ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

GRID superscalar: a programming
model for the Grid

by
Raiil Sirvent Pardell

Advisor:
Rosa Maria Badia Sala

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR PER LA UNIVERSITAT POLITECNICA DE CATALUNYA

(© Raiil Sirvent Pardell 2009

COMPUTER ARCHITECTURE DEPARTMENT (DAC)
TECHNICAL UNIVERSITY OF CATALONIA (UPC)

&

Barcelona (Spain)
February 2009

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

ACTA DE QUALIFICACIO DE LA TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

Titol de la tesi: GRID superscalar: a programming model for the Grid
Autor de la tesi: Raul Sirvent Pardell

Acorda atorgar la qualificacio de:

[] No apte

[] Aprovat

[] Notable

[] Excel-lent

[] Excel-lent Cum Laude

Barcelona, de/d’...cccooveiiiiiicii de

El President El Secretari

-(.rlllcl)-rnmi“c-(.)ér.{(.).r-r;;) &.n.(.).r.n. : ;:'c.)-d .r{(.).r.r;;)

El vocal El vocal El vocal

(nom i cognoms) (nom i coghoms) (nom i coghoms)

Abstract

During last years, the Grid has emerged as a new platform for distributed computing.
The Grid technology allows to join different resources from different administrative
domains and form a virtual supercomputer with all of them. Many research groups have
dedicated their efforts to develop a set of basic services to offer a Grid middleware: a
layer that enables the use of the Grid. Anyway, using these services is not an easy task for
many end users, even more if their expertise is not related to computer science. This has
a negative influence in the adoption of the Grid technology by the scientific community.
They see it as a powerful technology but very difficult to exploit. In order to ease the way
the Grid must be used, there is a need for an extra layer which hides all the complexity of

the Grid, and allows users to program or port their applications in an easy way.

There has been many proposals of programming tools for the Grid. In this thesis we
give an overview on some of them, and we can see that there exist both Grid-aware and
Grid-unaware environments (programmed with or without specifying details of the Grid
respectively). Besides, very few existing tools can exploit the implicit parallelism of the
application and in the majority of them, the user must define the parallelism explicitly.
Another important feature we consider is if they are based in widely used programming

languages (as C++ or Java), so the adoption is easier for end users.

In this thesis, our main objective has been to create a programming model for the Grid
based on sequential programming and well-known imperative programming languages,
able to exploit the implicit parallelism of applications and to speed them up by using the
Grid resources concurrently. Moreover, because the Grid has a distributed, heterogeneous
and dynamic nature and also because the number of resources that form a Grid can be
very big, the probability that an error arises during an application’s execution is big. Thus,
another of our objectives has been to automatically deal with any type of errors which may

arise during the execution of the application (application related or Grid related).
GRID superscalar (GRIDSs), the main contribution of this thesis, is a programming
model that achieves these mentioned objectives by providing a very small and simple

interface and a runtime that is able to execute in parallel the code provided using the

ii

Grid. Our programming interface allows a user to program a Grid-unaware application
with already known and popular imperative languages (such as C/C++, Java, Perl or Shell
script) and in a sequential fashion, therefore giving an important step to assist end users
in the adoption of the Grid technology.

We have applied our knowledge from computer architecture and microprocessor
design to the GRIDSs runtime. As it is done in a superscalar processor, the GRIDSs
runtime system is able to perform a data dependence analysis between the tasks that form
an application, and to apply renaming techniques in order to increase its parallelism.
GRIDSs generates automatically from user’s main code a graph describing the data
dependencies in the application. We present real use cases of the programming model
in the fields of computational chemistry and bioinformatics, which demonstrate that our
objectives have been achieved.

Finally, we have studied the application of several fault detection and treatment
techniques: checkpointing, task retry and task replication. Our proposal is to provide
an environment able to deal with all types of failures, transparently for the user whenever
possible. The main advantage in implementing these mechanisms at the programming
model level is that application-level knowledge can be exploited in order to dynamically
create a fault tolerance strategy for each application, and avoiding to introduce overhead

in error-free environments.

Acknowledgements

I believe the story of how this thesis was made is quite interesting, and I would like to
explain it to you in more detail. It all began in November 2001, when I was finishing my
degree in Computer Science and I was looking for a subject for my Graduate Thesis. I
met Rosa Maria Badia and Jests Labarta, who were doing research for CEPBA (European
Center of Parallelism of Barcelona) at that time and I liked their proposals. They talked
to me about Grid technology, and, although it was also a new topic for them, they faced it
with all their research experience and professionalism. I will always remember them and
be grateful to them for giving me this first opportunity. It was just at that moment that I
started to feel that I liked research.

As soon as I started working as a scholarship holder at CEPBA, I realised that the
working environment was very different from that of a normal company. More than a
common working place, the CEPBA room was like a dynamic collaborative environment,
where everyone was contributing with his best, and everybody together made things
advance in an incredible way. If anyone had a doubt (existential or not), their colleagues
showed interested in it, and contributed with their opinion or experience, even when their
work was not related to it (in 30 square meters there were people working in completely
different subjects). This mixture of different areas of expertise enriched your work with
multiple points of views, and I believe it was one of the points that made CEPBA such a

strong research center.

I have to admit that I didn’t plan to do a PhD when I started working at CEPBA. I just
wanted to do my Graduate Thesis, get my degree and look for a job in a company. But
the working atmosphere, the way everybody worked together, and the subjects we were
dealing with, made me enroll in the Computer Architecture Department’s PhD program.
And, finally, here I am, at the end of the road :). So, what started as a meeting where a
student was looking for a Graduate Thesis, ended up with the creation of a group dedicated
to Grid computing and clusters inside the Barcelona Supercomputing Center, lead by Rosa
Maria Badia. I don’t want to seem big-headed, but to have participated in the creation of

this group from those early stages makes me feel proud.

iv

Of course, this thesis wouldn’t have been possible without the people I have been in
touch with, from CEPBA days to the current date. That is why I would like to dedicate
some lines to them. If I have forgotten anyone, I apologize, because during these years I

have met so many people that it’s impossible to name all of them here.

First of all I want to thank my thesis advisor, Rosa Maria Badia. Her experience and
advice have been key to successfully develop this thesis. Our professional relationship has
been great, intense from time to time, but she has always been very kind to me. Second,
to Jesus Labarta, because he was very involved in the first half of the thesis and, because

of that, he could have figured as co-advisor undoubtedly.

I will always remember my time at CEPBA, sharing an office with Dani Caldentey,
Carles Loépez, Alex Duran, Francisco Martinez, Montse Farreras, Rogeli Grima, David
Carrera, Roman Roset, Carles Tarsa and Juanjo Costa. We were always laughing and
there was a great atmosphere in the room. Any visitor might have got the impression that
nobody was working in there, but that was far from being true. Ok, from time to time
we played a couple of games with XBlast ;), but when there was a deadline everybody
worked until the work was finished, without looking at the clock. This excellent working
environment and team spirit made it possible for us to finish even the hardest jobs in an
incredibly easy way. Some of these colleagues left, others continued at UPC or BSC, but,
even when we have chosen different paths, I believe there is a special connection between

us that will remain over the years.

In my next time period at CEPBA, when I became a veteran, more people came. I
have shared everyday life with many of them, having breakfast, lunch, and cofee breaks
together :). People such as Xavi Aguilar, Vicen¢ Beltran, Jario Balart, David Rédenas,
Ivan Rodero and Francesc Guim. With the last two I have had a great relationship, because
we were all working on our corresponding PhDs at the same time on the same subject
(Grid), and we shared some unique moments (I still remember at Lausanne, when Ivan

was trying to talk in French to two girls, and Francesc and I had a good laugh :)).

I don’t want to forget those who have been involved with more or less intensity in
the GRID superscalar project: Josep Maria Pérez, Vasilis Dialinos, Pieter Bellens, Jorge
Ejarque and Marc de Palol. All of them have contributed to the project, making it possible

for the project to advance and to reach its objectives.

I want to thank Julita Corbaldn for her help in the last part of the thesis. I believe
her comments during the preliminary thesis reading with the department helped me to
improve the presentation of the work, which is very important. It is not only enough to do

a good job, but you also have to present it well.

There is a group of friends that are very special for me. I believe they already know,
but from here I want to remind them about it. Ignasi Mulet and Gemma Lépez, who
recently have had a baby (Ingrid) :), Sergi Morales and Marta Pla, and Carlos Toledo. Our
friendship begun at the university, and it remains as years go by. We always have a lot of
fun when we meet, playing Wii or just talking.

Finally, my most special acknowledgement goes to my family. To my parents,
Francesc and Concepcié, who made me what I am and who have always supported me to
keep going. To my sister Laura, who has been always a source of inspiration to all her
brothers and sisters. Lately, she has been a bit distant from the family, but it is nothing
that we cannot solve with a couple of weekends together, as she has always been like a
second mother to all of us. To my sister Nuria, who read stories to me when I was a
child and, maybe she is not fully aware of it, but she is a person whose incredible strength
and perseverance ensures that she achieves what she wants. To my niece Paula, whose
energy spreads to everybody around her. To my twin brother David, to whom I believe
nothing more needs to be added than saying that we are twin brothers ;). To his wife
Laura, because she already suspected that marrying a twin brother was like marrying two

persons :D.

To everybody, thank you.

Raiil

This work has been partially funded by the Ministry of Science and Technology of Spain (contracts CICYT
TIC2001-0995-CO2-01, CICYT TIN2004-07739-C02-01, CICYT TIN2007-60625) by the CoreGRID
European Network of Excellence (contract IST-2002-004265) and by the BEinGRID EU project (contract
IST-2005-034702).

Contents

Abstract i

Table of contents vii

List of Figures xi

List of Tables XV

1 Introduction 1
1.1 Motivation e e e e

1.2 Thesisobjectives e 4

1.3 Thesiscontribution 6

1.4 Thesisorganization 11

2 Related work 13

2.1 Workflowtools 15

2.1.1 CondorDAGMan 15

2.1.2 Pegasus e e 18

213 Triana L e e 20

2.14 P-GRADEo 23

2.2 Programmingmodels L Lo 25

221 Ninf-G e 25

222 Satin ... e 28

223 ProActive e 30

224 CoGKits e 32

225 Swift ... e 35

2.3 Comparison with GRIDSs 38

2.4 Fault tolerance in Grid environments 40

241 Gridlevel o 40

242 Applicationlevelo Lo 41

2.4.3 Comparison with GRIDSs mechanisms 44

viii CONTENTS
3 GRID superscalar: easy programming model for the Grid 47
3.1 Design e 48
3.1.1 Targetapplications 50

3.1.2 Application’s architecture: a master-worker paradigm 55

3.1.3 The Execute generic interface 60

32 Userinterface 62
3.2.1 Taskdefinition 63

3.2.2 Interface Definition Language (IDL) 65

3.2.3 Programming API: master and worker 66

3.2.4 Speculative executionoftasks 72

3.2.5 Task’s constraints and cost specification 74

3.2.6 Programming considerations and tuning 77

327 Summary 79

3.3 Programming comparison i e e 80
33.1 UsingGlobus 80

332 UsingDAGMan 82

333 UsingNinf-G o 83

334 Using VDL e 85

4 GRID superscalar runtime 87
4.1 Runtime scientific contributionso 88
4.1.1 Automatic data dependency detection 89

4.1.2 Parameterrenaming 92

4.2 Runtime developments 96
4.2.1 Basicfunctionality, 96

4.2.2 Task scheduling: the task dependency graph 102

4.2.3 Task scheduling: resource brokering 103

424 Task scheduling: file locality exploitation 108

4.2.5 Return of task results and end of application 115

43 Evaluationtests 117
43.1 Indepthanalysis 118

4.3.2 Applications performance 128

5 Applying fault tolerance at the programming model level 143
5.1 Checkpointing 144
S0 Design e 144

5.1.2 Experimental results 149

5.2 Retry mechanisms to skip Grid level failures 152
52,1 Design 152

5.2.2 Experimentalresults 158

5.3 Dynamic task replication L Lo 161
53.1 Design e 161

5.3.2 Experimentalresults 0. 166

CONTENTS ix

6 Conclusions 169
6.1 Programminginterface 169
6.2 Runtime e 170
6.3 Fault tolerance mechanisms 172
6.4 Futurework 175
Bibliography 179

A Runtime environment variables 191

CONTENTS

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Grid architecture layers Lo Lo 2
Overview of GRID superscalar behavior 7
Job structure in DAGman L oo 16
Workflow generation, mapping and execution 18
Triana architectureo L 21
P-GRADE Portal structureo 25
Ninf-Goverview 26
Object graph with active objects 30
CoG Kits mapping objective L. 33
SwiftScript program and dependency graph example 37
A workflow structure example oL L. 50
Optimization workflow example 52
Parameter sweep workflow example 52
GRIDSs application example (master) 54
GRIDSs application example (worker) 54
Samplestubfile o 56
Sample skeletonfile L oL 57
File linkage to create the master and the worker 58
Sequence of calls without GRID superscalar 59
Sequence of calls with GRID superscalar 59
GRIDSs application’s architecture 60
The Executecall 61
The matrix multiplication function 64
IDL generic syntaxot 65
matmul IDL oo 66
Master code formatmul 69
Opening afile forreading 69
GS_System and gs_resultexample 71
Speculative execution example: master 73
Speculative execution example: worker 74

Constraints specification Lo 76

xii

LIST OF FIGURES

3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

4.24
4.25
4.26
4.27

5.1

Costspecification e 77
Globus code to submitabinary 81
GRIDSs code to submitabinary 82
DAGMan example to build a workflow 82
Same workflow built using GRIDSs 83
Ninf-Gusageexample, 84
Same applicationusing GRIDSs oo 85
VDL workflow application 85
Workflow application generated with GRIDSs 86
RaW dependency example 91
WaR dependency example L. 91
WaW dependency example Lo 91
WaR dependency renaming example oL oL L. 93
WaW dependency renaming exampleo L 93
Example of a data dependency graph optimization with file renaming . . . 94
Simplified job state diagram 98
UML sequence diagram of the behavior of the GRID superscalar runtime

(masterside) e 99
UML sequence diagram of the behavior of the GRID superscalar runtime

(workerside) 100
Code which causes filerenaming 114
Data Flow Graphs of the NAS Grid Benchmarks 119
Speed up using Kadesh8, 121
Speed up using Khafre 122
Speed up using Kadesh8 and Khafre 122
Task elapsed time composition for the NGB VP.W 124
NGB VP: task assignment to workers 125
Task elapsed time composition for the NGB VP.S 126
NGB VPS: task scheduling when two workers areused 127
Source code of the simple optimization example written with GRIDSs . . 128
Task and parameters definition for the simple optimization example . . . 129
Workflow generated for the simple optimization example 130
Absolute speed up obtained for the simple optimization example using a

singlemachine, 131
Absolute speed up obtained for the simple optimization example using

twomachines 132
Chemical process development diagram 133
Generated workflow for the chemical process development 135
MareNostrum floor diagram 138
fastDNAmI workflow generated by GRIDSs 139

Checkpoint sequential consistency maintenance example 147

LIST OF FIGURES xiii

5.2
5.3
54
5.5
5.6

5.7
5.8
59

Content of a GRIDSs checkpointfile 147
Code which causes filerenaming 148
Workflow generated for the simple optimization example 149
Checkpointing overhead in the simple optimization application 151
Checkpointing overhead in the simple optimization application emulating

onefailure L L 151
Cost calculation in the Monte Carlo algorithm 160
Workflow example for replication 164

fastDNAmI workflow generated by GRIDSs 167

xiv

LIST OF FIGURES

List of Tables

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

Summary of presented applications 118
Execution times for the NAS Grid Benchmarks MB and VP on Kadesh8 . 120
Execution times for the NAS Grid Benchmarks MB and VP on Khafre . . 121
Execution times for the NAS Grid Benchmarks. Kadesh8 and Khafre

simultaneously 121
General performance information for the NAS Grid Benchmark VPW . . 123
Execution times for the simple optimization example 130
Summary of processes 134
Execution results of the chemical processes 135
Execution results calculating the potential energy hypersurface for acetone 137
Execution times for fastDNAml 140
Summary of failures 159

Time elapsed forexecution 166

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Grid computing is a buzzword coined in the 1990s by Ian Foster to describe
a collection of geographically distributed resources connected through a wide area
network [34]. The resources are not only computers, but also storage, sensors, PDAs,
etc. In such an organization, the Grid appears to an end user as one large virtual system.
The objective is not only to provide computing power but also to allow access to data or
enable collaboration. In the last years, the Grid has entered the scene as a new computing
alternative and it has become a very important research and development area in this
decade. As we have seen, the Grid is characterized for having its resources geographically
distributed in a large distance area. Thus, the set of problems tackled by the Grid scientific
community is very large, and most of them are not directly related with computation
intensive applications. However, the possibility of using all the computing elements
connected by the Grid as a unique and very large supercomputer is very attractive.

A lot of effort has been devoted by the Grid middleware community to build basic
middleware systems, such as the Globus Toolkit [33], Condor [37] or Unicore [31] just to
cite the more well known. These initiatives have come up with Grid services that allow
to perform actions in a computational Grid such as job submission, file transfer, resource
discovering and so on. However, it is still very difficult for non expert users to deal with a
Grid environment by directly using these services. It is not reasonable that scientists have
to discover and select the Grid resources, prepare scripts to submit a collection of jobs to
remote hosts, or take care of transferring the files. This may not be difficult for a single
job, but it becomes extremely complex for a big set of jobs that must be run in the Grid.

The basic Grid architecture layers are shown in Figure 1.1. An application must use

the Grid middleware services in order to exploit the remote resources available in the

2 Introduction

Applications

Grid Middleware
(Job management, Data transfer,
Security, Information, QosS, ...)

Distributed Resources

Figure 1.1 Grid architecture layers

Grid. However, these services are complex to be used directly, as they are a pack of very
diverse services that allow to control many different things in the Grid: job management,
data transfer, security, information services, and so on. In order to hide the complexity
of using middleware services directly, many research groups have worked in building
programming environments, tools and systems in order to ease the way these services can
be used. Adding an extra layer between the application and the Grid middleware is also
useful to avoid an application to be bound to a particular middleware: users can develop
their applications with a programming environment and the programming environment is

the one that needs to care about being able to work with different Grid middlewares.

The parallel execution of complex applications has proved to be an excellent way
of reducing the time to get results. By running this applications in large HPC facilities
allows the scientific community to afford scientific challenges that were impossible to
imagine some years ago. The most well known paradigms for parallel programming
are message passing and shared memory. The MPI standard [66] has been extensively
used by the scientific community in the recent years. Similarly, OpenMP [71] can be
used for shared memory architectures. However, the parallelization is not for free: the
scientific community has invested lots of efforts in porting or writing the applications
in these programming models. This is specially true with MPI, since its programming
interface is not as friendly as a non-expert programmer would desire. OpenMP is a much
more programmable paradigm, but currently is is bound to shared memory architectures.
However, distributed shared memory (DSM) versions are currently being developed by

different groups [25].

1.1 Motivation 3

Another important concern of Grid computing is if a killer application! will appear
or not. This concern comes partially because of the difficulty of writing applications
for a computational Grid, the same concern as with MPI and OpenMP. Although skilled
programmers may be willing and able to write applications with complex programming
models, scientists usually expect to find easy programming methodologies that allow
them to develop their applications with both flexibility and ease of use. Similarly to
parallel programming, programming models for the Grid can become crucial to ensure a
successful story.

We can find in the literature many systems that try to help users to execute an
application in the Grid. The main characteristics that we find interesting in these tools
are the capacity of being non conscious of the Grid and to exploit the parallelism of an
application implicitly. A programming model is considered to be Grid-unaware when a
user does not have to specify any information about how a particular application is going
to be run in the Grid. The system is in charge of determining how the Grid resources
are going to be exploited. Regarding parallelism, we talk about explicit parallelism when
users program their application in a parallel fashion, thus specifying which parts of the
application can be executed in parallel, and when this parallelism must be stopped. This
is opposed to the implicit parallelism concept, that is used when programmers do not
need to detail the parallelism strategy for their application. In order to achieve simplicity
in programming the Grid, the most interesting concepts are to provide a Grid-unaware
programming model which is able to implicitly exploit the parallelism of the application.
This way an application can be executed in a parallel way in the Grid, while the user does
not necessary need to program it with a parallel programming paradigm.

Another key aspect which eases the adoption of a programming model is the language
used to program with it. Some systems found in the literature create a new procedural
language to develop applications for the Grid. However, this makes mandatory for users
to learn this new language, which is an extra barrier for the adoption of the technology. In
contrast, using popular programming languages as the input of the programming model,
such as C++, Java, and so on, can contribute to make easier the step that users must do to
work with the Grid.

There also exist other interesting features to add to a programming model for the Grid.
The Grid, as a distributed, dynamic and heterogeneous environment prone to failures: an
execution in a Grid can use hundreds or thousands of machines distributed worldwide, in
different administrative domains, etc. Thinking that in such a distributed environment no

errors will arise is very difficult. The ability of facing all these errors is what is called

A determining application that causes the massive adoption of a technology

4 Introduction

fault tolerance. Fault tolerance is applied with different objectives and at different levels
in existing solutions. Failures can be transient, intermittent or permanent, and they may
be related to the application’s code (memory leaks, ...) or the underlying Grid services.
There are some systems which deal with application related failures and some others deal
with errors in the Grid middleware services offered, or in the remote machines. Some
others try to integrate both types of failures, but require that the user specifies what to do

when a failure arises, and this is a difficult task for the end user.

1.2 Thesis objectives

Our main objective is to create a programming model for the Grid. As many other
already created programming models, it will avoid that the user must deal directly with
Grid middleware services. We want to provide a very simple interface and focus it
to sequential programming, to make it very easy to use. Its runtime must be able
to parallelize the sequential application programmed, by detecting and exploiting the
implicit parallelism of the application. This means that the sequential application will be
transformed in a workflow based application, where the nodes are parts of the application
that must be executed in the Grid (that we will call tasks), and the edges are data
dependencies between those nodes. The parallel execution of the application will allow to
speed it up in the Grid, always depending on the resources available and the possibilities
inside the application to be executed in parallel.

This environment must keep the Grid as invisible as possible to the end user. The
application must be programmed in a Grid-unaware fashion, thus, not specifying any
details about where a task must be run, or where data must be transferred in the Grid. The
reference programming languages for us will be well-known imperative languages, such
as C/C++, Java, Perl and Shell Script. Basing our programming model in them allows
to ensure an easy adoption for end users, as they can use their preferred programming
language to work with our system.

In our system we consider that the type of applications which are suitable to be
executed in the Grid are those that are composed of coarse grained tasks. These tasks
can be of the size of a simulation, program, solver, ... These kinds of applications are very
common in bioinformatics, computational chemistry and other scientific fields. Examples
of these applications are Monte Carlo simulations, optimization algorithms, parametric
studies or complex workflows where each element of the workflow is a computational
intensive task. The data that these applications use commonly as inputs or outputs are

files, because sometimes the data is so big that it cannot be placed all in memory at the

1.2 Thesis objectives 5

same time. An example of this is the technique named out-of-core that allows to work with
big matrixes that do not fit into main memory. They are divided into smaller sub-matrixes
called blocks that fit into memory, and are used to operate. We will consider files as the
main exchange of data between tasks, in order to read inputs to perform calculations, or

to store results.

The main requirement for our programming model is the Grid middleware, which
provides the basic services we need in order to run parts of the application in a Grid
environment. Our system needs job management services (submission and control of
jobs), file management services (transfer and deletion of files) and security services
(authentication and authorisation). We may use a particular middleware in order to
develop our system, but we do not want to be bound to a single one. Therefore, we will
design our system keeping in mind that we want to be able to use other Grid middlewares

that may appear in the future.

We want also to integrate the fault detection and recovery at the programming model
level. The main advantage in treating failures in this level is a better knowledge of the
application, allowing to treat failures in a different manner when we work with different
applications. The mechanisms we want to investigate are checkpointing, task retry and

task replication.

Checkpointing is defined as the ability to save the work performed by an application
before a failure occurs. This failure can be detected at the application level or the Grid
level (middleware or machines). In case of failure, the application can be restarted in
the moment it was checkpointed, thus, avoiding to repeat any computations that were

previously done.

In order to allow an application to keep running despite failures, the most commonly
used mechanism is the retry of tasks. Whenever a Grid level failure is detected, the task
can be repeated in the same or a new resource. Several research groups have included
different strategies to retry tasks, however some are not able to work with workflow

applications, detect performance degradations, or decide dynamically where to retry tasks.

If we want to overcome the time needed to resubmit a task from the beginning, task
replication is a good solution. The key point in task replication is that free resources can
execute copies of tasks in order to ensure their execution: if one of the replicas fails,
the rest keep running and thus we can get the results of a single task from any of them.
Another interesting feature about replication is the possibility to use it in heterogeneous
Grids with the objective of using faster resources when they become available: a task
may have been initially assigned to a resource, and after that, a faster resource becomes

available. The common strategy to use those faster resources is task migration, which

6 Introduction

consists in checkpointing a task in the slow resource, and restart the task in the fast
resource. This is very effective to achieve a better execution time for the application,
however it requires an intra-task checkpoint mechanism implemented by the user.

All these mechanisms must be designed to be as transparent as possible to end users
and to cause the minimum overhead to the system when no failures are detected. This is
to be consistent with our objectives of providing a very simple interface and to achieve

speed up when executing applications.

1.3 Thesis contribution

The main contribution of this thesis is GRID superscalar (GRIDSs), a programming
model that eases the development of Grid applications to the point that writing such an
application can be as simple as programming a sequential program to be run on a single
processor and the hardware resources remain totally transparent to the programmer.

GRID superscalar is based on how superscalar processors execute assembler codes [47].
Even though the assembler codes are sequential, the implicit parallelism of the code is
exploited in order to take advantage of the functional units of the processor. The processor
explores the concurrency of the instructions and assigns them to the functional units.
Indeed, the execution order defined in the sequential assembler code may not be followed.
The processor will establish the mechanisms to guarantee that the results of the program
remain identical. If the performance achieved by the application is better than the one that
would have been initially obtained, the programmers will be grateful. All these ideas are
exportable to the Grid application level. What changes is the level of granularity: in the
processors we have instructions lasting in the order of nanoseconds and in computational
Grids, functions or programs that may last from some seconds to hours. Also, what it
changes is the objects: in assembler the objects are registers or memory positions, while
in GRID superscalar we will deal with files, similar to scripting languages.

The first contribution of this thesis is the GRID superscalar programming interface.
We pretend that our system acts as an "intermediate language", as the assembler language
does between programming languages and machine language. On top of it, users can
program with different languages, such as C, C++ or Java. From those programs, an
intermediate representation of the application is generated (in GRIDSs a direct acyclic
graph with the data dependencies between the tasks that form the application). And from
that intermediate representation, the application is executed. An overview of this behavior
is presented in Figure 1.2. Following the simile, the tasks defined to be executed in the

Grid could be considered as the Instruction Set of our "assembler language".

1.3 Thesis contribution 7

Application code

Figure 1.2 Overview of GRID superscalar behavior

An application written with GRIDSs follows the master-worker parallel programming
paradigm. The main part of the application is the master, that will automatically generate
tasks for the runtime when the programmed algorithm is executed. The functions that must
be executed in the Grid will be executed by creating a worker in a remote machine that
will call to the corresponding function with the correct parameters. So, we can consider
GRIDSs applications master-worker applications, even though GRIDSs API is not a
master-worker API, because programmers are not in charge of splitting and distributing
the work from the master to the workers, thus the master-worker structure is hidden to the

application programmer.

Several steps are mandatory to program an application with GRIDSs. The application
developer provides a sequential program, composed of a main program with calls to
application tasks, together with an Interface Description Language (IDL) file. As it
has been stated previously, our programming model takes sequential programming as a
reference. This allows to build a very small an simple API to be used in the applications.
The API is composed of 6 calls which can be used in the master, and 2 in the worker.
Despite the simplicity of the API, several advanced features can be specified, such as the
speculative execution of tasks and the specification of constraints and cost for tasks. In
the IDL file the user must specify the functions that must be run in the Grid, together with
their parameters. This IDL file is not only used to know the type and direction of the
parameters in the functions, but also to build a master-worker application.

The second contribution of this thesis is the GRID superscalar runtime. The
behavior of the application when run with GRID superscalar is the following: for each
task candidate to be run in the Grid, the GRID superscalar runtime inserts a node in a task

graph. Then, the GRID superscalar runtime system seeks for data dependencies between

8 Introduction

the different tasks of the graph. These data dependencies are defined by the input/output
of the tasks which are files. If a task does not have any dependence with previous tasks
which have not been finished or which are still running (i.e., the task is not waiting for any
data that has not been already generated), it can be submitted for execution to the Grid.
An advanced technique known as renaming [47] is applied in the task graph in order to
eliminate some data dependencies between tasks and therefore increase the possibilities
of executing tasks in parallel. This technique is a unique feature only available in GRID
superscalar, and it allows to solve concurrency problems when two tasks want to write in

the same files, or when a task must overwrite some files that other tasks must read.

Although our objective is not to provide a complex resource broker, this feature is
needed in the runtime. Therefore, we provide a simple broker which will select between
the set of available hosts, which is the best suited for a task. This selection favours
reducing the total execution time, which is computed not only as the estimated execution
time of the task in the host but also the time that will be spent to transfer all files required
by the task to the host. This allocation policy exploits the file locality, reducing the total
number of file transfers. Those tasks that do not have any data dependence between them
can be run on parallel on the Grid. This process is automatically controlled by the GRID
superscalar runtime, without any additional effort for the user, as well as all Grid related
actions (file transfer, job submission, end of task detection, results collection) which are
totally transparent to the user. The GRID superscalar is notified when a task finishes.
Next, the data structures are updated and any task than now have its data dependencies

resolved, can be submitted for execution.

When the application has finished, all working directories in the remote hosts are
cleaned, application output files are collected and copied to their final locations in the
localhost and all is left as if the original application has been run. Summarizing, from the
user point of view, an execution of a GRID superscalar application looks as an application
that has run locally, with the exception that the execution has been hopefully much faster

by using the Grid resources.

The publications related to this first two contributions are:

[11] Rosa M. Badia, Jesds Labarta, Raiil Sirvent, Josep M. Pérez, José M. Cela and
Rogeli Grima, "Programming Grid Applications with GRID Superscalar”, Journal of Grid
Computing, Volume 1, Issue 2, 2003.

[12] Rosa M. Badia, Raul Sirvent, Jesus Labarta, Josep M. Perez, "Programming the
GRID: An Imperative Language-based Approach", Engineering The Grid: Status and
Perspective, Section 4, Chapter 12, American Scientific Publishers, January 2006.

1.3 Thesis contribution 9

[90] Raiil Sirvent, Josep M. Pérez, Rosa M. Badia, Jests Labarta, "Automatic Grid
workflow based on imperative programming languages", Concurrency and Computation:
Practice and Experience, John Wiley & Sons, vol. 18, no. 10, pp. 1169-1186, 2006.

[86] Raiil Sirvent, Rosa M. Badia, Pieter Bellens, Vasilis Dialinos, Jesus Labarta,
Josep M. Pérez, "Demostracion de uso de GRID superscalar”, Boletin RedIRIS, no. 80,
Abril 2007.

[91] Raiil Sirvent, Josep M. Pérez, Rosa M. Badia, Jesus Labarta, "Programacién en
el Grid: una aproximacion basada en lenguajes imperativos", Computacion Grid: del

Middleware a las Aplicaciones, pp. 33-52, Junio 2007.

Finally, the third contribution of the thesis is the fault tolerance mechanisms studied
in GRID superscalar. We have implemented a tailored inter-task checkpoint mechanism
which is able to save the state of a running application transparently to the user and without
causing any overhead to the execution time of the application. This is done by recovering

the sequential consistency of the application.

Task retries are also used in order to overcome failures at run time without the need
to stop the application. Problematic machines can be automatically discarded at run time.
Soft and hard timeouts are defined for the tasks to detect errors not notified by the Grid
middleware. Results for each task are transferred asynchronously to the master machine
in order to keep the checkpoint mechanism consistent. Grid operations are retried in the

runtime in case of failure and also other causes of errors in the master are checked.

The last mechanism is the task replication, which pursues to hide the overhead in the
execution time which may be caused by a task retry. This is done by replicating the task
in advance, thus, in case of a failure in a machine, another one is already running the same
task and can obtain its results. Besides, replication is also useful to execute tasks in faster
resources when they become available (instead of the ones initially used) without the need
of implementing an intra-task checkpoint, which is commonly left as a responsibility for
the user in most systems. We only submit replicas to the system when free machines in
the Grid are available. Thus, sequential parts of an application will be replicated to ensure
they do not delay the whole execution, and highly parallel parts of the application will not

be replicated to avoid overloading the resources excessively.

The publications related to this contribution are:

[29] Vasilis Dialinos, Rosa M. Badia, Raiil Sirvent, Josep M. Pérez and Jesus Labarta,
"Implementing Phylogenetic Inference with GRID superscalar", Cluster Computing and
Grid 2005 (CCGRID 2005), Cardiff, UK, 2005.

10 Introduction

[88] Raiil Sirvent, Rosa M. Badia and Jesus Labarta, "Fault tolerance and execution
speed up with task replication for scientific workflows", High Performance Computing
and Communications (HPCC) (Submitted), 2009.

Moreover, our contributions have also derived in the following work:

[89] Raiil Sirvent, Andre Merzky, Rosa M. Badia, Thilo Kielmann, "GRID superscalar
and SAGA: forming a high-level and platform-independent Grid programming environ-
ment", CoreGRID Integration Workshop. Integrated Research in Grid Computing, Pisa
(Italy), 2005.

[5] Rosa M. Badia, Pieter Bellens, Vasilis Dialinos, Jorge Ejarque, Jesus Labarta,
Josep M. Pérez and Raiil Sirvent, "The GRID superscalar project: Current status", XVII
Jornadas de Paralelismo. Albacete (Spain), September 2006.

[8] Rosa M. Badia, Pieter Bellens, Marc de Palol, Jorge Ejarque, Jesus Labarta, Josep
M. Pérez, Raiil Sirvent and Enric Tejedor, "GRID superscalar: from the Grid to the Cell
processor", Spanish Conference on e-Science Grid Computing. Madrid (Spain), March
2007.

[9] R. M. Badia, P. Bellens, J. Ejarque, J. Labarta, M. de Palol, J. M. Pérez, R. Sirvent
and E. Tejedor, "SSH GRID superscalar: a Tailored Version for Clusters", 1st Iberian Grid
Infrastructure Conference (IBERGRID). Santiago de Compostela (Spain), May 2007.

[80] S. Reyes, A. Nifio, C. Mufoz-Caro, R. Sirvent and R. M. Badia, "Monitoring
Large Sets of Jobs in Internet-Based Grids of Computers"”, 1st Iberian Grid Infrastructure
Conference (IBERGRID). Santiago de Compostela (Spain), May 2007.

[62] Robert Lovas, Raiil Sirvent, Gergely Sipos, Josep M. Pérez, Rosa M. Badia, Péter
Kacsuk, "GRID superscalar enabled P-GRADE portal", Integrated Research in GRID
Computing, Springer, November 2007.

[87] Raiil Sirvent, Rosa M. Badia, Natalia Currle-Linde, Michael Resch, "GRID
superscalar and GriCoL: integrating different programming approaches"”, Achievements

in European Research on Grid Systems, Pages 139-150, Springer, January 2008.
[58] Elzbieta Krepska, Thilo Kielmann, Raiil Sirvent, Rosa M. Badia, "A service for

reliable execution of Grid applications"”, Achievements in European Research on Grid
Systems, Pages 179-192, Springer, January 2008.

[7] Rosa M. Badia, Raiil Sirvent, Marian Bubak, Wlodzimierz Funika, Cezary
Klus, Piotr Machner, Marcin Smetek, "Performance monitoring of GRID superscalar
with OCM-G/G-PM: integration issues", Achievements in European Research on Grid

Systems, Pages 193-205, Springer, January 2008.

1.4 Thesis organization 11

[10] R.M. Badia, D. Du, E. Huedo, A. Kokossis, I. M. Llorente, R. S. Montero, M.
de Palol, R. Sirvent, and C. Vazquez, "Integration of GRID superscalar and GridWay
Metascheduler with the DRMAA OGF Standard", Euro-Par, 2008.

1.4 Thesis organization

The rest of this thesis document is organized as described here. Chapter 2 shows
a big picture of the research work related to the areas that GRID superscalar covers:
programming models for the Grid, tools for Grid workflows and tools or environments
providing fault tolerance features. Chapter 3 explains in detail the design and features
of the GRID superscalar programming interface, as well as a programming comparison
between GRIDSs and some other tools. Chapter 4 presents the scientific contributions
and developments of the GRID superscalar runtime. as well as a set of experiments done
to evaluate the runtime and the scalability of applications. The research done in GRIDSs
related to fault tolerance is described in Chapter 5. This includes the checkpoint, task
retry and task replication mechanisms. Finally, Chapter 6 explains our conclusions in this

thesis, and proposes future work.

12

Introduction

Chapter 2

Related work

Different scientific communities (high-energy physics, gravitational-wave physics,
geophysics, astronomy, bioinformatics and others) deal with applications with large data
sets whose input consists of non monolithic codes composed of standalone application
components which can be combined in different ways. Examples of this kind of
applications can be found in the field of astronomy where thousands of tasks need to
be executed during the identification of galaxy clusters [27]. These kinds of applications
can be described as workflows. We will see that many systems which try to aid users to
program applications in the Grid have dedicated their efforts in giving support to describe

and execute workflows, in order to be able to deal with these applications.

Many tools for the development of workflow based applications for Grid environments
have been presented in the literature. BPEL4WS [102] is a language to create workflows
proposed by the Web Services Choreography Working Group [110] where medium-size
graphs can be defined. Chimera [35] is able to generate an abstract workflow from the
workflow description given by the user with the VDL language. Pegasus [27] then,
can map that abstract workflow to a concrete workflow (with execution details, i.e. for
DAGMan [30]). Triana [99] is a visual programming environment where applications
can be described as connected components. Its modular design allows to use different
languages to specify the workflow, as well as different Grid middlewares to execute it.
The Fraunhofer Resource Grid [48] includes a workflow system where the applications
are specified with Petri Nets. Taverna [98] stores internally workflows in textual language,
but they are created with a graphical interface. GridAnt [2] provides a framework for
prototyping Grid applications based on XML specifications. The task dependencies
are also specified manually in the XML. Defined recently, Swift [114] combines the
SwiftScript language to generate workflows with mapping descriptors, that describe how

logical data maps to physical data.

14 Related work

We can see that in all of these systems the user has to specify the task dependence
graph in a graphical or a non-imperative language. While in the graphical case it can
be very easy for end users to draw the graph that describes the dependencies between
tasks, this will not be efficient if the graph describing the dependencies has a big number
of nodes and edges that the user has to draw. Other approaches define a new language to
allow generating workflows in an algorithm-like way, but users need to learn that language

in order to be able to create their application, and that can be a difficult task for them.

Some other approaches can be found in the bibliography that try to tackle the
gap between application programmers and Grid services. The Simple API for Grid
Applications Working Group [85] has defined the SAGA API [43], a Grid-aware API
that abstracts and simplifies the paradigms provided by the various Grid middleware
incarnations. SAGA is an extra layer that hides the details of existing or new Grid
middlewares, however, its Grid-aware approach leaves the user in charge of many details
related to the Grid services. The Grid Remote Procedure Call Working Group [45] has
specified a GridRPC API [83]. Examples of implementations for that API are Ninf-
G [97] and NetSolve/GridSolve [4]. GridRPC helps users to port their applications to
the Grid, but the parallelism of the application must be explicitly described. Satin [105],
based in Java, allows to express divide-and-conquer parallelism. The user is in charge
of opening and closing parallel regions in the code. Javelin [67] presents a branch-
and-bound computational model where the user partitions the total amount of work.
AppLeS [17] is a framework for adaptively scheduling applications on the Grid. It also
provides a template for master-worker applications. GAF4J [106] is based in Java and
allows thread programming, where threads are run in the Grid. Higher-Order Components
(HOCs) [1] express recurring patterns of parallelism that are provided to the user as
program building blocks, pre-packaged with distributed implementations. ParoC++ [68]
is a C++ extension that allows to execute objects in parallel in the Grid, but requires
that users define the synchronization points and the mutual exclusion regions in the
code. The Grid Programming Environment (GPE) [44] from Intel is completely based
in Java and includes not only the GridBean SDK to easily program Grid applications
but also a workflow editor where BPEL workflows can be constructed. ProActive [13]
is a powerful Grid middleware for Java applications that achieves implicit parallelism
inside Active Objects, which can be deployed in the Grid to run concurrently. There also
exists Grid-enabled MPI approaches, as the PACX-MPI [72] and MPICH-G2 [56]. They
are very useful to execute applications programmed using the MPI interface in the Grid.
However, users are in charge of splitting and distributing the work when they program the

application.

2.1 Workflow tools 15

All of these presented systems require skills from programmers to implement the
parallel execution of the application. Moreover, no approach is found in the bibliography
that allows to directly parallelize and execute in the Grid sequential applications.

We can see the importance of the thesis main topic in the number of groups working in
finding an easy way to program the Grid. The number of tools available for that purpose
is very big, thus, in next sections we have highlighted the most important, splitting them
in two main categories: tools that their main goal is the definition of workflows (to be
executed in the Grid) and programming models to ease the Grid programming.

After that, a section discusses why GRIDSs is a unique framework compared to the
rest. It is a programming model based on already existing programming languages (C,
C++, Java, ...), which supports several of those well-known languages, which generates
automatically a workflow describing the data dependencies between tasks contained in
a program, and which executes that workflow concurrently in the Grid using advanced
techniques to remove data dependencies between tasks. As we will see in this chapter,
there is no tool that contains all these features.

The last section in this chapter explains the existing work in fault tolerance applied
to other Grid systems. We split it in two main categories: fault detection and recovery
applied at the Grid level (which can only detect Grid level failures), and applied at the
application level (which can handle Grid and application errors). Finally, we compare

them with the mechanisms provided in the GRID superscalar runtime.

2.1 Workflow tools

2.1.1 Condor DAGMan

A directed acyclic graph (DAG) can be used to represent a set of computations where
the input, output, or execution of one or more computations is dependent on one or
more other computations. The computations are nodes (vertices) in the graph, and the
edges (arcs) identify the dependencies. Condor [37] finds computers for the execution
of applications, but it does not schedule applications based on dependencies. The
Directed Acyclic Graph Manager [30] (DAGMan) is a meta-scheduler for the execution
of programs (computations). DAGMan submits the programs to Condor in an order
represented by a DAG and processes the results. A DAG input file describes the DAG,
and further submit description files are used by DAGMan when submitting programs to
run under Condor. As DAGMan submits programs, it monitors log files to enforce the

ordering required within the DAG. DAGMan is also responsible for scheduling, recovery,

16 Related work

and reporting on the set of programs submitted to Condor. The input file used by DAGMan
is called a DAG input file. It may specify:

e A description of the dependencies within the DAG.

e Any processing required to take place before submission of a node’s Condor job, or

after a node’s Condor job has completed execution.
e The number of times to retry a node’s execution, if a node within the DAG fails.

e A node’s exit value that causes the entire DAG to abort.

Pre and Post scripts are optional for each job, and these scripts are executed on the
machine from which the DAG is submitted; this is not necessarily the same machine upon
which the node’s Condor job is run. Further, a single cluster of Condor jobs may be spread
across several machines. A PRE script is commonly used to place files in a staging area
for the cluster of jobs to use and a POST script is commonly used to clean up or remove
files once the cluster of jobs is finished running (see Figure 2.1). An example uses PRE
and POST scripts to stage files that are stored on tape. The PRE script reads compressed
input files from the tape drive, and it uncompresses them, placing the input files in the
current directory. The cluster of Condor jobs reads these input files. and produces output
files. The POST script compresses the output files, writes them out to the tape, and then
removes both the staged input files and the output files. DAGMan takes note of the exit

value of the scripts as well as the job. A script with an exit value different to O fails.

[optional]

PRE script

|

Condor job(s)
(with a single
cluster number)

or Stork job

l

[optional]

POST script

Figure 2.1 Job structure in DAGman

2.1 Workflow tools 17

Each node in a DAG may use a unique submit description file. One key limitation is
that each Condor submit description file must submit jobs described by a single cluster
number. At the present time DAGMan cannot deal with a submit file producing multiple

job clusters.

DAGMan can help with the resubmission of uncompleted portions of a DAG, when
one or more nodes results in failure. If any node in the DAG fails, the remainder of
the DAG is continued until no more forward progress can be made based on the DAG’s
dependencies. At this point, DAGMan produces a file called a Rescue DAG. The Rescue
DAG is a DAG input file, functionally the same as the original DAG file, but it additionally
contains an indication of successfully completed nodes. If the DAG is resubmitted using
this Rescue DAG input file, the nodes marked as completed will not be re-executed. The
Rescue DAG is automatically generated by DAGMan when a node within the DAG fails.
Statistics about the failed DAG execution are presented as comments at the beginning of
the Rescue DAG input file.

The granularity defining success or failure in the Rescue DAG input file is given for
nodes. The Condor job within a node may result in the submission of multiple Condor
jobs under a single cluster. If one of the multiple jobs fails, the node fails. Therefore, a
resubmission of the Rescue DAG will again result in the submission of the entire cluster

of jobs.

The organization and dependencies of the jobs within a DAG are the keys to its utility.
There are cases when a DAG is easier to visualize and construct hierarchically, as when
a node within a DAG is also a DAG. Condor DAGMan is able to handle this situation.
Since more than one DAG is being discussed, terminology is introduced to clarify which
DAG is which. To make DAGs within DAGs, the important thing is getting the correct
name of the submit description file for the inner DAG within the outer DAG’s input file.

Multiple, independent DAGs may be submitted at the same time. Internally, all of the
independent DAGs are combined into a single, larger DAG, with no dependencies between
the original independent DAGs. As a result, any generated rescue DAG file represents all
of the input DAGs as a single DAG. The success or failure of the independent DAGs is
well defined. When multiple, independent DAGs are submitted with a single command,
the success of the composite DAG is defined as the logical AND of the success of each
independent DAG. This implies that failure is defined as the logical OR of the failure of
any of the independent DAGs.

18 Related work

2.1.2 Pegasus

In general, a workflow can be described in an abstract form, in which the workflow
activities are independent of the Grid resources used to execute the activities. In Pegasus,
this workflow is denoted as an abstract workflow (AW). Abstracting away the resource
descriptions allows the workflows to be portable. One can describe the workflow in terms
of computations that need to take place without identifying particular resources that can
perform this computation. Clearly, in a VO (Virtual Organization) environment, this level
of abstraction allows for easy sharing of workflow descriptions between VO participants.

Pegasus is designed to map abstract workflows onto the Grid environment. The
abstract workflows can be constructed by using Chimera’s Virtual Data Language
(VDL) [35] or can be written directly by the user. The inputs to the Chimera
system are partial workflow descriptions that describe the logical input files, the logical
transformations (application components) and their parameters, as well as the logical
output files produced by these transformations. Pegasus produces a concrete (executable)
workflow that can be given to Condor’s DAGMan [30] for execution. Pegasus and
DAGMan are able to map and execute workflows on a variety of platforms: condor pools,
clusters managed by LSF or PBS, and individual hosts. Figure 2.2 describes the process
of workflow generation, mapping and execution.

In the definition of Virtual Data, data refers not only to raw published data, but
also data that has been processed in some fashion. Since data processing can be very
expensive, sharing these data products can save the expense of performing redundant
computations. The concept of Virtual Data was first introduced within the GriPhyN
project (www.griphyn.org). An important aspect of Virtual Data are the applications
that produce the desired data products. In order to discover and evaluate the validity
of the Virtual Data products, the applications are also published within the VO. Pegasus
is released as part of the GriPhyN Virtual Data Toolkit and has been used in a variety

VDL Abstract Concrete Jobs
Worfklow Workflow

— Chimera » Pegasus » DAGMan ——

Figure 2.2 Workflow generation, mapping and execution

2.1 Workflow tools 19

of applications ranging from astronomy, biology, gravitational-wave science, and high-

energy physics.
The GriPhyN Virtual Data System (VDS) that consists of Chimera, Pegasus and

DAGMan has been used to successfully execute both large workflows with an order of
100,000 jobs with relatively short run times and workflows with small number of long-
running jobs. In the process of workflow generation, mapping and execution, the user
specifies the VDL for the desired data products, Chimera builds the corresponding abstract
workflow representation. Pegasus maps this AW to its concrete form and DAGMan

executes the jobs specified in the Concrete Workflow (CW).

The abstract workflows describe the computation in terms of logical files and
logical transformations and indicate the dependencies between the workflow components.
Mapping the abstract workflow description to an executable form involves finding the
resources that are available and can perform the computations, the data that is used in the

workflow, and the necessary software.

Pegasus uses the logical filenames referenced in the workflow to query the Globus
Replica Location Service (RLS) [23] to locate the replicas of the required data. It is
assumed that data may be replicated in the environment and that the users publish their
data products into RLS. Given the set of logical filenames, RLS returns a corresponding
set of physical file locations. After Pegasus produces new data products, it registers them
into the RLS as well (unless the user does not want that to happen). Intermediate data

products can be registered as well.

In order to be able to find the location of the logical transformations defined in the
abstract workflow, Pegasus queries the Transformation Catalog (TC) using the logical
transformation names. The catalog returns the physical locations of the transformations
(on possibly several systems) and the environment variables necessary for the proper

execution of the software.

Pegasus queries the Globus Monitoring and Discovery Service (MDS) [26] to find the
available resources, their characteristics such as the load, the scheduler queue length, and
available disk space. The information from the TC is combined with the MDS information
to make scheduling decisions. When making resource assignment, Pegasus prefers to
schedule the computation where the data already exist, otherwise it makes a random

choice or uses a simple scheduling technique.

Additionally, Pegasus uses MDS to find information about the location of the gridftp
servers that can perform data movement, job managers that can schedule jobs on the
remote sites, storage locations, where data can be pre-staged, shared execution directories,

the RLS where new data can be registered into, site-wide environment variables, etc.

20 Related work

This information is necessary to produce the submit files that describe the necessary data
movement, computation and catalog updates.

The information about the available data can be used to optimize the concrete
workflow from the point of view of Virtual Data. If data products described within the
AW already exist, Pegasus can reuse them and thus reduce the complexity of the CW. In
general, the reduction component of Pegasus assumes that it is more costly to execute a
component (a job) than to access the results of the component if that data is available.
For example, some other user may have already materialized (available on some storage
system) part of the entire required dataset. If this information is published into the RLS,
Pegasus can utilize this knowledge and obtain the data, thus avoiding possibly costly
computation. As a result, some components that appear in the abstract workflow do not
appear in the concrete workflow.

One of the key aspects in Pegasus that other systems focus on resource brokerage
and scheduling strategies, but Pegasus uses the concept of virtual data and provenance
to generate and reduce the workflow based on data products which have already been
computed earlier. It prunes the workflow based on the assumption that it is always more
costly the compute the data product than to fetch it from an existing location. Pegasus
also automates the job of replica selection so that the user does not have to specify the
location of the input data files. Pegasus can also map and schedule only portions of the

workflow at a time, using just in-time planning techniques.

2.1.3 Triana

Triana [99] is an open source, distributed, platform independent Problem Solving
Environment (PSE) written in the Java programming language. A PSE is a complete,
integrated computing environment for composing, compiling, and running applications
in a specific application domain. The Triana PSE is a graphical interactive environment
that allows users to compose applications and specify their distributed behavior. A user
creates a workflow by dragging the desired units from a toolbox onto the workspace and
interconnects them by dragging a cable between them.

Triana includes the mechanisms which are the basic requirements of a framework for
building complex distributed Web service based systems. By facilitating the transparent
construction of Web services workflows, users can focus on the design of the workflow
at a conceptual level, easily create new complex composite services (workflows made
of services) which offer more functionality than available atomic services, easily expose
composite services enabling users to share and replicate experiments, and easily carry out

what-if” analysis by altering existing workflows.

2.1 Workflow tools 21

‘ Client . S ‘ Client

- «—— Actual Data Streom 1§ - Triona Service
:=-=-- Potential Data Streom % J&% Triana Controller
2 . : Triana 2 - :
: O Active Sub Service User i Service :
Interface -User interface:

@ Dormomt Sub Servie= \ 10l 7 6UL/Command i

Figure 2.3 Triana architecture

Triana has three distinct components: a Triana Service (TS), a Triana Controller
Service (TCS) and the Triana User Interface (TGUI). Figure 2.3 describes the interaction
of these components. TGUI is a user interface to a TCS. The TGUI provides access to
a network of computers running Triana service daemons via a gateway Triana service
daemon and allows the user to describe the kind of functionality required of Triana: the
module deployment model and data stream pathways. The TCS is a persistent service
which controls the execution of the given Triana network. It can choose to run the network
itself or distribute it to any available TS. Therefore, a single TGUI can control multiple

Triana networks deployed over multiple CPU resources.

A Triana Service is comprised of three components: a client, a server and a command
service controller. The client of the TCS in contact with the TGUI creates a distributed
task graph that pipes modules, programs and data to the Triana service daemons. These
Triana services simply act in server mode to execute the byte code and pipe data to others.
Triana services can pass data to each other also. Clients (i.e. those running a GUI) can log
into a Triana Controlling Service, remotely build and run a Triana network and visualize
the result (using a graphical unit) on their device even though the visualization unit itself
is run remotely. Users can also log off without stopping the execution of the network and

then log in at a later stage to view the progress.

Triana communicates with services through the GAP Interface. The GAP Interface

provides applications with methods for advertising, locating, and communicating with

22 Related work

other services. The GAP Interface is, as its name suggests, only an interface, and therefore
is not tied to any particular middleware implementation. This provides the obvious benefit
that an application written using the GAP Interface can be deployed on any middleware
for which there is a GAP binding. This also means that as new middleware becomes
available, GAP based applications can seamlessly be migrated to operate in the new
environment. Currently there are three middleware bindings implemented for the GAP
Interface: JXTA, a peer-to-peer toolkit originally developed by Sun Microsystems; P2PS,
a locally developed lightweight alternative to JXTA; and a Web services binding.

The Triana GUI supports different task graph writers. Workflows can be specified with
Petri net, BPEL4AWS [102] and a proprietary Triana XML format, and more can be added
thanks to the pluggable architecture in Triana. This GUI supports looping constructs
(e.g. do-while and repeat-until) and logic units (e.g. if, then etc.) that can be used to
graphically control the dataflow, just as a programmer would control the flow within a
program by writing instructions directly. In this sense, Triana is a graphical programming

environment.

In addition to the individual tasks, tasks in the GUI can be also of two other types:
group tasks and control tasks. Group tasks are composite tasks formed by the user by
grouping one or more tasks within a workflow. They form the unit of distribution in
Triana. If a user wishes to distribute a number of tasks then they create a group from
those tasks, and designate that group for distribution through attaching a control task.
Group tasks enable the user to determine the granularity of the workflow distribution and

which tasks to distribute.

Control tasks are standard Triana units that are connected into the workflow to receive
the input to a group before it is sent to the tasks within that group, and also to receive the
output from a group before it is passed back to the main workflow. Control tasks have two
roles: firstly, a control task is responsible for specifying the rewiring of the workflow to
support some distribution topology (currently there are two supported: parallel and peer-
to-peer) and secondly, as with looping control tasks, to redirect/manipulate the data input

to/output from a group.

As a summary, Triana is a workflow engine with a very flexible architecture. In the
upper layers it is intended to support different task graph writers, and new can be created
to allow the possibility to specify the workflows in different formats. In the lower layers,
the execution of the workflows can be done using different middlewares thanks to the
GAP interface.

2.1 Workflow tools 23

2.14 P-GRADE

P-GRADE [53] provides a high-level graphical environment to develop parallel
applications transparently both for parallel systems and the Grid. One of the main
advantages of P-GRADE is that the user does not have to learn the different APIs for
parallel systems and the Grid. Simply by using the same environment will result in
the generation of parallel applications transparently applicable either for supercomputers,
clusters or the Grid. The current version of P-GRADE supports the interactive execution
of parallel programs both on supercomputers, clusters and Globus Grids [33] as well as
the creation of a Condor or Condor-G job to execute parallel programs as jobs in various
(Globus and Condor) Grids.

Different kinds of Grids support different kinds of message passing programs. For
example, Globus Grids support only the execution of MPI programs (they do not support
PVM [39] program execution by default), while Condor provides more advanced parallel
execution mechanism for PVM programs than for MPI [66] programs. Therefore, an
important benefit of using P-GRADE is that the user can generate either PVM or MPI
code according to the underlying Grid where the parallel application should be executed.

PVM applications generated by P-GRADE can migrate between different Grid sites
and as a result P-GRADE guarantees reliable, fault-tolerant parallel program execution in
the Grid, like the Condor system guarantees such features for sequential programs.

The GRM/PROVE [15] performance monitoring and visualization toolset has been
extended towards the Grid and connected to a general Grid monitor (Mercury [14])
that was developed in the EU GridLab project. Using the Mercury/GRM/PROVE Grid
application monitoring infrastructure any parallel application launched by P-GRADE can
be remotely monitored and analyzed at run time even if the application migrates among
Grid sites.

P-GRADE also supports workflow definition and coordinated multi-job execution
for the Grid. Such workflow management supports parallel execution at both inter-job
and intra-job level. Automatic checkpoint mechanism for parallel programs supports
the migration of parallel jobs inside the workflow providing a fault-tolerant workflow
execution mechanism. The same remote monitoring and performance visualization
techniques used for the single parallel job execution mode can be applied for the workflow
execution in the Grid. The current workflow engine is based on Condor DAGMan.

A P-GRADE workflow is an acyclic dependency graph that connects sequential and
parallel programs into an interoperating set of jobs. The nodes of such a graph are batch
jobs, while the edge connections define data relations among these jobs. Edges define the

execution order of the jobs and the input/output dependencies that must be resolved by the

24 Related work

workflow manager during execution. In the graphical interface, small squares labeled by
numbers around the nodes are called ports and represent input and output data files that the
corresponding executables expect or produce (one port represents one input/output file).
Directed edges interconnect pairs of input and output ports if an output file of a job serves
as an input file for another job. An input file can come from three different sources: it can
be produced by another job, it can be in the workflow’s developer desktop machine and
it can be in a storage resource. Similarly, an output file can have three target locations: a
computational resource (to be used by another job), the portal server (from where the user

can download the file to his laptop), and a storage resource.

The P-GRADE Portal (a thin client concept of P-GRADE) is a workflow-oriented
Grid portal with the main goal to support all stages of Grid workflow development
and execution processes. It enables the graphical design of workflows created from
various types of executable components (sequential, MPI or PVM jobs), executing
these workflows in Globus-based computational Grids relying on user credentials, and
finally, analyzing the monitored trace-data by the built-in visualization facilities. It gives
a Globus-based implementation for the collaborative-Grid, collaborative-user concept.
Since almost every production Grid uses Globus middleware today, these Grids could
all be accessed by the P-GRADE Portal. Moreover, due to the multi-Grid concept a single
portal installation can serve user communities of multiple Grids. These users can define
workflows using the high-level graphical notations of the Workflow Editor, can manage
certificates, workflows and jobs through the Web-based interface of the Portal Server.
They can harness resources from multiple VOs and can migrate applications among Grids

without learning new technologies or interfaces.

Figure 2.4 describes the structure of the P-GRADE Portal. One of the main features
that makes the P-GRADE Portal unique from other portals or workflow environments
is that it allows several users to work with the same workflow at the same time (this is
named as multiple collaborative users). And also it allows to send parts of the workflow
to different Grids from different VOs (what they call multiple collaborative Grids). So, it
is an advanced portal where multiple users can work together to define and execute Grid
applications that utilize resources of multiple Grids. By connecting previously separated
Grids and previously isolated users together, these types of portals will revolutionize

multidisciplinary research.

2.2 Programming models 25

P-GRADE Portal server

Portal framework

(Gridsphere)

A I
Clients Certificate

manager o MyPorxy ol MyProxy
portiet client il server
Web browsers \
GSI
proxies
Settings
portlet

Workflow

d {[scheduler

\J

Globus VOs
Grid site

Workflow manager

GRAM
client

Workflow
Editors

oy

-
-

Globus
GRAM

Workflow
portlet

-0

Globus

(DAGMan) GridFTP

.| GrdgFTP
client

-

Figure 2.4 P-GRADE Portal structure

2.2 Programming models

2.2.1 Ninf-G

Ninf-G2 [97] is a client-server-based framework for programming on the Grid and a
reference implementation of the GridRPC API [83] (a proposed OGF standard). Ninf-G2
has been designed so that it provides 1) high performance in a large-scale computational
Grid, 2) the rich functionalities which are required to adapt to compensate for the
heterogeneity and unreliability of a Grid environment, and 3) an API which supports easy
development and execution of Grid applications. Ninf-G2 is implemented to work with
basic Grid services, such as GSI, GRAM, and MDS in the Globus Toolkit version 2.

GridRPC is a programming model based on client-server-type remote procedure calls
on the Grid. Client programs can "call" libraries on remote resources using the client API
provided by GridRPC systems. A GridRPC system is required to provide a mechanism
for "remote calls".

Two fundamental objects in the GridRPC model are function handles and the session
IDs. The function handle represents a mapping from a function name to an instance of
that function on a particular server. A session ID is used throughout the API to allow
users to obtain the status of a submitted non-blocking call, to wait for a call to complete,
to cancel a call, or to check the error code of a call.

GridRPC has several features that distinguish it from other RPC implementations.
It provides scientific datatypes and IDL, e.g., large matrices and files as arguments,
call-by-reference and shared-memory matrix arguments with sections/strides as part of
a "Scientific IDL". GridRPC is very efficient in terms of bandwidth use since it does not

26 Related work

Client Server
4. Connect IDL ®>
back using FILE
Client |~ Globuslo \
3. Invoke IDL Compiler
Executable \ Genera
|

Remote Library
2. Interface GRAM pereaees ¥ Executable
Reply
Interface
M DS . Information
1. Inferface retrieve LDIF File
Request

Figure 2.5 Ninf-G overview

send entire matrix when strides and array-sections are specified. In addition, it enables
simple client-side programming and management, i.e., no client-side IDL. management

and very little state left on the client.

Ninf-G is a re-implementation of the Ninf system on top of the Globus Toolkit.
The Client API has several functions that can be classified in different categories:
Initializing and Finalizing; Function Handle Management (create, destroy, ...); GridRPC
Call (blocking or non-blocking and it may use variable number of arguments or an
argument stack calling sequence); Asynchronous GridRPC Control (for non-blocking
requests); Asynchronous GridRPC Wait; Error Reporting Functions (human-readable
error descriptions; Argument Stack Functions (to construct the arguments for a function

call at run time).

In order to gridify and provide libraries and applications using Ninf-G, the provider is
required to follow a simple few steps: (1) Describe the interface for the library function
or an application with Ninf IDL, (2) compile the description and generate a stub main
routine and a makefile for the remote executable, (3) compile the stub main routine and
link it with the remote library, (4) publish information on the remote executable. Steps
(3) and (4) are automated by the makefile. An overview of these steps is described in

Figure 2.5.

Ninf IDL (Interface Description Language) is used to describe interface information

for gridified libraries. In addition to the interface definition of the library function, the IDL

2.2 Programming models 27

description contains the information needed to compile and link the necessary libraries.
Ninf-G tools allow the IDL files to be compiled into stub main routines and makefiles,

which automates compilation, linkage, and registration of gridified executables.

The runtime included in Ninf-G does not provide fault recovery, or load-balancing by
itself. Ninf-G propagates an appropriate error status to the client if the error occurs at
either the client or the server side, however Ninf-G itself does not try to recover from the
errors. Instead, Ninf-G assumes that a back-end queuing system, such as Condor [101],
takes responsibility for these functions. Otherwise, application programmers should

handle the errors by themselves.

An important thing to mention is that the host name is explicitly specified as part of
the API, i.e. the host name must be given when a function handle is initialized. Ninf-G
provides no scheduling feature, however it is possible and easy to write master-worker-
type self-scheduling-based applications using simultaneous asynchronous calls through

multiple function handles provided by Ninf-G.
Ninf-G employs the following components from the Globus toolkit [33]: GRAM,

invokes remote executables. MDS (Monitoring and Discovery Service) publishes
interface information and pathnames of GridRPC components. Globus I/O is used for
the communication between clients and remote executables. GASS redirects stdout and
stderr of the GridRPC component to the client tty.

There is also a Java client API available. The availability of the Java client has several
advantages for developing Ninf-G-based applications. The implementation is built on the
top of the Java Commodity Grid Toolkit (CoG Kit) [108]. The Java CoG Kit enables
access for a variety of Globus services and facilitates the development of all protocols
between Ninf-G Java clients and Globus services. The Java Client API provides no
asynchronous API, unlike the C API because the Java language itself supports multi-

threaded programming.

The latest developments implemented in Ninf-G are a Task Farming API and a Task
Sequencing feature. Task Farming runs the same program in parallel while changing
input data and parameters. The Task Farming API enables programmers to produce
task farming code easily, and to have almost the best performance and stability possible
without a great amount of effort. In Task Sequencing, RPC requires dependency between
input and output parameters, which means output of a previous RPC becomes the input
of the next RPC. In this work, the direct transfer of data between servers (not supported
in the GridRPC standard) is implemented using a Grid filesystem without destroying the
GridRPC programming model and without changing very many parts of the existing Ninf-

G implementation.

28 Related work

2.2.2 Satin

The Satin programming model [105] has been designed specifically for running
divide-and-conquer programs on distributed memory systems and wide-area Grid com-
puting systems. In Satin, single-threaded Java programs are parallelized by annotating
methods that can run in parallel. The ultimate goal is to use Satin for distributed
supercomputing applications on hierarchical wide-area systems, and more general, on the
Grid. The divide-and-conquer model maps efficiently on such systems, as the model is
also hierarchical. Satin is based on the Manta [63] native compiler, which supports highly
efficient serialization and communication. Parallelism is achieved in Satin by running
different spawned method invocations on different machines. The system load is balanced
by the Satin runtime system.

Satin’s programming model is an extension of the single-threaded Java model. Satin
programmers thus need not use Java’s multithreading and synchronization constructs or
Java’s Remote Method Invocation mechanism, but can use the much simpler divide-and-
conquer primitives described below.

Parallel divide-and-conquer systems have at least two primitives: one to spawn
work, and one to wait until the spawned work is finished. Satin exploits Java’s
standard mechanisms, such as inheritance and the use of marker interfaces (e.g.,
java.io.Serializable) to extend Java with divide-and-conquer primitives.

In Satin, a spawn operation is a special form of a method invocation. Methods that can
be spawned are defined in Satin by tagging methods with a special marker interface. These
methods are called Satin methods. A call to a method that was tagged as spawnable is
called a spawned method invocation. With a spawn operation, conceptually a new thread
is started which will run the method (the implementation of Satin, however, eliminates
thread creation altogether). The spawned method will run concurrently with the method
that executed the spawn. The sync operation waits until all spawned calls in this method
invocation are finished. The return values of spawned method invocations are undefined
until a sync is reached. The assignment of the return values is not guaranteed to happen
in the sync operation, but instead is done between the spawn and sync. All operations that
exit a method (e.g., return or throw) are treated as an implicit sync operation. Spawned
methods can throw exceptions, just like ordinary Java methods.

Because spawned method invocations may run on any (remote) machine, global
variables that are defined on the machine that spawned the work may not be available
at the site where the method is executed. The code of the spawned method should only
access data that is stored on the machine that runs the work. Essentially, this means that

Satin methods must not change global state. In pure Satin, the only way of communicating

2.2 Programming models 29

between jobs is via the parameters and the return value. In short, Satin methods must not
have side-effects. However, Satin programmers can use Manta’s replicated object system

(RepMI) to implement shared data.

When a program executes a spawn operation, Satin redirects the method call to a
stub. This stub creates an invocation record, describing the method to be invoked, the
parameters that are passed to the method, and a reference to where the method’s return
value (or exception) has to be stored. For primitive types, the value of the parameter is
copied. For reference types (objects, arrays, interfaces), only a reference is stored in the

record.

The Java’s serialization mechanism is used in Satin for marshalling the parameters to
a spawned method invocation. Satin implements serialization on demand: the parameters
are serialized only when the work is actually stolen. In the local case, no serialization
is used, which is of critical importance for the overall performance. When an object has
reference fields, the serializers for the referenced objects will also be called, so all data

that can be reached (directly or indirectly) via those parameters is serialized.

The invocation records describing the spawned method invocations are stored in a
double-ended job queue. Newly generated work is always inserted at the head of the
queue. Locally, work is always taken from the head of the queue, thus the queue is
effectively used as a stack. When a node runs out of work, it will start stealing work
from other nodes. Idle nodes will poll remote queues for jobs, at the tail of the queue.
The reason why local nodes execute work from the head of the queue, while remote
nodes steal at the tail of the queue is that in this way large-grain jobs are stolen, reducing

communication overhead.

Java’s garbage collector can be a problem to Satin runtime (implemented in C), as
spawns are asynchronous (the method that executed the spawn continues) and the garbage
collector could assume that object parameters passed to a spawned method invocation are
no longer in use. Satin registers the invocation records at the garbage collector to avoid

this problem.

Five load-balancing algorithms are implemented in the Satin runtime system to
investigate their behavior on hierarchical wide-area systems. Random Stealing (RS)
(good for single-cluster environments), hierarchical load balancing (proposed by other
groups), Cluster-aware Random Stealing (CRS) (achieves good speedups for a large range
of bandwidths and latencies), Random Pushing and Cluster-aware Load-based Stealing (a

variant of hierarchical stealing).

The latest developments in Satin include adding fault tolerance mechanisms by using

a global result table to minimize the amount of redundant computation.

30 Related work

2.2.3 ProActive

ProActive [13] is an Open Source Java library for parallel, distributed, and multi-
threaded computing, also featuring mobility and security in a uniform framework. With
a reduced set of simple primitives, ProActive provides a comprehensive toolkit that
simplifies the programming of applications distributed on Local Area Networks (LANs),
Clusters, Internet Grids and Peer-to-Peer Intranets. ProActive is the first framework
featuring hierarchical distributed components.

As ProActive is built on top of the Java standard APIs, mainly Java RMI and the
Reflection APIs, it does not require any modification to the standard Java execution
environment, nor does it make use of a special compiler, pre-processor or modified virtual
machine. Additionally, the Java platform provides dynamic code loading facilities, very
useful for tackling with complex deployment scenarios.

Active objects are the basic units of activity and distribution used for building
concurrent applications using ProActive. As opposed to passive (regular) objects, the
active object has its own thread and execution queue. ProActive manages the active
objects threads relieving the programmer from explicitly manipulating Thread objects
thus making the use of the threads transparent. We can see an example of an object graph
with active objects in Figure 2.6.

When an object in a subsystem calls a method on an active object, the parameters
of the call may be references on passive objects of the subsystem, which would lead to
shared passive objects. This is why passive objects passed as parameters of calls on active
objects are always passed by deep-copy. Active objects, on the other hand, are always
passed by reference. Symmetrically, this also applies to objects returned from methods
called on active objects.

When a method is called on an active object, it returns immediately (as the thread
cannot execute methods in the other subsystem). A future object, which is a placeholder

for the result of the methods invocation, is returned. From the point of view of the caller

Passive Object V_ _' Active Object Boundary

D
> Active Object Root

Object Reference

Figure 2.6 Object graph with active objects

2.2 Programming models 31

subsystem, no difference can be made between the future object and the object that would
have been returned if the same call had been issued onto a passive object. Then, the calling
thread can continue executing its code just like if the call had been effectively performed.
The role of the future object is to block this thread if it invokes a method on the future
object and the result has not yet been set (i.e. the thread of the subsystem on which the call
was received has not yet performed the call and placed the result into the future object).

This type of inter-object synchronization policy is known as wait-by-necessity.

Active objects have the ability to migrate between nodes while the application is
running. Whatever application was using the active objects will continue running
regardless of the migration of active objects. The migration of an active object can be
triggered by the active object itself, or by an external agent. In both cases a single method

will eventually get called to perform the migration (the method migrateTo(...)).

In order to ensure the correct execution of an application in the presence of migration,
three mechanism are provided to maintain communication with mobile objects. The
first one relies on a location server which keeps track of the mobile objects in the
system. When needed, the server is queried to obtain an up-to-date reference to an active
object. After migrating, an object updates its new location. The second one uses a fully
decentralized technique known as forwarders. When leaving a site, an active object leaves
a special object called a forwarder which points to its new location. Upon receiving a
message, a forwarder simply passes it to the object (or another forwarder). The third
one is an original scheme based on a mix between forwarding an location server which

provides both performance and fault tolerance.

The group communication mechanism of ProActive achieves asynchronous remote
method invocation for a group of remote objects, with automatic gathering of replies.
A method invocation on a group has a syntax similar to that of a standard method
invocation. Such a call is asynchronously propagated to all members of the group using

multi-threading.

The effective locations of active objects are not indicated in the source code thanks
to the deployment descriptors. Parameters tied to the deployment of an application are
described in an XML deployment descriptor. Hence within the source code, there are
no longer any references to: machine names, creation protocols, registry/lookup and

communications protocols or file transfers.

The aim of the ProActive work around components is to combine the benefits of
a component model with the features of ProActive. The resulting components, called
"Grid components", are recursively formed of either sequential, parallel and/or distributed

sub-components, that may wrap legacy code if needed, and that may be deployed but

32 Related work

further reconfigured and moved, for example to tackle fault-tolerance, load-balancing or
adaptability to changing environmental conditions.

The Architecture Description Language (ADL) is used to configure and deploy
component systems. The architecture of the system is described in a normalized XML
file. The ADL automates the instantiation, the deployment, the assembly and the binding
of the components.

The ProActive framework also includes a batch scheduler, which provides an
abstraction of resources to users. Users submit jobs containing tasks to the scheduler,
who is in charge of executing these tasks on the resources. A scheduler allows several
users to share a same pool of resources and also to manage all issues related to distributed
environment, such as faulted resources. By default, the scheduler schedules tasks
according to the default FIFO with job priority policy, but the policy can be changed
easily.

IC2D is a graphical environment included in ProActive for remote monitoring and
steering of distributed and grid applications. IC2D is available in two forms: A Java
standalone application and a set of Eclipse plugins. The also included TimlIt API offers a

complete solution to benchmark an application.

2.24 CoG Kits

A Commodity Grid Toolkit (CoG Kit) defines and implements a set of general
components that map Grid functionality into a commodity environment/framework. CoG
Kits provide a mapping between computing languages, frameworks, and environments
and Grid services and fabric. Together Grid services, languages, frameworks, and
environments build a powerful development tool for building grid-enhanced applications.
Hence, we can imagine a Web/CGI CoG Kit, a Java CoG Kit, a CORBA CoG Kit, a
DCOM CoG Kit, and so on. In each case, the benefit of the CoG Kit is that it enables
application developers to exploit advanced Grid services (resource management, security,
resource discovery) while developing higher-level components in terms of the familiar
and powerful application development frameworks provided by commodity technologies.
We can see where those mappings must be applied in Figure 2.7. The main goal among
all possible CoG Kits has been to build a Java CoG Kit.

The Java CoG Kit [108] leverages the portability and availability of a wide range
of libraries associated with the Java framework, while promoting easy and rapid Grid
application development. The Java CoG Kit started with the development of a client-
side and partial server-side implementation of the classic Globus (Globus Toolkit 2.x)

libraries under the name of "jglobus." Today jglobus includes, among other libraries, Java

2.2 Programming models 33

Science Portals

Integrated Uniform Datamining

Event Service Access Service Service

Languages Frameworks Environments

CoG Kits

DCOM

Perl Java Jini Corba

Common Grid Fabric and Services

Security Resource Data Monitoring Event Collaborative §
Services Management ~ Management Services Services Services
Services Services

Figure 2.7 CoG Kits mapping objective

implementations of the Grid Security Infrastructure (GSI) libraries, GridFTP, myProxy,
and GRAM. The jglobus library is a core component of both Globus Toolkit 3 and Globus
Toolkit 4 and a major contribution of the Java CoG Kit to the Grid effort.

One of the concepts that has proven to be useful in protecting the user from frequent
changes in the standards development is the concept of abstractions and providers.
Through simple abstractions, they built a layer on top of the Grid middleware that satisfies
many users by giving them access to functions such as file transfer or job submission.
These functions hide much of the internal complexity present within the Grid middleware.
Furthermore, it projects the ability to reuse commodity protocols and services for process
execution and file transfer instead of only relying on Grid protocols. In addition to the
abstraction and provider concept, the Java CoG Kit also provides user-friendly graphical
tools, workflows, and support for portal developers. End users will be able to access
the Grid through standalone applications, a desktop, or a portal. Command-line tools
allow users to define workflow scripts easily. Programming is achieved through services,

abstractions, APIs, and workflows.

As we have seen, the toolkit is based on the abstractions and providers model. They
identified a number of useful basic and advanced abstractions that help in the development
of Grid applications. These abstractions include job executions, file transfers, workflow
abstractions, and job queues and can be used by higher-level abstractions for rapid

prototyping. As the Java CoG Kit is extensible, users can include their own abstractions

34 Related work

and enhance its functionality. The concept of Grid providers allows a variety of Grid
middleware to be integrated into the Java CoG Kit. Components in the Java CoG Kit
are classified in four categories: Low-Level Grid Interface Components, Low-Level
Utility Components, Common Low-Level GUI Components and Application-specific

GUI Components.

Low-Level Grid Interface Components provide mappings to commonly used Grid
services: for example, the Grid information service (the Globus Metacomputing Directory
Service, MDS), which provides Lightweight Directory Access Protocol (LDAP) access
to information about the structure and state of Grid resources and services; resource
management services, which support the allocation and management of computational
and other resources (via the Globus GRAM and DUROC services); and data access

services, for example, via the Globus GASS service.

Low-Level Utility Components are utility functions designed to be reused by many
users. Examples are components that use information service functions to find all compute
resources that a user can submit to; that prepare and validate a job specification while
using the extended markup language (XML) or the Globus job submission language
(RSL); that locate the geographical coordinates of a compute resource; or that test whether

a machine is alive.

Common Low-Level GUI Components provide a set of low-level GUI components
that can be reused by application developers. These components provide basic graphical
components that can be used to build more advanced GUI-based applications. They
include text panels that format RSL strings, tables that display results of MDS search
queries, trees that display the directory information tree of the MDS, and tables to display

Heart Beat Monitor (HBM) and network performance data.

Application-specific GUI Components simplify the bridge between applications and
the basic CoG Kit components. Examples are a stockmarket monitor, a graphical climate
data display component, or a specialized search engine for climate data. High-level
graphical applications combine a variety of CoG Kit components to deliver a single
application or applet. Naturally, these applications can be combined in order to provide
even greater functionality. The user should select the tools that seem appropriate for the
task.

The latest development in the Java CoG kit is a workflow framework called Kara-
jan [109]. This framework can be used to specify workflows through a sophisticated
XML scripting language as well as an equivalent more user-friendly language termed K.
In contrast to other systems it not only supports hierarchical workflows based on DAGs

but also have the ability to use control structures such as if, while, and parallel in order

2.2 Programming models 35

to express easy concurrency. The language itself is extensible through defining elements,
and through simple data structures it allows easy specification of parameter studies. The
workflows can be visualized through a simple visualization engine, which also allows
monitoring of state changes of the workflow in real time. The workflows can actually be
modified during runtime with a workflow repository that gets called during runtime or by
the specification of schedulers that allow the dynamic association of resources to tasks
(because the binding of tasks to resources and protocols can either be done explicitly or

delegated to a scheduler).

2.2.5 Swift

Swift [114] is a system that combines a novel scripting language called SwiftScript
with a powerful runtime system based on CoG Karajan (see section 2.2.4) and Falkon [76]
to allow for the concise specification, and reliable and efficient execution, of large loosely
coupled computations. Swift adopts and adapts ideas first explored in the GriPhyN
virtual data system, improving on that system in many regards. It provides the XML
Dataset Typing and Mapping [65] model for clean separation of logical data structures
and physical storage formats, a scripting language SwiftScript for concise specification
and convenient composition of large complex workflows, and a scalable runtime system
that manage and dispatch hundreds of thousands parallel computations, onto a variety of
parallel and distributed computation facilities. The Swift system provides a wide range of
capabilities to support the formulation, execution and management of large compute- and
data-intensive computations.

XDTM allows logical datasets to be defined in a manner that is independent of the
datasets’ concrete physical representations. XDTM employs a two-level description of
datasets, defining separately via a type system based on XML Schema the abstract struc-
ture of datasets, and the mapping of that abstract data structure to physical representations.

A dataset’s logical structure is specified via a subset of XML Schema, which defines
primitive scalar data types such as Boolean, Integer, String, Float, and Date, and also
allows for the definition of complex types via the composition of simple and complex
types. The use of XML Schema as a type system has the benefit of supporting powerful
standardized query languages such as XPath in the selection methods.

A dataset’s physical representation is then defined by a mapping descriptor, which
describes how each element in the dataset’s logical schema is stored in/fetched from
physical structures such as directories, files, and database tables. In order to permit reuse
for different datasets, mapping descriptors typically refer to external parameters for such

things as dataset locations.

36 Related work

SwiftScript allows concise definitions of logical data structures and logical procedures
that operate on them, and complex computations to be composed from simple and
compound procedures. Its support for nested iterations can allow a compact SwiftScript
program to express hundreds of thousands of parallel tasks. SwiftScript programs can be
at least an order of magnitude smaller in lines of code than other approaches such as Shell

scripts and directed acyclic graph specifications.

The SwiftScript scripting language builds on XDTM to allow for the definition of
typed data structures and procedures that operate on such data structures. SwiftScript
procedures define logical data types and operations on those logical types; the SwiftScript
implementation uses mappers to access the corresponding physical data. In addition to
providing the usual advantages of strong typing (type checking, selfdocumenting code,
etc.), this approach allows SwiftScript programs to express opportunities for parallel
execution easily, for example by applying transformations to each component of a
hierarchically defined logical structure. Figure 2.8 contains an example of a SwiftScript
program as well as the dependencies that would be generated from it. The body of a
procedure can include an invocation of an executable program (or a Web Service). That
program will be dynamically mapped to a binary executable, which will be executed at an
execution site chosen by the Swift runtime system. The body may also specify how input
parameters map to command line arguments (i.e. the notation @filename is a built-in

mapping function that maps a logical data structure to a physical file name).

The Swift runtime system is a scalable environment for efficient specification,
scheduling, monitoring and tracking of SwiftScript programs. For program specification,
computations are defined in SwiftScript programs, that are compiled by a SwiftScript
compiler into abstract computation plans, which can be scheduled for execution by the

execution engine.

In order to schedule programs, Swift uses CoG Karajan as its underlying execution
engine. Karajan provides a set of convenience libraries for file operation, data transfer, job
submission, and Grid services access. Karajan has been extended with specific libraries
to support the XDTM type system and logical dataset manipulation, adapters to access
legacy VDS components (for instance, site catalog), mappers for accessing heterogeneous

physical data storage, and also with fault tolerance mechanisms.

For executing a program, intermediate abstract execution plans represented in cus-
tomized Karajan scripts are interpreted and dispatched by Karajan onto execution sites.
Swift determines at runtime the actual execution processes such as site selection, data
stage-ins and stage-outs, and error checking. A set of callouts allow customized functions

to determine where to dispatch tasks, how to group tasks to increase granularity, and/or

2.2 Programming models 37

when and how to perform data staging operations etc. Swift also supports advanced Grid
scheduling and optimization, such as load balance, fault tolerance, computation restart,
etc. Individual tasks are invoked by a launcher program (for instance, kickstart) which

monitors and records the execution process and gathers provenance information.

In brief, Swift can execute large-scale computations in both parallel computers and
distributed systems. It focuses on scripting as the preferred language for scientists by
providing SwiftScript. Logical data structures can be declared as well as typed procedures
to iterate over such datasets, including a nested approach. Users work at a clean abstract
level thanks to the dataset mappings, that allows the system to know how to access
or transport datasets. Both service-oriented and command-oriented applications can be
executed with the XDTM model. The combination of such distinctive features enables
the automation of scientific data and workflow managements, and improves usability and

productivity in scientific applications and data analyses.

type Study { type Run {

Group g[]; Volume V[];
(woncntRun.’l)

1“"‘\-_
type Volume {
type Group { Image img;
Subject s[]; Header hdr;
}

}

1 eatientRim/2
type AirVector {
type Subject { Aira[];
Volume anat; }
Run run[];
ahgn]mealRuniw
(Run resliced) reslice_wf (Runr) {
Run yR = reorientRun(r, "y", "n");
Run roR = reorientRun(yR "x", "n");
Volume std = roR.v[1]; 1esllceRunl4
—

AirVector roAirVec =
alignlinearRun(std, roR, 12, 1000, 1000, "81 3 3");
resliced = resliceRun(roR, roAirVec, "-o", "-k");

Figure 2.8 SwiftScript program and dependency graph example

38 Related work

2.3 Comparison with GRIDSs

DAGman is a utility for Condor to create executions with workflows. However, we
have seen that its focus is at a very low level, as every dependency between two tasks
must be specified manually by the end user. Moreover, the data transfers need also to be
detailed by users. These two characteristics makes essential the usage of higher level tools
for end users, as Pegasus.

Pegasus is a powerful tool for creating workflows to be executed in the Grid. Its
locality policy is very similar to the one included in GRIDSs, and includes advanced
features to avoid repeating calculations for different users. However, users must publish
their data in the replica system in order to exploit its features, which may not be easy
for them. Also a good knowledge of the Chimera’s VDL is needed from users in order to
ease the task of writing the definition of the workflow and no features to avoid concurrency
problems are included (such as the parameter renaming in GRIDSs). Another drawback
is that its implementation is completely dependant on Globus services, in contrast to
GRIDSs, that is able to use other middlewares.

Triana is a flexible PSE that allows a graphical way of programming the execution
of an application. It offers a flexible architecture where workflows can be specified in
different standard formats (and new ones can be included), and the framework can be
easily ported to different middlewares thanks to a standard interface (thus, only a binding
must be developed to port it to a new middleware). However, data movement and Grid job
submission all need to be explicitly specified and organized by end users in the control
tasks, and this may be difficult for them.

The P-GRADE Portal is based on a web interface, which removes the need of
installing software to access the Grid. It supports multiple users working in the same
workflow, and to execute parts of a workflow in multiple Grids. Moreover, a job can
be defined as a parallel tasks in the workflow (a task that uses PVM or MPI). Anyway,
the user needs to draw in the interface exactly what he needs to execute, specifying all
input/output files related to a task, and connecting explicitly two tasks when there is a
data dependence between them. This limits the scalability of the system, as no loops or
if clauses can be defined graphically, and it is very difficult for a user to build a complex
graphical workflow with thousands or millions of nodes. Another important drawback
is that it is explicitly developed to work with the Globus middleware and the DAGMan
meta-scheduler in order to run the workflows.

We found some similarities between GRIDSs and Ninf-G: they both are based in the
master-worker paradigm and they include an IDL to describe the interfaces of what the

user wants to execute in the Grid (providing tools that generate intermediate code from

2.3 Comparison with GRIDSs 39

that IDL to enable the remote execution). However, the API they provide is big enough to
be considered difficult to be learnt by a non-expert user in computer science. Moreover,
any parallelism must be explicitly built by the user, and even no scheduling is included
(i.e. where a job is going to be run must be specified by the user). The latest developments
in Ninf-G are features similar to the ones already supported in GRIDSs (parameter sweep
and data dependency treatment). Their support of different programming languages is
limited to C and Java, and it is developed as completely independent versions, in contrast
to GRIDSs, that only a binding is developed to support a new programming language. We
consider Ninf-G a tool applied at a lower level than GRIDSs.

The Satin programming model is focused on Java implemented divide-and-conquer
applications, where the algorithm can be expressed recursively. This type of applica-
tions is also supported by GRIDSs and it is not only restricted to divide-and-conquer
algorithms. Satin’s focus to Java allows to implement passing complex parameters to
remote executions by using serialization. Also they include diverse scheduling policies
suitable for different environments. One added difficulty for users is that they need to
specify when parallelism can be used with calls to spawn and sync methods, in contrast
to GRIDSs, where parallelism is extracted automatically from the code.

As a powerful framework, ProActive offers a good solution in order to program
parallel applications in the Grid. Its interface, however, may be too complicated to learn
for general scientists, because of its big set of primitives. They try to reduce this gap by
providing templates for some generic algorithms (Monte Carlo, ...). Also their focus is
on Java applications, and applications implemented with other languages can be ported
to ProActive with a call to a binary using a wrapper technology. The wait-by-necessity
mechanism is somehow similar to the data dependence analysis provided in GRIDSs, by
allowing data to flow through future objects, but no feature to remove data dependencies
is included, as in GRIDSs. The parallelism inside an active object is easily achieved
by asynchronous method calls, but parallelism between different active objects may be
created by using several active objects at the same time, which is more complicated to

implement for an end user.

The CoG Kits try to bring together the commodity and the Grid technologies by
simplifying the development of the latter. With this extra layer, developers are protected
from changing details in the underlying Grid middleware. The main problem is that the
user who programs something on top of a CoG Kit must be a Grid expert, and not a
general scientist, because a lot of details from the underlying Grid technology are still
visible at this level (MDS, RSL, etc.), thus not making the Grid invisible. Karajan adds

the workflow abstraction to the Java CoG Kit in such a way that users must generate the

40 Related work

workflow in a particular language provided by them that users must learn from scratch
(thus making more difficult its adoption).

The Swift approach is based in scripting as a main language. This is similar to what
GRIDSs is based on (imperative languages) and has the main advantage of defining easily
complex workflows by generating them with the language, but with two main drawbacks.
The first one is the need of learning this new language (SwiftScript) for new users, which
may not be as easy as it may seem, while GRIDSs can be used with already known
programming languages. And the second one is the lack of possibility of calculating
anything inside the script file: with GRIDSs you can decide which parts of the code
you want to execute in the Grid, but SwiftScript is only capable of defining how to
execute external solvers, and nothing can be solved inside the program. Swift main focus
is to iterate over datasets in an easy way, but it is somehow surprising that no policy
related to exploiting any singularities in the data is included in their scheduler, as it is in
GRIDSs. Moreover, nothing similar to parameter renaming is provided in order to avoid

concurrency problems between tasks that can run in parallel.

2.4 Fault tolerance in Grid environments

The fault tolerance in the Grid is applied at different levels in already existing work.
The detection and recovery of failures is done at a Grid level (Grid middleware and host
errors) or at the application level. The main advantage in implementing fault tolerance
features at the application level is that both Grid level failures and application errors can
be handled.

2.4.1 Grid level

According to [46] we can distinguish between push and pull methods to detect failures
in aresource. The push method is based in heartbeat messages sent from remote resources.
The pull method works by polling for the state of the resources monitored. If a reply
message is not received before a specified timeout, the resource is considered to be
temporary unavailable.

We can see an example of the push method in Stelling et. al fault detection
service [92], which can provide fault detection capabilities to middlewares without them.
The pull method has been implemented in the GridBus [107] and GridWay [49] meta-
schedulers. Both push and pull methods are unable to determine if the failure is in the

network or the host.

2.4 Fault tolerance in Grid environments 41

In contrast, Phoenix [57] can detect failures scanning the scheduler log files, and the
way these failures are corrected can be defined by the user. However, if the system does
not have log files that can be interpreted, Phoenix cannot be applied.

In [104], the authors present the Java Grid Application Toolkit (JavaGAT) that
provides a high-level middleware-independent and site-independent interface to the
Grid. This API implements intelligent dispatching that can automatically select the
best middleware for each individual Grid operation. When a particular middleware
fails, the JavaGAT engine automatically selects alternative implementations for the
requested operation until one succeeds, providing transparent fault tolerance, and solving
heterogeneity problems. In case all available middleware implementations fail to
provide a requested operation, JavaGAT provides the application with a special, nested
exception, enabling detailed error analysis when needed. The overhead of using intelligent
dispatching is insignificant compared to the cost of the Grid operation. Therefore, the use
of the JavaGAT enables fault tolerance at the middleware level, but not a complete level

of fault tolerance.

2.4.2 Application level

Fault tolerance at the application level is usually implemented directly into the
application code. One of the most important things is that, at this level, not only Grid level
failures but also application specific errors can be treated and recovered. This approach
can provide flexibility and efficiency by exploiting application-level knowledge but it is
quite difficult for the application programmers [64].

Most approaches in the literature to ensure fault tolerance at the application level
are based on checkpoint recovery and replication [111]. Checkpointing is a widely used
technique, that consists of saving the state of the application at given points in time and
then rollback towards these safe states in case of failure.

The Open Grid Forum [70] has a Working Group dedicated to Checkpoint and
Recovery (GridCPR-WG). They have produced two documents regarding this subject ([6]
and [95]) but their work is still far from achieving a standard for checkpoint and recovery
techniques, and it has been outdated with new proposals for Grid architectures. This may
be the reason why in the literature we can find many different and tailored approaches,
rather than following a common standard.

In EU project DataGrid [41], an API for the checkpointing service is offered. The user
must define what the state of a job is (with variable/value pairs). These set of pairs have to
be enough to restart a computation from a previously saved state. Users can save the state

of the job, and the first instruction of their code should be the retrieval of the last saved

42 Related work

state. The restart can be from any previous saved state, not necessarily the last one. The

checkpoint is saved in the Logging and Bookkeeping server.

The Pittsburgh Supercomputing Center CPR [94] was originally designed for parallel
jobs, not for serial job "farms". A job can be restarted in a machine if that machine can
read the checkpoint file (thus, there exists heterogeneity problems). It includes checkpoint
file recovery schema, checkpoint file migration service, scheduling integration and pre-

emption requests.

In C3 [20], an strategy oriented to provide transparent application-level checkpointing
to MPI applications by means of a pre-processor is presented. It is considered that
a sequential checkpoint can be done saving global variables, stack frames and heap
allocated objects. It is considered that sequential checkpointing is sufficient to do parallel
checkpointing in parametric computing.

Cactus [42] uses a strategy that allows checkpointing and restart of thorns. The
checkpoint is oriented to the application thorns that form an entire simulation. All
the basic simulation data is well known, so they checkpoint simulation data and the
parameters to recreate this data. Checkpointing may happen after the calculation of initial
data, periodically during the simulation, at user request or at the end of the simulation.
Thorn developers need to check that their thorns can be checkpointed and restarted. As it

is very tailored to Cactus, it is not a general checkpoint mechanism.

In RealityGrid project [78] the checkpoint is written by the application (it has to
register each checkpoint with the library and with a tag to identify it). This checkpoint
can be done for simulation components (typically a single parallel program), but not
for other components (as visualization ones). It is considered that the checkpoint must
allow restarting a job which was initially running on N processors on a new M processors
configuration. The main focus as future work also includes windbacks (revert to the state
captured in a previous checkpoint without stopping the application). But the final goal is to
achieve computational steering (interact and change the behavior of a running application)

by means of checkpoint tree structures.

In Condor [101] the checkpointing mechanism saves all the state of a process into a
checkpoint file. The process can then be restarted from right where it left off. Typically,
no changes to the job’s source code are needed. When Condor sends a checkpoint signal
to a process, its state is written out to a file or a network socket. This state includes the
process stack, data segments, all shared library code and data mapped into the process’s
address space, the state of all open files and any signal handlers and pending signals. It
has some limitations: the Condor checkpointing code must be linked in with the user’s

code, the code cannot call fork, use kernel threads or use some forms of IPC (pipes and

2.4 Fault tolerance in Grid environments 43

shared memory). It has been incorporated in commercial products such as LoadLeveler.

LoadLeveler [55] supports checkpointing of running serial and parallel jobs. When a
job becomes checkpointed, a memory dump of the job’s processes and message queues
is written into one or more files. There is a list about its limitations: MPI jobs that are
not linked with the threaded communication libraries, jobs that use Large-Memory pages,
parallel jobs cannot be restarted if the number of tasks or the task geometry differs from
the state stored in the checkpoint file, is problematic when jobs use shared memory, and

SO on.

In GridLab [82], the GRMS (GridLab Resource Management System) supports
checkpointing for applications which are able to register callback information in the
GRMS (so, they can wait for a checkpoint GRMS’s call). It is an application-level
checkpoint in which the application is forced to store all information required for restart

in one or more checkpoint files.

In [112], the authors propose a fault tolerance mechanism for SATIN. SATIN is a
programming model for divide-and-conquer applications build on top of Ibis. In their
paper, the authors propose a technique based on storing partial results in a global table.
These results can be later reused, therefore minimizing the amount of work lost as a results

of a crash.

In [58], a Reliable Execution Service (RES) is presented, which is defined as a
persistently running service that keeps track of an application’s life cycle. Such a service
is supposed to become and integral part of a Grid application execution environment.
The RES ensures a reliable execution of applications submitted to the Grid. The RES
enables to users to take care of the application errors only, with the exception of the
permanent Grid failures. On failure, the service classifies it on permanent or transient.
Permanent failures are reported to the user and transient failures are shielded through
recovery techniques, basically by retrying the execution on a different resource. Although
it is closer to the application level, it might be more difficult to apply when complex
applications are to be run (such as workflows). The paper also presents a case study with
GRIDSs.

Task replication consists of submitting redundant instances of the tasks to increase the
probability of having one instance successfully executed. In [61] the authors present an
approach for fault tolerance in Mobile Grid environments by means of task replication.
The approach is based on static task replication using the Weibull reliability function for
the Grid resources so as to estimate the number of replicas that need to be scheduled to
guarantee a specific fault tolerance level (i.e., that a given probability of task completion

is ensured). These replicas are then scheduled by means of an algorithm based on the

44 Related work

knapsack formulation that maximizes the utilization and profit of the Grid infrastructure.
This means, that not all replicas initially defined would be scheduled in case that no
resources are available. The paper presents results obtained from simulation. The work
in [54] proposes replication as a mean to obtain high availability in Grid taking into
account economy and market aspects.

In the public-resource computing system BOINC [3], a redundant computing mecha-
nism is implemented to deal with erroneous computational results. This erroneous results
may arise from malfunctioning of computers or occasionally from malicious participants.
In this case, the system specifies N redundant instances for each work unit. When M < N
of these instances have been executed, an application specific function is called to compare
the results and possibly select a canonical one. If no consensus is found, new instances
will be generated for the work unit, and the process continues until a consensus is found
or a maximum timeout limit is reached.

Regarding workflows, in [113] the authors present and extensive review of the existing
workflow systems, including the fault tolerance techniques applied on them. In [50] a
flexible failure handling framework is presented. It is composed of two steps, a task failure
detection and the recovery methodology. For the recovery phase, integrated task-level and
workflow-level failure recovery techniques are applied. The task-level techniques (retry,
replication and checkpointing) are intended to mask task crash failures in the task level,
i.e., without affecting the flow of the encompassing workflow structure. The workflow-
level techniques are intended to apply in the workflow level (i.e., by allowing changes to
the flow of workflow execution) to handle the user-defined exceptions as well as the task
crash failures that cannot be masked with the task-level techniques. Its main drawback
is that a user must implement the fault tolerance strategy by analyzing each case in the
application. ASKALON [32] and P-GRADE [53] are other cases of workflow systems
that integrate fault tolerant features.

2.4.3 Comparison with GRIDSs mechanisms

GRID superscalar is a system which runs workflow applications. These applications
are formed by many tasks which are parts of the whole application. A Grid level fault
tolerance is able to deal with failures in a single task, but it does not have the global
point of view of the application to implement advanced policies to tolerate failures for a
particular application. Therefore, in our case, Grid level mechanisms can help, but are not
enough to achieve our objectives.

In the application level two types of errors can be treated: application errors and Grid

errors. Our work focuses only in Grid errors, as application errors in our system can be

2.4 Fault tolerance in Grid environments 45

treated when programming the application (which will generate an error-aware workflow).
If we deal with Grid errors with the global point of view of the workflow application, we
can use a more optimal strategy to achieve fault tolerance for the application following

our objectives:

e Be able to save the work completed by the application before an unrecoverable

failure happens.
e Keep running an application when permanent or temporal failures arise in the Grid.

e Implement reactive (retries) and proactive (replication) strategies based on the

application workflow.
e Take advantage of replication mechanisms to achieve speed up applications also.
e Make the mechanisms almost transparent for end users.

e Cause minimum overhead to the system.

We have seen related work dedicated to achieve fault tolerance for workflow appli-
cations. However, the main difference with our approach is that they propose that the
user decides in advance which fault tolerance techniques should be applied each time
(alternative machines to retry a task, ...), while in our case, the runtime system will
automatically decide in each case what to do at run time. Besides, we exploit the capability
of replicating tasks not only to ensure fault tolerance, but also to increase the performance
of the applications run in an heterogeneous Grid. To our knowledge, this is the first time

replication is applied to these two goals.

46

Related work

Chapter 3

GRID superscalar: easy programming
model for the Grid

GRID superscalar (shortened GRIDSs), is a new programming paradigm for GRID
enabling applications, composed of a programming interface and a runtime. The process
of generating and executing an application with GRID superscalar is composed of a static
phase and a dynamic phase, corresponding to the programming interface and the runtime
respectively. In the static phase, the application is programmed using the GRIDSs API,
the operations to be executed in the Grid are selected, and the application’s structure
is converted to a master-worker paradigm. In the dynamic phase the GRID superscalar
runtime library and basic Grid middleware services are used. The application is started
in the localhost the same way it would have been started originally. While the functional
behavior of the application will be the same, the basic difference is the fact that the GRID
superscalar library will exploit the inherent parallelism of the application at the coarse
grain task level and execute these tasks independently in remote hosts of the computational
Grid.

This chapter describes in detail the GRID superscalar user’s interface. The design
of the programming model and its objectives are presented in the first section, as well
as the target applications that we want to tackle, the architecture of a GRID superscalar
application, and the concept of using our programming model in different programming
languages, as it is done in assembler languages.

The second section describes the programming model interface, to allow to understand
how an application must be programmed in our system. It is presented how to describe
with the IDL file the tasks to be executed in the Grid, what adaptations in the code are
needed, and how the API must be used. Some advanced features such as the speculative

execution of tasks and the possibility of defining the constraints and cost of a task are

48 GRID superscalar: easy programming model for the Grid

described from the user’s interface point of view. Finally, a summary of the programming
considerations and tuning capabilities of the application are presented, together with a
summary of the steps needed to program an application with GRID superscalar.

The third section compares our programming model with other programming envi-
ronments to help to understand the simplicity achieved. We first compare how a user
should submit tasks with Globus in order to see the difficulties of using a Grid middleware
without a programming model. Then, we compare our interface with DAGMan, Ninf-G
and the VDL, which have been introduced in Chapter 2.

3.1 Design

Grid middlewares offer a powerful set of services in order to exploit the capabilities of
the Grid, but they are developed at a very low level, which is far from what users expect as
a tool to develop their applications. Moreover, there are many different Grid middleware
solutions which may be used, such as the Globus Toolkit [33], Unicore [31] or gLite [60],
and if users select one of them to be used to program their application, the portability of
this application to a new Grid middleware would mean to develop the application again
from scratch in the new environment. An extra layer is needed in order to allow users to
develop their applications in a generic way, not for a particular Grid middleware.

With the objective of covering this gap, many research groups have worked in creating
programming models for the Grid. While the objective of shielding the user about
knowing the details of how a Grid middleware must be used is common in all of them,
they include other objectives which make them different, as it has been discussed in
Chapter 2 with some existing programming models. Programming models are composed
by a programming interface and a runtime which implements the functionality offered by
the model. In this chapter, we are going to focus in the objectives of the programming
interface.

By analyzing the previous work related to programming models for the Grid, in our

case, we have identified four main objectives:

e Maximum simplicity when programming.
e Exploit the parallelism of the programmed application.
e Keep the Grid invisible to the user.

e Offer advanced functionality.

3.1 Design 49

The objectives of having a very simple programming interface and exploiting the
parallelism of the application seem to be contradictory, as a parallel programming
paradigm should be used in order to program a parallel application, which is not a
simple paradigm. However, we will see that we are able to provide a sequential
programming paradigm without any specific calls to enable the parallelism or manage
the work to be done, which is able to exploit the implicit parallelism of the application.
Existing programming models and tools include features to exploit the parallelism of
the application but this parallelism is always explicitly described by the user when
programming the application: by drawing a workflow in a graphical tool which describes
the tasks to be performed by the application, by explicit calls to open or close parallel
regions in the code, or by managing entities which can run in parallel. There are only two
references in the literature which deal with exploiting the parallelism of an application
implicitly from a sequential code. The first one is ProActive [13], but it is limited to an
internal object that can only be run in a single machine (thus, parallelism with threads in
a single machine), and the second one is Swift [114] which did not exist at the beginning

of this thesis, as it has been proposed recently.

Another important aspect is the size of the API defined. Simplicity means that the
API we offer to users must be minimal, or even nonexistent. Having a very small API
also has an influence in the learning process of a programming model: the less the calls
defined, the faster the users will learn them. We can find in the literature very powerful
programming models such as ProActive but with so many defined calls to use them, which
increases their difficulty. Our API must be so small and simple that the process of adapting

an existing application to our model could be done almost automatically.

One of the key features we want to provide to users is the capability of keeping the
Grid as invisible as possible to the end user. Whenever the application is programmed,
nothing about where a particular process must be run, or where some data must be moved
to operate should be specified. Our programming model must be Grid unaware. The
vast majority of programming tools for the Grid follow this approach, but we find some
tools such as Triana [99] where users must specify explicitly data movement or in which
machine a particular part of the application must be run. The decision of creating a Grid
unaware programming model affects not only to the user interface, but also to the runtime
design, as the runtime will be in charge of deciding data movement and job distribution

among machines.

Our simplicity concept must not exclude the ability of offering powerful functionality
to users. This means that any functionality we define will be implemented transparently

to end users, or will require the minimum interaction with them.

50 GRID superscalar: easy programming model for the Grid

As no other programming model follows all our objectives, we have created our own

programming model from scratch called GRID superscalar.

3.1.1 Target applications

Following the goals already presented in this chapter, our programming model tries
to tackle applications that are able to increase their performance when executed in a Grid
environment. The way to increase this performance is by means of executing parts of
the application in parallel over the different resources the Grid provides. This means
that the algorithm implemented must be suitable to be splitted in parts or stages that
have enough computing demands to consider the Grid as a good platform to solve them
(always considering the overhead the Grid may introduce in the execution because of its
distributed nature). Thus, these tasks must be coarse grained tasks. They also need to be
independent tasks which operate on the parameters and local data, without any concurrent
communication between them while they run. Nevertheless, they can get the results
of other tasks as inputs. Common examples of this type of applications are scientific
workflows, optimization algorithms and parameter sweep applications.

A scientific workflow is a new special type of workflow that often underlies many
large-scale complex e-science applications such as climate modeling, structural biology
and chemistry, medical surgery or disaster recovery simulation. Compared with business
workflows, a scientific workflow has special features such as computation, data or
transaction intensity, less human interaction, and a large number of activities. These
activities are connected forming what is called the workflow, which describes how the
execution flow must happen when the whole application is executed. Another common

name for the activities described is fask. Thus, we can say that workflows are applications

Figure 3.1 A workflow structure example

3.1 Design 51

composed of tasks with a certain order between them. An example of a workflow is shown
in Figure 3.1, which contains several tasks and arrows which describe the execution flow.

The common way to describe a workflow is a directed graph, where nodes represent
the tasks to be performed, and edges represent dependencies between those tasks. Having
directed edges is mandatory because the graph is describing an execution order and to be
able to identify it, we must know which task must be first in a connected couple. However,
the graph may be cyclic or not, considering what the dependencies mean in the workflow.

Dependencies are commonly divided in:

e Control flow dependencies

e Data flow dependencies

Control flow dependencies are those exclusively referring to an arbitrary order
between tasks. Conditional edges and loop edges are the main control flow dependencies.
More specifically, loop edges determine that the workflow is a cyclic graph. When control
flow dependencies are used, a task corresponds to the definition of an operation and it can
be invoked several times (it is a generic representation of what must be executed). Data
flow dependencies strictly describe how data is required among tasks. Therefore, an edge
will exist only if a task requires data that another task generates, so it cannot start its
execution until the needed data is generated. In a graph with only data flow dependencies,
a task represents a single invocation of an operation (each task is only executed a single
time). Thus no cycles can be formed, as a new invocation of an operation would mean a
new task in the workflow. The graph is a directed acyclic graph (or DAG).

Optimization algorithms are very used in a wide spectrum of scientific fields in order
to find optimal solutions for problems which can vary from finding the optimal network
structure in a chemical reaction system, to obtain the optimal configuration of a network
in order to reduce the execution time of an MPI application. The common structure of
these algorithms is to simulate a solution several times changing some parameters, and
after those simulations are completed, an evaluation step is needed in order to determine
which one of them is nearest to the optimum. Then, the best solution is taken as a
reference to generate new parameters that will form new simulations to be executed and
evaluated. This will be done until the solution reaches the optimal criteria established.
If the computing demand of the simulation is big, we can easily see that these type of
applications are good candidates to be executed in the Grid, as they can also be splitted
in tasks (a task may be one or several simulations). They are also good candidates

to be parallelized, since between evaluation steps all tasks can be executed in parallel.

52 GRID superscalar: easy programming model for the Grid

—— Evaluate
— Evaluate

— Evaluate

Figure 3.2 Optimization workflow example

Figure 3.2 shows the workflow of a possible optimization algorithm, where we can find
parallel regions and a synchronization point in every evaluation step.

Parameter sweep applications are very similar to optimization algorithms but with
some differences. The main difference is that simulations are not directed with evaluation
steps. The algorithm structure is defined with a loop where first new parameters for a
simulation are defined, and then the simulation is executed using the new parameters.
If the simulation’s result does not reach a certain criteria, a new simulation must be
submitted. As with optimization algorithms, parameter sweep studies are suitable to be
executed in the Grid as they can be splitted easily in tasks, and those tasks are suitable to
be executed in parallel, because no data dependencies exist between different simulations.
In this case the parallelism would be massive, as the whole application does not have a
single dependence between its tasks. We can see that in Figure 3.3: each evaluation

depends on a single task, which is independent from the rest.

DTS-

Figure 3.3 Parameter sweep workflow example

3.1 Design 53

In GRID superscalar, workflow applications can be implemented using a sequential
language, and the sequential applications previously described can be transformed
automatically in workflows, taking care about their internal data dependencies. We may
also notice that the majority of applications that can be easily splitted in tasks and have a
suitable computation demand for the Grid are those which call external simulators, finite
element solvers, bioinformatic applications such as BLAST [18] or chemistry applications
using the GAMESS [38] package. In all such cases, the main parameters of these tasks
are passed through files. This is our rationale to consider files as the main data to be taken
into account for the automatic workflow generation that will take place in the runtime of
our programming model, and will determine the design of the interface. We will see in
Chapter 4 that this decision will also ease the implementation of the dependence detection,
although extending the detection to parameters which are not files could be considered in
the future.

Another important fact is that we want our programming model to follow a sequential
way of programming, albeit its execution must be parallel. The parallel execution of
complex applications has proved to be an excellent way of reducing the time to get results.
However, the scientific community has invested lots of efforts in porting or writing the
applications in parallel programming models such as MPI [66]. MPI’s programming
interface is not very easy to use for non-expert programmers, as the parallel execution
must be handled explicitly when programming the application'. GRIDSs follows a
sequential programming paradigm in order to ease the way it must be programmed, in
contrast to parallel programming paradigms. The simplicity of this sequential paradigm
also contributes to a reduction of the time needed for a user to learn how to use the
programming model.

An easy way to understand our goal is to consider a sequential algorithm, that includes
several calls to functions. In GRIDSs, a function will correspond to a task and will be
executed in the Grid concurrently with other functions, achieving the parallel execution
of the application transparently from the programming paradigm point of view. We may
say that GRIDSs achieves the functional parallelism of the application.

An example of an application written with GRID superscalar is presented in Figure 3.4
and Figure 3.5. The first figure presents the master side of the application, where we can
see some calls to the API provided in the programming model (described in Section 3.2.3).
The second figure corresponds to the worker side of the application, which is the function
that will be executed in the Grid. These are some examples of applications that our

programming model targets, but that is not only limited to. In general, we may say that

'We provide MPI as an example of a well-known parallel programming paradigm. However, we are not
comparing GRIDSs and MPI, as their objectives are different and they target different applications

54

GRID superscalar: easy programming model for the Grid

#include "GS_master.h"
#include "matmul.h"

int main(int argc, char xxargv)

{
char f1[15], f2[15], f3[15];
GS_On() ;
for(int i = 0; i < MSIZE; i++)
for(int j = 0; j < MSIZE; j++)
for(int k = 0; k < MSIZE; k++)
{
f1 = "A." + 1 + "." + k;
f2 ="B." +k+ "." +j;
f3 ="C."+ i+ "."+j;
//f3 = f3 + (fl * f2)
matmul (f1, 2, f3);
}
GS_Off(0);
}

Figure 3.4 GRIDSs application example (master)

void matmul(char xfl, char xf2, char xf3)

{

block <double> *A;
block <double> *B;
block <double> *C;

GetBlock (f1, BSIZE, BSIZE);
GetBlock (f2, BSIZE, BSIZE);
GetBlock (f3, BSIZE, BSIZE) ;

A
B
C

A—>mul (A, B, C);
PutBlock (C, f3); //A and B are sources
delete A;

delete B;
delete C;

Figure 3.5 GRIDSs application example (worker)

3.1 Design 55

we want to cover any application or algorithm where the work to be done can be splitted
in tasks with a sequential programming fashion, such as branch and bound computations,
divide and conquer algorithms, recursive algorithms, and so on.

In general, with GRIDSs a sequential application composed of coarse grained tasks is
automatically converted into a parallel application where the tasks are executed efficiently

in different machines of a computational Grid.

3.1.2 Application’s architecture: a master-worker paradigm

In this section we are going to see how a sequential application is automatically
converted in a parallel application when using GRIDSs. We have previously presented that
our objective is to tackle applications that can be splitted in parts suitable to be distributed
in the Grid, and this is what determines that the best parallel execution paradigm for our
programming model is a master-worker paradigm.

The master-worker approach has its basis in the division of the application in two main
parts: the master and the workers. A master part of the application is in charge of splitting
the work to do in parts in order to distribute them to the workers. Thus, the master part
does not perform any computation work at all, that is let to be distributed to the workers.
The master is in charge of coordinating all the execution: generate tasks splitting the work
to do in parts, send the work to the workers and gather results when workers finish their
execution.

In our programming model, the master-worker paradigm fits perfectly with our
objectives: the master part of the application will be formed by the main program of
the application. This main program will describe the algorithm that must be executed,
and will include calls to functions that will be executed in workers distributed in the Grid.
GRID superscalar applications will be composed of a master binary, run on a host, and
one worker binary for each worker host available in the computational Grid. However,
this structure will be hidden to the application programmer.

To transform a sequential application into a master-worker application, we need to
define the glue that will allow us to do so. In order to achieve the remote execution of the
functions, we follow a Remote Procedure Call approach, where in the main code, instead
of calling to the original function, the call is done to a new function (a wrapper) that will
start all the intermediate steps in order to call to the original function in a remote machine.
This is done by using function stubs in the master side of the application, and skeletons in
the worker side.

The master stubs consist of a file with wrapper functions for each of the functions that

must be executed in the Grid. When the master program is compiled, this file will be used

56 GRID superscalar: easy programming model for the Grid

instead of the original tasks’ file and, therefore, these wrappers will be the ones executed
instead of the original user function whenever the main program calls them. The wrappers
are in charge of redirecting the function call to the GRIDSs runtime. This means that the
parameters of the function are used to call to the Execute function, which is the main
primitive in the runtime called from the user interface that generates a new task inside the
runtime (a new function call). Section 3.1.3 will describe the usage and behavior of the

Execute call more in detail.

Figure 3.6 presents an example of a stub file generated when the C language is used
to program the application. We will see again in section 3.1.3 that several programming

languages can be used thanks to the Execute call.

#include <gs_base64 .h>
#include <GS_master.h>
#include "matmul.h"
int gs_result;

void matmul (file f1, file f2, file f3)

{
/¥ Marshalling/Demarshalling buffers x/
/x Allocate buffers x/
/¥ Parameter marshalling x/
Execute (matmulOp, 3, 0, 1, 0, f1, f2, f3, f3);
/¥ Deallocate buffers x/

Figure 3.6 Sample stub file

The worker skeleton is the main program of the code executed in the workers. With
the skeleton, a binary is generated that will be called from GRID superscalar’s runtime by
means of a Grid middleware (details about all this process will be described in Chapter 4).
The worker code is basically a conditional structure which depending on a parameter
received on invocation will call the corresponding original user function. Before calling
the user functions, the parameters passed to the skeleton are retrieved to be passed to

them.

Figure 3.7 presents an example of a skeleton file generated when the C language is
used to program the application. We can see a case structure is used to determine the
operation to be executed. IniWorker and EndWorker are auxiliary functions defined in
a GRIDSs worker library to make some initializations and finish the worker execution

respectively.

3.1 Design 57

#include <gs_base64.h>
#include <GS_worker.h>
#include "matmul.h"

int main(int argc, char xxargv)

{

enum operationCode opCod = (enum
operationCode) atoi(argv[2]);

IniWorker (argc, argv);

switch (opCod)

{

case matmulOp:

{
matmul (argv [3], argv[4], argv[6]);

}
break ;

}
EndWorker(gs_result , argc, argv);
return O;

Figure 3.7 Sample skeleton file

In order to execute a GRIDSs application, a master-worker application must be
previously built and distributed in the machines where it must be run. This requires that
several binaries are generated before the application can be started. More precisely, two
types of binaries must be generated, one for each role a machine may have during the
execution of the application: a binary for the master machine, and a binary for every
worker machine. The master binary is the process where the whole execution must start
and it must be placed in a single machine. When the master binary is executed, the
algorithm execution starts, and a worker binary will be invoked by means of the Grid

middleware for every task generated.

Figure 3.8 shows how files are linked when using C to obtain the final application
binaries. In the master, the original main program (app.c) is linked with the stubs (app-
stubs.c) and with the GRID superscalar runtime library in order to generate the master
binary executable. In the workers, the skeleton (app-worker.c), the file with the code of
the original user functions (app-functions.c) and the GRID superscalar worker library are
linked to obtain each worker’s binary. The "app.h" file is a header file which contains the
C definitions for the functions that must be executed in the Grid. These definitions are

needed in both the master and the worker binaries generation.

58 GRID superscalar: easy programming model for the Grid

app.idl

l

gsstubgen

app.c app-stubs.c app-functions.c

app_constraints.cc app_constraints_wrapper.cc
app_constraints.h

Figure 3.8 File linkage to create the master and the worker

The other three files seen in the figure are used for function cost and constraints
specification, described in section 3.2.5. The "app_constraints.h" contains definitions
used by the other two files. The "app_constraints_wrapper.cc" contains glue code that
is needed by the GRID superscalar runtime library. Finally, the "app_constraints.cc"”
contains functions that determine the cost and constraints of each function to be executed
in the Grid.

Initially the generation of the stubs, the skeletons, as well as the compilation and
distribution of the master and worker binaries was done by hand. However, work done
mainly by other members in our research group allows to automate these steps by means of
a set of tools known as gsstubgen, gsbuilder and deployment center. The gsstubgen tool
generates stubs and skeletons for an application. The deployment center is a graphical
tool that mainly allows to copy to remote machines the source files needed in order to
build the master or worker binaries using the gsbuilder. It also allows to create the Grid
configuration file, where the machines and their characteristics are specified. More details
can be found at [73].

Figure 3.9 shows the sequence of calls of an application run without GRID superscalar.
The application is run sequentially on a local host. In Figure 3.10 the sequence of calls
of an application run with GRID superscalar is shown. In this case, the main program
together with the corresponding stubs file is executed in the localhost. The worker binary
built with the corresponding skeleton file and the original user functions, is run in the
remote hosts. When the main program calls one of the functions that must be executed

in the Grid, the wrapper function in the "app-stub.c" file will be executed instead of the

3.1 Design

59

[app-functions.c]

Figure 3.9 Sequence of calls without GRID superscalar

app-stubs.c

GRID superscalar
runtime

Middleware

[app_constraints_wrapper.cc]

[app-functions.c]

[app_constraints.cc]

Figure 3.10 Sequence of calls with GRID superscalar

60 GRID superscalar: easy programming model for the Grid

MASTER WORKERS

's) s a

Master main program

. J

Worker main program

\ J/

's ™

Function stubs User functions code

GRIDSs master GRIDSs worker
library library
Grid middleware R Grid middleware
services services
. J - S

-
.
r~
\.

Figure 3.11 GRIDSs application’s architecture

original implementation. This wrapper function will call the GRID superscalar "Execute"
function, that will generate a task. We will see in Chapter 4 that whenever the task is ready
for execution (it has no data dependencies), an extra step is needed to check the constraints
and evaluate the cost of the task. The user provided functions in "app_constraints.cc" file
are used for that purpose.

Finally, the task is submitted for execution in a selected resource using the Grid
middleware. The worker program is run in a remote host. From this worker program,
the original user task will be called and executed. When the task finishes, the runtime is
notified by the Grid middleware. This will allow the GRID superscalar runtime to update
its data structures and continue the application execution, as we will see in Chapter 4.

As a summary, the GRID superscalar application’s architecture picture is shown in
Figure 3.11, specifying the different layers needed to generate the resulting master-worker
application. Arrows show the time order in which the different layers are called. We must
remark that this new built master-worker application has the same functional behavior of

the initial user application.

3.1.3 The Execute generic interface

We have mentioned in previous sections that the main interface the runtime offers as
an entry point is the Execute call. We have seen too how the Execute call is invoked from

user’s main code in the master through function stubs, and how a user function is run in a

3.1 Design 61

worker thanks to the skeletons. In this section we are going to present the main benefits
provided by having a single call for task generation from the point of view of the user’s
interface.

One of the concepts that GRID superscalar pursues is the intermediate language
concept. This concept is seen in the assembler code: programmers use their preferred
programming language to implement their application, and thanks to a compiler, the code
is translated into assembler code that can be translated into machine code in order to be
run. The same way, GRID superscalar pretends to translate an application implemented
with a particular programming language to an intermediate representation that can be later
executed in the Grid. The intermediate representation in GRIDSs is the data dependency
graph created at run time (see Chapter 4), which would correspond to the assembler code.
However, while in assembler the instruction set (the operations that can be used) is clearly
defined in advance, in our programming model the instruction set is different for every
application. This means that we need a generic interface able to specify what function
must be executed when used, and what parameters are needed. To solve this, the Execute
call is defined.

The Execute call has been defined as a generic call, where an identifier of the function
to be executed is passed, together with four numbers that specify how many parameters
of each type are passed, and the parameters themselves (a variable list). Parameters
passed to Execute are converted to strings, so the call receives only integers and strings as
parameters. Therefore, in the instruction set of our particular assembler code, Execute is
the one and only operation defined, but generic enough to contain the future definitions of
operations made by end users when programming. In section 3.2.2 we will see how these

operations can be defined by users. Figure 3.12 shows the definition of the Execute call.

void Execute(int Opld, int nSour, int nSourGen,
int nDest, int nDestGen, ...)

Figure 3.12 The Execute call

Although the GRIDSs runtime is implemented in C++, the Execute interface, together
with the stubs, allow an easy building of different language bindings to program an
application in our system. In order to create a new language binding, the main requirement
is the possibility to call to the C Execute routine from the new language when the master
stubs file is generated, as this file will be written in the new language. In the worker
side, as the skeleton is a main program itself which generates a binary, things are simpler.
The skeleton will be implemented in the new language, as well as the user functions,

and the invocation will be done as if the worker is an independent program. This has

62 GRID superscalar: easy programming model for the Grid

been demonstrated by other members in our research group by building bindings for Java,
Perl and Shell Script languages for GRIDSs [52]. Another approach that could have
been implemented would be to develop a compiler for GRIDSs applications and a single
programming language. A source to source compiler could translate the programmer’s
code in a code that the runtime understands. However, basing the code generation in
a compiler instead of having stub files as intermediates limits the possibilities of using
several programming languages in the system, because whenever a new language wants
to be supported, a new compiler must be created for it, which is not a trivial task.

The possibility of programming applications with GRID superscalar using different
programming languages is a powerful fact in terms of technology adoption. If users
are able to program using our system with their preferred programming language, the
learning process in order to use GRIDSs will be reduced. We have seen in Chapter 2 that
many existing programming models only focus on a single programming language, or they
even define a new procedural language to be used in order to implement an application.
Nevertheless, many scientific fields have legacy code written in a particular language
that is commonly used in the field. While in other systems porting those legacy codes
would mean to re-implement the application or develop wrappers that execute the legacy
binaries, in GRID superscalar a new language binding can be easily developed, so the

option of directly using the legacy code is available.

3.2 User interface

In order to define the user interface needed to program applications with GRID
superscalar, we must keep in mind the objectives we have previously presented in
Section 3.1. The interface must follow a sequential programming paradigm and no
parallelism is needed to be expressed in the algorithm, to make it simple. The Grid
must remain as invisible as possible for the end user, specially for the application’s code.
Finally, any advanced functionality that we want to provide to users must be integrated
in the programming model in the simplest way, or even it must be transparent to the
end user. These objectives make easier not only the way to program the Grid, but also
to port sequential applications to be executed in the Grid, as minimum changes will be
needed to adapt the application to our programming model. Next subsections show how
an application must be programmed with GRIDSs. This demonstrates why we can state
our programming model is very simple to use, and it will allow us to develop a section
comparing how applications are programmed in other Grid programming models (see

section 3.3).

3.2 User interface 63

To develop an application in the GRID superscalar paradigm or to adapt an existing

application to it, a programmer must go through the following three stages:

e Task definition: identify those functions/programs in the application that are going

to be executed in the computational Grid.

e Task parameters definition: for every task defined, identify which parameters are

input/output files and which are input/output scalars.
e Write the sequential program (main program and task code).

The task definition and task parameters definition are performed by writing an
interface definition file (IDL file) with the selected functions to be run in the Grid
(sections 3.2.1 and 3.2.2). The API provided to write the application is presented in 3.2.3).

3.2.1 Task definition

In application programming, there are some options available when structuring the
code. One really useful way is to program functions, instead of programming everything
in a big main function. This helps in two ways: it makes the code easier to understand,
and allows to repeat the same functionality in other stages of the application. In GRID
superscalar the organization of the main program in functions is mandatory for those
parts of the code that must be executed in the Grid, because conceptually the body of the
existing functions in the application is what can be distributed. Those parts can be already
in a function, called from the main program. But if this is not the case, that part of the
code must be defined in a local function, even if that function is only going to be called
once.

To determine what parts of the application should be run on the Grid there are two
main scenarios. The first scenario consists of a program that cannot be fully executed
on the local machine because it requires more resources than there are locally available
(i.e. high memory demand). In those cases the target functions are those functions that
cannot be executed locally. The second scenario is composed of those cases in which
more performance is desired than there is locally available. In this scenario the target
functions are those that consume most CPU time and are executed most often. Both
scenarios show a need of externalizing the computing demands of the application to more
powerful machines. In some applications, profiling or tracing tools may be used to assist
the user in the selection of the functions [59].

There is an important requirement when defining the header of the function. In the

header, all parameters used must be specified: the files needed (files read and/or written

64 GRID superscalar: easy programming model for the Grid

inside the function) and scalar parameters needed (read and/or written) (i.e. a scalar value
could be needed as a parameter to start a simulation). Return values of the function (files
or scalars), must be also specified in the header, as results of tasks will be asynchronously
returned when tasks finish their execution in the Grid, thus not allowing functions to have
a direct return value. The data types which can be used as parameters are defined in
section 3.2.2.

In order to understand better the steps needed to program an application with our
system, we present a matrix multiplication example. One common operation done
between matrices is the multiplication. When matrices grow in size, it also grows the
execution time of the multiplication, thus a way to speed up this computation is needed
(parallelizing the code). A first step is to divide matrices in blocks, forming what is known
as a hyper-matrix (a matrix made of matrices). This provides several advantages compared
to a version without block division, as a full row or column is not needed to do some
calculation, because blocks can be operated between themselves. Another advantage is
that it is not needed to have all matrices in memory, because for a single calculation only
the blocks that are going to be operated are needed. Blocks are stored in the disk, and when
a calculation is going to be performed, the blocks required are read again into memory,
just to be stored again when the calculation has finished. This technique is known as an
out-of-core implementation. The source code of the matrix multiplication has three local

functions: PutBlock, GetBlock and matmul. The function that we want to execute in the

void matmul (char «fl1, char xf2, char *f3)
{

block <double> *A;

block <double> xB;

block <double> x*C;

GetBlock (f1, BSIZE, BSIZE);
GetBlock (f2, BSIZE, BSIZE);
GetBlock (f3, BSIZE, BSIZE);

A
B
C

A—>mul (A, B, C);
PutBlock (C, f3); //A and B are sources
delete A;

delete B;
delete C;

Figure 3.13 The matrix multiplication function

3.2 User interface 65

Grid is matmul (Figure 3.13), and the other two are auxiliary functions needed by matmul
to save or restore a block from disk.

In the code, the BSIZE parameter determines a dimension of the block in elements. By
analyzing the parameters needed inside the function we can determine that, in this case,
the definition of the function is already correct. This is due to having the three blocks read
(f1, 12, £3) and the one written (f3) already specified in the header. It is specially important
in this case to have the three blocks specified, as we have seen in previous sections that
the GRID superscalar main data type is the file. In a local environment, the file could
be omitted in the header, and accessed directly in the function, but this does not work in
GRIDSs, as the function will be executed in a remote environment, where the file may not

be initially available.

3.2.2 Interface Definition Language (IDL)

The GRID superscalar programming model must know somehow which functions in
the code have been selected. The Interface Definition Language (IDL) file is a means of
communication between the developer and the GRID superscalar library. Since the GRID
superscalar runtime detects at run time the data dependencies between the tasks that must
be run in a Grid (see Chapter 4), the information about which are those tasks and the
direction and type of their parameters must be known in advance. This information is
provided in the IDL file. The syntax used to describe the tasks and their parameters is
a simplified interface definition language based on the CORBA IDL standard [51]. We
have selected this language because it offers an elegant and easy way of describing the
tasks’ interface including the direction of the parameters. There is not any other relation
between GRID superscalar and CORBA (no tool from CORBA is used).

Each function that the user identifies as a candidate to be run in the Grid must be

described in the IDL file. The rest of the functions in the code are not specified here, so

interface MYAPPL ({
void myfunctionl (in File filel , in scalar_type
scalarl , out File file2);
void myfunction2 (in File filel , in File file2 , out
scalar_type scalarl);
void myfunction3 (inout scalar_type scalarl , inout
File filel);
}s

Figure 3.14 IDL generic syntax

66 GRID superscalar: easy programming model for the Grid

they can be executed locally in the master or used as auxiliary functions in the worker.
The list of parameters of the function is also specified, indicating their type and if the
parameter is read inside the function (in), written (out) or both read and written (inout).
The types supported are divided in two main categories: files and scalars. Figure 3.14
shows the generic syntax of an IDL file.

Files are a special type of parameters in the IDL file. Our programming model focuses
in files as the main data parameter for the Grid tasks, and files define the tasks’ data
dependencies. A file is also needed to distinguish between a regular string passed as a
parameter to the function, or a string passed which represents a file. For those reasons, a
special type File has been defined. Several types of scalars are supported, such as char,
wchar, string, wstring, short, int, long, float, double and boolean.

The definition of a function in the IDL file must be exactly with the same parameters
as the real function it represents. The main difference is that in the IDL the files are tagged
with the special type File, and the direction of the parameters is also included. As we have
mentioned in previous section, no return value can be specified in the function. This is
confirmed in the IDL file by only accepting void as returning types of the functions.

Following with the matrix multiplication example used in previous section, we can
see how the IDL file should be defined in that case. Figure 3.15 shows the solution. In
this example there are two input files, and an input/output file (where the multiplication is

going to be stored).

interface MATMUL {
void matmul(in File fl1, in File f2, inout File f3);

}s

Figure 3.15 matmul IDL

3.2.3 Programming API: master and worker

The most important feature when defining the API of our programming model is that it
must be very simple to use: that is why a very small set of calls is defined. One of the main
goals is that the Grid must remain invisible to the user when programming the application,
therefore the API cannot include any references to where a task must be executed or how
data needed in that task is handled for its correct execution. As our programming model
is sequential, no parallel sections or parallel handling calls to open or close parallelism
will be defined. We have seen previously that the application is split into a master part

(with the main algorithm), and a worker part (where functions to be executed in the Grid

3.2 User interface 67

are implemented). These two parts are programmed in different files, as only the worker
part will be distributed in the Grid, and each of them has some API calls defined.

The master

The main program that the user writes for a GRID superscalar application is basically
identical to the one that would be written for a sequential version of the application,
The differences would be that at some points of the code, some primitives of the GRID
superscalar must be called, mainly to start and stop the runtime, and file handling
primitives on those parts where files are read or written.

If we think about the main program as a scientific workflow, we may see that the
workflow can be easily described with a sequential program. Any kind of repetitive
behavior (loops) or conditions can be expressed with the corresponding imperative
language (C/C++, Java, ...) allowing a high degree of flexibility. Moreover, users can
include inline code or calls to auxiliary functions, and not only the defined tasks for the
workflow (the IDL functions).

The basic defined calls are:

e GS_On(): notifies the GRID superscalar runtime that the program is beginning, so
the runtime is initialized. The best place to put this call is at the beginning of the
main code, but it can be placed later, always considering that no GRID superscalar

primitive or IDL function can be called before GS_On.

e GS_Off(code): this call will wait for all remote tasks to end, and will notify the
GRID superscalar runtime to stop. It is usually placed at the end of the code, so no
more calls to the runtime or IDL functions can be done after it, but other local code
can be executed. The passed argument is used to notify error situations. Passing a
0 parameter indicates that no error has been detected. In order to indicate an error a

code -1 must be provided. This will safely stop the master program.

e GS_Open(filename, mode) and GS_FOpen(filename, mode): GRID superscalar
needs to have full control over the files, as they are the main data considered.
These primitives allow to work with files while GRID superscalar can control data
dependencies. They both return a descriptor that must be used in order to work with
these files (i.e. to call read/write functions). These descriptors correspond to the
ones returned by the C standard library (when using open and fopen), so there is
no need to change following C library calls that work with these file descriptors.

Modes supported are: R (reading), W (writing) and A (append).

68 GRID superscalar: easy programming model for the Grid

e GS_Close(file_des) and GS_FClose(file_des): these primitives must be called to
close the files opened with previous calls. The previous file descriptor returned by

GS_Open or GS_FOpen primitives must be used here as a parameter.

The implemented functionality of those functions is required for a correct behavior
of the GRID superscalar applications. This set of primitives is very simple, and easy to
understand for end users, so using them in the master code is straightforward. Adding
these calls to the main program could be even automated, by substituting the C standard
library symbols of the calls to open and close in the program, or creating a source to
source compiler that adds and substitutes these calls. This is proposed as future work of
this thesis.

The main extra functionality of the open and close functions defined is to notify the
runtime that an operation is going to be performed in a file. GRIDSs must be aware of
all operations done to a file, as it is the main data used to keep the data dependencies
between all tasks. Open calls can define synchronization points, because if a file to be
read is generated in a remote machine as a task result, the execution will wait until that
file is generated and copied back to the master, so the open call can continue. The returned
descriptor must be used to perform operations in the file. This is due to a technique applied
in GRIDSs runtime: the renaming of files. This and other programming considerations

are described in section 3.2.6.

In the matrix multiply example, our master is shown in Figure 3.16. MSIZE represents
a dimension size of the hyper-matrix. Three nested loops iterate to first generate the
names of the files to be used for the multiplication, and later call to matmul to perform
the operation. In this particular case, only GS_On and GS_Off must be added. The call to
matmul is defined exactly with the same parameters that in the sequential version of the

algorithm, therefore no change must be done.

Figure 3.17 shows a usage example of GS_FOpen and GS_FClose. The IDL file for
this example describes that task task_A1 has as input file f/ and as output file 2. After
the execution of this task, the main program opens the file f2 for reading. As tasks are
not executed in the same moment that are called, and since the code of the application
that is not in the tasks is not under the control of the runtime, the fscanf call could have
been executed before the file f2 has been written, provoking an error. With the use of
GS_FOpen, the runtime will synchronize the execution of the main program with the

tasks run in the Grid, and wait until the file f2 is ready.

3.2 User interface

69

#include "GS_master.h"
#include "matmul.h"

int main(int argc, char xxargv)

{
char f1[15], f2[15], f3[15];
GS_On() ;
for(int i = 0; i < MSIZE; i++)
for(int j = 0; j < MSIZE; j++)
for(int k = 0; k < MSIZE; k++)
{
fl = "A." + 1+ "." + k;
f2 ="B." +k+ "." + j;
f3 ="C." +i+ "."+j;
//f3 = f3 + (fl % f2)
matmul (f1, 2, f3);
}
GS_Off(0) ;
}

Figure 3.16 Master code for matmul

void main ()

{
FILE xfp, char xsomedata;

task_A1("fI1", "f2");

fp = GS_FOpen("f2", R);
fscanf (fp, "%s", &somedata);
GS_FClose (fp);

Figure 3.17 Opening a file for reading

70 GRID superscalar: easy programming model for the Grid

With the objective of providing extra functionality, some advanced primitives are
defined:

e GS_Barrier(): some algorithms may need to wait for all tasks to finish in a
particular point of the application. This may be useful to make a decision and keep
executing the algorithm. GS_Barrier allows to do explicit task synchronization. It
is similar to what GS_Off does, but it does not stop the runtime, so more GRID
superscalar functions can be called later. A misuse of this call can severely slow the

parallelization of the code, as it has an effect in the task generation.

e GS_Speculative_End(my_func): defined to achieve speculative execution of tasks.
Basically, it waits until a special notification has risen in a worker, or until all
previous tasks have ended. At the former case, a function specified by the user

(my_func) will be executed. At the latter case, the function will not be called.

In most of applications the use of the GS_Barrier primitive is not required, but it is
provided for completeness. The GS_Speculative_End will be described more in detail in

section 3.2.4.

The workers

The worker side of the application is implemented by the user providing the code of
the functions that have been selected to run on the Grid. The code of those functions does
not differ from the code of the functions for a sequential application. The only current
requirement is that they must be implemented in a separated file from the main program,
as the worker will be distributed in the Grid. All functions specified in the IDL file must
be now implemented using the same headers (same parameters and passed in the same
order). The function must be considered as an isolated piece, that will be called during
the execution.

The input/output parameters defined in the function header must be used to work with
files inside the function (for instance, to open and close a file). This is due to the renaming
technique applied in the runtime (detailed in Chapter 4), thus no explicit reference to a
file can be made. However, users are allowed to create temporary files to work inside the
function that can be referenced explicitly.

One primitive and one variable are defined to be used in the worker side of the

application:

e GS_System(command_line): when there is the need of calling an external exe-

cutable file (i.e. a simulator), GS_System must be used. The parameter passed

3.2 User interface 71

is the command line to be executed. It has the same behavior as the system call in
the C standard library.

e gs_result: this is a special variable defined that can be used to pass an error code to
the master, so the master can stop the execution. If it is assigned a non-zero value,
the master will stop the application knowing that the user has detected an error in a
task.

As with the rest of basic primitives, the use of GS_System is mandatory to ensure the
correct behavior of the application, because the path where the worker is executed will be
different of what the user can expect. In the end of its implementation it calls to system,
and it returns its result. The internals of this call will be explained in Chapter 4.

The gs_result default value is O (that means no error is detected in the task), so its use
is not mandatory. If the user detects an error which requires the application to be stopped,
an error code may be assigned in this variable. This code must be higher than 0, because
negative values are reserved for the GRID superscalar runtime. As the value is assigned
by the user, the meaning of every value is defined by the user, thus errors can be mapped
to different codes freely.

In the matrix multiply example previously presented, the function implementation
does not change (see Figure 3.13). The only issue is that it must be implemented in a
separated file, together with the auxiliary functions needed (as PutBlock and GetBlock).
So, we present in Figure 3.18 a different example to show the usage of GS_System and
gs_result. In this function, a simulator named Dimemas is called as an external binary,
having as input the configuration file cfgFile and the traceFile, and as an output the
outFile. In this case, the previous call to system has been replaced with GS_System.
Moreover, the result returned by the GS_System call is assigned to gs_result, so in case

the system call returns a failure, the execution of the master will stop.

void Dimem(file cfgFile, file traceFile, file outFile)

{
char aux[200];

sprintf (aux, "/usr/local/cepba—tools/bin/Dimemas —t %s
—0 %s %s", traceFile , outFile, cfgFile);
gs_result = GS_System(aux);
}

Figure 3.18 GS_System and gs_result example

72 GRID superscalar: easy programming model for the Grid

3.2.4 Speculative execution of tasks

The initial motivation of the speculative execution of tasks comes from optimization
algorithms. A common optimization algorithm is usually implemented by calling to a
simulator a high number of times since an objective is reached. Each call has different
input parameters in order to simulate different situations and obtain the results under
that conditions. A first implementation option is to check for the result of a simulation
when it ends, before launching a new one. This is valid for a sequential environment,
but is not feasible in a parallel execution model (if we have to wait for a simulation
results before launching a new one, no parallelism can be applied). A second option
is to make a program that calls N times to the simulator (using a parallel approach), and
checks results at the end. The problem of this second option is that all N simulations
must be performed, even if in the first simulations the objective was already reached.
Therefore, more computation than is really needed is done, and this is not efficient.
A part from optimization algorithms, other programs can benefit from the speculative
execution. Those are environments or algorithms that when an event is received, change
their behavior to follow with the computation, or in any construction where an exceptional
event may require discarding forthcoming functions (as a branch and bound program).

The GS_Speculative_End call provides a mechanism for achieving speculative ex-
ecution of tasks. The syntax of this mechanism is really similar to the exception
treatment done in languages such as C++ or Java, as well as the objective (jump in
the logical sequence of the code when something happens), but its behavior is not
exactly the same. The complete interface for this mechanism is composed of two
primitives: GS_Speculative_End in the master and GS_Throw in the worker. The primitive
GS_Throw has been implemented as a mechanism to throw exceptions in the workers, but
it is a much simpler mechanism than the one currently implemented in C++ or other

languages and no type is associated to the exception.

The speculative execution mechanism allows to execute simulations until an ob-
jective is reached, but exploiting parallelism, and not wasting too much resources
of what are really needed. To enable the mechanism, only the special primitive
GS_Speculative_End(my_func) must be called (at the master), after having called to the
functions that may rise the exception (when the objective is reached). This primitive will
wait until all previous tasks end, or until an exception rises from a task, taking it as the
last valid task in the region. It is important to mention that there is no primitive to mark
the start of the speculative region. Speculative regions are defined between the beginning
of the application and the first call to GS_Speculative_End or between different calls to
GS_Speculative_End.

3.2 User interface 73

#include "GS_master.h"
#include "mcarlo.h"
#define MAXITER 5000

void myfunc ()

{
printf ("EXCEPTION received from a worker\n'");

}

int main(int argc, char xxargv)
{
GS_On() ;
for(int 1 = 0; i < MAXITER; i++)
{
generate_cfg (newCFG); //Has a GS_Open inside
Dimem (newCFG, traceFile , DimemasOUT) ;

}

GS_Speculative_End (myfunc) ;
printf ("Execution ends\n");
GS_Off(0) ;

Figure 3.19 Speculative execution example: master

It also exists the possibility of calling a function when an exception arises. This is
done by passing a function pointer to the GS_Speculative_End primitive. This function
must accomplish some requirements: it has to be a function without a return value, and
without parameters. With this function a message to know that the exception has been
thrown could be printed, or a global variable could be modified in the main program, so

the rest of the algorithm will be aware about the situation.

In the worker side, only GS_Throw is defined. When the situation to rise the exception
is accomplished, GS_Throw is called. This primitive makes the function return, so all

code following GS_Throw will not be executed.

A simple optimization algorithm is presented in Figure 3.19 to clarify the usage of
the speculative execution mechanism. The function generate_cfg is executed locally
to generate a new configuration file for a simulator. The Dimem function receives as
an input that configuration file, together with a traceFile and starts a simulation whose
results will be written in the DimemasOUT file. When an exception rises from a task, all
following tasks will not be executed. So, when GS_Speculative_End returns in the code,
DimemasOUT will contain the output solution that reaches the desired objective, unless

we have reached the maximum number of iterations MAXITER.

74 GRID superscalar: easy programming model for the Grid

void Dimem(file cfgFile, file traceFile, file outFile)

{
char aux[200], double result, FILE xfp;

sprintf (aux, "/usr/local/cepba—tools/bin/Dimemas —t %s
—0 %s %s", traceFile , outFile, cfgFile);

gs_result = GS_System(aux);

fp = fopen(outFile, "r");

result = read_result(fp); /« Read result value in the
file x/

fclose (fp);

if (result > 50 && result < 70)
GS_Throw ;

Figure 3.20 Speculative execution example: worker

In the example the Dimem function is the only one that can cause the exception. The
worker code is shown in Figure 3.20. After the simulation finishes, we check if the result
is between two values in order to call to GS_Throw to notify the master that the objective

value has been found.

3.2.5 Task’s constraints and cost specification

A Grid is usually composed of lots of different machines. They can be from clusters
to single personal computers, with different software installed, different architecture,
operating system, network speed, and so on. In this sense, there is a need of expressing
what elements compose this heterogeneity. If we have a description of what is available in
each machine, we can therefore ask for a specific feature in our Grid. An example is the
execution of an external simulator in an algorithm. This simulator may be installed only
in part of the machines that form the Grid, so it is interesting to define what machines have
the simulator available and what tasks in the algorithm need that simulator to be executed.
That way, the machines that will be able to execute a task will be first filtered to consider
only those that accomplish the requirements.

In order to allow GRIDSs to perform an efficient scheduling of the tasks forming an
application, or to apply other policies in the tasks (i.e. fault tolerance), metrics about the
task must be provided. We provide users the option of specifying the estimated execution
time of a task, considering their knowledge of the application. With the information of
what time is supposed to spend a task in a resource, our runtime is able to implement

a scheduling different from a First Come First Serve or a Random approach in order to

3.2 User interface 75

execute efficiently the application in the Grid with the objective of reducing the run time.

In GRID superscalar a user can express the computation cost and execution constraints
or requirements for each of the tasks. This is performed by the use of an extra
source file where they can be specified. This file was already introduced in Figure 3.8
and is generated together with the stubs and skeletons of the application by the
gsstubgen tool (see section 3.1.2). For every "operation_name" function defined in the
IDL file, two functions are defined in this file named operation_name_constraints and
operation_name_cost, and they return a default value (true for the constraints and 1 for
the cost). Both functions will be evaluated dynamically by the runtime whenever a task is
considered to be executed in a resource.

In order to specify a constraint for a task, an Expression (basically a string) must be
build with the requirements of the task, and return it in the corresponding function. The
syntax of the Expression must be of the format expected by the ClassAds library [77]
(similar to the C/C++ syntax, with literals, aggregates, operators, attribute references and
calls to built-in functions). The constraints of a task can be such as that a given software,
a given operating system or architecture are required in the remote host. Machines have a
set of attributes pre-defined when the Grid configuration file to be used for executing the
application is specified (this is done with the deployment center, see section 3.1.2). These

attributes are the ones to be used when defining the constraints of the task. They are:

e OpSys: operating system at the machine.
e Mem: physical memory installed in the machine expressed in Megabytes.

e QueueName: name of the queue in the remote machine queuing system where jobs

are going to be executed.
e MachineName: host name of the worker.
e NetKbps: speed of the network interface given in Kilobits per second.
e Arch: processor’s architecture.
e NumWorkers: number of jobs that can be run at the same time in the machine.

e GFlops: effective floating point operations that the machine is able to perform in a

second, expressed in GigaFlops.
e NCPUs: number of CPUs the machine has.

e SoftNameList: list of software available in the machine.

76 GRID superscalar: easy programming model for the Grid

Initially, the parameter Mem is defined as the physical memory in the machine.
However, the semantic of this parameter can be changed when defining the machines
that form the Grid. The attributes are a key-value pair, so anything can be defined as a
value. The user or a Grid administrator may define in the machines the Mem attribute as
virtual memory, or GFlops as theoretical instead of effective. When defining a constraint

for a task, the established meaning must be considered.

In order to construct the Expression, the keyword other must be used to refer to a
machine attribute. Logical and arithmetic operators can be used to build more complex
expressions. The SoftNameList is a special case because it contains a list of key values.

The built-in function member must be used to access its content.

An example of a constraint function is shown in Figure 3.21. It has been specified
that, in order to execute a Dimem task, a machine with a powerpc architecture must be
used, and the software named Dimemas23 must be present in the list of available software
(it can refer that the simulator Dimemas version 2.3 must be installed in the machine, or a
license must be available to run it). Only the machines that accomplish both requirements
will be considered to run a Dimem task. If no constraints should be specified, the value to

be returned would be frue.

string Dimem\ _constraints (file cfgFile, file traceFile)

{
return "(other.Arch == \"powerpc\") && (member (\"

Dimemas23\", other.SoftNameList))";

Figure 3.21 Constraints specification

The cost of a task is described in a function that will be evaluated at run time. This
function must return the estimated execution time of a task in a resource, specified in
seconds. The default value 1 is assigned to indicate to the runtime that nothing is specified
about the performance of the task in the function (so, the information is not available). We
have considered the possibility of calculating the duration of the task as a function of the
size of input files and as a function of the performance of the resource used. That is why

two functions are defined to assist users in that purpose:

e GS_GFlops(): GigaFlops of the machine that is considered to perform the task.

This is extracted as defined at the Grid configuration file.

3.2 User interface 77

e GS_Filesize(name): Size of a file in bytes. It is mandatory to use this primitive
when a size of a file is needed because the file could be physically in any machine
in the Grid.

As the function is evaluated at run time, GS_GFlops will return a different value when
different machines are considered to execute a task. The same happens with GS_Filesize,
that will return the size of the file in the evaluation moment (this is important if the file
has been modified).

The corresponding cost function for the Dimem task is presented in Figure 3.22. The
parameters of the cost function are the list of input parameters of the task. In this example,
we have previously determined empirically how the size of a trace file affects to the
number of operations generated by Dimemas in order to solve the simulation. So, this
factor is multiplied by the size of the trace file. And finally the operations that have to
be solved are divided by the power in GigaFlops that the machine has. The result is an

approximation to the time in seconds that the simulation is going to last.

double Dimem_cost(file cfgFile, file traceFile)
{

double factor , operations, cost;

factor = 1.0486—e06; //How size of trf

affects the number of ops generated
operations = GS_Filesize(traceFile) * factor;
cost = operations / GS_GFlops();
return(cost);

Figure 3.22 Cost specification

The example shows how an estimation could be implemented by the user. However it
also exists the possibility of calling inside this function an external program that is able
to estimate how much time is going to spend the task in a resource. This way we could
use results obtained in research work about run time task prediction, as that topic is out of

scope in this thesis.

3.2.6 Programming considerations and tuning

Along this chapter there have been presented several considerations when program-
ming an application with GRID superscalar. This section summarizes all programming
considerations in our system. Besides, it also provides some recommendations (non-

mandatory) to achieve a better performance when running an application. The main

78 GRID superscalar: easy programming model for the Grid

objective of our programming model is to make the Grid transparent to the user, however,

some small hints can be helpful to achieve more parallelism in the application.

The file renaming mechanism implemented in the GRIDSs runtime, useful to increase
the parallelism of the application, causes some restrictions when operating with files in
the master side of the application. We have already seen that GRID superscalar special
primitives must be used in the master to open and close files (section 3.2.3) as well
as the file descriptors returned by these functions to work with the files. In general, a
programmer can never assume that a file has its original name during the execution (but
the original name is used when calling to GRIDSs defined IDL functions or the open
special primitives). So, the manual renaming or deletion of files that a user can do in the

program can cause an incorrect behavior if it is done before GS_Off is called.

When the speculative execution mechanism is used, it has to be considered that the
only code that will not be executed in the speculative region in case of exception are the
GRID superscalar generated tasks. All the inline code in the master will be executed in
all cases (whether the exception comes or not). This is important to be taken into account,
because if variables are modified inside the speculative region, these modifications will

always be executed.

In the worker side of the application, due again to the renaming mechanism, files are
not expected to have their original names, thus the passed parameters in the function must
be used to refer to a file. However, temporary files can be safely created and referred
with their original names. This is even possible when different instances of the same task
could run in the same machine, because the runtime implementation creates a temporal

directory in worker hosts to avoid concurrency problems.

In order to tune an application for better performance with GRIDSs, we must take
into account that true data dependencies between tasks are unavoidable, and they cause
that two tasks cannot execute in parallel. A true dependence is caused when a task wants
to read a file (input File) that is generated at a previous task (output File). If the input
file is not really necessary to operate in the second task (i.e. it could be some debug
information, not needed data), removing it as a parameter in the task definition will
avoid data dependencies between these two defined tasks, thus more parallelism will be

available in the workflow.

Another suggestion is to completely skip the use of output scalars because the runtime
performs automatically a partial barrier to wait for the output scalar to be generated, and
this can diminish the parallelism of the application. The rationale for this decision will be
detailed in Chapter 4 but it is related with the decision of only considering files as data

dependencies in GRIDSs. To avoid the barrier, the scalar could be written to a file.

3.2 User interface 79

The GS_Open call used with read or append mode may also cause a partial barrier
synchronization in the master code, as the file must be read in that precise moment. If the
file is available locally, no barrier is needed because the file can be accessed directly. If
the file must be generated from another task, the GS_Open must wait until that previous
task finishes to access the file. Again having a synchronization point in the master may
decrease the parallelism extraction of the application. Also the wrong usage of GS_Barrier
call may also diminish the parallelism, as a full synchronization point is introduced in the

master. Again Chapter 4 will describe the details.

3.2.7 Summary

The steps needed to program an application with GRID superscalar are:

e An IDL file that contains the headers of the functions that are going to be run on
the Grid must be defined. All files and scalars involved in the computation must be

written as parameters, trying to avoid out and inout scalars.

e The master code must be written/changed to call these new defined functions.
GS_On must be used at the beginning, GS_Off(0) when the program ends correctly,
GS_Off(-1) when an error is detected in the master, and the file management
primitives when working with files in the master (it cannot be expected that files

have their original names). Avoid the usage of GS_Barrier.

e The worker code must be implemented in a separated file. It must contain the
body of the functions defined in the IDL file. Function parameters must be
referenced, instead of the expected file names. External binaries must be invoked

with GS_System and a possible error code can be reported with gs_result.

In this chapter we have seen many details on the interface, and the advanced
possibilities it offers, albeit as we can see in the summary, the minimum steps needed
to create a new application with GRIDSs or to adapt an existing one accomplish our
objective of simplicity. The internal behavior of the calls in the interface is described in
Chapter 4, which describes the GRIDSs runtime in detail.

80 GRID superscalar: easy programming model for the Grid

3.3 Programming comparison

The success criteria of a programming model cannot be measured numerically, as
there is no metric to measure how good or bad a programming interface is. The best way
to evaluate it is by comparing it with other programming models which follow a similar
objective. In this section we compare our programming model with other tools created
to assist users to develop and execute their applications for the Grid. The comparison
allows us to show if our objective of providing a very simple interface to program has

been achieved.

3.3.1 Using Globus

Globus is a Grid middleware which provides basic services to use the Grid. By
understanding how these services should be used we may see the importance of hidding
the complexity of using a Grid middleware to end users. In this case we present an
example of how a simulator could be invoked in several remote machines by using the
Globus client interface.

In order to run a remote binary with Globus, both a command line tool may be used, or
a program which uses the Globus client interface. If we want to run several instances of the
same binary in several different machines in the Grid, we can use both approaches. With
the command line tool we need to create a shell script that contains the commands needed,
and with the client interface a main program must be created. In both cases the difficult
part is related to the creation of a Resource Specification Language (RSL) description of
the job to be run, so it is not important which of these two options we select.

We can see in Figure 3.23 an example using the Globus client interface. Whenever
users want to invoke a simulator available in a remote machine, they must specify the
transfers of the input files required by the simulator, the transfers of results generated,
and to erase them from the remote machine once the execution has finished. This must
be specified by building an RSL. Moreover, the user must order the job submission to
a precise machine, performing the machine selection statically in the program. If more
than a single simulation must be run, the user should control how many submissions are
done in order to not overload the resources, create a particular RSL for the machine, and
specify in every case the machine to be used.

Although the globus_gram_client_job_request used calls are asynchronous to achieve
the parallel execution of the binaries, we have not added any state notification handling
or error handling in this code for simplicity, so its execution would submit three binaries

to three machines and end without waiting for them to finish. The resulting code is Grid-

3.3 Programming comparison 81

int main ()
{
rsl = "&(executable =/home/user/sim)(arguments=inputl .
txt outputl.txt)(file_stage_in=(gsiftp ://bscgridOl.
bsc.es/path/inputl . txt /home/user/inputl . txt))(
file_stage_out=/home/user/outputl . txt gsiftp ://
bscgrid0l .bsc.es/path/outputl . txt)(file_clean_up=/
home/user/inputl . txt /home/user/outputl . txt)";
globus_gram_client_job_request(bscgrid02.bsc.es, rsl,
NULL, NULL);

rsl = "&(executable =/home/user/sim)(arguments=input?2 .
txt output2.txt)(file_stage_in=(gsiftp ://bscgrid0l.
bsc.es/path/input2.txt /home/user/input2.txt))(
file_stage_out=/home/user/output?.txt gsiftp ://
bscgrid0l .bsc.es/path/output? . txt)(file_clean_up=/
home/user/input2.txt /home/user/output2.txt)";

globus_gram_client_job_request(bscgrid03 .bsc.es, rsl,
NULL, NULL);

rsl = "&(executable=/home/user/sim)(arguments=input3 .
txt output3.txt)(file_stage_in=(gsiftp ://bscgridOl.
bsc.es/path/input3 . txt /home/user/input3.txt))(
file_stage_out=/home/user/output3.txt gsiftp ://
bscgrid0l .bsc.es/path/output3 . txt)(file_clean_up=/
home/user/input3 . txt /home/user/outputl.txt)";

globus_gram_client_job_request(bscgrid04 .bsc.es, rsl,
NULL, NULL);

Figure 3.23 Globus code to submit a binary

aware and in order to handle the parallelism of the application, the code should take into

account the notifications coming from tasks, which would add extra complexity to it.

In GRIDSs, a function sim must be created as shown in Figure 3.24 where files
required are passed as parameters, and the calls to GS_On and GS_Off must be added
in the main program. No reference is done to how files must be transferred between
resources, or in which machines the simulations are going to be executed. The code is
Grid-unaware. Besides, the parallel execution of the application is handled by the GRIDSs

runtime implicitly without any effort for the user.

82 GRID superscalar: easy programming model for the Grid

void sim(File input, File output)

{

" 2 ’

command = "/home/user/sim + input + + output;
gs_result = GS_System(command) ;

}

int main ()

{
GS_On() ;
sim("/path/inputl . txt", "/path/outputl . txt");
sim("/path/input2.txt", "/path/output2.txt");
sim("/path/input3.txt", "/path/output3.txt");
GS_Off(0) ;

Figure 3.24 GRIDSs code to submit a binary

3.3.2 Using DAGMan

Condor DAGMan [30] is an environment which allows to define workflows to be
executed in the Grid. It has been already introduced in Section 2.1.1. The definition of
the workflow is made in the DAG input file, an input passed to DAGMan. There exists a
particular syntax where dependencies between jobs are explicitly specified. To present an
example using DAGMan, we are going to focus in the keywords JOB and PARENT. The
JOB keyword specifies a job to be managed by Condor where a job name and a Condor
submit description file must be passed. This submit description file describes the binary
to be run and other submission details, but nothing about where the job must run needs to

be specified (Grid-unaware).

Figure 3.25 presents a simple workflow structure defined with DAGMan, known as
the diamond example because of the generated graph. In this case there is a source node
A, from where two edges point to nodes B and C. From B and C there is an out edge

pointing to node D. We can see how the Condor submit description file is passed, and

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor

PARENT A CHILD B C
PARENT B C CHILD D

Figure 3.25 DAGMan example to build a workflow

3.3 Programming comparison 83

int main ()

{
GS_On() ;
task_A(f1, 2, f3);
task_B(f2, f4);
task_C(f3, f5);
task_D(f4, f6);
GS_Off(0) ;

Figure 3.26 Same workflow built using GRIDSs

how the dependencies are described. Using GRIDSs to generate the same workflow, four
different functions should be specified to define the four tasks performed, as it is shown
in Figure 3.26. The GS_On and GS_Off calls are used, as they are mandatory for every
GRIDSs program. The files needed in every task are passed as parameters in the calls, in
contrast to what is done in DAGMan, where these files are specified in the several Condor
submit description files.

Although both approaches are Grid-unaware, the main difference between them is
that with DAGMan the dependencies between jobs are explicitly described in the DAG
input file, while in GRIDSs these dependencies are implicitly extracted from the actual
parameters of the tasks. Moreover, if we want to generate the same DAG a thousand
times, in DAGMan we should repeat the content of this file a thousand times, while in
GRIDSs only a loop calling a thousand times to the defined functions should be used. Not
only loop constructs can be used to generate the workflow, but also conditional structures
provided by the programming language (if, switch, ...), thus a different workflow may be
generated for different executions of the application.

In addition, intermediate files can reuse the same name because the runtime will apply
renaming to them (see Chapter 4). This is an important advantage, since the developer
does not have to manage a large number of intermediate files, as it is done by the
system. In this sense we can say that GRIDSs is more efficient than DAGMan from

the programming point of view, because bigger workflows can be generated easier.

3.3.3 Using Ninf-G

The Ninf-G programming model [97] provides a framework for programming on the
Grid and it is a reference implementation of the GridRPC API [83]. GridRPC includes
two types of calls, synchronous and asynchronous. While synchronous calls allow to

implement a sequential algorithm, they do not allow to exploit the concurrency of the

84 GRID superscalar: easy programming model for the Grid

application, as only a single call may be executed in a precise moment. Asynchronous
calls allow to implement parallelism in the application, but the parallelism must be
explicitly described in the code.

Figure 3.27 shows an example of how asynchronous calls are used in Ninf-G. In order
to execute the foo function in two machines in the Grid (A and B), a handle object must be
created specifying the machines to be used. After that, the work must be splitted between
the two machines, thus the tasks containing odd input and output files will be executed in
machine A and the even ones in machine B. In this case the user is not only specifying
in which machines the functions must be run, but also how the work is splitted among
them. This means that the programming model is Grid-aware and that the parallelism is
explicitly described. Moreover, the grpc_wait_all call blocks until all function calls have

finished, so the synchronization is also explicitly done by the user.

int main ()
{
grpc_initialize ("config_file");
grpc_object_handle_init_np("A", &A_h, "class");
grpc_object_handle_init_np("B", &B_h," class");
for(i = 0; 1 < 25; i++)
{
grpc_invoke_async_np (A_h, "foo",&sid ,f_in[2x1i],
f_out[2x1]);
grpc_invoke_async_np(B_h, "foo",&sid ,f_in[2xi1+1],
f_out[2*x1i+1]);
grpc_wait_all ();
}
grpc_object_handle_destruct_np(&A_h);
grpc_object_handle_destruct_np(&B_h);
grpc_finalize () ;

Figure 3.27 Ninf-G usage example

When implementing the same application in GRIDSs (see Figure 3.28) only the
GS_On and GS_Off calls must be added, as calls to functions in GRIDSs are already
asynchronous. In addition, nothing is specified in the code about where a function must
run, thus keeping the programming model unaware of the underlying Grid. As the GRID
superscalar runtime will be in charge of deciding where a task must be executed, no special
indexing must be used to split the work among the available machines, at it was done with
Ninf-G. In both cases an IDL file describing the headers of the functions is used to know

which files must be sent to or received from a machine when a task is executed.

3.3 Programming comparison 85

int main ()

{
GS_On() ;
for(i = 0; 1 < 50; i++)
foo(f_in[1], f_out[i]);
GS_Off(0);

Figure 3.28 Same application using GRIDSs

3.3.4 Using VDL

The Chimera’s VDL language [35] is used to define abstract workflows, as it has been
briefly mentioned in Section 2.1.2 when describing Pegasus. The "abstract" word added
to the workflow means that no machine is specified in the workflow, only the task which is
an application invocation. Thus, the abstract workflow can be converted to a specific one
when it is going to be executed in a particular Grid (this is what Pegasus does), adding the
data transfers if needed.

There are two main constructs when creating a workflow with VDL. The first one
is a transformation (denoted TR), which is an abstract template for invoking a binary.
Comparing it to GRID superscalar it may be similar to defining a function to be run in the
Grid, but the function can only contain a binary invocation. The second main construct
is a derivation (denoted DR), which corresponds to a materialization of a transformation.
It is how the transformation is made specific by passing the parameters to be used in the
transformation. Following with the comparison with GRID superscalar, the derivation
would be the call to the function in the main program.

We present an example of a VDL workflow in Figure 3.29. We can see that between

these two derivations there exists a data dependence (trans2 cannot be executed until

DV transl (a2=@{output:tmp.0}, al=@{input: filein.0});
DV trans2 (a2=@{output:fileout.0}, al=@{input:tmp.0});

DV transl (a2=@{output:tmp.1}, al=@{input: filein.l});
DV trans2 (a2=@{output: fileout.l1}, al=@{input:tmp.1});

DV transl (a2=@{output:tmp.999}, al=@{input: filein.999});
DV trans2 (a2=@{output: fileout.999}, al=@{input:tmp.999});

Figure 3.29 VDL workflow application

86 GRID superscalar: easy programming model for the Grid

transl generates the data) which is automatically detected by Chimera. Besides, the
direction of the parameters used must be specified in every derivation, which makes the
interface look more complex. Another problem is that each derivation must be specified
in a new line: no constructs such as loops or conditionals are provided to create a set of
derivations. This means that the size of the VDL program grows proportionally with the
size of the workflow. So, if we want to call trans1 and trans2 with a different input file a
thousand times, two thousand lines should be added to the program.

In contrast, as GRID superscalar is based on an imperative programming language to
generate the workflow, a loop can be easily used to call to the transformations all times
that should be needed. This is shown in Figure 3.30. So, in both cases the executions
can be performed in parallel using the Grid, but in GRIDSs the interface allows to
build very big workflows in a simpler manner. Both interfaces are Grid-unaware and
the parallelism is implicitly exploited, however, if part of the application is not very
computation demanding, in GRIDSs it may be executed locally in the master code, while
in VDL the application must be composed of binaries which will run in the Grid.

int main ()

{

GS_On() ;

for(i = 0; i < 1000; i++)

{
tmp = "tmp." + i; filein = "filein." + i;
fileout = "fileout." + 1i;

transl (tmp, filein);
trans2 (fileout , tmp);

}
GS_Off (0) ;

}

Figure 3.30 Workflow application generated with GRIDSs

Chapter 4
GRID superscalar runtime

The GRID superscalar runtime is the other main component of the GRID super-
scalar programming environment. We have already presented in previous chapter the
programming interface, corresponding to the static phase of the application (when the
application is programmed and deployed). The runtime corresponds to the dynamic phase
of the application: the execution. The design of the runtime is focused on one hand on
implementing the functionality provided by the programming interface, and on the other
hand on implicitly exploiting the existing parallelism in the programmed applications.
We have seen in the description of the programming interface that it does not provide any
calls to express parallelism in the code, as we want it to follow a sequential programming
paradigm in order to be very simple. This means that the parallelism must be extracted

from the application automatically, and the runtime will be in charge of this.

The final objective of executing the application in parallel is to speed up its execution
time by means of using the resources available in the Grid. Therefore, the success criteria
of our runtime depends on the reduction achieved of an application’s total execution time.
Anyway, we will see that the achievable parallelism of an application depends on its
implementation (more specifically, on its internal data dependencies).

A main requirement for our runtime is the usage of a Grid middleware, which provides
the basic services to use the Grid infrastructure: job management, data transfer and
security. The job management is needed to execute the workers of the application
remotely, the data transfer to send input and output files between machines, and the
security to allow the authentication an authorization in the machines. Our runtime is
responsible of using the Grid services and hide them to end users, together with the
programming interface. We selected initially the Globus Toolkit [33] as a reference
middleware to implement the runtime, but we are not bound to Globus, as we have been

able to easily port the runtime to other middlewares.

88 GRID superscalar runtime

The first section of this chapter describes in detail the main idea applied in the
runtime: apply our knowledge from the computer architecture world to a completely
different environment, such as the Grid programming environments. An automatic
data dependency detection and a renaming mechanism enable to execute parts of the
application in parallel.

The second section presents more developments made with the implementation of the
runtime. First we show how the basic functionality of the programming model has been
implemented and then we present how the task scheduling is performed in the runtime
considering three different point of views: the task dependency graph, the brokering of
resources and the file locality exploitation. At the end of the section it is described how
the workers can communicate with the master, how the application finishes its execution,
and how some pre-defined environment variables allow to tune the behavior of the runtime
without the need of recompiling neither the runtime nor the application.

The last section shows the main experiments made with the runtime. First we present
a deep analysis of the runtime made with the NAS Grid Benchmarks, and then we show
a simple example and some real use cases of GRIDSs to study the scalability of the
implemented applications. Although in these real cases the main work has been done
by other authors, we believe they are very important to show the achievements made by

our environment.

4.1 Runtime scientific contributions

In order to achieve the goal of speeding up the execution of a Grid application, we
have adapted ideas coming from the computer architecture world, more precisely the
superscalar processor design. Our vision is that a processor internally is very similar
to the Grid: they both have computing elements, storage elements, and a network that
interconnects all of them. The main difference between the Grid and a processor is the
timescale in which everything happens: while in a processor storing data into memory or
running an instruction can be measured in nanoseconds, in the Grid transferring data to or
running a binary in a remote machine can last seconds, minutes, or even hours.

As we have found this similarity between processors and the Grid, we want to
use superscalar processor techniques in a completely different environment such as the
Grid. In a superscalar processor, the dispatcher reads instructions from memory and
decides which ones can be run in parallel, dispatching them to redundant functional units
contained inside a single processor. Therefore, a superscalar processor can be envisioned

having multiple parallel pipelines, each of which is processing instructions simultaneously

4.1 Runtime scientific contributions 89

from a single instruction thread. In the Grid, our runtime will decide which tasks can run
in parallel (the IDL tasks defined by users, as seen in Chapter 3), dispatching them to the
available remote machines in the Grid, thus achieving the parallel execution of tasks from
a single thread program (the master).

Two key mechanisms are applied in our runtime to implement the parallel execution
of tasks. The first one is the automatic data dependency detection, and the second is the

parameter renaming. They both will be described in detail in next sections.

4.1.1 Automatic data dependency detection

As in superscalar processors, in GRIDSs a data dependency analysis is performed
between all tasks that form the application to exploit its parallelism. A graph is used in
order to represent the tasks (nodes in the graph) and their data dependencies (directed
edges). A node is an instance of one of the operations defined in the IDL file to be
executed in the Grid. The edges in the graph define a relative execution order that must be
respected when scheduling the tasks in the Grid. For that reason, this graph is also called
workflow.

Task generation is done based on the execution of the main program (the master).
As it has been described previously, this program is sequentially run in a single thread
of execution and this defines a sequential order between tasks. During the run of
the program, every time an IDL defined operation or a GRIDSs API call is found, an
interaction with the runtime is performed. In the case of IDL operations, the Execute
call is invoked and a task is generated. At this step, there is also a data dependency
analysis done between the new created task and all the previous generated tasks during the
execution of the master. The generated task is inserted in the task dependency graph, and
in most of cases it will not be executed immediately but will remain pending for execution.
However, once the task has been inserted in the graph, the runtime returns control to the
main program that will continue with the master execution, thus continuing with the task
generation. Tasks are sequentially generated, but thanks to the data dependency analysis,
they can be executed in an out-of-order manner while data dependencies are maintained.
So, a tasks generated later in the sequence can be run before, or even at the same time of
a task generated earlier when no data dependencies exist between them.

Whenever the master has a synchronization point, the generation of tasks is stopped,
as the master does not continue its execution. Synchronization points in the code can
be caused by calling to GS_Off, GS_Barrier, GS_Speculative_End and a GS_Open or
GS_FOpen where a file must be read. The master is also stopped if output scalars are

defined in a task. All these situations were previously introduced in Section 3.2.6 as

90 GRID superscalar runtime

situations to be avoided, but now we can understand why they influence in the parallelism
exploitation of the application. Stopping the generation of tasks is not good because future
tasks that potentially may have been executed in parallel will not be created if the master
program is stopped. Thus if the generated graph before the synchronization point does
not have enough degree of parallelism to use all available machines in the Grid until the
synchronization is solved, we are losing the opportunity of achieving a better speed up
of the application. Nevertheless, depending on the application, the synchronization is
mandatory and so it may not mean that a better performance may have been achieved
(i.e. GS_OfAT is used to finish, so nothing more is going to be executed in the Grid. Or
GS_Speculative_End, which waits for all speculative tasks). When the synchronization
has finished, the generation of tasks continues.

The data dependencies considered between tasks are the ones found when analyzing
the files generated or consumed by a task. The reason for only considering files in this
analysis is because of the type of applications our system targets, as it has been described
in section 3.1.1. A data dependency analysis considering also scalar parameters of a task
would not provide any big gain in the type of applications we focus and would require
a big effort in developing a new compiler. This compiler should be able to perform a
data dependency analysis between any instruction in the code and any call to a GRIDSs
function, because in order to know in which instruction an output scalar is used, every
single instruction in the main code should be analyzed to see if the output scalar is
referenced. Besides, any scalar variable can be easily transformed in a file parameter
by writing its value to a file, so considering its data dependencies.

There are several types of data dependencies which may be found between two
tasks [47]:

e Read after Write (RaW): exists when a task reads a file that is written by a previous
one. The second task cannot continue until the file needed from the first task
is generated. An example is presented in Figure 4.1. In this case, the result of
task filter is written in bh_tmp.cfg, and task dimemas_funct uses that file as input.
Therefore, task dimemas_funct must be executed after task filter since it needs an

output of this task.

e Write after Read (WaR): exists when a task writes a file that is read by a previous
one. If the second task overwrites the file, the first one would read an incorrect
content. We give an example of this type of dependency in Figure 4.2. In this
case, the problem is with the parameter dim_out.txt, which is read by task extract

and written by task dimemas_funct. Initially, if the sequential execution flow is

4.1 Runtime scientific contributions 91

followed, no problem should arise. However, if dimemas_funct is executed before

task extract it may overwrite some data needed by task extract.

e Write after Write (WaW): exists when a task writes a file that is also written by a
previous one. If the write order between these two tasks is not kept, the content
left in the file for upcoming read operations would not be correct. Figure 4.3 shows
an example of a WaW dependency. Both tasks named filter, write in the same file
bh_tmp.cfg. A problem with this data dependency may arise if the first instance of
task filter is executed before the second one. Although the execution of both tasks
will not be affected, if there is any task that later reads bh_tmp.cfg from second

function, instead it would read the resulting file from the first function.

filter ("bh.cfg", L, BW, "bh_tmp.cfg");
dimemas_funct("bh_tmp.cfg", "trace.trf", "dim_out.txt");

Figure 4.1 RaW dependency example

extract("bh_tmp.cfg", "dim_out.txt", "final_result.txt");
dimemas_funct ("bh_tmp.cfg", "trace.trf", "dim_out.txt");

Figure 4.2 'WaR dependency example

filter ("bhl.cfg", L1, BWI1, "bh_tmp.cfg");
filter ("bh2.cfg", L2, BW2, "bh_tmp.cfg");

Figure 4.3 WaW dependency example

It must be clarified that, if the code is executed sequentially, there is no problem in
any of these examples. But when parallelism is exploited, the dependencies represent an
order restriction between the tasks. In order to detect a RaW dependency, the input files
of the created task must be compared with the output files of all existing tasks. The WaR
dependency is detected with the opposite operation: comparing all output files defined in
the created task with the input files of previous existing tasks. And the WaW dependency
is detected by comparing all output files, both from the created task and the existing ones.
Because a task can have as many input or output files as needed, several types of data
dependencies can exist between two tasks. Nevertheless, we will see in section 4.1.2

that RaW dependencies are the only ones that are unavoidable, so whenever a RaW

92 GRID superscalar runtime

dependency is detected, there is no need of checking for WaR and WaW dependencies
between two tasks, as the RaW dependency already makes mandatory the sequential
execution of both tasks. This reduces the complexity of comparing the parameters of
current task against all previous generated tasks.

We can ensure that the resulting graph of a data dependency analysis does not have
any cycles, neither between new tasks pointing to old ones nor between a task itself. The
former is due to the definition of the dependencies, which is made to keep the sequential
order of the application defined by the main program in the master. The latter is because
no order needs to be kept in a task itself, as the task is the atomic unit of execution in
the system. Therefore, graphs that define data dependencies are also known as Directed
Acyclic Graphs (DAG).

During the execution of the master, any call to the API file management primitives
(GS_Open, ...) is also analyzed to check data dependencies. The open primitives are
translated to a task, with the particularity that this task will be executed locally. Depending
on the mode specified in the open (read, write or append), the task will be created with an
input file (read), an output file (write), or an input and output file (append) as parameters.

Therefore, when a file is open for reading or appending data, a RaW dependency may
be created if the file is the result of an existing task. If the file is opened for writing or
appending data, a WaR or WaW dependency may be detected if a previous task reads
or writes in the file, respectively. Besides, the execution of the master program cannot
continue until the dependency is solved, as following operations will probably access
the file requested to be open. Next section explains how renaming techniques solve this
problem for WaR and WaW dependencies.

From the resulting task graph, the GRID superscalar runtime is able to exploit the
parallelism, by sending tasks that do not have any dependency between them (no path
exists between them in the task dependency graph) to remote hosts in the Grid. The
program will execute correctly if all types of task dependencies are respected. This way,

our runtime extracts and exploits the implicit parallelism inside the application.

4.1.2 Parameter renaming

From the three data dependencies introduced in previous section, the RaW dependency
is unavoidable, as nothing can be done in order to try to execute both tasks in the
dependency with a different order than the one specified. For that reason this dependency
is also called true dependency. However, WaR and WaW dependencies can be avoided

using a parameter renaming mechanism.

4.1 Runtime scientific contributions 93

Register renaming is a technique used in superscalar processors in order to remove
WaR and WaW dependencies between instructions [47]. That is why those dependencies
are also called false dependencies because they can be avoided with the mentioned
renaming technique. The renaming removes the implicit order between both tasks,
therefore the graph describing the data dependencies between instructions has less edges,
which is important in order to increase the possible parallelism in the application. In the
GRID superscalar runtime this mechanism is also included, which in this case renames
files instead of registers in order to avoid data dependencies between tasks.

The renaming is just, as the word suggests, the change of the parameter’s name.
Considering the examples presented in previous section (Figures 4.1, 4.2 and 4.3), we now
present the same cases for WaR and WaW dependencies but with a renamed parameter. In
Figure 4.4, instead of using the same dim_out.txt as parameter, if the system renames the
file parameter for the dimemas_funct task, then the WaR dependency would disappear,
because dimemas_funct can safely write in the file dim_out.txt_ RENAMED without
overwriting the content of dim_out.txt. Thus, both tasks can now be executed in any order
or even at the same time. Similarly, in Figure 4.5 the parameter bh_tmp.cfg has been
renamed in the second call to the filter function to bh_tmp.cfg_ RENAMED, so again both

tasks can be executed in any order.

extract ("bh_tmp.cfg", "dim_out.txt", "final_result.txt");
dimemas_funct ("bh_tmp.cfg", "trace.trf", "dim_out.
txt_ RENAMED") ;

Figure 4.4 WaR dependency renaming example

filter ("bhl.cfg", L1, BWI, "bh_tmp.cfg");
filter ("bh2.cfg", L2, BW2, "bh_tmp.cfg_ RENAMED"):

Figure 4.5 WaW dependency renaming example

An example of how the data dependency graph is reduced by the renaming technique is
shown in Figure 4.6. The file f1 is an output in task T1 and an input in T2, which defines a
true data dependency in the first iteration, but in subsequent iterations there exist WaR and
WaW dependencies that can be avoided. We can see that removing these dependencies
the graph is transformed from a totally sequential graph to a parallel graph. In summary,
the most important achievement of the renaming is to increase the task graph degree of
concurrency, in order to enable more tasks to be executed in parallel when running the

application in the Grid.

94 GRID superscalar runtime

nf1 ”

While (lend conditicn())
{

TL (epuy “E17) 5

T2 (“EL17, o,

T3 (eyonyen)

“f1” “f1_1" “f1_2"

Figure 4.6 Example of a data dependency graph optimization with file renaming

The renaming must be taken into account in the data dependency analysis. To rename a
file in a task in the end means to have a new co-existing version of that file, as two different
processes will write in two different files that initially were the same. It is important to
mention that future calls in the algorithm using a file which has been renamed, must
be translated to the new name generated in order to reference the correct version of the
file. For instance, in Figure 4.5, any new reference to bh_tmp.cfg must be translated
to bh_tmp.cfg_ RENAMED to keep results of the algorithm correct. Thus, when a new
task is generated, and before doing the data dependency analysis, the runtime internally
substitutes the filenames of the parameters referenced in a task by the last renamed

filenames.

Internally, GRID superscalar handles the renaming by means of two hash tables: one
that, when given the original filename, returns the name of the last renamed filename
and a second one that, when given a renamed filename, returns the original name. A
original filename may have several renamed filenames during the execution of the whole
application, but a renamed filename has always only one corresponding original filename.
When generating a new task, the only renamed filename that can be used is the last one,
as our programming model maintains the same behavior as if the application has been

executed sequentially. We will see that, because of this, we will be able to implement

4.1 Runtime scientific contributions 95

mechanisms to remove intermediate versions of a file when they are not going to be used

anymore (see Section 4.2.4).

The runtime has different behaviors depending on the type of dependency. When a
RaW dependency is found, the data dependency is directly added in the graph, as it is
unavoidable. When a WaR or WaW dependency is found, a new name for the output file
that causes the data dependency is generated. Data structures are updated and both tasks
could eventually be run in parallel. No dependency is added to the graph. In the end, the
graph only contains RaW dependencies, as all WaR and WaW dependencies must have

been removed with the renaming.

The GRID superscalar file management primitives (GS_Open, ...) may also cause
renaming in file parameters. Whenever a WaR or WaW dependency is detected between
the open task and previous tasks (this may happen when the task has an output file, thus
if open mode is specified as append or write), a renaming is introduced. Moreover, future
generated tasks will also check dependencies with tasks generated because of a call to

GS_Open, so more renamings could be introduced later.

There is an extra benefit in adding a renaming for a call to open a file, because
any dependency detected must implement a barrier synchronization in the open call to
respect the data dependency, as the code following the open is probably going to perform
operations to the file (using the file descriptor returned as an output scalar). This means
that the master code cannot continue executing until the data dependency is solved. When
the open causes a RaW dependency, the barrier cannot be avoided (data generated by
another task must be read). However, if the dependencies detected are WaR or WaW, a
renaming allows to directly write in a new created file (the rename), therefore allowing
the master main code to continue its execution, generating more tasks that potentially can

be run in parallel.

When the execution of the main program finishes, even if it is a correct execution
of the whole application or when there is an error and the execution is stopped, all the
renamings made to files are undone by the runtime. This way the renaming technique
applied to files keeps hidden to users, which is one of our main objectives. Besides, in
order to make users able to check for results during the execution of the application, other
mechanisms are implemented to undo the renaming during the execution (described in
Section 5.2.1).

96 GRID superscalar runtime

4.2 Runtime developments

4.2.1 Basic functionality

This section describes how the basic functionality designed in our programming model
is implemented, as the objective of the GRID superscalar runtime is not only to achieve the
parallel execution of the programmed applications, but also to implement the functionality

provided by the programming interface.

Job submission

The basic functionality provided by the runtime is to run tasks into remote machines,
which is enabled by the usage of a Grid middleware that allows the usage of distributed
resources (CPUs, disks, ...). Several services provided by a Grid middleware are required
in order to run a GRID superscalar task in a remote machine (which is also known as a
job). More precisely, our runtime uses directly the job management service (to submit,
monitor or cancel jobs) and the file transfer service (to move data between machines).
However, other services also provided by the middleware are passively used, such as the
security service (authorization and authentication of the user in the remote environment).

Submitting a task to a resource requires four stages: first send the input data files
required for the task from their original location to the host where the task is going
to be executed, second start the job by starting a binary in the remote machine, third
detect when the job has finished its execution, and fourth collect the results of the job.
For every single task, our runtime is in charge of performing these Grid related actions
totally transparent to the user. This keeps the user away of knowing any details about how
the Grid middleware must be used, thus achieving our objective of keeping the Grid as
transparent as possible for the user.

The selected middleware to implement our runtime on top of it has been the Globus
Toolkit [33]. This decision is justified with the wide usage of this middleware by many
other tools for the Grid. The Globus Toolkit has emerged as a standard de facto in the
Grid community. It provides a set of basic services divided into four main categories:
security, data management, execution management and information services. This set of
services, and the API provided to use them, allows enough flexibility to implement the
GRID superscalar runtime with them.

Selecting Globus as the reference middleware may have caused that some implemen-
tation decisions are bound to it (i.e. using the Resource Specification Language (RSL) to
describe how a job must be run in the Grid). However, the core of the GRID superscalar

is independent of the Grid middleware, and therefore future versions of GRID superscalar

4.2 Runtime developments 97

could use other middlewares. This has been demonstrated in work done mainly by other
members in our research group adapting GRIDSs to run on top of other middlewares:
Ninf-G [97] and ssh/scp (see [5] and [9]).

When a task is submitted to the Grid, the first thing to be done is to provide the inputs
it needs in order to run. In GRIDSs, the inputs which are files are transferred using the file
transfer service from their initial location to the destination machine. The scalar inputs
are provided as arguments to be passed to the command line when the job is run (encoded
in base64 [36] format). Once files are transferred, a temporal directory must be created in
order to ensure the correct execution of the task. This is due to the possibility of working
with temporary files in the task, because if several tasks are executed in the same machine
working with the same temporary files, the consistency of these temporary files could not
be ensured. When the temporal directory is created, the execution management service
starts the binary in the remote machine, and checks periodically the state of the running
process to notify about state changes to our runtime. Whenever the binary finishes, a
notification is sent to the GRIDSs runtime. After that, in the end of the process, the task
file results may be sent to the master using the file transfer service.

The task submission is done with the execution management service provided by
Globus. Some of the steps needed to perform in order to submit a task can be all specified
together with the Resource Specification Language (RSL). This language implemented in
Globus allows to specify which files have to be transferred to the destination machine,
which scalar parameters must be passed as command line arguments, when a new
temporal directory must be created, which binary must be invoked in the remote machine,
the working directory, which files must be erased after execution, and which files are
results to be transferred to the master machine. Inside our runtime, for every task, an
RSL is built in order to submit the task to the Grid with the Globus API. This is an
implementation detail bound to Globus, however the standards follow similar approaches
(JSDL in SAGA [43] and job templates in DRMAA [19]), thus it does not limit the

adaptation of our system to other middlewares.

An important part of the task lifecycle in the Grid middleware is how the state change
of the job is handled. Globus provides a callback system to receive notifications from
submitted jobs. This monitoring system is based on notifications sent from the job
submission service to the client API. A TCP port must be opened at the beginning of
the execution, and provided in the task submit in order to receive the notifications. A
callback function can be programmed, so whenever a notification of a job state change
is received, the callback function is invoked from Globus in order to deal with the state
change in the client (the GRIDSs runtime is the Globus client).

98 GRID superscalar runtime

| Y !

Croong | [e | [| [)

| f ‘

Figure 4.7 Simplified job state diagram

Using this callback system in GRIDSs means that our runtime is event based, as events
(state changes) are received and treated immediately. This is opposite to a poll based
system, where the runtime would be in charge of polling for the status of every submitted
task. In our case, both approaches could have been implemented. The callback system in
Globus has a small limitation, because no job submissions can be made inside it. Anyway,
the data structures in the runtime are updated depending on the notification received, and
the job submits are performed outside this function.

The state notifications related to a job that our runtime is interested in are:

e Pending: the job is waiting in a queue system (a local resource manager) in the
remote machine in order to be started. In this state we also know that the transfer of

input files has been completed.

e Active: the binary has started to run in the remote resource. In this state we also

know that the transfer of input files has been completed.

e Done: the job has finished and the results have been transferred to where it was

specified.

e Failed: there has been a middleware error during the execution. An error code is

provided to find out more about the error.

The state diagram of a job is detailed in Figure 4.7, with the corresponding transitions
available. Note that not all states supported in Globus are represented, as we have only
detailed the states important for the GRIDSs runtime.

As a summary of the basic functionality provided by the GRID superscalar runtime,
and to understand better its behavior, we provide two UML [103] sequence diagrams.
Figure 4.8 describes the interactions from the master point of view. The diagram
represents a very simple main program, with a single call to tasks T1 and T2. The runtime
is implemented as a dynamic library linked with user’s application. The access to the

library is performed explicitly from the user code, using the GRID superscalar primitives

4.2 Runtime developments

929

User main program

Function stubs

GRID superscalar runtime

|
|
|
|
|
»l

GRAM client

T1 ("file1.txt", "file2.txt")
|

call to Execute()

T2 ("filed.txt", "file5.txt")

Application function

call to Execute()

T/ add task to graph

~
2

? have ready tasks?

~
~
~

T

~

_> yes
submit task tor execution

/[\

? have ready tasks?

X]‘/ add task to graph

~

~

1\

——__> yes ‘
submit task tor execution

wait for tasks

Figure 4.8 UML sequence diagram of the behavior of the GRID superscalar runtime

(master side)

100 GRID superscalar runtime

| |
Local host : Remote host 1 : Remote host 2
. .
GRAM client gjm1:Globus job manager gjm2:Globus job manager
submit task for execution | remote job submission | execute program }
| 1
w1:Worker }
|
|
i
task T1 implementation

|
|
|
|

submit task for execution remote job submission execute program
! »

'| w2:Worker
task T2 imp.
globus_poll() end of job notification
_] e P O N /-
callback (task T2) /N
é _____________
>
globus_poll() end of job notification J
N Y,
_—» K= xe —————————————
callback (task T1)
- -

Figure 4.9 UML sequence diagram of the behavior of the GRID superscalar runtime
(worker side)

(GS_Open, GS_Barrier, ...) and in a transparent way to the user, through the calls to the
basic primitive Execute which are performed from the generated stubs.

Figure 4.9 shows the UML sequence diagram of the behavior of the GRID superscalar
run-time from the worker point of view, where we can see a request to the Globus
execution management service (GRAM) and how it runs the binaries of the example,
sending a notification back to the master and calling the callback function to treat the
state change.

API implementation

In next lines we are going to describe how the calls defined in the GRID superscalar
API are internally implemented to achieve the behavior previously described. These calls

where previously described in Section 3.2.3.

4.2 Runtime developments 101

The first one is GS_On. In this call, apart from creating all data structures needed
in the runtime (dependency graph, hash tables for names, ...), there is also the need of
reading all environment variables that may be introduced by the user or even a Grid
administrator in order to tune the behavior of the runtime. and read the configuration
file which contains the details of the machines which form the Grid. The environment
variables are detailed in Appendix A and the configuration file format in Section 4.2.3. It

also performs initialization calls to the Grid middleware in order to use it.

The GS_Off call is in charge of waiting for all previous generated tasks to finish by
using a GS_Barrier call. Once they are finished, it recovers all result files that may still be
located in remote workers, and erases all data files that have been in the workers during
the execution, to leave the machines as they were before the execution of the application.
Finally, it restores the original names of renamed files during the execution, and stops the

usage of the Grid middleware services.

In the case of the GS_Open and GS_FOpen calls we have seen that, in order to check
their data dependencies a task is created. This is done with a call to the Execute function,
using a special type of operation identifier, so when the task must be executed, the runtime
knows it must be run locally. The file parameter passed to Execute depends on the mode
the file has been opened: in read mode an input file, in write mode an output file, and
in append mode an input/output file. In all cases an output scalar is defined, which
contains the file descriptor result of performing the open system call. This descriptor
is returned directly to the user in GS_Open, and previously translated to a file pointer type
in GS_FOpen. When the local task is executed, it is checked if the file is present in the
master machine, or must be recovered from a worker machine, by using the file transfer

service.

GS_Close and GS_FClose can be understood as a end notification of the local task.
So, the local task is removed from GRIDSs data structures, and the file corresponding to

the descriptor passed as a parameter is closed.

Whenever GS_Barrier is called, either in the main program explicitly by the user or
internally in the runtime, the function does not return until all generated tasks at that
moment have finished. The only thing this call does is wait for notifications of tasks so

they can be treated in the corresponding callback function.

The GS_System call, defined to be used in the worker, translates the path inside the
command line passed as a parameter because a temporal directory is created to avoid
concurrency problems with files during the execution of the job. This way, the binary
specified by the user will be correctly located. If the path is an absolute path, it is not

modified. It returns the result of calling the system call in the C standard library.

102 GRID superscalar runtime

Finally, the GS_Speculative_End and GS_Throw are explained together, as they both
belong to the speculative task execution mechanism. Whenever the GS_Speculative_End
call is used at the master, there is a conditional barrier that waits until all previous tasks
finish or an exception is detected in a worker. If no exception is notified, the execution
of the master continues normally after the speculative region, so the behavior is like
any other GRID superscalar program where all tasks are executed. If an exception
is notified, all tasks generated after the one that has risen the exception and until the
GS_Speculative_End call must be discarded, as it is considered that the exception task is
the last valid task. If the task to be discarded is running, we must cancel its execution, if it
is waiting, it will be erased, and if it has been already executed, their results are discarded.

When no more speculative tasks are running, the tasks are deleted from the runtime as
if they have not existed (in the dependency graph and other internal structures). Moreover,
the possible renaming introduced is undone until the last valid task, which contains the last
valid result files. At this point, if a function has been specified in the GS_Speculative_End
call, it is invoked. After that, the execution of the master program continues normally.

The GS_Throw primitive called in the worker uses the gs_result parameter introduced
also in Section 3.2.3. This parameter is used to specify an error code in a task to the
master. A special code is specified to notify that a GS_Throw has been called, and the

function that was being executed returns at that point.

4.2.2 Task scheduling: the task dependency graph

From all the tasks generated in a GRID superscalar application, we have to decide
which ones will be submitted to the Grid. In order to make that decision, the task
dependency graph resulting both from analyzing data dependencies between tasks and
with false data dependencies removed is essential. The graph represents a relative order
between tasks that cannot be ignored in any case, thus whatever task scheduling policy
that wants to be proposed in our runtime must use the graph as a basic input.

As the graph is a Directed Acyclic Graph (DAG), a node may have several incoming
or outgoing edges. These edges may only represent RaW dependencies, as false
dependencies have been eliminated (WaR and WaW). Nodes without any incoming edges
are known as sources, and nodes without any outgoing edges are known as sinks. The
incoming edges are important to determine which task is going to be executed, as only
source nodes can be considered as tasks candidates to be submitted in the Grid in a
particular moment. The lack of incoming dependencies means that the task does not have
to wait for any data generated in other tasks, so it can be the first to be executed. Besides,

future generated tasks cannot create any incoming edge in any of the nodes which are

4.2 Runtime developments 103

already sources, as the new tasks go after them in the sequential order defined by the
master program. Thus, all source tasks have their data dependencies solved, that is why
we also call them ready tasks. The decision of what ready task must be executed between
all of them is made in the resource broker, explained in Section 4.2.3.

When a task submitted to the Grid finishes its execution, our runtime receives a
notification. In this case, the node that represents the task in the graph is erased, and
with it all its outgoing edges pointing to tasks that depend on the one which has just
finished. This is because data dependencies have been solved, as all result files in the task
have been generated and are available for other tasks. Any of the nodes pointed by this
task can become a source if it does not depend on any other tasks, thus it becomes a new
candidate to be run in the Grid. This is the way the dependency graph is consumed by the
runtime, when tasks finish their execution.

As the whole graph that represents an application is not needed in order to start
scheduling tasks (whenever a source node is detected it can be submitted), the graph
is created and destroyed at the same time dynamically while the application is being
run. This decision also hides any possible overhead that the task graph generation may
cause, as the generation time is hidden with the running time of the tasks. However,
scheduling decisions are taken with parts of the graph, as the whole graph may have not
been generated. Anyway, if the code has synchronization points (see Section 4.1.1) the
task generation may be stopped in the master code, thus in some applications having the
whole dependency graph generated before execution is not possible. Therefore, as far as
the task is created in the Execute function, we try to schedule it if it does not have any
data dependency and there are available resources in the Grid

We try to exploit the concurrency of the graph as much as possible, because many
resources may be available in the Grid in order to submit tasks in a precise moment. If
there exists more source nodes in the graph than free slots in the machines to run jobs,
we will be able to schedule enough tasks to fill in all the available slots, thus we will
be exploiting all the computing capacity of the Grid. However, the degree of parallelism
of the graph depends on the programmed application: some parts may be completely
parallel, without any dependencies between tasks, and others may be sequential due to

data dependencies. In the second case, no parallelism may be applied.

4.2.3 Task scheduling: resource brokering

The Grid is an heterogeneous system formed by many different machines. If we want
to submit jobs to the Grid, we need an entity which controls how many jobs are run at

the same time in a machine, in order to administrate the resources properly. Without this

104 GRID superscalar runtime

control, the resources could become overloaded to a saturation point. The resource broker
is the entity in charge of this.

In GRID superscalar we provide a simple resource broker which contains information
about machines and provides free ones to run jobs. There are many research projects de-
voted to develop a resource broker or a meta-scheduler, where many different scheduling
policies are studied. That is the reason why our objective is to provide a simple broker,
not a complex one. Thus, in the future, our runtime could be adapted to work with more
powerful brokers, such as the the GridBUS broker [107], the eNANOS broker [81] or
GridWay [49].

Grid specification

In order to run an application GRID superscalar needs to know what is the Grid
configuration: which machines can be used and their characteristics. This is provided
with the Grid configuration file. Although the end user could provide this information, a
more expert user such as a Grid administrator is the expected person to specify the Grid
details. This configuration file can be generated by using the deployment center tool (see
Section 3.1.2).

The information provided for every worker machine that belongs to the Grid is:

e Host name: fully qualified domain name of the host.

e Operating system: name of the operating system that runs on the host.

e Architecture: architecture of the host processors.

e GigaFlops: computing power of the host specified in GigaFlops.

e Network bandwidth: network bandwidth of the host in kilobits per second.
e Memory size: memory size of the host in Megabytes.

e CPU count: number of CPUs present in the host.

e SoftNameList: list of software available in the machine.

e Min port and Max port: port range to be used for machines that have inbound port

restrictions.

e Limit of jobs: maximum number of jobs that can be concurrently sent to the

machine.

4.2 Runtime developments 105

e Queue: name of the queue to be used when submitting jobs. It may be specified to

"none".

e Working directory: directory where the worker binary is located.

e Quota: disk space available in the working directory.

For the master machine, the host name, the working directory and the network
bandwidth must be specified. The information provided is internally used in the runtime
for different mechanisms that will be explained later: the network bandwidth to estimate
the transfer time of a file between two machines (explained later in this section), the port
range to send end task notifications with sockets (Section 4.2.4), and the quota to control

the disk usage in the resource when using renamings in files (Section 4.2.4).

Some of these parameters are flexible in the sense that GigaFlops can be set as effective
or peak, Memory as physical, free, virtual, ... The only requirement is that the same
meaning must be used when users specify constraints for the jobs (see Section 3.2.5).
The same happens with the parameter SoftNameList, to specify software available in the
machine. The decision of how a software name must be specified is up to the user. All
this data is stored in an XML file which is the Grid configuration file, and contains the
initial configuration of the Grid for an application.

The Grid configuration file provides an initial set of machines to run the application,
albeit it is very common in Grids that the pool of available machines changes dynamically
over time: new machines can be used, or machines disappear from the pool. It may also
happen that the configuration of a particular machine changes during the execution of a
GRID superscalar application, because new software is installed, or because the machine
can run more or less jobs than previously. In order to notify this changes to the runtime,
GRID superscalar allows to read again the configuration file at execution time. This is
done using a script named read-configfile, available with the distribution.

Therefore, whenever a change in the configuration must be done, the Grid config-
uration file can be edited, and the script read-configfile can be used to read again this
information. The runtime will use the new Grid specified in the file (use new machines to
submit jobs, machines removed from the file are not used, new limits of jobs are respected,
and so on). The process of editing the file and notifying the runtime about reading it again
is done by hand, and the information provided is static. However, an external resource
broker with machine monitorization capabilities could periodically write this file and

notify our runtime to read it again, making the information dynamic.

106 GRID superscalar runtime

Scheduling policy

We have stated repeatedly that one of the objectives of the runtime is to reduce the
execution time of the applications by using the Grid. With this objective, we must analyze
the task run time in detail. The total time a task requires to be run in a remote resource
is composed by two main factors: the time needed to transfer the task required input files
from their original location to the resource, and the execution time the binary process is
going to spend in the resource. If we want to reduce the total execution time of a task, we

must reduce these two factors.

t = FileTransferTime + ExecutionTime

In our runtime we initially consider that the factor considering the binary execution
time cannot be reduced. One of the problems is that the execution time of the worker
depends on the computing power of the machine, and on the implementation provided by
the user. In machines with several CPUs the process could be parallelized by the user with
thread programming or OpenMP [71] to reduce the execution time, but at the cost of using
more resources, which lets less room for other tasks to run. Using thread programming
or OpenMP is opposite to our objective of keeping the Grid as transparent to the user as
possible. Besides, in machines with a single CPU it could not be possible, or very difficult
to reduce that time.

In contrast, the time to transfer input files is something that we can try to reduce from
the runtime. That is why our policy to select the most suitable task for the available
resources 1s focused in reducing this time. We will see that we exploit the data locality
between machines to reduce even more this factor. The complete set of mechanisms that
we provide to exploit this locality will be described in Section 4.2.4.

The runtime starts the interaction with the resource broker by asking for the set of
machines available to run tasks. This is done in the runtime when a new task is created or
when a running task finishes. The broker returns a set composed by all machines whose
number of jobs submitted does not reach the specified limit of concurrent jobs. Then, for
every task ready to be submitted, according to the data dependency graph, an estimation
of the total execution time of the task is done (the file transfer time plus the execution
time) for every machine available.

The file transfer time is estimated by defining the maximum transfer speed achievable
between the source and destination machines (this is the minimum of both values, defined
in the Grid configuration file). Thus, we can calculate the minimum time the transfer of
files will last between machines. With this estimation, a less powerful machine with a

gigabit ethernet connection speed available may be selected instead of a more powerful

4.2 Runtime developments 107

machine with a DSL connection speed, where the transfer time of files is bigger. If the
input file can be obtained from different sources, the highest speed is selected first.

The execution time is estimated by calling to the cost function implemented by the
user for that purpose (see Section 3.2.5). In that function, the time in seconds is calculated
of what is the task supposed to last. The GigaFLOPS of the corresponding machine can
be used, as well as the size of input files in order to calculate this time. We agree this is
a very rough estimation of the execution time, however it is an initial solution. It is not
our objective to develop a complex resource broker with performance prediction and study
different scheduling policies. Besides, we have focused our efforts in reducing the transfer
time in the formula, not the execution time. In the future more advanced predictors could
be used, such as an external estimator from a resource broker.

Once the estimations have been calculated for all ready tasks in all available machines,
the smallest of these estimations is selected as the task to be submitted to the Grid.
Although this is a greedy policy, it pursues the idea of using the fastest resource with
less file transfer time which is available at the moment of the task submit. This simple
scheduling policy is enough to achieve the goal of reducing the total file transfer time in
the application and exploit the locality of files. It will help to locate tasks that read/write
the same (large) files in the same host, to reduce file transfers between the workers.

We believe our greedy scheduling is a good approach, as the Grid is a very dynamic
environment that can ruin complex scheduling predictions very fast. Moreover, dynamic
monitoring information of the resources (system or network load, memory usage, ...)
should be used in order to try to implement a more advanced scheduling, instead of the
static Grid configuration file that we provide. The brokering we do is static because of the

static information of this file.

Match task constraints and machine capabilities

We have seen that GRID superscalar’s user interface allows to define constraints for
tasks defined in the IDL (see Section 3.2.5). These constraints follow the ClassAd syntax,
and the ClassAd library is used to implement them [77].

The idea of ClassAds comes from the classified advertisements in the newspapers,
where some people offers things, and other people demands things. This demand and
offer can be matched. A ClassAd is a mapping from attribute names to expressions. In the
simplest cases, the expressions are simple constants (integer, floating point, or string) but
they can be more complicated. A ClassAd is thus a form of property list (a list of key -
value pairs). The ClassAd library allows to build ClassAds and match them to determine
their compatibility.

108 GRID superscalar runtime

In GRID superscalar, when GS_On is called, ClassAds are generated for every
machine defined in the Grid configuration file. The ClassAds contain as attributes the
ones defined in the configuration file (architecture, operating system, ...), and this is what
machines offer to jobs. Machines do not have any requirement for the jobs they run.

Tasks in GRIDSs do not offer capabilities, but demand them. So, the ClassAd to be
built for a task does not contain any attribute. Only the special attribute Requirements is
specified, which will be used for the matching process. The value of the Requirements
attribute is defined by the user with the constraints function provided by GRIDSs. In order
to generate a ClassAd for a task, the corresponding constraints function is invoked by the
runtime.

When ready tasks must be scheduled in the runtime, first ClassAds are built for all of
them. Before estimating the execution time of a task in an available machine provided
by the broker, the task ClassAd is matched with the machine ClassAd. The estimation is
only performed if the requirements are accomplished. This matching is done by evaluating
the Requirements attribute against each other ClassAd. As machines does not have any
requirements, their attribute has always value frue. Task requirements are evaluated
against machine attributes, and only if the evaluation returns frue the requirements are
passed.

If current task does not match with any available machine, the runtime must ensure that
there is a machine able to pass the requirements of this task. So, the ClassAd is matched
against all machine ClassAds (available or not) to ensure that the task can be executed
in the future when the machine or machines that pass its requirements are available to
execute jobs. If no machine matches the requirements, the execution is stopped.

ClassAds include an extra parameter used to implement a mechanism to control the
available quota in workers. Thus, the quota is considered a requirement to be fulfilled also

by machines. The quota control mechanism will be detailed in Section 4.2.4

4.2.4 Task scheduling: file locality exploitation

In previous section we have argued why we try to reduce the time to transfer input
files to resources. With this objective, we implement the exploitation of file locality in the
Grid when running a GRID superscalar application. The larger is the data required by an
application to be run, the better will be the results obtained exploiting the file locality. As
our target applications are those whose main data parameters are files, the size of these
files can be very big. Moreover, moving the data around all the time is not efficient in

terms of network usage.

4.2 Runtime developments 109

Keep remote copies of files

In order to run a job from a source to a destination machine in the Grid, some systems
choose to transfer input files to a temporal directory created in the destination machine,
execute the job leaving the results in the directory, transfer the results back to the source
machine, and erase everything in the destination machine as if no job had been executed.
An example of a system using this approach is GridWay [49]. This may be good for
an environment where jobs are considered as independent entities, but in our case, jobs
submitted from GRID superscalar have the relationship that they belong to the same
application, and they may reuse input data or results from previous jobs.

In our runtime, whenever a job is submitted to the Grid, input files are transferred first
to the worker machine, but when the execution of the worker finishes, they are not erased
but kept there. The same happens with result files of a task. Our runtime keeps track of the
location of every file distributed or generated in a worker, so whenever an estimation of
the total execution time of a task is done, those files that are not required to be transferred
are not added to the estimation. It may even happen that no file transfers are required to
run a task in a particular machine. The scheduling policy proposed in previous section
together with this locality mechanism is able to reduce dramatically the file transfers.

Besides, different job submissions to a single machine which share input files are
coordinated by the runtime. The first submission done to a machine starts the needed file
transfers, and if there is a new submitted task which shares any input file with the first,
this new task will not transfer the common files again but wait for the file transfers of the
first task to finish.

The input files of a task are transferred to the working directory of the machine, and
softlinks point to them in the temporal directory created to execute the task. Output files
are generated in the temporal directory, but moved to the working directory when the
execution of the task is over. Temporary files created during the task’s execution are erased
when the temporal directory is destroyed. Only the files defined as inputs or outputs of
the task will remain in the working directory to be reused.

The case of output files is specially important when saving transfer time. It is very
inefficient that, in order to use a result file, we must wait that it is transferred back to the
master machine when the task has finished, and transferred again to a new destination.
In GRID superscalar, when the task finishes the result can be directly used by a new task
in the same machine, or transferred to a new machine (in the worst case, one transfer, in
contrast to the two transfers needed in the other scenario).

In summary, we try to allocate tasks to resources where input data is already available

to save those file transfers. However, if the machine that requires less file transfers is

110 GRID superscalar runtime

busy executing other tasks, it will not be used. The required files will be copied to a new
machine, having several copies of the same file in different machines. Our policy is to use
the best resource available at the scheduling moment of the task (where the best means the
one with less estimated total execution time). In general, files are transferred on demand

when a task needs them, if the transfer cannot be avoided.

Having several copies of the same file distributed around different machines makes
mandatory the implementation of a coherency protocol. When a task writes in a single
file which is available in several machines, the rest of the copies of the file are not valid
anymore and must be marked as invalid. Invalid copies are deleted during the execution
of the application. We follow a relaxed consistency model, as we do not update all copies

of a file when one of them is written because this could increase the network traffic.

The GRIDSs runtime implements a hash where several information about files is
maintained, in order to avoid querying a remote machine to find out the information.
For every file involved in the computation, its name and size is maintained, together with
some flags to mark if the file is valid in the master machine, or if it is pending to be
deleted, and the disk names where the file is available. For each disk, several flags are
maintained, such as if the file is valid, if it must be get to the master because it is a result,

if it is currently being transferred to the disk, and so on.

There already exist tools to have replicas of files distributed in the Grid. Even the
Globus Toolkit includes one: the Replica Location Service (RLS) [23]. Nevertheless, we
have implemented our own replica system for two main reasons. The first one is that we
need a very specific functionality in order to implement the coherency protocol, which is
not provided by RLS. Replica systems seem to be more focused to provide a single logical
name to different physical names of files, and they do not include features to implement
coherency protocols. The second reason is that we do not depend on any replica service
if we want to port our runtime to a different Grid middleware. This has been proven to be

very useful when porting the GRIDSs runtime to the ssh/scp tools [9].

The main drawback of exploiting the locality is that disk usage is increased in the Grid,
more precisely in the workers, as copies of a single file may be placed in several machines.
This becomes worse with the renaming techniques introduced in the runtime, because
a single file may have several versions of itself, and they may be distributed between
machines as well. Nonetheless, our objective is to reduce the execution time of the
application, so the benefits for us are higher than the cost paid. Moreover, mechanisms to
control the quota in the workers and to erase unused versions of files have been introduced

to reduce the disk usage (explained later in this section).

4.2 Runtime developments 111

Shared input disks and working directories

To keep exploiting locality between machines in our Grid, two more mechanisms have
been added related with sharing disks between machines. The first one is the ability of the
runtime of working with input disks which are shared between machines (we call them
shared input disks), and the second one is to share a common working directory between
some of the workers (we call them shared working directories), which is specially useful
if in the Grid there are one or more clusters defined.

A machine usually has access to its own disk, but some other disks may be mounted
using shared file systems such as NFS [84] in order to share data between machines. This
may be used to access large input files, large databases, or similar. GRID superscalar
includes the possibility of declaring input disks which are visible for several machines in
the Grid. In order to estimate the file transfer time of a task, whenever an input file passed
to a task is located in a shared disk, the runtime checks if the candidate machine is able to
directly see the shared disk. If this is true, no transfer will be required between the master
and the worker if the task is executed in this resource, because the file can be referenced
directly from the worker, thus the transfer time is not added in the estimation.

These shared input disks are declared giving a virtual name to the shared input disk,
which corresponds to a root path where the disk is mounted in the master machine. In the
worker machines which can see this disk, the same virtual name is given to the disk, but
the root path where this disk is mounted in the worker machine may be different, thus it
is also specified. In practice, what the runtime does is to translate any reference made to
a shared input disk in the master, to the corresponding path in the worker, so the worker
process can access it directly. As the only translation in the file reference is the root path,
subdirectories can be freely used in this shared disks, as they will be kept in the translation
to the new path.

Declaring replicated areas in different disks as shared input disks is also possible.
If two paths in two different machines have the same data replicated, there is no need
to transfer files from one to another, as they both can use their local copy to perform a
more efficient access. Therefore, for GRID superscalar replicated areas behave exactly
as input disks which are really shared between machines: file transfers can be avoided.
The existence of a real shared disk is transparent to the runtime. Replicating data between
machines in advance is very useful if several machines work with the same input database,
and specially if the database is very big. A local access is more efficient that waiting for a
data transfer from a remote machine.

Files in a shared input disk can only be read. We do not allow to write in a shared

input disk. This is mainly because we do not distinguish between a real shared disk or a

112 GRID superscalar runtime

replicated disk when referenced by our runtime. Writing in a shared disk is possible if the
disk is shared in reality. However, if the disk is a data replica, a write in the disk will not
be propagated to the rest of replicas, leaving data not consistent between them. Besides,
even if the disk is a real disk mounted for several machines, we do not know which is the
exact physical location of the disk (i.e. if the disk has a fast local access in a machine,
or an access through a shared file system must be performed, which means in the end
transferring the file). Thus, our policy for writing results of a task is always to write them

in the working directory where the worker has been run.

In an heterogeneous Grid, many different types of machines may be used, from single
PCs to clusters. A cluster may be declared as a single machine, if it has a local resource
manager, such as a queuing system. However, if no local resource manager is available
and nodes can be accessed directly as if they were independent machines, it can be
described to GRIDSs that way. Clusters commonly have a shared file system mounted,
which is used to share data between all the machines in the cluster. In GRID superscalar,

we allow the possibility of declaring shared working directories between machines.

A working directory in GRIDSs is the location where the worker is executed in a
machine, where input files are transferred and output files are generated for a task, and
both are kept there to exploit the locality of data. Therefore, if two or more machines
share their working directory, all these files may be accessed directly and no remote
transfers will be needed between them. When an input file is transferred to the disk,
all the machines will be able to access it. The same happens when a task finishes and
writes its output files: the files are written to the disk, and are immediately available for

the rest of the machines which share the working directory.

As explained with shared input disks, shared working directories are also declared
using a virtual name for the disk and the path used to access it from the corresponding
machine. So, several machines may use the same virtual name for their working directory
when the working directory is shared between them. Sharing the working directory is not
only possible between workers but also between the master and one or more workers.
As the disk may be mounted using different paths in the machines, internally GRID
superscalar translates the specified paths from the original to the new one, as it is done

with shared input disks.

It is also possible to declare two machines that have their working directory in the
same physical disk, but mounted in different directories. In this case, the runtime will treat
them as separated areas, and file transfers will be requested from one working directory
to another. When a file transfer is specified taking as a source and destination the same

machine, in practice the Grid middleware service translates the transfer to a local copy.

4.2 Runtime developments 113

When declaring this situation, different virtual names should be used for the directories.
Anyway, we do not recommend to use this configuration because the optimal solution in

this case is to declare a common working directory for the two machines.

Erasing unused verions of files

We have previously seen how the renaming techniques used in the runtime are able
to improve the intrinsic parallelism of the application by eliminating data dependencies
between tasks (see Section 4.1.2). When a new renaming is generated for a file, a new
version of the file is created which exists together with the original one. As renaming
may be applied many times for the same file, many different versions of the same file
may exist at the same time. This may be a problem in terms of disk usage if we allow
all versions to exist during the whole execution of the application. The lifetime of a file
version must be studied in order to determine for how long the version will be needed in
the system. Whenever the version is not needed anymore, we will be able to delete it,
therefore reducing the disk usage caused by renaming.

We know in advance that new calls in the code using a file which has been renamed
must be translated by the runtime always to the last name of the file, because of the
sequential order defined by the master main program. The newest version of a file cannot
be erased in any case, as new tasks may read it, but old versions are candidates to be
erased. This means that a file version lifetime is determined by the tasks that need to read
that version, and by the existence of a newer version. Therefore, once nobody wants to
read a file version, and a new renaming exists, the file can be eliminated from the whole
system (from the runtime and from all the working directories in the machines), as a new
version exists and no task is going to read that old version.

The runtime controls during all the execution of the application the reading accesses to
files. When the task is created, input files determine that a new reader requires those files,
so the number of readers for each file is increased. When a task finishes its execution,
input files are checked in order to decrease the number of readers for every file. If any of
these files reaches the number of zero readers, and it is not the latest version of a file, it
can be deleted.

Figure 4.10 shows a source code which causes several renamings at the same file.
More precisely, a new version of f1 is created in every iteration to avoid WaW and WaR
dependencies with next iterations. If we name f1.X to the renamed files, where X stands
for the iteration where the file is generated, we may have ten versions of f1 active at the
same time (f1, f1.1, f1.2, ..., f1.9) because in every iteration there exists a task T2 which

is going to read that version. Once T2 is executed, the corresponding f1 will be erased as

114 GRID superscalar runtime

for(i = 0; i < 10; i++)
{

TLIC..., .., "fI");
T2("FL", ..., ..)

}

Figure 4.10 Code which causes file renaming

no more readers need that file and there exists a new version. The file 1.9 is the latest
version of f1, thus it will not be erased even if currently no readers are waiting to read its

value.

We can determine what would be the worst and the best case of disk usage caused by
renaming. In the best case, only the latest version of a file is maintained, as older versions
have already been deleted because no task is going to read them. In the worst case, all
versions may be maintained, because all tasks that must read those versions have not been
executed yet. However, as our goal is to reduce the execution time of the application, we
assume this temporary higher disk usage to achieve that objective, knowing that, as soon

as the version is no more needed it will be erased.

Disk quota control

Previous sections have presented how the locality mechanism implemented in GRIDSs
helps to reduce the file transfers between machines, at the cost of using more disk space
in the machines which form the Grid. Also, the renaming mechanism used to increase
the parallelism of the application increases the disk usage. Disks have a limited size, and
users commonly have a maximum space assigned to be used, also known as quota. Users
may be aware of their quota in a machine, in order to know if there is enough quota to
execute a task. However, because of the GRIDSs mechanisms, the quota available in the

machine may be less than initially expected.

Also because of the parallelism exploitation, several tasks may be running at the same
resource in a given moment. If these tasks have common source files, the quota used at a
precise moment will be only a single instance of the files, not an instance for every task.
A user may be confused thinking that only an instance of a task can be executed, while
it is not the case thanks to the locality exploitation. In this case the disk usage would
be reduced when running several tasks in the same resource. A mechanism is needed in
order to control the quota usage of GRIDSs in the worker machines to determine if a task

is able to be executed due to its quota requirements.

4.2 Runtime developments 115

The GRID superscalar runtime controls the quota used in every machine specified as
a worker. Whenever input files are transferred to a worker, or result files are left in a
worker, the quota available in that machine is decreased. Also if files are deleted due to
invalidation of copies between machines or because they are unused versions of files, the
quota is increased. The quota is defined as an extra attribute of the machine which may
be specified in the Grid configuration file which describes the machines used as the Grid
to run an application.

Before executing a task, the runtime calculates the required disk space to transfer
the input files to the candidate machine. Therefore, the quota requirement for input files
is automatically controlled. Unfortunately, some quota problems may still arise, as the
runtime is not able to determine in advance the size of the output files or the temporary
files created by the user in the task. Anyway, if the user is aware that result files may be a
problem in terms of quota, the constraints mechanism allows to specify as a requirement
of a task a minimum quota available in the machine where it must be run. This quota
specified by the user (when available) is added by the one determined by the runtime to
know the total quota requirement of the job.

The quota is defined as requirement of a task, so it is also used in order to filter
resources. It is added to the task ClassAd as a requirement and matched with machine
ClassAds in order to determine if the machine is able to accomplish the requirements of
the job, as described in Section 4.2.3. So, some machines may be discarded to be used

when they are available if there is not enough quota to run a particular task.

4.2.5 Return of task results and end of application

When the execution of the application finishes, there is a post-process executed in the
GS_Off call where all working directories in the remote hosts are cleaned, application
output files are collected and copied to their final locations in the master machine (as
they have not been collected due to locality exploitation) and all is left as if the original
application had been run locally, following our objective of keeping the Grid as invisible
as possible to the user. Thus, for the end user the application starts and finishes as any
other local application, with the only difference that hopefully the execution has been
much faster by using the Grid resources.

Due to the file locality implemented, task file results are not returned to the master, but
left at workers. However, other information must be provided to the runtime when a task
finishes, such as the exit status of the task, information about the size of result files kept in
the worker and output scalars generated by the task. This information is sent in a special

message from the worker to the master, independently from any messages that the Grid

116 GRID superscalar runtime

middleware may send to the GRIDSs runtime. We have implemented two mechanisms to
send this message: using a result file, or using a direct socket connection. We will discuss

later in this section the advantages and drawbacks of both.

Task output scalars

Our runtime takes into account data dependencies based on files and not between
scalars. The discussion of this decision has been already described in Section 4.1.1.
Whenever a task returns an output scalar, other tasks or inline code in the user main
program may need it immediately. Reading this parameter without any synchronization
could lead to an erroneous execution, as it will not be correct until the task that generates it
finishes. The only way to guarantee the correct execution of the application is to execute
a local barrier synchronization when a task has one or more output parameters which
are not files. By local barrier synchronization is meant that the runtime will temporally
suspend the execution of the user main program at that point until the task generating
those outputs has been executed. The wait time in the barrier could be hidden in the
execution time if GRID superscalar has enough tasks available to be run in parallel, and
the task with the output scalar is early scheduled for execution. If the application do not
meet this conditions, performance may diminish due to stopping the generation of tasks
in the master code.

Although this behavior may seem inefficient, it is reasonable under the assumption
that tasks generally will have files as output parameters and exceptionally some tasks can
have a scalar output parameter. We differentiate that local barrier from a global barrier,
which will wait until all submitted tasks end. Besides, the output scalar could be written

to a file and passed as a result file to avoid this local barrier if needed.

End of task messages using files or sockets

The runtime supports two ways of sending notification messages from the worker
when a task has finished: by sockets or by files. The socket mechanism is handled by
a thread created in the master program which listens for notifications from workers and
receives their content. The notification message contains the output scalars of the task,
together with an error code from the task specified by the gs_result parameter useful to
detect task failures. In addition, the size of the output files generated by the task is also
sent to the master, so the runtime can gather this information to perform future scheduling
decisions.

The file mechanism consists on writing the same message used in the socket

mechanism to a file. This file is generated by the worker when its execution finishes

4.3 Evaluation tests 117

and is specified when the job is submitted to be transferred back to the master when the
task finishes. Thus, the master can open this file to read the content of the message.

If we compare both mechanisms we can see that the socket mechanism allows a
faster communication between the worker and the master, because the message is directly
received, while in the file mechanism the Grid middleware must transfer the file back to
the master so the runtime can open it to read the message. However, the requirement of
the socket mechanism is to be able to open a direct connection from the worker machine to
the master, and this cannot always be accomplished by worker machines. An example of
this limited connectivity is commonly found in clusters, where only a front end node can
establish direct connections to external machines, and the rest of nodes are only allowed to
communicate between them. Thus, when clusters or machines with limited connectivity
are used in our Grid, only the file mechanism could be used.

The socket mechanism also allows to skip any possible overhead wich may be
introduced by the Grid middleware when notifying the end of a task. An example of
this overhead can be found in the Globus Toolkit version 2 job execution service. In order
to detect the end of a task, a job manager process polls every 30 seconds to check if the job
has already finished, as it is demonstrated in Section 4.3.1. In the worst case, almost 30
seconds of overhead may be introduced in a job execution, and if the application is formed
by thousands of tasks, the overhead may be important. With the socket mechanism,
whenever the message is received the task is considered to be finished, without having
to wait for the end notification from the Grid middleware. Therefore, we recommend to
always use this mechanism when workers in the Grid do not have limited connectivity to

reduce the execution time of the application as much as possible.

4.3 Evaluation tests

The main objective of the runtime is to achieve a faster execution of the application by
using the Grid resources. We have evaluated the execution of different applications to see
how we achieve this objective. Our first goal is to make a deep analysis of the runtime,
in order to check that we can speed up applications and to analyze possible bottlenecks in
our system.

The second thing we want to demonstrate is that we are able to obtain speed up from
the executed applications, but this speed up depends on several factors of the application:
the granularity of tasks and the parallelism available in the application. We have selected
a simple example and several real use cases of GRID superscalar to study the scalability

of applications and compare the performance when using our environment.

118 GRID superscalar runtime

Table 4.1 Summary of presented applications

Application | Interesting features

NAS Grid Benchmarks | Representative benchmark, includes
different types of workflows which
emulate a wide range of Grid
applications
Simple optimization example | Representative of optimization algorithms,
workflow with two-level synchronization
New product and process | Production application, workflow with

development | parallel chains of computation

Potential energy hypersurface | Massively parallel, long running
for acetone | application
Protein comparison | Production application, big

computational challenge, massively
parallel, high number of tasks
fastDNAml | Well-known application in the context of
MPI for Grids, workflow with

synchronization steps

Table 4.1 contains a summary of the applications we present in next subsections. We

have also detailed the most interesting features of each application.

4.3.1 In depth analysis

In this section we present some of the results obtained with the implementation of the
NAS Grid Benchmarks [11]. We analyze the scalability of the benchmarks when run in
our testbed. Besides, we have instrumented the runtime to obtain Paraver tracefiles [59]
in order to do a performance analysis, which allows us to know precisely the behavior of
the runtime and detect possible bottlenecks to be improved.

The NAS Grid Benchmarks (NGB) [28] are based on the NAS Parallel Benchmarks
(NPB). Each NGB is a Data Flow Graph (DFG) where each node is a slightly modified
NPB instance (BT, SP, LU, MG or FT), each defined on a rectilinear discretization mesh.
Like NPB, a NGB data flow graph is available for different problems sizes, called classes.
Even within the same class there are different mesh sizes for each NPB solver involved in

the DFG. In order to use the output of one NPB solver as input for another, a interpolation

4.3 Evaluation tests 119

Launch Launch BT MF SP MF LU
MF
SP SP SP
sp sp sp BT MF Sp MF LU
SP sp Sp MF
BT MF Sp MF LU Report
Report
HC
ED
Launch
LU LU LU
Launch BT MF MG MF FT MF MF MF
MB
BT MF MG MF FT MG MG MG
MF MF MF
BT MF MG MF FT Report
FT FT FT
VP

Report

Figure 4.11 Data Flow Graphs of the NAS Grid Benchmarks

filter is required. This filter is called MF. Four DFG are defined, named Embarrassingly
Distributed (ED), Helical Chain (HC), Visualization Pipe (VP) and Mixed Bag (MB).

Each one of these DFG represents an important class of Grid applications.

e ED represent a parameter study, which is formed by a set of independent runs of
the same program, with different input parameters. In this case there are not data

dependencies between NPB solvers.

e HC represents a repeating process, such as a set of flow computations that are
executed one after another. In this case a NPB solver cannot start before the previous

one ends.

e VP represents a mix of flow simulation, data post-processing and data visualization.
There are dependencies between successive iterations of the flow solver and the
visualization module. Moreover, there is a dependency between solver, post-
processor and visualization module in the same iteration. BT acts as flow solver,

MG as post-processor and FT as visualization module.

e MB is similar to VP, but introducing asymmetry in the data dependencies.

Figure 4.11 shows the DFG of the four benchmarks for classes S, W and A. If we

analyze the DFGs we can see that he maximum parallelism of ED is 9 for all of these

120 GRID superscalar runtime

classes. HC is totally sequential and for MB and VP the maximum task parallelism is
3. A paper and pencil specification is provided for each benchmark. The specification is
based on a script file that executes the DFG in sequence and in the local host. For each

benchmark a verification mechanism of the final data is provided.

We have implemented the scripts that execute the DFG using the GRID superscalar
programming model. However, a modification of the NPB instances was needed to allow
GRID superscalar to exploit all its functionalities. We modified the code of the NPB
instances in such a way that the names of the input/output files are passed as input
parameters. In the original code each NPB instance generates internally these names.
The file names were generated in such a way that they were different in each execution
of the same NPB program. With our modification we can reuse the same file name
in different iterations, and GRID superscalar guarantees the proper execution using the
renaming feature. In this way, the NGB main program is much simpler than the original

one.

We ran all the benchmarks in a local testbed formed by: Khafre, an IBM xSeries 250
with 4 Intel Pentium III, and Kadesh8, a p630 node of an IBM RS-6000, formed by 8 SP
nodes with 16 Power3 processors each, and 9 p630 nodes with 4 Power4 processors each.
Khafre and Kadesh8 ran tasks as workers, and a PC based system with Linux was used as
the master. In each case, a maximum number of tasks that could be sent to each machine
was set, which can vary from 1 to 4 (as both machines have 4 CPUs in a single node).

Tables 4.2, 4.3 and 4.4 show the results for the VP and MB benchmarks when run
with classes S and W. We have not detailed executions with ED and HC since their
DFGs are less interesting (completely parallel and completely sequential respectively).
The benchmarks were run assigning from 1 to 4 tasks to each worker. The times reported
in the tables are average times from several executions, since the total execution time can
vary more than 10% from one execution to another.

Figures 4.12, 4.13 and 4.14 show the relative speed up achieved in the executions. MB

scales with the number of tasks as expected in both machines used alone, but up to three

Table 4.2 Execution times for the NAS Grid Benchmarks MB and VP on Kadesh8
Benchmark | 1 task 2 tasks 3tasks | 4 tasks
MB.S 294.14s | 166.57s | 152.05s | 154.15 s
MB.W 543.31s | 298.14s | 223.60s | 225.15 s
VP.S 310.16 s | 280.52s | 252.89 s | 248.05 s
VP.W 529.65s | 336.96s | 339.55s | 339.08 s

4.3 Evaluation tests

121

Table 4.3 Execution times for the NAS Grid Benchmarks MB and VP on Khafre

Benchmark 1 task 2 tasks 3 tasks 4 tasks
MB.S 243.70s | 133.25s 96.46 s 110.69 s
MB.W 591.88s | 321.55s | 222.18s | 22598 s

VP.S 330.56s | 248.07s | 252.77s | 251.87s
VP.W 518.40s | 310.39s | 320.21s | 320.32s
VP.A 1663.21s | 1243.04 s | 1267.77s | 1128.61 s

Table 4.4 Execution times for the NAS Grid Benchmarks. Kadesh8 and Khafre

simultaneously
Benchmark | 1+ 1task | 1 +2tasks | 2 + 1 tasks
MB.S 278.55s 172.85s 209.92 s
MB.W 348.72 s 314.83s 365.99 s
VP.S 317.88 s 314.54 s 314.96 s
VP.W 373.85 s 249.11s 232.14 s
3,00
2,00
—-MB.S
s B MB.W
§ 1,50 —A-VP.S
3 - M SCVPW
- VP.A
1,00 -
0,50
0,00

2

3

Limit of tasks (Kadesh8)

Figure 4.12 Speed up using Kadesh8

122 GRID superscalar runtime

3,00
2,50 -
2,00 — o
T 9
o —- MBS
o - MB.W
1,50
8 ~A-VP.S
7z - VP.W
1,00
0,50 -
0,00
1 2 3 4
Limit of tasks (Khafre)
Figure 4.13 Speed up using Khafre
2,50
2,00 -
1,50 -
a ~-MB.S
3 - MB.W
& —4-VP.S
7 S VP.W

1,00 — —— &

0,50 4

0,00
1 1+1 1+2 2+1

Limit of tasks (Kadesh8 + Khafre)

Figure 4.14 Speed up using Kadesh8 and Khafre

4.3 Evaluation tests 123

workers, because the maximum parallelism in the DFG is 3. VP is not scaling nicely with
the number of tasks. As we want to perform a detailed analysis of our runtime, the VP
benchmark is a good candidate to do a performance analysis, which is reported later in
this section to understand why it does not scale. When both workers are used the time is

not scaling as expected. The reason for that behavior is also analyzed later.

In order to do a performance analysis of the benchmarks the GRID superscalar runtime
was instrumented to generate Paraver tracefiles. Paraver [59] is a performance analysis
and visualization tool which has been developed at CEPBA for more than 10 years. It
is a very flexible tool that can be used to analyze a wide variety of applications from

traditional parallel applications (MPI, OpenMP or mixed) to web applications.

The traces generated for the GRID superscalar applications were only in the master
side. However, to take into account the overhead of Globus, time measures of the duration
of the workers tasks were also performed. To generate the traces for the GRID superscalar
applications, two kind of elements (which are the base of the Paraver tracefiles) were
used: the state and the events. The state of the GRID superscalar can be, for example,
user (when running user code), Execute (when running runtime primitives), and so
on. Additionally, events were inserted to indicate different situations: beginning/end of

callback function, task state change (job request, active, done, ...), file open/close, etc.

Some of the results for the NGB benchmarks presented in Tables 4.2, 4.3 and 4.4
seem to be unreasonable at a first glance. For example, VP benchmark, class W, when run
in the IBM Power4 node. As the maximum parallelism of this benchmark is 3, it is not
surprising that no benefit is obtained when using the 4 processors (4 tasks). However, we
expected to get better performance with 3 tasks than with 2, therefore this two cases were
re-run and Paraver tracefiles were obtained.

Table 4.5 shows the time the application is in each state for different runs. It is
observed that the main part of the execution of the application is in the Execute function.
Analyzing with more detail it can be observed that there are 16 different Execute bursts
in the tracefiles, one for each of the tasks of the graph (see Figure 4.11) plus one for a
GS_FOpen performed at the end of the benchmark.

Table 4.5 General performance information for the NAS Grid Benchmark VP.W
Task # | User Execute | GS_On/GS_Off | Barrier | TOTAL
4 tasks | 0.002's | 325.579 s 13.494 s 11s 339.08 s
3tasks | 0.002's | 347.159 s 23.652s 12s 370.81 s
2 tasks | 0.002s | 318.360 s 28.583 s 11s | 341.946s

124 GRID superscalar runtime

Globus overhead

45
40 ~
35 -
—~ 30 A
\./25,
20 A
15 ~
10 -

O Task duration
W Active to Done
0 Request to Active

S

time

Figure 4.15 Task elapsed time composition for the NGB VP.W

Next step was to identify for each task, the time invested in each step. In Figure 4.15
we can see for each task the elapsed time for different steps of the task (except the last
GS_FOpen task, which is locally executed and therefore no Globus events are inserted in

the tracefile). The figure shows for each task:

e Request to Active: the time elapsed between the client does the job request until the

callback function enters notifying that the job is in the active state.

e Active to Done: the time elapsed between the callback notifying that the job is in

the active state until the callback notifying that the job has ended.

e Task duration: elapsed time of the task measured in the worker side (this time is
included in the Active to Done time, but it is indicated separately to outline the

difference).

It is observed that for each task, the Request to Active time is in average 3.86 seconds
and the Active to Done 32.06 seconds. However, the average elapsed time of the tasks
in the worker is 1.03 seconds. The Active to Done has an average value rounding the
30 seconds. This time matches the GRAM Job Manager polling interval. This has been
reported before in other works [96]. This polling interval can be changed editing the

4.3 Evaluation tests 125

O Khafre = =esseens P Remote file transfers

Figure 4.16 NGB VP: task assignment to workers

GRAM sources. However, if the granularity of the tasks is large enough, this polling

interval would be reasonable.

Regarding the performance between the 2 and 3 tasks cases, the corresponding
schedules between both cases were observed with some detail. Although the VP data flow
graph has a maximum parallelism of 3, this maximum parallelism is only achievable for a
part of the graph. With a correct schedule, the same performance can be achieved with 2
tasks as with 3 tasks. The reason why GRID superscalar is not scaling when using 3 tasks

is because the schedule with 2 tasks is good enough to get the maximum performance.

We describe now the results of the analysis of the NAS VP, class S, when run with
two workers. The results shown in Table 4.4 when one task is assigned to each worker are
worst than the case when one task is assigned to worker Khafre (Table 4.3. In this case,
we are directly analyzing the task schedule. Figure 4.16 shows the assignment of each
VP task to each worker. The tasks in light color have been assigned to Khafre, the faster
worker, and tasks in dark color have been assigned to Kadesh. The dashed line between
tasks assigned to different workers represent that a file transfer is required between both
workers. Regarding the assignment, we consider that it is correct, since GRID superscalar
has assigned more tasks (and the tasks in the critical path) to the faster worker and also

the number of file transfers between both workers is very low (only 3 file transfers).

We can compare the transfers done with GRIDSs exploiting the locality with an
approach that does not maintain any locality to see the potential gain this mechanism
is able to provide. There are two file transfers that both approaches must do, the initial
(to provide the first input file) and the final (to collect the last result file). The rest of the

transfers can be calculated with the graph shown in Figure 4.16. Every edge in the middle

126 GRID superscalar runtime

VP S in two servers (1+1)

45
40]
35 -
—~ 30 A
\./25,
20 A
15 ~
10 -

O Task duration
W Active to Done
0 Request to Active

S

time

Figure 4.17 Task elapsed time composition for the NGB VP.S

of the graph means 2 file transfers when no locality is considered (one from the worker
to the master, and another one from the master to the machine which needs the data). In
contrast, when file locality is considered, solid edges mean no transfers are needed, and
dashed ones correspond to one transfer (from a worker to another worker). This means
that file transfers with locality have been reduced to a 14.7 % of the transfers that would
have been done without considering any locality. In this case, as files are small in size and
the network connection is very fast, the time gained is not very significative. However,
the bigger the files and the slower the network that connects the machines in the Grid, the
better will be the gain obtained with this mechanism.

Figure 4.17 shows the elapsed time for each task in the two different workers. In this
case, the Request to Active time is different if the task is assigned to one worker or the
other. In Khafre the average is 2.4 seconds and in Kadesh8 is 4.1 seconds. The overhead
of the transfer time from Kadesh8 to Khafre in tasks 9 and 14 makes that the Request
to the Active time in these two tasks is above the average in Khafre (6 seconds and 5.8
seconds respectively). Also, for task 6, which receives a file from task 0, the Request
to Active time is above the Kadesh8 average (4.6 seconds). The Active to Done time is
again around 30 seconds for almost all cases except for two tasks, for which it is around
1.5 seconds. In those two cases, the poll entered much earlier than in the other cases and

the end of task was detected with a much shorter time.

4.3 Evaluation tests 127

4 VP_S_khafre @ trace_VP_S_mixte_1+1_bis.prv. - %]

THREAD 1,1.1

62329907 us 125283113 us 13020 us

THRERD 1,1,1

62329907 us 25283113 us 187613020 us 249942927 us

I

Figure 4.18 NGB VPS: task scheduling when two workers are used

Finally, Figure 4.18 show the task schedule for the tasks in each worker. Those plots
are Paraver windows. The window in the top shows the tasks assigned to Khafre and the
one in the bottom the tasks assigned to Kadesh8. The segments in dark color represent the
Request to Active state. During this time the file transfers (if necessary) are performed.
The segments in white represent the Active to Done state. The file transfers between both
workers have been highlighted with strong light color lines. Since the overhead of the
file transfers is no more than 15 seconds and the schedule is appropriate, it is difficult to
understand the low performance achieved with this benchmark when using two workers.
The reason is detected comparing this execution with the one worker version: to allow the
correct execution between the two heterogeneous workers the benchmark is run in ASCII
mode. For example, VP.S when run alone in Khafre with two workers in ASCII mode
takes 312.14 seconds, which is above the 280.52 seconds when run in binary mode. Also,
MB.S when run alone in Khafre with two workers in ASCII mode takes 223.46 seconds,
which is again above the 166.57 seconds obtained in the binary mode.

In summary, we have been able to see how the NAS Grid Benchmarks scale when
more processors are used, but depending on the available parallelism in the benchmark. If
the maximum available parallelism in the data flow graph generated for the application is
3, we will not be able to reduce the execution time of the application introducing more than
3 machines to be used in the computation. Besides, we have seen how the file transfers are
minimized between the machines forming the Grid, due to the locality policy implemented
in the runtime. Finally, the performance analysis made has shown us the importance of the
granularity of the task when it must be run in the Grid, as the middleware may introduce

overhead in the execution. For example, having 30 seconds of overhead in a task that lasts

128 GRID superscalar runtime

1 hour is reasonable, but it is not for a task that lasts 5 seconds. Thus, the middleware
overhead is one of the main factors to determine if an application is suitable to be executed
in the Grid.

4.3.2 Applications performance
Simple optimization example

This first case to study the scalability is an example of a simple optimization algorithm
written with the GRID superscalar paradigm. The code of the master program is shown in
Figure 4.19. In this example, a set of N parametric simulations performed using a given
simulator (in this case, we used the performance prediction simulator Dimemas [59]) are
launched, varying some parameters of the simulation. Later, the range of the parameters
is modified according to the simulation results in order to move towards a goal. The

application runs until a given goal is reached.

GS_On() ;
while (! goal_reached () && j < MAX_ITERS)
{
getRanges (Lini, BWini, &Lmin, &Lmax, &BWmin, &BWmax) ;
for(i = 0; i < ITERS; i++)
{
L = gen_rand (Lmin, Lmax);
BW = gen_rand (BWmin, BWmax) ;
filter ("bh.cfg", L, BW, "bh_tmp.cfg");

dimemas_funct("bh_tmp.cfg", "trace.trf", "dim_out.txt");
extract ("bh_tmp.cfg", "dim_out.txt", "final_result.txt");
}
getNewlIniRange ("final_result. txt",&Lini , &BWini);
j++
}
GS_Off () ;

Figure 4.19 Source code of the simple optimization example written with GRIDSs

Each called function performs the following operations:

e getRanges: from an initial latency value (Lini) and an initial bandwidth value (Bini),
this function generates a range for L values (from Lmin to Lmax) and another range
for BW values (from BWmin to BWmax).

4.3 Evaluation tests 129

e gen_rand: generates a random value between the two values passed. It is used to

generate both L and BW parameters.

e filter: substitutes two parameters (latency and bandwidth) of the configuration file

bh.cfg, generating a new file bh_tmp.cfg.

e dimemas_funct: calls the Dimemas simulator with the bh_tmp.cfg configuration
file. The file trace.trf is the input tracefile and the results of the simulation are

stored in the file dimemas_out.txt.

e extract: gets the result of the simulation from the dim_out.txt file and stores it in
final_result.txt file.

e getNewlniRange: from the data in the final_result.txt file generates the new initial

values for parameters L. and BW (Lini and BWini respectively).

The interface definition file for this example is the one shown in Figure 4.20. Although
the only computational intensive function is the one that calls to the Dimemas simulator,
we have added the filter and extract functions too in order to have a more complex data
dependency graph. Functions getRanges, gen_rand and getNewIniRange do not appear in
this file because they will be run locally on the master. Although they are local functions,
they can interact with the GRID superscalar runtime, as it happens in getNewIniRange
function: the file final_result.txt has to be opened, thus the GRID superscalar functions
GS_FOpen and GS_FClose must be used.

interface OPT {
void filter (in File reference CFG, in double latency ,
in double bandwidth, out File newCFG) ;
void dimemas_funct(in File cfgFile, in File traceFile ,
out File DimemasOUT) ;
void extract(in File cfgFile, in File DimemasOUT,
inout File resultFile);

}s

Figure 4.20 Task and parameters definition for the simple optimization example

130 GRID superscalar runtime

c c c
Q 40) Q
o (=% o
(@] (@) @)
I-I_I I-I_I I-I_I
9] 9] 99}
O] Q0 ©)

Figure 4.21 Workflow generated for the simple optimization example

Figure 4.21 shows the data dependency graph generated if we set the ITERS parameter
to 3 and the MAX_ITERS parameter to a minimum of 3. We can see that the maximum
parallelism achievable is 3 (determined by ITERS), and that the extract operation
generates a chain of data dependencies in the inner loop. The GS_FOpen used in the
getNewIniRange function causes a synchronization point: the open call must wait until

the loop has finished its execution.

We have run this simple application setting the MAX_ITERS parameter of the
application to 5 and the ITERS parameter to 12, leading the application to a maximum
parallelism of 12, while the total number of remote tasks generated is 180. Some results of
this example are shown in Table 4.6. As in the NAS Grid Benchmarks case, two different
machines were used as workers: Khafre, an IBM xSeries 250 with 4 Intel Pentium III,
and Kadesh8 a node of an IBM Power4 with 4 processors. The master was located in a

different machine, a regular PC.

Table 4.6 Execution times for the simple optimization example

Machine # max tasks | Elapsed time
Khafre 4 11 min 53 s
Khafre 3 14 min 21 s
Khafre 2 20 min 37 s
Khafre 1 39 min 47 s

Kadesh8 4 27 min 37 s

Kadesh8 3 28 min 27 s

Kadesh8 2 34 min 51 s

Kadesh8 1 48 min 31 s

Khafre + Kadesh8 4+4 8 min 45 s
Khafre + Kadesh8 242 15min 11 s
Khafre + Kadesh8 1+1 24 min 33 s

4.3 Evaluation tests 131

Column Machine describes the worker or workers used in each case, column # max
tasks describes the maximum number of concurrent processes allowed in each worker
and column Elapsed time the measured execution time of each case. The number of tasks
in each worker was set to a maximum value of 4 since the nodes we were using have 4
processors each. For the single machine executions, it is observed that the execution time
scales with the maximum number of tasks, although it has a better behavior in worker
Khafre than in worker KadeshS.

When using both workers, we obtained execution times between the time obtained in
Khafre and the time obtained in Kadesh8 with the same number of tasks. For example,
when using 2 tasks in each worker, the elapsed time is between the elapsed times obtained
in Khafre and Kadesh with 4 tasks. In this case, from the 180 tasks executed in the
benchmark, 134 were scheduled on the faster worker (Khafre) and 46 in the slower one
(Kadeshs®).

We show the absolute speed up obtained in the different executions of the application
in Figure 4.22 using a single machine and in Figure 4.23 using both machines. The
sequential times used as a reference to calculate the speed up have been taken from
running 60 times the Dimemas simulator in Khafre (2280 s) and in Kadesh8 (2700 s),

without using GRIDSs (the fastest sequential time achievable). This way we can evaluate

3,5

3 //

2,5

—— Khafre

/l/. —#-Kadesh8

Speed up

0,5 4

Limit of tasks

Figure 4.22 Absolute speed up obtained for the simple optimization example using a
single machine

132 GRID superscalar runtime

5
4,5+
4 -
3,5 1
3 4
Q.
=
§ 2,5 4 —o— Khafre+Kadesh8
joR
0
2 4
1,5 1
1 4
0,5 4
0 T T
1+1 2+2 A+4
Limit of tasks

Figure 4.23 Absolute speed up obtained for the simple optimization example using two
machines

if executing the application in the Grid is a good choice. In Khafre we can see that the
maximum speed up reached is 3.19 when using 4 CPUs, which is good. However, in

Kadesh8 the maximum speed up is 1.62 when using 4 CPUs, which is a bad result.

We can explain the poor performance obtained when Kadesh8 is involved in the
computation with the conclusions we obtained in our performance analysis made in
Section 4.3.1. Tasks filter and extract are immediate when executed (they do not require
any computation at all) and from analyzing the execution logs we have checked that these
tasks only last approximately 1 second in Khafre, but 30 seconds in Kadesh8. This is
because Globus polls for the status of the task at the beginning of the run, and after 30
seconds. In Khafre the first poll always notifies that the task has finished, and in Kadesh8

the same happens in the second poll, increasing the execution time of every task.

As a conclusion of this simple experiment, we can see again the importance of
selecting tasks with enough granularity to be executed in the Grid, so the Grid middleware
does not kill the performance that could be achieved by using GRID superscalar to run

the application.

4.3 Evaluation tests 133

New product and process development

In the framework of the BE14 experiment, as a working package of the BEin-
GRID [21] project, an application is presented that integrates the computation stages of
a high-throughput environment for product and process development. The experiment
allows the integration of models for optimization and simulation providing a flexible
environment on top of GridAD (a tool composed by the integration of GRID superscalar
and GridWay [49]). As a result of using the Grid, the performance of the experiment
is dramatically increased. The high-throughput environment involves generic stages
common to a variety of industrial problems, product synthesis applications, process
design, materials design, and high-throughput experimentation in specialties, pharma-
ceuticals, and high-value chemicals. Such problems involve multiple runs, each using
available physico-chemical and economic data, to target and screen options for products
and processes. The combined use of computer and experiments is seen as the future
environment for the development of novel products and processes.

In the specific experiment a process and catalyst development problems are modelled
mathematically and solved with a combination of stochastic algorithms, deterministic
algorithms, and graph-based methods. Among others, the application inputs contain (see
Figure 4.24) superstructure models, kinetic data, configuration seeds and solver controls.
The stochastic search takes the form of a Tabu search with parallel steps for intensification

and diversification. In each step of the Tabu search, m different initial solutions goes

SUPERSTRUCTURE INFORMATION INITIAL SOLUTION

CO;
e ; oursoerecvice CO:

Y -
Reaction Superstructure : Separation unit i
Water i Water

e ad \

KINETIC MODEL o Q@) / PROGRAM

i
| Ethane

Emane$

Oxygen

Oxygen

H
i
Acetic Acid |
i Acetic Acid

7 components p s /
5. g
o ‘:“ .
alls FINAL DESIGN
: . b

ALGORITHM INFORMATION:

+ Neighbourhood size

» Tabu list

Figure 4.24 Chemical process development diagram

134 GRID superscalar runtime

Table 4.7 Summary of processes

Application case Van de Vusse | Biocatalytic | Acetic Acid
Number of initial solutions (m) 10 6 6
Number of slots (s) 50 20 50
Number of tasks (IN) 2,000 480 1,200
Number of iterations per slot (i) 5 5 35
Neighborhood size (h) 7 20 50
Total number of simulations (n) 52,500 36,000 157,500

through s slots, and in each slot 4 tasks are executed. Therefore, the number of tasks in
one slot is m x s X 4. The system then updates the solutions with the best results, and the
process is repeated i iterations and 4 times for a neighborhood factor. The total number of
simulations is calculated as m x s X 3 x i X h since one of the 4 tasks previously mentioned

is to select the best results and no simulation is performed.

Table 4.7 presents a summary of statistical information for three different processes:
a Van de Vusse kinetic scheme, a catalyst design experiment for acetic acid production,
and a biotechnology (biocatalytic) process with excessive requirements for computing.
The number of tasks and simulations required for each experiment are summarized in the
table. Real-life applications would require multiples of such simulations (typically by 3-5

orders of magnitude).

The workflow generated in the application is shown in Figure 4.25. The parallelism
is determined by the number of initial solutions used in the execution. From the initial
solution a first simulation is performed (which represents a GRIDSs task) and then the
intensification and diversification steps are done, calling to two new simulations. This

leads to a maximum degree of parallelism in the application of 2 x m.

The Grid used for this application is composed by 3-site machines (UCM in Madrid,
BSC in Barcelona and UniS in Surrey) with up to 20 workers. Preliminary execution
results are shown in Table 4.8. We have used 5 machines with 8 workers. In the Van de
Vusse execution, the granularity of the tasks is so small than executing it in the Grid is not
a good option. The Biocatalityc run achieves a speed up of 4.47 and the Acetic Acid run
3.64. This is lower than expected, as the maximum parallelism of the graph in both cases
is 12, and the minimum is 6. However, the synchronizations in every execution slot and
the difference in the execution time of the tasks which must be synchronized makes the

performance to be lower than expected.

4.3 Evaluation tests

135

Figure 4.25 Generated workflow for the chemical process development

In this example we can see the importance of the data dependency graph to achieve

a good performance. The way the application is implemented makes the parallelism

depend on the number of initial solutions used as inputs: in some parts of the algorithm

the parallelism available is m, and in some other parts it reaches 2 x m. Thus, we

cannot expect as many speed up as in a complete parallel dependency graph. Moreover,

the synchronization points needed in the application also hold down the achievable

performance. However, the use of the Grid in this case has enabled an easy way

of externalizing the end users’ computing needs, which was not possible without this

technology.

Table 4.8 Execution results of the chemical processes

Application case Van de Vusse | Biocatalityc | Acetic Acid
Sequential execution time 00:09:22 14:40:46 07:40:14
Grid execution time 00:48:46 3:17:18 02:06:33
Speed up 0.19 4.47 3.64

136 GRID superscalar runtime

Potential energy hypersurface for acetone

The computational chemistry group from Universidad de Castilla La Mancha (UCLM)
has worked tightly with us to port their work to GRIDSs. They determine the molecular
potential energy hypersurfaces from the results of electronic structure calculations [79].
The application is tested generating potential energy hypersurfaces for the double methyl
rotation and the coupling with the CCCO frame in acetone. The results predicts a barrier to
methyl rotation that matches with the one obtained experimentally by different techniques.
The mapping of potential energy hypersurfaces is done by first generating a large set of
different molecular structures, submit them to the Grid for execution through an electronic
structure package called GAMESS [38], filter and collect the results.

The GRID superscalar implementation of the application is very simple, as only a
loop is needed to iterate through all input files. The task defined to be executed in the
Grid is mainly composed by a call to the GAMESS simulator, which performs the needed
calculations. Every call to the GAMESS simulator is independent from the rest, thus
the data dependency graph for this application does not have any data dependency (it is
completely parallel), which is very suitable to achieve a good speed up when it is executed
in the Grid.

The calculations have been performed on a computational Grid formed by five nodes.
The first, Sofocles, is the Grid master. It is a single-processor machine AMD-2.4 GHz
from the QCyCAR research group at Ciudad Real, Spain. The next two are two PC
clusters of 12 nodes each, also from the QCyCAR research group. The first, Tales, is a
cluster formed by 12 single-processor Pentium IV, 2.4-3.0 GHz. The second (Hermes)
is similar, but consists of Pentium 1V, 2.6-2.8 GHz machines. The third node is formed
by the Kadesh supercomputing system at the Barcelona Supercomputing Center, Spain.
Kadesh is a cluster formed by 128 Power3/375 MHz + 32 Power4/1 GHz nodes. The
fourth node is a cluster (Popocatepetl) of nine biprocessor 64 bits AMD machines
1.4 GHz, placed at the Laboratorio de Quimica Tedrica in the Universidad de Puebla,
Mexico. Thus, the Grid implies a transatlantic connection. The total number of CPUs used
in the test is 64, distributed in 22 from UCLM, 28 from BSC and 14 from Universidad de
Puebla.

Two different Grid configurations have been used in the tests. The first one uses
eight workers (processors) in each cluster of the Grid. Thus, 32 processors are used,
distributed as follows: eight on Tales, eight on Hermes, eight on Kadesh and eight on
Popocatepetl. The second configuration uses a total of 64 processors: 11 on Tales, 11
on Hermes, 14 on Popocatepetl and 28 processors on Kadesh. The results for both cases

are collected in Table 4.9. We have calculated the speed up as the absolute speed up,

4.3 Evaluation tests 137

Table 4.9 Execution results calculating the potential energy hypersurface for acetone

Machine # tasks (32 CPUs) | # tasks (64 CPUs)
Tales 310 223
Hermes 290 218
Popo 286 262
Kadesh 234 417
Total time (min) 1875 1025
Speed up 26,88 49,17

considering the sequential execution of the application in the fastest machine in the pool
(50400 minutes). The results are very good (despite the heterogeneity of the system) due
to the easy parallelization of the application, as no data dependencies exist between the
tasks.

From GRID superscalar’s point of view, one of the key objectives achieved in this
experiment is to have performed a long duration experiment in an heterogeneous Grid
with a transatlantic link. Besides, we have analyzed how our system has been able to

achieve excellent speed up results for this application.

Metagenomics

The Computational Genomics group in Barcelona Supercomputing Center has carried
an analysis of protein and function diversity on earth. The identification and classification
of new and known proteins is used in different areas. In the study of the Evolution it
helps to understand the mechanisms of evolution of proteins and organisms. For Ecology
it allows to identify new pathways and organisms for new possibilities in biodegradation.
In BioMedicine, new microorganisms, pathways, proteins/molecules and new therapeutic
molecules (antibiotics, protein targets) can be identified also. And finally, for Molecular
Biology it provides new functional associations and hypothesis for basic research. More
precisely, they have been able to run the largest protein comparison and classification done
so far, by using the MareNostrum supercomputer and GRIDSs. The comparison has been
done using 15 million protein sequences and the BLAST simulator [18].

The protein comparison algorithm is very suitable to be parallelized, as the compar-
isons are performed in an all-against-all basis. This means that no data dependencies exist
between each comparison, thus the graph generated by GRIDSs for the algorithm will
be a set of completely independent tasks. The algorithm is a nested loop which iterates

between the two sets of proteins to be compared.

138 GRID superscalar runtime

[

Figure 4.26 MareNostrum floor diagram

The MareNostrum supercomputer has been used to execute this test. MareNostrum
is a supercomputer based on PowerPC processors, the BladeCenter architecture, a Linux
system and a Myrinet interconnection. It is composed of 10240 IBM Power PC 970MP
processors at 2.3 GHz (distributed in 2560 JS21 blades), with 20 TB of main memory, 280
+ 90 TB of disk storage, and a peak performance of 94,21 Teraflops. Figure 4.26 shows
the layout where the supercomputer is located.

As we have stated previously, GRIDSs has been ported to different Grid middlewares,
but we also have a version which works inside clusers [9]. We have used this version in
order to run the experiments in MareNostrum. Conceptually, a cluster can be compared
to a Grid, as the nodes could be considered as independent machines. However, no data
transfers are needed, as there is a shared file system which allows to read or write any

information from any node in the cluster.

From the total number of CPUs in the supercomputer, 4000 have been used exclusively
to run this application using GRID superscalar. Four different runs have been performed
with the application, using different sequences as inputs. In each run, GRID superscalar
has generated and handled more than 100000 tasks in 1000 nodes (which in the runtime

are considered as a "Grid" of independent machines).

Several conclusions can be extracted from the execution of this application using
GRIDSs. GRIDSs coordinates automatically the execution of all sequence comparisons,
avoiding the users to implement scripts to directly work with queuing systems, because
submitting such a high number of independent jobs in a queue system could cause
performance problems in it. Besides, we have tested our runtime in a very demanding
environment, with a "Grid" of 1000 machines which have a very low latency between
them. This is a very good test to prove that our runtime performs well in such stressful

situations.

4.3 Evaluation tests 139

SSH GRIDSs vs PACX-MPI

The fastDNAml algorithm is a commonly used code for maximum likelihood
phylogenetic inference [69]. More specifically, maximum likelihood methods are very
effective when the input data set includes highly divergent sequences, which increase a
lot the computation required. These sets of sequences are groups of genes, gene products
or taxa (groups of organisms with evolutionary relationships), from where the tree with
highest overall likelihood is selected using an heuristic approach.

The MPI version of fastDNAmI was executed in the SC2003 HPC Challenge context,
in a project that won the Most Distributed Application award [93]. Between the Grid-
enabled MPI approaches it is found PACX-MPI [72] and MPICH-G2 [56], among others.
In the mentioned event they used PACX-MPI as the Grid-enabled MPI library. The idea
of implementing a GRID superscalar version of fastDNAml was coined in that event.

The GRIDSs implementation of the fastDNAml [29] was created from the sequential
version of the fastDNAmI code and submits the evaluation of the trees to the Grid,
which is the most computational intensive function in the code. In order to increase
the performance of the execution, two optimizations were applied: tree clustering and
execution of initial evaluations in the master. In the tree clustering, three policies were set
in order to tune the granularity of tasks in every iteration step: FAIR (divide the number of
trees to evaluate by the number of slots defined in the workers), UNFAIR (the maximum
number of tasks generated is the same as in the fair policy, but if there are less, we pack
them with the size of the pre-defined variable MAX_PACKET_SIZE) and DEFAULT (a
task is a cluster of exactly MAX_PACKET_SIZE trees).

(DTree evaluation
@ Barrier

Figure 4.27 fastDNAmI workflow generated by GRIDSs

140 GRID superscalar runtime

The general structure of the sequential application is the following: an initial tree is
created using three taxa chosen randomly. The overall likelihood value for this initial tree
is evaluated. Next, a new taxon is randomly selected. There exists 2i - 5 different possible
trees (with i = 4 in the first iteration) when adding this taxon. Therefore, 2i - 5 evaluations
are performed, which are independent between them. Next, a local arrangement step is
performed. In each iteration, this step will generate 2i - 6 evaluations (also independent
between them). This local arrangement step may be repeated while any improvement
is find. Next, a new taxon is added and the evaluation continues as explained before.
The process will finish when all taxa have been added. This algorithm leads to a data

dependency workflow as shown in Figure 4.27.

Although initially some executions were performed using Globus as the underlying
Grid middleware (see [29]), we also have available an implementation of the runtime
using ssh and scp. This version allows the users to get benefit of GRID superscalar but
getting rid of the Globus related problems and overheads when smaller granularity tasks

are to be executed. Authentication is granted through the use of ssh-keygen.

Table 4.10 shows the results obtained with fastDNAmlI using the HPC Challenge data
set in a Spanish Grid, composed of machines at two sites in Madrid (rediris.es and ucm.es)
and one in Barcelona (upc.es) (Pentium III and Pentium IV based). Madrid and Barcelona
are at about 500 km of distance. For each site it is indicated the number of workers used.
The results show that the ssh GRID superscalar version outperforms the Globus version,
for a similar number of workers and even using a larger distance Grid. Also, this version
is compared with a PACX-MPI execution. It can be observed that the results obtained
with GRID superscalar outperform the PACX-MPI version too.

The advantages of using GRID superscalar against MPI are mainly two. At program-
ming level, GRID superscalar has a simpler user interface, because the parallelism is
implicitly extracted from the application. At running level, MPI requires all processes
to be active during all execution. This means that if the application uses 100 workers, it
requires all of them available for the application from the beginning to the end (physically

requires grabbing the 100 processors). With GRID superscalar each application task is

Table 4.10 Execution times for fastDNAmI
Middleware | upc.es | rediris.es | ucm.es | Time
Globus 10 0 0 14235 s
PACX-MPI 1 1 7 9240 s
ssh 1 1 7 7129 s

4.3 Evaluation tests 141

executed as a single new program, activated by its runtime through the Grid middleware.
If at a given moment the application has only 3 concurrent tasks, only 3 processors will
be required. It may also use a queuing system to submit the individual tasks, using free
slots in a cluster when available.

We have seen in this and previous examples that Globus is not suitable for applications
which have a small granularity, because it adds a considerable overhead which may kill
the application performance. In this example we have been able to present the execution
results of GRIDSs using ssh instead of Globus, and the numerical results show that the ssh
version is faster than the Globus version and even also faster than the PACX-MPI version

of the algorithm.

142 GRID superscalar runtime

Chapter 5

Applying fault tolerance at the

programming model level

Some research and commercial products use the Grid as their basic infrastructure.
However, because of its widespread nature, heterogeneity and dynamism, the Grid is an
environment prone to failures: an execution can use hundreds or thousands of machines
distributed all around the world, in different administrative domains, with different
computing powers and architectures, and they may enter or leave the Grid infrastructure
dynamically. It is not realistic to think that in such a widely spread environment errors

will not occur. The ability to face such errors is called fault tolerance.

A failure is not only a software or hardware crash, but also that it does not accomplish
some requirements (i.e. a performance degradation in a machine). Besides, different types
of failures exist: transient (appear once and disappear), intermittent (appear and disappear
randomly) and permanent (when they appear the only solution is to replace the faulty
component). Different strategies can be used to deal with these different types of failures.

This chapter details our efforts to deal with failures when using GRID superscalar.
The first section presents the checkpointing mechanism designed to save the work done
before a failure appears. However, we also establish the objectives of being a transparent
mechanism for end users, and cause minimum overhead to the execution, to follow with
the main principles of our tool. It also presents an experimental execution to evaluate if
our design accomplishes the objectives set.

The second section explains the retry mechanisms implemented in our runtime in order
to deal with Grid level failures without having to stop the application. Another important
objective is that we want to detect performance degradations in tasks to avoid delaying the
whole execution, as well as the basic objectives of keeping the mechanism as transparent

as possible to end users and not to cause overhead when no failures are detected. A Monte

144 Applying fault tolerance at the programming model level

Carlo algorithm is executed to see how we are able to keep running applications despite
failures.

Finally, the last section sets as new objectives to hide the time required to resubmit
a task in case of failure, and to migrate tasks to faster resources when they become
available without demanding the user to implement an intra-task checkpoint (always
keeping these new mechanisms invisible to users). This is accomplished with a task
replication mechanism, that is tested using the fastDNAmlI algorithm demonstrating how

replicas can help not only in dealing with failures but also in speeding up the application.

5.1 Checkpointing

5.1.1 Design

The main objective when studying the design of a checkpoint mechanism for GRID
superscalar is to include the ability of saving the work performed by an application before
an error occurs. This is specially important when the error detected is an unrecoverable
error, which makes mandatory to stop the application because a user intervention is needed
in order to fix it.

In Section 2.4 we have seen the approaches taken by other research groups in order
to provide checkpointing features for applications. Their main focus are two: checkpoint
a process (system level checkpoint) and checkpoint the whole application (application
level checkpoint). The former can be transparent for end users, but it may become more
complex to apply if the application is not formed by a single process. The latter is in most
cases implemented as an API to allow users to implement the checkpoint by themselves
(saving the state of the application so it can be restarted later), which means that the
mechanism is not transparent. Our objective is to make an application level checkpoint
completely transparent to end users.

Another important objective that we establish is to cause the minimum overhead
to the application when the checkpoint mechanisms are running. The design of the
GRIDSs runtime is focused to speed up applications by running them on the Grid, thus
the checkpoint mechanism must not have a negative influence in the performance when
no failures are detected during the execution.

When deciding a checkpointing strategy for GRID superscalar, different possibilities

were taken into account:

e [eave the checkpointing actions open to the application developer, i.e., do not offer

checkpointing features with GRID superscalar at all.

5.1 Checkpointing 145

e Offer a traditional checkpointing strategy, which is able to restart a single process

at any point.

e Tailor the checkpoint strategy to GRID superscalar, taking advantage of the specific

characteristics of the applications.

The first option was discarded, since it does not fulfill the main objective of keeping
the mechanism transparent to the user. Also, we did not want to develop a checkpointing
strategy of the second type, since it will duplicate efforts already done by other research
groups (some can be found at [22]). Implementing a checkpointing strategy of the
third type will allow adding an interesting feature to GRID superscalar runtime while
its complexity and overhead for the application may be kept very low.

The checkpoint mechanism included in GRIDSs is one of our first steps to achieve
tolerance to failures in the system. Tasks that finish their execution correctly are saved
to avoid repeating them. If a failure is detected, the application can be safely stopped.
This allows users to correct the error (if their interaction is needed for that purpose) and
to restart the application from the point where it stopped.

The failure detection is done by means of failure notifications from the middleware
and POSIX/UNIX signal reprogramming in the tasks. The middleware notification
commonly includes the reason of the failure, which is notified to the user. In case of
signal reprogramming, if any of the worker tasks fails due to an internal error (zero-
division, memory problem) or because it has been killed for any reason, the new routine
which attends the signals would build and send a message to the master with an error
code specifying the signal number received in the worker. Also, if GS_Off(-1) is used in
the master, the runtime stops the application in the same manner as when a worker task
failure is detected. When stopping the application, the runtime also cleans all temporary
files created in the worker directories, leaving them as they were before the application’s
execution.

As there exist already many packages for checkpointing a single process, our focus has
been to checkpoint the tasks that form the application as atomic parts of the application.
Checkpoint in GRIDSs works at an infer-task level: the task is only saved if its execution
has finished correctly. Correctly means that no application related unrecoverable error
has been reported by the user for that task, and no failure in the job execution has
been detected. The runtime will track the tasks that have finished correctly, and in case
any failure occurs, the application may be restarted from the last task that has finished
correctly.

Tasks which fail during their execution will not be saved and will be restarted from

the beginning. This may be a problem when some tasks have a very long run time, or

146 Applying fault tolerance at the programming model level

even when the application is composed of a low number of tasks. In such cases users may
implement a complementary checkpoint inside the tasks by themselves or with an existing
checkpoint package. Both, our inter-task checkpoint mechanism and the one implemented

by the user at a intra-task level may be used at the same time in an application.

In our strategy, we assume that we can only checkpoint a task if all its predecessor
tasks in a sequential order have finished. This sequential order is determined by
the sequential execution of the application’s main program: the master part of the
application, which contains the main algorithm used to generate the tasks’ workflow (see
Section 4.1.1). This assumption reduces the complexity of writing a checkpoint because
we do not need to write all data structures in memory to disk, and it also reduces the
number of files that we must store in order to restart the application correctly. With the
file renaming technique applied in the runtime to increase the parallelism of the workflow
(see Section 4.1.2 for more details), a file can have a lot of different versions of itself, and
in the worst case, we would need to store all of them in order to be able to restart from
a specific point. This mechanism restores what we call the sequential consistency of the

application: it stops the application as if a sequential application was stopped.

The drawback of keeping the sequential consistency is that we may not be able to
checkpoint some tasks that have finished their execution correctly because some of their
predecessors have not finished. For applications with a high degree of parallelism it
may happen that, in case of failure, a relative large amount of tasks must be repeated
on restart although they have finished correctly before. However, we reduce this effect by
influencing the scheduling decisions in the runtime (giving more priority to tasks with a
smaller task number, thus, prior in the tasks generation). Users may take this drawback
into account when deciding the granularity of the tasks that form their application, so the
portion of work lost is "acceptable" for them, or they may include a inter-task checkpoint.
Once a failure is detected, the runtime waits for running tasks that have the possibility
of being checkpointed. Tasks which cannot be saved are cancelled to avoid wasting time

with them.

We can see an example of this behavior in Figure 5.1. Tasks 0 and 1 have been
previously checkpointed, tasks 2, 3 and 5 are running, and tasks 4 and 6 are pending.
Task 3 finishes its execution but it cannot be checkpointed because it has predecessors
still running (task 2). After that, we receive a notification about a failure in task 2, which
means that we will not be able to checkpoint tasks with a higher sequence number. The
immediate decision is to cancel task 5 because we will not be able to checkpoint it even if

it executes correctly.

5.1 Checkpointing 147

EREEN

Failure || Done | | Pending | | Running || Pending

Figure 5.1 Checkpoint sequential consistency maintenance example

Several information must be saved in order to checkpoint a task. We must save
enough information to be able to re-run the application skipping the tasks which were
checkpointed, but without causing overhead to the system when writing a checkpoint.
The first thing saved is the information of which tasks (in sequential order) have correctly
finished and it is written in a checkpoint file in the master machine. The only information
saved in the checkpoint file about the task is the task number, unless the task generates
one or more output scalar values, which are also saved in the checkpoint file, so we do not
need to re-run the task to obtain them. Figure 5.2 presents an example of the information
saved in a checkpoint file, where we can see that tasks 2 and 5 have an output scalar which

is stored in this file.

34.075432

25.093639

AN Nk WD = O

Figure 5.2 Content of a GRIDSs checkpoint file

We also need to know the file versions which are generated in the last checkpointed
task and the previous ones. In case of failure, we will need to save all results generated by
a task which may be considered as a final result until the moment in the execution defined
by the checkpointed task (thus, the last valid version of every output file). Note that
the execution moment defined by the checkpoint task usually differs from the execution
moment of the GRIDSs application, as other tasks may be running to generate new
versions of files. However, as those tasks have not been checkpointed, these file versions
will not be considered. The saved files must be equivalent to what would have been

generated in a sequential execution of the application until the last checkpointed task.

148 Applying fault tolerance at the programming model level

for(i = 0; i < 10; i++)
{
T1C..., ..., "flI");
T2(..., ..., "f2");

}

Figure 5.3 Code which causes file renaming

In Figure 5.3, we present a simple example to understand which is the file version
saved in case of failure. This algorithm generates 20 tasks which can run in parallel
(T1.0, T2.0, T1.1, ...), and for that purpose the destination files "f1" and "f2" are renamed
10 times each (i.e. f1.0, f1.1, ...). If task T2.5 causes a failure, we could think that the
last valid versions of the file may be f1.5 and f2.4. This would be true if all tasks prior
to T2.5 have finished their execution and those files have been generated. However, if the
last task that can be checkpointed is T2.3, the last versions would be f1.3 and 2.3.

As in the moment we stop the application only a single version of a file exists, the
renaming can be safely undone. This is very useful for end users, as they may check their
results before the application is stopped. In case we had decided to consider as correctly
finished all tasks (not only the ones which accomplish the sequential consistency) it would
have been necessary to keep all different versions of renamed files, together with the
information of which file correspond to each task, which is the original name of the
task, which are their other versions, and so on (thus, almost all the data structures of

the runtime). Moreover, it would not be possible to undo the renaming applied in the files.

All the files locally opened with the read option by the master (GS_Open and
GS_FOpen) must be kept to allow a correct restart: the instructions executed after the
open must read the same values read previously. This is not only important to keep results
consistent, but also because it may happen that information read from the file is used to
take decisions about the task flow order or used as parameters by subsequent tasks. We
may find a case where the files which are opened by the master are very large. Since a
copy for each version of the file is stored, the disk space required will grow. We consider
that this would not be the case in most of the applications, but if it becomes critical, the
code involved in the opening and reading of these files could be encapsulated in a remote
task, eliminating the problem. The increased disk usage in the master corresponds to the
addition of the size of all the files referenced in a GS_Open call in the code, using a read
or append mode. However, as this call means a synchronization point in the master code,
it is very unlikely to be massively used in the code. Our experience working with GRIDSs

confirms this trend.

5.1 Checkpointing 149

Despite the drawback of an increased disk usage in the master, one of the key features
of this checkpoint mechanism is that users do not need to make a programming effort
to enable their applications with this mechanism, as it is completely transparent to the
application’s code. In order to restart an execution which has failed, users only need to re-
run their main program. If a checkpoint file is found, the runtime will start automatically
from the stored point. If there is no checkpoint file, the execution will start from the
beginning.

Another key feature is that no overhead is introduced at run time, because we neither
save the runtime data structures to disk periodically, nor save all different versions of a
file. Only the task number is saved for the task that has finished correctly. Therefore,
the checkpoint has no negative effect on the performance of the application. The lack
of overhead also contributes to the transparency of the mechanism, since it has no
negative effects on the performance. Thus, users do not even have to enable or disable
the mechanism to achieve the maximum performance for their applications (it is always
enabled). Moreover, the application can be safely restarted as many times as required if
future failures are detected.

Finally, the checkpoint is a technique which is useful for any type of failure detected

in the application: application level errors and Grid level errors.

5.1.2 [Experimental results

In order to demonstrate that our checkpoint mechanism does not introduce any
significant overhead to the runtime, we have run an experiment with our simple
optimization algorithm. This algorithm has been already presented in Section 4.3.2, and
it is composed of a set of parametric simulations using the Dimemas simulator. For this
experiment We have set the MAX_ITERS parameter of the application to 10 and the
ITERS parameter to 3, leading to a data dependence graph as the one shown in Figure 5.4.
The maximum parallelism of the graph is 3 and the total number of tasks to be executed
in the Grid is 90.

c c c
40) 40) Q
a a (=%
(@) (@) @)
I-I_I I-I_I I-I_I
9] 9] 99}
0 0 &)

Figure 5.4 Workflow generated for the simple optimization example

150 Applying fault tolerance at the programming model level

We have compared the execution times of the application with the checkpoint
mechanism enabled and disabled. Besides, we compared these execution times with the
total time of the same application emulating one failure, calculated as the time since the

application begun until the failure, plus the time from restart until the application ends.

As in the previous test using this algorithm, two different machines were used as
workers: Khafre, an IBM xSeries 250 with 4 Intel Pentium I1II, and Kadesh8 a node of an
IBM Power4 with 4 processors. The master was located in a different machine, a regular
PC. We have used 2 CPUs from every machine to run workers because the maximum
degree of parallelism of the application is 3, and no more than 3 workers will be running at
the same time. The Grid middleware used is the one used in our reference implementation
of the runtime: the Globus Toolkit.

Figure 5.5 compares the results of the second type of these experiments. The dots
joined by the solid line correspond to the whole execution time of the application when
no checkpointing mechanism is used (each dot correspond to a complete execution of the
application). The execution time is measured as the total execution time of the master
program. Since the master waits for all tasks to finish, it includes the whole execution of
the application. The dots joined by the dashed line correspond to the whole execution of
the application when using the checkpointing mechanism. Both sets of executions have
been run under the same conditions: same load in the hosts, same number of machines
to be used as workers and same tasks in each machine. However, between each set, the
experiments were run with non exclusive access to the machines and with different system
load. The different measured execution times (which are independent between them) have
been ordered by time (from higher to lower values) in order to be able to compare them
with the corresponding results done with the same system load. From the figure it is
clear that the checkpointing mechanism does not increase the total execution time of the
application (when no failures appear). The average execution time without the checkpoint
is 486.67 seconds and with the checkpoint it is 487.67 seconds. So, for this application

and environment the execution time overhead is less than the 0.2 %, which is very low.

Figure 5.6 compares the results of the execution without the checkpointing mechanism
against the execution with the checkpointing mechanism when one failure occurs (in
dashed line). To generate this second set of measures, a failure was generated (and
therefore, the application is stopped). Later, the execution was restarted and completed
correctly. The time shown is the addition of the execution time from beginning to failure
(including the time invested to save the necessary information and files) plus the time
from restart to the end of the application. The average run time in the first case is

486.67 seconds and in the second 512.27 seconds, which represents an increment of

5.1 Checkpointing

151

Execution time (s)

520 -
510

Checkpoint overhead

500

490

—&— Disabled

480

- - -m - Enabled

470

460

3 5 7 9 11 13 15

Run number

Figure 5.5 Checkpointing overhead in the simple optimization application

Time (s)

540 -
520 A
500 A

Overhead of checkpointing with one failure

480
460

—&—— No Failure

440

- -@--- Failure

420

400

3 5 7 9 1 13 15

Run number

Figure 5.6 Checkpointing overhead in the simple optimization application emulating

one failure

152 Applying fault tolerance at the programming model level

5.3%. From these extra 26 seconds, 8.4 seconds are used from the Grid middleware
to detect the failure (average failure detection time) and 1.2 seconds are needed to restart
the application (average restart time). The rest are run time of the task before the failure
and the time needed to recover the files when stopping the application due to the failure.
The main overhead in this case depends on the time the task has been running before the
failure is detected, which is wasted time because no intra-task checkpoint is implemented.

In this algorithm, there exists a GS_Open with read mode inside the function call to
generate_new_range. Every time a call to GS_Open has been performed, a copy of the
final_result.txt file version has been made. As the parameter MAX_ITERS has been set
to 10, the runtime has stored 10 copies of the final_result.txt file in the master during
the execution. However, this file is small (KBytes) and those copies have not been an
important overhead in terms of disk usage. In terms of execution time, the overhead is the
time taken to copy 10 times the file, which is negligible.

The main conclusion we extract from this experiment is that we have demonstrated
that our checkpoint mechanism does not add significant overhead to the application run
time when no failures are detected. Moreover, we have checked that the application is

correctly stopped and can be later restarted to finish returning the correct results.

5.2 Retry mechanisms to skip Grid level failures

5.2.1 Design

The checkpoint mechanism presented in previous section is essential when an
unrecoverable error appears during the execution of an application. This type of error
needs the intervention of the user in order to fix the problem. In this case, the checkpoint
mechanism allows the user to correct the error and restart the application from where
it was stopped. However, there exists also transient and intermittent errors in the Grid
infrastructure which may be overcome without the need of a user interaction. Our
objective is to treat those failures automatically at runtime, to allow applications to keep
running despite any possible failures that may arise in the Grid. We want to overcome any
temporal failures and to detect and skip any permanent failures.

In the Related Work chapter, more precisely in Section 2.4, we have seen that several
systems implement a retry mechanism to try again the task which has failed. However,
in some systems the mechanisms are not transparent to end users, and they are static
(decided before running the application). Others are transparent, but they cannot tackle

complex workflow applications or they are not able to detect performance degradations

5.2 Retry mechanisms to skip Grid level failures 153

of the application because they do not have any application-level knowledge. In our case
we want to include all the best capabilities of these different systems: handle workflow
applications, transparent to users, dynamic decisions to retry tasks, and be able to detect
performance degradations.

In addition, to follow with the GRID superscalar main ideas, we want the implemented
mechanisms to be as transparent as possible to the end users, making them automatic
or used with a very simple interface. Also, as the main goal of GRIDSs is to speed
up applications executing them in the Grid, we pretend to cause the minimum overhead
to the system with the mechanisms when no failures are detected, to avoid losing the
performance obtained by parallelizing the code.

As application related errors could already be treated in GRIDSs (their detection and
treatment can be programmed in the master program), if we are now able to overcome
failures at the Grid level, we will be providing a complete solution able to deal with all
possible types of failures when executing an application in the Grid.

To overcome Grid level failures, we use a task retry mechanism. Considering the
different types of failures, transient and intermittent failures can be handled by retrying
the operation which has failed, but permanent failures can only be treated by removing
the machine which is failing from the pool of machines available for the computation,
because we want a treatment of permanent failures which is transparent for the user. Either
way, whenever the permanent failure is solved, a user may add the machine again to the
computation dynamically at run time, but only if they are interested in doing so. The
following sections will describe the specific implementations in order to deal with these
failures in GRIDSs.

Automatic discard of machines

When a machine is unable to execute jobs due to a failure, GRIDSs must be aware of
this and adapt its behaviour to the new circumstances. This situation can occur frequently,
if we look at the Grid as a large collection of heterogeneous machines. The only way to
skip a permanent failure in a machine without having to stop the application is to remove
it from the list of available machines to run jobs, thus avoiding to use it.

Previously, in our system a user was able to manually drop a machine from the
computation with the dynamic host reconfiguration script, which again reads the GRIDSs
configuration file that specifies the hosts that can run jobs for a particular application (see
Section 4.2.3). This solved the situation where a machine was giving a poor performance
and thereby slowed the overall execution. The problem was that a remote failure in the

execution made the master to stop, notifying the user of the same. Now, at run time,

154 Applying fault tolerance at the programming model level

whenever a job execution fails, the Grid services are checked (i.e. the Globus Toolkit
services [33]) and if they are running correctly the operation is retried a maximum number
of times. If the check fails or the retries reach the retry limit, the machine will not be used
to execute other tasks. In brief, we do not require any user intervention to deal with
permanent failures in machines.

In order to discard a machine, the runtime waits for other jobs running there. This
is because it may be that only the Grid job submission service fails but not the remote
resource. Therefore, new submissions to the resource do not work, but previous running
jobs keep executing and sending notifications to the master. Even the service for
transferring files could continue running.

Because of the policy to exploit file locality implemented in GRIDSs, it may be that
some result files are only available in the machine that must be dropped. As a result, before
discarding the machine the runtime checks whether some files are only available in the
working disk of that machine, and tries to transfer them to the master. If the file transfers
also fail, the only possible solution is to restore the sequential consistency, stopping all
the remote tasks, and resuming from the last checkpointed task. This will also be done
automatically at run time by the library without any additional effort from the user while

allowing the execution to continue.

Soft and hard timeouts for remote tasks

Many different failures may arise when an application is executed in the Grid. Some
of them can be notified by the Grid middleware, however we cannot trust that it notifies all
possible failure situations. Moreover, we want to consider the performance degradation of
task as a failure, and to know if a task is performing well, information from the application
is needed. With this objective, we use the information from the application available in
GRIDSs in order to determine the best moment to detect and deal with failures for every
single task. As it has been explained in Section 3.2.5, GRIDSs contains information about
the estimated execution time for every task that must be run. We use this information to
define two upper bounds: the timeout factor and the resubmit factor.

The timeout factor determines when the master is going to start asking about the status
of a remote job. This is calculated by multiplying the estimated execution time for a task,
and the specified timeout factor (its value defaults to 1.25). For instance, if the estimated
time for a task is 100 seconds, a timeout factor of 1.25 means that for this task, when the
execution time reaches 125 seconds, the runtime is going to check that the task is still
running. If the Grid middleware responds positively, the checks will continue every 30

seconds (to avoid excessively overloading the machines, and in correspondence to Globus

5.2 Retry mechanisms to skip Grid level failures 155

poll job manager interval) until we reach the time specified by the resubmit factor. If the
task does not respond, or the status is not running, the task will be resubmitted in the
same machine. This is done because a transient failure may have affected the task, but the
machine may still be able to run new jobs. When a machine reaches a certain number of

resubmits, it will be discarded and the task will be resubmitted into a new resource.

With the timeout factor the checks for tasks start only when the execution time is
longer than estimated, so machines are not overloaded with status queries while the task’s
run time is the expected one. If the task executes normally (without any failures or
any performance degradation) no overhead will be introduced to the application’s total

execution time.

The resubmit factor is like a hard limit for the task execution time. It specifies the
time when the runtime is going to kill the task, because it considers that the execution
has become abnormal. This will avoid the runtime waiting for a specific task for a
long time due to performance degradation in a specific machine, thereby delaying the
whole execution process, and also avoids the master hanging up when a task does so.
The resubmit factor is calculated in a similar way to the timeout factor: multiplying
the estimated time of the task and the resubmit factor. Its value defaults to 2, so in an
estimated time of 100 seconds, the hard limit will be reached at 200 seconds. Whenever
this limit is reached for a task, the task is killed and resubmitted in a new machine (not in
the same machine as in the soft limit, because we consider that the machine is temporary
overloaded). The resubmitted task goes to a new resource and new tasks help to check
if the machine is able to run more jobs or not. However, as with the soft limit, if several
tasks have reached their hard limit in the overloaded machine, we may also discard it from

the computation.

The decision to use timeouts for the retry mechanism is justified because it is generic
to be used with all types of applications, and does not require the user to notify to the
runtime anything about the task progress. As the timeouts are based in the estimated
execution time, the successful application of this retry policy depends on having an
accurate estimation of the task execution time. A bad estimation would lead to a wrong
application of this retry policy. Initially we leave the responsibility of estimating this time
to the user, as it has been shown in Section 3.2.5, but our interface allows to easily call to
an external entity which could perform this estimation instead of the user. Moreover, the
timeouts can be easily disabled by users with an environment variable, in case they cannot

provide accurate estimations.

156 Applying fault tolerance at the programming model level

Asynchronous transfers of results for each task

Our checkpoint mechanism was initially designed considering that file systems were
always available in case of failure. This is because GRIDSs exploits the locality of files,
and some results may only be available in a worker during the execution. However, if a
task is checkpointed, but its results are in a machine that we cannot access, we reach an
inconsistent state. This is also important when a machine is dropped, because the files
only available in that machine must be recovered in order to reach a consistent state in
the checkpoint. Of course, if a file corresponding to a task that has been checkpointed is
no longer available, the checkpoint could be undone to reflect that we are not able to save
its results, but we foresee that this will not be a good solution, as the checkpoint undo
process could undo all the checkpoints done up to that moment, consequently not having
checkpoint at all.

In order to improve the checkpoint mechanism to avoid these inconsistent states, we
transfer the results of each task (once the task finishes its execution) to the master while
leaving a copy in the worker as well, to keep exploiting the locality of data. These transfers
are done in a background process during the execution, thereby hiding the time taken
to transfer the files to the master and not delaying the whole execution. With this new
mechanism, a task will be checkpointed when results are available in the master. Once a
task is checkpointed, now we can ensure in all cases that the task checkpoint is not going
to be undone, so the task will not be computed again.

There is still another benefit to add asynchronous transfers of results: the fact of
transferring these results to the master during the execution means that, at the end of
the whole execution, the post process needed to retrieve final results to the master is very
short or non-existent. In brief, we are hiding the post process time with the execution
time, speeding up a bit more the whole execution. Besides, we have also exploited this
mechanism to undo the file renamings in these results. This allows a user to easily follow
the execution results of the application from the master machine, as if the application
was executed sequentially, because the files are available in the master with their original
names. This is done by means of creating a soft link to the corresponding renamed file,
thus no extra disk is used.

We have also identified two drawbacks: a larger usage of the master’s disk and a higher
usage of the network resources. This happens because previously the different versions of
a file were stored in the remote workers, and only the final version was transferred to the
master. If we analyze the disk usage, the master is now a mirror of all the data contained in
the workers, but with only a single instance for each file. We could have reduced the disk

usage in the master by delaying the transfer of files until the checkpoint must be done.

5.2 Retry mechanisms to skip Grid level failures 157

However, if a result generated some time ago in a machine becomes unavailable, this
could mean that we were not able to checkpoint a task which was already executed, thus
the only possibility would be to run it again, with the corresponding waste of performance.
Our criteria is to give more importance to performance rather than to the disk usage, thus

the benefits outweigh the drawbacks identified.

Retry of operations inside the runtime

The Grid middleware operations performed inside the runtime are also retried (a
maximum number of times) to avoid temporary failures. However, different retry
strategies are implemented internally in GRIDSs runtime, depending on the objective of
what we want to retry. We can see an example of this in the jobs submitted by the GRIDSs
post process (when the application finishes the execution). The objective of these jobs is
to cleanup old versions of result files, input files, and retrieve the latest version of these
mentioned result files from remote machines. In GRIDSs several machines can share
a working directory, so when a job submission fails for a specific machine, a different
machine with the same disk can be considered for submitting a post process job. For
example, let us assume machine A and B work with the same working disk named Disk]1.
If we are not able to submit a job to A in order to cleanup and retrieve files, we can try the
same thing with B, obtaining the same final result: Disk1 has been cleaned up. Therefore,
the retries implemented in this case not only consider machines, but also disks. The
same process happens when asynchronously retrieving result files of a task (as previously
described).

Avoid situations that make the master stop

GRIDSs is based on a master-worker programming paradigm. Until now we have
seen techniques to deal with failures in remote machines (workers in GRIDSs) but not
for the master (the machine where the application is started). The way to detect failures
in the master is to control errors in system calls and retry them to overcome transient
failures that may appear. We have also completely revised the runtime code, and we have
removed all the avoidable situations that previously made the master to stop. Now, the
master dynamically resizes all predefined parameters such as GS_MAXPATH (maximum
size of a path), GS_GENLENGTH (maximum size of a scalar parameter), and so on.

To conclude this section, we want to remark that our programming model addresses
application and Grid errors for workflow applications. GRIDSs allows users to treat
application specific errors (i.e. numerical) when the application is programmed, thus,

when the workflow related to the application is generated it will include that failure

158 Applying fault tolerance at the programming model level

treatment. The impact of unrecoverable errors (such as memory leaks) is reduced with the
checkpoint technique (to restart the application from the point it was stopped). Finally,
the task retry mechanism deals with errors in the Grid level, therefore all levels of failures

are now handled.

5.2.2 Experimental results

We have designed a long test case as a proof of concept about the new fault tolerance
features available. It is important to mention that the goal of this test is to demonstrate how
the designed mechanisms work in a real case. Thus, the objective is to overcome all Grid
level failures that may happen during the execution of the application. As our mechanisms
are based on retrying operations, it is obvious that the more failures are detected, the less

performance the application will obtain compared to an error-free execution.

The Grid for this experiment is formed with a total number of 60 CPUs, with machines
from a single PC to a cluster of 29 CPUs. They are distributed in three different
administrative domains around Spain (Ciudad Real, Madrid and Barcelona). These

systems have Globus installed, as well as the latest GRIDSs distribution.

We have implemented a Monte Carlo algorithm composed of 7200 simulations, in
order to run it over approximately 5 days. All tasks will be able to run in parallel, as no
data dependencies exist between them. In this test, having a more complex workflow with
data dependencies between tasks would not change our conclusions, because the retry
mechanisms are applied to the tasks which are ready to run in a resource. Thus, it does

not matter if the task has predecessors or successors in the workflow.

In order to emulate failures in this Grid, we have defined four different types. Each of

these types includes more than one real failure situation, as we describe below:

e Kill a worker: the worker part of the application is a binary run in a remote
resource. This situation may be when the associated process is killed by a machine
administrator, a local resource manager (i.e. a queuing system in a cluster) or

because the machine is going to be shut down.

e Grid service failure: Globus has a process that spawns and controls the running
worker. We will kill this process to emulate a failure. The situations where this

could happen are the same as in the previous error type.

5.2 Retry mechanisms to skip Grid level failures 159

Table 5.1 Summary of failures

Day | Machine Type Detection
Day 1 | bscgrid02 | Kill Workers | Middleware
Day 2 | bscgrid03 | Kill Service Timeout
Day 3 | bscgrid04 | Performance | Resubmit

Day 4 | bscgridO1 | Stop Service | Middleware

e Performance degradation: a shared machine could experience a performance
degradation because processes from other users require the CPU or almost all
the memory available. This could happen in machines without any local resource
scheduler, where users can submit their processes anytime. We have emulated this

by changing the simulation that must be performed in the worker by a longer one.

e Grid service unavailable: we disable the job submission service to emulate that no
new jobs can be submitted to a resource. A real case with the same consequences
could be not only a service failure itself, but also a power or network outage in the

remote resource.

The reason for not including any failures in the file transfer service is that, in Globus,
the job execution service controls the file transfers of a job, thus any failure in a file
transfer would be detected and notified by this service. The emulation of these failures has
been implemented with scripts submitted in different days during the computation. Every
error type has been emulated in a single machine, as described in Table 5.1. From the
60 CPUs used in the experiment we have caused failures only in the machines where we
have administrator rights (from BSC), thus in 8 CPUs. We killed the two workers running
in bscgrid02 every 4 hours the first day, the same we did with the Globus processes that
control the workers in bscgrid0O3 the second day. The third day of failures, we changed the
simulator to a longer one for 2 hours every 4 hours in bscgridO4. Finally, we disabled or
enabled the job submission service every 2 hours the fourth day, letting this service half
of the time available.

As we have seen in previous section, our retry mechanisms are based on the estimated
execution time of the task. In this example, the cost function to calculate this estimation
is implemented with information from a previous run of the simulator, as shown in
Figure 5.7. With the execution time and the computing power available in those previous
runs, we can estimate the time that the simulation will take in a new candidate machine.
It is also important to mention that, as our estimation is accurate, we have set the timeout
factor to 1.05 and the resubmit factor to 1.10 (instead of the default values 1.5 and 2

160 Applying fault tolerance at the programming model level

double Dimem_cost(file cfgFile, file traceFile)

{

double factor , operations, cost;

factor = 1.0486—-e06; //How size of trf

affects the number of ops generated
operations = GS_Filesize(traceFile) * factor;
cost = operations / GS_GFlops();
return(cost);

Figure 5.7 Cost calculation in the Monte Carlo algorithm

respectively). This means that checks for the job will start when the task execution time
1s 5% higher than expected, and a job will be killed when the time is 10% higher than
expected. This is done to reduce the time lost in a resubmit, as the time the simulator
takes to be run in the machines where we produced failures is approximately 1 hour.

The total execution time has been 5 days 15 hours 47 minutes and 39 seconds. One
of the interesting things to see in the test is the differences in error detection. When
the worker process is killed, Globus detects it and notifies the GRIDSs runtime, thus the
detection of the failure is immediate and the task can be resubmitted at the same moment.
However, when the process that controls the worker is killed, no failure is detected by
Globus and it is detected when the task reaches the soft timeout. This was unexpected
for us, as we thought the Grid middleware would detect and notify this error. Anyway,
our runtime has been able to detect and solve this type of failure. This case demonstrates
that fault tolerance at the programming model level can protect the application from extra
errors that the Grid middleware is not able to detect, or because the middleware does not
implement any fault tolerance.

When the performance degradation is emulated, the hard timeout is reached and a
resubmit of the task is performed. Globus does not notify any error in this case, as it
does not have information about the expected execution time of the task. The last error
case, when the job submission service is stopped, is notified directly from the Globus
middleware, so GRIDSs can resubmit the task immediately to a new resource.

Looking at the execution logs we also see 16 unexpected retries in bscgrid01 caused
by tasks reaching their hard timeout. As bscgridO1 is a shared machine without any
local resource manager, other users running their processes may have caused temporary
overload in the machine that has been detected by GRIDSs. However, the most important
thing is that, despite all the failures registered during the whole execution (expected and

unexpected), the application finished successfully.

5.3 Dynamic task replication 161

5.3 Dynamic task replication

5.3.1 Design

The task retry mechanism presented in previous section achieves to keep an applica-
tion running despite failures by means of retrying the task which has failed. However
the penalty of executing the task again from the beginning must be paid when no intra-
task checkpoint is implemented: the execution time of the previous task which has
failed has been lost. Therefore, task retries mean that the more failures we have, the
less performance we will obtain executing the application. We assume the objective of
achieving the same degree of tolerance to failures but hiding this overhead caused by
retrying tasks due to failures.

Besides, GRID superscalar does not implement an opportunistic task migration
mechanism to migrate tasks between machines during their execution. This mechanism
allows to use faster resources in the Grid when they become available by migrating the
processes running in slow machines to faster ones. The reasoning why this mechanism is
not included is related with the need of a intra-task checkpointing mechanism to migrate
a task, which in most systems makes mandatory to the end users to implement the
checkpoint of the tasks by themselves. This lack of transparency to the end users differs
completely to the GRIDSs philosophy of keeping the Grid as invisible as possible to the
end user. Thus, we want to investigate ways to use the fastest resources available in the
Grid in a given moment, but without forcing the users to implement a checkpoint for their
tasks.

The suitable mechanism to achieve both objectives is the task replication: to submit
a task more than a single time in the system. In Section 2.4 we have seen that static
replication of tasks to achieve tolerance to failures has been already used in other systems,
but the replication details are decided before execution (static). Other systems use task
replication to obtain redundant results and avoid malicious replies or wrong calculations
in the machines which form the Grid, which is not among our objectives. In our case
we want to provide a dynamic task replication, able to use application-level knowledge
to decide what task must be replicated depending on the running application and the Grid
used. Besides, to our knowledge, task replication has never been used to gain performance
in the Grid, which is our second objective.

Executing a task in more than one machine has some advantages and drawbacks that
must be discussed. One clear advantage is that, in case of a failure in the original submitted
task, there are other machines already performing the same job. Thus, even with failures,

the execution time of the application could be unaltered if we can get the same result from

162 Applying fault tolerance at the programming model level

a replicated task as if it had been executed by the original one. This avoids overheads

introduced when a resubmit of the task is used to try to generate correct results again.

Another advantage is related to the heterogeneity of the resources in a Grid. It may be
that, after submitting a task to a machine, a more powerful resource becomes available for
executing jobs. Without an opportunistic task migration mechanism, the task would be
executed in the slower resource, even when a more powerful one is available. However,
with task replication, we can submit a new instance of the same task in the new resource
available, and we will obtain the results faster, speeding up the computation. This is very
important, as we obtain results similar to the ones obtained using opportunistic migration
using a completely different philosophy. Moreover, with the advantage that a user does
not need to implement an application specific checkpoint for his task in order to restart it
in a new resource, which may be difficult depending on the application. We will get as the
final result for a task the fastest one generated from all replicas, the rest will be discarded,

thus there is no need for other synchronization mechanisms for the replicas.

The identified drawbacks are related to a higher usage of the resources, because we
execute a task more than once. In GRIDSs the machines are considered to execute a
maximum number of tasks concurrently (what we call execution slots). 1f a task replica
uses an execution slot in a machine, this slot cannot be used by other ready tasks that are
to be run. In this case we could be slowing down the overall execution time achievable
without using this physical redundancy described. We have specifically considered this
drawback when designing a task replication mechanism for GRIDSs. We believe that
increasing the usage of the resources is not a bad thing, as long as the replicas do not
delay the start time of other tasks. The execution time with task replication when no

failures arise must be the same or less than without using this technique.

We have designed and implemented a task replication mechanism in GRIDSs trying
to achieve the advantages described and to minimize the drawbacks. The first thing to
consider is how many replicas we are going to submit to the Grid in total. As one of
our main goals is not to increase the execution time when using task replication in an
error free environment, we have considered that we will only submit replicas if we have
available slots for running tasks in our machines. So, the amount of replicas we can
submit depends not only on the number of resources of the Grid, but also on the degree
of parallelism of the dependency graph: if the degree is low, few tasks will be able to run
in parallel, thus there will be more free slots in the Grid to submit the replicas. If we have
a workflow without dependencies, there will not be any replication. The reason why we
do not ignore the slot limit in the machines is because submitting more jobs than those

expected in a machine will result in a stressed usage of the computing resources, thereby

5.3 Dynamic task replication 163

possibly causing a performance degradation in the tasks running in that machine. Thus,
our main focus is to exploit the resources that have been assigned to our application to the
maximum with the replicas, but without overloading them. This would also be suitable
if our application is submitted entirely to a cluster, because all the resources are reserved
only to the application. This way, we are giving a useful goal to idle functions during the
execution.

The policy of using only free resources to submit replicas is also convenient to ensure
fault tolerance in the sequential parts of the workflow that describes the application, which
are critical to continue with the execution. If due to the workflow, we are only able to run
a single task in a precise moment, and this task must be resubmitted because of a failure,
we are delaying the whole execution even when we have free resources which could have
not failed, as the execution will not be able to continue until this task finishes. In contrast,
when many tasks are available to be submitted in parallel to the Grid, if one fails, it can
be resubmitted while the rest of the algorithm keeps executing. The impact on the total
execution time of the application is lower in this second case.

In order to emulate task migration with replication we may also think in sequential
parts of the application or with low parallelism. If we are only able to submit one task
due to the workflow, we select the fastest machine available in the pool. However, if a
new machine becomes available! which is faster than the previous selected, we replicate
the running task to try to achieve results faster. We do not consider the remaining time of
the running task to replicate only if we will get results faster in the new machine, because
no other tasks need the resource and the replica may still be beneficial in case the original
task fails.

Our system only replicates tasks which are already running for two main reasons. The
first one is that it is the right moment to decide which task must be replicated to achieve
our objectives, and the second one is because the data dependencies have been already
solved, so no conflicts with the workflow can appear.

If we do not have enough resources to replicate all running tasks, we need to establish a
priority about which tasks are more important to be replicated. This case may be common
in high parallel regions of the code, where almost all resources are used at the same time,
so we must decide which of the running tasks should use the free slots with replicas. We
will consider the data dependence workflow in order to decide which one of the running
tasks should be replicated, thus taking advantage of the application knowledge available
at this level. As the true data dependencies described in the workflow are unavoidable, we

are interested in replicating the tasks that have more successors: the more dependencies

'Because it is new in the pool or because it has finished executing a task

164 Applying fault tolerance at the programming model level

M |

Figure 5.8 Workflow example for replication

we solve, the more tasks we will have ready to run in the next scheduling step. This is
very useful when the workflow which describes the data dependencies has a low degree
of parallelism: i.e. Figure 5.8 describes an example of a data dependency graph. If we
suppose that tasks 0, 1 and 2 are running, we can see that, in terms of achieving a better
parallelism, it is important that task 1 finish correctly as soon as possible, considering
their successors, because it will add more tasks to the ready queue once it finishes. In
this example, we would like to replicate task 1 to prevent a possible failure that does not
allow us to free its data dependencies. According to [24], we could classify our replication
mechanism as semi-active, because the decisions about the replicas are taken in the master

part of the application by creating, submitting or destroying them.

The task replication mechanism also needs to determine how many replicas for a single
task will be run. We have initially defined a single replica per task. The suitable number
of replicas for each task is an interesting study, but it is not among our initial objectives.
This will be evaluated in the future. We could consider, for instance, submitting more
replicas of a task depending on how many successors the task has in the data dependency

graph, and also on the free slots.

It is true that performing a deeper analysis of the dependency graph, analyzing its
critical paths and estimating the execution cost of the whole workflow in every scheduling
step would probably give us a more precise plan in order to decide which task should be
replicated. However, as dependency graphs can be as complex as the application’s source
code describes, and the dynamic nature of the Grid can easily ruin long term predictions,
we decided to keep our policy simple enough to avoid adding overheads in the runtime,
but effective enough to fulfill our requirements of having more reliability in the sequential
parts of the application or with low parallelism.

The new task replication mechanism can work together with the existing ones. We
treat replicas as regular tasks, and in case they have a failure or must be cancelled, they

may be resubmitted to a new resource. This way, replicas are able to overcome temporary

5.3 Dynamic task replication 165

failures and they help in detecting malfunctions in machines which belong to our Grid.
Soft and hard timeouts are different in different machines for the same task, as they are
calculated depending on the computational power of the resources. Also, the runtime
must control the working disks of the replicas to decide where to replicate a task to avoid

concurrency problems (two tasks writing in the same result files).

In brief, the implemented algorithm is described as follows. It will be executed in
every scheduling step, after submitting all ready tasks to the available machines in the
Grid. When no more ready tasks are available, we can use the remaining free machines
to execute replicas of the running tasks. For all the running tasks, we check if the task
has been already replicated (or tried to replicate unsuccessfully) and if the replication
threshold is reached. The replication threshold is defined as the minimum execution time
needed to consider the task for replication. Delaying the replication of a task is useful
because the data dependency graph is created and consumed at the same time, dynamically
and from the start of the application. So, when the application starts, we cannot directly
consider replications until an initial set of tasks has been generated. Then also prevents the
replication of tasks that are going to generate directly an application related error which

comes from the implementation of the task (memory leaks, division by 0, ...).

The selection of the most suitable machine to execute the task replica is done the
same way as with a regular task: estimating the execution time, the file transfer time
(considering locality), and selecting the smallest estimation (see Section 4.2.3). However,
in the resource selection, we do not consider the machine where the original task is already
running as a candidate to submit a replica. One of the objectives of task replication is
to avoid possible failures in machines when executing a task, then it makes no sense
to replicate a task in the same machine where it is already running. In addition, if we
replicate a task in the same machine we will not be able to speed up the execution, as we

cannot expect the replica to be executed faster.

When one of the replicated task finishes, the runtime will submit a cancel to the rest of
running replicas (1 in current implementation) and they will be marked as discarded. So,
when the runtime receives a notification about a successful cancellation or a done status
in a replica, it will mark the possible results which the task may have generated in the

remote machine as files to be erased in the final post-process of the execution.

In summary, the main difference of our system in comparison with others is that
replicas are defined and scheduled dynamically, on availability of the Grid resources
and on demand of the application. Some of these replicas will be added to increase the
probability of task completion and also will speed up the execution in case of Grids with

a high level of heterogeneity (very fast nodes against very slow ones). Besides, retries

166 Applying fault tolerance at the programming model level

will be always defined and executed under failure, which will ensure the completion of
the application. Our replication mechanism is also very useful for applications with a
variable degree of parallelism: when no tasks can be submitted in parallel, we replicate
tasks into free resources to increase their probability of being executed correctly or to
speed up their execution. Thus, sequential parts of the application, which are critical to
determine the total execution time, are replicated to avoid delaying the whole execution if

a failure appears.

5.3.2 Experimental results

To test our dynamic task replication mechanism we have used again the fastDNAml
algorithm already presented in Section 4.3.2. This algorithm is suitable to test this
mechanism, as in the data dependence graph there are synchronization points which are
very important for the performance achieved by the application.

The Grid for this experiment is formed with a total number of 60 CPUs, with machines
from a single PC to a cluster of 29 CPUs. They are distributed in three different
These

computers have Globus installed, as well as the latest GRIDSs distribution. It is important

administrative domains around Spain (Ciudad Real, Madrid and Barcelona).

to mention that this Grid is an heterogeneous environment, with slow and fast machines
mixed.

We have run the fastDNAmlI algorithm with the same input used in the HPC Challenge
in SC2003, where an MPI version of the algorithm won the award to the Most Distributed
Application [93]. We have tested all the clustering policies defined in a first set of runs
without task replication, and in a second set with this new mechanism activated in the
runtime. Table 5.2 contains the total execution time of the different runs, detailing if the
replication mechanism is enabled and the policy used to pack the trees. We have defined
the 12 first iterations to be executed in the master, and packages of 4 trees when the
variable MAX_PACKET_SIZE applies (UNFAIR and DEFAULT policies).

The first thing we notice is the big penalty paid with the FAIR policy, which may

be suitable for homogeneous Grids, but it is clearly not for heterogeneous. Comparing

Table 5.2 Time elapsed for execution

Policy No Replication | Replication | Reduction
FAIR 36213 s 25572 s -29.4%
UNFAIR 21534 s 19182 s -10.9%
DEFAULT 21497 s 19040 s -11.4%

5.3 Dynamic task replication 167

(JTree evaluation
@ Barrier

Figure 5.9 fastDNAml workflow generated by GRIDSs

the execution times we see a gain in the total execution time for all the policies. This
is explained with the failures caused during the execution, the data dependency structure
of the algorithm and with the heterogeneity of the Grid configuration. The evaluations
in the algorithm generate a task dependency graph such as the one shown in Figure 5.9.
In every evaluation step, all tasks can be submitted in parallel to our Grid, and faster
machines will execute more tasks than the slower ones. After the evaluation step, there is
a synchronization point to decide which of the reordered trees is the best (has the highest

overall likelihood value).

In the FAIR policy there is an undesired side effect which is produced by the slowest
machine in the pool. As work is divided among all available machines, slow CPUs get the
same amount of work as faster ones. Without replication, we must wait for the slowest
machine in every synchronization step. With replication, when a fast machine finishes its
work, it will receive a replica of tasks still running, similar to what would be done with

opportunistic migration, thus speeding up the execution.

The situation is different in the DEFAULT policy, because in every iteration we have
free slots to replicate tasks, but this replicas go to slowest machines, which have not been
initially selected to run jobs. We emulated some failures in replicated tasks, which caused
a resubmit of the task in the machine where it was running. However, the other copy of
the task kept running, so the penalty paid for every failure has been a slower execution
time in case we killed the task in the faster machine. When we killed the task in the
slower one, no penalty is paid. Without replication, we always would pay the penalty of
resubmitting the task in the machine from the start. The UNFAIR policy behaves exactly
as the DEFAULT policy because there are less tasks than CPUs in every iteration step.

168 Applying fault tolerance at the programming model level

In conclusion, the replication mechanism is useful, not only to avoid delaying the
total execution time when failures appear in an application, but also to speed up the total
execution time by replicating tasks running in slower machines to faster ones, without
demanding users to implement a checkpoint mechanism for their tasks. This also may be
applied to many other algorithms with parallel and sequential parts during their execution:
failures in parallel parts are covered with retries, and failures in sequential parts are

shielded with task replication to ensure they are not delayed because a failure arises.

Chapter 6
Conclusions

In this thesis we have studied the current state of the art in programming models for
the Grid. From the previous work done in this area, we can see the importance of this
topic for the research community, as many groups have dedicated their efforts in easing
the programming of Grid applications, but following very different directions. As we
have seen in Chapter 2, different systems try to provide solutions to avoid that users have
to program directly the Grid services, which is a very difficult task for them. The ideal
scenario is that a user knows the minimum about the Grid technology underneath their
application. This approach is known as Grid-unaware and it is one of our main objectives

in our research: to keep the Grid as invisible as possible to the end user.

6.1 Programming interface

Our contribution to that objective is GRID superscalar, a programming model which
helps in the development of applications to be run in Grid environments and exploits
the existent parallelism of the applications at the program level. The first part of the
thesis presents the GRIDSs interface. The interface has been designed to be very simple.
A user must provide three basic components: the main program of the application, the
code of the functions that they want to run in the Grid and an IDL file describing the
interface of those functions. The main program and the functions can be programmed in
different languages: C, C++, Java, Perl and Shell Script. With this, GRIDSs acts as an
intermediate language, as the assembler language does between programming languages
and the machine language. The set of calls defined to be used in the main program and
functions is very small to keep the programming interface very simple to learn for end
users. There are 8 primitives available in the master side (4 of them related to open and

close files), and 2 in the worker side.

170 Conclusions

Some extra primitives to achieve the speculative execution of tasks are provided.
Having a group of speculative tasks means that, when a condition is reached, the tasks
after the one that reached that condition will not be executed and can be discarded.
This has been designed specifically for parameter-sweep applications or optimization
algorithms, that typically submit a big set of jobs in order to run the same test with
different inputs, and when an objective value is reached, the rest of the tasks are not
required to be executed. With this mechanism, the parallel execution of this type of
applications can be exploited, but also the computation will not be more than needed.

The interface also includes the possibility of defining the constraints and the compu-
tation cost of a task in order to execute it. The constraints are very useful when the Grid
where an application must be run is heterogeneous: with machines from clusters to regular
PCs, different operating systems, installed software, physical memory, architecture, ...
With the constraints specification a user can specify what is needed in order to run a task,
and the runtime checks what machines of the total available accomplish the requirements
to run it. The cost can also be expressed by users, based in previous runs of the operations
they want to execute in the Grid. This cost can be described as a formula to calculate how
long the task will take in a machine, using the size of the input files and the computational
power available in the machine where GRIDSs is considering to submit a job.

We also provide a comparison between our programming model and other existing
environments to prove that it is very simple and easy to use to program an application for
the Grid. We compare our model with programming directly a Grid middleware (Globus),
using a workflow tool (DAGMan), using a programming model based on the GridRPC
API (Ninf-G), and using a language to build workflows (VDL). In these cases, our model
has a simpler interface because the parallelism and the Grid details are not specified in the
code. Moreover, as it is based in an imperative language, it allows to build big workflows

in an easier way than with other mentioned tools.

6.2 Runtime

The runtime of GRIDSs is the one in charge of generating tasks for every function the
user wants to execute in the Grid. Every call to a function generates a task in the runtime,
which builds automatically a Direct Acyclic Graph describing the data dependencies
between the tasks. All tasks that do not have preceding data dependencies are ready
to run, and if there are resources available, we can submit them to run concurrently in
the Grid. The data dependencies are analyzed taking into account the files every task

creates or consumes. This is justified with the kind of tasks that can benefit from using

6.2 Runtime 171

the Grid: tasks with high computation demands (bioinformatic applications, chemistry
simulations, ...). These applications usually work with large inputs that are stored in files.
The data dependencies detected are the same as in a superscalar processor [47]: RaW,
WaR and WaW. In order to increase the parallelism available in the dependency graph, we
eliminate WaR and WaW dependencies by means of a renaming technique. File names

are renamed internally and transparently for the end user.

Although the scheduling of tasks was not one of our main research objectives, we have
done some work in this topic. In order to submit a task, the task dependency graph is the
basis which defines what tasks can be submitted to the Grid because they do not have
any data dependencies pending to be solved. When a task finishes its execution, the data
dependency graph is updated by erasing the finished task, which may release other tasks

in order to be executed if they become free of preceding dependencies.

Regarding resource brokering, we have developed a simple broker which controls the
Grid machines (what machines can be used and their configuration). The scheduling
policy in the broker is focused to reduce the total execution time of a task. To achieve
this, it uses a greedy policy which selects the task with the smallest total execution time
estimation from the ones available to be run. The runtime considers not only the time
the task will take in order to be run (provided by the user), but also the time required
to transfer the input files needed for the task. The estimation of the execution time of
a task is machine dependant and dynamically calculated for every task. In addition,
task constraints and machine capabilities are matched. This is implemented using the
ClassAds [77] library in the runtime. This library allows to publish "advertisements"
where machines offer capabilities and tasks require them.

Our system includes a file locality exploitation policy to reduce the transfers between
different resources in the Grid to the minimum, thus saving time and network usage
during an execution. When a task finishes its execution in a remote machine, its output
files are kept there in order to save future transfers: if a new task needs those results as
inputs, submitting it to this machine means that we will not need to transfer them. So,
when estimating the time a task will spend in a machine to run, we will not count the
time to transfer its inputs if they are already available there. Our environment maintains
information of the location of all files involved in the computation, even if they are inputs

sent, or outputs generated after a task execution.

Related to the locality of files, other features have been explained, as the possibility
of defining shared disks among machines. This is very important because in a distributed
system the usage of replicas or shared spaces is very common in order to access to some

data faster, or access it transparently regardless its location. GRIDSs allows the definition

172 Conclusions

of machines that share a working space, or also replicated input directories in different
machines. Defining those zones lets the runtime know when a file transfer will not be
needed. Another described feature is the deletion of intermediate versions of a file. As
the renaming mechanism generates several versions of a single file, when there is a new
name for a file future references to that file will use the new name, so, previous versions
are candidates to be erased. When an old version is no more needed it will be erased from
all the machines where it is available, reducing the total disk usage. Related both to the
locality and the constraints specification, there is also a quota control implemented, in

order to know in advance if the task will have enough space for its files to run.

Some information needs to be sent to the master machine in order to determine if
the task has finished correctly, to send output scalars and to gather some information
needed for the scheduler. We have presented two mechanisms available to get this
information: the file mechanism and the socket mechanism. While the former is suitable
when machines have a limited connectivity (firewalls, ...), the latter achieves a faster

communication when the machine does not have such connectivity restrictions.

We have presented several evaluation tests of the runtime which pursue very different
objectives. We have made a deep analysis of the runtime when executing the NAS Grid
Benchmarks with GRIDSs and analyzing some of the executions in detail. Moreover, we
have studied the performance of a simple optimization example and several real use cases
of the tool, demonstrating that not only the data dependency graph but also the granularity
of tasks have an important influence in the final speed up achieved by the application when
run in the Grid. Other real use cases show our experience in using a transoceanic Grid and
a big cluster with 1000 CPUs, which is a high demanding environment for our runtime.

Finally, a case study comparing PACX-MPI and GRIDSs is also presented.

6.3 Fault tolerance mechanisms

The last part of the thesis presents the study to include fault tolerant mechanisms in
our environment, which are extremely important in a distributed environment such as the
Grid (prone to failures). Failures can be related to the application (memory leaks, ...),
related to the underlying Grid services (job submission, file transfer, ...) or related to
the Grid resources (machine crash, network failure, ...). The mechanisms studied that
have been implemented in the runtime in order to deal with failures are checkpoint, retry
mechanisms and task replication. With this addition, GRIDSs is able to deal with errors

at all levels, providing a complete and easy solution for end users.

6.3 Fault tolerance mechanisms 173

The checkpoint is a mechanism focused to save the work previously done in case of
an unrecoverable failure. Thus, the user is able to restart the application where it was
stopped due to that failure instead of having to start the application from the beginning.
The checkpoint in GRIDSs works at a inter-task level. This means that it will save
the state of tasks that have completed their execution. Tasks that have not finished
will be restarted from the beginning. In our strategy to checkpoint tasks, we assume
we can checkpoint a task when all tasks with a smaller sequence number have finished
correctly. The sequence number is established by the sequential order of the application
(the way it would have been executed sequentially in a single machine). This assumption
simplifies the checkpoint complexity, avoiding to store all data structures from memory
to disk and reducing the number of files that we must maintain in order to restart the
application correctly. We say that this mechanism recovers the sequential consistency
of the application. We have seen that the drawback of having to discard some finished
tasks can be reduced by influencing the scheduling decisions. However, this mechanism
is completely transparent to end users, and they do not need to provide anything special in
order to use the checkpoint. A simple optimization example is presented in order to prove
that our checkpoint mechanism does not add overhead to the application run time when
no failures are detected.

We have proven that the retry mechanisms included are a good way to overcome
failures at run time allowing the application to continue its execution. More precisely,
the mechanisms proposed include the possibility of dropping a machine from the
computation, soft and hard timeouts for tasks, asynchronous transfer of task results and to

retry Grid middleware operations and system calls in the runtime.

When there is a certain amount of failures in a machine, it is interesting to remove
it from the computation to avoid future failures. Anyway, the dropped machine can be
added again to the computation when the user fixes its problems. Tasks have two timeouts
defined in order to detect possible failures. The first one is called soft timeout and it
is defined as the time when the runtime will start asking for the status of that task to
the Grid services. The second timeout is the hard timeout and it is described as the
maximum amount of time a task will be running. This mechanism allows to consider
severe performance degradations as failures and act to correct them. The asynchronous
transfer of results in the runtime avoids the need to undo checkpoints if the system is
not able to access result files stored in a remote machine. This increases the availability
of these files and reduces the post-process time of GRIDSs. Another interesting feature
derived from this mechanism is the possibility of analyzing results of the execution in the

master while the application is running. Retry mechanisms are also applied in case of a

174 Conclusions

Grid service request failure and system call failures with the objective that the execution
is only stopped when an unrecoverable failure appears. We provide an test case with a
long run Monte Carlo algorithm to see how our mechanisms deal with a variety of Grid

C€ITors.

A replication mechanism has also been studied in GRIDSs. It allows not only to deal
with Grid level errors but also to increase the performance in heterogeneous environments
without the need of an opportunistic migration mechanism. The migration mechanism
provided in most systems requires an implementation of a checkpoint strategy from the
user, which we do not demand. The replication is done based on the free machines
available while executing the application and on the task dependency graph that GRIDSs
has generated from the application. Thus, sequential parts of the application or parts with
few parallelism (giving priority to tasks that have more successors) are replicated to ensure
that their data dependencies will be solved even in case of a failure. Only free machines
are considered to run replicas in order to avoid overloading the Grid resources. We have
used the fastDNAml algorithm to demonstrate that the replication mechanism is useful not
only to avoid delaying the total execution time when failures appear in an application, but
also to speed up the total execution time by replicating tasks running in slower machines
to faster ones, without demanding users to implement a checkpoint mechanism for their
tasks.

With all the fault tolerance features added to our system, GRIDSs becomes an
integrated programming environment that includes failure detection and recovery. Our
system offers a complete fault tolerance solution able to deal with all types of failures in
complex workflow applications easily. Application numerical errors can be handled when
coding the application. The impact of application unrecoverable failures is reduced with
the checkpoint, which is transparent for users. Grid errors are also handled transparently
to users with the retry mechanism, getting the run time estimation of a task as the
information source to: determine the best moment to ask about the status of the task
to avoid introducing overhead, and detect a severe performance degradation in the task’s

execution.

In brief, this thesis document describes our contributions to the research community.
We have created a programming model that has helped users to run their applications
in the Grid in an easy manner, with a powerful runtime that allows to execute those
applications efficiently in a Grid. We have added fault tolerant features to the system,
which are very important in a Grid distributed system, where failures can happen with
a higher probability compared to other environments. We have presented experimental

results and successful stories where GRIDSs is used. Besides, GRIDSs has been also

6.4 Future work 175

a source of inspiration in some European Union Integrated Projects (IP) and Network
of Excellence: CoreGRID, BEinGRID, BREIN, XtreemOS. Also in LAGrid project and
the Spanish initiative Red Temadtica para la Coordinacion de Actividades Middleware en
Grid.

6.4 Future work

The main goal of GRIDSs is to assist users in exploiting the power of the Grid in their
applications. Thus, one of the main objectives that we always have present is to meet
new users to show them the benefits of using the Grid technology. We have seen how
applications from different fields can benefit from our programming model, so, many
other similar applications would obtain the same benefit when using GRIDSs. Our future
work always includes to make more popular our system and test new applications from
different scientific fields, demonstrating the simplicity of using our programming interface
and how parallelism can speed up their algorithms. One big help in this sense has been the
MareNostrum supercomputer [16]. It has been mentioned in this document that there is a
version of GRIDSs that works with ssh and scp between the nodes of MareNostrum [9].
This means that MareNostrum users are able to use GRIDSs to program their applications
and thus avoid the need of implementing scripts to submit and manage their jobs to
the queuing system in the supercomputer. Moreover, we are currently extending this
MareNostrum solution to the recently created Spanish Supercomputing Network (Red
Espariola de Supercomputacion). This network has been formed with parts of the first
version of the MareNostrum supercomputer distributed between different institutions in
Spain. GRIDSs will work then in a Grid of supercomputers, and will allow the users
to run their experiments using several supercomputers at the same time transparently for

them.

In this thesis document we have seen experimental results, using well-known bench-
marks and algorithms, such as the NAS Grid Benchmarks or the fastDNAml algorithm.
These tests have been performed in small Grids in our institution, with machines from
various institutions in Europe, and even with a machine located in Mexico. However, we
believe it will be interesting to perform a big test by creating a big virtual organization
with a high number of machines involved from around the world to see how our system
performs in such an scenario. This would be a particularly good test for the fault tolerance
features included in our system and would prove the robustness of GRIDSs. Also the new

Spanish Supercomputing Network will create a good scenario for our tests.

176 Conclusions

During the development of GRIDSs, a simple broker was developed inside our runtime
in order to deal with task submission taking into account our desired file locality policy
to save transfers. However, developing a complex broker inside the runtime has never
been our objective till now, considering the work that has been done in this field by other
groups. So, one of the possibilities to extend our system is to integrate it with some
meta-schedulers or brokers available, such as the GridBUS broker [107], the eNANOS
broker [81] or GridWay [49]. These brokers should be modular enough in order to
allow the implementation of our locality scheduling policy to submit jobs. A first
integration between GridWay and GRIDSs has been done in the context of the BEInGRID
project [10], but a deeper integration can be proposed. Another possibility is to make our
broker more complex in order to add the possibility of discovering new machines in the
Grid (resource discovery) and obtain resource information about the status of machines
(resource monitoring). This would make our broker more dynamic and more policies
related to the status of the machines could be studied. Our broker could also use the
information available in the data dependency graph between tasks in order to make a
more global scheduling, considering critical paths in the graph, weights in the nodes or

even clustering of tasks to submit a group of tasks to the same resource.

Although it has been show that the GRIDSs interface is very simple, we are studying
ways of substituting the calls to open and close files automatically in order to leave
the user’s source code with less changes. This would reduce the interface from 8 to 4
primitives in the master part of the application and should be done for all the programming

languages supported by GRIDSs.

The presented retry mechanisms have been proven to be very useful not only to recover
from temporary failures in remote machines, but also to avoid local temporary failures in
the master machine by retrying system calls inside the library. However, a permanent
failure in the master is still a problem, as the master controls all the retry mechanisms.
We are currently studying ways to add replication in the master in order to avoid that, as

it is done in the Google File System [40].

In the task replication case we have based our replication policy in the data dependency
graph and the free machines available. Anyway, some interesting cases can be studied,
as the degree of replication for a single task, and how many replicas should be running
in the system at the same time. Related to the number of replicas, it will be interesting
to study if it is better to overload the machines with replicas, even if they cause a small
degradation in the execution time of other tasks. Other policies based on the execution

time estimations could be done to decide which one is the most suitable task to replicate.

6.4 Future work 177

Some future work related to GRID superscalar is already ongoing. The GRID super-
scalar programming model has been the source of inspiration [8] to create a new family of
programming models called Star superscalar (StarSs). The ideas presented in this thesis
have been adapted to very different architectures, such as clusters (SSH GRIDSs [9]),
SMP machines (SMP superscalar [74]), the Cell Broadband Engine processor (Cell
superscalar [75]), and the Grid Component Model (COMP superscalar [100]). We do
not discard that new versions of the programming model may be created in order to adapt

it to new coming architectures.

178 Conclusions

Bibliography

[1]

[3]

[7]

M. Alt, J. Diinnweber, J. Miiller, and S. Gorlatch. Component Models and Systems
for Grid Applications, chapter HOCS: Higher-Order Components for Grids, pages
157-166. Springer US, 2005. 2

K. Amin, G. von Laszewski, M. Hategan, N. Zaluzec, S. Hampton, and A. Rossi.
GridAnt: a client-controllable grid workflow system. System Sciences, 2004.
Proceedings of the 37th Annual Hawaii International Conference on, page 10 pp.,
Jan. 2004. 2

D. Anderson. BOINC: A System for Public-Resource Computing and Storage.
In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
2004. 24.2

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing
Dept. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,
June 2002. 2

R. Badia, V. Dialinos, J. Ejarque, J. Labarta, J. Pérez, and R. Sirvent. The
GRID superscalar project: Current status. XVII Jornadas de Paralelismo, Albacete
(SPAIN), 2006. 1.3,4.2.1

R. Badia, R. Hood, T. Kielmann, A. Merzky, C. Morin, S. Pickles, M. Sgaravatto,
P. Stodghill, N. Stone, and H. Yeom. Use-Cases and Requirements for Grid
Checkpoint and Recovery. GFD.92 - Informational, Open Grid Forum (OGF),
2007. 2.4.2

R. Badia, R. Sirvent, M. Bubak, W. Funika, and P. Machner. Achievements in
European Research on Grid Systems, chapter Performance monitoring of GRID
superscalar with OCM-G/G-PM: integration issues, pages 193-205. Springer,
2008. 1.3

180

BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. M. Badia, P. Bellens, M. de Palol, J. Ejarque, J. Labarta, J. M. Pérez, R. Sirvent,
and E. Tejedor. GRID superscalar: from the Grid to the Cell processor. Spanish
Conference on e-Science Grid Computing, Madrid (Spain), 2007. 1.3, 6.4

R. M. Badia, P. Bellens, J. Ejarque, J. Labarta, M. de Palol, J. M. Pérez, R. Sirvent,
and E. Tejedor. SSH GRID superscalar: a Tailored Version for Clusters. /st Iberian
Grid Infrastructure Conference (IBERGRID), 2007. 1.3,4.2.1,4.2.4,4.3.2,6.4

R. M. Badia, D. Du, E. Huedo, A. Kokossis, I. M. Llorente, R. S. Montero,
M. de Palol, R. Sirvent, and C. Vazquez. Integration of GRID Superscalar and
GridWay Metascheduler with the DRMAA OGF Standard. In Euro-Par, pages
445-455, 2008. 1.3, 6.4

R. M. Badia, J. Labarta, R. Sirvent, J. M. Pérez, J. M. Cela, and R. Grima.
Programming Grid Applications with GRID Superscalar. Journal of Grid
Computing, 1(2):151-170, 2003. 1.3,4.3.1

R. M. Badia, R. Sirvent, J. Labarta, and J. M. Perez. Engineering The Grid: Status
and Perspective, chapter Programming the GRID: An Imperative Language-based
Approach. American Scientific Publishers, 2006. 1.3

L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming,
Deploying, Composing, for the Grid. Springer-Verlag, January 2006. 2, 2.2.3,
3.1

Z. Balaton and G. Gombds. GridLab Monitoring: Detailed Architecture
Specification. Tech. Rep. GridLab-11-D11.2-01-v1.2, EU Information Society
Technologies Programme (IST), 2001. 2.1.4

Z. Balaton, P. Kacsuk, and N. Podhorszki. Application Monitoring in the Grid with
GRM and PROVE. In ICCS ’01: Proceedings of the International Conference
on Computational Sciences-Part I, pages 253-262, London, UK, 2001. Springer-
Verlag. 2.1.4

Barcelona Supercomputing Center.
http://www.bsc.es/. 6.4

F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-

level scheduling on distributed heterogeneous networks. In Supercomputing *96:

BIBLIOGRAPHY 181

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM),
page 39, Washington, DC, USA, 1996. IEEE Computer Society. 2

BLAST Home Page.
http://www.ncbi.nlm.nih.gov/BLAST/. 3.1.1,4.3.2

R. Brobst, W. Chan, F. Ferstl, J. Gardiner, J. P. Robarts, A. Haas, B. Nitzberg,
H. Rajic, and J. Tollefsrud. Distributed Resource Management Application API
Specification 1.0. GFD.022 - Full Recommendation, Open Grid Forum (OGF),
2007. 4.2.1

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-
level checkpointing of MPI programs. ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP 2003),2003. 2.4.2

Business Experiments in Grid.

http://www.beingrid.eu/. 4.3.2

The Home of Checkpointing Packages.
http://checkpointing.org/. 5.1.1

A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. lamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, and B. Tierney. Giggle: A Framework for Constructing Scalable
Replica Location Services. Supercomputing, ACM/IEEE 2002 Conference,
page 58, 16-22 Nov. 2002. 2.1.2,4.2.4

P. Chevochot and I. Puaut. Scheduling fault-tolerant distributed hard real-time tasks
independently of the replication strategies. Real-Time Computing Systems and
Applications, 1999. RTCSA ’99. Sixth Int. Conference on, pages 356-363, 1999.
5.3.1

J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta. Running OpenMP
applications efficiently on an everything-shared SDSM. In Proceedings of the 18th
International Parallel and Distributed Processing Symposium, 2004. 1.1

K. Czajkowski, C. Kesselman, S. Fitzgerald, and 1. Foster. Grid Information
Services for Distributed Resource Sharing. hpdc, 00:0181, 2001. 2.1.2

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping Abstract

182

BIBLIOGRAPHY

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Complex Workflows onto Grid Environments. Journal of Grid Computing,
1(1):25-39, 2003. 2

R. V. der Wijngaart and M. Frumkin. NAS Grid Benchmarks: A Tool for Grid
Space Exploration. In in Proc. of the 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-104AZ01), pages 315-324, August
2001. 4.3.1

V. Dialinos, R. Badia, R. Sirvent, J. Perez, and J. Labarta. Implementing
phylogenetic inference with GRID superscalar. IEEE International Symposium
on Cluster Computing and the Grid (CCGrid2005), 2:1093-1100, 9-12 May 2005.
1.3,4.3.2,4.3.2

Directed Acyclic Graph Manager Homepage (DAGMan).
http://www.cs.wisc.edu/condor/dagman/. 2,2.1.1,2.1.2,3.3.2

D. W. Erwin and D. F. Snelling. Euro-Par 2001 Parallel Processing, chapter
UNICORE: A Grid Computing Environment, pages 825-834. Springer Berlin /
Heidelberg, 2001. 1.1, 3.1

T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON: a Grid application

development and computing environment. The 6th IEEE/ACM International
Workshop on Grid Computing, 13-14 Nov. 2005. 2.4.2

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Int.
Journal of Supercomputer Applications, 11(2):115-128, 1997. 1.1, 2.1.4, 2.2.1,
3.1,4,4.2.1,5.2.1

I. Foster and C. Kesselman, editors. The Grid: blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
1.1

I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: a virtual data system
for representing, querying, and automating data derivation. Proceedings 14th

International Conference on Scientific and Statistical Database Management,
pages 3746, 2002. 2,2.1.2,3.3.4

N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies. RFC 2045 (Draft Standard), Nov. 1996.
Updated by RFCs 2184, 2231, 5335. 4.2.1

BIBLIOGRAPHY 183

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A
computation management agent for multi-institutional grids. In Proceedings of
the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC),
pages 55-63, San Francisco, California, August 2001. 1.1, 2.1.1

The General Atomic and Molecular Electronic Structure System.
http://www.msg.ameslab.gov/GAMESS/. 3.1.1,4.3.2

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM
Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, Mass., 1994. 2.1.4

S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In Proceedings
of the nineteenth ACM symposium on Operating Systems Principles, pages 29-43,
2003. 6.4

A. Gianelle, R. Peluso, and M. Sgaravatto. Datagrid: Job Partitioning and
Checkpointing. Technical report, CERN, 2002. 2.4.2

T. Goodale, G. Allen, G. Lanfermann, J. Masso, E. Seidel, and J. Shalf. The
cactus framework and toolkit: Design and applications. In Proceedings of the
Sth International Conference in Vector and Parallel Processing - VECPAR’2002.
Springer, 2003. 2.4.2

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf, and
C. Smith. A Simple API for Grid Applications (SAGA). GFD.090 - Proposed
Recommendation, Open Grid Forum (OGF), 2008. 2, 4.2.1

The Grid Programming Environment.

http://sourceforge.net/projects/gpedgtk/. 2

Grid Remote Procedure Call Working Group.
http://www.ogf.org/gf/group_info/view.php?group=gridrpc-wg. 2

N. Hayashibara, A. Cherif, and T. Katayama. Failure detectors for large-scale
distributed systems. 2Ith Symp. on Reliable Distributed Systems (SRDS), 2002.
2.4.1

J. Hennessy, D. Patterson, and D. Goldberg. @ Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 2002. 1.3, 1.3,4.1.1,4.1.2,6.2

184

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

A. Hoheisel. User Tools and Languages for Graph-based Grid Workflows. Grid
Workflow Workshop, GGF10, 2004. 2

E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execution
in grids. Software: Practice and Experience, 34(7):631-651, 2004. 2.4.1, 4.2.3,
424,432, 6.4

S. Hwang and C. Kesselman. Grid workflow: A flexible failure handling framework
for the Grid. In Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing, pages 126—137, Los Alamitos, CA, USA,
2003. IEEE Computer Society. 2.4.2

OMG IDL Syntax and Semantics.
http://www.omg.org/cgi-bin/doc ?formal/02-06-39/. 3.2.2

M. Juan and R. M. Badia. Ampliaci6 dels llenguatges suportats per I’entorn GRID

superscalar. Graduate Thesis, Universitat Politecnica de Catalunya, 2005. 3.1.3

P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton, and
G. Gombas. P-GRADE: A Grid Programming Environment. Journal of Grid
Computing, 1(2):171-197, 2003. 2.1.4,2.4.2

W. Kang, H. H. Huang, and A. Grimshaw. A Highly Available Job Execution
Service in Computational Service Market. In Proceedings of the 8th IEEE/ACM
International Grid Computing Conference, 2007. 2.4.2

S. Kannan, P. Mayes, M. Roberts, D. Brelsford, and J. F. Skovira. Workload
Management with LoadLeveler. IBM Redbooks, 2001. 2.4.2

N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-enabled implementation
of the Message Passing Interface. Journal of Parallel and Distributed Computing,
63(5):551-563, 2003. 2,4.3.2

G. Kola, T. Kosar, and M. Livny. Phoenix: Making data-intensive grid applications
fault-tolerant. In Proceedings of the 5th IEEE/ACM International Workshop on
Grid Computing, 2004. 2.4.1

E. Krepska, T. Kielmann, R. Sirvent, and R. M. Badia. Achievements in European
Research on Grid Systems, chapter A Service for Reliable Execution of Grid
Applications, pages 179-192. Springer, 2008. 1.3, 2.4.2

BIBLIOGRAPHY 185

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. Euro-Par’96 Parallel
Processing, chapter DiP: A parallel program development environment, pages 665—
674. Springer Berlin / Heidelberg, 1996. 3.2.1, 4.3.1,4.3.1,4.3.2

E. Laure, S. M. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. D. Meglio, and
A. Edlund. Programming the Grid with glLite. Computational Methods in Science
and Technology, 12(1):33-45, 2006. 3.1

A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou. Efficient task replication
and management for adaptive fault tolerance in Mobile Grid environments. Future

Generation Computer Systems, 2007. 2.4.2

R. Lovas, R. Sirvent, G. Sipos, J. M. Pérez, R. M. Badia, and P. Kacsuk. Integrated
Research in GRID Computing, chapter GRID superscalar enabled P-GRADE
portal, pages 241-254. Springer, 2007. 1.3

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and A. Plaat. An Efficient
Implementation of Java’s Remote Method Invocation. Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’99),
pages 173-182, May 1999. 2.2.2

R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve. Faults in grids: Why are they
so bad and what can be done about it? In Proceedings of the Fourth International
Workshop on Grid Computing, pages 18-24, 2003. 2.4.2

L. Moreau, Y. Zhao, 1. Foster, J. Voeckler, and M. Wilde. XDTM: The XML
Dataset Typing and Mapping for Specifying Datasets. In Proceedings of the 2005
European Grid Conference (EGC’05), Amsterdam, The Netherlands, 2005. 2.2.5

The Message Passing Interface (MPI) standard.
http://www-unix.mcs.anl.gov/mpi/. 1.1, 2.1.4, 3.1.1

M. O. Neary, A. Phipps, S. Richman, and P. R. Cappello. Javelin 2.0: Java-
Based Parallel Computing on the Internet. In Euro-Par *00: Proceedings from the
6th International Euro-Par Conference on Parallel Processing, pages 1231-1238,
London, UK, 2000. Springer-Verlag. 2

T.-A. Nguyen and P. Kuonen. ParoC++: A Requirement-Driven Parallel Object-
Oriented Programming Language. In IPDPS ’03: Proceedings of the 17th

186 BIBLIOGRAPHY

International Symposium on Parallel and Distributed Processing, page 129.1,
Washington, DC, USA, 2003. IEEE Computer Society. 2

[69] G.J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastDNAml: a tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci., 10(1):41-48, 1994. 4.3.2

[70] The Open Grid Forum (OGF).
http://www.ogf.org/. 2.4.2

[71] The OpenMP Homepage.
http://www.openmp.org/drupal/. 1.1,4.2.3

[72] The PACX-MPI Project Homepage.
http://www.hlrs.de/organization/amt/projects/pacx-mpi/. 2, 4.3.2

[73] J. M. Pérez and R. M. Badia. Millora de I’entorn de programacié GRID superscalar.
Graduate Thesis, Universitat Politecnica de Catalunya, 2004. 3.1.2

[74] J. M. Perez, R. M. Badia, and J. Labarta. A flexible and portable programming
model for SMP and multi-cores. Technical Report 03/2007, Barcelona
Supercomputing Center, June 2007. 6.4

[75] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Programming the
Cell/B.E. made easier. IBM Journal of R&D, 51(5), August 2007. 6.4

[76] 1. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: Fast and
Light-weight tasK executiON framework. In Proceedings of the Supercomputing
Conference (SC’07),2007. 2.2.5

[77] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. In Proceedings of the Seventh IEEE

International Symposium on High Performance Distributed Computing, July 1998.
3.2.5,4.23,6.2

[78] The RealityGrid project.
http://www.realitygrid.org/. 2.4.2

[79] S. Reyes, C. Munoz-Caro, A. Nino, R. M. Badia, and J. M. Cela. Performance
of computationally intensive parameter sweep applications on internet-based grids

of computers: the mapping of molecular potential energy hypersurfaces: Research

BIBLIOGRAPHY 187

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

articles. Concurrency and Computation: Practice and Experience, 19(4):463-481,
2007. 4.3.2

S. Reyes, A. Nino, C. Munoz-Caro, R. Sirvent, and R. M. Badia. Monitoring Large
Sets of Jobs in Internet-Based Grids of Computers. Ist Iberian Grid Infrastructure
Conference (IBERGRID), 2007. 1.3

I. Rodero, J. Corbalan, R. M. Badia, and J. Labarta. Advances in Grid Computing
- EGC 2005, chapter eNANOS Grid Resource Broker, pages 111-121. Springer
Berlin / Heidelberg, 2005. 4.2.3, 6.4

E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. GridLab: a grid application
toolkit and testbed. Future Gener. Comput. Syst., 18(8):1143-1153, 2002. 2.4.2

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In
Proceedings of the Third International Workshop on Grid Computing, pages 274—
278, 18 Nov. 2002. 2,2.2.1,3.3.3

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530 (Proposed
Standard), Apr. 2003. 4.2.4

Simple API for Grid Applications Working Group.
http://www.ogf.org/gf/group_info/view.php?group=saga-wg. 2

R. Sirvent, R. M. Badia, P. Bellens, V. Dialinos, J. Labarta, and J. M. Pérez.
Demostracion de uso de GRID superscalar. Boletin RedIRIS, (no. 80):41-46, Abril
2007. 1.3

R. Sirvent, R. M. Badia, N. Currle-Linde, and M. Resch. Achievements in European
Research on Grid Systems, chapter GRID Superscalar and GriCoL: Integrating
Different Programming Approaches, pages 139-150. Springer, 2008. 1.3

R. Sirvent, R. M. Badia, and J. Labarta. Fault tolerance and execution speed up
with task replication for scientific workflows. High Performance Computing and
Communications (HPCC) (Submitted), 2009. 1.3

R. Sirvent, A. Merzky, R. M. Badia, and T. Kielmann. GRID superscalar
and SAGA: forming a high-level and platform-independent Grid programming
environment. CoreGRID Integration Workshop. Integrated Research in Grid
Computing, 2005. 1.3

188

BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

R. Sirvent, J. M. Pérez, R. M. Badia, and J. Labarta. Automatic Grid workflow
based on imperative programming languages: Research Articles. Concurr. Comput.
: Pract. Exper., 18(10):1169-1186, 2006. 1.3

R. Sirvent, J. M. Pérez, R. M. Badia, and J. Labarta. Programacion en el Grid:
una aproximacién basada en lenguajes imperativos. Computacion Grid: del

Middleware a las Aplicaciones, pages 33-52, Junio 2007. 1.3

P. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A. Lee, and G. von
Laszewski. A fault detection service for wide area distributed computations.
Cluster Computing, 2(2):117-128, 1999. 2.4.1

C. Stewart, D. Hart, M. Aumuller, R. Keller, M. Muller, H. Li, R. Repasky,
R. Sheppard, D. Berry, M. Hess, U. Wossner, and J. Colbourne. A global
grid for analysis of arthropod evolution. In Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing, pages 328-337, 8 Nov. 2004. 4.3.2,
5.3.2

N. Stone, J. Kochmar, R. Reddy, J. R. Scott, J. Sommerfield, and C. Vizino.
A Checkpoint and Recovery System for the Pittsburgh Supercomputing Center
Terascale Computing System. Technical report, Pittsburgh Supercomputing Center,
2003. 2.4.2

N. Stone, D. Simmel, T. Kielmann, and A. Merzky. An Architecture for Grid
Checkpoint and Recovery Services. GFD.93 - Informational, Open Grid Forum
(OGF), 2007. 2.4.2

H. Takemiya. Constructing Grid Applications on the World-Wide Testbed - Climate
Simulation and Molecular Simulation. 6th HLRS Metacomputing and GRID
Workshop, May 2003. 4.3.1

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G:
A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. Journal of Grid Computing, 1(1):41-51, 2003. 2,2.2.1, 3.3.3, 4.2.1

Taverna Project Website.

http://taverna.sourceforge.net/. 2

I. Taylor, M. Shields, and I. Wang. Distributed P2P computing within Triana: A
Galaxy Visualization Test Case. Parallel and Distributed Processing Symposium,
2003. Proceedings. International, pages 8 pp.—, 22-26 April 2003. 2, 2.1.3, 3.1

BIBLIOGRAPHY 189

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

E. Tejedor and R. M. Badia. COMP Superscalar: Bringing GRID Superscalar
and GCM Together. In CCGRID ’08: Proceedings of the 2008 Eighth IEEE

International Symposium on Cluster Computing and the Grid (CCGRID), pages
185-193, Washington, DC, USA, 2008. IEEE Computer Society. 6.4

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience, 17(2-4):323-356,
2005.2.2.1,2.4.2

S. Thatte, T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services Version 1.1, 2003.

http://www.ibm.com/developerworks/library/specification/ws-bpel/. 2, 2.1.3

The Unified Modeling Language Web Page.
http://www.uml.org/. 4.2.1

R. V. van Nieuwpoort, T. Kielmann, and H. Bal. User-Friendly and Reliable Grid
Computing Based on Imperfect Middleware. In Proceedings of SC07, 2007. 2.4.1

R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. E. Bal. Satin: Simple
and efficient java-based grid programming. Scalable Computing: Practice and
Experience, 6(3):19-32, September 2005. 2, 2.2.2

S. Venkatakrishnan, M. Kuchhal, and S. Kumar. Grid Application Framework for
Java (GAF4)). http://alphaworks.ibm.com/tech/GAF4J/. 2

S. Venugopal, R. Buyya, and L. J. Winton. A Grid service broker for scheduling
e-Science applications on global data Grids. Concurrency and Computation:
Practice and Experience, 18(6):685-699, May 2006. 2.4.1,4.2.3, 6.4

G. von Laszewski, 1. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit.

Concurrency and Computation: Practice and Experience, 13(8-9):643—662, 2001.
2.2.1,2.24

G. von Laszewski, M. Hategan, and D. Kodeboyina. Workflows for e-Science,
chapter Java CoG Kit Workflow, pages 340-356. Springer London, 2007. 2.2.4

Web Services Choreography Working Group.
http://www.w3.0rg/2002/ws/chor/. 2

190 BIBLIOGRAPHY

[111] J. B. Weissman. Fault tolerant computing on the grid: what are my options?
In Proceedings of The Eighth International Symposium on High Performance
Distributed Computing, pages 351-352, 3-6 Aug. 1999. 2.4.2

[112] G. Wrzesinska, R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. E.
Bal. Fault-tolerant Scheduling of Fine-grained Tasks in Grid Environments.

International Journal of High Performance Computing Applications (IJHPCA),
20(1):103-114, Spring 2006. 2.4.2

[113] J. Yu and R. Buyya. A Taxonomy of Scientific Workflow Systems for Grid
Computing. SIGMOD Record, 34(3), 3 Sept. 2005. 2.4.2

[114] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, T. Stef-
Praun, and M. Wilde. Swift: Fast, reliable, loosely coupled parallel computation.
IEEFE International Workshop on Scientific Workflows, 2007. 2,2.2.5, 3.1

Appendix A

Runtime environment variables

As the requirements of users and applications may differ when using GRID super-
scalar, we provide a set of environment variables which can be defined before running
an application. This allows an easy tuning of the runtime behavior that can be done by
expert users without the need of recompiling neither the GRID superscalar library nor
the application’s code. This variables have a default value that is only modified when
users specify a new value in their environment, overwriting the default value. The list of

variables is:

e GS_DEBUG: this variable can be set to receive more or less debug information
during the execution. When its value is 20, the master will write at its standard
output many debug information to allow users to determine potential problems
during the execution. When set to 10, less information will be printed with the
objective of following the execution of the tasks. Default value is 0, which means

no debug information is requested.

e GS_LOGS: a value of 1 tells the master to leave execution logs of all tasks
executed in all worker machines. These logs will be named OutTaskXX.log and
ErrTaskXX.log, according to the standard output and standard error messages given
in that task (where XX is the number of the task, defined by the sequential order of

the application. Default value is 0, indicating that no logs should be provided.

e GS_SOCKETS: related with the end of task message mechanisms implemented in
the runtime. If it is set to 1, messages from workers to the master will be sent

through sockets. Default value is O to enable the communication through files.

e GS_MIN_PORT: this variable only applies when working with GS_SOCKETS set

to 1. Some machines have constraints in connectivity, regarding to opened ports.

192

Runtime environment variables

For this reason an available range of ports may be indicated to GRIDSs to be used

to open a reply port when working with socket notifications.

GS_MAX_PORT: the upper threshold of the range of ports. It is only considered
when GS_SOCKETS is set to 1.

GS_ENVIRONMENT: this variable is considered an advanced feature. Some
extra environment variables could be needed to be passed when executing your
jobs in the Grid (i.e. when your jobs are parallel). These variables can be
passed with this parameter. Your GS_ENVIRONMENT string can be as long as
pointed by GS_MAXPATH. Each variable must be in parentheses: (VARIABLEI
valuel)(VARIABLE2 value2), ... The content of GS_ENVIRONMENT will be sent

to each worker machine.

GS_TIMEOUT_FACTOR: this factor is multiplied by the estimated execution time
given by the user for a task, and determines a soft limit for the real execution time
of the task. Once this limit is reached, the runtime starts to ask if the job is still
running or there has been an error. This belongs to the fault tolerance mechanisms
included in the runtime, which are explained in Chapter 5. Default value is 1.25 and
it must be bigger than 1 when redefined. If it is set to O it will disable the resubmit

mechanism.

GS_RESUBMIT_FACTOR: the resubmit factor is also multiplied by the estimated
execution time for a task, determining a maximum execution time for that task. So,
if this time is reached, the task is killed and resubmitted. This mechanism is also
explained in Chapter 5. Default value is 2 and it must be bigger than the specified

timeout factor.

	Abstract
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis objectives
	1.3 Thesis contribution
	1.4 Thesis organization

	2 Related work
	2.1 Workflow tools
	2.1.1 Condor DAGMan
	2.1.2 Pegasus
	2.1.3 Triana
	2.1.4 P-GRADE

	2.2 Programming models
	2.2.1 Ninf-G
	2.2.2 Satin
	2.2.3 ProActive
	2.2.4 CoG Kits
	2.2.5 Swift

	2.3 Comparison with GRIDSs
	2.4 Fault tolerance in Grid environments
	2.4.1 Grid level
	2.4.2 Application level
	2.4.3 Comparison with GRIDSs mechanisms

	3 GRID superscalar: easy programming model for the Grid
	3.1 Design
	3.1.1 Target applications
	3.1.2 Application's architecture: a master-worker paradigm
	3.1.3 The Execute generic interface

	3.2 User interface
	3.2.1 Task definition
	3.2.2 Interface Definition Language (IDL)
	3.2.3 Programming API: master and worker
	3.2.4 Speculative execution of tasks
	3.2.5 Task's constraints and cost specification
	3.2.6 Programming considerations and tuning
	3.2.7 Summary

	3.3 Programming comparison
	3.3.1 Using Globus
	3.3.2 Using DAGMan
	3.3.3 Using Ninf-G
	3.3.4 Using VDL

	4 GRID superscalar runtime
	4.1 Runtime scientific contributions
	4.1.1 Automatic data dependency detection
	4.1.2 Parameter renaming

	4.2 Runtime developments
	4.2.1 Basic functionality
	4.2.2 Task scheduling: the task dependency graph
	4.2.3 Task scheduling: resource brokering
	4.2.4 Task scheduling: file locality exploitation
	4.2.5 Return of task results and end of application

	4.3 Evaluation tests
	4.3.1 In depth analysis
	4.3.2 Applications performance

	5 Applying fault tolerance at the programming model level
	5.1 Checkpointing
	5.1.1 Design
	5.1.2 Experimental results

	5.2 Retry mechanisms to skip Grid level failures
	5.2.1 Design
	5.2.2 Experimental results

	5.3 Dynamic task replication
	5.3.1 Design
	5.3.2 Experimental results

	6 Conclusions
	6.1 Programming interface
	6.2 Runtime
	6.3 Fault tolerance mechanisms
	6.4 Future work

	Bibliography
	A Runtime environment variables

