61 research outputs found

    Optimización multiobjetivo en sistemas de puesta a tierra para subestaciones de potencia considerando la longitud de conductor.

    Get PDF
    Los sistemas de puesta a tierra son de gran importancia dentro del campo de la ingeniería eléctrica. Permite controlar los potenciales frente a corrientes de fuga que circular por el terreno debajo de la subestación., el diseño de una malla de puesta a tierra está afectada por la terminología al usar las normas eléctricas. En la norma IEEE Std. 80-2013 se encuentran pasos a seguir para el diseño de una malla de puesta a tierra, sobredimensionando el conductor para cumplir con las restricciones impuestas desde el punto de vista técnico y de seguridad, logrando así un sistema confiable en caso de que exista una anomalía dentro de una subestación. En este trabajo se desarrolla un algoritmo que minimiza la longitud de conductor para una malla de puesta a tierra, cumpliendo las restricciones que se encuentran en la norma, este algoritmo utiliza el método de Pareto enfocado en las problemáticas multiobjetivo, que permite minimizar la longitud de conductores y de varillas, sin transgredir los límites de voltajes descritos.Grounding systems are of great importance in electrical engineering, they allow unwanted currents to escape to maintain the safety of the system to be protected, the design of a grounding grid is affected by the terminology when using the standards electrical, in the IEEE Std. 80-2013 standard there are steps to follow for the design of a grounding grid, oversizing the driver to comply with the imposed restrictions from the technical and safety point of view, thus achieving a system reliable in case there is an anomaly within a substation. In this work an algorithm is developed that minimizes the length of conductor for a grounding mesh, fulfilling the restrictions that are in the norm, this algorithm uses the Pareto method focused in the multiobjective problematic, that allows to minimize the conductor between bare conductor and rods, without transgressing the limits of voltages described

    Hierarchical Graphs as Organisational Principle and Spatial Model Applied to Pedestrian Indoor Navigation

    Get PDF
    In this thesis, hierarchical graphs are investigated from two different angles – as a general modelling principle for (geo)spatial networks and as a practical means to enhance navigation in buildings. The topics addressed are of interest from a multi-disciplinary point of view, ranging from Computer Science in general over Artificial Intelligence and Computational Geometry in particular to other fields such as Geographic Information Science. Some hierarchical graph models have been previously proposed by the research community, e.g. to cope with the massive size of road networks, or as a conceptual model for human wayfinding. However, there has not yet been a comprehensive, systematic approach for modelling spatial networks with hierarchical graphs. One particular problem is the gap between conceptual models and models which can be readily used in practice. Geospatial data is commonly modelled - if at all - only as a flat graph. Therefore, from a practical point of view, it is important to address the automatic construction of a graph hierarchy based on the predominant data models. The work presented deals with this problem: an automated method for construction is introduced and explained. A particular contribution of my thesis is the proposition to use hierarchical graphs as the basis for an extensible, flexible architecture for modelling various (geo)spatial networks. The proposed approach complements classical graph models very well in the sense that their expressiveness is extended: various graphs originating from different sources can be integrated into a comprehensive, multi-level model. This more sophisticated kind of architecture allows for extending navigation services beyond the borders of one single spatial network to a collection of heterogeneous networks, thus establishing a meta-navigation service. Another point of discussion is the impact of the hierarchy and distribution on graph algorithms. They have to be adapted to properly operate on multi-level hierarchies. By investigating indoor navigation problems in particular, the guiding principles are demonstrated for modelling networks at multiple levels of detail. Complex environments like large public buildings are ideally suited to demonstrate the versatile use of hierarchical graphs and thus to highlight the benefits of the hierarchical approach. Starting from a collection of floor plans, I have developed a systematic method for constructing a multi-level graph hierarchy. The nature of indoor environments, especially their inherent diversity, poses an additional challenge: among others, one must deal with complex, irregular, and/or three-dimensional features. The proposed method is also motivated by practical considerations, such as not only finding shortest/fastest paths across rooms and floors, but also by providing descriptions for these paths which are easily understood by people. Beyond this, two novel aspects of using a hierarchy are discussed: one as an informed heuristic exploiting the specific characteristics of indoor environments in order to enhance classical, general-purpose graph search techniques. At the same time, as a convenient by- product of this method, clusters such as sections and wings can be detected. The other reason is to better deal with irregular, complex-shaped regions in a way that instructions can also be provided for these spaces. Previous approaches have not considered this problem. In summary, the main results of this work are: • hierarchical graphs are introduced as a general spatial data infrastructure. In particular, this architecture allows us to integrate different spatial networks originating from different sources. A small but useful set of operations is proposed for integrating these networks. In order to work in a hierarchical model, classical graph algorithms are generalised. This finding also has implications on the possible integration of separate navigation services and systems; • a novel set of core data structures and algorithms have been devised for modelling indoor environments. They cater to the unique characteristics of these environments and can be specifically used to provide enhanced navigation in buildings. Tested on models of several real buildings from our university, some preliminary but promising results were gained from a prototypical implementation and its application on the models

    Multi-agent system for flood forecasting in Tropical River Basin

    Get PDF
    It is well known, the problems related to the generation of floods, their control, and management, have been treated with traditional hydrologic modeling tools focused on the study and the analysis of the precipitation-runoff relationship, a physical process which is driven by the hydrological cycle and the climate regime and that is directly proportional to the generation of floodwaters. Within the hydrological discipline, they classify these traditional modeling tools according to three principal groups, being the first group defined as trial-and-error models (e.g., "black-models"), the second group are the conceptual models, which are categorized in three main sub-groups as "lumped", "semi-lumped" and "semi-distributed", according to the special distribution, and finally, models that are based on physical processes, known as "white-box models" are the so-called "distributed-models". On the other hand, in engineering applications, there are two types of models used in streamflow forecasting, and which are classified concerning the type of measurements and variables required as "physically based models", as well as "data-driven models". The Physically oriented prototypes present an in-depth account of the dynamics related to the physical aspects that occur internally among the different systems of a given hydrographic basin. However, aside from being laborious to implement, they rely thoroughly on mathematical algorithms, and an understanding of these interactions requires the abstraction of mathematical concepts and the conceptualization of the physical processes that are intertwined among these systems. Besides, models determined by data necessitates an a-priori understanding of the physical laws controlling the process within the system, and they are bound to mathematical formulations, which require a lot of numeric information for field adjustments. Therefore, these models are remarkably different from each other because of their needs for data, and their interpretation of physical phenomena. Although there is considerable progress in hydrologic modeling for flood forecasting, several significant setbacks remain unresolved, given the stochastic nature of the hydrological phenomena, is the challenge to implement user-friendly, re-usable, robust, and reliable forecasting systems, the amount of uncertainty they must deal with when trying to solve the flood forecasting problem. However, in the past decades, with the growing environment and development of the artificial intelligence (AI) field, some researchers have seldomly attempted to deal with the stochastic nature of hydrologic events with the application of some of these techniques. Given the setbacks to hydrologic flood forecasting previously described this thesis research aims to integrate the physics-based hydrologic, hydraulic, and data-driven models under the paradigm of Multi-agent Systems for flood forecasting by designing and developing a multi-agent system (MAS) framework for flood forecasting events within the scope of tropical watersheds. With the emergence of the agent technologies, the "agent-based modeling" and "multiagent systems" simulation methods have provided applications for some areas of hydro base management like flood protection, planning, control, management, mitigation, and forecasting to combat the shocks produced by floods on society; however, all these focused on evacuation drills, and the latter not aimed at the tropical river basin, whose hydrological regime is extremely unique. In this catchment modeling environment approach, it was applied the multi-agent systems approach as a surrogate of the conventional hydrologic model to build a system that operates at the catchment level displayed with hydrometric stations, that use the data from hydrometric sensors networks (e.g., rainfall, river stage, river flow) captured, stored and administered by an organization of interacting agents whose main aim is to perform flow forecasting and awareness, and in so doing enhance the policy-making process at the watershed level. Section one of this document surveys the status of the current research in hydrologic modeling for the flood forecasting task. It is a journey through the background of related concerns to the hydrological process, flood ontologies, management, and forecasting. The section covers, to a certain extent, the techniques, methods, and theoretical aspects and methods of hydrological modeling and their types, from the conventional models to the present-day artificial intelligence prototypes, making special emphasis on the multi-agent systems, as most recent modeling methodology in the hydrological sciences. However, it is also underlined here that the section does not contribute to an all-inclusive revision, rather its purpose is to serve as a framework for this sort of work and a path to underline the significant aspects of the works. In section two of the document, it is detailed the conceptual framework for the suggested Multiagent system in support of flood forecasting. To accomplish this task, several works need to be carried out such as the sketching and implementation of the system’s framework with the (Belief-Desire-Intention model) architecture for flood forecasting events within the concept of the tropical river basin. Contributions of this proposed architecture are the replacement of the conventional hydrologic modeling with the use of multi-agent systems, which makes it quick for hydrometric time-series data administration and modeling of the precipitation-runoff process which conveys to flood in a river course. Another advantage is the user-friendly environment provided by the proposed multi-agent system platform graphical interface, the real-time generation of graphs, charts, and monitors with the information on the immediate event taking place in the catchment, which makes it easy for the viewer with some or no background in data analysis and their interpretation to get a visual idea of the information at hand regarding the flood awareness. The required agents developed in this multi-agent system modeling framework for flood forecasting have been trained, tested, and validated under a series of experimental tasks, using the hydrometric series information of rainfall, river stage, and streamflow data collected by the hydrometric sensor agents from the hydrometric sensors.Como se sabe, los problemas relacionados con la generación de inundaciones, su control y manejo, han sido tratados con herramientas tradicionales de modelado hidrológico enfocados al estudio y análisis de la relación precipitación-escorrentía, proceso físico que es impulsado por el ciclo hidrológico y el régimen climático y este esta directamente proporcional a la generación de crecidas. Dentro de la disciplina hidrológica, clasifican estas herramientas de modelado tradicionales en tres grupos principales, siendo el primer grupo el de modelos empíricos (modelos de caja negra), modelos conceptuales (o agrupados, semi-agrupados o semi-distribuidos) dependiendo de la distribución espacial y, por último, los basados en la física, modelos de proceso (o "modelos de caja blanca", y/o distribuidos). En este sentido, clasifican las aplicaciones de predicción de caudal fluvial en la ingeniería de recursos hídricos en dos tipos con respecto a los valores y parámetros que requieren en: modelos de procesos basados en la física y la categoría de modelos impulsados por datos. Los modelos basados en la física proporcionan una descripción detallada de la dinámica relacionada con los aspectos físicos que ocurren internamente entre los diferentes sistemas de una cuenca hidrográfica determinada. Sin embargo, aparte de ser complejos de implementar, se basan completamente en algoritmos matemáticos, y la comprensión de estas interacciones requiere la abstracción de conceptos matemáticos y la conceptualización de los procesos físicos que se entrelazan entre estos sistemas. Además, los modelos impulsados por datos no requieren conocimiento de los procesos físicos que gobiernan, sino que se basan únicamente en ecuaciones empíricas que necesitan una gran cantidad de datos y requieren calibración de los datos en el sitio. Los dos modelos difieren significativamente debido a sus requisitos de datos y de cómo expresan los fenómenos físicos. La elaboración de modelos hidrológicos para el pronóstico de inundaciones ha dado grandes pasos, pero siguen sin resolverse algunos contratiempos importantes, dada la naturaleza estocástica de los fenómenos hidrológicos, es el desafío de implementar sistemas de pronóstico fáciles de usar, reutilizables, robustos y confiables, la cantidad de incertidumbre que deben afrontar al intentar resolver el problema de la predicción de inundaciones. Sin embargo, en las últimas décadas, con el entorno creciente y el desarrollo del campo de la inteligencia artificial (IA), algunos investigadores rara vez han intentado abordar la naturaleza estocástica de los eventos hidrológicos con la aplicación de algunas de estas técnicas. Dados los contratiempos en el pronóstico de inundaciones hidrológicas descritos anteriormente, esta investigación de tesis tiene como objetivo integrar los modelos hidrológicos, basados en la física, hidráulicos e impulsados por datos bajo el paradigma de Sistemas de múltiples agentes para el pronóstico de inundaciones por medio del bosquejo y desarrollo del marco de trabajo del sistema multi-agente (MAS) para los eventos de predicción de inundaciones en el contexto de cuenca hidrográfica tropical. Con la aparición de las tecnologías de agentes, se han emprendido algunos enfoques de simulación recientes en la investigación hidrológica con modelos basados en agentes y sistema multi-agente, principalmente en alerta por inundaciones, seguridad y planificación de inundaciones, control y gestión de inundaciones y pronóstico de inundaciones, todos estos enfocado a simulacros de evacuación, y este último no dirigido a la cuenca tropical, cuyo régimen hidrológico es extremadamente único. En este enfoque de entorno de modelado de cuencas, se aplican los enfoques de sistemas multi-agente como un sustituto del modelado hidrológico convencional para construir un sistema que opera a nivel de cuenca con estaciones hidrométricas desplegadas, que utilizan los datos de redes de sensores hidrométricos (por ejemplo, lluvia , nivel del río, caudal del río) capturado, almacenado y administrado por una organización de agentes interactuantes cuyo objetivo principal es realizar pronósticos de caudal y concientización para mejorar las capacidades de soporte en la formulación de políticas a nivel de cuenca hidrográfica. La primera sección de este documento analiza el estado del arte sobre la investigación actual en modelos hidrológicos para la tarea de pronóstico de inundaciones. Es un viaje a través de los antecedentes preocupantes relacionadas con el proceso hidrológico, las ontologías de inundaciones, la gestión y la predicción. El apartado abarca, en cierta medida, las técnicas, métodos y aspectos teóricos y métodos del modelado hidrológico y sus tipologías, desde los modelos convencionales hasta los prototipos de inteligencia artificial actuales, haciendo hincapié en los sistemas multi-agente, como un enfoque de simulación reciente en la investigación hidrológica. Sin embargo, se destaca que esta sección no contribuye a una revisión integral, sino que su propósito es servir de marco para este tipo de trabajos y una guía para subrayar los aspectos significativos de los trabajos. En la sección dos del documento, se detalla el marco de trabajo propuesto para el sistema multi-agente para el pronóstico de inundaciones. Los trabajos realizados comprendieron el diseño y desarrollo del marco de trabajo del sistema multi-agente con la arquitectura (modelo Creencia-Deseo-Intención) para la predicción de eventos de crecidas dentro del concepto de cuenca hidrográfica tropical. Las contribuciones de esta arquitectura propuesta son el reemplazo del modelado hidrológico convencional con el uso de sistemas multi-agente, lo que agiliza la administración de las series de tiempo de datos hidrométricos y el modelado del proceso de precipitación-escorrentía que conduce a la inundación en el curso de un río. Otra ventaja es el entorno amigable proporcionado por la interfaz gráfica de la plataforma del sistema multi-agente propuesto, la generación en tiempo real de gráficos, cuadros y monitores con la información sobre el evento inmediato que tiene lugar en la cuenca, lo que lo hace fácil para el espectador con algo o sin experiencia en análisis de datos y su interpretación para tener una idea visual de la información disponible con respecto a la cognición de las inundaciones. Los agentes necesarios desarrollados en este marco de modelado de sistemas multi-agente para el pronóstico de inundaciones han sido entrenados, probados y validados en una serie de tareas experimentales, utilizando la información de la serie hidrométrica de datos de lluvia, nivel del río y flujo del curso de agua recolectados por los agentes sensores hidrométricos de los sensores hidrométricos de campo.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: María Araceli Sanchis de Miguel.- Secretario: Juan Gómez Romero.- Vocal: Juan Carlos Corrale

    Real-time Multi-scale Smart Energy Management and Optimisation (REMO) for buildings and their district

    Get PDF
    Energy management systems in buildings and their district today use automation systems and artificial intelligence (AI) solutions for smart energy management, but they fail to achieve the desired results due to the lack of holistic and optimised decision-making. A reason for this is the silo-oriented approach to the decision-making failing to consider cross-domain data. Ontologies, as a new way of processing domain knowledge, have been increasingly applied to different domains using formal and explicit knowledge representation to conduct smart decision-making. In this PhD research, Real-time Multiscale Smart Energy Management and Optimisation (REMO) ontology was developed, as a cross-domain knowledge-base, which consequently can be used to support holistic real-time energy management in districts considering both demand and supply side optimisation. The ontology here, is also presented as the core of a proposed framework which facilitates the running of AI solutions and automation systems, aiming to minimise energy use, emissions, and costs, while maintaining comfort for users. The state of the art AI solutions for prediction and optimisation were concluded through authors involvement in European Union research projects. The AI techniques were independently validated through action research and achieved about 30 - 40 % reduction in energy demand of the buildings, and 36% reduction in carbon emissions through optimisation of the generation mix in the district. The research here also concludes a smart way to capture the generic knowledge behind AI models in ontologies through rule axiom features, which also meant this knowledge can be used to replicate these AI models in future sites. Both semantic and syntactic validation were performed on the ontology before demonstrating how the ontology supports the various use cases of the framework for holistic energy management. Further development of the framework is recommended for the future which is needed for it to facilitate real-time energy management and optimisation in buildings and their district
    corecore