b

er
 o

f p
ro

bl
e

m
s

(o
b

je
ct

s)

Time required

Actual time (dependency factor=100%)
Actual time (dependency factor=75%)

Number of objects (dependency factor=100%)

Number of objects (dependency factor=75%)

Figure 9.8: Emulation results with different time constraints

running time is 9.67 sec. Nevertheless, in both cases, the time constraints have been achieved.

9.5. Summary

The chapter focuses on two main points: at the programming level, we demonstrate different
programming aspects of the ParoC++ system; and at the concept level, we illustrate how to
express and to solve the time constrained problems using the parallelization scheme framework
on the Grid.

At the programming level, ParoC++ has been used to measure the communication cost
of method invocations and to do a parallel matrix multiplication. The results are then
compared with those of MPICH on the same hardware and same compilation options. The
two tests confirm that ParoC++ can achieve a similar performance in comparing with the de-
facto standard message passing library MPICH. Passive data access can be easily applied to
ParoC++ programs to improve the data movement between different distributed components.

To demonstrate how to use the parallelization scheme framework, we have presented our
experiment on a Grid emulated environment. This experiment mainly takes into account the
computing power of problems. The network bandwidth and the communication latency are
not yet mentioned although the user can control these parameters by providing a suitable
parallel efficiency for each node of the decomposition tree and by adding the network specifi-
cation to the OD. The experiment running on the emulated environment shows how the time
constraint be satisfied by deriving automatically different grains of parallelism driven by the
available resources. In other words, we illustrate how to tailor an application to the Grid
environment. The experiments on 130 mixed Linux/Solaris machines show that through the
parallelization scheme framework, the time constraint goal has been achieved. Chapter 12
will present how to solve a real problem using the parallelization framework on these 130
machines.

Chapter 10

Test case 1: Pattern and defect

detection system

10.1. System overview

This test case is an industrial application of image processing for tissue manufacturing in the
framework of the European project Forall1. Pattern and defect detection system (PDDS)
is a part of the whole chain of the Forall system as illustrated in Fig. 10.1. The Artificial
Vision subsystem is integrated in the whole management and control architecture of the
Forall system. Its goal is to collect images of textile in an appropriate way and to transmit
them to the PDDS system which runs remotely on a different machine. PDDS will analyze
the images to find pattern positions and to detect defects on these patterns. The output of
PDDS will be the input for the Nesting system to cut the tissue in order to minimize the
wasted textile material.

The analysis of images of PDDS should follow the real-time speed of the conveyor of at
least 3.3MPixel/s.

Artificial Vision

System (AVS)
PDDSimages PDDSimages

Nesting

Systempatterns

Nesting

Systempatterns

•Analyze images:
find the positions
of patterns and

detect defective

ones.

•Cutting tissue in
order to minimize

the amount of
wasted material.

Figure 10.1: Overview of the Forall system for tissue manufacturing

1FORALL-”Parallelization and optimal implementation of compute-intensive tasks for industrial applica-
tions”, projet EUREKA -Nr.: E!1955 / CTI 5130.1

103

104 Test case 1: Pattern and defect detection system

10.2. The algorithms

search areasTemplate

Template

Figure 10.2: PDDS algorithm

The idea around the PDDS algorithms is to search all over the tissue the local maximal
values of similarity between the user-provided pattern template and the sub-image. Such
positions are considered as the start points of patterns. PDDS optimizes the algorithm
by searching only in small areas (the highlight areas in Fig. 10.2) for the patterns on the
next row. The similarity criterion used in PDDS is cross-correlation which can be efficiently
calculated by the mean of fast Fourier transform. More details on these algorithms can be
found in [53, 60].

10.3. The parallelization

The parallelization follows the classical master-slaver model in which a master will split
images into smaller sub-images and send these sub-images to other slavers. The slaver will
do computation and return the results to the master.

Figure 10.3 demonstrates the parallel object diagram of PDDS using ParoC++. The
main program will create two parallel objects of type ImageBuf and OuputData and several
parallel objects of type Analyzer. ImageBuf and OutputData objects are shared among
Analyzer objects. The Analyzer objects access the ImageBuf object to get the images
(synchronous invocation), analyze them and then store the results in the OutputData object
(asynchronous invocation). ImageBuf is responsible for receiving image frames from the image
acquiring system (AVS), splitting them into small images and storing these small images into

10.4 Experiment results 105

Nesting

system

Main

program

Input

interface

Output

interface

Image B uf

Analyzer 1

Analyzer n

Output Data

Object creation

Asynchronous I nvocation

S ynchronous I nvocation

Image

acquiring

system

Figure 10.3: ParoC++ implementation of PDDS

an internal buffer so that the Analyzer objects can get and analyze. The main program also
plays the role of a monitoring agent. It watches over the ImageBuf to check if the system could
follow the real-time speed. In the case the main program detects that the system overworks
due to the increase on the computation demand or the external changes on the resource loads,
it can create some more Analyzer objects to speed up the computation. Hence, in PDDS we
also deal with the adaptation of the application to the user requirement and to the dynamic
state of the environment.

We will do the experiment with two modes of data access: passive data access (see chapter
6) where ImageBuf will stores sub-images directly to a Solver’s image buffer upon requested
and active data access where each Solver will actively get a sub-image from ImageBuf.

10.4. Experiment results

10.4.1. Computation speed

The input for the first experiment consists of 100 frames and is sent to PDDS frame by frame.
Each frame has the size of 2048x2048 pixels (8bit-gray images, 4MBytes/frame). ImageBuf

will split the frame into several sub images of the size 512x512 pixels. Neither the adaptation
to the environment nor the adaptation to the changes in user’s requirements is considered in
this test. Figure 10.4 shows the speedup of two types of tissues: small patterns (Sict2) and
big patterns (Monti) on a network of Sun sparc workstations and on a cluster of Pentium 4
with the active data access mode. We see that in both environments, almost linear speedup
is achieved. PDDS runs about 14 times faster on 16 processors.

We then do the same experiment as the above but we use the passive data access mode to

106 Test case 1: Pattern and defect detection system

Analysis speed up

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of processors

S
pe

ed
up

Sict2/Cluster
Monti/Cluster
Sict2/Workstations
Monti/Workstations

Figure 10.4: Speed up of PDDS implemented using ParoC++ with active data access
mode

Computation Time

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
Solvers

T
(s

)

Passive access

Direct access

Figure 10.5: Passive access vs. direct access in PDDS

acquire the sub-images. The comparison of the two data access mode is shown in Fig. 10.5.
Passive data access gives better results than direct data access (7- 15% more efficient). The
time for sending all images to the network takes about 42 seconds over the total computation
time of 44.95 sec (8 processors, passive access). That means almost all computation on the
Analyzers has been overlapped with the communication.

10.4.2. Adaptation

The second experiment illustrates the adaptation capacity of the ParoC++ application to
external changes. Two types of changes are considered: the changes on the requirement
from the user and the changes from the environment. Inside the data source (ImageBuf),
the analysis speed is measured as the rate of image frames sent out to the Analyzer objects.
The ”main” program, after creating parallel objects will poll the data source periodically
to acquire information about the analysis speed. This information is then compared to the

10.5 Summary 107

required speed from the user. When the real speed is smaller than the required speed,
the main program will assume that there are some changes from the environment (external
changes) or from the user (internal changes). In this case, it creates a new parallel object
and connects this object to the data source. Then the polling process in the main program
continues.

In the experiment, we will emulate both external and internal changes: increase the
required analysis speed every two minutes and restart a machine where an Analyzer object
is running (failure emulation).

Performance Adaptation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600
Time(s)

A
na

ly
si

s
sp

ee
d

(M
pi

xe
ls

/s
)

Actual speed

Required speed

Figure 10.6: Adaptation to the external changes

The PDDS runs in a heterogeneous environment of Solaris/sparc and Linux/Intel with
the adaptation part turned on. In figure 10.6, we show the dependency between the analysis
speed (in term of MPixel/s) and the time. The gray line presents the required power whereas
the bold line is the actual performance of PDDS. In the test, we dynamically change the
requirement speed every 2 minutes. Due to these external changes, additional Analyzer
objects (resources) are automatically allocated in order to satisfy the required performance.
One interesting note is that at the second of 220, the actual performance goes down. The
reason is that we have restarted a machine used by PDDS. The system reacts to this change
by allocation more objects and is soon recovered to the normal speed. By this experiment
we want to show the two important points:

• ParoC++ application can efficiently deal with the computation on demand.

• ParoC++ can adaptively use the heterogeneous resources efficiently.

10.5. Summary

The chapter presents the first test case of ParoC++ on an image processing application.
ParoC++ has been used to develop the Pattern and Defect Detection System (PDDS) used

108 Test case 1: Pattern and defect detection system

in textile manufacturing. We have illustrated the object-oriented programming aspects in
ParoC++, the high performance design and the capacity of the application to adapt to the
dynamics from the environment and the user. The test case also exhibits an efficient data
access method of ParoC++ and the feasibility of building an industrial application from
scratch.

The next chapter will present another test case where ParoC++ is used to parallelize and
to integrate an existing software.

Chapter 11

Test case 2: Snow modeling, runoff

and avalanche warning

11.1. Introduction

Snow development and transformation is a complex natural process. Figure 11.1 illustrates
different factors that are involved in the snow development: the wind causes snow erosion, the
radiation of the sun brings energy that makes snow to be transformed (snow metamorphism),
the vegetation also affects the energy absorption of snow and the mass balance, etc.

Processes at the Snow - Atmosphere Interface

Shortwave Radiation

W
ind

Cru
st

Form
atio

n

M
eta

morp
hism

 of l
ayere

d S
nowpack

Exchange of

Latent Heat

Sensible Heat

Longwave Radiation

Saltation

Erosion

SuspensionSnow Fall

Rain

Deposition

G
ro

u
n
d
 H

eat F
lu

x

Sublimation

W
ater T

ransport

R
unoff

Insulation

V
entilation

P
hase C

hang
e

H
eat T

ran
sp

o
rt

Wind Stress

Abrasion

* *

* *

**

**
*
*

*
* *

*
*

**
*

*

*
*

*
*

*
*

*
* *

*

* *
*

Figure 11.1: A complex system of snow development(source: M. Lehning et al., SLF-
Davos)

The snow modeling, run off and avalanche warning system for the Alpine region of Switzer-
land called Alpine3D has been studied and constructed at the Swiss Federal Institute for Snow
and Avalanche Research (SLF) in Davos, Switzerland. At the current state, Alpine3D consists
of three coupled models as described in Fig. 11.2: the flow model (SnowDrift) to simulate
the drifting snow; the snow model (SnowPack) to simulate snow fall and snow formation;

109

110 Test case 2: Snow modeling, runoff and avalanche warning

and the energy balance model (EnergyBalance) to calculate the radiation factors that will be
absorbed by the snow. All of these models share the geographical information (topography,
land use) about the region to be studied (Alpine region). Other models (e.g. wind model,
vegetation model, etc.) can be integrated to the Alpine3D in future. Further information
about the physical snow process models can be found in [6, 56, 55].

TopographyTopography

Meteorology /
Climatology /
Hydrology

Meteorology /
Climatology /
Hydrology

Meteorology /
Climatology /
Hydrology

Ecology /
Snow Sport /
Road Maintenance

Ecology /
Snow Sport /
Road Maintenance

Avalanche WarningAvalanche WarningAvalanche Warning

Figure 11.2: Model coupling for studying snow formation and avalanche warning

Alpine3D is a data and compute intensive application. Experiments on an UltraSparc/Solaris
machine show that a sequential run of the Alpine3D takes about 5 hours CPU time to com-
pute the snow simulation in 120 hours in the Gaudergrat area (Switzerland) 6.1x6.1 km2

(with snow drift and run off generated) at the rather high resolution of 100m. Paralleliza-
tion is necessary to make the simulation become feasible in a larger region or at a higher
resolution.

We are working with SLF/Davos in the Hydro@Alpine3D project specifically aimed at
parallelizing the software and deploying it on the Grid environment. ParoC++ has been
chosen as the tool to perform this task.

Alpine3D is an existing application developed by different people in different domains:
physicist, meteorologist, environmentalist, etc. Different languages have been used to develop
the software: C, C++ and Fortran. Communication between modules was through files and
was off-line. These create many difficulties for scientists on building a complex system where
all components should work together and exchange data every computation step. Therefore,
ParoC++ is not only the tool to parallelize the application for performance but it is also
used as the tool to ”glue” the differences of modules for building a highly integrated complex
system.

While in the test case 1 in chapter 10, we have presented how to use ParoC++ for

11.2 Overall structure of Alpine3D 111

developing high performance applications from scratch, this chapter will show that ParoC++
can also be used to parallelize an existing application.

11.2. Overall structure of Alpine3D

Before ParoC++ came into the scene, the Alpine3D consists of three independent modules:
SnowPack, SnowDrift and EnergyBalance. Communication between these modules are off-
line and through files. Snowpack and SnowDrift was written in C and EnergyBalance was
written in C++ and Fortran. All of these modules are still in the developing phase where
new things are continuously integrated into the system.

ParoC++ has been used to couple these modules to form a unique application on the Grid
and parallelize inside each module. This process is done in parallel with the development of
algorithms and the evolution of the software modules.

The overall structure of Alpine3D with ParoC++ is shown in Fig. 11.3. The Alpine3D
system consists of two main parts: the I/O part and the computation part. The I/O part con-
tains 3 components: the Input to provide information about the topography, initial snow cover
conditions, meteorological conditions, etc; the Simulation parameters to provide geophysical
parameters of the simulation and the Output of the simulation. The computation part con-
sists of three computation modules (SnowPack, SnowDrift and EnergyBalance) driven by the
Simulation control module. The Simulation control module can turn on or off a computation
module depending on the simulation parameters from the I/O part, control the simulation
time and synthesize the results and output them to the I/O part. The tree computation
modules will exchange data in each simulation step.

11.3. Parallelization of the software

In this section we will present two phases of the parallelization process in Alpine3D using
ParoC++: first we will couple the three computation modules so that pipeline processing
can be applied (coarse grain parallelism) and finally, we will try to parallelize inside the
computation modules thus implementing a finer grain of parallelism.

Using ParoC++ brings many advantages to the Alpine3D system. First, the user doses
not need to transfer the input data to remote machine before doing the computation. Input
data can be stored locally on the user machine and be accessed through the parallel object
interface on demand. The output of the simulation can also be transparently synthesized and
stored back to the user machine. Secondly, the user can have a high level of modularity of the
software so that the parallelization process can be performed independently inside different
modules. High level abstractions from the object-oriented design allows the user to customize
each functionality such as different model of snow development, energy balancing, etc. while
still maintaining the global structure of the system. The object-oriented design also allows

112 Test case 2: Snow modeling, runoff and avalanche warning

����� ���� ������ ����

�	
����	��
������

����
�������
���
���������

����
����
�������	���

������
����
��������������

�	
����	��
����
�����

� � !"#$% &'!" &()*�#+

Figure 11.3: The overall architecture of Alpine3D

the user to reuse the existing code developed for the sequential version so the development
of the software can take place concurrently. Finally, testing and debugging the program is
difficult on the Grid. ParoC++ allows the user to test the semantics of the program using
pseudo parallel objects just by replacing parallel objects by sequential objects and run the
program as if it is a sequential one. This can facilitate largely the debugging and testing
process.

Figure 11.4 shows the class diagram of the parallel version of Alpine3D. We focus on an
open design of the application so that other modules can be integrated easily into the system.
The input and the output of Alpine3D are designed as two parallel objects InputObj and
OutputObj which can take data from files (InputFile, OutputFile) or from other modules.
Depending on the simulation parameters controlled by AlpineControl, the SnowDrift module
can be switched on or off. Currently, we have different input and output data sets whether the
SnowDrift is on or off. Such differences are customized in the derived classes from InputFile

(InputFileDrift, InputFileNoDrift) and OutputFile (OutputFileDrift, OutputFileNoDrift).

InputObj and OutputObj are shared among modules (AlpineControl, SnowDrift, SnowPack).
Each module will acquire the inputs directly from the InputObj and output the results via
OutputObj. Only computed data will be exchanged between modules.

The gray region in Fig. 11.4 shows the core of module coupling which will be presented in
section 11.3.1. The two parallel classes SnowDriftMaster and SnowDriftWorker implement
the parallelization of SnowDrift computation which will be presented in section 11.3.2.

11.3 Parallelization of the software 113

�������� ����� ���	�
���� �����

�����

����������������

��������

���������!"#�$�

���� �����%��&$�

'

'(()

����*"+& ,�$�-./"0"�+$
�����1�0$

�����1�0$����� �����1�0$2������

������1�0$

������1�0$����� ������1�0$2������

'

' 3 (('
3 ((' 3 (('

40���$5�����0 6 789��:;
<=9�

>?@ABCD
E?AFBGHI

����*"�"J$�$�#

Figure 11.4: UML class diagram of parallel and sequential objects in the parallel version
of Alpine3D

11.3.1. First part: Coupling modules

Our first task is to couple the three computation modules SnowPack, SnowDrift and Ener-
gyBalance so that they can run in parallel on the Grid. During each simulation step (time
unit), each module will interact with the others. Figure 11.5 shows the data flow between
these three modules.

SnowDrift acquires the meteorological data, the wind field from the input module, per-
forms the computation on the data (3D grid) to produce required 2D meteorological infor-
mation and passes them to SnowPack and EnergyBalance. It then computes snow saltation
and suspension (3D grid) and derives the snow mass change (2D grid) on the snow surface.
This information will be passed to Snowpack.

EnergyBalance will perform the calculation of the sun rise and the sun set time for a
specific Julian1 day. After that, it will calculate the radiation components absorbed for each
2D grid point on the snow surface. It takes into account shadowing and reflection through
topography. This information is then passed to SnowPack.

SnowPack will compute the snow accumulation over time based on the weather condition
provided by SnowDrift and the radiation components from EnergyBalance. Information
on snow surface (2D grid) is then updated on SnowDrift and EnergyBalance for the next
simulation step.

1The order of a day in the year

114 Test case 2: Snow modeling, runoff and avalanche warning

SnowPackSnowDrift

EnergyBalance

Meteo2D

M
eteo2D

Snow mass change

Snow surface

S
n
ow

 s
u
rf
a
ce

R
a
di

a
tio

n

co
m

p
on

e
nt

s

Figure 11.5: The data flow between SnowPack, SnowDrift and EnergyBalance during a
simulation time step

We use the ParoC++ parallel objects to encapsulate these modules and to distribute
them to remote distributed resources. All these three modules will perform the computation
in parallel. Passive data access (see chapter 6) is very useful in this case where the data
required for each module is not available off line but need to be computed by other modules.
The computation is performed in a concurrent method of the parallel object. Inside this
method, when a specific data is really needed, it will wait for an event (using the event
sub-system, see section 5.2.3 of chapter 5) that will be triggered when the required data
from other modules has arrived. When a part of the results is available, it will update other
modules (parallel objects) through the ”Set” methods on the target objects.

The Alpine3D coupled by ParoC++ is presented in Fig. 11.6. AlpineControl is a
sequential object running on the local machine where the user starts the Alpine3D application.
AlpineControl is used to co-ordinate the computation, the inputs and the outputs of the
system over time units. The parallel objects InputObj, OutputObj and SnowParameters

are shared objects that are accessible from all computation modules. These objects run
on the machine which stores the input data and the output results of the simulation. We
assume that this machine is also the local machine where the user starts the application.
Three parallel objects SnowDrift, SnowPack and EnergyBalance located on different remote
machines contain three concurrent methods ”Compute” that will be asynchronously invoked
by AlpineControl each time unit. During ”Compute” execution, these objects will also
invoke each other to update data when the data is computed.

11.3.2. Second part: parallelization inside modules

To improve considerably the overall performance of Alpine3D, coupling different modules is
not enough. We also need to reduce the computation time inside each module. Finer grain
parallelism inside each module is required.

11.3 Parallelization of the software 115

EnergyBalance

SetMeteo2D

M
eteo2D

Snow mass change

Snow surface

S
n

o
w

 s
u
rf
a
c
e

R
a
d
ia

ti
o
n

co
m

p
o
n
e

n
ts

Data

Data

InputObj OutputObj

AlpineControl

Resource

boundary

Snow

Parameters

G
e

t
w

in
d

 f
ie

ld

G
e

 t
to

p
o

g
 ra

p
h

y

G
e

 tM
e

te
o

C
o

m
p
u

te

C
o

 m
 p

 u
 te

S
n

o
 w

 p
r o

f i
le

C
o

m
p

u
te

Simulation data

Outp
ut d

rif
t

S
o

 il
 r

 u
n

 o
f f

G
et topography

SnowDrift

GetSnowParameters

SnowPack

Get S
imulatio

n parameters

Method invocation

Sequential object

Parallel object

Figure 11.6: Coupling Alpine3D modules using ParoC++

We analyze the computation time of each module. SnowDrift computation is the heaviest
part of the Alpine3D. So we have decided to parallelize this module first. At the moment,
only SnowDrift is parallelized.

SnowDrift computation consists of three major steps: first, we need to compute the
saltation for each grid point (2D grid on the surface); secondly, the saltation results will be
used to compute suspension which is a convergence loop over all grid points (3D grid); and
finally, the snow mass changes is calculated based on the 3D grid data. The first two steps
take most of the computation time. So we will parallelize the calculation of saltation and
suspension.

The parallelization is illustrated in Fig. 11.7. We will divide the whole geographical
region that we need to simulate the snow process into small regions and we then do the
simulation on these small regions in parallel. After each simulation step, information on the
bound will be exchanged between neighboring regions. The computation of saltation is rather
easy to parallelize since each grid point can be computed independently. The computation
of suspension is harder to parallelize because we have to use the information over all 3D grid
points to decide the convergence condition. However, this condition can be synthesized from
all sub-condition of all sub-regions.

116 Test case 2: Snow modeling, runoff and avalanche warning

�

�

�������	
�
�����

�������	
�
���
��

�������	
�
�����

�������	
�
�����

��� ���
�� ���

���

����� ���
����

Figure 11.7: Parallelization inside the SnowDrift module

The parallel algorithm is presented in Fig. 11.8. SnowDriftMaster contains several
SnowDriftWorkers which are responsible for computing the saltation and the suspension
for sub-regions. SnowDriftMaster receives computation requests for the SnowDrift module
from the SimulationControl in a concurrent method (a thread). It then distributes the
computation to workers and waits for the results. The computation consists of three sequent
phases: saltation computation, suspension computation and snow mass change computation.
All these phases will be executed on the workers. The master will co-ordinate the phases and
update the final results.

The ParoC++ event sub-system (see section 5.2.3 of chapter 5) together with the passive
data access (see chapter 6) has been used to acknowledge the arrival, and to synthesize the
results from workers. It is the worker who will actively update and synthesize the results to
the master (via an ”update” method invocation). The ”update” method on the master has a
counter (an attribute of the object) that counts the number of updates of workers. When all
workers have updated the master, this method will raise an event ”computation complete” so
that the ”wait-for-event” on the other concurrent method resumes and the next computation
phase will be continued.

11.4. Experiment results

The Hydro@Alpine3D project is ongoing. At the moment, no exhaustive tests has been
performed yet. Therefore we only present our preliminary results of the parallel Alpine3D
software that simulates snow development in a small area of the Alpine region.

We measure the computation time of the snow development for 120 hours on real data
collected from the field (wind data, snow cover data, meteorological data, topography data,
etc.). The result is shown in Fig. 11.9. In the figure, the X-axis shows the number of

11.4 Experiment results 117

SnowDriftWorker SnowDriftWorker SnowDriftWorker

New wind

field? update wind field update wind field

SubSaltation

ExchangeBound ExchangeBound

Start suspension

Start saltation

computation

(concurrent

 method)

Salation

computation

on a sub-region

Exchange saltation

 bound data with

the neighbor

SubDiffusion

ExchangeBound ExchangeBound

Update Sub-convergence

Not yet

converge?

SnowMassChange

Update snow

mass change

Update snow

mass data on

other modules

and complete

Update

convergence

condition

Wait for

convergence

condition

Wait snow

mass updated

SnowDriftMaster

Update snow mass change

Compute snow

mass change

Figure 11.8: UML sequence diagram of the parallel snowdrift computation

processors used for parallel SnowDrift computing; the Y-axis is total simulation time. We
test the Alpine3D with parallel SnowDrift computation up to 16 processors.

For the sequential run of Alpine3D on Linux/Pentium 4-2.8GHz, it takes about 90 min-
utes to complete the simulation. The parallel version of Alpine3D with one processor (no
actual parallelization) takes about 98 minutes due to the extra communication cost. With 2
processors, the simulation time is about 55 minutes. The total simulation time continues to
decrease as the number of processors increases up to 16. It takes about 14 minutes to finish
the whole simulation. However, we notice that increasing number of processors has stronger
effect to the overall performance when the number of processors is smaller than or equal 12.

There are three factors that affect the parallel efficiency of the application:

• The time waiting for inputs.

• The data dependencies between modules.

• The overlapping of computation at the bound between two neighbors.

Each wind field in the experiment has about 30MB of data and it is stored locally. The
total time spent for reading the inputs (total wind fields: 20) is about 1 minute which is not
considerable compared to the total simulation time.

118 Test case 2: Snow modeling, runoff and avalanche warning

Simulation time of snow development of 120 hours

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NP/SnowDrift

T
im

e
 (

s
)

PLEIADES cluster

Figure 11.9: Parallel snow development simulation of 120 hours

The data dependencies have a strong influence to the overall performance of the system.
As we have mentioned, at the moment, we only focus on parallelizing SnowDrift module-
the ”bottle-neck” of the system. When the computation time of SnowDrift decreases, the
computation time of other modules becomes considerable. SnowDrift starts to wait for data
from other modules when the number of processors used for parallel SnowDrift increases.
This problem will be solved when the computation time of other modules will be decreased
through the parallelism.

The last factor is the overlap between two neighbor sub-regions. When the number of
processors increases, the percentage of overlap over the whole sub-region increases. Also the
synchronization (exchange/update results) cost goes up. These extra costs will degrade the
overall performance.

This explains why at the current state of the project where only one module has been
parallelized, we can speed up the Alpine3D just 6 times (compared to the sequential version)
with 16 processors for parallel SnowDrift.

11.5. Summary

The chapter presents the second test case of ParoC++ on the snow simulation and avalanche
warning system called Alpine3D developed at the Swiss Federal Institute of Snow and Avalanches
Research in Davos.

Alpine3D is not a full functional software yet. Each module is continuously evolved. The
programming language heterogeneity is one of the nature of the software where each part is
developed by scientists with different backgrounds. How to combine such differences into a
single well-integrated application? How to parallelize the application while each component
is still in the developing phase? Those questions have been answered by ParoC++.

While in the test case 1, we demonstrated the ability to extract the high performance from

11.5 Summary 119

the heterogeneity by application adaptation and dynamic reaction to external changes com-
bining with monitoring, ParoC++ in this test case showed an example of how to parallelize,
to integrate and to manage a complex existing system. ParoC++ has brought the flexibil-
ity, the modularity and the extensibility in an open object-oriented design to the Alpine3D
system.

ParoC++ has been used as the principal tool to integrate different heterogeneous modules,
to parallelize an existing application and to deploy it on the Grid. Although this is an ongoing
project and performance is not the first objective that we want to demonstrate in the test
case, primary results of the partial-parallel version of Alpine3D have been presented. These
results somehow explain the situation of this complex system and provide us a good start
point for continuing the parallelization of other modules to make the overall performance
really meaningful for a large scale avalanche warning system for Switzerland.

120 Test case 2: Snow modeling, runoff and avalanche warning

Chapter 12

Test case 3: Time constraints in

Pattern and Defect Detection

System

In chapter 10 we presented the implementation of the Pattern and Defect Detection Sys-
tem (PDDS) using ParoC++ without considering the requirement on the time constraints
(real-time image analysis). The performance requirement can be achieved by application
adaptations. In this chapter, we present another approach based on the ParoC++ frame-
work of the parallelization scheme (chapter 8). This approach is more efficient to deal with
highly heterogeneous environments by adapting the size of sub-problems to the heterogeneous
capability of resources.

12.1. Algorithms

Figure 12.1 shows the decomposition tree of the parallelization scheme (see chapter 4). The
root of the tree is the original image that we need to analyze. The image can be split into
three smaller images (image 1, 2 and 3). The image 3 is to detect patterns near the bounder
of the two images 1 and 2 that are not able to be detected by both images. Two sub-images
1 and 2 will be further divided until each sub-images is as small as twice the width of the
pattern template.

12.2. The parallelization scheme construction

From the decomposition tree in section 12.1, we need to construct three parallel objects:
PatternProb, a sub-problem of the node inside the decomposition tree, to find patterns on
an image; ImageSource to acquire images from the external system, split the images into
sub-images at different size; and Output to output the results to the external system. Each

121

122 Test case 3: Time constraints in Pattern and Defect Detection System

� ��

� �
�

Figure 12.1: Decomposition tree: dividing the image to sub-images

PatternProb also stores the ID of the sub-image inside the ImageSource that corresponds
to the sub-problem at the node of the decomposition tree.

We also need to build the sequential class PatternNode which is derived from DTreeNode.
PatternNode is responsible for creating the parallel object PatternProb through the virtual
method InitProblem.

���������

��	
���������

�����������

��� �����

�������

������ ��

�����������

�� ! "#$

����� ��

�%�&%�

������ ��

'(�)�*�%�+�

,

,

,
,

-./.0010
234156

71891:6;.0
234156

Figure 12.2: The parallel object diagram

Since we use FFT codes to compute the cross-correlation, the complexity of the algorithm
is C.W.H.log(W.H) where C is a constant value, W and H are the width and the height of the
image. The question is how to find the correct value of the constant C? In this experiment, we

12.2 The parallelization scheme construction 123

estimate the value of C based on the relationship between the benchmark values of ParoC++
service (matrix multiplication) on different platform (Linux, Solaris), the computation time
of 2D FFT on different sizes of images on those platforms. From this experiment, we choose
C=7.

The construction of the parallelization scheme is illustrated by the following code:

/**** Procedure to construct the DT *******/

PatternNode *ConstructTree(ImageSource &mysrc, Output &myoutput,

int offset, int imWidth, int imHeight, CImage &mypattern,

int overlapsize, int minWidth)

{

float mflops=evaluate the mflops required for the current sub-image;

PatternNode *node=create new PatternNode with mflops as an argument;

if (current image is still big enough)

{

PatternNode *left=recursive call to ConstructTree on the left image;

PatternNode *right=recursive call to ConstructTree on the right image;

node->AddChild(left);

node->AddChild(right);

if (the middle image is big enough)

{

PatternNode *mid=create PatternNode for the middle image;

node->AddChild(mid);

}

}

return node;

}

ConstrucTree will create the current node of the tree with the image ID as a pair (offset,
imWidth), where offset is the start position of the sub-image within the original image and
imWidth is the width of the sub-image. It then decides if the decomposition can continue or
not. If yes, it will call recursively itself to construct the sub-trees.

To execute the parallelization scheme, as the decomposition tree is constructed, the user
only needs to set up the time constraint (method SetTimeConstraint), then to instantiate

124 Test case 3: Time constraints in Pattern and Defect Detection System

a suitable solution (method Init) and finally to invoke the Solve method on the root node
of the tree:

tc=input the time constraint from the user;

PatternNode *root=ConstructTree(...);

root->SetTimeConstraint(tc);

if (!root->Init())

{

printf("Can not instantiate the solution. Fail to solve\n");

return 1;

}

root->Solve();

12.3. The results

We run the application on the heterogeneous environment of 130 machines running Linux/Pentium
4 and Solaris/Sparc with two assumptions:

• The user only knows one ParoC++ access point to access the ParoC++ environment.
He does not have any knowledge about the machine inside the environment.

• The initial topology of machines is the same as the one we described in section 9.4 of
chapter 9.

Before doing this experiment, we have evaluated the performance of each machine by
a matrix multiplication benchmark of size 500x500. This benchmark result will be used
by ParoC++ services as the computing power of the resource to match with the resource
requirements from the PatternProb objects at run time. Values reported by the benchmark
show that inside the test environment, Linux/Pentium 4 systems run about twice as fast as
the Solaris/sparc systems.

The input data set consists of a chain of 100 image frames (8-bit gray images), each has
the size of 2048x2048. We need to analyze all these images to find pattern positions.

In each run, the user will specify the time constraint within which all 100 images should
be analyzed. The parallelization scheme framework will be applied to solve the problem and
the actual computation time is measured and compared to the time constraint. We also
record the number of decomposed problems which somehow reflects the heterogeneous grain
of parallelism of the run.

The results are shown in Fig. 12.3. The experiment consists of 16 runs with different time
constraints for all 100 images to be computed ranging from 600 seconds down to 30 seconds.
The X-axis corresponds to the run number. We start the first test with the time constraint

12.3 The results 125

Computation Time vs. Required Time

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Run N
o

T
im

e
 (

s
)

0

5

10

15

20

25

N
u

m
b

e
r

o
f

d
e
c
o

m
p

o
s
e
d

p
ro

b
le

m
s

Required time

Computation time

Number of decomposed problems

Figure 12.3: The time constraint vs. the actual computation time

of 600 seconds (6 seconds/image). ParoC++ system finds a resource (a Solaris machine)
with enough computing power to analyze the whole image chain sequentially (actual: 536sec,
constraint: 600sec). The second test requires the time constraint of 500 seconds and the
actual computation time is 453 seconds on 1 machine (another Solaris machine). For the
runs #1 to #4, ParoC++ system finds some resource with enough computing power to solve
the problem sequentially.

From run #5 (time constraint: 200 seconds), the problem starts to be decomposed. Run
#5 to run #8 decompose each image into 3 sub-images (first level decomposition: 2 half
images and the overlap). The computation time in all 4 runs is about 62 seconds (vs. time
constraints from 200 down to 140 seconds). The image is decomposed into more sub-images
as the time constraint is decreased: run #9 to run #12: 7 sub-images; run #13: 23 sub-
images and run #14-15: 21 sub-images. At run #16, the ParoC++ framework reported that
it can not instantiate a solution due to the lack of resources.

Two points that we can figure out easily from the results: firstly, at run #9, the actual
computation time is about 100 seconds (time constraint: 120 seconds) which is bigger than
that of run #8 (61 seconds). As we have clearly stated in section 4.3.1 of chapter 4, we
do not aim at finding the fastest solution but we will find a solution that satisfies the time
constraint. Selecting an acceptable solution (satisfy the time constraint, not the best) is the
case of run #9. The solution depends on the distributed resource discovery algorithm of the
ParoC++ system (see section 7.6). Secondly, at run #13, the number of sub-problems is
greater than those of runs #14 and #15. This is because we tried to simulate the dynamics
of the run-time environment by restarting a Linux machine just before run #13 started. This
event leads the parallelization scheme to find slower Solaris machines and hence it needs to
decompose further in order for the time constraint to be satisfied.

Although there are some differences in performance between different runs but the time
constraints in the experiment have been satisfied. The experiment has illustrated how to use

126 Test case 3: Time constraints in Pattern and Defect Detection System

the ParoC++ parallelization scheme for solving problems with time constraints.

12.4. Summary

The chapter completes the discussion about the parallelization scheme for solving time con-
strained problems on the Grid by a test case from industrial image processing. We described
how to elaborate the parallelization scheme using the ParoC++ framework for time con-
strained problems. The experiment on the mixed Solaris/Linux environment illustrates the
ability to automatically and transparently derive different grains of parallelism based on the
time constraint from the user and the available resources inside the execution environment.

Chapter 13

Conclusion

The dissertation presents a new parallel programming paradigm for developing high perfor-
mance (HPC) applications on the Grid. We address the question ”How to tailor the HPC
applications to the Grid?” where the heterogeneity and the large scale of resources are the
two main issues. We answer the question at two levels: the programming tool level and the
parallelization concept level.

At the programming tool level, the state-of-the-art of Grid computing shows that cur-
rently, there is no suitable programming tool to extract the performance from the Grid. We
address this issue through the application adaptation in the parallel object model and the
ParoC++ programming system under two forms: either the application components should
somehow decompose dynamically based on the available resources of the environment; or
the components should be able to ask the infrastructure to select automatically the suitable
resources by providing some descriptive information about the resource requirements.

The parallel object model is the generalization of the sequential object model with the
integration of user requirements via object-description into the shareable distributed object.
We refer such objects as parallel objects. Two important properties of the parallel objects are:
dynamic parallel object creation and destruction; and requirement-driven object allocation.
The first property enables the application to react to the changes inside the environment or
from the user by acquiring or releasing additional resources for the application. The second
property provides a mean for application to describe the performance requirement it needs
from the executing environment.

We have implemented the parallel object model in the ParoC++ programming system.
ParoC++ provides a comprehensive object-oriented infrastructure for developing applica-
tions, for managing the Grid environment and for executing the application on the Grid.
ParoC++ consists of a programming language extended from C++ to support parallel ob-
jects, a compiler to compile the ParoC++ source code and the run-time system to run
ParoC++ applications on the Grid. We focus on the open design and extensibility of the
system so that ParoC++ can be used to glue different Grid toolkits. The integration of

127

128 Conclusion

Globus into ParoC++ has been used as an example of this open and extensible design.
At the parallelization concept level, we investigate the parallelization scheme which pro-

vides the user a method to express the parallelism for a class of time constraint problems
with a known (or well-estimated) complexity on the Grid. The parallelization scheme is
constructed on the two principal elements: the decomposition tree and the decomposition
dependency graph. The decomposition tree defines multi-level problem decompositions that
represent all feasible solutions to the original problem. The decomposition dependency graph
shows the partial order of execution of sub-problems. Algorithms on the parallelization
scheme have been developed to compute the time constraints, the resource requirements
and to instantiate automatically and transparently a suitable solution based on the available
resources of the environment.

The ParoC++ framework for solving time constraint problems is result of the integration
of ParoC++ and the parallelization scheme. The framework provides a high-level abstraction
based on parallel objects for the user to express the parallelism and the time constraint, to
implement the time constrained application and to execute the application on the Grid. With
the framework, users can focus on the ”logic” of the problems and leave all of the complexities
of the Grid environment over the framework and the ParoC++ system.

The thesis emphasizes on the high performance computing issue on the Grid. Many other
challenges of the Grid are just partially covered or not covered: security, resource accounting,
efficiency evaluation of the Grid system and the Grid application, benchmarking, application
fault tolerance, etc. Although they are important issues of the Grid.

We assert the dissertation with a series of benchmarks and with two real life applications
on image processing and on snow simulation and avalanche warning. The results show the
effectiveness of ParoC++ on developing high performance computing applications and in
particular for solving the time constrained problems on the Grid.

The thesis opens some new directions for the future of high performance computing on
the Grid: from the parallel object model, is that possible to automatically parallelize an
object-oriented application? from the ParoC++ system, how to evaluate the efficiency of the
system? how to verify the properness, to find deadlocks and to detect performance bottle-
neck inside the application? from the parallelization scheme, what is the resource requirement
metric? how to evaluate the complexity of time constrained applications? And above all, we
would like to make ParoC++ as the pioneer in bringing object-oriented methods and high
performance computing all together on the Grid environment.

Appendix A

Genetic algorithm for the Min-Max

problem

We find an approximate solution of T s
1 , T s

2 , . . . , T s
m to (4.7) with the conditions (4.2) and (4.4)

presented in chapter 4.

A.1. The Algorithm

The algorithm is described as follow: the population consists of W individuals. Each individ-
ual is visualized as a circle with circumference of αT . The circle is split into m sectors whose
lengths are T s

1 , T s
2 , . . . , T s

m. By this representation, the constraints (4.2) and (4.4) are satis-
fied. Initially, all W individuals are randomly selected. The evolution process is performed
by mutation and crossover operations on the population with the corresponding probabilities
ρ1 and ρ2.

Mutation. For an individual D, we randomly select a sector T s
i of the circle and increase by

x% (x is a random number in range < −100 . . . 100 > \ {0}, negative value of x means
”decrease T s

i ”). All other sectors T s
j (j 6= i) will be adjusted accordingly:

T ,s
j =

{
T s

j

(
1 + x

100

)
, if i=j;

T s
j

(
1− xT s

i
100(αT−T s

i)

)
, otherwise.

Crossover. This operation consists of 2 steps: first, randomly select two individuals from the
population, select the cut index on the circle and swap two parts of the two individuals
to generate the new generation (see fig. A.2); then normalize the other parts of the
circle by shrinking or expanding so that the new circles have the same circumference
αT .

129

130 Genetic algorithm for the Min-Max problem

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Mutation

Figure A.1: Mutation operation

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Ts
2

Ts
1

Ts
3

Ts
4

Ts
mTs

2

Ts
1

Ts
3

Ts
4

Ts
m

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Ts
2

Ts
1

Ts
3

Ts
4

Ts
m

Crossover Normalization

Ts
5

Ts
5

Ts
5

Ts
5

Ts
5

Ts
5

Figure A.2: Crossover operation between two individuals

After performing mutation and crossover, a new generation is created. For each individual,
a fitness function obtained from (4.7) will be evaluated:

F (T s
1 , T s

2 , . . . , T s
m) = max{g1(C(P1), T1), g2(C(P2), T2), . . . , gn(C(Pn), Tn)} (A.1)

Fitness function shows how ”good” an individual is: the smaller the fitness value, the
better the match of the individual to the target. In order to keep the fix size population after
performing crossover and mutation, we remove ”bad” individuals with the biggest values of
fitness.

The evolution process stops when a number of generations has been reached or the ”best”
individual does not improve after a number of iterations (e.g. 100 iterations).

A.2 Experimental results 131

Table A.1: Genetic Algorithm on Simple Data Set
Size: 200 400 600 800 1000 1200 1400
Number of epoch: 23199 35396 46798 52197 58899 60200 81297
MaxPower(GA): 964.0 2040.6 2958.9 4054.7 5044.8 6032.4 7135.2
MaxPower(Optimal): 963.9 2040.1 2957.8 4052.4 5041.6 6026.4 7130.2

Table A.2: Genetic Algorithm on Complex Data Set
Sub problems: 200 400 800 1200 1600 2000 2400 2800
Number of epoch: 2698 3896 8100 5290 8197 12500 13097 14997
Computation time: 0m07s 0m28s 2m59s 4m02s 10m33s 24m09s 36m17s 56m01s

A.2. Experimental results

We have performed the genetic algorithm with the following parameters:

• Population size: W = 200

• Mutation probability: ρ1 = 0.4

• Crossover probability: ρ2 = 0.2

• Stop criteria: after 100000 generations or when the best individual does not improve
after 100 iterations.

The input data is a sequential diagram randomly generated. We follow the two experi-
ments: first we generate a simple data set in which each problem Pi spans exactly one step.
In this case, the optimal solution to (4.7) can be calculated using (4.8). The results are
then compared with the results obtained by using the genetic algorithm. The second ex-
periment deals with the performance of the algorithm on more complex data set where the
number of steps is smaller than the number of sub-problems. In both cases, the complexities
of sub-problems are randomly generated, the time constraint is T = 1 and the constraint
guard coefficient is α = 1. For the latter case, the sequential diagram is also randomly gen-
erated such that the number of sub-problems is twice the number of steps (average of two
sub-problems to be solved in each step).

The result for the simple data set is shown in Table A.1 where the number of sub-problems
is also the number of steps. MaxPower is the return value of function F in (A.1). The genetic
algorithm gives good results in compared to the optimal solution. In all cases, the difference
is not considerable (about 0.1% bigger).

Table A.2 shows the convergent speed of the genetic algorithm in the second experiment.
All tests are done on a Linux/Pentium 4, 1.7GHz machine. The convergence speed depends
not only on the number of sub-problems but also on the connectivity between sub-problems
in the sequential diagram. It is quite fast when the number of sub-problems in the sequential
diagram is small (7 seconds for 200 sub-problems/the min-max problem of 100 steps or

132 Genetic algorithm for the Min-Max problem

variables). This increases up to about 56 minutes for a decomposition of 2800 sub-problems
(the min-max problem with 1400 variables).

Bibliography

[1] Bill Allcock, Joe Bester, John Bresnahan, Ann Chervenak, Ian Foster, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Secure, efficient
data transport and replica management for high-performance data-intensive computing.
In IEEE Mass Storage Conference, 2001. [55]

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and S. Tuecke.
GridFTP Protocol Specification. GGF GridFTP Working Group Document, September
2002. http://www.globus.org/research/papers.htm. [55]

[3] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for paral-
lel programming of distributed systems. IEEE Transactions on Software Engineering,
18(3):190–205, March 1992. [17]

[4] H. Balen. Distributed object architectures with CORBA. Cambridge University Press,
2000. [16]

[5] David Barkai. Peer-to-Peer Computing: Technologies for Sharing and collaborating on
the Net. Intel Press, 2002. [34]

[6] Perry Bartelt and Michael Lehning. A physical SNOWPACK model for the Swiss
avalanche warning-Part I: numerical model. Cold Regions Science and Technology,
35:123–145, 2002. [110]

[7] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, (1):173–189, 1972. [33]

[8] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache management
for distributed shared memory architectures. In Proc. of the 17th Annual Int’l Symp. on
Computer Architecture (ISCA’90), pages 125–135, 1990. [56]

[9] T. D. Braun, H. J. Siegel, and A. A. Maciejewski. Mapping heuristics for tasks with
dependencies, priorities, deadlines and multiple versions in heterogeneous environments.
In Proc. of the 16th International Parallel and distributed Processing Symposium, 2002.
[29]

133

134 BIBLIOGRAPHY

[10] J.-P. Cagnard. The parallel cellular programming model. In The 8th euromicro workshop
on Parallel and Distributed Processing, 2000. [15]

[11] J.-P. Cagnard. ParCel-2 : un modèle de programmation parallèle, cellulaire, hiérarchique.
PhD thesis, Swiss Federal Institute of Technogoly-Lausanne, 2001. [15]

[12] Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony Skjellum, and Geoffrey Fox.
MPJ: MPI-like message passing for Java. Concurrency: Practice and Experience,
12(11):1019–1038, 2000. [16]

[13] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Proc. of the 13th ACM Symp. on Operating Systems Principles (SOSP-13),
pages 152–164, 1991. [14]

[14] John B. Carter, Dilip Khandekar, and Linus Kamb. Distributed shared memory: Where
we are and where we should be headed. In Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), pages 119–122, 1995. [14]

[15] Henri Casanova and Jack Dongarra. Netsolve: A network server for solving computa-
tional science problems. The International Journal of Supercomputer Applications and
High Performance Computing, 11(3):212–223, 1997. [69]

[16] Ethan Cerami. Web services essentials. O’Reilly Press, 2002. [10]

[17] CERN. The Large Hadron Collider Project. http://lhc.web.cern.ch/lhc/. [8, 55]

[18] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications, (23):187–200, 2001. [55]

[19] R.S. Chin and S.T. Chanson. Distributed object-based programming system. ACM
Computing Surveys, 23(1), 1991. [16]

[20] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Proc. of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, 2000. [69]

[21] A. Corradi, L. Leonardi, and F. Zambonelli. Hpo: a programming environment for
object-oriented metacomputing. In Proc. of the 23rd EUROMICRO conference, 1997.
[17]

[22] A. Corradi, L. Leonardi, and F. Zambonelli. Parallel object allocation via user-specified
directives: A case study in traffic simulation. J. Parallel Computing, (27):223–241, 2001.
[17]

BIBLIOGRAPHY 135

[23] Caroline Cruz-Neira, Daniel J. Sandin, and Tom DeFanti. Surround-screen projection-
based virtual reality: The design and implementation of the cave. In Proc. of SIGGRAPH
93, August 1993. [59]

[24] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.
A resource management architecture for metacomputing systems. In Proc. IPPS/SPDP
’98 Workshop on Job Scheduling Strategies for Parallel Processing, pages 62–82, 1998.
[75, 80]

[25] Gilles Fedak, Cécile Germain, Vincent Néri, and Franck Cappello. Xtremweb : A generic
global computing system. In CCGRID2001, workshop on Global Computing on Personal
Devices, 2001. [61]

[26] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A
directory service for configuring high-performance distributed computations. In Proc.
6th IEEE Symp. on High-Performance Distributed Computing, pages 365–375, 1997. [69]

[27] I. Foster and N. Karonis. A grid-enabled mpi: Message passing in heterogeneous dis-
tributed computing systems. In Proc. 1998 SC Conference, November 1998. [2, 13]

[28] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl J.
Supercomputer Applications, 11(2):115–128, 1997. [1, 9, 13, 61, 80]

[29] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1998. [1, 7, 8, 11, 61]

[30] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed system
integration. Computer, 35(6), 2002. [10, 11, 80]

[31] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, 15(3), 2001. [1, 34]

[32] I. Foster, A. Roy, and V. Sander. A quality of service architecture that combines resource
reservation and application adaptation. In The 8th International Workshop on Quality
of Service, 2000. [25]

[33] B. Françoise, C. Denis, F. Nathalie, and S. David. Optimizing remote method invoca-
tion with communication-computation overlap. Future Generation Computer Systems,
18:769–778, 2002. [56]

[34] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine-A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994. [13, 56]

136 BIBLIOGRAPHY

[35] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop
Gupta, and John L. Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In 25 Years ISCA: Retrospectives and Reprints, pages
376–387, 1998. [14]

[36] Chris Gill, Fred Kuhns, Douglas C. Schmidt, and Ron Cytron. Empirical differences
between cots middleware scheduling paradigms. In The 8th IEEE Real-Time Technology
and Applications Symposium, September 2002. [25]

[37] Globus Project. Globus GRAM Documentation. http://www-
unix.globus.org/developer/resource-management.html. [80]

[38] A. S. Grimshaw and W. A. Wulf. Legion — a view from 50,000 feet. In Proc. of the 5th
IEEE International Symposium on High Performance Distributed Computation, August
1996. [1, 9]

[39] A. S. Grimshaw, W. A. Wulf, and the Legion team. The legion vision of a worldwide
virtual computer. Communications of the ACM, 40(1), January 1997. [11]

[40] Andrew Grimshaw, Adam Ferrari, Fritz Knabe, and Marty Humphrey. Legion: An
operating system for wide-area computing. IEEE Computer, 32:5:29–37, May 1999. [11,
13]

[41] Andrew Grimshaw, Adam Ferrari, and Emily West. Parallel Programming Using C++,
pages 383–427. The MIT Press, Cambridge, Massachusetts, 1996. [2, 17]

[42] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-
tation of the MPI message passing interface standard. Parallel Computing, 22(6):789–
828, sep 1996. [13, 95]

[43] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implementation
of MPI. Mathematics and Computer Science Division, Argonne National Laboratory,
1996. ANL-96/6. [95]

[44] J. Gunnels, C. Lin, G. Morrow, and R. van de Geijn. Analysis of a class of parallel
matrix multiplication algorithms. In Proc. of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing, pages
110–116, 1998. [29]

[45] R. Henderson and D. Tweten. Portable Batch System: External reference specification.
Ames Research Center, 1996. [75]

[46] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin Lang,
Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bisseling. BSPlib: The
BSP programming library. Parallel Computing, 24(14):1947–1980, 1998. [15]

BIBLIOGRAPHY 137

[47] G. Hoo, W. Johnston, I. Foster, and A. Roy. Qos as middleware: Bandwidth reservation
system design. In Proc. of the 8th IEEE Symposium on High Performance Distributed
Computing, 1999. [25]

[48] P. Jȩdrzejowicz and I. Wierzbowska. Scheduling multiple variant programs under hard
real-time constraints. European Journal of Operational Research, 127:458–465, 2000. [29]

[49] Elizabeth Johnson and Dennis Gannon. HPC++: Experiments with the parallel stan-
dard template library. In International Conference on Supercomputing, pages 124–131,
1997. [18]

[50] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of
the message passing interface. Journal of Parallel and Distributed Computing, 2003. [13]

[51] K. Keahey and D. Gannon. PARDIS: A parallel approach to CORBA. In The 6th IEEE
International Symposium on High Performance Distributed Computing, August 1997.
[18]

[52] P. Kuonen, G. Babin, N. Abdennadler, and P-J. Cagnard. Intensional high performance
computing. Lecture Notes in Computer Science, 1830, 2000. ISBN 3-540-67647-3. [15]

[53] P. Kuonen, T. A. Nguyen, and J.-Ph. Thiran. Le projet ForAll ou l’analyse d’images au
service de la mode. EPFL Flash Informatique, 6, 2003. [104]

[54] J. Lee, B. Tierney, and W. Johnston. Data intensive distributed computing: A medical
application example. Lecture Notes in Computer Science, 1593, 1999. [55]

[55] Michael Lehning, Perry Bartel, Bob Brown, and Charles Fierz. A physical SNOWPACK
model for the Swiss avalanche warning- Part III: meteorological forcing, thin layer for-
mation and evaluation. Cold Regions Science and Technology, 35:169–184, 2002. [110]

[56] Michael Lehning, Perry Bartelt, Bob Brown, Charles Fierz, and Pramod Satyawali. A
physical SNOWPACK model for the Swiss avalanche warning-Part II: Snow microstruc-
ture. Cold Regions Science and Technology, 35:147–167, 2002. [110]

[57] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic mapping of
a class of independent tasks onto heterogeneous computing systems. Journal of Parallel
and distributed Computing, 59(2):107–131, November 1999. [29]

[58] Microsoft Corporation. Distributed Component Object Model.
http://www.microsoft.com/com/tech/dcom.asp. [16]

[59] Nuno Neves, Miguel Castro, and Paulo Guedes. A checkpoint protocol for an entry con-
sistent shared memory system. In Symposium on Principles of Distributed Computing,
pages 121–129, 1994. [14]

138 BIBLIOGRAPHY

[60] T. A. Nguyen, P. Kuonen, and J.-Ph. Thiran. FORALLWEAR Project: Deliverable
D.3.5: Report on defect detection algorithms and performance analysis. [104]

[61] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms.
IEEE Computer, pages 52–60, 1991. [14]

[62] Object Management Group. Real-Time CORBA specification. http://www.omg.org. [29]

[63] Guedes Paulo and Castro Miguel. Distributed Shared Object Memory. In Proc. 4th
Wshop. on Workstation Operating Systems (WWOS-IV), Napa, CA (USA), 1993. IEEE
Computer Society Press. [14]

[64] C. Petitpierre. Synchronous C++, a language for interactive applications. IEEE Com-
puter, pages 65–72, September 1998. [17]

[65] T. Priol and C. Rene. COBRA: A CORBA-compliant programming environment for
high-performance computing. In Proc. of Europar’98, pages 1114–1122, Southampton,
UK, September 1998. [18]

[66] Raman R., Livny M., and Solomon M. Matchmaking: Distributed resource management
for high throughput computing. In The 7th IEEE International Symposium on High
Performance Distributed Computing, 1998. [69]

[67] S. K. Reinhard, R. W. Ple, and D. A. Wood. Decoupled hardware support for distributed
shared memory. In Proc. of the 23rd Annual Symposium on Computer Architecture, May
1996. [56]

[68] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella network. IEEE Internet
Computing, 6(1):50–57, Jan.-Feb. 2002. [69]

[69] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. MPICH-GQ:
Quality-of-service for message passing programs. In Proc. of the IEEE/ACM SC2000
Conference, November 2000. [2, 13]

[70] Ben Segal. Grid computing: The european data grid project. In IEEE Nuclear Science
Symposium and Medical Imaging Conference, pages 15–20, October 2000. [55]

[71] M. Shirts and V.S. Pande. Screensavers of the world, unite! Science, 2000. [8]

[72] M. Snir and W. Gropp et al. MPI: The Complete Reference. MIT Press, 1998. [56]

[73] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney. File and
object replication in data grids. In 10th IEEE Symposium on High Performance and
Distributed Computing (HPDC2001), 2001. San Francisco, California. [55]

BIBLIOGRAPHY 139

[74] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, 2001. [69]

[75] Sun Microsystems. Remote Method Invocation specification.
ftp://ftp.javasoft.com/docs/jdk1.2/security-spec.pdf. [16]

[76] Chunqiang Tang, DeQing Chen, Sandhya Dwarkadas, and Michael L. Scott. Efficient
distributed shared state for heterogeneous machine architectures. In ICDCS’03, 2003.
[14]

[77] David A. Thurman. JavaPVM: The Java to PVM Interface. HTML Document, June
1996. http://homer.isye.gatech.edu/chmsr/JavaPVM/. [16]

[78] B. Tierney, W. Johnston, and J. Lee. A cache-based data intensive distributed computing
architecture for grid applications. In CERN School of Computing, September 2000. [55]

[79] Weiqin Tong, Jingbo Ding, and Lizhi Cai. A parallel programming environment on grid.
In International Conference on Computational Science 2003, pages 225–234, 2003. [16]

[80] S. Tuecke, D. Engert, I. Foster, M. Thompson, L. Pearlman, and C. Kesselman. Internet
X.509 Public Key Infrastructure Proxy Certificate Profile. IETF, 2001. [80]

[81] UC Berkeley. SETI@home project. http://setiathome.ssl.berkeley.edu/index.html. [8]

[82] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990. [15]

[83] Vijay Pande, et al. Atomistic protein folding simulations on the submillisecond timescale
using worldwide distributed computing. Peter Kollman Memorial Issue, Biopolymers,
2002. [8]

[84] W3C. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP/. [10]

[85] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke. Security for grid services. In IEEE Press, editor,
Twelfth International Symposium on High Performance Distributed Computing (HPDC-
12), 2003. [80]

[86] Tiffani L. Williams and Rebecca J. Parsons. The heterogeneous bulk synchronous parallel
model. Lecture Notes in Computer Science, 1800, 2000. [16]

[87] Bojan Zagrovic, Christopher D. Snow, Michael R. Shirts, and Vijay S. Pande. Simulation
of folding of a small alpha-helical protein in atomistic detail using worldwidedistributed
computing. Journal of Molecular Biology, 2002. [8]

140 BIBLIOGRAPHY

[88] S. Zhou. Lsf: Load sharing in large-scale heterogeneous distributed systems. In Workshop
on Cluster Computing, 1992. [75]

Curriculum Vitae

Tuan-Anh Nguyen

Computer Science Theory Laboratory
Swiss Federal Institute of Technology Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: tuananh.nguyen@epfl.ch

Web: http://lithwww.epfl.ch/~tanguyen

Education

2001 - 2005 Ph.D. candidate at School of Computer and Communication Sciences, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland.

1993 - 1998 Bachelor of Engineering in Computer Science, University of Technology, Ho
Chi Minh city, Vietnam.

Professional Experience

1998 - 1999 Research and Teaching Assistant, Department of Information Technol-
ogy, University of Technology, Ho Chi Minh city, Vietnam

1999 - 2001 Internship study, Computer Science Theory Laboratory, Swiss Federal In-
stitute of Technology (EPFL), Lausanne, Switzerland

2001 - 2004 Research assistant, University of Applied Sciences Valais (HEVs), Switzer-
land

2004 - 2005 Research assistant, University of Applied Sciences of Fribourg (EIA-FR),
Switzerland

Awards and Honors

• First rank honor for the entrance examination of university by the Chairman of Ho Chi
Minh City People’s Committee (1993).

141

142 BIBLIOGRAPHY

• Best students awards by the Rector of University of Technology (1995-1997)

• Two-year scholarship award from Swiss Government (1999-2001)

Personal

Date of birth: November 27, 1975.
Nationality: Vietnam.
Civil status: Single.

Publications

1. T. A. Nguyen, P. Kuonen. ParoC++: A Requirement-driven Parallel Object-oriented
Programming Language. Future Generation Computer Systems, Elsevier, to appear.

2. T. A. Nguyen, P. Kuonen. Parallelization Scheme for an Approximate Solution to
Time Constraint Problems. The International Conference on Computational Science
2003 (ICCS2003), 2003, St. Petersburg, Russia.

3. T. A. Nguyen, P. Kuonen. ParoC++: A Requirement-driven Parallel Object-oriented
Programming Language. The 8th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments/IPDPS, 2003, Nice, France.

4. T. A. Nguyen, P. Kuonen. An Object-Oriented Framework for Efficient Data Access in
Data Intensive Computing. The 5th workshop on Advances in Parallel and Distributed
Computational Models, 2003, Nice, France.

5. T. A. Nguyen, P. Kuonen. A Model of Dynamic Parallel Objects for Metacomputing.
The 2002 International Conference on Parallel and Distributed Processing Techniques
and Applications, 2002, Las Vegas, Nevada, USA.

6. T. A. Nguyen. Distributed Access to Swiss-Tx Using Globus. EPFL/LITH Report No
126, March 2000

7. T. A. Nguyen. A Method of Parallel Computing Permeability Field on Distributed Net-
work. International workshop ”Some Problems in Scientific Computing”, 1998, Hanoi,
Vietnam.

