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Abstract

It is well known, the problems related to the generation of floods, their control, and manage-
ment, have been treated with traditional hydrologic modeling tools focused on the study and
the analysis of the precipitation-runoff relationship, a physical process which is driven by the
hydrological cycle and the climate regime and that is directly proportional to the generation
of floodwaters. Within the hydrological discipline, they classify these traditional modeling
tools according to three principal groups, being the first group defined as trial-and-error mod-
els (e.g., "black-models"), the second group are the conceptual models, which are categorized
in three main sub-groups as "lumped", "semi-lumped" and "semi-distributed", according to
the special distribution, and finally, models that are based on physical processes, known as
"white-box models" are the so-called "distributed-models". On the other hand, in engineering
applications, there are two types of models used in streamflow forecasting, and which are
classified concerning the type of measurements and variables required as "physically based
models", as well as "data-driven models".

The Physically oriented prototypes present an in-depth account of the dynamics related
to the physical aspects that occur internally among the different systems of a given hy-
drographic basin. However, aside from being laborious to implement, they rely thoroughly
on mathematical algorithms, and an understanding of these interactions requires the ab-
straction of mathematical concepts and the conceptualization of the physical processes that
are intertwined among these systems. Besides, models determined by data necessitates an
a-priori understanding of the physical laws controlling the process within the system, and
they are bound to mathematical formulations, which require a lot of numeric information
for field adjustments. Therefore, these models are remarkably different from each other
because of their needs for data, and their interpretation of physical phenomena. Although
there is considerable progress in hydrologic modeling for flood forecasting, several significant
setbacks remain unresolved, given the stochastic nature of the hydrological phenomena, is
the challenge to implement user-friendly, re-usable, robust, and reliable forecasting systems,
the amount of uncertainty they must deal with when trying to solve the flood forecasting
problem. However, in the past decades, with the growing environment and development of
the artificial intelligence (AI) field, some researchers have seldomly attempted to deal with
the stochastic nature of hydrologic events with the application of some of these techniques.

Given the setbacks to hydrologic flood forecasting previously described this thesis research
aims to integrate the physics-based hydrologic, hydraulic, and data-driven models under the
paradigm of Multi-agent Systems for flood forecasting by designing and developing a multi-



agent system (MAS) framework for flood forecasting events within the scope of tropical
watersheds.

With the emergence of the agent technologies, the "agent-based modeling" and "multi-
agent systems" simulation methods have provided applications for some areas of hydro base
management like flood protection, planning, control, management, mitigation, and fore-
casting to combat the shocks produced by floods on society; however, all these focused on
evacuation drills, and the latter not aimed at the tropical river basin, whose hydrological
regime is extremely unique.

In this catchment modeling environment approach, it was applied the multi-agent systems
approach as a surrogate of the conventional hydrologic model to build a system that operates
at the catchment level displayed with hydrometric stations, that use the data from hydromet-
ric sensors networks (e.g., rainfall, river stage, river flow) captured, stored and administered
by an organization of interacting agents whose main aim is to perform flow forecasting and
awareness, and in so doing enhance the policy-making process at the watershed level.

Section one of this document surveys the status of the current research in hydrologic
modeling for the flood forecasting task. It is a journey through the background of related
concerns to the hydrological process, flood ontologies, management, and forecasting. The
section covers, to a certain extent, the techniques, methods, and theoretical aspects and
methods of hydrological modeling and their types, from the conventional models to the
present-day artificial intelligence prototypes, making special emphasis on the multi-agent
systems, as most recent modeling methodology in the hydrological sciences. However, it is
also underlined here that the section does not contribute to an all-inclusive revision, rather
its purpose is to serve as a framework for this sort of work and a path to underline the
significant aspects of the works.

In section two of the document, it is detailed the conceptual framework for the suggested
Multiagent system in support of flood forecasting. To accomplish this task, several works
need to be carried out such as the sketching and implementation of the system’s framework
with the (Belief-Desire-Intention model) architecture for flood forecasting events within the
concept of the tropical river basin. Contributions of this proposed architecture are the
replacement of the conventional hydrologic modeling with the use of multi-agent systems,
which makes it quick for hydrometric time-series data administration and modeling of the
precipitation-runoff process which conveys to flood in a river course. Another advantage is
the user-friendly environment provided by the proposed multi-agent system platform graph-
ical interface, the real-time generation of graphs, charts, and monitors with the information
on the immediate event taking place in the catchment, which makes it easy for the viewer
with some or no background in data analysis and their interpretation to get a visual idea of
the information at hand regarding the flood awareness.

The required agents developed in this multi-agent system modeling framework for flood
forecasting have been trained, tested, and validated under a series of experimental tasks,
using the hydrometric series information of rainfall, river stage, and streamflow data collected
by the hydrometric sensor agents from the hydrometric sensors.
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Resumen

Como se sabe, los problemas relacionados con la generaciéon de inundaciones, su control y
manejo, han sido tratados con herramientas tradicionales de modelado hidrolégico enfocados
al estudio y analisis de la relacién precipitacién-escorrentia, proceso fisico que es impulsado
por el ciclo hidrolégico y el régimen climatico y este esta directamente proporcional a la
generacién de crecidas. Dentro de la disciplina hidrologica, clasifican estas herramientas
de modelado tradicionales en tres grupos principales, siendo el primer grupo el de modelos
empiricos (modelos de caja negra), modelos conceptuales (o agrupados, semi-agrupados o
semi-distribuidos) dependiendo de la distribucién espacial y, por ultimo, los basados en la
fisica, modelos de proceso (0 "modelos de caja blanca', y/o distribuidos). En este sentido,
clasifican las aplicaciones de prediccién de caudal fluvial en la ingenieria de recursos hidricos
en dos tipos con respecto a los valores y parametros que requieren en: modelos de procesos
basados en la fisica y la categoria de modelos impulsados por datos.

Los modelos basados en la fisica proporcionan una descripcion detallada de la dindamica
relacionada con los aspectos fisicos que ocurren internamente entre los diferentes sistemas de
una cuenca hidrografica determinada. Sin embargo, aparte de ser complejos de implementar,
se basan completamente en algoritmos matematicos, y la comprensién de estas interacciones
requiere la abstraccién de conceptos matematicos y la conceptualizacion de los procesos
fisicos que se entrelazan entre estos sistemas. Ademads, los modelos impulsados por datos no
requieren conocimiento de los procesos fisicos que gobiernan, sino que se basan tinicamente
en ecuaciones empiricas que necesitan una gran cantidad de datos y requieren calibracion
de los datos en el sitio. Los dos modelos difieren significativamente debido a sus requisitos
de datos y de cémo expresan los fendémenos fisicos. La elaboracion de modelos hidrolégicos
para el pronéstico de inundaciones ha dado grandes pasos, pero siguen sin resolverse algunos
contratiempos importantes, dada la naturaleza estocastica de los fendmenos hidrologicos, es
el desafio de implementar sistemas de pronostico faciles de usar, reutilizables, robustos y
confiables, la cantidad de incertidumbre que deben afrontar al intentar resolver el problema
de la prediccién de inundaciones. Sin embargo, en las tltimas décadas, con el entorno
creciente y el desarrollo del campo de la inteligencia artificial (IA), algunos investigadores
rara vez han intentado abordar la naturaleza estocastica de los eventos hidrolégicos con la
aplicacion de algunas de estas técnicas.

Dados los contratiempos en el pronostico de inundaciones hidrolégicas descritos anteri-
ormente, esta investigacion de tesis tiene como objetivo integrar los modelos hidrolégicos,
basados en la fisica, hidraulicos e impulsados por datos bajo el paradigma de Sistemas de
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multiples agentes para el prondstico de inundaciones por medio del bosquejo y desarrollo
del marco de trabajo del sistema multi-agente (MAS) para los eventos de prediccion de
inundaciones en el contexto de cuenca hidrogréfica tropical.

Con la aparicion de las tecnologias de agentes, se han emprendido algunos enfoques
de simulacion recientes en la investigacion hidrologica con modelos basados en agentes y
sistema multi-agente, principalmente en alerta por inundaciones, seguridad y planificacién
de inundaciones, control y gestion de inundaciones y pronoéstico de inundaciones, todos estos
enfocado a simulacros de evacuacién, y este tltimo no dirigido a la cuenca tropical, cuyo
régimen hidrolégico es extremadamente tinico.

En este enfoque de entorno de modelado de cuencas, se aplican los enfoques de sistemas
multi-agente como un sustituto del modelado hidrolégico convencional para construir un
sistema que opera a nivel de cuenca con estaciones hidrométricas desplegadas, que utilizan
los datos de redes de sensores hidrométricos (por ejemplo, lluvia , nivel del rio, caudal del
rio) capturado, almacenado y administrado por una organizaciéon de agentes interactuantes
cuyo objetivo principal es realizar prondsticos de caudal y concientizacion para mejorar las
capacidades de soporte en la formulacién de politicas a nivel de cuenca hidrografica.

La primera seccion de este documento analiza el estado del arte sobre la investigacion ac-
tual en modelos hidrolégicos para la tarea de pronéstico de inundaciones. Es un viaje a través
de los antecedentes preocupantes relacionadas con el proceso hidrologico, las ontologias de
inundaciones, la gestion y la prediccion. El apartado abarca, en cierta medida, las técni-
cas, métodos y aspectos tedricos y métodos del modelado hidrolégico y sus tipologias, desde
los modelos convencionales hasta los prototipos de inteligencia artificial actuales, haciendo
hincapié en los sistemas multi-agente, como un enfoque de simulacién reciente en la inves-
tigacion hidrolégica. Sin embargo, se destaca que esta seccién no contribuye a una revision
integral, sino que su proposito es servir de marco para este tipo de trabajos y una guia para
subrayar los aspectos significativos de los trabajos.

En la seccion dos del documento, se detalla el marco de trabajo propuesto para el sistema
multi-agente para el pronostico de inundaciones. Los trabajos realizados comprendieron el
disenio y desarrollo del marco de trabajo del sistema multi-agente con la arquitectura (modelo
Creencia-Deseo-Intencion) para la prediccién de eventos de crecidas dentro del concepto
de cuenca hidrografica tropical. Las contribuciones de esta arquitectura propuesta son el
reemplazo del modelado hidrolégico convencional con el uso de sistemas multi-agente, lo
que agiliza la administracién de las series de tiempo de datos hidrométricos y el modelado
del proceso de precipitacién-escorrentia que conduce a la inundacién en el curso de un rio.
Otra ventaja es el entorno amigable proporcionado por la interfaz grafica de la plataforma del
sistema multi-agente propuesto, la generacion en tiempo real de graficos, cuadros y monitores
con la informacion sobre el evento inmediato que tiene lugar en la cuenca, lo que lo hace
facil para el espectador con algo o sin experiencia en andalisis de datos y su interpretacion
para tener una idea visual de la informacién disponible con respecto a la cognicién de las
inundaciones.

Los agentes necesarios desarrollados en este marco de modelado de sistemas multi-agente
para el prondéstico de inundaciones han sido entrenados, probados y validados en una serie de
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tareas experimentales, utilizando la informacion de la serie hidrométrica de datos de lluvia,
nivel del rio y flujo del curso de agua recolectados por los agentes sensores hidrométricos de
los sensores hidrométricos de campo.
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Chapter 1
Introduction

This first heading gives an overview of the exploratory settings, followed by Section 1.2 is the
approach to the issue for this activity, and Section 1.3 is its motivation. The general approach
is presented in Sections 1.4 and 1.5 respectively. From a Hydroinformatics perspective, the
problem statement and multi-agent system approach presented in this work are focused on
a broad overview, however, the experimental method carried out applies to flow forecasting
from the information obtained by hydrometric sensors. Finally, Section 1.7 describes the
arrangement of the rest of the document.

1.1 Research Viewpoint

Hydrologic related problems observed worldwide on the changes in environmental conditions
are becoming increasingly frequent and pose major threats to human lives and economic
development |1} [2]. In addition, the number of communities being affected by climate change
and its related disasters is increasing, especially in highly dense populations, and an increase
in industrialization and rapid urbanization is in demand [3, 4].

From a river basin perspective, hydrological related problems, especially those induced by
floods, have had severe impacts beyond geographical boundaries. For example, in territories
of Asia and the Pacific, floods of 2014 accounted for damages of almost $26.8 billion in
economic impacts and resulted in 3,559 deaths as reported in [5] and in 2015 accounted for
two-fifths of all disasters in the region, causing over $11 billion in economic damage [6].

The worldwide increase in weather-related phenomena, as global warming continues to
observed rising temperatures, and similarly, causing river flood risk distribution to increase
unevenly, throughout regions like Asia, the US, and Europe [7] has become evident. Thus, it
is clear that water-related disasters are increasing exponentially and present serious concerns
to governments. It is important to notice that flooding is not restricted to specific countries
and often takes no preference for people it affects, as is the case for recent flooding events
in the USA, Australia, India, Iraq, Thailand, and Cambodia [8]. For these reasons, the need
for efficient and precise river flow forecasting tools has rapidly increased during the past



ten years. Conversely, the understanding of future conditions on surface water resources is
a valuable asset for the development and management of proper flood risk mitigation and
sustainability of water resources management. Traditional flood management systems com-
posed of hydraulic structural protection measures such as terracing, flood-ways, inundation
ponds, dams, weirs, levees, barriers, dikes, embankment, and other structures make up the
most common structural solutions to reduce the flood peak, stages, and extent of inunda-
tion. One concern of structural measures is that although they reduce flood risk, they are
expensive, and sometimes they are not a guaranteed effective solution. Besides, structural
measures are not practical for installation in some areas (e.g., inaccessible areas, inaccessible
roads, and mountainous regions), and may not be effective for all flood processes and they
can also generate unfavorable environmental effects [9]. Of the two, non-traditional flood
mitigation methods, the first is of environmental nature (e.g., replanting, soil management,
bank stabilization, and re-vegetation, river training, and flood plain restoration and ad-
ministration). Notwithstanding, measures like these are far-reaching and costly and do not
necessarily reduce flood loss. The second group involves implementing river flood warning
systems.

Subsequently, researchers such as Gleick [10], Brooks et al. [11], Opperman [12], and
Son et al. [13] suggested shifting from traditional to non-traditional defense methods to ease
the hazards of flooding, involving the governance of land development and enhance flood
prediction, in densely populated areas, specifically with high risks of flooding. Therefore,
they describe a flood event as a condition, whether incomplete or complete, in which the
flow continuously exceeds 80 percent of flows observed during a time. Floods can be of
various categories and dimensions. They represent the building block for the different designs
and operations of inundation prediction techniques. Flood prediction systems have been in
operation for various scale domains, which include global [14], continental, basin-scale [15],
and urban [16].

Traditionally, the flood problematic, as being dealt with the use of rainfall-runoff model-
ing tools, can be classified in three main categories: a) empirical (or so-called black-box mod-
els), b)conceptual (or so-called lumped, semi-lumped or semi-distributed), and ¢) physics-
based process models (PBPMs) (or white box models, also known as distributed models) as
suggested by Sitterson et al. [17]. In this sense, they classify river flow forecasting appli-
cations in water resources engineering into two types regarding the values and parameters
needed in physics-based process models and the models of the data-driven modeling (DDM)
type [18]. PBPM describe the physics involved in the processes occurring within the catch-
ment by mathematical equations, by connecting empirical and physics-based mathematical
formulations. Besides, DDMs do not require knowledge of the governing physical processes;
but rely solely on empirical equations that need lots of data and require on-site data calibra-
tion. Generally, the two models differ in their data requirements and the manner in which
they express the physical phenomena [19].

The number of catastrophic floods that are occurring around the world today is attributed
to climate change, this motivates the need to develop sturdier and "intelligent" flood protec-
tion systems to enhance operational flood forecasting that is resulting in many projects for
protecting, coastal zones from high water surges events which can hinder maritime opera-



tions [20-24], urban areas [25-28], infrastructure and the population [29]. These problems
call for the design of more sophisticated early warning systems (EWS) and robust databases
(DB). Yet, they can be very expensive and one of the most challenging tasks to undertake
for flood prevention and disaster management.

An example of tools for implementing EWS is the Urban Flood project, a European
initiative that implemented a framework for EWS with the purpose of connecting sensors to
real-time models for flood forecasting and warning; however, validation for this system was
only for dikes. Some of these EWSs implemented are localized, custom-designed and need
high computational resource [30].

As the world is becoming more complex, the hydrological processes in parallel with
changes in the global climate are also increasing in complexity, leading to weigh the systems
already existing, to optimize, and investigate for the implementation of new user-friendly
modeling prototypes with a predictive capacity which can deal with mayor complexities con-
cerning the interactions with the increasing complications of the hydrological system. This
global change in the increase in complexities could also mean that conventional hydrologic
models may not be equally relevant to model these complex changes.

1.2 Problem Remarks

Today’s climatic conditions worldwide are increasing dramatically and resulting particularly
in hurricanes and extreme precipitation, the latter being the triggering for severe flooding
problems worldwide. This situation is of great concern for governments, specifically in river
basins in the tropical regions. A recent survey on weather-related natural catastrophes,
showed that the number of weather-related damages, namely of (meteorological, hydrological,
and climatic) in nature has been increasing globally for the last 36 years [31].

In Panama, there are several professionals whose decisions are limited because they lose
sight of many of the physical aspects governing some natural phenomena that cause disasters.
There is also a limitation of information and availability of hydrometric data because of the
poorly gauged river basins. For these limitations, engineering professionals require a resource
that links engineering information with understanding the language desirable for decision-
makers (citizens, governments, and NGOs, etc.) in spite of the limitations mentioned.

This thesis will explore new methods for the implementation of a hybrid system useful for
water flow forecasting based on traditional hydrologic modeling methods in combination with
techniques from Artificial Intelligence (Al), and with particular attention to the use of agent
technology. Therefore, confronting such a task will demand resources directly supplying the
requirements necessary to comprehend and provide answers.

Then it is addressed this task following the paradigms provided by hydroinformatics
techniques (viz. the fusion of water resources engineering (WRE) and information and
communications technologies (ICTs), and its crossing point with hydrologic modeling and
"Computer Science" (CS) disciplines (e.g., "artificial intelligence" (Al), "data mining" (DM),
besides others), applied to water resources engineering, flood management, and forecasting



has several tools, based on information technology, and can meet the needs of knowledge
among decision-makers and enable engineers to identify those needs.

1.3 Motivation

Previously, in Sections 1.1 and 1.2, it was introduced this doctoral research proposal manuscript,
reporting in a very concise way, the current global situation that has been taking place con-
cerning the evident meteorological phenomena and climate change in the world. So much
so that the research motivation is based on that region of the planet that is bound by the
"cyclone and hurricane belts" and yes indeed, because it is situated on the border of the equa-
tor, the "tropics'. The United Nations Office for the Coordination of Humanitarian Affairs,
OCHA, reported that it focused on this particular region and declared the countries in this
region "Natural disasters in Latin America and the Caribbean" as the region with the second
most vulnerability to disasters in the world, and there is a growing trend in the severity and
occurrence of stronger storms that is affecting the region, and as a consequence originating
intensified precipitation and augmented high flood [32]. The report disclosed, that at least,
for the past 20 years, countries like Mexico, Cuba, and Haiti, had over some 110 cloudbursts,
with deaths amounting to about 5,000, with 29 M victims losing their goods and some $39
billion in losses. Unfortunately, Haiti had the highest death toll, with 85%. However, these
events as natural as they can be, are recurring and the poorest of the population suffers the
most.

As the sources have been reporting, it can be observed that one of the most expensive
natural catastrophes occurring is categorized as floods. As presented in the introduction,
they are responsible for causing a wide variety of calamities and much of the damage extent to
property, buildings infrastructure, destruction of natural habitats, grazing and agricultural
land, the economic goods, human loss of properties, and lives and impairment to environ-
mental health. However, as small as a flood event can be, the devastating force, in addition
to timing and uncertainty is exerted by the worse kind of floods, which is known as "Flash
Floods". Flash floods are so destructive and deadly because they occur with almost no
previous warning and eventually take the population by surprise and unaware.

According to major studies by the World Bank on natural disaster sites, in many Latin
American countries, the population is exposed to multiple threats, and most of it is due
to a lack of mechanisms for development, monitoring, planning, and low compliance with
building regulations, and land use is some factors identified as aggravating the vulnerability
of these countries to disasters [3| |4].

Most of the information on climate change is compelling, and it is telling us that there
is a higher risk of flood-related problems, as shown in a study by Hirabayashi et al. |33]
in which they analyzed the simulation results of eleven climate models. Results showed
that the observed changes in streamflow and the flood plains by several climate change
simulations may cause rising inundation in Southeastern, and African countries and vast
regions of Central and South American. However, fluvial flooding is not the only climate-
related problem in the tropics, but also a high-water surge affecting coastal shorelines, coastal



maritime infrastructure, and low land areas densely populated [24} 34].

The severity of a flood, along with the degree of preparedness and national capacity for
self-assessments to react to the problem, will entirely affect how well the forecasting system
responds, giving enough time to managers and first responders if needed to issue evacuation
plans, and in this way, save lives and reduce impacts. To some extent, flood warning systems
have shown a great deed in the reduction of hazards and damages caused by inundation
episodes. Disappointingly, in many of the basins in Latin America, there are no governmental
organizations that are dedicated to the sole task of permanent surveillance regarding the
forecast of river flooding. This is possible because of a lack of resources, computer and
electronic materials, and data availability. In most cases, these countries only have or make
use of meteorological information on the web that provides generalized services on flood
management without themselves carrying out hydrological and hydrodynamic studies of their
rivers with the data. However, if they do any study at all, most of it is on rainfall information.
In some circumstances, they consider the implementation of hydrological models and analysis
for flood forecasting a technical activity, isolated only for the specialist, and this implies the
lack of contact with government entities and society. Moreover, forecasting the future of
floods is very important for decision-making.

Taking into consideration these problems, in this research study, it is intended to in-
vestigate the use and implementation of MAS model based on an ABM framework in the
application of flood forecasting in the humid tropic domain in place of standard hydrologic
models to facilitate the support of decision-making of water resources professionals with little
or no knowledge on hydrologic modeling.

1.4 Objectives

The goals of this research are aimed at designing and building a "Multi-agent System" (MAS)
configuration for forecasting flood events within the context of the humid watershed. The
research entails the following specific objectives:

1. To setup and run the hydrological and hydraulic model simulation with the selected
catchment hydrometric data.

2. To design the architecture for a domain-specific agent-based concept framework for
supporting stream-flow predictions in the context of a tropical watershed domain.

3. To develop a MAS framework from the designed architecture on the selected agent
platform, and implement the system using an integrated approach of hydrological, hy-
draulic and data-driven modeling, and artificial intelligence techniques for flood fore-
casting.

4. To implement the belief-desire-intention (BDI) organizational structure for modeling
of cognitive agent actions, communication, and their interactions within the MAS to
manage the data obtained from the framework tool application.



5. To simulate, calibrate, and verify the MAS outputs against the results from the hy-
drologic and hydrodynamic models.

6. To test and validate the model by simulations and field deployment.

1.5 Research Questioning

Grounded on the problematic previously described and the need to create systems to deal
with it, the current doctoral project raises the following research question:

How to integrate physics-based hydrologic, hydraulic, and data-driven models under the
paradigm of "Multi-Agent Systems"?

A "multi-agent" conceptual framework established on the knowledge of standard hydro-
logic modeling techniques, DDM, and AI techniques and algorithms is recommended to cope
with this problem, will allow to effective management and use of field-based hydrometric
sensor data, for flood forecasting by water managers and professionals, and the layperson
in the context of tropical River Basins without them being subjected to the computational
costs and hassles of hydrologic modeling development and deployment.

1.6 Contributions

The thesis contributes to developing a flood forecasting framework solution, as shown in
Figure for a tropical river basin by bridging the domains of traditional hydrologic simula-
tion, data-driven modeling, artificial intelligence, and agent technology like the "agent-based
modeling and simulation (ABMS)" and the MAS which will have the capacity of using the
acquired data from hydrometric sensors and their processing and allowing the visualization
in real-time of flooding in a river basin on a GIS (geographic information system) environ-
ment. Therefore, some core facets of the solutions include the use of hydrometric sensor’s
time-series data for the simulation of flood forecasting and flood-awareness (FA) level infer-
enc with the implemented MAS. The different contributions related to this research endeavor
are:

1. building the MAS simulation on a GIS enable ABM environment of choice and its
displayed agents to recreate flood forecasting.

2. Implementing the MAS data acquisition for the displayed hydrometric sensors.
3. Hydrometric sensor data pre-processing.

4. Development of an optimal flood forecasting machine learning model and Artificial
Intelligence (Al) to predict the risk of flooding.

5. Flood forecasting and risk assessment with fuzzy expert systems.
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1.7 Outline

To provide a thorough insight into the research problem, existing approaches, besides pro-
jected objectives, this thesis covers the following topics:

o Chapter 2: Status of current research. This section outlines recent advances in agent-
based technologies as promising modeling paradigms for solving complex problems, as
well as traditional hydrologic modeling techniques, data-driven models (DDM), and
existing approaches in the literature review to Al.

o Chapter 3: MAS Framework for Flood Forecasting. Explains the abstract MAS
framework built for streamflow forecasting, like the solution designed to address the
flooding problem. It also describes the MAS framework, that is built on the GAMA
platform, upon which the agents implemented become instantiated (agent organiza-
tion), communicate, and interact within the problem domain; also describes how agents
execute internally (agent behavior), following the BDI architecture and the FIPA-ACL
specifications communication protocol.

o Chapter 4: Preliminary Validation scenario: Rio del Medio Sub-watershed. Presents
the experimental setup of the ABM simulation scenarios on the GAMA platform used
to validate the system (the Medio River Sub-watershed). The simulation domain code
is written in the GAML language, which is specific to the GAMA platform. To verify
the correct execution of the code in hydrological terms, the performance was subject
to analysis.

o Chapter 5: Hydrologic Modeling with MAS for Flood Forecasting. Introduces the
developmental tasks of the MAS exemplary framework, with the BDI enabled agents,
with behavioral skills, for example, such as data preprocessing, machine learning, fuzzy
logic, and SQL with hydrometric time-series data as input files for lead-time flow
forecasting and its application in an abstract watershed implemented on a GIS-enabled
agent-based modeling platform.

o Chapter 6: Key Conclusions, and perspective for future work. Gives a summarized
feedback on the outcomes of the research, model simulations, results, and findings, and
suggestions for future work.



Chapter 2

Status of Current Research

2.1 Background: Analogous Work

This chapter, in Section 2.1, begins briefly by explaining the hydrological phenomena as the
main driving force responsible for the impact of floods on society, affecting the economy;,
agriculture, civilian life, and live-stock, and its relationship with the influences of climate
change. Afterward, it presents the views of flood management strategies and forecasting
adopted by several European countries, Canada and the USA with a detailed discussion
about measurements used to counteract flooding. Last, Sections 2.2 through 2.4 starts with
background recounts on some research in the area, and end with a presentation on existing
approaches concerning standard methodologies applied in flood forecasting, methods from
artificial intelligence, and recent attempts with agent technologies.

2.1.1 Hydrological Processes

The hydrological process is a natural phenomenon that expresses the physical interactions
between the different phases of the water cycle. These processes can take place in systems
such as lakes, rivers, seas, and oceans, and interact at discrete spatio-temporal dimensions.
There are two methods for modeling the hydrologic system; one is by physics-based models
and the other by data-driven modeling approaches. For physics-based models, the details
of the dynamics of their behavior are given by the governing mathematical equations of
the system, which require a detailed description of the initial values. This type of model is
founded on abstractions of the generalized forms of "Newton’s laws" (i.e., inertia, momentum)
and applications of the first law of barodynamics, which define the generic equations of
conservation in their abstracted form. Therefore, the input minus the output quantities of
a system may be expressed in mathematical terms as:

O(r)=Q[I(1)] (2.1)



then, the term 7 is the period of duration of the phenomenon, O (7) is a conservative
magnitude leaving the system, and Q [I (7)] represents the transform function that relates
the system entry I (7) concerning its output O (7). The transform function © denotes the
system’s properties (e.g., linear, nonlinear, random, and non-random, allocated, and non-
allocated). In the former models, 2 is centered on applying the knowledge of physics that
governs the environment domain. Whereas, the later models implement empirical knowledge
about €2 to gather experience from the "performance of the data', i.e. gain experience based
on intake and exit information.

Of those events caused by the hydrologic phenomena (e.g., geomorphological, climatolog-
ical, floods, and landslides) flooding events handle significant economic damage worldwide.
Hence, in catchment management, the issues of flooding and prediction are earning increased
attention as inundation problems and their extremes are increasing and becoming gradually
frequent across the world. This situation has triggered major concern for many governments
given the increasing events related to disastrous flooding. Therefore, the necessity of estab-
lishing mechanisms for early warning to support flood forecasting is in demand. Since then,
several researchers have claimed that in the years to come, the events unfolding are going to
become worsened because of climatic fluctuations [35].

For managing river flooding, prediction models of hydrological flows are essential, and as
such are of paramount concern for managers and hydrological researchers. Notwithstanding,
in most cases, it is almost difficult to avert their effects, so the implementation of simulations
tools capable of forecasting the ever-occurring threats of floods needs to be reliable and
accurate. In this respect, the assessments should be composed of early forecast systems that
can provide knowledge about the scope of the event.

Then again, as was noted earlier, severe flooding is also considered responsible for a great
deal of loss of both human and animal lives, lands, homes, properties, and damage to the
economy, specifically in areas that are densely populated. Furthermost, flooding events are
attributed to be the greatest damaging events of all-natural risks, on civilians across the
globe. On the other hand, unfavorable effects of flood disasters encompass such problems as
the spreading of waterborne infections; landscape devastation, farmed lands, cattle grazing
lands, homes, and impairment of the water quality, water pollution by sedimentation of
water streams; losses to the flora and fauna habitat. Besides, the increasing variability
in rainfall extremes, is responsible for the impairment of stream water pollution, as runoff
coveys polluted substances from overland and agricultural point sources [36], [37].

2.1.2 Flood Phenomena Ontology

In the development of software structures, an essential topic is the definition and application
of ontologies [38, |39], and in computational sciences, it is an idea that emerged from AT to
transfer information and experience as showed by Gruber [40].

In solving any information problem, the three main criteria of "Semantic Web Technology"



are "Protocol and RDF Query Language (SPARQL)" and "Resource Description Framework
(RDF)" which form the basis of "RDF Query Language" and the widely used "Web Ontology
Language (OWL)". Hence, comprehensive exposure to the different approaches used in
ontology development is available in the works of [41-45].

The ontologies offered within the domain of the "flood phenomena" found in the liter-
ature, except for a few; not oriented necessarily to the flood forecasting task, since most
of these flood-related ontologies have their classes and properties focused on flooding as an
environmental hazard, risk, and management. Notwithstanding, these ontologies, although
built from scrap or reused from other ontologies, and presented in various types, have their
foundation on well-known ontologies like the "Semantic Web for Earth and Environment
Technology Ontology (SWEET)" [46], the "Semantic Sensor Network (SSN)" [47], the "Time
Ontology" 48], and some non-generalizable "Hydraulic Ontologies" and several others. How-
ever, for a comprehensive and systematic analysis of flood ontologies see Sinha et al. [49].

From these ontologies, only a few [50-56]) have examples of classes and properties specific
to the domain of interest (i.e., forecasting and sensor network), so they can be reusable in
this work. Therefore, it is not intended to implement from scrap new ontologies regarding
the flood forecasting task.

2.1.3 Flood Management and Forecasting

State-of-the-art flood management and containment suggest the procedures and techniques
aimed at reducing or preventing the hazardous consequences of floods. However, releas-
ing floodwaters (flood relief) is an engineering approach (i.e., applying structural or non-
structural measures) employed for the control of flood surges.

European countries lying low below sea levels like the Netherlands and Belgium are at
the top front with the construction of such infrastructures. In this sense, many efforts
by several research institutions, governments, and academia have started projects like the
"FLOOD RELIEF" [57], "FLOODsite" |58-61], "UrbanFlood FP7" [62] and "FloodControl
2015" |63, 64], just to mention a few, are some efforts carried out as flood "Early Warning
System (EWS)" implementations for protection against flood. In Canada and the US; it
can be found the construction of a diverse set of flood control and relief structures such
as floodways, dams, and levees as the main structural means of defense used. In Latin
America, with flood management and forecasting, it is most likely to see the absence of
structural defense measures due to their high cost of construction.

Implementing EWS possesses many challenges and deficiencies. Despite these deficien-
cies, climate change is an observed growing trend, and the vulnerability of the water resources
is becoming more affected and the assessment measures for containment, prevention and mit-
igation are some of the ultimate tasks faced by river flood management today. In this sense,
the implementation of new EWS prototypes is the core of the challenges faced for tomor-
row’s ever-changing climate, and this thought is continually attracting the interest of water
engineers, scientists, and managers.
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2.2 Related Research

This work is intended to apply agent-based technology, specifically "multi-agent systems’,
to support simulations for forecasting floods in tropical watersheds. Using agent-based tech-
nologies is a highly active research paradigm within the social, geographical, and ecological
sciences where a great deal on the subject has already been written. Notwithstanding, as
noted earlier in the previous chapter concerning traditional hydrologic methods for dealing
with flood-related problems and which are well documented, it begins the discussion of the
related research by addressing the flood forecasting issue with a short explanation of the
state-of-the-current-research using conventional hydrologic modeling, its data-driven, and
artificial intelligence counterparts. Finally, the last two subsections discuss the use of agent
technologies (ABM and MAS) as a new approach in the role of flood forecasting simulations.

2.2.1 Hydrologic Modeling

On a watershed level, various types of hydrologic (also known as catchment/watershed) mod-
els are tools applied to simulate overland flow and river flow routing produced by precipita-
tion. So, in the process of developing these models earlier, today more are being developed,
there will be various ways and approaches taken to classify hydrological models. Thus, it
is presented a brief classification of these models that assumed their governing physical rule
has shown by Jain et al. [9]. Table[2.1)and Figure 2.1 shows a depiction. According to their
applications, it classifies them based on process, spatial representation, or randomness, and
degree of detail, which means there will be various ways and approaches taken to classify
hydrologic models. From the existing classification, some researchers have proposed several
alternative classifications in the literature [65H72]. A brief classification of these models
assumes the physical rules which govern and categorized in many types depending on the
modeling approach used, their function, goals, their structure, and level of spatial discretiza-
tion as an empirical, conceptual, and physics-based process models subdivided into various

specialized sub-fields (Table [2.1).

As the special distribution of a catchment is important when selecting and developing
hydrological simulation models (Figure 2.1), a twofold methodology can be applied to im-
plement such simulations. In the first methodology, the main idea is to run through and
feed the collected dataset having the nature of time series through probabilistic models, by
which the variables of interest are forecasted. In the latter method, it is assumed that the
variables, parameters, and constants that are intervening in both hydrological and hydraulic
processes are known. Therefore, this information becomes crucial for the formulation and
implementation of models, as can be noted in [73] and improved by [74].

As noted, simulation prototypes for hydrological processes are diverse, and in the same
manner, can be presented from simple to the most complex models. Of course, their use
varies according to the process being studied and the problem to be solved. In addition, there
is the fact that, because of their great diversification, they can couple it to other systems,
which make them capable of even simulating the dynamic processes of water resources quality
pollutants in catchments [75]. Below it can be seen in more detail the classification of these
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models.

Table 2.1: A nomenclature categorization in hydrological tools. (Adapted from: [9].)

Principle Classification
Geographical Clustered: Quasi- Totally
location black box setup allocated model  allocated model
Watershed Simulation Method Determinist Data Driven Data Driven
*Trial/Error *Stochastic *ANN
*Theoretical *Fuzzy
+Clustered
+Allocated

*Physics-oriented
+Mesh-oriented
+"HRU" oriented

+Subwatershed
oriented

data feed and watershed area Riverine route Catchment Combined
models models catchment
*Hydrological and routing
routing models
*Hydraulic routing

Rainfall prediction and revision No rain Rainfall Radar-nowcast
prediction prediction Model revision
No revision Model revision

2.2.2 Deterministic Models in Flood Forecasting

They characterize deterministic models as models that use mathematical formulations and
consider the correlation between what is entering and leaving the modeling system. An exam-
ple is a regional model for simulating the "River Severn" catchment, which could incorporate
both surface and groundwater components, as shown by Liddament and Oakes [77]. They
applied this model to the operational control for regulating the stream. The researchers
argued that because of the complexity of the river flow, the model is complex, requiring
large computational time and others may render it costly to build and difficult to work
with. One of the characteristics of deterministic models is that the non-linear partial dif-
ferential equations used for describing hydrological processes can be implemented. In this
sense, it should be pointed out that solutions to the analytical operations cannot be solved
by the equations. There is a benefit offered by deterministic approaches to exhibiting an
insight into the internal processes that agree with a broad understanding of hydrological
processes. Deterministic approaches usually yield for any model input, one unique output.
Table [2.1]described a categorization of these models.
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Figure 2.1: Taxonomy for hydrological simulation prototypes. Source: [76].

Following the classification indicated in the Table deterministic approaches can also
be considered as empirical representations, which becomes useful when there is no knowl-
edge about the system to be modeled; this means, the catchment is considered as a whole
(a lumped system) and the approximation made of the physical values have resulted from
a grouped modeling approach over the entire catchment. In other words, this methodology
entails the so-called "black box" modeling scheme, as hardly any information on the dynam-
ics of the precipitation-runoff process is thoroughly known |78, |79]. Therefore, these models
rely entirely on observed data, their validity, and precision [80]. Thus, given their high
requirements for data availability, empirical models are also called data-driven models 81,
82]. However, in continuation with the discussion on hydrologic models, the simulation of
its dynamics can be accomplished, aside from the approaches formerly mentioned, be it by
deterministic, or empirical means, the models can also take on a conceptual or physics-based
approach, and these resulting from the synergy of combining several approaches, they can
obtain an amalgamation or sub-models, designed and suitable for simulating the hydro-
logic process considered as significant as shown by Bergstrom and Forsman [83], Kirby and
Beven [84], Jakeman and Hornberger [85], Scharffenberg et al. [86], and in [87-89] respec-
tively.
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2.2.3 Data Driven Flood Forecasting Modeling

Among the models used for simulating the rainfall-runoff process, data-driven modeling
(DDM) is a modeling method that connects the state variables present in the process (e.g.,
external, internal input/output parameters, like the rainfall-runoff relationship) and builds
a model with the corresponding field-collected data [90), 91]. This doesn’t imply that initial
knowledge about the details and processes that govern the system’s behaviors is not required;
notwithstanding, data-driven models are regularly very useful when this knowledge is un-
available a priori. Data-driven methods also encompass other simpler theoretic probabilistic
techniques that are not founded on complicated physical laws. However, some approaches in
this line of analysis are present in earlier techniques of the linear time series, "auto-regressive
(AR)", and "mixed-auto-regressive with moving average (ARMA)" as reported in [92], and in
techniques from computational intelligence like "artificial neural networks (ANN)", "support
vector machines (SVM)", "fuzzy logic (FL)", and hybrids, like the "adaptive neural Fuzzy
Inference Systems (ANFIS)". Contrary to its "hard" probabilistic technique’s counterpart,
computational intelligence techniques are unbiased with inaccuracy and improbability to
converge to better results [93].

Stochastic models are constructed from one sample known in time as initial condition (i.e.,
precipitation time series) which are based on minimum criteria of the errors, and from which
estimates are derived from its past values [92]. Therefore, they rely mainly on the time
series analysis and forecasting methodology, which use in hydrology is very popular [94].
Since stochastic models are shown to handle random processes, this quality makes them
useful for modeling precipitation data, given their random nature. In this sense, to deal with
the stationarity or non-stationarity properties of precipitation data; approaches such as the
ARMA and ARIMA models can help elucidate the characteristics of the physics that engage
the rainfall-runoff process at large spatio-temporal scales. Therefore, one of the reasons for
adopting this alternative in hydrological simulation is due to its numerical simplicity, low
cost of its computational requirements, as well as its ability for hydrographs approximation,
and are useful in parameter estimation and correcting error giving the uncertainty related
to other models. However, their limitations show problems with extrapolation, they require
adequate and reliable data, and cannot reproduce any changes in the system.

Despite their ease of implementation, mathematical simplicity, and abilities with hydro-
graph approximation, stochastic models cannot deal with the non-linearity that is common
in the hydrologic process [95]. To cope with this problem, researchers have pursued to im-
plement models that integrate non-linearity of the hydrologic system. Such quests are found
in other examples of data-driven models for rainfall-runoff simulations, like "Artificial Neural
Networks (ANNs)" as documented in [96, [97]. The theoretical approach of ANNs modeling
is nonparametric (i.e., data-driven) and as such uses a self-adaptive method to deal with
information inputs and can represent complex nonlinear relationships [81, 98]. ANNs can
learn from input data, employ gradient-based learning algorithms, generalize the behavior
of data, and handle noise. A complete survey on ANNs applied in rainfall-runoff modeling is
reported in [96, (97, 99, |100]. An interesting issue observed when conducting rainfall-runoff
simulations in real-time over an entire basin, with the basin responding under the modeling of
both use of conceptual and ARMA models, is the performance of the data-driving modeling
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approach in optimizing forecasts results. In this sense, in [101] is found an example of such
model coupling between ARIMA and ANNSs to significantly enhance streamflow predictions
and profile revision.

Even though ANN is a reliable approach for modeling hydrologic processes, it still has
some disadvantages. However, when dealing with hydrological time series that consists of
extreme missing and impaired data instances, they can reduce the forecasting performance of
the ANN [102]. However, with high non-stationary rainfall time-series, without the proper
data treatment, the concealed frequencies in the rainfall data may inhibit the ability of the
ANN’s performance [103].

Among the DDM’s, rainfall-runoff modeling has found a place with the use of "Fuzzy
Logic" and "Fuzzy Set" applications. While the former DDM techniques rely only on nu-
meric values, fuzzy logic and fuzzy set approach provide the feasibility for working with
the linguistic nature of non-numeric values, as they extend this feature as an expression of
instructions and proofs. In general terms, this expression of instructions (rules) and proofs
(facts) [104], which fuzzy systems can take on intervals between 0 and 1 [93, |105], finds
an appealing solution for engineering applications in water resources engineering, where for
example, a representation of the rainfall-runoff process as a real-world phenomenon is pur-
suing. Furthermore, to explore the potential of fuzzy logic and sets, researchers have come
up with a series of methods and integration of these with other methodologies [106]. Yu and
Chen [|107] proposed a method adapted from the "fuzzy-rule-based" system like a technique
for actualizing data and that could predict errors to improve real-time streamflow prediction
for 1 and 4 units of time ahead. Kalayathankal and Singh [108] developed a fuzzy scheme
for flood alarm forecasting. Concerning disaster evaluation produced via inundations, He et
al. [109] presented an evolutionary algorithm based on an improved logistic map and fuzzy
clustering iterative model.

The versatility of fuzzy logic in rainfall-streamflow relations has taken several steps fur-
ther with hybridization, where fuzzy logic and sets when combined with one or more DDM
techniques, for example, ANNs enhances the proficiencies of the modeling task. In this sense,
an exhaustive survey on ANFIS can be seen by Nayak et al. [110]. An implemented "ANFIS-
based" modeling system for monthly predictions of inflow to the reservoir with precipitation
data as inputs to assess inflow and periodic weather forecasts to support the operational
management of the reservoir was implemented in [111]. The authors argued that the imple-
mented system when examined under situations where forecast information was or was not
available, shows the model efficiency achieved when using both past and observed data, with
the outputs from the weather forecasting information are better than when employing solely
the previously data past information. Similarly, using an ANFIS model for a 24-hour river
flow forecasting in a Turkish watershed (e.g., Great Menderes River) using antecedent flows,
Firat and Giingor [112] observed that the ANFIS model was successfully good for simulating
the task after validating the system against measured data. With the same line of work,
Akrami et al. [113] applied a model coupled with ANFIS and wavelets for dealing with the
minimization of errors in rainfall data processing overtime for rainfall forecasting purposes
for the Klang River basin in Malaysia.

In summary, the statistical significance of DDM approaches in rainfall-runoff modeling is
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that they offer a generalization of the rainfall-runoff process in a simplified manner, without
having to rely thoroughly on the physical principles of the system [114]. However, several ex-
amples show that they have several limitations such as deficiencies for parameterization [115],
lack of integration of catchment dynamics in the models, absence of certain physical quan-
tities, parameters and model simulation tends toward overestimation; and they are data de-
manding, just to mention a few. Nevertheless, they represent an expedient modeling choice,
because of the simplicity of the modeling implementation framework in the absence of spa-

tiotemporal details yet remaining a tool of choice among water resources management [116,
117].

2.2.4 Artificial Intelligence in Flood Forecasting

Artificial Intelligence (AI) in its broadest sense describes how a machine or object can execute
similar kinds of roles that characterize human thought [118]. Moreover, for a comprehensive
study in this area and some of its applications, an effective review reported in [119] offers a
thorough review of Al applied to flood forecasting from 2000 through 2015. The use of Al has
also been proposed as an alternative to standard methods for ecosystem simulation [120]. In
the following subsections, a brief description without entering into details is provided, as this
work is not solely on DDM methods for flow forecasting and the variety of methods offered by
Artificial Intelligence is widely presented in several extensive reviews on the topic [9], [119],
and [121].

2.2.4.1 Artificial neural network

There are several connotations for artificial neural networks (ANNs). However, among the
many suggestions, they can be viewed as a theoretical representation of a numerical modeling
approach that receives inputs from the external environment as signals (patterns) and images
(vectors) which routed through a processing function maps information similarly to the
biological neurons would. As neuron imitators, ANNs contain numerous parallel concomitant
neuron units that work independently connecting each other by weighted links |122]. ANNs
are an advanced simplification of numerical approaches that simulate the biological cognitive
function of hominid intelligence. As an algorithmic function, in the process of training
ANNSs for learning patterns, the back-propagation algorithm is used. This algorithm allows
changing the mathematical expression of weights in the constructed network as a means for
calculating the gradient of the error function by chained differentiation.

An artificial neural network may have very specialized architectures that result in the dif-
ferent types of ANNs of which the most common configuration is the feedforward |123], [124].
Figure shows schematically a simple ANN with its various components, and details of its
functionality can be found in [96]

With the arrival of ANN techniques, flood hydrology entered a new facet to streamflow
forecasting [125H127]. Amid the different ANN techniques; as reported in [96, |97] artificial
neural networks embrace a fundamental part as an effective tool for flow forecasting in water
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Figure 2.2: Schematic diagram of a forward propagation ANN: Representing a time series
with Input Level as streamflow (Q) values for lags and lead time values, of time o = Q[o —1],
Qlo — 2], Qo — 3] and Qo + n, ...,n], and Output Level with predicted flow at lead time
Qlo +1].

resources engineering applications. Since its beginning, the advertisement of ANN has grown
and has advanced as the branch of Al whose potential for modeling the hidden processes of
the complex task of rainfall-runoff cannot be ignored [128, |129]. Therefore, from the simple
neuron theory, ANN as evolved into many various forms of architectures, been for example
the feed-forward-back-propagation (FFBP) the configuration of choice among practitioners’
engineers who seeks solutions for solving the nonlinear approximation problem [130]. The
majority of the development of some of the research on ANN architecture configuration can
be found in papers by [131-133]. Contrasting with its conceptual and physics-based model
counterparts, ANNs are capable of reproducing streamflow observations without the need for
the mathematical descriptions that define the dynamics of the process. A study by Sudheer
and Jain [134] demonstrated that ANN models in river modeling were able to capture the flow
duration curve during simulation time. Toth et al. [135] focused on shorter river forecast lead
time with two methods other than ANN. They noted the success of hydrological forecasting
to improve with ANN than compared with the other two approaches. Chang et al. [136]
applied a recurrent neural network (RNN) implementation of two steps ahead for streamflow
simulation. Subsequently, they took this initiative ahead updating the previous approach to
forecast several steps ahead [137]. In a similar paper, Yonaba et al. [138] investigated the
multi-step forward flow forecasting by exploring with several activation-functions.

Osanai et al. [139] used RBF artificial neural network to correct precipitation records
that failed to issue warnings.

In flood forecasting, of crucial importance is the setting of a long-lead-time forecast that
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can enable the reduction and correction of the bias in the forecasting task. Flow simulation
with physics-based models are subjected to errors and inaccuracies, as these phenomena
are complicated, therefore, lead time forecast of environmental catastrophes should have
lead-time of almost 6 to 2 weeks calendar day.

Kia et al. |140] suggested a flow forecasting model coupling artificial neural networks and
geospatial techniques.

Besaw et al. |[141] point out the advantages of applying ANN in the case of un-monitored
catchments. The authors stressed the fact that with the chosen ANNs always lead to con-
vergence, avoided non-linear learning schemes, and they are useful in the small catchment
where gauging is relatively low or absent. Danandeh Mehr et al. [142] used a FFBP network
approach as a search algorithm and later combined a GRNN with RBF network for flow
forecasting in an un-gauged river basin.

Di et al. [143] introduced a machine learning technique based on KNN to treat impaired
sensor data for an extended lead time of extreme rainfall. Comparably Napolitano et al. [144]
suggested a conceptualization of streamflow forecasting modeling and ANN approach to
deal with similar issues in un-gauged watersheds. Recently, Taormina et al. [145] proposed a
methodology of optimization named "LUBE" to deal with the problems of prediction intervals
(PIs) faced by artificial neural networks for operational streamflow forecasting.

2.2.4.2 Fuzzy logic methods

In the former subsection, they explored some of the applications offered by ANNs in flood
forecasting. In this subsection, it explore some research with the use of "fuzzy logic" in
hydrological sciences and engineering with an emphasis on engineering problems caused by
floods. Why fuzzy logics in hydrology? Fuzzy logic offers the ability to deal with questions
concerning uncertainties in hydrologic data, mainly on its stochastic and deterministic de-
scriptions [105} 146 [147] For example, Klir, Klir and Yuan 148, 149] presented an effort for
clarifying the description of stochasticity and determinism in uncertainties concerning the
intricacies present at the time of simulations. Subsequently, in dealing with uncertainties
in the models, many other outlooks on the topic have been presented in studies by other
researchers, |150-156].

Typically, with Fuzzy logic and sets theory, they apply set rules to handle inaccurate and
incomplete instances. This criterion has been universally accepted as a useful approach for
approximating data that are fuzzy and uncertain which precedence is from intricate environ-
ments [157]. In set theory, there may be the belonging of an object to a set or not; however,
when it comes to the fuzziness of fuzzy sets, these can take on true or false values, that is,
values between 0 and 1. Hence diffuse models can describe ambiguous connotations similar
to those existing in natural language [158]. The fuzzification procedure implicates an exact
"crisp" transforms of input variables into "fuzzy sets' [159]. A fuzzy logic model is devel-
oped from preceding instructions, in combination with fuzzified values through fuzzification,
extrapolation, and configuration processes, that result in the fuzzified outturn values trans-
formed into real signal [160]. These methods comprise maxima, center of sums, weighted
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average, weighted sum combination, center, and centroid of area. Figure depicts an
illustration of a typical "Mandami fuzzy logic" scheme.
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Figure 2.3: Schematic of a typical mandami fuzzy model scheme.
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In Chapter Two it was emphasized the issue of the hydrological phenomena to be a com-
plex process, therefore this refers to the nature of uncertainty and ambiguity of its behavior.
So far, it has been observed that the success in hydrological forecasting models relies on how
close the models make estimates for extensive forecast time. Till now, several researchers at-
tempt multiple-step-ahead forecasting schemes, with the aim of forecasting events some time
steps ahead in time. However, multi-step-ahead forecasting presents itself as a challenging ap-
proach. Nayak et al. [161]. evaluated the proficiencies of a real-time precipitation-streamflow
model with a fuzzy-based computing approach. Abrishamchi et al. [162] developed a fuzzy
inference system based on "[F-THEN" implemented an ANFIS model based on "I[F-THEN"
detailed rules for applying predictions on reservoir flux operation. Performance evaluation
of the operation model was obtained from calculating different performance criteria like
reliability, resiliency, and liability. Results showed that the application of this scheme in
extracting knowledge from an informative data set having imprecise and highly nonlinear
structures would be helpful and have advantages over traditional procedure techniques such
as standard operating plans and ordinary least-squared return rules constructed based on
the results of optimization models. Cimen and Saplioglu [163] demonstrated the use of a
fuzzy built paradigm for streamflow prediction at the upper and lower part of a river gauging
station.

Toprak et al. |[164] used a fuzzy logic approach implemented with the Mamdani algorithm
for stream-flow estimation in ungauged or poorly gauged river basins. Due to the limited
data, the authors had to use some stream and time coefficients as feedback data. Other
findings reported by authors show the simulation was dependent upon other numerical traits,
including the errors, and mapping scheme. In conclusion, they found the fuzzy model to
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produce good results. A study by Katambara and Ndiritu [165] demonstrated that fuzzy
systems work very well in basins where flow data availability is sparse. Al-Zu’bi et al. |166]
proposed a rule-based system based on the "Takagi-Sugeno" system fuzzy model for flow
prediction. Firat and Turan [167] tested the performance of an ANFIS model with ANNs
and conventional time series analysis and forecasting models of AR schemes.

2.2.4.3 Evolutionary Computing

Evolutionary computing (EC) techniques for the last past decades have attracted the at-
tention of various researchers and as developed as an effective means in solving hydrologic
related problems [168-173]. As other data-driven available models, there are several types of
schemes within the evolutionary computing techniques [174]. In this sense, the classification
is as follows: "evolutionary programming (EP)" |175], "genetic algorithms (GAs)" [176], [177],
"evolution strategies (ES)" [178], "genetic programming (GP)" [179], and "gene expression
programming (GEP)", a branch under GP.

In streamflow simulation and forecasting, evolutionary computing has shown to out-
perform previous computational intelligence approaches [119]. Wang et al. [180] employed
TDNN (time-delay-neural-network) and GA to forecast overland flow in a catchment. From
this approach, the researchers concluded that combining both methods, did significantly
improve forecasting capacity. Makkeasorn et al. [181] applied genetic programming and ar-
tificial neural network for streamflow forecasting. A comparison between the two techniques
shows genetic programming to accurately predict the streamflow at a monthly a lead-time.
Chen and colaborators [182] highlighted NLTS (nonlinear time series) models to reproduce
the fluctuating dynamics of streamflow. Guven [183] evaluated the efficiency of predicting
river inflow with linear genetic programming and neural network techniques. The results
indicated the linear genetic scheme to outperform that of the neural network counterparts.

Ni et al. [184] considering meteorological variations and performed yearly streamflow fore-
cast through the genetic programming simulation with other DDM schemes (i.e., multilinear
regression and Greys’s model) and assessed that genetic programming outperformed.

GP model can also catch the complex correlation concerning the forecasters and the
predictable outcome (streamflow). To illustrate this method, a study is provided by Kashid
et al. [185]. In the study, the researchers applied a modeling approach with precipitation
data resulted from predictions from the "El Nino Southern Oscillation (ENSO)" data files.
This Precipitation information was then loaded into a GP model for consequently predicting
streamflow. The authors reported good performance of the prediction of streamflow with
the implemented approach.

Keshtegar et al. [186] reported the importance of the need for accurate and reliable
streamflow forecasting models in hydrologic related assets scheduling and administration.
Therefore, they investigated, the so-called "High-Order Response Surface (HORS)" process
applying some improvements on the model using "high-order polynomial functions" to predict
streamflow. The monthly chronological streamflow information of the "Aswan High Dam
(AHD)" was reviewed by the authors, from which they concluded that the examination of
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several higher-order polynomial functions, of the 274, 34 4 and 5*%-order, are better-case
scenario to replicate streamflow predictions. From the analysis, statistical measures indicated
the intended scheme performance with the fifth-order polynomial function to outperform the
monthly streamflow forecasting at AHD.

2.2.4.4 Hybrid systems

The complexity of the hydrological phenomenon urges us toward the implementation of other
robust hydrological simulation applications, with forecasting capabilities accuracy at least
superior to those that already exist. Given these reasons, the hybridization of systems has
become a field of motivation for various researchers involved in the hydrological field. The
rationale behind the application of hybrid models in hydrological forecasting is that hybrid
models represent an ensemble of multi-models approximations that are applied to escalate
the exactitude and correctness of sole models [120]. Wang et al. |187] evaluated streamflow
prediction only from discharge data in the absence of precipitation with the implementation
of a model resulted from the fusion of three types of ANNs hybrids. Results indicated that
the hybrid fusion with further analysis of the discharge data (i.e., detrending and differ-
entiation) rendered the forecast effective. Jain and Kumar [188] combined artificial neural
networks with a probabilistic approach to investigate hydrologic prediction. Partal [189]
studied streamflow prediction with a hybrid approach employing wavelets-based networks.

In Section 2.2.4.2 it was observed how Fuzzy systems are adapted to deal with inaccurate
and ambiguous data. From its principles, the knowledge derived can be used in expert sys-
tems. Besides, it was learned that Fuzzy systems are expert methods and means predicated
on fuzzy rules and inference, that is established on two rules IF and THEN. In addressing
flow estimation below a river reach with streamflow data located at the upper part of the
gauging station, Pramanik and Panda [190] investigated the application of ANN and ANFIS
to estimate the streamflow rate. They concluded the approach with the ANFIS to outper-
form that of the ANN technique, albeit taking into account that the selection of the correct
algorithm scheme plays an essential role not to be underestimated. Dastorani et al. [191] in
a study with ANNs and ANFIS, addressed the problems with station missing flow data and
concluded the ANFIS technique to satisfactorily forecast the missing data over the results
obtained with the ANNs. Adnan et al. |[192] proposed a back-propagation neural network
with an Extended Kalman Filter at the network exit to enhance model results accuracy.

It was shown earlier that for flow forecasting, the lead time is of great importance, in
this sense, Guimaraes Santos and Silva [193] presented a hybrid model for daily streamflow
forecasting centered on WDT and ANNs. The models could forecast streamflow for lead
times from one day, up to a week in advance, constructed on the bandwidth frequencies
of the initial elements. Results suggested a hybridization scheme to outperform the typical
ANNs model. Humphrey et al. [194] explored hybridization methods by fusing the numerical
hydrologic model with Bayesian Artificial Neural Network (BANN) for discharge prediction.
Yaseen et al. [195] combined ANFIS and EC techniques and came up with a new hybrid
solution to perform monthly discharge predictions. Zaini et al. [196] applied a hybridization
approach and built a model based on SVM and optimization scheme for 24 hours streamflow
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forecasting in Malaysian watershed. Results show the hybrid approach (SVM-PSO) to give
better results than forecasting only with SVM.

2.3 Agent Technology

The initial studies in the agent-based modeling area, have their beginning around environ-
ments with complex arrangements [197-200], initiated with artificial intelligence and com-
puter science with its many forms of one-agent systems, such as intelligent assistants and
service robots [201] but nowadays it is being developed in other areas in academic research
and industry (vide infra Table . In this sense, it should be noted that according to
O’sullivan and Haklay [202] and Gimblett [203] the prospective for sociological applications
lies around the knowledge of techniques as MAS. Besides, in fields such as geography, the
physical components that entail complex systems like vegetation, fauna and flora, physiog-
raphy, climate, and hydrological component are often unconnected from the socio-economic
factors, such as demography, culture, economy, and policy [204].

In the 70s, John Conway built a two dimensional (2D) cellular automata model which
he coined the term "Game of Life' (Figure [2.4). This model architecture consisted of a cell
layout having two conditions, alive or dead; in this respect, the condition of one cell depended
on the one of its neighbor’s previous time step. Conway’s game triggered the interest at the
beginning of complexity from simple instructions.

The evolution of ABM development continued throughout the 1990s as can be witnessed
through the emergence of diverse applications means, such as Swarm, and the early begin-
nings of ABM programs [205] and NetLogo, which was first known as "StarLogoT" in the
middle 90s [206], besides others like "Repast" [207] then "AnyLogic" with is initial release in
2000 by the former XJ Technologies known today as The AnyLogic Company [208].

During that same period, [209] implemented Sugarscape, an Al agent-based social sim-
ulation model (ABSS), which adapts the fundamental concepts of social sciences. This
prototype was composed of a system of naive procedures which formed the basis for the cre-
ation of other procedures that enhanced supplementary remarkable outcomes. Sugarscape
is an example that presented how basic procedures might produce composite organization
in a bottom-to-top approach, this means with local instructions being at the bottom and
ascending to adaptive behaviors and capabilities of the interconnected structure terminat-
ing on the top. Culminating the 90s, the power of computers progressed considerably, and
agent-based models became well-known.

The term "ABM" has been coined with many other terminologies as shown in the litera-
ture, these are "agent-based systems (ABS)","individual-based modeling (IBM)", and "multi-
agent system (MAS)" are commonly applied names with their abbreviations, and which use
will be common throughout this thesis. Nevertheless, in Sections 2.3.1 and 2.3.3 the ABM
and MAS concepts would be addressed in-depth, respectively.
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Table 2.2: Areas of Agent-Based Modeling Applications (Adapted from: [210]).

Field Applications Field Applications
Commercial and eIndustrial Processes Society and Cul- e Early societies
Institutional ture

e Resource chain

e Supply chain manage-
ment

e Supply and demand

o Customer marketplaces

e Manufacturing han-
dling
Economics « Computational eco- Military

nomic marketplaces

e Commercial nets

e Computational eco-
nomics

e Economical ecology

Infrastructure e Energy power markets  Biology
e Transportation
e Hydrogen  infrastruc-
ture
¢ Oil and Gas industry

Multitudes « Circulation of people Technology
o Withdrawal simulation

¢ Civilian insubordination
e Associated terrorist at-
tacks

¢ Administrative systems

e Authority & jurisdiction
o Enforcement

¢ Civilian displacement
e Natural systems
« Ethology

¢ Operation of automated
cell-like systems and sub-
system implementation

¢ Ecology

e Energy technology

¢ Dynamics of the systems
e Technical control

e Hydro base technology

« geographical information
systems modeling

2.3.1 ABM in Flood Forecasting

ABM can be defined fairly as a novel methodology for modeling and simulating complicated
domains, in which cooperative, independent agents, that can exist in space and time interacts
among each other [212; 213]. Many authors in this research community claim that ABM
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Figure 2.4: The "Game of Life'. Example of a "cellular automata machine". Adapted from:
Conway [211].

represents a new paradigm for simulation [214], however, they disagree among themselves
on how to define the agent concept since there are many points of view [215-220]. So,
what is an agent? (Figure . As mentioned previously, the agent description is not well-
defined, since an "agent" could be any components forming part of a system when different
objectives in different paradigms are studied. For example, some would regard it as any
type of notable parts integrating a model, a system, or a subsystem in a given program
environment. Likewise, an agent could be considered as any class of autonomous entity, such
as an organization, institution, or an individual person. As the idea of an agent is crucial
for the understanding and implementation of the ABM systems, most researchers point to
the following characterization by [221] for ABM as they find it useful. ABMs are computer
simulations for modeling the behaviors and collaborations between agents which display
some sort of autonomous behavior in assessing their co-operation on a system. Additionally,
they integrate features from other computational simulation paradigms and schemes. For
instance, to introduce repeated randomness into a system, computational algorithms like
the Monte Carlo methods are used. According to [222] in an ecological concept, agent-
based models, are known as "individual-based models (IBMs)'. A review by [223] shows the
applications of ABMs in non-computing domains (e.g., biology, ecology, and social science).

Another particular property of ABMs is that they can be displayed as a microscale
model [224] in which the synchronized procedures and relationships of several agents to
replicate and forecast the appearance of complicated trends is modeled. Therefore, the pro-
cess would be developed as a micro and macro plane of interconnected structures. Therefore,
a significant concept is that from simple behavioral rules more complex behaviors can be
generated. Another key principle is the synergy displayed among agents working together as
one. Individual agents are usually portrayed as reasoning entity, acting with independence,
and having behavior rules varying from basic reaction decisions to more complex adaptive
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Artificial Intelligence [210]. Bonabeau [225] argued that in ABM agents are autonomous
entities that may experience "learning', adaptation, and reproduction.

In the literature review, the use of ABMs has been shown to become increasingly popular
in social sciences, given its elegance and explicitness to show objects, environment, and
relations between them [226-231]. Despite many ABMs turned out to be built to model the
complicated social phenomena, a few are being developed for stream-flow or flood forecasting.

Another important aspect of ABMs is their consideration as experimental tools for theo-
retical research on complex social experiences for understanding the interactions of the agents
and a giving environmental scenario. Therefore, as a new approach for analyzing complex
systems that emerge through interactions among autonomous agents [213], and the trends
observed in ABM is the manner in which it simulates the system in a bottom-up approach,
suggests, patterns, structure, and behaviors that could be perceived.

In respect to their structure, an agent-based model involves three basic components:
agents, the agent’s association with other agents, and the agent’s setting (i.e., "objects" and
their surroundings). In other words, agents denote the active part of the system, the objects
are represented by passive elements and the agent’s environment represents the interactions
among the different components in the systems.

To offer an intellectual validation specifically why ABMs methodologies are appropriate
for solving complexities in computational domains, a qualitative analysis on the topic can
be seen in a paper by [217]. Hence, the reasons why today this idea is largely accepted
among researchers in the ABM society is that the technology proposes innovative and often
new applicable directions for building complex procedures, particularly accessible and active
environments [232]. Briefly shown under this section, it introduced the ABM as a useful
intelligent, and complex software system that can have many interacting components and
parts. Therefore, agents are useful perspective and appropriate for modeling, as they reduce
the time in coupling various systems given the abstraction offered through independence,
besides their robust, reactive, and pro-active skills [233].

2.3.2 ABM Architectures

For the planning and developmental stages of an ABM, an assembly of agents is needed
for complex system during the planning phase. Thus, often times it is required to combine
various Al methods and several agents. On the contrary, since diverse methods can simply
be coupled into a hybrid system using a connecting type of agent frame, various complicated
glitches are resolved within a smaller length of time. Likewise, given the diversity of com-
plementary techniques and approaches to deal with these problems, these become coalesced,
and solutions with higher quality have resulted from such schemes. Of course, it is imminent
that every one of these smart systems has its potentials and disadvantages, and they do not
represent the norm for solving every difficulty. In this respect, many investigations on this
subject, are addressed further by several research. For example, the "The MIX Multi-Agent
Architecture" introduced by Hilario et al. [234], and Iglesias et al. [235] is an architecture
aimed at developing plans and kits for combining neuronal and representative pieces of
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Figure 2.5: A characteristic agent. Adapted from: [210].

knowledge. The testing skills of this architecture are done on the basis of an allocated pro-
cedure on multiple systems composed of collaborating diverse agents. The MIX architecture
involves a multi-agent toolbox with a basic agent array, facilities, and rules for agents to
be able to communicate. Hence, the development of agents is explicit for diverse sorts of
neuronal arrangements unlike other tasks such as reasoning systems. A similar attempt is
the "PREDICTOR" system by Scherer and Schlageter detailed how an allocated system
of AI methodologies can be used by coalescing neuronal and knowledge methods. To present
this system, the authors have argued that such a design is centered on a slate construction
and is validated in the financial and prediction areas. The researchers developed this method
aiming to offer solutions to forecasting problems in the financial system.

The "IMAHDA Architectural Setup", an architecture introduced by Khosla and Dil-
lon [237] is a computer design known as the "Intelligent Multi-Agent Hybrid Distributed
Architecture" (IMAHDA). In IMAHDA, an arrangement of the execution of its functioning
and knowledge base is composed of four levels. These levels are: objects, computer agents,
intelligent agents, and agents for the resolution of problems. This system can be built from
general-purpose agent software, standard smart agents and from other general Al systems.
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A so-called "Multi-agent and Fuzzy Modeling Architecture" is a more recent attempt and
was introduced by Delgado and Gémez-Skarmeta [238]. In this methodology, the authors
have proposed a hybridized knowledgeable prototype which is an amalgamation of fuzzy
logic techniques and MAS. The arrangement of this type of system allows the participation
of several agents with their tasks within a context of fuzzy logic for the solutions of specific
problems. The prototype involves four types of agents namely, service, which acts as a
directory, classifier agents, resources, and finally those that control tasks.

The Generic architecture suggested by Jacobsen [239] was a standard agent-based design
for a mixed platform of intelligent agents, that was built on the framework already introduced
in [240]. Consequently, they showed two abstractions typical of this mixed platform, which
on the one hand is a reinforced- architecture linked to fuzzy logic, and on the other hand, in
conjunctions with knowledge-based systems, and neural-fuzzy techniques they were able to
experimentally validate their designs.

In summary, a thorough insight into the proficiency and limitations of these five agent-
based hybrid platforms or systems can be found in [241].

2.3.3 Multi-agent Systems in Flood Forecasting

Just like ABMs, MAS is also part of Al, it is a methodology that aims to pair artificial
intelligence techniques with collaborative environments, computer science, and applications
as one system [242, 243] and is also part of Al, it is a methodology that aims to couple
artificial intelligence techniques with distributed system, and software engineering in a single
discipline system. Generally, MASs are composed of autonomous agents grouped and sharing
the same ordered environment [244|. They are displayed as a network that interacts with
each other with the aim to accomplish common goals [245]. An agent can be viewed as a
software component that contains coding instructions and data [246]. Within multi-agent
systems MAS(s), the agents that are composed of the network are likely incapable of solving
the assigned problems on their own [247].

Agent communications in a given environment are performed while they are working
autonomously and are in coordination among peers. Then, in a collaborative society, each
agent is equipped with a series of skills that are their own and that together allows them
as a team to solve problems. In this sense, the messaging that occurs between agents is
feasible thanks to the language protocol for agents provided by the Agent Communication
Language (ACL), they can exchange information and demand assistance among themselves
in a negotiable manner [246].

The most useful ACL protocol among agents is the "Knowledge Query and Manipulation
Language" (KQML). It is a messaging level that involves a low-level layer of variables like
send, recipient, and identify. The messaging level is the one that specifies the performative
and the interpretation procedure and the information about the performative is at the content
level [247]. The coordination between agents is imperative since the couriers are given over
relays and these messages are not dispatched at regular intervals between the agents. From
there, the coordination will depend on the architecture of the system which determines
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that the flow of information will flow smoothly [246]. The most simple architecture is a
"point-to-point (P2P)" network in which agents speak openly to each other. This is effective
to solve situations in which immediate solutions are needed without creating conflicting
situations. Two other platforms are shared between the MAS, and its associated "agent’,
besides the so-called "black-boards'. An associated agent network is one that facilitates
an agent as a mediator among other agents. While a network of black-board agents is
integrated a central coordinator who directs the actions of coordination of the activities of
data sharing [246]. MAS has a conceptual and well-defined historical background, in this
sense, an example of this is illustrated in "game theory'. "Game theory" (GT) [248] is a
mathematical modeling paradigm in which a cooperative environment is simulated between
non-thinking and thinking agents in which the agents interacts among themselves to resolve
conflicts. An illustration using GT to address a hydrological related problem can be found
in [249.

In an investigation performed by Montalvo et al. [250] an integrated MAS architecture
was proposed with an optimization algorithm approach, to correct the difficulties for the
improvements of drinking water distribution systems. The approach, the author’s comment,
is apt to train managers and decision makers when offering proposals for improvements to
facilities.

There are various areas in which MAS techniques have been applied [251]. Recently, MAS
has shown to find a place in the assessment of ecosystems [252-255]. Some of these examples
also include rangeland management [256], fish farming [257], urban catchments [258] and
irrigation farming systems [259]. The approach of the MAS is practical for these areas due
to the representation they offer to the environment with its great complexity of details and
that they allow the possibility to integrate human actors, to find solutions and to contribute
to improvements in the assessment of methodologies.

2.3.3.1 Multi-agent Systems Architectures and Agents Types

Having previously discussed what is an agent, in constructing MASs it is important to define
the agent internal organization and processes that details how agents pursue and gain their
preferred intentions. According to Wooldridge [260], an agent design can be abstract or
concrete. The structure of an abstract concept is defined by the components and its engine
structure (e.g., roles, permissions, responsibilities, activities, and protocols). On the other
hand, the concrete concept is determined by the assignation of types to each component and
executing each function instruction of the engine. In summary, architectures define how an
agent perceives data by external sensors, and its internal state determines the actions it will
perform and its future behavior [261} [262].

As suggested by Wooldridge and Jennings [263] there is generally three known taxonomies
of agent’s typology, which are classified concerning their, internal configuration, modular
components, how they behave and interact as: i) "reactive architectures', ii) "deliberative
architectures”, and iii) "hybrid or layered architecture".

Reactive agents, as the name implies, react directly to changes in the environment, they

28



are constantly adapting their internal status. This direct response to environmental stimuli
(e.g., sensor signal) in whatsoever direction, given the order to change into acting is also
known as the agent role [214]. In contrast to reactive architectures, where there is no
thinking on choosing the next step of action, in deliberative architectures, agents can think
and decide before choosing the next action. The commonly known "Belief-Desire-Intention
(BDI)" architecture known for its behavior capabilities and typical interaction model that
can display a rational behavior and realistic reasoning is an example in this regard. [215]. The
BDI architecture was proposed originally by Rao and Georgeff [264] and its main components
are described in [265]. Concluding, hybrid and layered agent architectures are a type of
architecture that shares these other two classes, combines multiple agent mechanisms to
use a particular benefit, and operates abstracting over different levels of the surrounding
environment [260].

2.4 ABM and MAS Applications in Hydrologic Prob-

lems

Tables and [2.4.2 provide several articles on ABM and MAS dealing with various hydro-
logic problems. Both tables also show a brief description of the approaches employed by the
researchers and the flood-based hydrologic problem-solution type addressed.

2.4.1 ABM Applications in Hydrologic Problems

As shown in the previous chapter, ABM focuses on whether agents (though, not necessarily
"intelligent") are obeying designated rules that formed their behaviors. Giving the novelty
and ongoing research in the ABM area. Briefly, Table shows the areas in which ABM is

in active research.

Table 2.3: Agent-based modeling in flood problems.

Method Reference Description Hydrologic Solution
ABM Brouwers & Bo- Merging ABM and GIS and hy- Flood Management Strategies
man [266)] drologic modeling for societal
modeling.
ABM Anantsuksomsri A comprehensive examination Disaster Management

& Tontisirin [267] of ABM and Disaster Planning.
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Table 2.3 — Continued from previous page

Method

Reference

Description

Hydrologic Solution

ABM,
Virtual
Geo-
graphic
Envi-
ronment
(VGE)
ABM,
Geospa-
tial
Services

ABM

ABM,
Hydro-
logic
Simula-
tion
ABM,
"Com-
plex
Adap-
tive
System
CAS"
ABM

ABM

ABM

Coates et al. [268]

Tan et al. [269]

Berglund [270]

Sunde et al. [271]

Medina et
al. [272]

Du et al. [273]

Jenkins [274]

Yang et al. [275]

Fusion of agent-based model-
ing and "VGE" to evaluate haz-
ards caused by flooding on busi-

nesses infrastructure.

Applies ABM and online GIS
for real-time charting to assist
in the reaction to inundation
episodes.

Demonstration of the applica-
bility of ABM in water supplies
issues to comprehend the com-
plexities involved.

Studied the effects of impervi-
ous catchments toward develop-
ment using agent-based model
and catchment modeling with
("SWAT").

Applied "CAS" and agent-based
model in drill assessment for
the planning of demographic re-

sponse to coastal surges.

An agent-based frame to exam-
ine the impact of managing in-
undation alerts by different ac-
tors.

Agent-based approach in cli-
mate change simulation trigger-
ing inundation hazard
Proposed an ABM for simulat-
ing individuals responding to
flood hazards.

Flood Recovery and Response

Flood Responding

integrated operation of water

governance

Preparation and Security for
Flooding

Flood Evacuation Strategies

Flood Warning

Preparation and Security for
Flooding

Flood Recovery and Response
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Some ten years ago, in an attempt to elucidate the progress in the agent-based field,
a survey of some 279 manuscripts from ninety-two research papers was done by Heath et
al. [276] in search for authors that had implemented and evaluated an agent-based model,
with the need to constantly assess the up-to-date knowledge of the current advances in
ABMs and detect cases in which the systems needs improvement. The authors identified
"six improvements needed to advance ABM as an analysis tool": i) implementation of the
agent-based-modeling tool kits particular to the problem domain and are software indepen-
dent, ii) ABM development as a unique specialty with a language shared and extended to
other domains, iii) An ABM system that is equivalent to the intended purposes, iv), An
ABM system that is simulation descriptive and provides results that are reproducible, v)
They should be totally adequate for validation, and vi) That ABM model validation statis-
tic metrics be specific to ABM. Other interesting findings made by the researchers showed
the agent-based-modeling methodology is a recent method and that the experimental models
supporting agent-based-modeling as an effective simulation environment have not yet been
approved. They also noted that in agent-based modeling, the absence of development and
typical standards reflects the absence of verified prototypes. Finally, the authors recom-
mended that a solution that the ideas, methods, and techniques used for ABM must be
acquired from other modeling prototypes or implemented towards agent-based modeling.
A complete study on the potentials of ABM is also referenced by Macal and North [210]
in which a comprehensive insight on the rationale of ABM is introduced with the idea to
address its present settings. The author reexamines several issues of ABM, characterizes
this paradigm as a novel methodology, considers the limits of over-employing and under-
employing this Al sub-discipline and envisions its potential as a prospective research tool in
complex systems modeling. Additionally, the study identifies the essential features of ABM
properties, research, and groups. The study also suggests some corresponding meanings for
ABM, grounded on experience, proposed for determining a unique lexicon to be employed.
The author concludes by recommending research and challenges in this area to advance its
growth and potential in the coming years.

Despite the active research of ABM in domains like economics, social science, biology,
military, public policy, ecology and traffic, and with the growing interest in engineering
applications, the literature review shows, however, that ABM applied to stream-flow or
flood forecasting problems are relatively limited and show not to be thoroughly enriched in
that field. Notwithstanding, it observed some examples given by some researchers (Table
that have used such systems for addressing other related hydrologic problems, as a problem-
solving approach in flood safety and planning, recovery, response, evacuation policies, control,
and management.

Brouwers and Boman [266] designed and implemented a single ABM to discover the
preferences of individuals toward assessment on inundation administration plans, for a ge-
ographically explicit flood simulation model under situations in communities with spatial
accretion. However, the researchers commented that for this model to function, the results
must be available and practically outreaching to the entire community.

In a recent summary of the agent-based modeling approach for solving problems in the
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area of disaster management, a study was published by Anantsuksomsri and Tontisirin [267].
In this study, the authors conducted a review on ABM applied to disaster management. From
their review, they explain the development of such systems and define ABM and give insights
on some software toolkits used for building ABM systems. The study also contributed to the
present modeling of issues in law models as theoretical testing whereas robbery and driving
behavior models are chosen as the implications of ABM in urban planning. The article also
discusses the use of ABM on natural disaster policies and management, drills for inundations
retreat, and liability assessment. Of particular notice is the references of the authors to two
papers related to agent-based modeling coupled to a hydrodynamic simulation model, in
either of these cases, the ABM uses the ready hand information of the hydrodynamic model
water levels of address the issues of evacuating the population rather than the ABM system
to forecast the water surges.

Interestingly, Coates et al. [268] introduced a study in which they implemented with the
use of geospatial systems and ABM coupled with flood forecasting estimates model a system
that could identify commercial properties prone to suffer from flood damage. The rationale
behind the geospatial system consisted of the development of layers (e.g., Topography, Inte-
grated Transport Network, and Address) from Ordinance Surveys Master Map to be used by
the ABM system. The study showed that integrating the geospatial system with flood esti-
mates layers enhanced the reliability in modeling flooding occurrences. Finally, the authors
proposed the idea that in order to improve operational response and business continuity,
it is necessary to build prototypes that can replicate companies throughout and after flood
events.

A common tool that complements to the simulation of ABM in water resources engineer-
ing is the Integration of Geographic Information Systems (GIS), as reported by [269]. They
studied how effective the integration of GIS data features and ABM could be. They installed
the integration approach on the web, and its task was to gather and handle vast amounts
of generated geospatial data and in this manner gain reliable geospatial services information
that could respond more effectively to floods. This integration showed that the proposed
method is ideal to avoid the transfer of a massive amount of geospatial information.

Berglund [270] provided a complete and comprehensive presentation on ABM to the water
resources community, with the aim of exploring the use of ABM in the hydro-sector giving
the complexities common to this domain. The author presented two descriptive overviews
implemented with ABM which were explained. From the analysis, he demonstrated the
applicability of the agent paradigm for simulating scenarios like water resources planning
problems. Additionally, in the study, the author also observed the restraints in employing
agent-based modeling to this simulation domain. To comprehend stream-flow on impervious
surfaces, with a hydrologic simulation coupled to an ABM technology, Sunde et al. [271]
employed a "Pixel-based increased impervious surface" dataset projected from 2011 to 2031.
This dataset was linked to the "Soil and Water Assessment Tool (SWAT)", a hydrological
simulation application. The simulation runs were focused to study the potential of the
hydrologic effects on upcoming urban development.

Medina et al. [272] used "complex adaptive system" theories and ABMs to undertake the
challenges of testing massive withdrawal policies in coastline communities prone to flooding
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events. The authors showed the viability of agent-based modeling approach in this scenario
to test evacuation policies for coastline communities withdrawals due to severe hydrome-
teorological incidents. They also stressed its perspective as a toolkit for effective hazard
managing.

Du et al. [273] developed an ABM architecture to evaluate the effects of the diversity in
human reactions to inundation threats, domestic concentration, and the benefits of inunda-
tion alerts. The modeling scheme consisted of the implementation of an ABM coupled to a
transportation simulation to model mass departures in a highway grid with different flood-
ing alert cases. Simulation outcomes indicated that if the population behaved subject to the
stressing effects of threats, particularly areas with the high-density population the marginal
benefit related to efficient flooding warnings becomes significantly constrained. Results also
showed the profits of inundation alerts to notably impact human behavioral heterogeneity
and from thence the meaning of seeing human reactions to inundation alert simulation rou-
tines. Finally, the authors recommended the development of more accurate models on social
reactions and conduct, to inundation alerts, and to increase the number of domestic spaces
and elements for better assessing and improving the advantages of inundation alert systems.

Concerning the future views on meteorological conditions, Jenkins et al. [274] presented a
novel ABM, which they feed with information from an inundation hazard scenario analysis.
The agent-based model was proposed to evaluate the relationship amid distinct modification
alternatives; it could propose that a decline in risk may be achieved by proprietors and
authorities.

Yang et al. [275] proposed an agent-based model that could perform flood response sim-
ulations in regards to the choices and actions taken by every house owner to ease flood
damages. The model implements a framework for individual response in which agents eval-
uate different flooding situations concurring to inundation alert systems, collect and select if
and what amount they would spend in reaction procedures to ease latent flood losses. The
researchers observed that estate worth, forewarning communication, and heavy rainfall situ-
ations altogether influence housing damages, located at lowland areas of the watershed, and
highly populated zones are most likely to be susceptible. The ABM also demonstrated to
be useful for analyzing housing damages to large scale flooding and reactions in storm-water
flooding episodes.

2.4.2 MAS Applications in Hydrologic Problems

The previous section, briefly examined how various agent-based models were implemented
to simulate human behavior in response to complex phenomena such as disasters that could
be climatic or of other sources, as part of disaster management. On the other hand, it
could be noted that most of the modeling approaches with ABM are not focused directly for
streamflow forecasting, but rather for simulations on population dynamics responses to risk
and hazardous situations, as well as for the design, implementation, and evaluation of risk
policies, flood warning, safety, and planning. Besides, as an increase in the amount of risk and
hazards around the world escalates, as they become more frequent and severe due to weather-
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related events (Figure , especially in regions where the precipitation regime can be even
higher than the annual global rainfall, the continuous need for the development of more
sophisticated agent related technologies that can be applied to hydrologic-related-problems
and water-dynamics forecasters are the order of the day. Hydrologic- related problems, which
in this case is given special attention to events such as floods are triggered by severe weather
conditions like heavy rainfall.
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Figure 2.6: World weather-related natural phenomenon, years 1980 to 2017. Source: [277].

In the urban and catchment levels, floods are of importance given the damage they cause
on the impacted domain (human settlements, animals, environment, agriculture, infrastruc-
ture, and economy). To monitor these weather or climatic variables that are responsible
for flooding, it is necessary to have at hand and deploy a network of hydrometric sensors
(Figure for data collection to allow us to study and forecast flooding events. In response
to the later, a MAS is an option that is best suitable for addressing a network of distributed
sensors . This owes precisely to the fact that a multi-agent system comprises a network
of agent displaying intelligence, a framework that involves collective features and individual
thinking for the solution of complex issues. The MAS approach to investigate and assess
stream-flow, flood, or high-water level forecasting and its association with management in
the civil society is a recent effort.

From a careful review of the related literature, the applications of MASs have been
successfully applied to several problem domains, including energy market forecasting, mon-
itoring, system analysis, and corrective actions [279-H282].

Within the field of hydrology, the community of MAS researchers has also made some
progress, therefore, to get some understanding regarding the performance of MAS techniques.
In Table a condensation of MAS main techniques is provided. Some of these techniques
include, but or not limited to single MAS methods in real-time simulation for flood fore-
casting, monitoring and warning, ANNs, GIS, DM, fuzzy logic, case-based reasoning (CBR),
mobile communications systems using 'Very Small Aperture Terminal (VSAT)", and expert
systems.
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Table 2.4: Multi-agent systems modeling in flood problems.

Method Researchers

Outline

Hydro-Solution

MAS

George et al. [l&?;]

Used a MAS approach imple-
mented with two stages. In
stage one, the fluctuations in
water level are computed dur-
ing 1-hour. In stage two is com-
puted the sum of the weights of
agents.

Simultaneous model-
ing for Flooding Pre-
diction
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Table 2.4 — Continued from previous page

Method Researchers

Outline

Hydro-Solution

MAS,
GIS
Grid

MAS

MAS,
ANN

MAS,
DM

MAS

MAS,
"VSAT"

MAS,
CBR

MAS,
GIS,
DM

MAS

MAS,
Ontol-
ogy,
Fuzzy
Logic

De Roure et al. [284]

Matei [285]

Lépez et al. [286]

Mabrouk et al. [287]

Marouane et al. [288]

Igbal et al. [289]

Linghu and Chen [290]

Al-azzam et al. [291]

Bao et al. [292]

Aris et al. [293]

A global computerized infras-
tructure with stationary and
moving agents, knowledge engi-
neering, and a GIS grid for river
stage surveillance.

Employs disseminated frame-

works.

Applies NNs types assemblies
and intelligent agents with mo-
bile devices.

Combines MAS and DM for
flood forecasting and warning.

Data retrieval and administra-
tion of cordless equipment with
MAS for online streamflow fore-
casting.

Apply MAS with mobile agents
and algorithms coupled to
"VSAT technology".

Use an "agent-based" and "case-
based reasoning" approach for
the prediction of inundation
hazards.

Applies a MAS modeling ap-
proach based on DDM tech-
niques and GIS as a system for
supporting flood risk manage-
ment.

Applies a MAS modeling con-
cept to evaluate runoff.

A MAS integrated, with ontol-
ogy concepts and uncertainty
modeling.

Gauge Data Admin-
istration and River

Stage Surveying

Surveillance with
Analysis of Water-
shed

Early Warning
Against Floods
Decision support

for Predicting River
Flood
Alerting

and Issue

Flood Forecasting

Prediction of Inunda-
tion Area

Flood Disaster Fore-
casting

Flood Prediction and
Risk Assessment

Urban Water-log Sim-
ulation and Predic-
tion

Flood Warning Pre-
diction
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Table 2.4 — Continued from previous page

Method Researchers Outline Hydro-Solution
MAS, Mabrouk et al. [294] Employs "multi-agent systems" Flood Forecasting
Knowl- with knowledge based system with Warning

edge for instantaneous inundation

based warning with prediction for var-

systems ious time-span intervals.

MAS Mabrouk and Gaou [295] An expert system for real- Flood Forecast-

time processing of data acquisi- ing/Warning
tion, classification, and collect-
ing for inundation nowcasting

and warning.

End of table

George et al. [283] built a platform for the actual simulation that is coupled to a model for
estimation of floods, with a two-level self-adapting MAS, was implemented. In this system,
the objective of each level is well defined, such that at the top, the variation in water level is
measured for an hour period and in order to achieve this, it adjusts the weights in the lower
stage. The adaptiveness of this model is really acquired by adjusting the weights, carried
by the agents that cooperate among themselves. This adjustment of the weights renders the
model generic and allows to improve its performance. The authors analyzed several use cases
(e.g., noisy and missing data, and number of upstream stations) where the use of hydrologic
simulation is inappropriate. Lastly, they studied the features of the knowledge system taking
into account classical measures and related works.

De Roure et al. [284] implemented a ubiquitous computing system of static and mobile
agents, in which the static agents are designed to have complex functionalities, for example
using an expert-system to manage available sensors on the network and use their information
to monitor the river level and determine if the network is storing data that differ significantly
from the standard, feed the data into a grid-based flood predictor model, and issue an alert.
The main functionality for mobile agents is to ensure they are lightweight with actual specific
functions to perform, like data discovery routes across the network and deliver sensor data.
The authors concluded in this study that the use of intelligent static agents employing simple
mobile agents in combination to perform assignments on their behalf results in the effective,
self-organizing ubiquitous computer for a simulated network of nodes.

Matei [285] developed and evaluated a multi-agent system for inundation forecast and
water level observing. The MAS is fed by an automatic hydrometric data collection module.
The author concluded by identifying some advantages and disadvantages of the system. As
the MAS is implemented on independent units, the modular arrangement of such and the
collaboration among these units permit the assessment in hydrologic problems in an easy
manner.

37



The multi-agent system, suggested in [286] uses a Counter-Propagation neural networks
and intelligent agents to analyze and assess flood risk caused by rainfall. Additionally, they
implemented agents, on mobile devices, for the dissemination of early warnings on floods.
Other features of the system are that it can display flood forecast and enable messages in
order to administer a hydropower plant basin with the aim to prevent damage to the infras-
tructure, it offers other smart means for messaging and broadcasting of massive warnings to
the population.

A MAS proposed by Mabrouk et al. [287] coupled with a data-driven approach was devel-
oped to improve flood prediction and alerts for a decision support system and management
at the catchment scale. Their study was aimed at providing technical support for the flood
control and warning division. This approach involved the applications of a data mining tree
algorithm (i.e., "C4.5") to construct a real-time flood prediction and early awareness model.
Besides to couple the decision tree to the multi-agent system, an algorithm developed and
which they named the "ANYtime Multi-Agent System" (ANYMAS) was used to obtain the
coupling between to two systems.

Marouane Mabrouk et al. [288] presented an intelligent system that gathers and handles
hydrometric data from sensors. The system detects errors in the data and classified them,
so as to render them reliable and acceptable for their storage in a database where they
undergo data-processing. The data once processed are further used for performing inundation
estimation, and the results are distributed in collaboration with the MAS and mobile agents
for the dissemination of results to the central station.

Igbal et al. [289] developed a MAS model implemented with "Very Small Aperture Ter-
minal" (VSAT) technology that optimized the agents in mobile-phone communication. The
team of researchers rendered the system to be useful in any type of critical conditions of
floods, of course, because the signal strength is enhanced by the technology. Nevertheless,
although the cellular signal could be optimized, a set back is that for the implemented
agents on the server to be proficient in taking the decision of flooded zones, it depends on
the available river historical flow data.

Linghu and Chen [290] presented an innovative example of MAS coupled with "Case-
Based Reasoning' (CBR) for inundation disaster prediction. The authors implemented an
algorithm for this particular task and they concluded that the algorithm implemented could
estimate the river stage correctly and realized the prediction offset of the algorithm was
smaller than the existing scheme.

Al-azzam and collegues. [291] presented a MAS architecture linked to a geographic system
setup on a virtual environment and data-mining techniques to assist in flood forecasting
and risk evaluation. Although the objectives of the implementation were met, the authors
observed that during the implementation phase they could discover issues that are of concern
when building such systems. They emphasized on the trials that arise whenever building
systems like these and such a predicament need to be considered especially when classifying
and aggregating erroneous hydro-data from wireless sensors.

Bao and collaborators [292] proposed a MAS to simulate and estimate water level in
an urban watershed surface domain. The system design was configured in such a way for

38



simulating water level saturation using the MAS approach instead of hydrologic modeling.
This approach was done by using a method that was able to simulate the uncertainties in the
flow-regime and to calculate the flow depth at any point in time and optimize reservoir storing
capacity to allocate water excess. Hydrometric data are used as inputs to the MAS. To
validate the system, the authors compared the results of the MAS with outputs from cellular
automata modeling. The authors concluded the system to improve, given the methodology
applied, is feasible for mitigating the loss of life and infrastructure damage by high water
levels.

Aris, Hamdan, Pa, and Nazeer [293] proposed a flood forecasting theoretical model that
was based on agents ontology and fuzzy systems. In this system, the function of agents
is to offer reports on flooding situations according to the river stage and precipitation via
alerts warnings sent to the population. The ontological setup was meant to categorize the
inundation awareness to aid in the agent interaction. Fuzzy techniques are used to forecast
weather undefined conditions.

An innovative knowledgeable scheme for flood estimation with three chronological terms
(e.g., short, medium, and long) and awareness, was implemented by El Mabrouk et al. [294].
Given the authors concerns to work with a system that could integrate many components
into one, they realized that the multi-agent systems had the benefits and the advantages
in terms of the distributed artificial intelligence, and for allowing the system to cope with
rule-based features, they made use of expert systems due to the advantage of the concept of
logical coding and the theories of proofs and directions.

Most recently, El Mabrouk and Gaou [295] proposed a smart system that could pre-
process data before performing instantaneous flood prediction and awareness. The system is
composed of some levels that supervise the cordless instruments and their accurate perfor-
mance, to ensure the incoming information from the sensors are of the best quality, store this
incoming information in a database from which the instances would are feed into the model
future streamflow prediction tasks. Finally, it can be concluded from the study that wireless
sensor networks, could be used for a distributed and auto-organized method of information
managing in a dispersed system and have considerably upgraded with the attendance and the
application of MAS is in agreement with the studies by Guijarro and Fuentes-Ferndndez [296],
and Hamzi et al. [297].

2.4.3 Conclusions

Summarizing, this chapter presented an overview of the literature on some methods used for
flood forecasting. It presented both the theoretical and mathematical aspects of hydrologic
flood forecasting using such a standard approach as the deterministic and the stochastic
variants and observed some drawbacks and difficulties while applying any of these tradi-
tional methods. However, given the setbacks in the former, it witnessed the merging of
these methods to overcome the setbacks with the DDM and Al paradigms. Although the
DMM and AI provided workable solutions in addressing some issues previously discussed,
it showed certain setbacks are still latent, specifically the DMM and Al approach requiring
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high-quality historical time series data and the fact these do not capture entirely that hy-
drologic processes modeling. Therefore, hydrologists continue to battle these limitations to
improve the requirements demanded from hydrologic flood forecasting in a changing climate,
that is becoming more complex.

With the agent technology (ABM/MAS) discussed above, it showed the possibilities of
the potentials of its applications to hydrologic modeling for flood forecasting and water
management; and exhibited some examples of ABM techniques in undertaken issues in flood
hazard, flood approach to the management, flood reparation, evacuating strategies, and flood
alert, yet a very few cases concerned with flood forecasting, as well as some limitations it
might pose [217], which need to be addressed and can open fields to new research solutions.

From the literature review, they acknowledged that, in the mechanisms for examining
MAS as a promising tool, they noted that this theory relates to different species of agents.
This shows its applications in hydrologic modeling are possible with different species of
agents. Therefore, in the administration of hydro base systems, the application of the ABM
theory in simulation problems, the representative approach is established on rational agents’
species; however, in this context, seldom agents pose greater skills and abilities.

As argued previously, clearly, the merging of hydrologic models and an agent-based con-
cept discloses understandings about the social aspects and related strategies toward man-
aging flood events at regional [298] and overall level [299], an aspect not retrievable from
a common standard hydrologic model. Then again, ABM can investigate different pieces
of information, principles, and the heterogeneous behaviors that differentiate an environ-
ment [300]. Besides, agents are cognitive, diversified in their qualities and behaviors, they
can adapt to the environment and are perceptive to the historic account of their decisions,
they can be ubiquitous across network nodes or distributed geographically. To this extent,
it has been shown the complications with traditional hydrologic models to deal with the
complications of the complexities of the real world; therefore, it is recommended the use
of the technology, as it allows the abstraction of states simulated with ABM/MAS more
characteristic of the physical world.
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Chapter 3

MAS Framework for Flood
Forecasting

3.1 Introduction

This chapter formulates the methodical approaches and provide a thorough description of
the intrinsic configuration and inner components of the proposed MAS model for flood
forecasting within the context of the humid watershed. Each participating agent described
here, has unique goals and tasks, and deliberately fulfills the tasks organized in the system
coherently with other agents of the different levels, regarding the information generated
in the river basin, captured by hydrometric monitoring field sensors deployed along the
river reach stored and available in a datalogger, and transmitted via telemetry to a central
server. Changes in surface water elevation (flood stage) or rainfall intensity between the
sites covered by different agents in the river basin will be the most important situation in
this administration process. The information extracted from the datalogger collected and
fused in databases and controlled and managed by the different level nodes presented here.

The framework considered for the design and development of the MAS and computa-
tional intelligent tool to forecast and simulate flow scenarios for evaluating the consequences
of critical flood surges is a complex task. Therefore, to achieve the building of this MAS; it
will be necessary to follow some guidelines or directives that guide us in the elaboration of
the scheme and its implementation. In this sense, among the various existing methodologies
in the literature, it is chose to follow the one presented by Magid et al. [301] and apply
the conditions, pertinent to the analysis for the procedures, the development of the organi-
zational structure given by the selected Belief-Desire-Intention (BDI) model [233] for each
agent individual behavior, for example, as how it is structured in the GAMA platform [302]
respectively.

The next section details the proposed MAS model framework as a flood forecasting
approach. Subsequently, Section 3.2 is introducing the developmental stages in the setting
up of the MAS model for flood forecasting. Hereafter, Section 3.3 provides a detailed view
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concerning the methods provisioned on intelligent agents for the implementation of the MAS
model agent’s behavior and evaluation. Finally, Section 3.4 highlights the integration of the
BDI concepts into the flood forecasting model.

3.2 MAS Platform Development for Flood Forecasting

It is known from the literature (section 2.3) that there are several agent-based development
platforms for deploying agent-based simulations concerning the elaboration of the proposed
MAS for flood prediction. However, this search noted the Generic Agent-Based Modeling
Architecture (GAMA) platform [303] as an agent simulation platform that offers the po-
tentials for both micro and macro-model simulations, it is GIS oriented and it includes the
feasibility to implement the BDI model. The overall setup of the agents conveys an arrange-
ment in which agents can be connected to the deployed hydrometric sensor network or a
database. The agents fetch knowledge of the physical conditions of the river reach through
the sensors it links them to (e.g., rainfall, surface water elevation, and discharge sensors).
As there are several options available for implementing this system, hardly the other plat-
forms offer specifically the capabilities of the "agentification" of the catchment components
as GAMA. It is provided a schematic illustration in Figure which illustrates the main
idea for the flow of this information among the agents. The GAMA platform has been in
development since 2007 by the "MSI research team", whose headquarters is situated at the
"Institut de la Francophonie pour I'Informatique (IFI) in Hanoi", which is part of the Pro-
gramme Doctoral International (IRD) and the UPMC which is an International Research
Unit (UMMISCO) [302].

Given that the river basin domain is a very complex system, it is proposed the use of a
hierarchical aggregated structure with a five-level architecture to enable the scalability and
modularity in the MAS platform to be chosen. Therefore, the principal awareness of the
agent’s sensor verification, information pre-processing, and storage, system classifier, and
user interface must be able to be offered by the agent-based platform of choice, to provide
the management of data received from the hydrometric sensors network deployed in the river
basin using multi-agents to capture, filter, control, and administrate the data with minimum
human intervention for the instantaneous prediction of inundation surges.

In regions of tropical river basins, the problem with hydrometric data is that they contain
many possible cases of data scarcity |[304], hence, this issue would entail, the initial processing
of missing values, outliers, redundant or even rendered impaired, so as the purpose of the
framework is a real-time prediction of streamflow, and the problem can be dealing mainly
with the scarcity of data, then the need is to have data ready at hand so they can be able
to manage the threats and disaster that floods inflict on society, then they must ensure
that the availability, integrity and the quality of this data are met, to put to advantage this
knowledge and to provide good decision support for expert knowledge.

To achieve this task, it is proposed an intelligent model for fetching, pre-processing, gath-
ering, and cataloging the hydrometric monitoring data. The proposed model as it receives
data, stores it in a historical database (i.e., historic data storage agent) from which the
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agents (e.g., river flow agent, rainfall agent, and water level agent) access it, and begins
data pre-processing. It renders the data captured reliable and uses the MAS for the task.
Therefore, the resulting MAS can be organized with seventeen entities displayed throughout
five levels of interaction.

3.2.1 Formulation of Agents Definition

This section describes the agents of the MAS conceptual framework that are used in this sys-
tem setup presented here as a smart agent-based solution for flood forecasting, hydrometric
data management, and flow inference information extraction. The information entering the
system is obtained from the environment by the field stations equipped with hydrometric
sensors through intelligent sensing agents.

The system comprises five principal levels, with each one displaying certain specialization
and integrating the intelligent agent components for its best operation:

—_

. Hydrometric sensor network level (HSnL)
2. Sensor data preprocessing level (SDPPL)

3. Historic data storage level (HDSL)

W

. System classifier level (SCLAL)

5. User interface level (UIL)

Figures and illustrate the agents that configure and collaborate within the MAS
model.

3.2.1.1 Level I: Hydrometric Sensor Network:

» Hydrometric sensor agents (HSn): These agents are represented by the hydrometric
station sensors deployed in the field. Their roles are described below.

1. Rainfall sensor agent (AgentRNSn): The AgentRNSn role is to obtain, aggre-
gate, and forward the real-time incoming rain data readings obtained from the

field rain gauge sensor connected to the hydro-station datalogger which would be
used by the agent DPP, Data2Lags, {AgentFCST1, ..., AgentFCST8}, and FL.

2. Water level sensor agent (AgentWLSn): The AgentWLSn role is to obtain, ag-
gregate, and forward the real-time incoming river surface water level data obtained
from the field water level sensor connected to the hydro-station datalogger which
would be used by the agents DPP, Data2Lags, forecasters = {AgentFCST1, ...,
AgentFCST8}, and FL.
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Figure 3.1: An abstraction of the proposed MAS model architecture for flood forecasting
showing each of the five overlapping levels of operations that integrates the flood forecasting

and inference management process.

3. Streamflow sensor agent (AgentSFSn): The AgentSFSn role is to obtain, aggre-
gate, and forward the real-time incoming flow discharge data obtained from the
field flow meter sensor connected to the hydro-station datalogger which would be
used by the agents DPP, Data2Lags, {AgentFCST1, ..., AgentFCST8}, and FL.
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Figure 3.2: Schematic diagram showing the MAS model agent deliberations and collabo-
rations. The communication between the hydro agents on each of the system’s levels of
operations shows the direction of the flow and the exchange of information from the agents
for one level to another in a bidirectional manner.

 Sensor verification agent (AgentSV): Its central roles are to verify the operational
status of the hydrometric sensors, then inform the agent (AgentUI) about the sensor’s
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functionality and operability. This agent also as communications among the agents
AgentHDBM, and of the hydrometric sensors (e.g., AgentRNSn, AgentWLSn, and
AgentSFSn respectively).

3.2.1.2 Level II: Sensor Data Preprocessing:

« Sensor data preprocessing agents (AgentDPP) and (AgentData2Lags): The Agent-
DPP agent has among its roles the preparing of the hydrometric sensor data obtained
from the HSn agents, by performing data preprocessing (i.e., data treatment, data
imputation) of the rainfall, water stage, as well as streamflow. At the same time, the
AgentData2Lags role (functionality) is to perform the transformation of the captured
data, into a matrix form with their respective lags and lead-time. This is the required
format to perform supervised machine learning by the forecasters agents. The pre-
processed data is stored by the AgentHDBM and will serve as input data that the
AgentCLA’s would use for flow forecasting and assessment by AgentFL.

3.2.1.3 Level III: Historic Data Storage:

« Hydrodatabase management agent (AgentHDBM): This agent is responsible for the
administration and storage of all DataStream through the MAS environment, for log-
ging communications and storing sensor readings and share this information with an-
other agent or agents. The AgentHDBM can function as a service agent for agents and
at the user interface level.

3.2.1.4 Level IV: System Classifiers:

o Machine Learner Agents (AgentFCST) and (AgentFL): In the proposed MAS
model configuration, this level is composed of nine agents. These are the agents based
on machine learning skills used for performing multi-step streamflow prediction and
fuzzy inference for the hydrometric parameters. Below is a brief description of their
roles.

1. Flow forecast agents (AgentFCST): The flow forecasting agents is a group of
agents formed by the coalition of eight agents which have been named (e.g., Agent-
FCST1,..., AgentFCSTS, respectively). Therefore, these are N stationary agents,
where N = 1, 2, 3,..., and in this case N = 8 of machine learning agents (ML)
which have been endowed with ML algorithms (e.g., "random forest (RF)", "sup-
port vector regression (SVR)"). In this sense, the arrangement of these eight
agents is defined by four agents with a specific ML behavior and the other four
with another ML behavior for computing each of which will produce the flow re-
gression task at 1, 2, 3, and 4 hours lead time in the MAS model for streamflow

forecast estimates. The roles of these eight agents are initialized immediately after
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the subsequent time step that the HSn agents have begun to collect hydromet-
ric data, and that the roles preprocessing and storage of the other collaborating
agents (e.g., AgentDPP, AgentData2lags) as put into effect in parallel to the data
collection, the eight Agent Forecasters will initiate the corresponding regression
models training and forecasting based on the features and hyperparameters of
each ML algorithm.

2. Flow inference agent (AgentFL): A decision-making agent, the AgentFL, for
"fuzzy inference system (FIS)", is charged with the role for rule extraction, and
information assessment on flood-awareness (FA). Similarly, with the available fore-
cast that he receives from each of the eight agent forecasters’ results, the actions
of the agent fuzzy logic involve the assessments of the forecasts from which he
normalizes and creates a single forecast period by merging the pairs of the corre-
sponding time frame and computing the means to obtain a final one, two, three
and four-hour lead time result. From this information and with the actual readings
of flow data, water level, and rainfall, categories are defined for the fuzzification of
the hydrometric data elements, and defuzzifying data, to quantify fuzzy variables,
the AgentFL makes inferences on the hourly flow forecast. Finally, the overall re-
sponsibility of the classifier level is to provide flood forecasting and awareness
on a time horizon of one, two, three, and four hours lead time and report flood
warning levels.

3.2.1.5 Level V: User interface:

 User interface agent (AgentUI): The AgentUI assists a user that access the flood fore-
casting results from information provided by the system to a computer input interface
unit. This agent also has the task of communicating with other agents as well as users.
It permits activities such as altering resultant forecast output or reporting inconsis-
tencies between forecasts, user subscription, receives flood-awareness information from
AgentFL and other related field issues such as sensor failures that are announced by
the AgentSV.

3.2.2 Agents Communication

Among agents, messaging is accomplished in two ways, the first is through direct messag-
ing [305] and the second through indirect messaging [306]. In the MAS model, the communi-
cation between the agents will be carried out following the direct communication principle,
which is based on communications theory and compliance with the "Agent Communication
Language (ACL)" collected in the FIPA-ACL protocol [307].
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3.2.3 Agents Interactions and Relationships

The notion of agents as "autonomous entities", should not isolate their abilities for inter-
acting with other agents for cooperatively accomplishing their different tasks within a given
environment. In this sense, agents can sense and communicate with their surroundings and
decide within their capabilities which actions to take for a given problem.In complex environ-
ments, decisions are complex. Hence, agents communicate with control agents and inform
the requirements. In Figure is illustrated an instance where the AgentSV informs the
user interface agent about the actual status of a sensor upon request. If there is missing
information on a sensor, the user interface agent will complain about this missing field. The
sensor data verification agent gets the status, validates the request made and performs the
action of re-checking the actual status of the sensor to corroborate that is malfunctioning or
down.

In the GAMA platform for example, the communication among agents is accomplished
through messages. Typically, the messages are delivered via message loops internally from
conversation executed among the agents. Hence, conversations are handled according to
FIPA messaging configuration.

Implementing these conversations can be challenging. However, the platform offers rich
support for several of the most commonly used interaction protocols defined by FIPA. The
platform also provides a devoted modeling language that facilities the non-programmer to
implement models through high-level primitives committed to ABM. As the interest is in the
hydrologic/hydraulic systems models, the GAMA platform as many advantages to implement
hydrologic/hydraulic systems environments over the other platforms like JADE, JADEX, and
others. Besides, it is an adequate platform for this kind of purpose has it support geospatial
information, and imported as GIS data layers into ABMs and facilitates the required spatial
operations as needed.

The agents at the Hydrometric Sensors Level handle the functionality of the sensors and
the data retrieval task, such that the AgentSV carries out a verification of the sensors to
ensure that the sensors are functional or non-functional and the data acquisition process
by the three HSn agents. The AgentSV sends a message about a sensor’s integrity to the
AgentUI upon requests, and he requests the AgentHDBM to store the retrieved hydrometric
data within the hydrometric database (Figure . If a sensor is not functional, corrective
actions are requested from the user interface level. The data that is captured by the HSn
agents and later stored, is fetched also by both agents’ AgentDPP and AgentData2Lags in
Level II from the hydrometric database for preprocessing, which is later stored into the hy-
drodatabase by the AgentHDBM. The hydrodatabase management agent manages to store
the information transmitted from either the AgentDPP and AgentData2lags and the pro-
cesses performed at levels IV and V in a standardized format within the hydrodatabase and
sharing this information with the with the AgentUI upon request. For the administration to
carry out flood forecasting, the Sensor Data Pre-Processing level agent will be responsible
for pre-processing, the raw incoming data measurements from the different sensors, as it be
available to the Classifier Agents Level (i.e., Forecaster Agents, and AgentFL) to be used for
flow forecasting, and the issuing of flood-awareness levels and when completed the process
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will be sent to the AgentUI, upon request, for verification, analysis, validation and reporting.
These agents display reactive behavior described by rules, plans and perform the data analy-
sis and forecasting. After establishing this information, the User Interface agent can request
this information from the hydrodatabase agent, who stores the forecasting results. The User
Interface agent also can instruct the AgentHDBM about collected information stored about
a sensor status, notified by the sensor verification agent, allowing a user-specification for con-
ducting a follow-up task-specification namely (i) the target malfunctioning sensor, (ii) data
that needs retrieving on-field physically by the user and (iii) the results. If a user accesses a
certain interface application from a device (e.g., pc or mobile application and web applica-
tion) to view a specific report, let us say on forecasting results, the AgentUI can issue a query
to the AgentHDBM, and the request can be delivered if available. Communication among
the different agents controlled here is through the "simple bdi" architecture built-in function
available in the GAMA platform as a plug-in, which facilitates the definition of behavior us-
ing the BDI architecture in GAMA, from the abstracted idea of "Behavior with Emotions
and Norms", known as the "BEN architecture' based on the work of Svennevig [308].

3.3 Overview of the Agents Behavior Implementation

Previously in Section 3.2.1 it was defined the agents definition, this section introduces cog-
nition (e.g., perceptions, feelings, emotions, and knowledge) and behavioral (e.g., planning,
capacities, skills, and decision making) states of each of the agents in this MAS administra-
tion.

The behaviors of the agents are developed in reference to the type of communicative
actions that they will use to implement in the system.

For the implementation of the cognitive capabilities within agents, the rationale will
adapt to the "Belief-Desire-Intention (BDI) model" proposed by [309] and that was later
adapted and updated to a model that is much suitable for MAS application by Rao and
Georgeff [310] is implemented in each of the agents within the MAS framework . The BDI
model is amid the various "deliberative agent architectures' that are in use currently and
extensively by researchers in the multi-agent community.

That is why, in this MAS task, it is proposed the adoption of the "BDI-architecture
model" for the agents involved in this multi-agent system as follows.

+ Beliefs

For the agents, the belief system represents consciousness of their surroundings, as the
information a hydrometric sensor-agent as about the environment, in this case, the
values of the hydrometric parameters they are monitoring, and the information they
have about other known agents responsible for carrying out other specialized tasks,
other than monitoring, and in this way they all share information.

¢ Desires
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The goal of hydrometric sensor-agents is to correctly capture the values of the hydro-
metric sensors, so that they are engaged in the permanent monitoring of these registers.
The corresponding monitoring plan is being briefly explained: sensor data verification-
agent permanently register information measurements from the hydrometric sensors
that reach that datalogger. The data collection management agents as the goal to
administrate this information collected from the monitoring activities and it runs a
scanning process on this data until it finds inconsistencies in the data and stops if it
is no longer possible to find these inconsistencies. The other agents in the system, as
the desire to make this information be in the right format, free of missing values and
outliers and suitable for the classifier-agents to work classification tasks on it.

« Intentions

Intentions represent action plans to accomplish a specific goal. Actions are basically
of two types: outward and inward performance. By outward performance, they are
referring to the performance of the messaging skills among agents with distinctive
supportive negotiations, whereas inward performance comprises instructions given to
other agents of the organization (i.e., monitoring system), and/or the hydrometric
Sensors.

3.3.1 Agents Individual Behavior

It has been discussed in previous sections the roles and the components of the framework,
for example, the sensor data verification agent and all the other specialized agents that form
the MAS organization. In this section, the architecture proposed has been selected and
implemented as a GAMA plug-in provided in the works of Taillandier et al. [311] as it is
the most updated BDI model engine adaptation and is much more optimized in terms of
memory and computational expenditure.

The GAMA BDI plug-in offers an easy environment for implementing the data structure
and statements (i.e., it extends the platform’s language (GAML)) for developing agents
whose behavior is designed using the BDI model. As noted, it offers an architecture, known
as simple_bdi, that can be implemented in an agent (species) and that allows modelers to
organize in their agents the advantages of the features, reflexes, and functionalities provided
by GAMA agents as part of its BDI reasoning mechanism. In addition, it is indicated the
type of communicative actions that agents will use to implement in the system in conformity
with FIPA protocols.

Depending on the platform of choice for agent development and programming, the "belief-
desire-intention" architecture is platform-specific, which means that it generally contains the
features and routines necessary for allowing the implementation of the agent’s cognition.
Therefore, the agents’ knowledge is established on the BDI bases for agents’ behaviors that
are based on perceptions, rules, and plans. Subsequently, it can be recalled that beliefs rep-
resent the state that a given agent is at a particular moment in time, about its surroundings,
desires are the intentions an agent wishes to fulfill, and intentions are what the agent has
decided to do. It must be pointed out that for agents to achieve their intentions, a series
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of actions (plans) are required. Therefore, in the GAMA platform, the idea of knowledge
in agents is represented in a data type known as predicates. Predicates form the basis of a
structure in which beliefs, desires, and intentions are defined. In the succeeding sections, it
presents the pathway that the agents’ knowledge and behaviors are represented by in the
architecture.

3.3.1.1 Data Administration Agents Behavior

The behavior of the agents has been defined by adapting the FIPA Request and Query
Interaction Protocol (SC00026H and SCO0027H, respectively). This protocol manages the
communication between a requester and a respondent agent. The requester agent issues a
request and expects respondent agent to carryout the requested task (see Figure .

FIPA—Request—PrDtDcol_/J

Initiator | | Participant
|_| request :
: refuse
I—J [refused]
: agree

Tagreed and
notification necessary]

P failure
L™
llnform-done : inform A
D [ag:t‘eed]
Hinform-result : inform
e

L

Figure 3.3: FIPA request interaction protocol: Adapted from |312].

» Sensor verification agent

The behavior of this agent is to keep track of the operation of the hydrometric sen-
sors deployed in the field, by communicating with the hydrometric sensors to ensure
from them that there is data inflow, request the storage of this information to the
AgentHDBM, as well as to send the information regarding the functionality of a given
sensor as it coordinates with the AgentUI to improve the quality of this information.
This "dynamic-behavioral" task is depicted in the Figure below.
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o Hydrometric sensor agents

These are the hydrometric data monitoring sensor agents whose role is to capture
the rainfall, river flow, and water level data generated from the sensors deployed at
specific hydrometric stations. This data is produced on time frame intervals by the
field sensors, are accumulated in a datalogger device, then transmitted in actual time,
via telecommunications modes (e.g., Radio, GSM/GPRS, INSAT Radio).

2.2 [Action done]: 2.1 [report sensor status]:
backToAgentSV/() ‘ backToverifySensors() Al

-

2 [has no rain sensor data]:
1.1 [agree]: =~ mantainReadIntention()

reading_rain_sensor() RainSensor | Rain Data

— AgentRNSn

1.2 [sensor read status]:
report_missing_values()
3.2 [Action done]: 3.1 [report sensor status]:
[ backToAgentSV() backToverifySensors() ]
. ¢3 [has no stage sensor data]:
——1: verifySensors()—» 7readm;ls{:greees]énsor()4> mantainReadIntention()
AgentSV AgentWLSn - = Stage Sensor Stage Data
2.2 [sensor read status]:
report_missing_values()
| 4.2 [Action done]: 4.1 [report sensor status]:
backToAgentSV() ‘ backToverifySensors() A}
4 [has no flow sensor data]
g 3.1f[‘agree]: =~ mantainReadintention()
~— AgentSFSn reading_flow_sensor() Flow Sensor Flow Data

3.2 [sensor read status]:
report_missing_values()

2.2 [Action done]: 2.1 [report raw data storage]:
- -
backToAgen\SV()ﬁ backToStoreRawdata()

2 [has no new raw data]:

. 1.1 [agree]: - —
1: request() > > removeStoragelntention() )
AgentsV AgentHDBM store._raw_data) Hydrod Hydrometric
1.2 [decides to store] Sensor Data
storing_raw_data()
3.2 [Action done]: 3.1 [report raw data storage]:
= backToAgentSV() \1 backToStoreRawdata() \
3 [has no new request]:
1: inform()——» o2l lagree] — R ‘removeSensorSlatusRequesI()7 )
AgentSV AgentUl sensors status() Hydrometric Hydrometric
Sensor 2.2 [accepts information]: Sensor Operation
function/malfunction()

Figure 3.4: Sensor verification agent communication protocol diagram.

3.3.1.2 Hydrometric data Preprocessing Agents Behavior

The hydrometric data preprocessing agent behavior has also been defined by following FTPA
Protocols SC00026H and SC00027H.

» Data pre-processing agent

The information captured from the hydrometric monitoring field sensors is ready for
the pre-processing task, such as searching for data issues, filtering, outliers, and im-
putation of missing instances, and treats the file accordingly for these anomalies by
performing the corresponding data treatment. On the other hand, the sole task of
the AgentData2lags is to convert the hydrometric sensor variables to a lagged data
matrix, which is the usual format for supervised ML learning task performed by the
classifier agents to use the information. On completion of these task, the AgentDPP
and AgentData2lags request the AgentHDBM to store the pre-processed data files,
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in conformity with FIPA request interaction protocol (Figure , and also sends a
proposal message to the classifier agents that files preprocessed files is ready and can
be available for performing classification and inference tasks (Figure .

3.3.1.3 Data Storage Agent Behavior

« Database management agent The AgentHDBM performs the action of storing and
managing the hydrometric sensors data files, flow classification results, system infor-
mation, reports of sensor failures, data shared among agents and other warning events
within the MAS organization as per requested by the Agent” SV, DPP, and CLA’s. A
query-if (Figure is also performed by the agent AgentUI to request information on
the system and then it act as a responder, returning information on sensor status and
the results of forecast and flood-awareness for inspection and analysis by the human
user.

backToAgentD2Lags()

1: inform()

— ready_prepros_raw_data() —#

backToAgentD2Lags()

AgentFL

Figure 3.5: Data preprocessing agents communication protocol diagram.

3.3.1.4 Classifier Agents Behavior

o Agent’s ML and AgentFL

The agents of this level, are accountable for handling the streamflow prediction task
and processes from the hydrometric stations as described under Subsection 3.2.1.1.
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Figure 3.6: FIPA query interaction protocol: Adapted from [312].

They represent the following classes: machine learning agent’ behavior (AgentML), a
fuzzy rule agent behavior (AgentFL). The forecaster agents takes the incoming data
directly from the HSn agents or data that is stored for performing flow forecasting.
The forecast results, upon request by the AgentFL is used in the inference process
tasks, and can if necessary make use of hydrometric forecast information derived from
external data sources in conformity with FIPA Protocols SC00026H and SC00027H
(Figure , . When this goal is completed, the AgentFL informs to AgentUI on
flood-awareness levels as depicted in Figure [3.7

3.3.1.5 Management Interface Agent Behavior

e User interface
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AgentFL

AgentFL

2.2 [Action done]:
-— -~
backToAgentFL() backTorequestForecastData()

——1: request()—»

AgentFCST1

2.1 [report data status]:

1.1 [agree]:
Forecast()

3.2 [Action done]:
backToAgentFL()

]

AgentFCST2

Regression Task

2 [has forecast result data]:

‘mamainForecastingl ntention()

3.1 [report data status]:
backTorequestForecastData()

2.1 [agree]:
Forecast()

4.2 [Action done]:
- -— —_—
backToAgentFL() backToinformFlood-Awareness()

—1:inform()}——»

AgentUI

— —>
flood-awareness-level()

1.2 [forecast result]:
deliver_forecast_data()

Forecast Datal

3 [has forecast result data]:
4mamalr\Forec(s\sungImemion()

Regression Task

4.1 [report data status]:

3.1 [agree]:

Flow Inference

2.2 [forecast result]:
deliver_forecast_data()

Forecast Data2

\

4 [has no flow inference info]:
- N _
mantainFlowInferencelntention()

_ 3.2 [accepts inference information]:
inform_flow_inference() "

Flood-Awareness
Level

Figure 3.7: Fuzzy logic agent communication protocol diagram.

The user interface agent (AgentUI) acts as the liaison officer of the MAS organization
and the external users. Therefore, it acts as a consumer gateway that makes available
the information of the MAS to users. Its behaviors are defined by adapting the FIPA
Request and Query Interaction Protocol (SC00026H and SC00027H). The services
offered by this agent include providing users with real-time flood forecasting informa-
tion. It has the responsibility of subscribing users to the system, in allowing users to
control the feed of external hydrologic/hydraulic models information files, to provide
user-specific information, outputs of sensor reports, of the MAS, retrieve relevant and
conditioned data, modify and/or include new rules, check reluctant forecast results and
customizing the outputs to user-specific needs as shown in its communication protocol
(Figure . It coordinates with other agents within the MAS organization and the
graphical user interface.

. —1: retrive flood-awareness info()»

2.2 [Action done]:

2.1 [registration succeeded]:

-—

backToUser() backTorequestForecast()

1: retrive forecast info()—»

AgentUl

2 [has registration request]:
4mantainRegistrationlntention()

User Registration

1.2 [userInformation]:
add_to_table()

- - A
backToUser() W backToUserregistration()
1.1 [agree]:

. . registerUserinformation() R R
1: register user()—» Registration

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AgentUl :
Information

3.2 [Action done]: 3.1 [report data status]:

2.1 [agree]:

Forecastresult()

-

4.2 [Action done]:

backToUser() I —
3.1 [agree]:
flood-awareness-level()
AgentUl

Regression Task

3 [has forecast result]:
mantaininformintention()

Table

Forecast Results

2.2 [forecast result]:
— —
inform_forecast_result()

4.1 [report data status]:

backTorequestFlood-Awareness()
€]

Flow Inference

4 [has inference result]:
mantaininformintention()

Flood-Awareness

__3.2[get inference information]:
inform_inference_result()

Figure 3.8: User interface agent communication protocol diagram.
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Chapter 4
Experimental Setup

In this Chapter, the evolution of the ABM formulation used to achieve the objectives de-
scribed in Chapter 1 is presented, the purpose of which is to confer an easy-to-use software
toolkit for water managers, professionals, and the layperson, capable of delivering flood fore-
casting within the tropical watershed domain. Moreover, to address the initial setup neces-
sary for building the proposed agent-based approach, that will satisfy catchment modeling,
the following must be attained:

e Provide the hydrometric data of the catchment.

« Have the necessary GIS shapefiles and "Digital Elevation Model (DEM)" Grids of the
watershed.

» Have physiographic parameters and constants of the catchment and the hydraulic data
information of the river.

o Provide the necessary machine learning algorithms for supporting data collection, pre-
processing, flood forecasting, and inference.

o Guarantee the MAS model with the presence of agents capable of reasoning about data
quality, flood forecast, and inference.

In order to simulate the flood concerns explained in earlier chapters, the time series
information collected from a hydrometric station in a Panamanian basin was used, and from
this information was the simulation of the flood environment for a tropical basin recreated,
with the GAMA agent-based modeling platform. The selection of this watershed was because
it has been heavily exploited by mining activities and other development projects that are
affecting its flood plains and drainage capacity. However, for a broader understanding of
the problems therein, more details about this experimental basin and the nature of the data
related to it are presented below in Subsections 4.1.1 and 4.1.2. The remaining portions of the
chapter are outlined as follow: first, Section 4.1 through 4.3 it is described the experimental
data used, secondly, Section 4.4; is presented the conceptual framework upon which the
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problem domain was implemented, and the data analyzed, Section 4.5 defines the basis for the
ABM extension with the BDI architecture on the MAS model concept and is finalized under
Section 4.6 with several preliminary findings and subsequent works are made concerning
the modeling results of the rainfall-runoff process obtained using HECHMS and the ABM
approach with the GAMA platform.

4.1 Model Domain, Study Area and Hydrologic Data

4.1.1 Problem Statement of the Model Domain

As it is known, a catchment, watershed, or river basin is an essential ecosystem with unique
physical characteristics of urban hydrology as it is the source of natural resources within an
eco-zone, delimited by river courses, and composed of the flora, fauna, villages, and neighbor-
hoods. Notwithstanding, as a watershed can provide a reservoir for drinking water for both
people and wildlife, on occasions when there is too much of this resource, water can represent
an imminent threat to human and animal lives, agriculture, pollution of the environment,
and the economy, as mentioned earlier. Therefore, as "floodwaters" can represent hazardous
situations to any community, need for its management is necessary for assessing the socio-
logical, economic, environmental, and safety aspects of the catchment. Figure shows the
watershed model that was implemented with the GAMA platform tool which allows using
geospatial information, digital elevation models (DEMs), satellite imagery, orthophotos, and
vector data from geographic information systems to create models that can agree with the
domain of study.

4.1.2 Domain Description and Hydrologic Dataset

The Medio River subcatchment, (see Figure is part of the major Caimito’s river catch-
ment located in the Republic of Panama in the Donoso region. The Medio River flows
predominantly northward and combines, along with other tributaries to form the Caimito
River about 7 km from the Caribbean coast. At present, there is a major ongoing project
of copper mining extraction components located at the upper sub-basin, including the mill,
waste rock storage facility, and the tailings management facility (TMF) and it is scheduled
for construction of other future facilities. The hydrometric data employed in this experiment
was obtained from two real-time data acquisition system that monitors, log, and transmit 15
minute and 1-hour interval rainfall, river water level, and river flow data during low and high
flow periods from installed rain gauges, low meters, and surface water elevation radars. The
data recorded span from March 315, 2012, to December 315, 2016. Table it is summa-
rized the mean annual rainfall associated with each of the long-term regional climate stations
in the Donoso region. Both H3 and H4 stations were installed in early March of 2012, so they
are relatively new, as such, they are not mentioned in the tables below, and therefore, they do
not possess an extensive hydrometric data record. Consequently, based on this information,
the mean annual rainfall in the Donoso region varies from approximately 5,000 mm at the
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Figure 4.1: GAMA platform interface showing the flooded Medio River Subcatchment.

coast to 3,200 mm inland. Annual rainfall amounts associated with extreme wet and dry con-
ditions are shown in Table[4.2] The stations also have the capability for monitoring turbidity,
temperature, and conductivity data. The installed monitoring stations (Station H3 and H4)
as labeled in the environmental assessment study are located at the upper and lower parts

of the Medio River Catchment (08°52'07.2” N80°39’'57.1”W and 08°55'58.0” N80°40'07.6"W).

Table 4.1: Mean Annual Rainfall in the Donoso Region, Panama. Source: MPSA [313].

Station No. Years Approximate Elevation [m] Mean Annual
of Record Distance from Rainfall [mm]
Coast [km]
Cocle del Norte 43 0 2 4,989
San Lucas 43 10 30 4,716
Boca de Toabré 43 20 30 4,413
Coclesito 33 30 60 3,171
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Figure 4.2: Medio River Sub-catchment in Upper Caimito River Basin.

Table 4.2: Extreme Annual Rainfall in the Donoso Region, Panama. Source: MPSA [313].

Annual Rainfall [mm)]

Return Period Cocle del Norte
San Lucas Boca de Toabré Coclesito
Number Years of Record 33 40 39 33
Highest Recorded 8,836 6,715 6,239 5,195
Average 4,989 4,716 4,416 3,171
Lowest Recorded 3,164 3,420 2,990 2,491

4.1.2.1 Catchment Soil Type Profile

At the catchment scale, soil classification types are fundamental for calculating the infiltra-
tion and runoff rates as they determine the different hydro-soil groups. Each soil profile has a
specific infiltration rate. The upstream region of the Rio Medio catchment is a mountainous
region with steep terrain whereas the lower part of the catchment lies in flat plains with mild
slopes. The dominant soil type type in the catchment is haplic nitisols, acrisols, and
vitric andosols. A high percentage of clay, composed of various mixtures (i.e., clay-loam,
sandy-clay-loam, and sandy-loam) as a major soil type is present throughout the soil of this
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entire catchment area. Soil types in the catchments are shown inTable [4.3]

Table 4.3: Soil Type Composition in the Medio River Catchment. Source: FAO-HWSD [315].

Dominant Soil Associated Soils and Inclusions

Type
Order 1 2 3
Land Group Label (FAO 90) Haplic Nitosols Haplic Acrisols Vitric Andisols
UpperLand Grain Medium Medium Medium
Land Source Deep (cm) 100 100 100
Catchment Type (0-0.5% slope) Moderately Well Moderately Well Moderately Well
UPPERLAND ("Sand Fraction") (%) 45 48 66
UPPERLAND ("Silt Fraction") (%) 24 23 29
UPPERLAND ("Clay Fraction") (%) 31 29 5
UPPERLAND "USDA" Grain Category clay loam sandy clay loam  sandy loam

4.1.2.2 Catchment Land Use Profile

The entire western and northern parts of the catchment area are dominated by dense for-
est and evergreen broadleaf forest and some croplands on the lower northern areas. The
catchment’s eastern and south-eastern zones are characterized by allocating land that is
dominated by woody savannas, savannas, grasslands, with some development of the mining
industry, and on the south-eastern side, there is the presence of permanent wetlands.

4.1.2.3 Rainfall Data Profile

The Medio River catchment precipitation data is composed of short hydrometric records from
both stations H3 and H4, containing several cases of missingness in the series, as shown in
the gaps displayed in Figure[4.3] Nevertheless, the data for station H4 is extremely impaired
in comparison to that of station H3, the reason why it was decided only to use the H3 station
data for this research proposal. The issues related to missing values and gaps are known
to arise for many different reasons including but not limited to instrument damage that
results in data gaps, data inconsistencies, incorrect logging of timestamp, duplicates, data
loss, and station vandalism (as occurred in the H4 station downstream). The field technician
may also attribute the data gaps to several factors such as the malfunctioning and damages
to meteorologic instrumentation, negligence in managing field readings, climate disasters
such as floods, cyclones, hurricanes, bush fires, and anthropogenic intervention perpetrated
by the willful destruction of gauging stations and instruments by bystanders, passerby, or
strollers. Because of the former, these problems make up the factors that hinder the proper
assessment in water-related management. Consequently, the lack of consistent and complete
hydrometric data can represent the loss of valuable and necessary information to carry out
models of hydrological processes in any stage of planning and construction of hydraulic works
and for the implementation of decision support systems for the prevention of floods and risk
assessment in highly vulnerable zones. Thus, given those reasons, to have data available
for use in the experiments in this section, it was necessary to deal with the missing data
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impairment of the hydrometric series; therefore, in the following Section 4.2, it is shown the
data treatment task that was aimed at improving the existing time series.

4.1.2.4 Streamflow Data Profile

During the dry season, the river water input comes mostly from base flow; however, the
Sub- catchment, as a flow regime dominated primarily by rainfall. The maximum occurs
between May and November; however, September and October are the rainiest months.
Therefore, monthly discharge can vary according to the hydrological regime of a year, as
subjected to El Nino/Nina-Southern Oscillation (ENSO) effects, and other meteorological
causes such as flash floods produced by frontal systems, tropical cyclones, and mesoscale
convective systems [316]. But river floods mainly occur in the rainy season in the form
of long-lasting precipitation, flash floods, and thunderstorms. Despite the rain data used
in the simulation, there are limited real-time hydrometric datasets for the Medio River
catchment. Therefore, the only two available hydrometric stations, from which data could
be fetched were from station H3 that is located upstream of the catchment, specifically in
subcatchment-1, and station H4 located downstream, at subcatchment-4. Unfortunately, the
only workable dataset with some degree of missingness in the data is the datasets for station
H3, as station H4 datasets were found incomplete and impaired as was mentioned earlier
in the text. Station H3 began recording data on March 315 of 2012, and the last recorded
data available was for the year 2016. The length of the station H3 datasets is roughly five
years. Figure shows the raw data series with gaps in station H3 hydrograph. However,
it is important to mention that to model the catchment, it was necessary to reconstruct the
time series for Station H3 using data imputation techniques, which is discussed thoroughly
in Section 4.2.

4.1.3 Flood Forecasting Ontology

A domain ontology should have the purpose of explaining the different components that make
up a specific modeling domain, along with the relationships that occur between the different
components involved. With this said, the ontology of the phenomenon of study should
capture the concepts, attributes, and interactions occurring in the system while considering
its constraints, rules, and boundaries.

Building an ontology is an engineering task that requires much effort. They have doc-
umented several development processes in several works [317-320], as design methods and
guidelines, to ease in the development process, their execution, assessment, substantiation,
reuse, and life cycle until its deployment. However, none of the existing guidelines is a fixed
standard, and given the type of ontology, the designer can freely adopt any method or even
reuse a combination of these, or whatever is convenient for the study domain ontology [321,
322).

Ontologies, although the thought of being labeled as vocabularies and taxonomies, their
principal purpose is to share and reuse knowledge through request. This means that on-
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Figure 4.3: Hyetograph at Medio River Subcatchment in Upper Caimito main River Basin.

tologies can provide a characterization of the topics and existing connections present in a
specific domain which can become distributed and reused between rational agents and their
uses [323]. To share and reuse ontologies requires an understanding of the domain terminolo-
gies, requirements, descriptions, and compatibilities of the model prototypes implemented in
each of the agents and modules integrating the domain of study [324]. Therefore, to facilitate
the flow of knowledge, reuse, and sharing of ontologies, the ontology should be of a specific
domain.

Some examples of ontology sharing, and reusing can be found in disciplines such as
in earth and environmental sciences [325, 326], building construction and automation con-
trol [327, |328], process and systems engineering [329, 330|, Internet of Things (IoT) [331],
e-learning [332], biomedical engineering [333], production factories [334], and multi-agent
systems development [335-337], just to mention a few.

4.1.3.1 Selection of a Flood Ontology
How to select and reuse an adequate flood domain ontology, considering the complexities of

the flood modeling problem-solving task? As previously noted, there is no consensus for the
development of ontology engineering; in the same way, it is emphasized that for their reuse,
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Figure 4.4: Hydrograph at Medio River Subcatchment in Upper Caimito main River Basin.

limitations also exist. However, the methodology suggested in "METHONTOLOGY" [338],
Neches et al. [324], and Suarez et al. [339], for the design of ontologies, suggest the reuse of
existing vocabularies to avoid redundancy between terminologies, given the heterogeneities
that exist within them. Among the existing flood ontologies identified in the literature, a few
have components that have a relationship to flood forecasting class and are mainly focused
on flood mitigation and risk management.

The guidelines of some methods were necessary to follow, to resolve the selection of one
or several of the flood ontologies identified in the literature review and it was the basis to
solve the query at the start of the preceding paragraph.

To reuse an ontology, it must follow a reasoning and systematic order. According to
Ruy et al. [340] there are two ways for referencing the structure in an ontology intended for
reuse purposes; one is by analogy and the other by extension. According to Rittgen [341]. In
ontology reuse by analogy, involves the search for structures that define the knowledge linked
to a particular domain problem that exists now. After this structure has been identified, the
next step is to distinguish which topics within the ontology for reuse are like those in the
domain ontology and then replicate the structure of this blueprint in the domain ontology.
Whereas, by extension, the blueprint ontology is inserted into the ontology that is been
developed, which can be further extended, updated, or include new concepts, relationships,
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and properties of the classes.

The reuse of the concepts of the vocabulary that are closely related to the present domain
of interest, and to decrease time in the development and avoid repetitiveness in their adapta-
tion, it is chosen the reuse by analogy method, explained in [341]. Therefore, it was decided
on reusing some of the existing flood ontologies found previously in the literature review,
such as those implemented in [52] and [55, 56] as they included useful concepts related to hy-
drology, hydraulics, and sensor networks, in adapting and aligning domain vocabularies and
extracting the usual core knowledge that represents the classes relevant to flood forecasting.

4.1.3.2 Ontology Implementation

In this subsection, it is described the Flood Forecasting Ontology, proposed with reuse
method, and adapting terms from other flood-related ontologies. Therefore, instead of cre-
ating a new flood ontology from scrap, it is reused the concepts from the existing flood
ontologies (e.g., [52], [55], and [56]) wherever available. It is observed these ontologies to
gather the knowledge, concepts, and the relationships of hydrologic and hydraulic domains,
along with hydrometric data capturing stations for reuse but required it be prearranged in
a manner suitable for an application domain.

As referenced priorly in the literature, ontology development can be a complex task.
Despite the most sophisticated ontology building tools, a major setback in ontological engi-
neering lies in the languages, platforms, ease of use, learning curve, and methodologies they
use. Based on software engineering techniques, many ontology tools exist, and these can
vary according to their different formats, which may need conversion into one format to use
them. However, for a detailed study on some of these tools, see the works of Alatrish [342]
and Slimani [343].

Given the feasibility of its application, the ontology tool of choice is "GenMyModel" [344]
a web-based modeling platform that uses the "Unified Modeling Language (UML)". UML
enables a usual and dynamic way for visually modeling and designing a process as behavior
and structural illustrations [345]. One of the features of '"GenMyModel" is the capability
to represent ontologies in a parsable intermediate language according to OMG standards
via the "Extensible Markup Language (XML)". Besides, the "Metadata Interchange (XMI)
standard" allows UML classes, with their variables, fields, and attributes to be expressed
through the "Extensible Markup Language (XML)" [346].

Following the guidelines and procedures for the reuse of ontologies described in [340]
and [341], the ontology for flood forecasting is implemented under three main ontological
categories (e.g., Climate Events, Hydrometric Instrumentation, and Environmental Catas-
trophes) which is defined below.

Climatic or Atmospheric Events are understood as the "difference between the value of
a climatic element in a specific place and the average value of that element averaged over
the circle of latitude through that region" [347]. These events are the causes for the major
disasters that affect the human population, taking both human and animal lives, causing
damage to infrastructure, and to the economy [l 2]. Regarding the climate and given
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the scope, nature, and magnitude that climatological events can cause, this category has
extended into three important groups, associated in either a direct or indirect manner with
disasters caused by floods; however, it is emphasized on those caused by hydrological events
as seen in Figure In the ontology, under the Flood concept, it can be realized those
related elements that make up this concept, such as, for example, river floods, coastal floods,
storm surges, overland floods, and flash floods. The possibility of being able to extend the
ontology lies in its ability to expand the link of the semantic relationship that exists between
the concepts related to climatic events, since, for example, in those areas that have been
devoid of vegetation because of forest fires, observed an increase in the amount of runoff
overland, that agrees with the findings in [348].

Figure [4.6, which constitutes the Category for the Hydrometric Instruments, represents
the hydrometric instrumentation necessary for monitoring the variables responsible for the
flood phenomenon and its outlook. Monitoring and compilation of hydrometric data are of
utmost importance in the study and understanding of the climatic phenomena for implement-
ing models that represent the rainfall-runoff process. Hence some examples of hydrometric
instrumentation are Streamflow Sensor, Rain Gauge, Rain Radar, and Water Level Gauge,
or Radar.

Defined under the Environmental Catastrophes category (Figure are other environ-
mental concepts involved throughout the life process of the flood phenomena. This category
is subject to the domain of climatic events, is in close relation with the Hydrological, Meteo-
rological, and Socio-environmental subcategories. In this sense, when satisfying the ontology,
it needs to integrate the three categories defined through their semantic relationship for flood
forecasting. Table below, shows the glossary of terms that make up the ontology for
flood forecasting.
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Figure 4.6: UML Diagram Representation of the Hydrometric Instrumentation Category for
the Flood Ontology.

4.2 Hydrometric Data Enhancement with Imputation

This section details the data imputation task that was undertaken and necessary for offering
a solution to correct and reconstruct the missing data problem that was addressed earlier in
Section 4.1.2.4 concerning the Medio catchment Station H3 time series before the data could
be fit and used in the modeling phases. Missing data problems can be found across several
branches of knowledge such as the sociological, behaviorist, health care, and technological
disciplines. For some time now, much research aimed at fixing incomplete and impaired
data, specifically those cases that present missing instances, has been an object of intense
studies by several scholars and investigators in the field, to find a solution for improving
impaired datasets. However, nearly all these methods are strongly dependable on certain
knowledge a priori regarding the missingness in the data, which, if one does not know, can
render inconvenient which technique to use. Despite being unpopular [349, [350] a group
still favored these methods, the reason they might find a space amongst researchers [351,
352].There are three mechanisms of missing data [353]: 1) when most of the data is entirely
missing at random in the sample, MCAR; 2) this case appears when several instances in
a dataset may be missing randomly, MAR, and 3) if the data does not show clear signs
of being of either of the prior mechanism, it is data that is not randomly absent, that is
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"MNAR'". Data under this category cannot be handled straightforwardly, so it requires very
good guesses on the structure of data (Figure . Multiple imputation algorithms (MI) can
handle all three types of missing data situations. However, packages that do MI are usually
not designed for MNAR cases, as it is a more complicated mechanism. In this study the
dataset pattern suggests the assumption that the data are not MAR or MCAR but are of
missingness that depends on the unobserved predictors. Table depicts the overall missing
pattern of the data record before imputation, in which each row corresponds to a missing
data pattern (1 = observed, 0 = missing). It sorts rows and columns in increasing amounts of
missing information. The last column and row contain a row and column counts, respectively.
Table shows that there are 147,086 rows out of 166,756 rows that are complete. There
are 95 rows for which only rainfall (RN) data is missing, 8,241 rows are eventually missing
for the three variables and there are 5,778 rows for which only RN is known. The variable
with the most missing values is for the water level (WL) and together with the streamflow
data (Q), they both account for approximately 20% of the data missingness (Figure [4.4)),
although 87% of the samples are not missing.
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Figure 4.7: Histogram depicting the percentage of missing data at Medio River Station H3.
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Table 4.4: Missing data pattern at the H3 hydrometric station.

No. of instances RN Q WL  Missing

147086 1 1 1 0
95 0 1 1 1
2977 1 1 0 1
2579 1 0 1 1
D778 1 0 0 2
8241 0 0 0 3

Total of missing 8336 16598 16996 41930

4.2.1 Data Imputation Results

To enhance the impaired hydrometric record, missing data were imputed with the MICE
package [354] from the R statistical computing language [355] within RStudio IDE, version
1.2.5033 [356]. The multiple imputations were done using four of the built-in univariates
imputation methods; Predictive mean matching (pmm), Bayesian linear regression (norm),
linear regression, non-Bayesian (norm.nob) and Random sample from the observed data
(sample). Furthermore, a complete review of these functions can be found in [357]. After
the process of data pruning and identification of possible outliers, the hydrometric raw
dataset as a matrix table was imported into RStudio, to run MI on the data, to produce the
imputations for the RN, WL, and Q values. The imputation setup consisted of selecting the
MICE parameters (e.g., number of imputations = 10, number of iterations = 50, and seed
= 500) and the four imputation methods mentioned previously for the imputing process,
with that said, MICE also allow the selection of the set of predictors one needs to be used
in the imputation process for each variable with incomplete instances. Upon termination
of the imputation process, the selection of the imputation was done by pooling the results
of the imputation methods by fitting a model to each of the imputed datasets and then
combining the results per the methodology from the MICE package, by this process the
results for pmm method was selected (Figure . This new imputed dataset is used as
inputs to the hydrologic modeling in HEC-HMS and GAMA. The linear fit with the pmm
model resulted in an adjusted R? of 0.8524 in contrast to that of the sampling method that
resulted second during the imputation process (R* = 0.6701). The summary statistics for
the pmm model fit also showed the response variable water level as influenced by the rainfall
and streamflow predictors with P(= 2.2e-16). This explains a significant interaction between
the two predictor variables exits at the significance level 0; so, the relationship between the
rainfall predictor and the response variable (water level) depends on the streamflow predictor.
Therefore, the imputation model for predicting the WL is W L) = 8.23 + 0.0018 x RNy +
0.020 * Q).
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Figure 4.8: Stripplot showing the distribution of the observed versus the imputed datasets
with 10 imputations for pmm method for three variables. Observed data in blue, imputed
data in red.
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4.3 Selection of Storm Episodes

The following section, as the purpose to identify the periods in the hydrometric series that
constitutes cases under which storm episodes can be used to model flooding making use
of the agent paradigm; therefore, the historical imputed hydrometric time-series data that
correspond to a flood event are required (See Figures 4.10jand [4.11]) for an observation
of the extreme flows in the hydrograph and rating curve (river stage) related to the flow rate
at station H3. Hence, the focus was on the periods in a given year in which months showed
extreme rainfall events and used for calibration and model tweaking purposes.

Figure 4.9: Hyetograph with imputed data for Medio River at Station H3 (2012-2016).

As commented above, to select the periods in which a specific rainstorm is useful in model
calibration, it is required to detect periods in the series that show an increased rainfall and
streamflow trend (isolated peaks corresponding to days of heavy rainfall). This is attainable
by graphing of the rainfall and streamflow data over time and identifying outstanding peaks
in the graphs, taking into account the idea that most likely a peak in the rainfall data may
either correspond to a peak in the streamflow. Though an increased rainfall event is the cause
of flooding and consequently the cause of an increase in streamflow rate; the streamflow rate
data can be used to identify potential rainstorms, because observed streamflow, is thought
to be more consistent reference than rainfall observation and a rainstorm may not essentially
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Figure 4.10: Hydrograph with imputed data for Medio River at Station H3 (2012-2016).
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Figure 4.11: Rating Curve with imputed data for Medio River at Station H3 (2012-2016).

account for a flood, therefore, not every rainstorm event is prone to cause a flood. On the
contrary, it stands that whenever there is a notable increase in the streamflow of a river, it
is probable that an inundation of the river will follow.

While several criteria for categorizing critical rainfall, threshold exists , the
International Meteorological Vocabulary defines heavy rainfall as the incremental precipita-
tion with a depth ratio surpassing the threshold quantity of "7.6 mm - h=!" . In the
Americas, the Canadian Atmospheric Environment Service describes extreme storms as rain
events that exceed a cut-off value >25 mm - h1 . In countries like Indonesia, a tropical
country with an annual precipitation regime closely related to that of Panama, the "Badan
Meteorologi Klimatologi dan Geofisika (BMKG)" as developed an acute precipitation
limit which has been categorized into two classes where class one is the limit for "daily
operational definition of precipitation (DODRE)" and class two the "monthly operational
definitions of precipitation events (MODRE)" as can be seen in Table[4.5] In Panama, there
is no knowledge of such a limit; the reason why it was decided on adapting the Canadian
cut-off value to this study. However, when applying the Canadian cut-off limit to the H3
gauging station precipitation values recorded for each month’s flooding events, show the
exceeding maximum of 25 mm - h=! for a day, as seen listed in Tables [4.6] [4.7, and [4.9]
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respectively. Therefore, for the identification of theoretically extreme rainfall events, it is
only considered the constraint to the rainy season.

Table 4.5: Acute Precipitation Cut-off limit. Source: [365].

Precipitation depth
Class I [mm - h~'] Class II [mm - d ]

Precipitation Class

Light precipitation 1-5 5 - 20
Average precipitation 5-10 20 - 50
Intense precipitation 10 - 20 50 - 100
Very intense precipitation >20 >100

A common practice in hydrological sciences is to designate discrete rainfall events by
periods of rainfall recesses exceeding a designated duration known as the inter-event time (7;)
the gaps that are noticeable in a hyetograph. Nonetheless, in the literature, many criteria
for isolating rainstorms applying fixed "Inter-Event"' periods have been presented, having
quantities ranging between 3 minutes to 24 hours [366, 367]. Based on the autocorrelation
function time in the rainfall records, in this study, it have been selected an inter-event time
of T; = 2 hours.

To determine the lag time for the entire rainfall series, and the individual months selected
separately, it is applied the Pearson correlation coefficient analysis to the time series. An
approximation of the autocorrelation functions for the entire seasons at the H3 station is
shown with the lag time ranging between 1, 2, 3 and roughly 4 hours as shown in Figure[4.12]
This result was similar for the rain data for every individual month analyzed, the reason why
it was determined that T; = 2 hours as appropriate lag time in the rainfall series.

Now, recall previously that a rainstorm may not account for a flooding event, and not ev-
ery rainstorm event is a guarantee for producing a flood; in selecting periods with significant
flood events, the identification of peaks in the streamflow data that correspond to a flood
needs to follow some other guidelines or specifications besides those already mentioned in the
preceding paragraphs. Consequently, the data needs to be trimmed first to select the periods
for simulations to the most recent rating curve extracted from the whole series. Then, to
decide on which peaks in the streamflow data corresponded to floods, it is considered the
following guidelines described beneath:

1. Storm Depth: The storms considered must be of an intensity strong enough to produce
flooding. However, since the actual hydro-record is presently scarce, information that
would associate specific streamflow records with the time of a consequent flood, may
not be straightforward; therefore, it is taken into account that only the observed highest
peaks caused floods.

2. Storm Duration:
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Table 4.6: Days with hourly rainfall over 25 mm - h=! for Nov and Dec 2012 and Dec 2013.

Period 24 Hr total Period 24 Hr total Period 24 Hr total
11/1/12 62 12/1/12 32 12/1/13 48
11/2/12 22 12/2/12 73 12/2/13 120
11/3/12 14 12/3/12 41 12/3/13 0
11/4/12 108 12/4/12 44 12/4/13 28
11/5/12 87 12/5/12 22 12/5/13 117
11/6/12 103 12/6/12 6 12/6/13 325
11/7/12 100 12/7/12 16 12/7/13 60
11/8/12 74 12/8/12 0 12/8/13 78
11/9/12 78 12/9/12 60 12/9/13 6
11/10/12 134 12/10/12 0 12/10/13 0
11/11/12 212 12/11/12 26 12/11/13 24
11/12/12 6 12/12/12 24 12/12/13 40
11/13/12 204 12/13/12 104 12/13/13 56
11/14/12 38 12/14/12 618 12/14/13 10
11/15/12 80 12/15/12 202 12/15/13 2
11/16/12 19 12/16/12 14 12/16/13 10
11/17/12 177 12/17/12 19 12/17/13 130
11/18/12 624 12/18/12 39 12/18/13 512
11/19/12 243 12/19/12 56 12/19/13 42
11/20/12 707 12/20/12 230 12/20/13 68
11/21/12 254 12/21/12 602 12/21/13 22
11/22/12 218 12/22/12 118 12/22/13 42
11/23/12 170 12/23/12 84 12/23/13 10
11/24/12 522 12/24/12 200 12/24/13 130
11/25/12 669 12/25/12 90 12/25/13 78
11/26/12 161 12/26/12 20 12/26/13 18
11/27/12 4 12/27/12 18 12/27/13 2
11/28/12 106 12/28/12 16 12/28/13 6
11/29/12 52 12/29/12 4 12/29/13 4
11/30/12 212 12/30/12 20 12/30/13 4
12/1/12 12/31/12 14 12/31/13 36

» Rainstorm must be apparent from the hydrometric dataset to reproduce it as a
storm event.

o Streamflow conditions of preceding and antecedent flows must be low enough and
be attributable to that of base flow for these periods and in this respect discarding
antecedent soil moisture.
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Table 4.7: Days with hourly rainfall over 25 mm - h~! for Sep and Dec 2014.

Period 24 Hr total Period 24 Hr total
9/1/14 0 12/1/14 22
9/2/14 8 12/2/14 142
9/3/14 4 12/3/14 124
9/4/14 110 12/4/14 182
9/5/14 0 12/5/14 188
9/6/14 40 12/6/14 16
9/7/14 10 12/7/14 108
9/8/14 0 12/8/14 58
9/9/14 0 12/9/14 92
9/10/14 0 12/10/14 168
9/11/14 48 12/11/14 310
9/12/14 2 12/12/14 84
9/13/14 54 12/13/14 395
9/14/14 208 12/14/14 269
9/15/14 0 12/15/14 24
9/16/14 70 12/16/14 15
9/17/14 2 12/17/14 290
9/18/14 2 12/18/14 19
9/19/14 0 12/19/14 128
9/20/14 34 12/20/14 76
9/21/14 0 12/21/14 24
9/22/14 32 12/22/14 10
9/23/14 50 12/23/14 0
9/24/14 70 12/24/14 0
9/25/14 4 12/25/14 8
9/26/14 2 12/26/14 80
9/27/14 38 12/27/14 26
9/28/14 0 12/28/14 8
9/29/14 0 12/29/14 8
9/30/14 0 12/30/14 4
10/1/14 12/31/14 8

» Validation of flood days extent with the assistance of the surrounding citizens and
rainfall records.

3. Storm Period: The storms should as per the available data and be able to be traced
back to the computed rating curve shown in Figure [4.11] This guarantees accuracy in
modeling scheme and that it closely replicates the current hydraulics of the river (i.e.,
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Table 4.8: Days with hourly rainfall over 25 mm - h=! for May and Nov 2015.

Period 24 Hr total Period 24 Hr total
5/1/15 34 11/1/15 2
5/2/15 92 11/2/15 0
5/3/15 100 11/3/15 58
5/4/15 0 11/4/15 2
5/5/15 10 11/5/15 2
5/6/15 16 11/6/15 16
5/7/15 10 11/7/15 0
5/8/15 16 11/8/15 0
5/9/15 100 11/9/15 74
5/10/15 6 11/10/15 20
5/11/15 52 11/11/15 0
5/12/15 12 11/12/15 0
5/13/15 0 11/13/15 2
5/14/15 5 11/14/15 16
5/15/15 291 11/15/15 56
5/16/15 372 11/16/15 68
5/17/15 10 11/17/15 0
5/18/15 31 11/18/15 2
5/19/15 2925 11/19/15 0
5/20/15 256 11/20/15 34
5/21/15 198 11/21/15 32
5/22/15 2 11/22/15 2
5/23/15 236 11/23/15 58
5/24/15 86 11/24/15 82
5/25/15 2 11/25/15 206
5/26/15 14 11/26/15 742
5/27/15 172 11/27/15 72
5/28/15 4 11/28/15 104
5/29/15 22 11/29/15 102
5/30/15 0 11/30/15 40
5/31/15 0 12/1/15

channel geometry).

. Data Accuracy: All data in the hydrometric database are electronically recorded, as
such, there may be errors in the values in the form of outliers, intermittent recordings,
data gaps, and missing values. Therefore, each instance of the hydrograph should
correspond to the dynamics of undergoing physical processes.
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Table 4.9: Days with hourly rainfall over 25 mm - h=! for May and Dec 2016.

Period 24 Hr total Period 24 Hr total
5/1/16 8 12/1/16 82
5/2/16 0 12/2/16 50
5/3/16 4 12/3/16 0
5/4/16 0 12/4/16 18
5/5/16 0 12/5/16 0
5/6/16 0 12/6/16 2
5/7/16 320 12/7/16 18
5/8/16 0 12/8/16 54
5/9/16 0 12/9/16 24
5/10/16 0 12/10/16 82
5/11/16 2 12/11/16 2
5/12/16 64 12/12/16 0
5/13/16 124 12/13/16 2
5/14/16 178 12/14/16 171
5/15/16 2 12/15/16 99
5/16/16 2 12/16/16 265
5/17/16 6 12/17/16 6
5/18/16 12 12/18/16 62
5/19/16 2 12/19/16 4
5/20/16 14 12/20/16 46
5/21/16 58 12/21/16 48
5/22/16 4 12/22/16 10
5/23/16 2 12/23/16 106
5/24/16 28 12/24/16 10
5/25/16 18 12/25/16 12
5/26/16 84 12/26/16 112
5/27/16 2 12/27/16 28
5/28/16 68 12/28/16 38
5/29/16 90 12/29/16 14
5/30/16 0 12/30/16 92
5/31/16 34 12/31/16 82

From the information shown in Figure [4.9] though it is possible to observe the peaks, to
select them is not an easy task (Guideline 1). This is the reason why it was important to trim
the data and plot the separated hydrographs and select the various peaks that constituted
extreme storm events (Guidelines 1 and 2 (points 1 and 2)). From the information displayed
in the rainfall and streamflow data, fourteen initial storms were selected; both the dates and
intensity are shown in Figures and [4.15] respectively. The storms are assessed
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Figure 4.12: Autocorrelogram for the H3 Hydrometric Station with lags of an hour.

individually to decide on their relevance.

The individual hydrographs depicted here at this resolution elucidates a clearer view of
the rainstorms and flood peaks, given us some better criteria to decide on which of these
peaks in the streamflow corresponds to a flood and making it able to consider which of these
to use in the hydrologic modeling framework. Nevertheless, as can be seen in the graphs,
making a selection can be an overwhelming task since another important aspect that can
also be observed is the localized sudden floods, which are characteristically due to heavy
rainfall (i.e., flash flood).

Following this methodology, the rainstorms of December 2013, September 2014, May
2016 and December 2016 were disregarded since they do not conform to guidelines 1 and
2 presented. The peak streamflow rate of each of these rainstorms, though they seem high
in the graphs, did not present the necessary flow duration to guarantee a flood occurred
(Guideline 2). Additionally, the rainstorms exhibit a rapid drop in streamflow rate during
the peak, which is likely due to flash floods.

On the other hand, the November and December 2012, December 2014, May, and Novem-
ber 2015 storms were compared to their corresponding rainfall and streamflow data (Guide-
lines 1, 2, and 4, respectively).
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(c) (d)

Figure 4.13: Hydrographs at Medio River Sta. H3 with Selected Storm Events: (a) Nov
2012, (b) Dec 2012, (c) Dec 2013 and (d) Sep 2014.
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Figure 4.14: Hydrographs at Medio River Sta. H3 with Selected Storm Events: (a) Dec
2014, (b) May 2015, and (c) Nov 2015.
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(b)

Figure 4.15: Hydrographs at Medio River Sta. H3 with Selected Storm Events: (a) May
2016 and (b) Dec 2016.

Figures [4.16], and [4.17] show day-to-day relationship between the rainfall and streamflow
data of each month throughout a year with a given rainstorm event. It can be also observed
the changing patterns that appear in the graphs, where some trends are predictable, while
others are quite perplexing. This shows the complex relationship between some of the basic
dynamics of the water cycle. Consequently, a closer look at several sectors of the complete
charts reveals that the Medio river response to rainfall is highly variable. Continuing with
the analysis of Figure the rainstorm event that initiated on November 1%° shows the
precipitation to gradually increase from 26 mm to 94 mm, and later decreasing to approx-
imately 10 mm on day 14'". This precipitation was accompanied by a moderate increase
in river discharge that reflected an oscillating recording between 2.56 and 105.70 m3 - s71,
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on day 11*". Notwithstanding, for this same period, which was practically a wet month,
its maximum hourly precipitation registered at 170 mm on days 18" through 22"¢ and a
recorded stream discharge of 227.38 m?3-s~!; while on the other hand, of particularly notable
is the smaller hourly precipitation event of days 24" through 26*" which is accompanied by
a larger increase in river discharge of 258.63 m? - s~!. In a similar manner to the November
2012 rainstorm, two observed peak river discharges or characterized by the December 2012
hourly rainstorms and the resulted streamflow profiles, which may probably indicate that the
data for that period is in agreement with observed precipitation data. The increase in flow
is in agreement with the increase in precipitation, and as was the case with the November
2012 storms, the same patterns are observable where a lighter rain shows a higher stream
discharge than a larger storm event. On December 2014, three storm events were visible,
being the events of the days 7*" through 12" and 13" through 15" the most significant. In
this period, it is noticed an increase in streamflow for both rainstorm events, and as was
shown in the earlier periods, there is a similar discrepancy with the rainfall that occurs on
days 11*" through 14*" that totaled approximately an hourly registered rainfall on day 14"
of 1498 mm but is accompanied by a larger streamflow value of 335.53 m? - s=!, but there
is still visible a much smaller increase in river discharge of 206.17 m3 - s~! on day 11*" with
106 mm rainfall.

In the May 2015 storm, there are two observable peaks in both rainfall and streamflow.
The precipitation and the increased streamflow correspond, as in the other previous storms,
and a similarly observed higher river discharge with lower rainfall depth. Finally, in the
November 2015 storm, that extended from days 23' through 30", on day 26" the maximum
hourly rain of 196 mm was recorded and the largest streamflow of approximately 264.28

m3 - s

In the previous paragraphs, it was observed from each rainstorm so far, the tendency
in which a small and prolonged rainfall event is capable of conveying with it a considerable
increase in the discharge rates. This aspect gives us a clear indication of the precipitation-
streamflow relationship in the Medio river catchment and how the stream responds to these
precipitation magnitudes. The fact that the Medio river catchment is localized in an area
of high precipitation regime in the tropics and in which the hourly precipitation on a given
day can at least exceed 25 mm - h~! are just two of the dynamics that combined leads
to the streamflow-precipitation relationship a complex one. However, these factors should
not be emphasized, have their own set of factors, as some natural and anthropogenic related
disturbances have directly correlated that influence the streamflow-precipitation relationship.

With the aforesaid, many causes affect the way in which a river course responds to
a rainstorm event. Some of these causes will vary temporarily and spatially within one
catchment. For example:

e rainstorm intensity
e rainstorm duration
e air temperature

o wind speed
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Figure 4.16: Rainfall-Streamflow Relationship for Potential Storm at Medio River Sta. H3.
(a) Nov 2012, (b) Dec 2012, and (c) Dec 2014.

Nevertheless, there are other aspects to consider, and these may not probably not vary
from season to season, but which can influence the precipitation-streamflow relationship.
These factors will also vary within one catchment to another. These comprise:

o soil type
o land use
» basing slope

 river slope
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(b)

Figure 4.17: Rainfall-Streamflow Relationship for Potential Storm at Medio River Sta. H3.
(a) May 2015 and (b) Nov 2015.

o channel geometry
» geographic and climatic differences

» vegetation cover and percentage of impervious surfaces

In summary, for a rainstorm to be practical in the modeling implementation, several
adjustments, and calibration tasks need to be carried out to the recorded measured rainfall
dataset, therefore, for this process to be effective, the information must be of quality and in
correspondence with the reproduced hydrograph.

The nature and profiles of the large magnitude of streamflow during November and
December 2012 rainstorms, December 2014, the May and November 2015 rainstorms are
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indicative that a flood likely occurred in the Medio stream. The available hydrometric records
and rating curve also indicate that a flood occurred in these periods, and with it affecting
the population in the catchment. Therefore, the streamflow-rainfall analysis of the actual
hydrometric data provides the insight that the prominent rainfall depth and streamflow rate
did cause a flooding event.

4.4 Hydrologic Simulation Environment Setup

HEC-HMS (Hydrologic Modeling System) is the standard hydrological model used for mod-
eling the precipitation-streamflow process for this research as mentioned in Section 2.2.2.
The chapter does not pretend to be a treatise on the models, and more information on the
model can be consulted [86]. However, it should be kept in mind that GAMA is the software
of choice that is used for this flood simulation task. Recalling on previous chapters, HEC-
HMS falls under the category of a numerical, physics-based model, as it uses the equations
of flow hydrodynamics, rainfall and evapotranspiration schemes and physical parameters of
the river basin to model the rainfall and its yielded flow in river networks within a given
catchment [86]. As such, HEC-HMS can perform simulations scenarios such as lumped or
semi-lumped and distributed paradigms. HEC-HMS as a free Open Source model is the
hydrologic software of choice used by many institutions, universities, researchers, and en-
gineering professionals for researching flow forecasting, reservoir, and spillway design, flood
control, and regulation, flood risk assessment, among others [86].

To build a model in HEC-HMS, users are required to provide a feed of information
that needs to be given to several of its model compartments, called the "Basin Model",
the "Meteorological Model", "Control Specifications" and last, the "Data Manipulation" suit
component that is managed by the "DSSVue" [368].

Besides the use of standard hydrologic models, it is analyzed in this research the use of
agent-based systems to realize flood forecasting as an alternative to the non-conventional
hydrologic simulation approach. Specifically, it allows the building of dynamically driven
agent environment prototypes that can adapt a representation of the modeled systems. From
the available choice of the types of modeling environments containing agents, the GAMA
agent-based modeling platform is the perfect choice because it can generally add support
to the data-driven modeling paradigm, allows the creation of agents from different types
of databases and products, comprising geospatial databases, social, environmental database,
and it permits the implementation of simulation of well-built large-scale models (i.e., millions
of agents with high degree of complexity). Nevertheless, for a thorough understanding of
the potentials of the platform, comprehensive details of its various features are provided by
Patrick and Drougoul [369]. The GAMA architecture is developed on a high-level agent-
oriented language (GAML), which offers a clear and straightforward syntax that renders
it easy for the non-programmer to build models. As GAMA is an open source software,
it allows modelers to develop new facets and functionalities in the form of plugins, using
Java, and in this way, users can meet their necessities for their modeling projects. Given
these characteristics mentioned earlier makes GAMA suitable for implementing hydrologic
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simulations and forecasting of floods. Therefore, in this chapter, it is presented the approach
of the hydrologic modeling of several rainstorms registered in the Medio river catchment for
different periods, overall model results, and analysis of the rainfall-runoff simulations over
the catchment resulted with HEC-HMS and GAMA platform.

4.4.1 HEC-HMS: Simulation Setup

The following section summarizes a brief hydrologic investigation of the Medio River Sub-
catchment and how it responded to each of the rainstorm occurrences recorded at the up-
stream H3 Hydrometric station using HEC-HMS hydrologic system version 4.3. The Analysis
included a hydrologic study related to rainfall events that could be considered significant to
produce enough water to cause floods and for conveying solid flows, most of which flows into
the Rio Caimito catchment.

The Medio catchment morphologic profile is characterized by soils with high clay content
and is classified under the hydrologic group of soils according to the water absorption capacity
in "C/D". The soils under group C, have a granulometric (texture) composition is sandy
clay loam is characterized by small soil penetration grade when fully saturated and is mainly
composed of soils with stratigraphic layers resistant to water from moving down into the
soil. The soils of group D are composed of a heterogeneous mixture of clay [314] the surface
is covered by grasses, shrubs, grasslands, and lush secondary forest, just as was discussed
under Section 4.1.2. Almost 50% of the catchment is a mountainous region.

To perform rainfall-runoff simulations in HEC-HMS, it is required first to configure the
Basin Submodel, since here it is determined the methodology to be used regarding basin
losses. In this catchment submodel, it is adopted the SCS curve number method (SCS CN)
for the losses. The SCS method operates by making increments to the assigned curve number
in the catchment or each sub-catchment. The curve numbers assigned to every subcatchment
are taken from soil hydrologic groups tables, as previously shown. Afterwards, the losses that
are obtained initially, are calculated from the assigned curve numbers. Next, to carry out
the rainfall-runoff transformation, it is selected the transformation method based on the
SCS unit hydrograph (SCS UH), which requires certain initial values such as the basin lag
time. As the base flow is not considered, it is not necessary to make use of the recession
component. Once these and some other parameters have been established, model runs are
carried out, and retrieved knowledge about the analysis of the hyetographs, hydrographs,
the rating curves from different periods in the series, five storm events have been observed
and selected. One of the periods (November 2012) used for calibration and the other selected
storm periods of concern for analysis, as specified in Section 4.3.

In HEC-HMS the catchment is depicted as a "dendritic" system (i.e., an interconnected
network of streams) with various hydrographic components (Figurd4.18). These components
are combined to model real-world catchment dynamics.
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Figure 4.18: Schematic View of the HEC-HMS Graphic User Interface for the Medio River
Subcatchment Model.

4.4.1.1 Required Geospatial Information and Data Features

« Digital Elevation Model (DEM):

HEC-HMS requires geospatial information as a part of is modeling requirements. The
DEM file that is used in the modeling framework was a fundamental GIS data product
for the Medio river catchment. DEM files are important assets in hydrological modeling
since they provide information on elevation, that is useful for defining flow direction
patterns, and for computing the runoff. An "ASTER GDEM" (Global Digital Elevation
Model) V003 in Geo TIFF format was downloaded at [370] and processed in QGIS to
extract the area of interest (AOI).

« River Basin and River Shapefiles:

The catchment geometry, physiographic features, and the river network model param-
eter values were extracted from each shapefile attribute tables and the attributes of
the raw DEM, which was denoised earlier with the Geospatial Analysis Tools, "White-
boxGAT" version 3.4 [371]. Other features and maps created for importation into
HEC-HMS and GAMA were created in QGIS version 3.8 [372]. Other required GIS
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inputs for the catchment (i.e., river network and catchment delineation) were created
with QGIS via available plug-ins (i.e., RiverGIS and Profiling Tool) and running the
respective basing delineation task, from which was extracted 7 hydrological subcatch-
ments. In Table [4.10l below is shown some of the Medio river HEC-HMS catchment

basin model parameters.

Table 4.10: HEC-HMS Catchment Model Parameters for Medio River.

Model Technique Variable

Loss rate SCS CN I, [mm], CN, imperviousness [%]
Excess transform SCS UH Basin lag [min]

Flow routing Muskingum-Cunge Specified discharge [m? - s7!]

o Hydrometric data:

The meteorological and hydrometric data defined under Section 4.2.1 represent the
necessary metric information to be used as input data to the HEC-HMS hydrologic
modeling system. These are the instantaneous data obtained from rain, stage, and
water flow (discharge) sensors, and monthly evaporation estimates located at station
H3 in the Medio catchment.

4.4.1.2 HEC-HMS: Input Parameters

« Roughness coefficient:

The roughness coefficient values of the river, commonly called Manning’s n, were cal-
culated from tables, following the guidelines for natural channels given in [373]. This
data is also available online.

e Loss method:

From all the precipitation that may fall over a catchment in a given time, not all ends
up in a stream, but a portion of it represents losses accounted from the processes of
infiltration, overland flow, and other processes interacting at the surface level. HEC-
HMS provides some twelve different loss methods, from which is adopted the SCS Curve
Number (SCS CN) method. This method requires the following initial parameters:

1. This variable describes the volume of rain that must precipitate previously to
surface excess results. This value is calculated from the following equations (4. 1))

and (4.2)).

I, =0.28 (4.1)
25400
s_<CN)—%4 (4.2)
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where I, is the initial abstraction, this is a 20% loss of the direct runoff and S is
maximum abstraction, and C'N the runoff curve number.

2. Catchment CN values for each subcatchment were calculated from curve number
tables [374] taking into account the soil type and land use activities.

3. The percentage of impermeable surface for each subcatchment was left at its
default value (0.0%) because the catchment is characterized by different land uses
as was defined previously and estimation of this value would probably render
improper.

e Rainfall Excess Transform method:

Estimation of lag periods (A7) for the subcatchments were calculated using equation
(.4), but first, it was necessary to find the time of concentration (7.) as per defined
by equation (4.3) which is given in hour and then converted to minutes to find the lag
time (77,).

I 0.64
Ty, = 0.6T, (4.4)

then, in equation L denotes the length of main stream (km) and (S,) refers to
the sine of channel slope angle (dimensionless). Equation is based on Chow [375]
and equation from the Bransby-Williams method, based on the SCS. Table
below shows the estimated SCS variables for the Loss and Transform criterion.

Table 4.11: Estimated SCS Loss and Transform coefficients criterion.

SubCatchment ID CN S [mm] Ia [mm] Lag [min]

1 89 31.4 6.3 171.0
2 83 52.0 10.4 90.0
3 83 52.0 10.4 145.0
4 83 52.0 10.4 99.0
5 93 19.1 3.8 90.0
6 83 92.1 10.4 100.0
7 83 92.1 10.4 90.0

« Routing criteria for a river reach:

Infiltration rates, rainfall excess transformation to runoff, and flow routing are com-
puted by methods such as the "Green-Ampt", "SCS Unit hydrograph', and the "Muskingum-
Cunge" among others presented in the technical reference manual [376]. From the de-
rived information in the DEM (e.g., river length, river slope, basin slope, and ground
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elevations) and knowledge of the catchment physiographic characteristics, the selected
routing method of choice was the Muskingum-Cunge [376]. To apply this methodology,
information on the length of the river reach (m), gradient (m/m), roughness coefficient,
bottom width (m), and side gradient needs to be known. The Muskingum-Cunge for-
mulation is implemented in two ways as referred to in the Technical Manual: i) using a
standard configuration, in which it is viewed the channel as a trapezoidal cross-section.
This is the simplest representation provided, given the channel roughness, slope gra-
dient, and reach are specified. Channel reach and coarseness can be extracted from
cartographic inputs, remote sensing, on-site measurements, or even DEM file prod-
ucts. Energy slope can be abstracted from channel slope bed and so on and ii) by an
8-point cross-section configuration, this is the case if the geometry of the channel does
not illustrate the optimum cross-sectional configurations, then it is recommended to
adapt the configuration as defined in the Technical Manual. An outlook of the selected
Muskingum-Cunge method parameters for each channel’s reach is in Table below:

Table 4.12: Muskingum-Cunge Channel Reach Hydraulic Routing Parameters.

R. 1 R. 2 R. 3 R. 4 R.5
R. Length [m)] 2,701.30 2,861.67 2,632.34 1,760.53 1,152.16
R. Slope [m/m] 0.002169 0.00169 0.001436  0.000972  0.000000
Manning’s [n] 0.070 0.063 0.042 0.050 0.050
Invert [m] - - - - -
R. Shape Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid
R. Bottom Width [m] 15 30 7 5 20
R. Side Slope [xH:1V] 10 10 10 10 10

4.4.2 HEC-HMS: Simulation, Calibration, and Selected Flood Cases

Results of the simulations, calibration task and the scenario run setup for the selected storm
periods and hydrometric parameters defined under Section 4.4.1 are presented in this section.
Since several of these parameters are estimates of observed field data and GIS calculated basin
physical products, the simulated results may not likely be in close agreement with actual
observed values. Therefore, this observation requires the process of parameter tweaking (e.g.,
model calibration, exploration, and sensitivity analysis) for correcting and lowering the bias
in the estimated parameters applied in the simulation process of the observed hydrograph.
Thus, in identifying the new parameter estimates, the modeling process is then re-run to
study the selected November 2012 rainstorm event, in an attempt to understand the flood
hydrograph of the Medio river sub-catchment and to provide an instrument which facilitates
in the assessment of flood forecasting and warning to decision-makers and stakeholders at
the tropical river basin scale.
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4.4.2.1 HEC-HMS: Hydrological Modeling

Terminated the simulation setup for the HEC-HMS model, with all corresponding hydromet-
ric data and GIS features a simulation is run applying the framework as defined in Section
4.4.1. Then, to explore the model’s ability to replicate the hydrograph, the simulated hydro-
graph of the November 2012 rainstorm is compared to the historically observed hydrograph
at the Medio river H3 Hydrometric station. A graphical illustration of both hydrographs is
presented below in Figure [4.19]

Figure 4.19: Observed vs Simulated Hydrograph for November 2012 flood.

It should be noted that both for the observed hydrograph series as well as for the simulated
hydrograph, are in a time resolution of 1-hour interval. This facilitates the comparison of
the two hydrographs at each 10-minute time step and consequently allows, the simulated
results to be evaluated by relating the overall shape of the hydrographs, and also the size
and timing of the peak discharge.

In flood hydrology, several elements contribute to characterize flooding, herewith the two
main ones are rainfall intensity and the duration; next, to landscape, soil characteristics,
subsurface cover, and land use likewise contribute significant aspects. Despite that, the
hydrometric variables which are usually selected to describe floods are the peak discharge
Qp (m? - s71), the maximum mean discharge Qnq.(d) (m? - s™1), for a specified duration d,
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the volume of flood (m?), Time to Peak (TTP) (¢,) in hours, and the flow rate (m - s7!)
as reported in [377]. As the peak discharge is directly related to the maximum downstream
river-stage (flooding), this parameter is the most significant in this study for analysis. In
this respect, the observed discharge peaks measured at station H3 that are considerably less
than the maximum may have a relationship with increased water levels, though they may not
contribute to significant flooding. It can also be observed from the results of the simulated
hydrograph as depicted in Figure a mild similarity between this modeled hydrograph
curve concerning the measured hydrograph curve, however, an overestimation of the peak
flow can be noticed by the model. Several factors could have contributed to this divergence
of the overestimation of the modeled hydrograph to the measured hydrograph, a possible
reason could be attributed to variations in actual flow measurement by the flow sensor for
a given time of the day. This is a situation that is likely portrayed by real-time continuous
sensors deployed in the field. Submerged sensors function by measuring the amount of water
flowing through a section of the stream and fluctuations in streamflow by an obstruction
(e.g., debris, stones, and branches) can impair readings. Actual stage readings could have
been higher than the average observed value of the day and may have contributed to the high
values of the simulated peak discharge. Other factors could revolve around the estimated
catchment parameters and as a result, generate higher simulated runoff conveyance than
measured.

It should be noted that this flood hydrograph modeling implementation approach has
not been done before in the Medio catchment, which implies that no previous antecedent
works exist that could have been referenced; therefore, it is important to state that it is
assumed the measured hydrograph to correctly describe the peak discharge that occurred
on a particular day. In place of this actual description, further adjustments to the model
should greatly enhance the simulated hydrograph, decrease overfitting and approximate as
closely as possible the peak discharge of the actual hydrograph, the model can then become
a plausible estimate that represents the flood hydrology of the Medio river catchment. To
attain this goal, it is required to adjust model parameters through the process of model
calibration by manual or automatic means.

4.4.2.2 HEC-HMS: Simulation Calibration Process

Previously, it was emphasized on the need to adjust the parameters used for simulating
the actual streamflow series to approximate the observed peak flow. Here it is presented
the calibration process of adjusting the required parameters that cannot be related to ob-
servable physiographic characteristics of the catchment to create a simulated hydrograph
that approximates an observed hydrograph as accurately as possible. As it may be recalled,
the H3 gauging station only as measurements for three hydrometric parameters (rainfall,
streamflow, and water level). Therefore, calibration is necessary to obtain reasonable values
of non-existing hydrologic, hydraulic, and the catchment physical parameters for the whole
catchment area over each sub-catchment.

For the modeler, obtaining consensus from the simulated hydrographs is essential for en-
suring an accurate representation of the catchment with the least bias between the observed
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and estimated hydrographs [376]. By exploring a set of initial parameter estimates, the
model calibration was carried out following the methodology in [376] to find the appropriate
values of the estimated parameters that would generate estimates of the maximizing and/or
decreasing selection criterion leading to better approximations between modeled and mea-
sured flows. This process is challenging, as it is an iterative process, since it requires many
simulations experiments to be run, with each experiment using a different batch of parame-
ters, intending to identify a group of parameters that introduces the least bias between the
hydrographs [376].

Following the methodology in the HEC-HMS User Manual [86], HEC-HMS presents seven
different ways to obtain the objective function. These are "search methods" that are ideally
discussed in the HEC-HMS Technical Reference Manual as "search methods". Therefore, the
following search methods used for this simulation task are the "Univariate Percent Error in
peak discharge" (PEP-Q), and the "Univariate Peak-Weighted RMSE" (PW-RMSE), with
the "Simplex Percent Error in Peak Discharge' and the "Simplex Peak-Weighted RMSE"
methods used as minimization functions of the objective functions. The selection of the two
search functions is straightforward as they contribute greater weight when approximating
the peak of the hydrograph. The Univariate PEP-QQ method only provides the measure of the
right size between the modeled and measured hydrographs; perhaps, no description of the
biases in the volume of flowrate or time of peak discharge is given. Otherwise, the Univariate
PW-RMSE procedure, considers the peak flows, flow-rates capacity, and the time to peak
discharge.

When implementing hydrologic models, it is not possible to tweak all parameters through
calibration. Certain hydrometric parameters like the river reach are difficult to calibrate
without the knowledge of the hydrographs at both ends of the reach. Moreover, precautions
must be taken when tweaking individual parameters dependent on each other. Therefore,
the only parameters suitable for adjustment are those that can be fine-tuned throughout the
whole catchment by a single scale factor; these parameters are the curve number (CN) and
the initial abstraction (/).

Finally, four different calibration trials are performed with the selection of two objective
functions and two minimization techniques of the objective function, and with the objective
function tolerance set at 0.001 and the maximum number of iterations set at 500.

4.4.2.3 HEC-HMS: Simulation Calibration Results

After finalizing the calibration procedures with the use of the four calibration methods
detailed in the previous section for the Medio river HEC-HMS model, a close inspection
of Figure reveals the shape of the calibrated hydrograph to depend predominantly on
the objective functions (PEP-Q versus PW-RMSE). The calibrated hydrograph curve also
shows that if the objective function is kept constantly, small changes can be observed when
changing the objective function minimization method. Results showed the magnitude of
the observed peak to be satisfactorily approximated by the goal function PEP-Q, while the
PW-RMSE approximation shows to relate to the general volume of the hydrograph. As
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Figure 4.20: HEC-HMS Calibration Methods Results for Station H3 Hydrograph.

the calibration target in the approach of this research is to approximate the peak of the
hydrograph flows, it was chosen the objective function "Percent Error in Peak Discharge"
for these purposes. Calibration results obtained with the objective function Percent Error
in Peak Discharge are summarized in Table [4.13]

Table 4.13: Model Parameter Scaling Factors with Percent Error in Peak Discharge Method.

Scaling Factors Goal Function

Value
Search Method Minimization Statistics CN Ia
Univariate PEP-Q 1.0108  0.0119 0.02
Simplex PEP-Q 1.0116  1.14490 0.00

As noted in Section 4.4.2.2, the Univariate object function method only modifies the
curve number by approximating the hydrograph, while the Simplex minimization method
concurrently modifies the curve number and initial abstraction. Due to initial conditions of
soil wetness or dryness before a storm event, the initial abstraction value is expected to be
optimized. From the calibration results, the adjustment of this parameter gave a smaller esti-
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mate for the selected goal function, therefore, the Simplex minimization PEP-Q goal function
method was the method of choice for model calibration. This lowest value, applied in combi-
nation with the similarity of the observed peak and simulated calibrated hydrograph, shows
the simulation with calibrated hydrograph can approximate the precipitation-streamflow re-
lationship of the actual measured peak discharge at the H3 Station for the November 2012
rainstorm.

The adjustment of the initial values of the basin parameters presented in Section 4.4.1.2,
were obtained with the scalar factors found during the calibration process, and the calibrated
hydrograph at the Medio River H3 Station gauge location for the November 2012 rainstorm
event can be seen below across Table and the resulted hydrograph in Figure |4.21

Table 4.14: Catchment Adjusted Variables After Calibration.

SubCatchment ID Initial CN Adjusted CN Initial I, Adjusted I,

1 89 90 6.3 7.21
2 83 84 10.4 11.91
3 83 84 10.4 11.91
4 83 84 10.4 11.91
) 93 94 3.8 4.35
6 83 84 10.4 11.91
7 83 84 10.4 11.91

An initial simulation of the November 2012 rainstorm event showed an overestimation
of peak streamflow at Station H3 that traveled downstream through the entire catchment.
For this reason, because of several impairments of the hydrometric data record, intensive
data treatment was performed, and the model required calibration in other to adjust the
peak flow to the observed value as closest as possible. However, since there is only one
hydrometric Station located upstream of subcatchment-1, it must be kept in mind, as was
referred by Sherman [378] the assumption that precipitation was relatively and uniformly
distributed throughout the entire catchment, both in-depth and in time (Figure ); SO
it is necessary to maintain the assumption that, each subcatchment experienced about the
same rainfall intensity. This uniformly distributed precipitation caused a rise in river stage
along the entire length of the Medio River because each subcatchment contributed flow and
therefore resulted in a single upstream flood wave moving downstream.

4.4.2.4 HEC-HMS: Simulating Selected Storm Events

In this section, it is presented the results and discussion for the implemented and calibrated
HMS model performance on each of the selected rainfall-runoff storm events. In this respect,
it should be noted, that after performing a simulation with a model that was previously
calibrated, the following procedure is to perceive the overall modeling performance of the
simulation. However, for this, it is necessary to have current hydrometric data of the catch-
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Figure 4.21: Calibration of Observed vs HEC-HMS Simulated Hydrograph for November
2012 flood.

ment and for longer periods. As the former concern is of importance, they selected those
precipitation events corresponding to varying rainfall depths observed for some periods in the
entire hyetograph of Station H3, like the December 2012 and 2014, May and November 2015
records (Figures @ through , respectively) that are likely to produce flood cases.
These were selected as simulation case scenarios to assess the model performance with dif-
ferent storm intensities as can be seen below across Table and the resulted hydrographs
are compared to the observed streamflows for each simulated period.

For the storm events, all flow originates upstream the catchment and the rate is approx-
imately the same. The magnitude of flow over the entire hydrograph is smaller than that
of the November 2012 storm as the total volume of precipitation used is different, though it
is concentrated over the same area of the subcatchment-1 gauging station, resulting in less
initial abstraction, and therefore less runoff.

The statistical metrics observed, allows analyzing the goodness of fit for the model after
calibration on estimations of the peak flow surges under different rainfall intensities. How-
ever, from Figure |4.22] although the simulation has approached the shape of the observed
hydrograph curve, it presented some difficulties in approximating the highest peak flow (Q,x)
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of the period, as can be seen from the simulated curve, where for an actual Q,; = 266.4
m?3-s~1, the model estimated @, discharge was 183.2 m?- s, which corresponds to a value
of the peak runoff error of 31.2% and RMSE of 14.7 m? - s7'. However, the model agree-
ment is also assessed by the simulation correlation coefficient of 0.94, which demonstrated
the calibrated model to be practical for flood hydrology estimation. Besides these results,
the model attained an accuracy of 88% in forecasting the flood hydrograph, with p<.001 at
a = 0.05 which shows significantly good. On the other hand, model performance with the
December 2014 Storm simulation can be observed in Figure [4.23] despite the graph bears
some resemblance to the pattern of the observed hydrograph at station H3, it presented
difficulties toward the peak flow approximation. Nevertheless, the overall efficiency of the
simulation task, in general terms proved purposeful as shown by the hydrograph simulation
statistics (Table with a percentage error in peak flow of 66.5% between model simu-
lation and observed streamflow (112.4 and 335.5 m? - s7!, respectively), and the standard
distance between the HMS forecasted and observed values of 29.6 m? - s71. In addition,
the model showed to similarly agreed with the observed data as shown by the correlation
coefficient (r = 0.82) and with much of the variability explained by the observed data only
accounting for 67%, attesting also for the strong relationship between HMS simulated model
and the observed data, and this relationship significant given a p<.001 at a = 0.05.

Table 4.15: Statistical metrics of the performance between HEC-HMS simulations and the
observed flood hydrographs for various Storm Events.

Validation Cor. Cocf. Coef. of Det. RMSE o Per?erg Obs. Qi S.HMS
Storm [r] [R?] [m3. s TN RPE s gm1) O vk
0 [m? - s~ 1]
December 2012 0.94 0.88 14.7 31.2 266.4 183.2
December 2014 0.82 0.67 29.6 65.5 335.5 112.4
May 2015 0.82 0.67 15.9 37.6 257.1 160.5
November 2015 0.76 0.58 11.6 17.5 264.4 309.9

The graphical information in Figure for the storm simulation event of May 2015,
reveals little differences with simulated results concerning the similarity with the observed
hydrograph. However, it is observed one to three overestimated low peaks, and the model
also undergoing difficulties to reproduce the Q,r of 257.1 m? - s for the period with a
simulated flow value of approximately 160.5 m? - s=!. Nonetheless, in statistical terms for
model (Table efficiency, the model as acceptable similarity agreement with the observed
data given the resulting correlation coefficient (r = 0.82), with model accuracy accounting
for 67% (p<.001) and the errors of spread and peak flow between model and observed values
of 15.9 m? - s71, and 37.6%, respectively.

Finally, in Figure [4.25| it is observed that for November 2015 Storm the results from
modeling the entire month, although there are days with precipitation lower than 100 mm
(Figure ), the HMS did estimate runoff hydrograph for these days as can be seen in
Figure [4.25] However, for some reason, the observed flow at station H3 doesn’t follow this
trend accordingly. Conversely, the results between model simulation (Q,r = 309.9 m? - s71)
and observed values (Q,r = 264.35 m3-s~1) for the period, shows the HMS to overestimate the
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Figure 4.22: Observed vs HEC-HMS Simulated Hydrograph for December 2012 Flood Event.

measured runoff, which in statistical terms represents an error of the spread between modeled
and observed data of 11.6 m?® - s71. Besides the comparison between model-simulated and
observed flow shows an error in peak flow of 17.5% and a lower correlation value (0.76),
as compared to the other simulated periods. The results also showed, the HMS model on
this data, the observed data to only explain 58% of the variability concerning the modeled
outputs; despite that, it could be argued the acceptance of the model, since, as the results
indicated the relationships in the model are statistically significant with the observed data
(p<.001, at a = 0.05).

99



Figure 4.23: Observed vs HEC-HMS Simulated Hydrograph for December 2014 Flood Event.

4.4.3 Conclusions

In this section, using the standard hydrologic model "HEC-HMS" a typical flood hydrograph
software package, was used to performed hydrologic modeling, which in hydrological studies
represents the analysis of the simulation for "rainfall-runoff' processes and analysis to assess
the occurrences of floods, for flood hazards assessment, water resources management, and
engineering design purposes. The model was developed to serve as a standard benchmark hy-
drologic modeling approach and reference point from which can be build an ABM prototype
that can offer the same functions as the hydrologic simulation for flood forecasting.

Once the setup of the model is achieved, and by set up, it is meant that all components
(e.g., GIS, meteorological model, data preparation, control specification) of the HMS basing
model are in place, the model for the Medio River is run for calibration of the sensitive
basin parameters as was observed in Section 4.4.2.2 and 4.4.2.3. After this calibration was
achieved, the model was validated on four storm events (December 2012, December 2014,
May 2015, and November 2015) of the Medio River watershed, from which outputs of the
HEC-HMS were contrasted to the observed hydrographs as reported in Section 4.4.2.4. The
main clues drawn from the analysis are:

e Modeling with HEC-HMS provided insights into the possibility to perform simulation of
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Figure 4.24: Observed vs HEC-HMS Simulated Hydrograph for May 2015 Flood Event.
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Figure 4.25: Observed vs HEC-HMS Simulated Hydrograph for November 2015 Flood Event.

the precipitation-runoff modellng for the Medio River catchment. Despite some cases
of misestimation of the simulation outputs concerning the observed peak flows, the
resulting objective function, and simulated hydrographs after calibration were found
to be good estimates.

e The model was simulated under the lumped concept, this could have probably led
to the limitations in the peak flow simulations. However, this can be improved by
optimizing the model further under the quasi-allocated concept.

o Upon the continuous optimization of the model it is more likely it can be useful in
other tropical watersheds of other sizes.

4.4.4 GAMA: Simulation Setup

As shown in Figure [4.1] one of the motivational objectives of this research is to recreate the
simulation of hydrological floods in a tropical catchment using the ABM paradigm environ-
ment rather than the standard hydrological model archetype such as the HEC-HMS software
model as was done in the preceding sections. From the agent development platform review
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and some relative comments shown on the topic under Chapter 3, it was found that there
are several platforms for developing the agent-based modeling task: some of these for exam-
ple "NetLogo', "JADE', and its extension "JADEX", "MACSim" [379] software, developed
to allow communicating JADE via Simulink are among the most popular, and the recent
GAMA platform. Despite these and other choices, and since much of the inputs used in this
simulation depend on a large part of georeferenced information, the GAMA platform is the
agent simulation environment of choice selected because this platform offers the possibility
to use as input the GIS data products and making it possible to represent the domain data as
mappings, the variation of the river volumes, visible streamflows, and the water levels (stage
height). Furthermore, given that it is highly GIS oriented, it allows assigning different values
to the various configuration parameters of the environment domain by modifications of the
main code.

GAMA platform can discretize these items into different spatial layers and represent them
independently, allowing the interaction of these layers clearly and easily. In this manner,
each subcatchment in a particular catchment of study can be considered a specific agent with
its characteristics and attributes. In Figure for example, it can be visualized the format
and location of each subcatchment, as well as add the color attribute to each of them and
facilitate their distinction. GAMA allows the user to relate the existing information through
the position and topology of the objects, thus generating new information. In this case,
considering the juncture of information in Figure (subcatchment) and Figure
(rivers), it can be obtained the representation of the image presented in Figure m (rivers
and subcatchment), from which the platform can extract new information and attributes for
each object, such as associating a river with a given subcatchment according to its location.

4.4.4.1 Framework Setup for ABM for Hydrologic Flows Simulation

This section provides the details of the agent classes (species) for the ABM Medio catchment
hydrologic modeling framework. The Medio catchment is composed of seven subcatchment
already described under Section 4.4.1.1 and here in (Figure [4.27h), with distinct character-
istics, as presented as an example in Table the attributes of the AgentCatchment. For
this agent-based two level architecture, the framework arrangement (Figure consists of
the following agents forming the basis of this system and some of which can be identified as
static and non-static agents:

« Hydrometric sensor agents (HSn): Three agents that don’t exhibit any mobility dur-
ing simulation cycles and as described in Section 4.4.1.1 they are represented by the
hydrometric station sensors deployed in the field. Their roles are described below ex-
cept for some roles that would be implemented in their BDI versions. It should be
noted that these agents are set up to connect to the sensors deployed in the field; how-
ever, it should be stated the fact that due to technical issues and availability for onsite
station access at the time of development of this project, in this simulation and the
simulation undertaking consequently in Chapter 5, the HSn captures the hydromet-
ric data basically from file folders which are emulated as the field-deployed datalogger.
Therefore, no experiments are conducted with data captured in real-time. For now, the
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experiments have been done as explained, and works for coupling the model prototype
to a real-time field-based station remain for future work.

1. Rainfall sensor agent (AgentRNSn): The AgentRNSn role is to capture, aggre-
gate, and distribute the real-time incoming rain data readings to the river agent
sources.

2. Water level sensor agent (AgentWLSn): The AgentWLSn role is to obtain,
aggregate, and distribute the real-time incoming river surface water level data to
the river agent.

3. Streamflow sensor agent (AgentSFSn): The AgentSFSn role is to obtain, aggre-
gate, and forward the real-time incoming flow discharge data obtained from the
field low meter sensor data to the river agent.

« Environment domain agents (EDA): Four agents making up the catchment environ-
ment along with the GAMA generated default global agent.

1. Catchment agent (AgentCatchment): This agent represents the real-world
Medio River catchment (River Basin), so it is considered an individual static
agent, has specific values for the size of its area, catchment order, neighboring
sub-catchments, and its drainage outlet into an adjacent channel and the main
Medio River channel. It is therefore a layer upon which the rivers and the monitor-
ing stations are displayed. This layer provides what would be the morphometric
characteristics of the catchment, which is essential along with the grid agent, to
provide the gradient behavior on the catchment and to directly act on the river
agent in the conveyance and exchange of water through the channels by gravity.

2. Water source agent (AgentSource): Represents the hydrological agent responsi-
ble for providing to the rivers an amount of water from the flow and precipitation
series inputs. The AgentSource at the beginning of a simulation has the same
amount of water; however, this amount is changed over time given the location
and special extent of the rivers they affect and the changes in input precipitation
values. Source agents are linked to a river inlet. At simulation start time, given
the frequency of action that is given to the source, the global agent will ask the
source agent to give water from either a set input volume, the flow, and/or precip-
itation inputs to the river. In this case, this is set to every hour for one simulation
scenario and consecutively it can be set to two, three, four hours, ten or twenty
minutes, or even days, months, depending on the desired time length. Neverthe-
less, care should be taken when doing this setting, as it can impair visualization
of the flow of water in the river.

3. River network agent (AgentRiver): The river agent is also a static agent dis-
tributed between the different subcatchments according to their geospatial loca-
tion. The river agent receives and shares information about incoming water from
the source agent, conveying the water as a volume in the rivers from uphill to
downhill the catchment. This amount of water within the river is generated from
the runoff that comes from the precipitation series information, or it can be given
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initially a set value, or it can be set to a range that would change over time.
Additionally, the routing of flows is gained through water exchange between the
river reach segments across a bordering catchment, this is also dependent on the
precipitation amount and frequency. The water that enters the rivers from the
source is routed through as a volume, as discussed in detail in [380]. Therefore,
the AgentRiver has the role of computing these volumes, generating the flow of
water, updating water volumes, and computing the water levels through actions,
each requested and managed by the global agent. In the beginning, before ini-
tializing a simulation, the volume of river water will increase and decrease over
time according to the precipitation rate of the subcatchment in which the river
is inserted. Each river belongs to a single subcatchment or may cross another.
Flood water recedes after a precipitation event as occurred over the catchments
or if lower than the precipitation rate of return, the tendency is that the volume
of floodwater in the rivers will grow over time and the subcatchment will become
flooded conveying their waters to the main Medio Channel as can be seen in
(Figure [£.27¢). Neighboring subcatchment experience flooding of their streams
according to the precipitation distribution and contribute as lateral inflows into
the Medio Catchment main channel. The capacity to convey water is established
by its hydraulic characteristics, from thence a maximum volume (vol,,.,.) value of
the water, so, the more the water volume of the subcatchment exceeds this value
(flooding), the higher the water level and the discharge at the Medio river outlet
will be.

4. Terrain elevation agent (AgentDEM): The DEM that is being "agentified"; it
is a special type of agent species portraying a grid topology. It has no mobility
during simulation time, is a static agent. It represents the terrain elevation of the
catchment. This agent has the role of representing the gradient profile distributed
across the entire catchment.

« Global agent (AgentGlobal): Like the grid species, the global species is a special type
of agent. It is an automatically created agent in GAMA. Its instance is the world and
it inherits automatically from the default variables and actions within GAMA. In the
AgentGlobal, all variables, parameters, attributes, actions and behaviors that governs
the world, can be described. The global agent (AgentGlobal) manages all the agents
in the system; besides that, it is also responsible for the saving of the information
generated during the simulations. Therefore it can be seen as a supervisor agent.

4.4.4.2 Required Datasets and Features

e The GIS data:

In this model, the GIS data are presented as a database with geographic information,
found in a 30m digital elevation model (DEM), two shapefile, one containing geospatial
information for the Medio river catchment and subcatchment, and the other archives
describe the spatial qualities of vectors (points, lines, and polygons) to represent the
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(a) subcatchments (b) river network (c) subcatchments & river network

Figure 4.26: Medio catchment with mini-catchment GIS data sources graphical representa-
tion.

() subcatchment_id (b) non-flooded river network (c) flooded river network

Figure 4.27: Medio catchment with mini-catchment id GIS data sources graphical represen-
tation.
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Table 4.16: Definition of spatial attributes of the AgentCatchment.

Subcatchment ID Area [km2] Order Catchment outlet_ID

1 9.9 3 4
2 6.3 2 4
3 9.6 3 4
4 4.9 1 8
) 5.3 1 8
6 12.8 2 8
7 1.3 1 8

subcatchment and the streams composing the Medio catchment, with their attributes
that describe them (e.g., stream length, basin elevation, area, and drainage outlet).

The Base Map:

In the model, it represents the simulation environment of the location of the Medio
River Catchment. This map was extracted from part of the Donoso District in Colon
City, from OpenStreetMap using the QGIS to import and get the shapefile, for use in
the GAMA platform to recreate the area of the catchment as depicted in Figure [4.1]

The Precipitation:

The precipitation, a meteorological 1hr interval time series dataset that is one of the
core elements of this modeling experiment, as it is responsible for producing the inun-
dations in the Medio river main channel. When it is applied the precipitation regime,
flood waves are systematically generated from adjacent rivers as lateral flows towards
the direction of the Medio river course. This, flood wave is then conveyed to the Medio
outlet which forms a confluence with the larger Caimito River. The main features
that distinguish this flows conveyance, are the excessive inundation intensity of the
stream banks and flood plain areas due to the high stage that is produced by the
fast-rising flood waves. Among the other hydrometric elements, it is observed surface
water elevation and streamflow time series files.

4.4.4.3 GAMA: Input Parameters

In GAMA, a model is built by providing the platform with GIS data, this represents the
dynamics of the capabilities of the platform to read and write GIS data, and in using this
data in models. In GAMA, the input data is represented by the integration of vector data
to the simulation’s environment, and in turn, returning this information as the resulting
modeling system. In addition to GIS information, GAMA can also accept as input, other
data files such, images, data feeds, databases, and time-series information in a text or csv

format. However, a description of the data requirements used in the platform is detailed in
Section 4.4.3.1.
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4.4.5 GAMA: Simulation, Calibration, and Selected Flood Case

Some of the settings of the input data for the GIS environment initially created and used in
the previous hydrologic modeling with the HEC-HMS physical-and-equation based hydro-
logic model had set the pace for some of the input data required and used in this GAMA

e : Hydrometric sensor agents (HSn)

"""""" Environment domain agents (EDA)

Defines time step ;
Controls input data
Controls variables H
Controls file handling :
Saves data :

.......... P o oo0000000

GAMA Experiments | Inter-agent -commum}?a

Agent
Catchment

Agent
Source

Intragtagent -communicafion

AgentRiver

AgentDEM

EDA : Efd User ‘lLJ“JLL.L‘m

,."'Workstation

Figure 4.28: Schematic diagram of the ABM showing the overlapping levels hydrometric sen-
sor level (HSn) and the environment domain level (EDA) containing the GAMA automati-
cally created global agent (AgentGlobal) along with the other agent actors’ implementations
for the system comprises the experiment environment. The diagram also shows the role of the
global agent as the lead agent, who practically controls the types of agents, be they static or
mobile, and the interactions among agents at an intra and inter-agent-communication level

that is needed at the initial run time when they execute a simulation.
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hydrologic simulation. The aforementioned is of utmost importance for the simple reason
that the implementation of hydrological models requires a large number of physical and phys-
iographic coefficients of the basin, which makes its implementation a complex task. These
variables vary from terrain data, elevation, precipitation, evaporation, land use, infiltration,
soil-water interactions, overland flow, just to mention a few of the data requirements.

As specified before, the term hydrologic model refers to the governing equations that
intend to approximate the response of the hydrologic cycle. Therefore, to model such system
response, information about the physical states of the system must be known or at least esti-
mated to allow the implementation of the modeling scheme specific to a particular computer
application by mathematical equations. If these equations result too complex to solve, then
translation into computer code and algorithm is needed.

The adoption of such modeling approach is nowadays been implemented thanks to the
concept of ABM and MAS, which reach as not only taken a full hold on the social sciences;
and with very few researches in the hydrological field, is growing attention especially in the
flood prediction and management environment [381].

Hydrologic modeling is now possible at the agent scale, because of the use of GIS data
integration into the agent paradigm, in other words, "agentification of GIS data" |369).

This agentification capability of GIS data can allow the creation of an agent’s implemen-
tation with behaviors of precipitation, catchment characteristics, elevation grid, water flow,
water volume, water level, and river network, by simulations using the GAMA platform. In
GAMA these data are called species.

4.4.5.1 Hydrologic Simulation with GAMA

Frequent storms with high flood water production that cause losses to human lives, livestock,
and damage farmland, and the economy is a common phenomenon in tropical regions. In the
tropical river basin, which oftentimes is ungauged; flood warning and management systems
are seldom present and are most likely not available to stakeholders and the inhabitants of
those regions as ready-hand tools and applications. In this sense, knowledge about the time
and origin and distribution of runoff entering locally into the stream during a storm would
be valuable hours ahead before matters get worse and it leaves no time for an evacuation.
On the other hand, at the catchment level, government officials, managers, stakeholders, and
the public do not understand the physical properties and dynamics of catchment hydrology.

Another difficulty is that presented by most distributed hydrological models, which can
mean a costly purchase, and which usability and the learning curve can become very difficult,
and time demanding, besides they are data-greedy, hard to implement and computationally
time-consuming. This is even true for the open-source counterpart.

With some of these facts about distributed, physics-and-equation based hydrologic mod-
els, it is the motivation to embark on the quest for the exploration, experimentation, and
implementation with the GAMA agent platform as an alternative tool in hydrological flood
simulation, a platform which GIS capabilities as been announced in the previous sections.
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In theory, GAMA is not a standard hydrologic simulation software created and dedicated
solely for such purposes per se. Therefore, as shown previously the simulation process in
GAMA is different from how it is carried out in the HEC-HMS standard hydrologic appli-
cation. GAMA platform offers the experienced modeler as well as the novice with limited
programming abilities a modeling complex environment for linking Agent-based simulation
and GIS features. The GAML language emulates the "object-oriented programming (OOP)'
concepts, as such the idea of "class" is abstracted in the concept for specifying objects as
agents, with their attributes, actions, behaviors, and other properties of the agents’ popu-
lation, extracted from the GIS data which can be presented as dynamic maps, graphs, and
charts [382,383]. An advantage within the GAMA simulation environment is the ability to
allow the user to pause a model during execution as commenced, and in such a way the user
can perform adjustments to the code or variables. Such that, when a simulation session is
completed, the results obtained are useful for the scrutiny and examination of its efficiency.
These outputs will permit the evaluation of the performance of the modeled system. There-
fore, it is presented in this section the simulation schemes, the calibration tasks, and finally
the evaluation of parameters.

As it was with the HMS simulations, the November 2012 1-hour interval time series was
used to run the simulation scenarios and calibration process for the ABM hydrologic model
preliminary simulation in GAMA just as it is discussed in Section 4.4.2.1. Whereas in HEC-
HMS simulation time step (A7) must not exceed 29% of the lag time ([376]), simulation is
carried out each 10-min and in the case of GAMA (See [303]), the time step must correspond
to the time frame of the time series data, in which case A7 = 1-hour simulation step and so on.
In this simulation, the approach for the environment setup had the following configuration for
the initial global parameter values for some hydrometric state variables such as the observed
rainfall, water stage, and streamflow. As an example, they can define initial conditions for
the precipitation, water level, and the flow, from an input time series or the values, which
can be defined randomly between a ranging boundary, as per example the flow in the range
0.1, 1000 m3/s], stage in the range [7.03, 15.0 m], and the volume of flow in the range [100,
500 hm]|, and so on, before initiating a simulation, which would be started at the model
initialization. The other elements that comprise this environment are the agents comprising
the HSn and the EDA levels (Figure , for example, the rainfall time series data is
captured by the AgentRNSn, the water level and streamflow time series is captured by the
AgentWLSn and AgentSFSn agents, the river network, represented by the AgentRiver, the
sub-catchment agent (AgentCatchment), the water source (AgentSource), and the grid agent
(AgentDEM). These agents all of which are static, reactive agents. Perhaps, as there is only
one rain gauge available (Upstream at Station H3), it is taken on the assumption of the
hydrologic lumped model concept, as it is considered the rainfall as uniform distribution
across the basin.

The simulations were performed over the entire November 2012 storm period and were
considered as a tune-up for a first flood hydrograph simulation with the ABM hydrologic
model. At the end of the simulations, the flood hydrograph approximation resulting with
the ABM shows the simulated versus the observed hydrograph (Figure to present some
difficulties to closely replicate the shape of the observed flood hydrograph curve, as it showed
to either overestimates or underestimates some low and high peak flows, the performance
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metrics for this tune-up run produced a correlation coefficient (r = 0.40) in contrast to the
value obtained from the HEC-HMS run before calibration (r = 0.68), the RMSE = 56.9
m? - s~ when with the case of the HEC-HMS (RMSE = 43.8 m3-s7!), and finally, a percent
error of peak discharge of 72.2%, distinct to 47.6% obtained with the HEC-HMS counterpart.
Generally, it is considered the low correlation values below 70% between model simulations
and observed hydrograph as models that are probably not capable of providing consistent
simulations of rainstorm-induced runoff for flood predictions. However, the interpretations
of the correlation coefficient can be biased, since it is not known if the nature of a dataset
had contributed to the actual metrics resulting from the analysis. Moreover, to further
investigate, this low correlation coefficient, the next step would require the calibration task,
to see if the results can outperform the approximation resulting from the tune-up run (r =
0.40) with a model accuracy of 32% and p < 0.001 at a = 0.05; and therefore, in the next
section it will be used the other storm events to verify the overall goodness of the model.

Figure 4.29: Observed vs ABM Simulated Hydrograph for November 2012 flood.

4.4.5.2 GAMA: Model Calibration Process

The calibration process for the GAMA rainfall-runoff simulation differs from the one per-
formed in the HEC-HMS simulation setup. As discussed above in Section 4.4.2.2 the HEC-
HMS uses different objective functions and a set of parameters for model calibration. In
contrast, to a model in GAMA that can be calibrated by exploration through the intro-
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duction of "batch experiments". By setting a set of formulations, models can be evaluated
to analyze the sensitivity toward "stochasticity", and an experiment can also be added to
explore the impact of a variable on the model outcome, and experiments implemented for
calibration. These additions will simply add a new experiment to the model in batch form.
However, more aspects of these experiments are detailed in GAMA documentation [303].

In principle, it is necessary to emphasize the fact that none of the formulations offered
by the literature in GAMA and in general have defined guidelines on how a flow forecasting
simulation model based on agents should be calibrated and verified. It is known from the
literature that the process of calibration and verification of systems based on agent simu-
lation is a subject of challenges, specifically when they must deal with complex, large-scale
domains. integrated, and hybrid systems, that involve large volumes of data entering and
exiting the process, thus limiting simulation time [383-388|. Despite the calibration and
verification challenges that these systems may face, they still require certain procedures
to facilitate calibration and verification. In this sense, in what concerns the calibration
of simulation models, many authors have used certain procedures such as multi-objective
optimization (MOO) [389-391], genetic algorithms (GA) [392-394], automatic methods for
calibration (AMCMAS) [395-398], statistical estimators (SEST) [399,|400] among others. Fi-
nally, in dealing with the question on calibration and verification within the GAMA platform,
Truong [401] proposed a methodology employing an index of agreement for "calibration and
validation of an agent-based simulation model applied to business intelligence databases".
However, this project is based on the domain of hydrological modeling. In this sense, the
aforesaid methodology is not appropriate, but rather one that follows an understanding of
trial-and-error [402, |403] while the calibration and validation processes based on the hy-
drological principles properly established for the analysis of flood hydrographs are carried
out.

As it was done priorly in the experimental setup for the calibration task of the previous
HMS simulation, in GAMA it is also carried out with the November 2012 storm data, since
it represented the wettest period of that year followed by December 2012. For this storm
dataset, a full simulation was run for each of the experimental scenarios implemented, and
the corresponding initial global inputs variables were adjusted accordingly. Then, the results
obtained from the calibrated ABM experiments were evaluated based on their efficiency
using the usual statistical estimators (e.g., "correlation coefficient (r)", "root mean squared
error (RMSE)", and "percentage error in peak runoff (Q,:%)") commonly used in hydrologic
modeling to analyze the performance between the simulated hydrograph outputs concerning
the observed hydrograph outputs, in this case, represented by the ABM hydrologic model
that was implemented in the GAMA platform.

After the tune-up runs simulations had been completed, recall that the results indicated,
the model showed to have problems approximating the shape of the curve of the observed
hydrograph, and it either under or overestimated the flows, even before calibration. Then,
this was indicative that the model from the tune-up runs required some sort of calibration
tasks to enhance the efficiency of the simulation outputs. What followed was the experi-
mental setup of the environments created from initially calibrated ABM simulations that
were done with four implemented experimental cases and are described as follows: i) in this
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experiment the only source of water input in the catchment is from the observed stream-
flow series and no rain input, ii) using a varying volume as the only source of water input
in the catchment, without precipitation, iii) using the observed streamflow series and the
precipitation as the only sources of water in the catchment, and iv) the observed streamflow
series, the precipitation and an initial discharge value set to 1.5 m?®-s~!. Besides these input
scenarios, the tweaking of the GAML script for the modeling was also a very fundamental
factor in the calibration endeavor.

4.4.5.3 GAMA: Model Calibration Results

The following subsection presents and discusses the verification results obtained from the
calibration process performed using the four experimental approaches that were explained
previously in the model calibration rationale above.

It is important to observe that flood hydrograph analysis has its settings in the peak
flows, which is used in the assessment of flood events. Therefore, to objectively calibrate
and verify an ABM hydrological prototype it is required some guidelines to simulate, cal-
ibrate, and analyze flood hydrographs simulation efficacy through validation. Thus, the
accomplishments of the former requirements and their statistical metrics, reporting the sim-
ulation results of peak flows, their errors of spread to the measured data, the coefficient of
similarity, and determination for each experiment simulation scenario executed are shown in
Table along with the Figures representing the model and measured flood hydrographs
are presented below.

In calibration and validation of hydrologic modeling, the selection of the flood events
is critical |404], just as it was discussed in section 4.3. Therefore, a storm is selected for
calibration and validation, considering the effects, nature, and the characteristics of the
sensitive variables used in the process such as the morphometric properties of the catchment
and of the climate conditions that drive the rainfall-streamflow characteristics, as well as the
data availability required in hydrograph analysis.

From the observed and simulated peak flows shown in Table[4.17)in Figures4.30, [4.31],[4.32]
and [4.33], the four scenarios reproduced, by all simulation outputs from the ABM model are
shown to accurately reflect the shape of the observed hydrograph recorded at Station H3 for
the storm period of study. However, for scenario 2, despite a reasonable result for the "r",
daily flows were overestimated, and the simulated peak discharge was overestimated sextuple
(1675 m? - s7! ), while the other scenarios have seemed to have doubled the measured peak
flow of 258.6 m3-s~!. In any case, the calibration tasks performed, have been shown to have
greatly contributed to the model being improved; however, on average, an error of Q%
= +81.3% overestimations of peaks were still observed. However, the Authors in [405, 406]
suggested a criterion that the model performs well if £50%<Q,,<£100%, then the model
could be accepted as satisfactory whether the simulated value was less or larger than the
measured peak flow. Nevertheless, the information shown in Table [4.17] suggests the ABM
simulated peak flows were within 100% of the error criteria for simulated peak flows that

are larger than the measured values. It is noticed also that the four simulation scenarios
agreed with these criteria (Table 4.17)). Of course, the lower this value, the lower the overall
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bias in the model. On average, the error of spread that was observed between the measured
and the ABM simulated flows was 89.2 m? - s~!; however, must the size for this error was
inputted by scenario 2. The effectiveness of the model’s accuracy in predicting the flows
was in rage [60, 65%]. The observed peak for this calibration storm occurred in November
24 at approximately 22:00 hours and the average simulated peak flow was 768.4 m? - s71,
keeping in mind the very high overestimation of the @),; by scenario 2. The mean corre-
lation coefficient observed for this calibration storm period can be accepted as significantly
correlated (r>0.7). In general, the calibration task showed to have contributed satisfactorily
to the simulation between the ABM hydrologic model estimated and the measured flows at
Medio River Station H3 according to the average results of the Q% = +81.3%, R? = 0.63,
RMSE = 89.2 m3 - s 1.

Table 4.17: Statistical metrics for the observed and simulated (ABM) flood hydrographs
after calibration process.

P t ABM Sim.
Simulation Cor. Coef. Coef. of Det. RMSE ercen Sim

) 5 s _q, FErrorin Qpk
Scenario ] [R? [m? - s71] O %] [m?-571]
1 0.78 0.60 42.3 80.0 465.5
2 0.80 0.65 230.2 84.6 1675.9
3 0.79 0.63 40.3 80.8 465.5
4 0.80 0.64 43.9 80.5 466.7

Measured Q,r = 258.6 m3/s on November 24! at 22:00

Simulated flood hydrographs of the
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Figure 4.30: Scenario 1: Measured vs ABM simulation output for November 2012 storm
after calibration process.
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Figure 4.31: Scenario 2: Measured vs ABM simulation output for November 2012 storm
after calibration process.
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Figure 4.32: Scenario 3: Measured vs ABM simulation output for November 2012 storm
after calibration process.
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Figure 4.33: Scenario 4: Measured vs ABM simulation output for November 2012 storm

after calibration process.
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4.4.5.4 GAMA: Modeling Selected Storm Events with ABM Approach

Validation of the ABM hydrologic model were tested with simulations using the other selected
storm periods as inputs, just as it is defined in Section 4.3. Technically speaking, this
represents what is known as the validation process, since the implemented model is presented
with new data and its performance can be finally evaluated to determine the overall goodness
of the model. In this respect and for the sake of time, the data set used under Section
4.4.2.4 is used herein as input data. An inspection of the measured and the ABM simulated
hydrograph outputs along with the statistical measures can be seen in Figures [4.34] [4.35]
and [4.37, and the performance metrics are listed in Table [4.18] respectively.

Four validation storms were chosen and used in this process. For example, the third
case with the simulation of the May 2015 storm, although it marginally overestimated the
observed peak flow produced satisfactory results with predicted peak discharge at the H3
Station about 329.3 m? - s7!; in comparison to the observed streamflow (266.4 m3 - s71)
represented an error of the spread between the two and an error of the peak discharge
of 20.1 m?® - s71 and 28.1%, respectively. However, the correlation coefficient (r = 0.76)
was the lowest and the accuracy of the prediction accounted for only 58%. Additionally,
the verification on all cases showed the errors were substantially lower than the calibration
results, except for the Q% for the November 2015 verification storm. Figures to
shows the various events of the simulated ABM model versus observed storms used in the
validation task. Table lists the performance metrics on the remaining 3 storms addressed

in the validation process.

Summarizing, results indicated all simulated validation storm hydrographs events by the
ABM model to satisfactorily approximate the shape of the observed storm hydrographs. This
implies, there is good agreement in obtaining acceptable performance of the ABM hydrologic
model in forecasting the flows with time series of tropical watersheds. Complementarily, the
experiments also showed that with further model supplementary adjustment, it can augment
the correlation coefficient and gain substantial reduction of errors, it can be good implemen-
tation alternative to HEC-HMS or other standard hydrologic models.This assumption is
based on the fact that it is generally believed that a good value for the correlation coefficient
should be at least 70%. However, though this may be the desired case for any correlation
analysis done on a certain dataset, it does not hold for several reasons, as Goodwin and
Leech [407] indicated there are six reasons why a correlation size can be compromised:

1. Data with large variability
2. Distinct shape of the data distribution

3. Non-linearity
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4. Outliers
5. Uniqueness of the sample characteristics
6. F-measures

Table 4.18: Statistical metrics performance between GAMA simulations and the observed

flood hydrographs for various Storm Events.

Validation Cor. Coef. Coef. of Det.  RMSE Errf;jrffg . Obs. Qu SiﬁBg )
Storm 1] [R?] [m? - s71] 1% P [m? - s m? - s_pl}
December 2012 0.86 0.74 25.1 51.7 266.4 404.0
December 2014 0.79 0.62 41.7 88.7 335.5 633.3
May 2015 0.76 0.58 20.1 28.1 257.1 320.3
November 2015 0.90 0.82 23.0 80.0 264.3 475.7

Figure 4.34: Observed vs ABM simulated hydrograph of selected December 2012 validation

storm.
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Figure 4.35: Observed vs ABM simulated hydrograph of selected December 2014 validation
storm.
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Figure 4.36: Observed vs ABM simulated hydrograph of selected May 2015 validation storm.
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Figure 4.37: Observed vs ABM simulated hydrograph of selected November 2015 validation

storm.

4.4.6 Conclusions

At this time, an initial agent-based modeling concept was built with which was realized
flood forecasting with the Medio River catchment hydrometric time-series data from Station
H3, have trained, calibrated, and validated the model on the observed case study flood
storms. This first approximation serves as a benchmark scenario upon which is abstracted
the conceptualization of river flood simulation in a humid catchment. Therefore, the key
purpose of this benchmark simulation presented in this section constitutes the baseline on
which to adapt the proposed intelligent multi-agent model for flood forecasting into the
GAMA BDI Concept. Consequently, the simulation performed here would be compared to
other simulation scheme outputs. Therefore, the following sections are dedicated to the task
of upgrading the ABM modeling approach with BDI agents that can be equipped with DDM
and Al skills, and in this manner seek to solve and maximize model capabilities for flood

forecasting tasks.
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4.5 Adapting A Flood Forecasting Model into GAMA
BDI Concept

Up to this point, under the previous section, they simulated flood forecasting with the
implemented ABM model, mostly with reflective agents; however, the proposal includes the
implementation of the MAS model, through BDI architecture. In addition, it was emphasized
in Section 3.3, the suggested mental and behavioral states of each of the agents represented
across the multi-agent organization. Anyhow, it is acknowledged the importance to suffice
how each of these agents would refer to one another, so it required the task to abstract
the Belief-Desire-Intention (BDI) assumptions to the MAS architecture since there are no
requirements in practice that can work as instructions for realizing agents that describes
the instantaneous conjunction of complex hydrometric and geospatial data for the modeling
of hydrologic behaviors in watercourses. From this opinion, this section is focused on the
BDI model plan available in GAMA while seizing advantage of its agent-based and GIS
capabilities to construct a resilient, responsive, and convenient BDI-driven MAS model for
static hydrometric sensors. So, in this section and in the subsections that follow, it is
explained the do about for provisioning the implementation, with intelligent agents in the
MAS model with the BDI capabilities implemented in the GAMA platform as a solution for

the problem domain.

4.5.1 The BDI Rationale and Hydrometric Sensors

As was stated earlier in Section 2.4.2, the development of MAS applied to problems related
to hydrological engineering is a recent approach, and relatively scarce, and although there
are indeed some applicable works in the areas of flood management, planning, hazards, and
forecasting, most of the work done with flood forecasting in river basins with multi-agent
systems and artificial intelligence is for non-tropical river basins.

In principle, they have applied the BDI rationale in the social, socio-environmental,
environmental risk assessment, evacuation plans, and hazard mitigation studies. Therefore,
from the specifications presented here in Chapter 3 and the arguments supported in Chapter
2, it is integrated the hydrologic domain with the BDI agent architecture, representing
the rationale to manage and effectively use field-based hydrometric sensor data for flood
forecasting.

In hydrologic monitoring, the role of hydrometric sensors is to monitor the dynamics of
water resources. When there is precipitation as rainfall or snowmelt, the recorded hydro-
metric quantities support streamflow forecasting, evaluation of the quality of the water, and

records the discharge or water level in rivers, stream, and flow channels and in this same
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manner, must be capable of the management of the hydrometric flow information.

Recalling what was presented in Section 3.3, the BDI architecture enables the agents in
a multi-agent system to carry out certain roles by simulating naturally the management of
this data acquisition and assessment with a certain abstraction.

4.5.2 Agents Knowledge Base
4.5.2.1 Declaring BDI Agents in GAMA

GAMA’s reasoning engine (Figure adapts to the BDI architecture and in this way
allowing the programming of agents with cognitive capabilities using the GAML language.
As a plugin, the BDI architecture, which is an implementation of the Behavior with Emo-
tions and Norms (BEN) model introduced briefly in Section 3.2.3, is an architecture that
together with the default reflexes, provides social agents with cognitive capabilities. The
BEN architecture can be available during the definition of agents using the simple _bdi
control.

Initialized a simulation period, an agent can use the architecture to decide on its next
obligations. This means that each agent is instantiated with an action of this decision-
making process. The BEN architecture configuration incorporates an arrangement of four

components that are embedded within the belief and identity of the agent’s cognition system.

The sections in blue, which are depicted in the diagram represent transformations that
are systematically executed. If a modeler requires defining some processes manually, this
is also possible, as shown in the sections shaded pink. The block in solid lines is processes
controlled by the architecture, the block with dotted lines is optional. One advantage of
such modular design is that it permits the modeler to make use of the items that apply to

his/her domain of study and in this way reducing computational strain on the simulation.

The GAMA BDI engine enables the execution of the interaction "agent-system-environment".
They implement this interaction in the GAMA BDI platform as specific behaviors, such as
Perceptions, Rules, and Plans. Perceptions are behaviors that are executed at every it-
eration. According to to [311], perceptions provide agents with capabilities to perceive the
environment and neighboring agents according to the events, and the information that comes
into the system or that leaves the system.

To show the use of perceptions is provided an example using the GAML syntax. On this
occasion, the sensor verification agent wants to perceive the status of a faulty sensor at a
given hydrometric station location in a radius of 2000m and consequently updates its belief
about the existence of a station in such proximity. Upon perceiving a sensor status, it stops
the intention for verification, though keeping the intention to verify.
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Figure 4.38: GAMA’s abstract architecture and its reasoning engine. [Obtained from GAMA

User’s Guide, Ver 1.8.1].

perceive hydroSta target: subbasin in: hms_ siting {

focus id: "location__hms" var: location strength: 10.0;

ask myself {do remove__intention(verify_sensor_status_desire, true);}}

In GAMA, the reasoning engine used to select the next plan to be executed by each of the
agents is based on rules that are a specific behavior of the GAMA BDI engine. With the rule
engine, agents can create desires from beliefs at each iteration. In the following illustration

the idea that an agent has no connection to the hydrodatabase, will be automatically added

to its desire base to get connected.

rule belief: new_ predicate ('no_DBConnection") new_ desire: DBConnection;
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Plans in GAMA are defined by the modeler. As explained previously, plans are also
behaviors that are used by the GAMA reasoning engine and that are executed in reply to

an intention.

The actions taken by an agent in response to his plan base are dependent upon the
information he has of a specific state of the environment; therefore, such a plan should be
deliberate to the agent when deciding. This capability facilitates several plans to answer the

same intention, while enabled from different circumstances.

Below is an example that illustrates the definition of a plan to verify the intention of
knowing the status of a sensor.

plan verifyingSensor intention: verify sensor status desire {
ask AgentRNSn {do add__desire(read_rain_sensor_data);}}

The sequence in which each block is enabled is facilitated by the BDI engine plugin
features, as shown in Figure 4.39. The following subchapters describe in detail how each
process in each block is performed.

4.5.2.2 The Agent’s Beliefs

The agent’s belief stored within their knowledge base or belief system characterizes the
information that each agent species holds internally. As presented earlier in Section 3.3, this
knowledge base system represents beliefs about the information they have gathered from
the sensors regarding the external environment in which they are present, localized, of the
fixed information, and information they have concerning themselves and other agents in their

surroundings via messages.

In GAMA, a set of predicates that expresses the internal awareness of the agent and
its environment defines the belief base of an agent. This belief base forms part of the BDI
agent’s memory, it allows the agent to update its belief system during a simulation by adding
or dropping a belief. This feasibility provides the agent with the capabilities of updating
their knowledge base. Once an agent in GAMA is defined with the control simple bdi,
all other agents that compose this species, achieve new understanding and behaviors. In
this sense, the agent knowledge base comprises the Belief-Desire-Intention rationale, and the
new behavioral patterns comprise the perceptions, rules, and plans. This mechanism has the
feasibility to be updated in rules, perceptions, reflexes, and plan statements.

An example of how the predicate data type function in GAMA can be represented by

127



___________________

| e e '

| .

[ s LI ===y oplional
|
|

l I:I aulomatic

________________ [ [ mandatary

Figure 4.39: GAMA’s abstract architecture showing the order of execution for each block in
the reasoning engine. [Obtained from GAMA UserGuide, Ver 1.8.1].

the agent AgentSV. This agent can either add or update knowledge to its belief system by
using the predicate data type with the following examples of the GAML language syntax:

rnSensor__predicate

if the agent is aware of the rain sensor. Once this belief has been added, it will be stored in
its belief system as:

do add_ belief(verify_sensor_status);

or otherwise removed from the belief base with the following syntax:
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do remove__belief(verify sensor_ status);

4.5.2.3 The Agent’s Desires

In GAMA, agent desires are implemented as objectives (e.g., Goals, Aims). In this respect,
an agent’s aim to achieve a goal would be defined by his actual state. Desires contain pred-
icates that can be planned with the following GAML syntax:

do add__desire(find user registration);

There are two conditions in which desires are met within GAMA, the first condition is when
an agent believes an objective to be true, whereas in the second condition a desire or in-
tention can be removed manually from its knowledge base. For example, in the following

syntax, a desire is added or removed.

do add__belief(rnSensor_predicate);
do remove__desire(no_rnSensor_predicate);

The GAMA BDI architecture allows concurrency between desires in an ordered manner, so
desires can have sub-desires.

With sub-desires, agents can designate intermediate objectives. For example, when the
sensor verification agent has an objective of checking a specific hydrometric sensor (i.e., water
level sensor), but he does not have a connection to that sensor, he can ask the respective
water level sensor agent to confirm if the sensor is in operation or not. In such a situation,
to fulfill its primary objective, the agent can add an intermittent desire that it will try to

accomplish first.

To prioritize a desire, it can be assigned a priority value to desires so that the agent can
select a new intention from its desire base. The priority of a desire depends on the priority
of the related desire.

4.5.2.4 The Agent’s Intentions

Within the BDI model and particularly in GAMA, to achieve its goals an agent executes
plans, which comprise GAML code. In GAMA, the agent’s intentions are selected from its

129



desires. If an agent has several desires, when he decides on choosing one of his desires,
that new desire (intension) becomes its new priority and is assigned a high priority value.
Therefore, this new intention will define which plan(s) should be realized. However, to avoid
conflicting priorities, should there be any, GAMA allows the use of a Boolean parameter for
defining whether the priority is deterministic or probabilistic by simply adjusting this value.
This functionality gives way to a hierarchical arrangement of the plans.

As with sub-desires, plans in GAMA are not just a sequence of executed actions, but
an agent can have sub-intentions that can be added to his intention base. When adding
new sub-intentions, the agent would halt his actual intention, which will be put on a hold
status, allowing the execution of his new intentions to proceed. An illustration of this action
is shown in the piece of GAML syntax below.

do add__subintention(no_qSensor_predicate),

subintentions: ask myself {do remove_ intention(verify_sensor_status_desire,

true)});

do current _intention on_hold();

4.5.2.5 Agent’s Use-Case Diagram Graphical Depiction

Figure [4.40 shows the "UML use case diagram" for the MAS organization of 17 members,
head node of HSn (Hydrometric Sensor Agent) cluster, 8 nodes of learning agent (e.g.,
Agents Forecasters 1 to 8), and decision-making node (AgentFL). The secondary actors
are represented by the agent’s nodes, AgentSV, AgentDPP, agentData2lLags, AgentHDBM,
and AgentUI respectively. Every node has its functionality with some different functions:
participant node and cluster head-node, and under certain circumstances may share the
same functionality, like, for example, the database connectivity. Head-nodes will capture
sensor data, generate information on the data and about sensors functionality, send reports,
and they convey workable paths to send the data. Participant nodes will retrieve data
from different cluster head-nodes, to pre-process, store locally and into the database, and
aggregate that data to send to the AgentFL node. Participant nodes will also check for
messages regarding data access, sensors functionality, forecasts, and warnings.
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Figure 4.40: Use-Case diagram representing each Agent’s Role.

4.6 Conclusions and Future Perspectives

Contrary to the modeling engine in HEC-HMS, as a hydrologic numerical model where a
series of compartmental models exists specific for adding components for meteorology, basin,
control specifications and numeric data (e.g., precipitation, flows, and evapotranspiration) as
seen in earlier chapters; in GAMA, these components don’t exist implicitly in its simulation
engine, as GAMA is not in the strict sense of the word a hydrologic model per se. However,
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aside from allowing adding data as inputs, it facilitates the introduction of GIS data that can
be agentized within a modeling implementation and initial conditions are possible. Although
GAMA and HEC-HMS may have some of the same similar input data requirements, there
are still some main significant differences between the two, especially when the purpose is
hydrologic modeling implementation. As a fact, both applications require the catchment’s
daily hydrometric data (e.g., rainfall, streamflow). The computational modeling structure
in both models is significantly different. There are several algorithms selected for surface
runoff in HEC-HMS such as the SCS UH method, which was shown earlier that are not
implemented in GAMA. Other examples are the Snyder and the Clark unit hydrograph used
also for hyetograph transformation methods. For river routing the Cunge or the Muskingum-
Cunge methods (that are established on conservative, massive, and diffusion-momentum
laws) constitute the hydrodynamic and physics-based mathematical equations not necessarily
present in the GAMA simulation engine but can be implemented with proper coding. For
example, in the catchment modeling platform "Soil and Water Assessment Tool (SWAT)'
the "volume" of water is routed as flow (discharge) through the channels, the GAMA engine
similarly routes water volumes as flow through the river reach elements, and as such this
assumes that the main channels, or reaches, are trapezoidal as defined in [380]. However,
given the uncertainties and the need for a large number of parameters required by the
SWAT routing engine, the authors in [408-416] have reported several issues with the seasonal
underestimations and overestimation of streamflow routing in SWAT, similarly, this seems
to be the case with the simulation scenarios in GAMA. Nevertheless, although GAMA may
employ the SWAT routing routines, for routing flow, despite these issues, the Medio River
catchment, like most of the catchments in Panama, is ungauged; therefore, hydrometric data
is an issue of scarcity and data impairment. For the Medio River catchment, only Station
H3 has had a complete dataset, although, with some data quality issues, it was the station
with data that could be used for this approach. Station H4 dataset as it was mentioned
earlier, the data record was severely impaired; besides, these stations were installed for an
environmental assessment baseline. The status of the current dataset assumes a dedicated
work of data repair and enhancement had to be undertaken. This is probably another
motive for the dissimilarity concerning modeled and measured flood peaks, as even the
standard hydrological model such as HECHMS has had difficulty estimating flood peaks.
Notwithstanding, both models achieved acceptable values of the assessment metrics. Thus,
this hydrologic modeling approximation task was not done to compare the GAMA modeling
platform with the "HEC-HMS", but to present the potentials of the agent paradigm as
an approach to undertake with few modeling complications setups required of the standard
hydrologic models for streamflow forecasting, to provide a tool for the water community in the
evaluation and oversee of flood hazards in tropical watersheds. For these reasons, the present
work outlook is to look forward to optimizing the ABM hydrologic model implemented in
the GAMA platform for flow estimation codes and capabilities already at hand and obtain,
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if possible, although the results are not compromising an increase of the actual performance
statistics used in the model assessment (Table 4.17)).
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Chapter 5

MAS for Flood Forecasting

In Chapter 4 it was performed streamflow forecasting within the Medio catchment domain us-
ing conventional hydrologic modeling with the HEC-HMS, and a non-conventional approach
with an ABM model implemented on the GAMA platform, and the results from the flood
hydrographs simulation were compared and reported. Moreover, this chapter constitutes the
basis of the proposed MAS hydrologic modeling framework for streamflow prediction within
the tropical watersheds in reference to the ontological settings discussed previously under
Chapter 4, in Section 4.1.3.

So, under this chapter, it is outlined the "BDI-architecture model" behavior for each of
the agent’s present in this MAS hydrologic modeling framework: with hydrometric sensor’s
agents in the administration of the hydrometric data, the preprocessing of the hydrometric
data, data storage, the making of forecasts, and the delivery of inferences concerning flood-
awareness levels from a MAS perspective.

To recreate the hydrologic modeling with the proposed MAS model framework an ar-
rangement of tests was formulated built on the previous agent-based model framework which
was upgraded with the addition of BDI supportive agent’s species and "Machine Learning
(ML)" algorithms (Section 3.3.1). Therefore, the rationale of the series of experiments that
were executed in this chapter takes on as inputs to the MAS the information derived from
the ABM simulation outputs.

5.1 Climatic Events and Hydro-Agents Interaction

In this subsection, the ideas and experiments performed are for coalescing the multi-agent
concept approach through agent-based concepts to simulate the flood hydrographs with
forecasting and decision-making agents regarding flood-awareness levels in the Medio River
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catchment using the "simple_bdi" control feature that makes up the BDI architecture ca-
pabilities already integrated into GAMA.

Following the designated roles (Section 3.3.1) assigned to each of the hydrometric agents
comprising the hydrometric station network, it is built the corresponding multi-agent system
model, and through which is represented the hydrometric sensors and other components of

the hydrometric monitoring network as agents having behaviors based on the BDI format.

The case study dataset, represented by the ABM simulation outputs (see Sections 4.4.5.3
and 4.4.5.4) along with a description of the source and metadata used to specify the behavior
of the agents comprising the MAS were taken from the information formerly described in
Section 4.1.

5.1.1 BDI-driven Conceptual Model for Flood Forecasting

When building a scalable system, it should be noted that such design requires using com-
ponents that search for means of solving the problems autonomously [398, 417] and which
are self-organized for addressing such issues of monitoring and control [418]. However, as
a reminder, these design requirements do not imply the management of cooperation in the
multi-agent concept [419).

A flood event is a dynamic system, in such an active system, agents with different behavior
and goals interact mutually, and as their objective is for each to attain their respective goals
or set of goals, the realization of such can affect one of the other.

Again, the main purpose of a hydrometric sensor network is to monitor hydrologic quan-
tities in catchments and deliver accurate information on what is occurring in such environ-
ments. Therefore, to carry out such a monitoring task, especially in vast watersheds, a single
monitoring station or a sensor is not sufficient; Thus, it is required to include a network with

complete instrumentation for monitoring station (i.e., small catchments).

A description of the abstraction of the BDI reasoning conceptual model for each agent
is shown in Figure It presents the UML class diagrams for the agents in the flood
forecasting model and their specifications using the GAMA built-in BDI framework, these
agents along with the representation of the hydrometric station(s) deployed in the Medio
catchment are defined with their respective fields, actions, predicates, set of beliefs, desire,
intentions, and plans as defined by the GAML language syntax used in the GAMA platform.
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Figure 5.1: General overview of different agent classes used in the BDI Medio river flood forecasting model and their relationships.
The world agent (non-bdi) is the hydrometric station located in the catchment and is only used in the simulation, it represents

the physical world and the sensors network.
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5.1.2 The Agents Belief Knowledge Base

As shown in Figure for each of the agents, the belief knowledge base is updated by the
'update_beliefs()" function, which is a reflex activated immediately upon initialization of
the agent and after each simulation time step. The belief or set of beliefs assigned at initial-
ization for an agent are executed based on parameter attributes that are necessary to trigger
the agent’s belief about its environment or its relationship to a cooperating agent. So, an
agent belief represents the knowledge of their capabilities, the knowledge of the capabilities
of the neighboring agents with whom they interact, and the knowledge of the information
of the environment (i.e., the catchment) collected from the hydrometric network instrumen-
tation. In this context, the parameters of the belief for each agent are defined, along with
their set of fixed state terms required to allow the activation of the beliefs, if the state is
true, as summarized in Table[5.1] For instance, with the case of the sensor verification agent,
the first belief is triggered when he validates the need to check if indeed there is a connec-
tion to the hydrodatabase. The second is his general belief to check for the functionality of
the sensors in the hydrometric network based on perceptions regarding the information on
precipitation, the river water level, and the streamflow collected by the hydrometric sensor
agents. Last is the belief in the need to have this incoming data to be stored in the hydro-
database. For the hydrometric sensor agents (i.e., AgentRNSn, AgentWLSn, AgentSFSn),
they define two beliefs, in the first belief, the sensor agents should read the sensors’ incoming
data, and secondly, that there are no missing instances in the readings. The data prepro-
cessing agents, (i.e., AgentDPP and AgentData2lags) as the beliefs concerning messages
about data that require preprocessing, be it the imputation of missing instances and/or the
creation of lagged data matrices. The beliefs of the hydrodatabase manager agent at initial-
ization time, are four, being the first its perception of its uninterrupted connection to the
hydrodatabase, and the other three corresponds to the notions that there are for example
raw, preprocessed forecast, and warning flags that need to be imported into the database.
The classifier agents, which includes the eight agents with machine learning capabilities for
performing lead-time regressions on flows and the decision agent responsible for computing
the flood-awareness levels from the actual and forecasted results, all believe that they are
connected to the database and that there is either raw and/or imputed raw data that has
been previously pre-processed, by either of the two data preprocessing agents if there was the
need to. Finally, the user interface agent, as five beliefs, being the first that it is connected
to the database, the second and third that there is a request for a user subscription and to
register the user, and the other two are beliefs that are instantiated if there are reports on
sensor status and flood awareness levels from the sensor verification and/or decision-making
agent.
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Table 5.1: Hydrometric Network Agents Beliefs base and states triggered at initialization.

Agent Belief Variable Fixed State
DBConnection Access to the hydrometric database
SV verify sensor_ status Hydrometric sensors are functioning
raw__data_ storage Requests hydrometric data for storage
RNSn read rain sensor data Read incoming rain data
missingrainfall If such is the case
WLSn read waterlev_sensor data Read incoming stage data
missingwaterlevel If such is the case
SFSn read flow sensor data Read incoming flow data
missingstreamflow If such is the case
read__message_rnData_ missing Incoming message if rain data is missing
DPP read_message_wlData_ missing Incoming message if stage data is missing
Data2Lags read__message_gData_ missing Incoming message if flow data is missing
read__message createRaw__datalags. Incoming message create lags from raw
read__message createlmp_datalags. Incoming message create lags from imp
isConnected Access to the hydrometric database
store_raw__data If a request is issued
HDBM
store_prepros_ data If a request is issued
store_forecasts data If a request is issued
FCST1 DBConnection Access to the hydrometric database
FCST2 forecast_flow_ data Available hydrometric incoming data
FL infer flow state Access to forecasts
DBConnection Access to the hydrometric database
find__user_ registration User request to register
Ul register_ user If a request is issued

receive_flood_ warnings

receive__sensor_reports

If such is the case
If such is the case

5.1.3 The Agents Desire Knowledge Base

In the BDI agent model, what they define as desires are the functions that capture the agents’

desires. Within this context, for each of the agents in this MAS organization, targets (goals)

represent the desires to accomplish, and which are predicated on its beliefs. In GAMA,

desires can be prioritized in the sense as to allow an agent to choose between an intention

using the function 'with_priority()". Based on the system domain, each agent has their

desires; however, some may share, for example, the same set of desires, as with the desire of

having a connection to the hydrodatabase. As it was for the case with the belief knowledge

base, for each agent the function call "update_desires()" updates the desire knowledge
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base. In Table it can be found for each agent defined their respective desires.

Table 5.2: Hydrometric Network Agents Beliefs-Desires relationships.

Agent Beliefs Desires/Intentions Plans
no_ DBConnection DBConnection connectingToDB()
no_ rnSensor verify _sensor_ status verifyingSensor()
SV no_ wlSensor raw_ data_ storage request requestingRaw_ storage()
no_ gSensor
no_raw_ data_ storage
no_read_rain_sensor_ data read_rain_sensor data reading rain_ sensor()
no_read_ stage sensor_ data read_ waterlev_sensor_data report_ missing pTotal()
RNSn :
WLSn no_read flow sensor data read_flow sensor data reading stage_sensor()
report__missing stage()
SFSn .
reading flow_ sensor()
no_message rnData_ missing rain_ data_for_dpp prepros_ rnData()
no_message wlData_ missing waterlev__data_ for_ dpp prepros_ wlData()
no_ message_qData_ missing flow_data_ for_dpp prepros_ gDatal()
prepros_ rnSensor__data
prepros_ wlSensor__data
DPP prepros__qSensor__data
Data2Lags no_ prepros_rnSensor_data
no_ prepros_ wlSensor__data
no_ prepros_ gSensor_ data
no_message createRaw__datalags raw_data_to_lag createRaw_ Data2Lags()
no_message createlmp_datal.ags Imp_data_to_lag createlmp_ Data2Lags()
no_raw_ datalags created
no_imp_ dataLags created
no__isConnected test_ parentDB_ connection connecting ToparentDB()
no_store_raw_ data store_all__hydro_ data storing_raw_ data()
HDBM .
no_ store_ prepros_ data storing_ prepros_ data()
no_srore_forecasts data storingiforecastidata()
no_DBConnection DBConnection connectingToDB()
FCST1 . .
no_forecast flow data do_ flow_ predict predict_ Flow()
FCST?2 . . .
FL no_infer flow state do_ flow_inference infer_ Flow()
clas_data_ storage_request requestingClas_storage()
no_ DBConnection DBConnection connectingToDB()
Ul no_ user_ registration find__user_ registration verifyingUserRegistration()
no_ flood_ warnings view__system_ msg verifyingSysAlerts()

no_ sensor_reports

In the following paragraphs, the desires of each of the agents in the MAS are defined.

o AgentSV. The sensor verification agent desires to check periodically if it is connected
to the hydrodatabase, it is his initial desire, and it should be noted that this desire is
also shared by other agents in the system (e.g., classifier agents, and the user interface).

This agent also has two other desires which are to continuously verify the status of the

sensors and to request the hydrometric database management agent to store the raw

data. At initialization time, the first two desires are added to the knowledge base when

the agent believes that it does not have a connection to the database and/or that a
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sensor in the network may be down (out of service). The GAML syntax which defines

each of these desires and their corresponding intention is shown in Table |5.2] above.

Agents RNSn, WLSn, and SFSn. The desire of all hydrometric sensor agents is
the continuous capturing and reading of the real-time data in their environment, that
is rainfall, water level, and the river flow in the catchment. This is their general desire
base, and it is their initial state activated at simulation time. If any believe that it has
missing cases, they add a temporary desire to request an estimation on the instance(s)

be undertaken by the data preprocessing agent.

AgentDPP, and AgentData2Lags. The data preprocessing agent’s (AgentDPP)
desire to perform approximation estimates on the values for the missing data regarding
the information received about the hydrometric data by all the sensor agents, provid-
ing the best possible estimate given the estimates computed on each or any of the
hydrometric quantities of the rainfall, water level, and flow data. Besides, the Agent-
Data2lags, continuously as the role to transform either the complete or incomplete

imputed raw data into a lagged matrix form, suitable for supervised ML tasks.

AgentHDBM. The "test_parentDB_connection', desire relates exclusively to this
agent who believes that his connection to the hydrodatabase must be permanently
uninterrupted, while other agents have only a temporary connection to the database
whenever there is a need for a connection to perform a specific task, can lose the
connection afterward. In the beginning, the first general desire of the hydrodatabase
management agent is to check his connection, whereas his second desire is the storing
of the information generated from the processes carried out in the MAS.

Agents FCST1, FCST2 and FL. The first two agents are a group of eight ma-
chine learning agents hosted under the terminology of Agent forecasters 1 and 2 for
convenience, and the latter is the fuzzy logic skills implemented agent. Their initial
general desire, as in the case of both forecaster agent’s groups, is to perform fore-
cast computations of the river flow, whereas the decision-maker agent desires to make
inferences about flood-awareness levels based on the actual hydrometric data stream
and of receiving flow forecast results data from the forecaster agents. In addition,
the second desire in the agents belief-base is the awareness of database connectivity
(DBConnection), which ensures they can have access to the hydrometric database. At
least one agent has the capability for requesting that the classification and inference
results be stored in the hydrodatabase.

AgentUI. This agent has three desires, which are added to his desire base engine at
the beginning of the simulation; the first desire is to verify his database connection.
This is followed by his desire to register, delete, or update user data, and finally, the

140



exchange of information with the decision-making agent, to the user about the flood-
awareness level status alarms, and the sensor verification agent concerning reports on
the functionality of the hydrometric sensors.

5.1.4 The Agents Intention Knowledge Base

Intensions are the last feature found in the BDI model; these are defined as the procedures
that an agent carries out to accomplish their desires during several simulation time steps
if its past condition be achieved or the intention in question is dropped from the intention
base. In GAMA, the actual intention of an agent determines which plan would be selected.
This view of the intentions is shown by the existing relationship among the features of the
BDI model as was defined previously in Table[5.2] An idea of this feature can be illustrated
from the following scenario with the sensor verification agent who when having the intention
to issue a request for data storage (raw_data_storage_request) from the hydrodatabase
management agent, can’t get the request to proceed (no_raw_data_storage), notices that it
is because it does not have an actual connection to the database (no_DBConnection), which
would activate its database connection plan (connectingToDB()), and therefore, drops the
request for raw data storage (requestingRaw_storage()) plan.

5.1.5 The Agents Plans

In GAMA, the reasoning engine used to select the next plan to be executed by each of the
agents is based on rules, as presented previously in Section 3.4.2.1. Therefore, to accom-
plish their intentions, the agents in the hydrometric system need to execute various plans
accompanying their motivations as specified in Table These plans represent behaviors
put into effect in any frame of reference in reaction to the agent’s desire. In the BEN ar-
chitecture, a plan pertaining to an agent ¢ is denoted by the function "Pl;(Int, Cont, Pr, B)".

where Pl; refers to the name of the plan, Int the intention that activated the plan, C'ont
is the perspective in which the plan is applicable, Pr implies a priority value to help the
agent to choose amongst various plans, and B relates to the behavior performed by the agent
if it chose a particular plan.

For the agents to accomplish their intentions, they need to commit to certain plans
that are related to their intentions, as described in Table Hence, for each agent in
the hydrometric organization, there is a set of plans by which they must abide, these are
breakdown into a sequence of several tasks as described in the activity diagrams shown below
in the following passages:
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o Plans for Agent’s RNSn, WLSn, SFSn, SV, DPP, and Data2Lags. As shown
in the activity diagram in Figure [5.2] the intentions of capturing and generating data
products (e.g., imputed raw data, creation of lagged data matrix), and ensuring sensor
performance are all activities executed on an hourly basis in parallel by the agents of
Levels I and IT of the MAS organization as described in Section 3.2.1. Each mem-
ber has the intention of messaging information before sending data to other segments
of the organization. As depicted in Figure [5.2] the HSn agents, being primary ac-
tors have different functionalities than the secondary agents as defined in the use-case
diagram in Section 3.4.2.5. As cluster head-nodes, the HSn agents have the inten-
tion to collect the incoming data from the field hydrometric sensors, each by follow-
ing their respective plan of reading rain_sensor(), reading stage_sensor() and
reading flow_sensor() data, checking for missing instances and quality of the data
(e.g., instances labeled as -9999.0), and if they identify an instance or instances of the
data with readings of -9999.0 as true or false, they drop their intention to read the
incoming data and take on their intention to report about the conditions of the sensor
and the collected data to the SV agent, who will inform the UI agent about the actual
situation. The HSn agents, in case of sensor data missingness, will trigger the intention
'report_missing()" to report missing instances of any of the hydrometric variables
of interest in the data stream. The triggering of these plans motivates the intentions
of the data pre-processing agents, and in this case, the AgentDPP intention to im-
pute the respective variable that has missing instances by any of the corresponding
plans for (e.g., prepros_rnData(), prepros_wlData() or prepros_qData()), other-
wise if there is no need to impute data, he drops that current intention. However,
concerning the AgentData2l.ags behavior, he intends to continue and in parallel with
the AgentDPP, the execution of its plans (createRaw_Data2Lags() and createImp_-
Data2Lags()) to create the lagged data matrix from the raw and/or raw imputed data,
regardless of the AgentDPP dropped his plans of imputing or not imputing data. On
the other hand, the SV agent, upon the information issued by the HSn agents regarding
the condition of the data, triggers its plan to report the issues concerning the status of
the sensors and upon request puts into execution the intention of storing the collected
raw and imputed raw data as per the selected plans outlined in Table

« Plans for AgentHDBM. The plan (connectingToDB()), for example, is executed
only once at the start of every simulation initialization in which the AgentHDBM
is conscious of its intention to connect to the database, to satisfy this intention he
executes this plan. Given the duties of the AgentHDBM to ensure the storing of all
data products both locally and specifically into the hydrometric database server and to
provide the services as data accessibility for other agents, it needs to have uninterrupted
login status to the database, connection speed, and be able to perform all required SQL
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Figure 5.2: Activity diagram for agent’s node: HSn, SV, DPP and Data2Lags.

actions. This feature is accessible in GAMA through the parent "AgentDB" a skill that
can be inherited by an agent species. However, whereas other agents, for example, the
AgentSV, AgentDPP, AgentFL, or AgentUI, can also access the database, their login
capabilities are only temporary, and they will have access whenever they need to query
information from the database. In this respect, they will require fulfilling three steps:
1) connect to the database, 2) perform SQL statements, and 3) disconnect from the
database. The execution of such steps is time-consuming and imposes an expenditure
of simulation resources. The activity diagram of the AgentHDBM plans for fulfilling
its roles of data storing, querying, table creation is presented in Figure [5.3|

o Plans for Agents FCST1, FCST2, and FL. The activity diagram for the flow
forecasting learners and decision-making agents is presented in Figure [5.4] The corre-
sponding illustration constitutes a general flow of the AgentFCSTR’s and AgentFL
behaviors considering their decisions. Behaviors assigned in this activity diagram
are relevant to the following intentions: connectingToDB()Behavior — the intention
of connecting to the database for the retrieval of the lagged raw data matrix from
AgentData2Lags (generator of the actual data); the plan to UpdateBeliefs()Behavior —
represents the intention to update and train models and the predict_Flow () Behavior
— is the intention to conduct numerical computation of flow predictions with the most
suitable models based on the "Random Forest" and "Support Vector Regression" algo-
rithms; the intention to send forecast results behavior — sending flow forecast results

data to the decision-making agent, AgentFL; who also executes the plan connecting-
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Figure 5.3: Activity diagram for AgentHDBM node.

ToDB()Behavior — the current intention to retrieve flow forecast results, revise the
forecast; the intention to infer Flow()Behavior — the plan to perform computation
of flow-awareness levels of the actual and hourly forecast data; and the intention to
requestingClas_storage() — request from the AgentHDBM the storing of the clas-
sification and inference data results.
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Figure 5.4: Activity diagram for Agent’s FCSTR’s and AgentFL nodes.

o Plans for AgentUI. The AgentUI behavior flows, as for the other agents are orga-
nized in the activity diagram displayed in Figure 5.5. These behaviors correspond to
the following tasks: the intention connectingToDB()Behavior — the intention of con-
necting to the database to send and check for system messages and flood-awareness
warnings that he receives from other agents in the system (e.g., AgentSV, AgentFL);
the intention to become acquainted with the latest accounts in the system, by which
he executes the plan UpdateBeliefs()Behavior; — the intensions to register users and
verify system alert by activations of the plans verifyingUserRegistration() and verify-
ingSysAlerts(), respectively.
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5.2 Machine Learning Algorithm for Agent Species

The use of ML over its numerical counterpart is that it offers much power in its ability
to deal with small datasets with missing instances and other data integrity-related prob-
lems [420-423], that are common to environmental time series; its ease at identifying trends
and patterns, and data with high complexity; they offer great efficiency and accuracy with
data that has grown over time, just to mention a few of their characteristics. Despite these
advantages, they still suffer from several disadvantages when it comes to data acquisition or
can be time-consuming to implement, among other factors. Though it is not intended to go
deeper into the topic of ML, given that Section 2.2.4 briefly discusses some of the approaches
of Al technology in flood forecasting.

5.2.1 Experimental Setup: ML Algorithm for Agent Species

To select the ML regression classifier algorithm for the classifier agents (i.e., AgentFCST1,
and AgentFCST2), the key agents for the forecasting objective, eight ML algorithms that
are used for regression tasks were evaluated.

To implement the experiments for the evaluation of the algorithms, the RStudio [356] Sta-
tistical tool and WEKA [424] (version 3.9.5) data mining software package were used. Both
workbenches offer a suite of machine learning algorithms (e.g., Random Forest, XGBoost,
SVM) to construct the models for flow predictions.

They are two main reasons for using both workbenches, first because GAMA offers an
API that is fully functional for running both RScripts and WEKA implementations through
R/Java code implemented modules, and secondly because the bridge between R and GAMA
when it comes to ML implementations, is quite much developed than the WEKA. However,
there are also advantages between WEKA and RStudio, and this feature offers the use of
both R packages and scripts to be implemented in WEKA and vice versa.

5.2.2 Description of the Regression Learner Algorithms

In ML, there are three main ways to go about the learning process. These learning approaches
are outlined in the following list.

e Supervised Learning
In supervised learning, models learn by experience, from information that is fed to
them during the learning process, and consequently use the learned information to

generate new information from the previous experience. As ML is suitable for learning
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complex systems, their relationship to agents modeling technologies is closely related,

as discussed in [425].

o Unsupervised Learning
Unlike supervised learning which requires learning from data during the learning pro-
cess, unsupervised approaches try to learn an instance pattern even in the absence of a
recognized output, even if there are no available recognized outputs or like in the case of
reinforcement learning, on the feedback of the structure of the output. So, without the
need for human involvement, these algorithms can disclose information that is hidden
in groups of data. Some examples of this type of learning are "clustering", "principal
component analysis (PCA)", "K-means clustering", and "self-organizing maps (SOM)".

+ Reinforcement Learning
Being a subdivision of ML, this paradigm focuses on the notion of considering the agent
as a machine. Therefore, this machine (the agent) is present in an environment in which
he perceptively interacts by conceiving the state of the elements of such environment in
a vectorized manner. Therefore, in this scheme, a series of decisions must be taken by
the agent before the achievement of his goal(s), and these are rewarded upon fulfillment
instead of informing if the agent’s performance along the path has been for better or

for worse. Examples include the Markov Decision Process and Monte Carlo Methods.

With the WEKA workbench, the algorithms were evaluated over one data domain (the
synthetic data) delivered from the ABM simulation outputs with the supervised learning

approach, as the problem task to solve at hand is of regression type.

The learning processes involved the use of eight algorithms that are available in R and
WEKA through the RPlugin API. The algorithms are used for solving regression problems
and are detailed below:

« Elastic-Net. Elastic-Net forms part of the Generalized Linear Models (glmnet) re-
gression learner of the machine learning package (mlr) function in R [426]. It is one of
the three commonly used methods of regularization techniques used in linear models.
The other two are the "Ridge Regression" and "LASSO (Least Absolute Shrinkage and
Selection Operator)". Regularization (also known as shrinkage) is a method that re-
duces overfitting. It prevents overfitting in the parameters of a model from becoming
excessively large by shrinking them toward zero. This befits the model while making
predictions on new data, as the models as less variance. The Elastic-Net is viewed as
an extension of both "Ridge Regression" and "LASSO" [427].

« NNET. A supervised 'feed-forward neural network" learner [428]. It allows fitting a
single hidden layer. Feedforward networks only allow the information to travel unidi-
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rectionally, which means at the network entrance level across the unseen level toward

the exit level, given that loops are not present.

SVM. Support Vector Machine is an algorithm that is a function in R and forms part
of the mlr package. It is available in WEKA through the RPlugin. The philosophy of
SVM resides in that it has dual usage in problem-solving (e.g., as a classifier and as a
regressor). However, it is used more often for classification analysis. SVM works well
for data which distribution is unknown. The package source of the SVM algorithm in
R is available through the interface of the LIBSVM in the e1071 package [429].

Random Forest. Based on Breiman [430] is a type of regression tree that adjusts
several decision tree classification schemes on various sub-samples of a dataset. An
ensemble of techniques such as Bagging and Random Space Method, using decision
trees as base learners.

RPart. An algorithm implementation based on CART, by Breiman et al. [431] fo-
cused on recursive partitioning and decision trees. Although any decision tree can be
implemented for regression tasks, the RPart algorithm offers the most accurate imple-
mentations. RPart builds general structured models for classification and regression
using a procedure of two steps, in which the generated models are defined by binary
trees.

XGBoost. A work by Chen Guestrin [432] is an implementation based on the "Gra-
dient Boosting Framework" by Friedman [433]. The XGBoost algorithm is available
as an R package, and in other data analysis application languages like Python, Java,
and Julia, just to mention a few. XGBoost allows automated computations in parallel
on one PC allowing a speed of processing than its boosting counterpart. It can also
support regression, and classification tasks, and various objective functions.

MLP. Is a function based on the work of Rosenblatt [434] that creates and trains a
Multilayer Perceptron. They are the more basic feedforward networks. The train is
done by the error of the backpropagation algorithm and related schemes.

MLR. A Simple Regression Linear Model is a regression classifier from the mlr methods
in the R implemented by Bischl et al. [435].

5.2.3 ML Algorithm Performance Metrics and Selection Workflow

The methodology for comparing several ML techniques across various data domains is fairly

known, and of which examples can be found in [436,|437], and a recent work reported in [438].

However, the literary information on assessing ML evaluation over a single dataset is not as

149



fully documented, except for a recent survey on this topic done by Basha and Rajput [439]
who evaluated several machine learning algorithms for regression and classification tasks over
a single dataset for each case.

There are various proposed statistics convenient for measuring the regression aim'’s effi-
ciency. Notwithstanding, for the quantitative performance of each algorithm evaluated, it
is applied the "RMSE", the estimator that shares the same units as the observed and esti-
mated data, to measure the errors between the results, and "R-coefficient" as the estimator

of similarity between two variables.

For the selection of the algorithms, it conveyed the following workflow:

e The Data. The dataset used in the elaboration of the ML models were created
from the ABM simulated available storm hydrographs already detailed in Chapter 4.
Then, the simulation outputs from the ABM became the synthetic data used both
in the selection of the algorithms, the training of forecasting agent learners, and the
validation of the proposed MAS for streamflow forecasts.

o Predictive Variables. The selected ABM synthetic storm data which chronologi-
cally corresponds to November 2012, is created the lagged and lead time data that
corresponds to the time domain of the forecasting periods. From this data set after
performing the necessary feature engineering on the data, is selected as the dataset
for testing the algorithms to be selected. Table shows the characteristics of the
dataset with 716 instances that was prepared with actual (§) and lagged values (6 — k)
resulting from the autocorrelation function for the variable rainfall (rn), and water
level(wl), as independent variables, and with actual values (9) for the streamflow (@),
and lag (§ — k), and lead time (§ + k) for the target streamflow discharge 1-hour ahead.

o Algorithms Tuning Process. With the WEKA data-mining workbench, the work-
flow used for testing each of the eight ML algorithms described above was executed
within the Experimenter environment. This selection was since the WEKA suite offers
a good deal of ML algorithm selection, and those that are not present can easily be

obtained from its new features via APIs and plugins, allowing such algorithms from
the R or Julia in WEKA.

The object of the experimental simulations in the Experimenter was to identify the
prediction correctness and rigor of the algorithm schemes and in this way decide on the
best possible prototype model. Therefore, the experiments were performed by tuning the
sensitive parameters (Table of each algorithm, running the set of experiments with the
commonly known "stratified 10-fold cross-validation", like this providing for the synthetic
hydrometric dataset to be portioned in random folds of ten between training and testing.
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This process of leaven one out at each repeated simulation permits model fitness until the last
fold is completed. WEKA experimenter in the process allows for allows model evaluation, in
the case of prediction, using the RMSE, the correlation coefficient, and a "Paired Corrected
t-Test" is available, as selected here and described in the subsequent paragraphs.

Table 5.3: A representation of the dataset used to evaluate the classifier algorithm.

Variable Abr. Instances Actual, Lag and Lead Attributes  Unit
Rainfall rm 716 rng, TMs_1, TM§_2, TTs_3, TT_4 mm
Water Level — wl 716 wls, wls_1, wls_o, wls_3, wls_4 m
Streamflow Q 716 Qs Qs-1, Qs—2, Qst1 m? - s~

5.2.4 Experimental Results: ML Algorithm for Agent Species

The selection of algorithms suitable for machine learning problem solving is a very important
task. In this experimental task, both R and WEKA were used, with which was implemented
eight ML algorithms for evaluation on the dataset with 716 instances, thirteen independent
variables, and target variable (i.e., Qs51) and their performance reported.

The experimental setup follows the building of the regression models (see equation (/5.1))
with 10-fold cross-validation given its importance as an adequate tool for evaluating clas-

sification and regression methods [440-442] with the tuning of hyperparameters for each
algorithm as can be seen in Table [5.4]

Q0+ k) =F (rng, mns_g, wls, wls_g, Qs, Qs—k, Qo+) (5.1)

where ¢§ is the timeframe of the phenomenon, k is the time step variable, rn and wl the
rainfall and water level variables, and F'is a function that usually defines a large flow rate
(@) of the time series.

Completed the process of simulation runs in the WEKA Experimenter environment, the
overall analysis revealed by the performance metrics for the numerical predictions given by
the algorithms are summarized in Table [5.5 and [5.6] respectively.

In general terms, the algorithms to have lower values of the RMSE are SVM (17.56
m? - s71), Elastic-Net (18.22 m3 - s71), LM (18.84 m? - s~ and RF (19.71 m? - s71), with
SVM and RF both displaying the highest correlation coefficient (R = 0.92). The remaining
four algorithms have higher error values, been XGBoost with the highest (32.83 m? - s71),
followed by NNET (29.70 m? - s7'), MLP (24.51 m® - s7!), and Rpart (22.07 m?® - s7') with
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Table 5.4: Machine learning algorithms and Tuned Hyperparameters.

ML Algorithm

Hyperparameter to Tune

Tuned Hyperparameter

Best Tune

rameter

Hyperpa-

Elastic-NET

NNET

SVM
Random Forest

Rpart
XGBoost

MLP

MLR

a: A parameter used for shuffling the
data, with 0 < a < 1. In LASSO
and Ridge regression o = 1, and «
= 0 a: Elastic-NET mixing parameter
with 0 < a < 1. The penalty is defined
as a lasso penalty for « = 1 and a ridge
penalty for « = 0. \: User-specified se-
quence for A. Normally, the program
should calculate the A sequence based
on nA and A\.min.ratio. If the value A
is specified, it overrides this.

size: No. of hidden layers. Decay: Is
the weight decay. Default=0.

C: The penalizing factor.

ntree: The amount of three to build.
Assures inputs to be predicted. mtry:
The number of random samples per
splits.

cp: The list of complex values.

n: Controls the learning-rate: The in-
put normalization factor [0 < n < 1].
Default: 1.

seed: A random sample generator.
Momentum: Update weights. hidden-
layers: No. of hidden layer for the neu-
ral net. decay: Decreases the learn-
ingrate. learningrate: Update weights.

N.A

a = 0.01, 0.05, 0.1. A
=0.10, 0.21, 0.15. tune
length = 10, 20, 15

size = 10, 6, 20. Decay
=0.05,0.1, 1, 2
C=532

ntree = 500, 200, 1000,
1200. mtry = 5, 3, 2, 6

cp = 0.05, 0.01, 0.1, 0.5
n = 0.01, 0.1, 0.5. ~
=3, 5 2, 1. max_-
depth = 10, 5, 6, 8.
min__child_ weight = 5,
3, 10. subsample = 0.1,
0.01, 0.5.

seed = 500, 100, 200,
300. Momentum =
0.05, 0.1, 0.01, 0.02.
hiddenLayers = 10, 20,
30. decay = 0.05, 0.01,

0.1. learningRate =
0.01, 0.05, 0.1
None

a=0.1. A=0.21. tune
length = 10.

size = 10. Decay = 0.05

C=2
ntree = 1000. mtry = 2

cp = 0.01

n =0.5. y = 5. max -
depth = 10, min_-
child_ weight = 5, sub-
sample = 0.5

seed = 300. Momen-

tum = 0.05 hiddenLay-
ers = 10. decay = 0.05.
learningRate = 0.01

None
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the R coefficient in the range [0.85, 0.89] respectively, except for NNET which had the lowest
correlation value (0.53).

Now, on a significance level fixed at a = 0.05 when regarding the performance of each
algorithm as a case base scheme, in the case of Elastic-Net, Table [5.5| shows that the results
of NNET, Rpart, XGBoost, and the LM are statistically improved over Elastic-Net. When
defining NNET as the base algorithm, it turns out that Elastic-Net, SVM, RF, Rpart, and
LM, are statistically worse than NNET. If it is SVM the baseline, then NNET, RF, Rpart,
and XGBoost are statistically better.

Table 5.5: A Paired Corrected t-Test Using the RMSE Measure for the ML Algorithms. The
entries in row M and column N show the results for the RMSE performance measures of M
over N and the ratio of the number of wins:lost:difference (base on a 5 x 10 t-test). The
markers o and [, represents the algorithms that were statistically better or worse than the
other when acting as base line algorithm.

Elas-Net NNET SVM RF Rpart XGBoost MLP LM Total

Elas-Net 29.70ac  17.56 19.71  22.07a  32.83c 2451 1884 0:4:-4
NNET 18.220 17568 19.713 22.078 32.83 24.51 18.848 6:1:5
SVM 18.22 29.70c 19.71a  22.07a  32.83c 24.51 18.84  0:3:-3
RF 18.22 29.70ac  17.568 22.07 32.83c 24.51 18.84  0:4:-4
Rpart 18.22 29.70a  17.565 19.71 32.83« 24.51 18.848 4:2:2
XGBoost  18.2203 29.70 17.568 19.713 22.078 24.515 18.845 T:0:7
MLP 18.22 29.70 17.56 19.71 22.07 32.83« 18.84  1:2:-1
LM 18.228  29.70acc  17.56 19.71  22.07a  32.83c 24.51 1:3:-2

Continuing with the same evaluation methodology, when evaluating the algorithms on the
regression task and using RF as a test baseline algorithm, it was noticed that only NNET
and XGBoost are statistically best over RF, whereas SVM performs worse. For Rpart,
similarly, NNET and XGBoost perform statistically better over Rpart, and just as SVM
performed badly with RF, the same outcome was observed for Rpart, in addition to the LM
that also resulted statistically worse. Interestingly, XGBoost as test base, with a high value
of the RMSE, resulted in no tie, and no losses, as it portrays seven wins, given there are
six algorithms that performed statistically worse than it. Only NNET lags behind XGBoost
with six wins and one loss. For the MLP, only XGBoost showed to be statistically improved,
whereas, for the LM algorithm, NNET, Rpart, and XGBoost were labeled as statistically
better, with Elastic-Net performing significantly worse.

So far, as can be seen in both Tables [5.5 and [5.6] though, the magnitude of the bias, and
concerning the R coefficient, it seems like SVM is better than RF. The table also reveals
that SVM has even lower errors than Elastic-Net, and although RF has a slightly higher
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Table 5.6: A Paired Corrected t-Test Using the R Measure for the ML Algorithms. The
entries in row M and column N show the results of the R performance measure of M over N
and the ratio of the number of wins:lost:difference (base on a 5 x 10 t-test). The markers «
and [, represents the algorithms that were statistically better or worse than the other when
acting as base line algorithm.

Elastic-Net NNET SVM RF Rpart XGBoost MLP LM  Total

Elastic-Net 0.535  0.92 0.92 0.86 0.86 0.85 0.89  2:0:2
NNET 0.89c 0.92a¢ 0.92a0 0.86c 0.86c 0.85a¢  0.89a 0:7:-7
SVM 0.89 0.5303 0.92 0.865 0.860 0.85 0.89  3:0:3
RF 0.89 0.536  0.92 0.8605 0.860 0.85 089  3:0:3
Rpart 0.89« 0.535 0.92a 0.92«a 0.86 0.85 0.89 1:3:-2
XGBoost 0.89 0.535 0.92a 0.92a0 0.86 0.85 0.89 1:2:-1
MLP 0.89 0.533 092 0.92 0.86 0.86 0.89 1:0:1
LM 0.89 0.533 092 0.92 0.86 0.86 0.85 1:0:1

RMSE error than Elastic-Net, it has a higher value of R. Both SVM and RF algorithms are
followed in performance by Elastic-Net and the LM with the same value of the R = 0.89,
although Elastic-Net reported having the lowest error. A dispute between the performance
of Rpart and MLP can also be noted, where the correlation coefficient of Rpart is only one
unit higher than that of MLP; however, based on the appropriate performance measure (for
example, RMSE) that runs the significance test, Rpart outperforms MLP on the RMSE.
Finally, NNET and XGBoost have the highest errors, but XGBoost has a better correlation
coefficient than NNET.

5.2.5 Conclusions

As mentioned earlier in this section, the aim for evaluating several ML algorithms was not
meant to conduct a thorough study and examination of the algorithms per se, but for select-
ing, that algorithm or set of algorithms that could be adequate in the implementation of the
MAS classifier agents’ species whose goal implies the forecasting of flows. Eight different ML
models were developed using the WEKA package software. To verify the complete baseline
dataset and minimize the overestimation of the model for flow predictions during training,
it was applied a 10-fold cross-validation approach. The algorithms showed significant differ-
ences in their performance, SVM and RF tested to be the most relevant algorithm for the
forecasting task. For the most part, they achieved better results for the hydrometric dataset
relating to the RMSE and the R coefficient metrics. Although the corrected paired t-test on
the RMSE confirmed XGBoost, NNET, and RPart with the greatest number of wins, they
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have the highest RMSE and the lowest R. However, of notice, in ML, it should be noted
that the best learning scheme for a given dataset, doesn’t ensure to perform accurately on
new data with attributes that are slightly varying or different. So, the question is not which
algorithm outperforms which, but is goodness in fitting a particular data domain.

5.3 Fuzzy Logic Model for Agent Species

In Subsection 2.2.4.2, it was explored in the literature review certain soft computing tech-
niques like in the "applications of fuzzy logic in hydrology" and "water resources engineering
and management' to cope with the engineering problems caused by floods. This section,
though, not intended to be a treatise about the fuzzy system, which is comprehensibly
submitted in the dedicated published writings, describes the settings used for the implemen-
tation of the decision agent (i.e., AgentFL) that form part of the MAS model framework, is
endowed with "FUZZY LOGIC" capabilities and skills, who based on the actual hydrometric
information and flow forecasts provided by the forecaster agents perform the flood-awareness

levels inferences at each established time horizon.

5.3.1 Fuzzy Inference System: A General View

Inference means What? The inference is a process whereby an assertion made from some
premise is true, proceed to another assertion because of a structure of rules, that leads to
a second assertion being true. However, according to [443] inference implies a reasoning
object and facilitates ins (data) and outs (results) on account of rules meant for this aim.
These rules are what is known in fuzzy set theory, as "fuzzy inference rules'.

Generally, FIS are systems from which is built "fuzzy expert systems'. A FIS is con-
structed from a group of functions known as membership functions (MFs) and is rule-based.
One of the characteristics of FIS is that they offer reasonable estimates regarding the data,
on which the inference based on rules is applied. In any expert system, it is likely to find two
important functions, where the first is, the problem-solving function able to exploit specific
fields of information, and the interaction function, operating at the user’s level, and which
explains the system’s intention at the initial and ending of the problem-solving cycle. They
often expected the expert system to handle unclear and insufficient data. However, an ex-
pert system is an operator-interaction configuration, as shown in Figure[5.6, which comprises

three components:

« Knowledge base: This component considers knowledge that is unique to the domain

of application, with information concerning the domain and rules that explain correla-
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tions in the domain. Hereby, "IF-THEN" rules are the most common form of imparting
knowledge.

o Interference engine: In this component, knowledge of the system is actively used to

perform reasoning to generate answers for a user query.

o User interface: This component provides communication to flow between users and
the system, besides supplying the user with understanding into the problem-solving

cycle by the use of inference (reasoning).

Knowledge
Base /& 77T T TTTTA !
A .
v
T Communication Functions USER
t Knowledge Inferense
Y .
Inference X
Engine )~ "7 TTT7T

Figure 5.6: Structure of a knowledge-base setting.

A FIS is presented in four widely known operating methods; However, here there is focus
on two: the Mamdani [444, 445] and the Takagi and Sugeno (TSK) [446] fuzzy models.
Both Mamdani and TSK are a part of the "MATLAB Toolbox" for Fuzzy Logic applications
development.

5.3.2 Experimental Setup: FL Model for Agent Species

The initial setup for the fuzzy logic agent can be seen portrayed in Figure [5.7] which is the
schematic representation of the recommended rationale for the fuzzy logic prototype that is
presented here as a component (i.e., at the classification level) within the suggested hydrologic
MAS framework for streamflow prediction in the tropical basin. Therefore, this fuzzy logic
skill is an element that is embedded in the GAMA AgentFL species, which portrays the role
of the decision agent. In this arrangement, both Agents groups of forecasters (FCST1 and
FCST2), and the AgentFL are only employing the hydrometric data information captured
directly from standalone files and not data fed into the system in real-time. For example,
the rainfall agent, stage (water level) agent, and river flow agent, are connected to the field
sensors in real-time, each of which senses the surroundings of a hydrometric station for

perceptions on precipitation, river water level, and flow.
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The crisp intervals here are the input (actual) variables collected by the hydrometric
sensor’s agents, and the flow forecasts generated by the AgentFCST group, these become
conceptualized because of the fuzzification mechanisms into linguistic quantities which are
in direct relation to the input linguistic variable quantity. The fusion of the rainfall, stage,
streamflow, and flow forecasts data will become earmarked for the decision agent to infer
the flow regime and deliver warnings and disclosure of information to the users concerning

the measures to be adopted.

Figure 5.7: Schematic of the fuzzy logic model rationale, showing the field hydrometric sensor
data input level, the hydrometric sensor agents’ level, classifier level, and the corresponding

decision-making level.

5.3.3 The Fuzzy Model Layout

The design for this fuzzy logic task is implemented with the three input hydrometric vari-
ables, and the AgentFCST results which were initially divided into four linguistic variables
depending on the type of variable (see Table . In this sense, for these hydrometric
variables, the linguistic partitions are as follows: i) rainfall, with linguistic variables Light,
Average, Intense, Verylntense, ii) variable stage, Normal, Average, High, VeryHigh, and iii)
for both variables streamflow and AgentFCST, Low, Average, High, and VeryHigh. For each
of these, its degree of membership is also identified within the fuzzy set. There are several
membership functions (MFs) that can build fuzzy inference systems such as the Triangular,
Trapezoidal, Gaussian, Sigmoidal [447]. The triangular membership function was chosen(see
Figures and whose mathematical description is determined by equation below,
given its ease of use in handling accurate ranges and its evaluation is much simpler than
the other contra parts, that even the lay and the non-technical user can easily understand
it. The calibration and tuning process of fuzzy rule systems, along with the identification
and selection of suitable MFs, although they are several insights and approaches offered in
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the literature to conduct such a task, can be a complex one and depend on the problem to
be solved. However, fuzzy rule-based systems can be enhanced with adequate calibration
techniques that allow the enhancement of the model’s output performance. Perhaps, using
the tuning process, the fuzzification process, with the conjunction of an expert’s input, helps
formulate the symbolic logic. The tuning process depends on the set rule base defined for
the system and the database. The tuning process that was followed here is the well-known
ad hoc data covering technique proposed in [448]. An iterative method which as a low time-
consuming process for learning the fuzzy rules by covering the criteria of the data being
modeled.

Table 5.7: Input and output variables for the flood awareness level measure.

Hydro Variable Linguistic Tag Range

Light [1 _ 50]
i Average 25 — 75]
R
B Infense [50 - 150]
VeryIntense [100 — 250]
Normal (8.0 — 9.0]
Average [8.5 — 10.0]
St
e High 9.5~ 11.0]
VeryHigh [10.5 - 12.0]
Low 0.5 — 100]
A -2
Streamflow (cms) \.ferage [50 — 200]
High [100 — 300]
VeryHigh [200 — 400]
Low (0.5 — 400]
Average [200 — 500]
AgentFCST
gen (cms) High [400 — 600]
VeryHigh [500 — 1000]
LOW [0 4]
CAUTION 2-6
Flood-Awareness Levels ALARM {4 ) 8}
RISK 6 — 10]
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Figure 5.8: Triangular membership function. Where p is a lower limit, an upper limit e, and

a focal point ¢, LB & UB, are cross over points, and p < ¢ < e.

v < p;
i p<v<g;
q—p
pa() =470 (5.2)
qg<v<e
e—q
0 v>e

5.3.4 Experimental Results: FL Model for Agent Species

Once the configurations of the fuzzy system have been set up with the input variables
of interest, and the rules have been established, the previous are duly merged with their
convenient linguistic variables and hence the inference engine, using the Fuzzy Logic Toolbox
of the MATLAB computational package (2020b, Academic version) accesses the fuzzy rule
base to compute and generate both the average and the output linguistic values (Figure.
Hence, before this process can take place, there are two important steps to complete which
lead to these processes. These steps are the aggregation and composition phases. With
aggregation, the output for each fuzzy set rule is integrated with the inference phase. In
simpler terms aggregation computes the IF portion of the rule whereas in the composition
phase, the THEN operation is computed.

The fuzzy inference structure is the central unit of a fuzzy rule implementation from
linguistic variables upon which experts base their knowledge on decision making. It relies
on the "[F-THEN" rules alongside the "OR" or "AND" connectors for representing necessary
decision rules. In this experiment, a set of one hundred twenty rules were created (see Fig-
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ure . The rules used in the decision process were generated from the three hydrologic
input parameters (rainfall, stage level, and streamflow) and according to these is decided
the output flood-awareness level value. The system was simulated using the min-max or
maximum means (MOM) Mamdani’s model and the centroid (COG) method for defuzzi-
fication. Therefore, if the actual number of active rules are p"”, where "p" represents the
highest quantity that the membership functions or inclusions can have, 'n" is total inputs,
then the configuration for the fuzzy system based on the three mentioned inputs above is 3
inputs with 4 membership each, which results in a total of 3 x 4 = 12 rules. However, to
enhance the system further, and safeguard a workable setup of fuzzy rules and membership
functions be valid and practical in computational terms, especially for real-time operation
purposes as suggested for the system, four more rules were added based on expert opinion
and knowledge of the precipitation regime and conditions of local flow for the river system
within the catchment of study.

During the defuzzification mechanism, the values corresponding to the outputs of the
linguistic variables are transformed into their crisp format. Thus, in the arrangement for
each linguistic term, its maximum value, in turn, represents the maximum (center) values of
each membership function. this suggests that the median of the interval gives the maximum
value of the interval of a membership function. Now, regarding the final decision concerning
the flood-awareness state that the system should disclose, the usual values for the linguistic
terms are given by "LOW", "CAUTION", "ALERT", and "RISK", as described in Figure
and respectively. From this perspective, it was calculated the best combinations of
the input values using the weighted average and considering their degrees of membership.
Once these calculations are carried out, the decision agent (i.e., fuzzy logic agent) based on
the results of the linguistic terms oversees announcing to the user interface agent about the
flood-awareness levels defined in Table .7 As the three hydrometric agents are constantly
perceiving the hydrologic conditions of the environment, to evaluate the performance of the
fuzzy logic decision-maker agent, the situation of the simulation of the changes in flooding

severity is shown by the mapping from streamflow, stage, and rainfall to the flood-awareness
level (Figure [5.11)).

Once the design and implementation of the fuzzy system were complete, which purposes
and functions are part of the component for the agent associated with deciding about flood
alert levels within the proposed MAS model, its integration into the MAS model, allows
afterwards the consecution of a series of experimental and validation tests to verify its effi-
ciency for the assigned task. Below in the following paragraphs, is described the experiments

performed and comment on the eventual results.

For the evaluation of the fuzzy model, it was used the synthetic data generated by the
ABM outputs, as the case study to build and test the system, since it is a period that pre-
sented the highest rainfall, stage height, and discharge. So, to test the system, for example,
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is evaluated on five rule cases, as shown in Figure according to the MATLAB simula-
tion, the outputs consider the accumulated flood volume in the channel, giving the input
precipitation and the water level to hydraulically reproduce the final decision of the fuzzy
agent model, as it reproduces the flood-awareness as expected (see Table [5.8)). Therefore,
it can be seen that when the system is simulated for a given range of input values, say for
example, if the value of rainfall is = 23 mm, which lies within the range [1, 50 mm]| as Light,
and stage = 11.6 m, which lies in the range [10.5, 12.0 m] as VeryHigh, and the observed and
1 hour forecast streamflow = 404.0 and 410.0 m?- s~!, which lies within the ranges [200, 400
m? - s71] as High and [200, 500 m? - s7!] as VeryHigh, the resulted flood-awareness level is
likely 5.0 (Figure . Therefore, high values of flood-awareness, for high values of rainfall,
streamflow, and water level, and low values of the flood-awareness for low values of rainfall,
water level, and streamflow when contrasting the results in the Table with the graphics (see

Table .8 Figures and [5.13)) as shown below.

Table 5.8: Outputs on flood awareness inference based on the hydrometric data inputs, ABM
averaged simulated flows and the lead time forecasts.

ABM Obs. MAS Forecasted.

Rain  Stage
ol ] o
[m? - s71] [m? - s71]
Cases

1 23 11.6 404.0 410.0 5.0
2 1 8.5 432.8 462.9 1.6
3 16 9.0 586.5 539.6 2.0
4 1 8.5 358.5 434.4 1.6
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5.3.5 Conclusions

In this section, it was presented the design, implementation and testing of the fuzzy logic
component integrated into the proposed MAS hydrologic model that can be useful in the
humid catchment for inferring on different flood-awareness levels. This model implements the
features for decision-making by the AgentFL, based on a fuzzy rule with capabilities to infer
flow conditions in the river, also comprises other modules with capabilities for managing and
storing the hydrometric forecast data. The experimental results show that the hydrometric
variables of rainfall, water level, and streamflow, the generated hourly forecast values, once
implemented with their membership function and crisp inputs and subjected to the process
of fuzzification and defuzzification methods and validated by certain rules that express the
participatory capacity building of an expert domain, represents a highly effective tool when
dealing with data that present high uncertainty. Hence, for each condition of the actual
hydrometric and flow forecast values, the system could infer the conditions of the flow regime

in the channel as was shown in Table [5.8]
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Figure 5.9: Triangular membership function for three hydrometric and the Agent Forecasters
input values: a) rainfall [mm]|, b) stage [m], ¢) streamflow [m3/s], d) AgentFCST’s (implies
the 4hr lead time forecasted variables (qlh,...,q4h, accordingly)).
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Figure 5.10: Fuzzy rules implementation for the MAS decision-making capability.

Figure 5.11: Flood-Awareness universe of values.
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Figure 5.12: Fuzzy inference simulation output corresponding to the input variables of
the rainfall [mm], stage [m], and the observed ABM streamflow [m3/s| output, concerning
the MAS lead time flow forecasts (qlh,...,q4h) and the respective delivered hourly flood-
awareness (FA1lh,....FA4h).
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Figure 5.13: A mapping of the spatio-temporal representation of the results of the simulated
membership functions related to three inputs and the fuzzy inference outputs: a) mapping
the rainfall [mm]|, the 1 hour flow forecast (qlh) to the corresponding 1 hour flood-awareness
(FA1h) level and, b) mapping rainfall [mm]| and stage level [m] for 1 hour lead time flood-
awareness (FA1h).
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5.4 Hydrologic Simulation with MAS

In this section, it is provided an attempt to demonstrate the performance with an extension
to the initially built ABM prototype described in Section 4.4.3, once this model had been
calibrated and validated, now it is extended with the addition of machine learning approaches
and the BDI architecture, represents the foundations for the MAS model approach that is
built, trained, tested, and validated. Some of the agent species were provided with ML
algorithms, cognitive skills, and capabilities for data-mining tasks such as data preprocessing,
regression for forecasting flood hydrographs, and fuzzy logic skills for performing inferences
on the forecasts. Therefore, the proposed MAS framework for flood forecasting described
previously in Chapter 3 is validated when compared its outputs against the simulations of
the ABM flood hydrographs outputs. This was done by conducting a series of experiments
simulating the real-world storm events that occurred within the Medio River catchment.

5.4.1 Experimental Setup: MAS Hydrologic Model Setup

In, this experimental section what was done is laying the foundations for a first approximation
of the flood hydrograph forecast using the MAS model that is deploying cognitive agents on
the previous ABM model setup (e.g., the hydrometric sensors, the catchment, the DEM grid,
the river network), the ABM model is extended with new capabilities including other agents
with cognitive abilities (i.e., "BDI-architecture model") for some type of agents to exhibit
certain knowledge and on that premise, solve the flood forecasting problem as they interact
with each other and perform certain specialized tasks with machine learning capacities (e.g.,
collect data, store data, make predictions, data-mining task, pre-process data, decision-
making, etc.) as was formulated in Section 3.2.1.

Therefore, to carry out these experiments with the implemented MAS model, and remake
the previous steps carried out in the other modeling follow-up sections, the process begins
with the selection of the benchmark data, which in this case is represented by the synthetic
dataset that was delivered from the ABM simulations of the observed flood hydrographs
as the data feed to the MAS framework. Once this process had started, what followed
is the completion of the training and testing of the machine learner agents, whose roles
are to make the forecasts. As a reminder, the problem to be solved is to perform flow
forecasting of the Medio River channel at various lead-time (e.g., 1, 2, 3, and 4 hrs. ahead)
to ensure the anticipated flood conditions of the river (i.e., flood-awareness levels). Hence,
the administration of this task is performed by the interactions of BDI hydrometric agents
endowed with actions, skills, and behaviors defined in Sections 3.3 and 5.1. The rationale
for the experiments performed with the MAS model implemented to simulate overland flow
in the Medio watershed and test outputs of storm scenarios are described below in the next
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section.

5.4.1.1 Hydrologic Agent Forecaster Learners

As was defined, the agents who within the MAS model will carry out the forecasting tasks
for the unknown flood hydrographs at Qs for certain time intervals into the future denoted
by 0 + k, and k represents the next time step already selected from the information collected
from the previous autocorrelation analysis of the hydrometric series, it is then carried out the
enabling activities of these agents that have been equipped with ML algorithm capabilities
for regression tasks.

Based on the ML algorithms chosen under Section 5.2 (e.g., "random forest (RF)" and
"support vector regression (SVR)") and which were implemented in the ML agents, the fore-
caster agent’s capabilities were trained, tested, and validated on the ABM model simulated
flood hydrographs outputs for the duration of time (9) which means that the outcome is the
forecasted value. The input variables (rainfall, water level, and streamflow), are the values
captured from the sensors by the hydrometric sensor agents. However, this captured data
needs to be preprocessed by the agents DPP and Data2Lags before the forecaster agents can
make proper use of the data to make the respective forecasts. Since the aim of the imple-
mented models is for prediction, it must be highlighted that the output value is projected as
opposed to the actual data since an implementation for forecasting flow (Qs41) at a given
time (§ + k) is only valid till time (§) as expressed previously in equation ([5.1).

Recalling some hints described under Section 3.2.1.4 (System Classifier Level), for the
forecasting and inference of flow (flood-awareness levels), the MAS model integrates two
groups of agents whose roles are to perform the regression task, and in the MAS model,
and for the sake of name handling, given that they are composed of eight individual agents,
the groups have been labeled as AgentFCST1 and AgentFCST2. Both AgentFCST1 and
AgentFCST2, consisted of four agents each that were implemented with the RF and SVR
algorithm to predict flows (@) at time horizons Qsi1, Qsi2, Qsis, and Qs.4, accordingly.
Thence, a total of eight agents resulting from such implementation, predicts the flow at
different lead times individually. The respective lead hours are analyzed, then paired, and
averaged to produce the final 1, 2, 3, and 4-hour forecast predictions, which are accessible to
the decision agent (AgentFL) to perform inference for each period about the flood-awareness
conditions in the river.

5.4.1.2 Implementation of RF and SVR Agent Forecaster Leaners

From the ML algorithm selection experiments results described in Section 5.2, it was imple-
mented 4 standalone RF and SVM(=SVR) regression models in R-Scripts and which were
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embedded into the 8 forecaster agent’s species. The use of R scripts enables an agent species
with an "RSKILL" behavior, a feature implemented in GAMA as an API (RCaller package)
that allows calling R from the GAML code (GAMA User’s Guide, Ver 1.8.1, p. 627). Re-
garding the selection of the hyperparameters for both models, RF models utilize 2000 trees
and the SVR with the linear kernel and best tuning parameters of sigma = 0.015 and C
= 2 for each prediction lead time test. These forecaster agents containing one model each
for each lead-time receive the lagged data inputs and at initialization begins to perform the
simulation of one to four hours ahead based on the direct multi-step ahead forecast scheme
documented in [449].

The input data to these agent learners are created from the ABM model flood hydrographs
simulation outputs time series, which, after being preprocessed by the AgentDPP are then
reshaped by the AgentData2lags as a supervised learning matrix data set according to the
information identified in the autocorrelation analysis (Figure showed to significantly
correlate at 2, 3, and marginally 4 hours of rainfall, and water level on the streamflow at a
given time and up to 2 hours of runoff lag, as described in Section 4.3. Feature engineering
allowed the creation of a data matrix that consisted of 17 variables composed of the actual
values and 4-h lags for the rainfall and water level variables, 2-hour lags, and 4-hour lead
times for the streamflow variable (Table [5.3). Then all dataset matrices were partitioned
by the agent learners into a proportion of 80:20 for training and testing instances, a process
carried out internally within the agent forecasters.

To facilitate stability in the predictions, each experiment is run with a "10-fold cross-
validation" approach with 5 repetitions and reported the mean over these results. Although
the RF algorithm is good at dealing with model overfitting [450, 451], the adequate selection
of parameters identified for 100 samples was 10 each, with the tuning parameter (mtry = 2).
The extension of the SVM (used mainly in classification) has been extended to regression
problems [452| |453], therefore making it suitable for forecasting numeric data (SVR), allowing

the SVM’s to model extremely complex data interactions.

The data set previously described is collected by the hydrometric sensor agents (Agen-
tRNSn, AgentWLSn, and AgentSFSn) described in Section 3.2.1.1. However, for this data
to be handy for use by the forecaster agents, it must be stored followed by a message issued
by the AgentSV to the AgentHDBM. From thence, at the follow-up on a messaging request
on data availability, the data must be processed in a supervised matrix form. This means,
from the actual values, their lags and lead time must be created. Such a task is performed by
the AgentData2Lags, as it receives information on the available stored data stream issued by
the AgentHDBM. However, in the case of missing instances, these are estimated beforehand
by the AgentDPP, who imputes the missing instances. Then, the AgentData2Lags proceeds
on creating the lags on this imputed data set. Once this data flow and agent interactions
are achieved (Figure , for the train and test sessions, both agent’s forecaster group per-
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forms a forecast of the lead time flows that are compared to the observed ABM model flow

hydrograph outputs.

5.4.1.3 Training the Forecaster Agents on the Train Dataset

Following the initial testing of the functioning of the system, which is initiated at simulation
time with the hydrometric sensors having the belief that there is hydrometric data available
at the sensors level (recall here sensors refers to the time series locally stored in files in csv
format), and as such, they have the desire (their initial desire) to collect such data from
the sensors, immediately, it is triggered, their plan to collect the data (see Table . Once
this data is being collected it is requested for storage by the AgentSV to the AgentHDBM.
However, if this is not the case, it means the data doesn’t require preprocessing by the
AgentDPP, this agent would drop the desire to preprocess data, then it would be further
collected by the AgentData2Lags, whose role is to perform the creation of a lagged data
matrix from the dataset, which is the appropriate form for the time series to be represented
for supervised ML tasks. Next, this stored matrix is obtained and used as input data
by the eight forecaster agents to perform a one to four-hour ahead lead time forecast of
the streamflow variable. Therefore, the data matrix generated from the previous agent’s
interaction leads to the construction of a substantial dataset for the RF and SVR models,
the implemented standalone RF and SVR algorithms embedded within the forecaster agents
that forecast the absolute streamflow for the relevant time horizons (i.e., target variable q =

5+ k).

To investigate the proficiency of the forecaster agent’s hourly streamflow forecasts from
1 to 4-hours lead-time, training is performed by the simulation with all interacting agents
in the GAMA model that was built initially under Chapter 4. As mentioned earlier and
referenced previously in [449], from the four existing strategies for "multi-step-ahead" fore-
casting, the "direct multi-step-ahead" strategy was chosen as the method of forecasting for
the forecaster agents, given its simplicity of implementation, though it is required of this
method to build separate models for each forecast time horizon, and it may seem as a com-
putational burden, contrary to the recursive approach which uses a "one-step-ahead" model
several times; however, a setback of this approach as it relies on the previous forecast to pre-
dict the next time step is the inclusion of error propagation, which can degrade forecasting
accuracy as the prediction time step increases over time. Another reason for not employing
this method is to avoid the "blackboard" pitfalls, which would have allowed the forecasting
task to be reduced to a single agent that could have been implemented with this method.

Upon completion of a simulation cycle, some eight records are generated containing the
values of the flow forecasts made by each of the agents belonging to the two groups of
forecasting agents for each of the assigned time horizons. This results in a duplicate of each
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lead-time forecast, which adds up to a total of eight forecast files that are then merged
and averaged by the AgentFL to produce the corresponding final and single flood forecast
for Q541 to Q514 ahead along with the computed flood-awareness level for each forecasted
horizon.

A comparative analysis of the statistical metrics results on the performance of the fore-
casts made by both forecasting agent’s groups (Table , for the training cycles revealed
that for both agent’s groups implementation, the forecasting efficiency of the models in both
cases depends on the duration and breadth of the prediction horizon, rather than the data
entry, as the information shows the further the lead-time is extended the forecasts profi-
ciency decreases. Hence, this peculiarity of time series has been well documented by some
researchers who had reported the cost that some models can undergo when forecasting at
very extended periods, weather extremes, and data shortage [454-457]. However, it can
be noted from this information, that no more than three hours lead-time is an appropriate
forecast window, provided the previous lag values should be applied for this scenario, as it
was seen later in the results for the simulations runs with the other storm cases used in the
MAS hydrologic model validation task.

The information that is shown in Table and the scatterplots (Figures and
between the observed ABM model flood hydrograph and the forecasted by the MAS model
agent’s forecasters have a high level of connection. The MAS model agent forecasters were
capable of satisfactorily simulating the hourly streamflow (Figures , and [5.15)) with values
of the R? for the AgentFCST1 group in the range [0.78, 0.82], and the lowest values for the
group AgentFCST2 in the range [0.58, 0.69], respectively. The correlation for the 4-hour
lead-time forecaster agent under group 2 showed the lowest value (r = 0.76), and that about
a forecast accuracy of 58%, and an underestimation of the ABM observed peak flow (Q,r =
465.5 m? - s71) of 25.5%. In contrast, the forecaster agents under group 1 exhibited a strong
positive correlation (r = 0.90 and relatively good R?* = 0.82) for the prediction at that same
hour, and for almost all hours the correlations were not <0.8. In terms of model proficiency,
the RMSE, which measures the spread between the observed and calculated values, was
33.6% higher for the AgentFCSTR2 than it was for the group AgentFCSTR2.

Summarizing on the training session both forecaster’s agent’s groups showed best fore-
casting accuracy for the first three hours of forecast with values in the range [67, 82%],
and shows the 4-hour lead-time streamflow peak forecast to be less biased for the forecaster
agents of group 2. Regarding the simulated flood hydrograph, both groups of agent’s fore-
casters portrayed an acceptable approximation to the shape of the flood discharge curve (see
Figures and ; although, for the instances, where they revealed some difficulties in
either achieving or slightly coming close to the value of the ABM observed extreme flow (Q
= 465.5 m3 - s7!), nonetheless, there is an exception for the agent’s forecasters of group 2,
that significantly showed to fall short some 26% of the magnitude of the observed @),. This
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corroborate to show after all that the SVR algorithm is good at the prediction of extremely
complex data, has compared to those of group 1.

Table 5.9: Performance metrics on train data for agent forecast models at 1 to 4-hour lead

forecast simulations.

Cor. Coef. Coef. of Det. RMSE Percent ABM Obs. MAS Sim.

- Error in Q,x Qpk Qpk
2 3. o1 P p p
[r] [R?] [m? - s71] [%] [mS ) s_l} [m3 ) s_l}
AgentFCST1

Simulation

Period

qlh 0.90 0.81 30.2 -40.3 459.1 274.1
q2h 0.90 0.80 31.5 -38.5 465.5 286.9
q3h 0.88 0.78 32.1 -42.1 465.5 269.5
q4h 0.90 0.82 21.9 -32.2 258.6 175.5
AgentFCST2

Simulation

Period

qlh 0.83 0.69 36.6 -32.6 465.5 313.7
q2h 0.83 0.69 37.9 -31.3 465.5 320.0
q3h 0.82 0.67 36.6 -37.4 465.5 291.3
q4h 0.76 0.58 43.4 -25.5 465.5 346.8
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Figure 5.14: Comparison of the training session for the MAS AgentFCST1 lead-time flood
forecasting simulated vs ABM observed hydrograph, where a) one-hour, b) two-hour, c)

three-hour, and d) four-hour forecast.
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Figure 5.15: Comparison of the training session for the MAS AgentFCST2 lead-time flood
forecasting simulated vs ABM observed hydrograph, where a) one-hour, b) two-hour, c)

three-hour, and d) four-hour forecast.
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Figure 5.16: Scatterplot diagrams with fitted regression line of training session for the MAS
AgentFCST1 lead-time flood forecasting simulated and ABM observed hydrograph, where

a) one-hour, b) two-hour, ¢) three-hour, and d) four-hour forecast.
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Figure 5.17: Scatterplot diagrams with fitted regression line of training session for the MAS
AgentFCST?2 lead-time flood forecasting simulated and ABM observed hydrograph, where
a) one-hour, b) two-hour, ¢) three-hour, and d) four-hour forecast.
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5.4.2 Experimental Results: MAS Hydrologic Model Setup

This section discusses the verification results for the implemented standalone RF and SVR
algorithms that were embedded into every four sets of agents grouped under the identifier
agents Forecasterl (AgentFCST1) and Forecaster2 (AgentFCST?2) as previously explained in
Section 3.2.1.4. In the previous experimental sessions, with the MAS model forecaster agents
were trained on the ABM synthetic data resulting from the simulated flood hydrographs
outputs, which were partitioned into training and testing dataset; therefore, in this occasion
to test the efficiency of the agents to make a forecast on unknown data for one up to four

hours ahead it is used the remaining test data partition.

5.4.2.1 Testing the Forecaster Agents on the Test Dataset

The testing was performed following the same methodological approach that was done in
the training sessions, with the sole difference that it used a separate data set unknown to
each model and it was reported the performance metrics values of these tests. The statistical
analysis of the AgentFCST2 on the unknown data (Table showed that about 64% of the
prediction accuracy with a RMSE = 32.6 m?-s~! was for the 3-hour forecast, while 72% with
a RMSE = 35.4 m3-s~! was for the AgentFCST1 for the 3-hour lead-time forecast. However,
for both forecasters groups, 52% of the prediction accuracy was for the 1-hour forecast with
a 45% error increase of the RMSE by the AgentFCST2 more than the AgentFCST1. In
addition, the results for the AgentFCST2 were much worse, with about 41% of the prediction
accuracy and with an RMSE = 42.7 m3 - s7! for the forecast at lead-time 4-hours.

Critiquing, these results indicate that the agent group AgentFCST1 outperforms the
group AgentFCST2, at long-range predictions, with the AgentFCST1 compensating to pro-
duce the best calibration results for the agent learners.

5.4.3 Conclusions

Recapping the section, all models displayed excellent performance during the training session.
This shows that model efficiency is improved the closer R? tends to unity. However, this
assumption does not always hold to be true since this coefficient is a performance statistic to
be handled with precaution, as it can probably induce it to 1 by the mere addition of terms
to the model. For the test session, the agent’s forecasters of group 2 have shown their ability
to fall short a few magnitudes to the ABM model observed @), for each resulting test data
combination, albeit underestimating this flow. An illustration of the forecasted streamflow
hydrograph is shown in Figures and show the forecasted streamflow hydrograph
and their generated scatterplots (Figures and for the eight forecaster agents.
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Table 5.10: Performance metrics on test data for agent forecaster models at 1 to 4-hour lead
forecast simulation.

Cor. Coef. Coef. of Det.  RMSE Percent ~ ABM Obs. MAS Sim.

_ Error in Q,x Qpk Qpk
2 3. o1 P i P
[r] (7] [m? - s77] [%) [m3 - s~ [m3 - s~
AgentFCST1

Simulation

Period

qlh 0.72 0.52 34.1 16.7 206.0 240.4
q2h 0.85 0.72 35.4 -50.5 452.1 223.7
q3h 0.75 0.56 44.3 -51.3 465.5 226.9
q4h 0.77 0.59 32.0 -30.8 339.9 235.3
AgentFCST2

Simulation

Period

qlh 0.72 0.52 49.3 -38.1 452.1 280.1
q2h 0.73 0.54 41.2 -39.7 465.5 280.5
q3h 0.80 0.64 32.6 -13.3 339.9 294.8
q4h 0.64 0.41 42.7 -18.1 339.9 278.4

Finalizing, all forecasts agent models accuracy, for both train and test sessions, range in
[41, 82%)] of the variability in the test dataset, being the highest and lowest percentage re-
ported for the 4-hour lead-time forecast simulation that corresponds to the agentforecaster4
of group 1 and 2, respectively. This could infer that no more than four hours of lead time is

adequate for these models.
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Figure 5.18: Comparison of the testing session for the MAS AgentFCST1 lead-time flood
forecasting simulated vs ABM observed hydrograph, where a) one-hour, b) two-hour, c)
three-hour, and d) four-hour forecast.
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Figure 5.19: Comparison of the testing session for the MAS AgentFCST2 lead-time flood
forecasting simulated vs ABM observed hydrograph, where a) one-hour, b) two-hour, c)
three-hour, and d) four-hour forecast.
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Figure 5.20: Scatterplot diagrams with fitted regression line of testing session for the MAS
AgentFCST1 lead-time flood forecasting simulated vs ABM observed hydrograph, where a)

one-hour, b) two-hour, ¢) three-hour, and d) four-hour forecast.
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Figure 5.21: Scatterplot diagrams with fitted regression line of testing session for the MAS
AgentFCST2 lead-time flood forecasting simulated vs ABM observed hydrograph, where a)
one-hour, b) two-hour, ¢) three-hour, and d) four-hour forecast.
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5.5 Validation of the BDI Hydrologic MAS Model

In the present section, it is provided the results for the experimental runs to conduct an
evaluation of the MAS model framework for flood forecasting. In the current framework,
the forecasting of flood hydrographs along with the corresponding level of the computed
flood-awareness with lead times from one and up to four hours ahead is simulated with
the entire MAS hydrologic model setup comprising of the the hydrometric sensor agent’s,
data preprocessing agent’s, hydrometric sensor verifier agent, database management agent,
forecaster agent’s, user interface agent and a decision-making agent with four validation
storm scenario events. The experimental evaluation was undertaken to contrast the outputs
of the synthetic data resulting from the ABM simulated validation storm hydrographs for
December 2012, December 2014, May 2015, and November 2015 with those of the MAS
hydrologic model.

According to Fortino et al. [458], in the MAS development, the goal of simulation cor-
responds to the validation phase in which the model is tested before the deployment of its
end purpose. During this phase, the qualitative or quantitative outputs of the model can
serve as information that can be used by the modeler to correct the model and provide
additional fine-tuning to improve its proficiency. However, despite the little progress made
for the last few years in the application of ABM and MAS applicable to hydrologic related
problems, there is still limited information regarding studies in this area by the hydrologic
community and that, furthermore, one of the various reasons for these limitations revolved
around the lack of consensual and objective methods and methodologies for the validation
of such models, as some might argue [381].

In the Medio River hydrological network, there are two hydrometric stations with three
sensors (e.g., rain, water level, and streamflow), one upstream, and the other downstream
of the catchment. However, only the upstream station was used for the application because
the downstream station was severely vandalized. In principle, no hydrological models were
found to be applied because the essential information about the river evolution upstream

and downstream are missing.

The, the Medio River flood forecasting process within the MAS hydrologic model can be
detailed in the subsequent sequence of stages:

1. Capture hydrometric data. This is the upper level of the MAS when at the initializa-
tion of this sequence of flow forecast dynamics, the hydrometric sensor agents have the
intention read_rain_sensor_data, read_waterlev_sensor_data, and read _flow_-
sensor_data at each hour. To guarantee the end-point control of the captured data,
the agents must execute their algorithms to check and consequently verify for missing
data, which if true, will trigger their plans to report at each hour the current condition
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to the AgentSV, who with the intention verify_sensor_status inquire from the sen-
sor agents and then issues a message to the AgentUI, with intention view_system_msg
who will conduct a follow.

. Data Pretreatment. Data pretreatment is carried out locally and in parallel at each
data pre-processing agent, the AgentDPP who performs data preprocessing and im-
putations, and the AgentData2lags agent who creates a matrix with hourly lagged
values, and the resulting post-processed data is stored locally.

. Data storage. While the incoming raw data is been captured and/or preprocessed,
reformatted and inserted into the database, the AgentSV, request from the Agen-
tHDBM whose initial intention is to store_all hydro_data store the incoming raw
post-processed data into the database server. The AgentHDBM stores all data prod-
ucts produced by the other agent’s process.

. Forecasting. Through the intention (do_flow_predict) the flow forecasting task is
launched by the eight AgentFCSTR’s equipped with the ML models to perform an
hourly forecast of 1 to 4 hours using the resulting hourly matrix that was created and
stored in the data pre-processing stage. The forecaster agents compare their previous
forecast with the last one and refresh the previous forecast each time step (e.g., Fsi1
with Fy).

. Decision-making. With the creation of the AgentFCSTR’s and the results of the hourly
forecasts that they deliver, the intention do_flow_inference is carried on by the
decision-making agent. Once he had satisfied his intention (DBConnection) to ensure
database connectivity, at every simulation step, the agent interacts with the Agent-
FCSTR’s and the database agent to receive the desired forecast data, evaluates the
data received, makes final decisions based on the forecasts, and conducts the following
tasks:

o Aggregates the forecasts and computes the averages between each group’s fore-
casts to produce an absolute value of results for each forecast lead-time.

o Computes the fuzzy inference from the observed and forecasted flows at each
lead-time.

o With the method (clas_data_storage_request), execute the intention to re-
quest the forecast and inference results to be stored into the database server by
the database agent.

o Display the actual flow and the corresponding lead-time flow forecast for each

flood-awareness levels.
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6. Reporting. With the view_system_msg intention, the AgentUI reports to the user the
information on the state of the conditions of the sensors received from the AgentSV
messages, and the flood-awareness levels received from the decision-making agent mes-
sages.

As a reminder, in Chapter 4, it was conducted an exhaustive analysis with two differ-
ent hydrological modeling approaches as an initiative to predict the phenomenon of floods
produced by the effects of climatic alterations of the hydrological processes in tropical catch-
ments. Therefore, for the first of these approaches, hydrological modeling was used through
conventional methods, using the the HEC-HMS modeling tool. The second approach was
applied with an implemented agent-based model (ABM) to perform the same hydrological
modeling task as part of this research aim and as a more viable modeling alternative for
decision-makers and the less expert, with less of the physically oriented and mathematical
complications encountered in the implementation of the conventional modeling tools. From
the experiments executed, it was noted the results from the assessment between the two-
modeling approaches to show both approaches to give acceptable results, especially for the
case of the ABM which in principle is not a standard hydrologic modeling tool per se, and
that it forms the bases for the main idea of this endeavor. However, they both showed to
approximating the shape of the curve of the observed hydrographs at the moment of each
model’s execution, and it was found also they either underestimated or overestimated the
observed ),;. Despite that, in either of the cases, based on the results, both models showed
capable of dealing with the flood hydrograph approximation.

From this point on, it is set the research goal with a series of experiments undertaken
within the MAS model framework as a hydrologic modeling alternative and with which when
adding cognitive agents and endowing them with decision-making capabilities, can maximize
the expected results. Generally, the assessment on the agent-based concept is pointed toward
evaluating the behavior of each agent species, system organization, and agent interactions.
Nonetheless, although the former holds valuable, the type of domain of study, given its
degree of complexity in which an attempt with ABM/MAS is used, does not occasionally
conform to strict mathematical and physical laws that govern the system and consequently
must not be taken for granted during the evaluation phase. Therefore, in the modeling of
environmental processes, the analyst should be concerned as well with the understanding
of the abstraction of the effectiveness of the ABM or MAS performance in simulating such

physical environments.

At the initialization of the sequences of the flow forecasting dynamics, each agent in the
MAS arrangement is set with an initial state of desire(s). The agent "AgentSV" for example
is initialized with its three-desire state in the following order: DBConnection, verify -

sensor_status (as his general desire), and request_raw_data_storage. However, the
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dynamic starts after the creation of the three hydrometric sensor agents which at the begin-
ning of the simulation are initialized with the desire to do read_rain_sensor_data, read -
waterlev_sensor_data, and read_flow_sensor_data, which are their general desire. Sub-
sequently, the report_missing sensor_data and no_missing data are initialized. There-
after, the AgentHDBM with is first general desire test_parentDB_connection, AgentUI set
with initial general desire DBConnection, the data pre-processing agents with general desires
impute_raw_data and create_lagged_raw_data, forecaster agents with DBConnection and
do_flow_predict, decision-making agent with DBConnection and do_flow_inference, ac-
cordingly.

In the execution of the experiments carried out for all storm cases, in GAMA the process
of initialization of the agents are the same, except for the cases when their initial desires are
dropped and replaced by another depending on the current circumstances (e.g., when the
need arises for agents to perform some job given to a request if not their perceptions of the

environment have changed) and weights and priorities can also be assigned to the desires.

5.5.1 MAS vs ABM Synthetic Data of December 2012 Storm

Overall, in this and every other simulation runs, the hydrometric sensor agents of both
modeling approaches perceive and process the information of the environment, namely the

precipitation, the stage, and the flow variables, and begin to read this information.

The sensor agents in the ABM model, simply read the precipitation data, whereas, in
the MAS model, they do not only read and capture this information but can identify errors
and missing instances in the data, and consequently, can reason if to execute some behavior
to deal with the problems in the data. In this sense, they report the data incongruences and
can coordinate with another agent in the system whose role could oversee and correct the
erroneous instances (i.e., AgentDPP).

To test the capabilities of the MAS hydrologic model, for example, the hydrometric
sensor agents when in communications with the data imputation agent, can coordinate with
each other when the intentions of the sensor agents are reporting missing instances, then
messages a request to the data pre-processing agent to impute those missing instances.
Figure shows for example where several periods of missing instances have been imputed
and therefore given way to the data lag agent to create the lagged matrix for the forecasting
agents to provide a forecast for those periods, and along this sequence, provide the decision
agent to make inferences despite the missing periods (see Figure . These capabilities are
not present in the hydrometric sensor agents of the ABM model approach, therefore giving
way to the possibility for that model to provide data forecasted on noisy instances (missing
periods).

186



The hydrometric sensor agents in the MAS model being cluster head-nodes behaves as
an autonomous process that can reason about the hydrometric variables captured from the
environment and make corrective decisions in cooperation with other agents concerning the
quality of the data before this one is dispatched to the other members of the node. This
means, that the active real-time verification of the quality of the data by each sensor agent,
implies an hourly checking by which data issues could be possibly corrected before reaching
the flow forecasting and the inference phase.

() (d)

Figure 5.22: Example of an output showing the MAS model on a 4-hour forecast simulated
hydrograph with imputed instances for November 2012 Storm Events: (a) Observed hourly
hyetograph with missing periods [mm], (b) Observed and estimated hourly river stage [m],
(c) observed and forecasted streamflow [m? - s71] with missing and imputed periods and (d)

Observed and estimated flow volume [m3].

In hydrologic modeling, the common practice to analyze and validate a hydrograph re-
sulting from a model is to apply standard metrics such as amplitude errors and their as-
sociated functions; examples are the "Root Mean Square Error (RMSE)', "Nash-Sutcliffe
efficiency (NSE)" [459], or metrics such as the "percentage error in peak discharge (Qpx)" [86]
which measures asymmetry between the observed and estimated flows, that is by how much
percentage thus the model overestimates or underestimates the observed peak discharge.
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Figure 5.23: An example of a screenshot showing the numeric outputs from the forecasters
and decision-making agents as they are interacting on the November 2015 storm validation
session: (left) Simulation output variables, (center) Flood-Awareness Levels, and (right)
observed and estimated stage [m], rainfall [mm)], observed and forecasted flows [m?-s~!] and

estimated flow volume [m?].

Therefore, the approach that was used to validate the MAS hydrologic model is by assessing
the variations between the ABM simulation outputs and the output results from the MAS.
This process comprises the use of the Pearson Correlation Coefficient (r) as the similarity
measurement and the RMSE as the measure of the differences between the MAS model
simulations and the ABM observed outputs. In addition, to check the significance of the
asymmetry between forecasting results from the MAS model and those from the ABM, it was
performed a "t-test" analysis assigning alpha at the 0.05 level of significance. So, if t > 0.05
df and p < 0.05, hence the level of significance is high, and the MAS model is good.

Provided the information captured from each hydrometric sensor by the sensor agents,
the system is started, and it can run a complete simulation scenario of the precipitation-run-
off water process within the abstraction of a catchment environment. The resulting flood
hydrographs obtained from simulating the input data of the ABM simulated December 2012
storm hydrographs outputs with the MAS hydrologic model, are then compared as shown in
Figure [5.24] summarizes the statistical measures of these comparisons.

For this validation scenario, the table shows the metrics that resulted from the grouping
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and the computation of the average of the agent forecaster’s simulations forecast in the MAS
model by the decision agent to generate each of the final lead-time forecasts. It can be noted
for the 3-hour forecast, strong important coefficient of similarity (r= 0.89), with p <.001
between the observed ABM and the MAS simulated peak flow, subsequently it can be seen
good coefficient of determination R? = 0.80. This R? explains that only 80% of the total
variability in the MAS forecasts, forecasted by the agent forecasters can be accounted for by
the variation in the outputs of the ABM for that lead-time. Therefore, for this time frame,
the highest accuracy of the MAS model forecast was only 80%.

As shown by Figure the MAS simulated hydrograph show to conforms pretty well
to the overall shape of the ABM output hydrograph curve, when compared, except for the
visible instances of the mismatches shown by the biases in the peaks, it shows that there is
some marginal correlation of the shapes for each of the simulated time frames. For the total
storm episode, the amplitude of the errors between the two models, show ranging [26.2, 51.2
m3 - s71], being the highest value recorded for the 1-hour ahead forecast, while it recorded

the smallest value for the 3-hour ahead forecast.

For an observed ABM model value of the peak flow at each forecast period, the MAS
model was less at the 2-hour and 3-hour forecast and larger at the 1-hour and 4-hour fore-
cast. The average error in peak discharge was +13.0%, indicating that it agreed with the
error criteria. The proportion of variance explained by (R?) between observed (ABM) @,k
and simulated (MAS) @, is in the range [51, 80%)], and with (r) in the range [0.71 — 0.89, p
<.001] implying that the MAS model performed significantly good during this storm period
as compared to the ABM, and as shown by the p-value. Likewise, for the observed and
forecasted flows of this period, for each lead-time forecast, the MAS generated the level of
awareness for flooding, on average observed overall for a value of 5.0, each hour on the verge
of intercepting with the possibility for moving from the "CAUTION" to the "ALARM" level
as shown in Figure |5.11]
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Figure 5.24: Observed (ABM) and simulated (MAS) hydrographs comparisons with the ABM
synthetic data of December 2012 storm for time-horizons, where a) one-hour, b) two-hour,
¢) three-hour, and d) four-hour forecast.
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Table 5.11: Verification metrics for 4-hour lead-time forecast between the observed ABM
synthetic December 2012 storm hydrograph and simulated MAS hydrograph, along with the

computed flood-awareness.

Cor. Coef. Coef. of Det. RMSE Percent Obs. (ABM)  Sim. (MAS)

_ Error in Qpk Qpk Qpk FA
2 3, 1 P “p p
[r} [R ] [m s ] [%} [m3 . 8_1} [m3 . 8_1]

December 2012
Simulation
Period
qlh 0.79 0.62 51.2 4.1 404.0 420.8 5.0
q2h 0.75 0.56 39.4 -31.1 479.5 328.7 5.0
q3h 0.89 0.8 26.2 -10.1 479.5 431.3 5.0
q4h 0.71 0.51 36.2 6.8 404.0 431.3 5.0

5.5.2 MAS vs ABM Synthetic Data of December 2014 Storm

Following the same approach for the analysis of the flood hydrograph carried out in the
previous section to validate the MAS model simulations against that of the ABM outputs,
similar tests have been performed with the December 2014 validation storm event. As usual,
at simulation start-up, the information captured from each hydrometric sensor by the sensor
agents initiates the system and it can run a complete simulation of a storm-water event
with the hourly data within the catchment representation, with each of the agent’s nodes

implemented.

A statistical analysis of the information presented in Table and Figure [5.25] for
this storm episode, reveals the absolute measure of fit resulting between the hourly flood
hydrograph forecasts of the MAS model forecasts concerning the ABM hydrograph output,
varied between 34.6. and 49.8 m3 - 57!, although these values did not show any significant
changes. Also, for this validation storm, for each of the ABM models measured @, the
MAS model overestimated once (e.g., at the 1 hour time-horizon). When contrasted with
the ABM observed flows for each of the time horizons, it showed overall with the percentage
errors of @, varying between £41.4% and £+15.6%, with the range of these values agreeing
with the error criteria.

The results of the correlation metrics (Table between the ABM observed and the
MAS model flood hydrographs, and by interpreting the statistical significance seen from
the linear relationship estimator which can be seen across this storm scenario fluctuating
between (r = 0.75 and 0.89, p <.001), which in terms of the coefficient of determination ex-
plained variability of the correlation between the MAS simulated @, to the ABM observed
Qpr raging between 53 and 79%, support the MAS model acceptance.
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Table 5.12: Verification metrics for 4-hour lead-time forecast between the observed ABM
synthetic December 2014 storm hydrograph and simulated MAS hydrograph, along with the

computed flood-awareness.

Cor. Coef. Coef. of Det. RMSE Percent Obs. (ABM)  Sim. (MAS)

3 _ Error in Qpk Qpk Qpk FA
2 3, -1 P P p
[I‘} [R ] [m S ] [%} [mB . 871} [m3 . 8—1]

December 2014
Simulation
Period
qlh 0.89 0.79 49.8 15.6 633.3 734.3 5.3
q2h 0.81 0.66 34.6 -52.1 544.7 256.1 5.1
q3h 0.73 0.53 45.0 -41.4 604.0 354.2 5.3
q4h 0.75 0.56 42.5 -43.4 564.0 319.0 5.3

Like the synthetic data of December 2012 for this storm period, the flow-awareness value
inferred by the decision agent according to each lead-time flow forecasted by the MAS fore-
caster agents was between the CAUTION and the ALARM ranges, yet the ALARM status
shows some degrees more likely. However, an interesting pattern to notice is the flood-
awareness value triggered during the 1-hour lead-time forecast, which could suggest given
the magnitudes of the observed and simulated peak flows a warning trigger at least within
the ALARM region. However, it is important to recall that the triggering of the alarms
is controlled by the rules implemented in the fuzzy inference engine, which means that the
state variables of rain and water level also play a significant role in the final output FA as
was shown earlier in Table [5.8] Flows can be high, but the rainfall and stage level may
be low at a given instance in time, given way for lower FA values. Then, rainfall is the
determining component in the generation of overland flows, and indeed, the high water level
is a consequence of high flows in a channel. Then, high levels of rainfall and stage are also
determining factors in the weighing of the computed FA. To corroborate the value of the
FA for that period, a closer look into the time series revealed a rainfall and stage value of
16 [mm] and 9.07 [m], accordingly. Both values are in the Light for rain and Normal for
the stage (Table [5.7)).Hence, these findings significantly show the FA = 5.3 computed by
the decision agent to be working as expected. Notwithstanding, as hydrometric data are a
type of non-stationary data highly influenced by changes in the climate, it suggests the fuzzy
rules would need to undergo periodic revisions and changes to allow the decision agent to be
up to date.
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Figure 5.25: Observed (ABM) and simulated (MAS) hydrographs comparisons with the ABM
synthetic data of December 2014 storm for time-horizons, where a) one-hour, b) two-hour,

¢) three-hour, and d) four-hour forecast.
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5.5.3 MAS vs ABM Synthetic Data of May 2015 Storm

In continuation with the experiments aimed at the validation of the MAS model, it can be
discussed that for May 2015 storm there were visible around seven isolated storm occurrences
as can be recognized in Figure [5.26] where four are minor events producing flood waves of
less than 100 m? - s~! and the other three register flow values above 100 m3 - s~! for certain
days of the month. However, it may be noticed the isolated trends in this storm episode. For
the ABM model measured peak flows at the 3-hour and 4-hour lead times of 312.7 and 462.7
m? - s71, respectively, the MAS model overestimated. The 1-hour lead-time MAS model
has an RMSE of 22.1, whereas the 2-hour lead-time forecast of 23.8, the 3-hour ahead MAS
model forecaster agent is forecasting the flow values with RMSE of 22.8, and additionally
the 4-hour ahead forecast agent has an RMSE of 23.2 m?3-s~!. This trend continues to show
so far that on average, the three and four-hour forecast agents are forecasting the streamflow
at a lesser error. Moreover, the mean absolute percentage error of all estimated @), by
the MAS model tends to over and underestimate the ABM observed Q,,(%) with values
in the range [+4.5, £37.8%], and as can be seen from Table [5.13] it is observed that the
3-hour and 4-hour ahead agent forecaster of the MAS model estimates peaks with +4.5%
and £5.0%, whereas the 1-hour lead-time agent has £37.8% error and the 2-hour lead-time
agent forecasters have £35.7%.

A comparison of the resulting lead-time forecasts for hydrographs for both models is
shown in Figure[5.26] In addition, the r-value showing statistic relevance between the ABM
and the MAS model ranged (r = 0.78 to 0.91, p <.001, accordingly), and would give a
coefficient of determination R? varying in the range [60, 83%], meaning that only 60 to 83%
of the variability noted in the MAS model hydrographs forecasts could be accounted for by
the ABM forecasts.

Table 5.13: Verification metrics for 4-hour lead-time forecast between the observed ABM
synthetic May 2015 storm hydrograph and simulated MAS hydrograph, along with the com-

puted flood-awareness.

Cor. Coef. Coef. of Det. RMSE Percent Obs. (ABM)  Sim. (MAS)

. Error in Qpx Qpk Qpk FA
2 3. -1 p <p P
[I‘] [R ] [m s } [%] [md . 871] [m3 . 871}
May 2015
Simulation
Period
qlh 0.79 0.62 22.1 -37.8 329.3 204.8 1.6
q2h 0.78 0.60 23.8 -35.7 329.3 211.6 1.6
q3h 0.90 0.81 22.8 4.5 312.7 326.6 1.6
q4h 0.91 0.83 23.2 5.0 462.7 485.6 1.6
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For the ABM observed and simulated MAS flows, this period showed lower values for
the computed flood awareness by the decision agent for each of the time horizon forecasts.
Generally, each time had a computed FA = 1.6, which places it within the LOW alert zone.
However, although this value is low, it does not mean there is no danger in the next hours.
If the precipitation persists, a condition favorable for the increase in streamflows and water
levels is maintained or increased, proving for a possible flood. The ideal rationale for the
suggested structure of the MAS model is that it not only predicts river flows, but also induces
subsequent FA levels for each expected flow and is delivered at least 4 hours in advance. On
the other hand, if the average lead time of 4 hours is calculated, which for the observed
values of the ABM is 358.5 and the forecast of the MAS 307.4 m? - s, according to the
Table both values would be placed in the very high and average flow levels, respectively.
This is information that would be available at least four hours before a flood disaster by
decision-makers.
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Figure 5.26: Observed (ABM) and simulated (MAS) hydrographs comparisons with the
ABM synthetic data of May 2015 storm for time-horizons, where a) one-hour, b) two-hour,

¢) three-hour, and d) four-hour forecast.
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5.5.4 MAS vs ABM Synthetic Data of November 2015 Storm

For the November 2015 storm event, a statistical comparison of the results about the per-
formance between the MAS model simulated flood hydrograph, and the ABM outputs (Ta-
ble show that the MAS model forecasts with shorter lead-time have better predictions
performance compared to the longer lead-time prediction. Notice also, in Figure the
MAS model simulated hydrographs versus the ABM observed hydrographs, was seen three
times to overestimate the ABM flood hydrographs peak flows.

One significant storm event of only five days characterized this modeling period. Across
the table, the difference in predictions of the flood hydrographs between the MAS model sim-
ulations and the ABM was seen fluctuating between 33.9 and 39.1 m3 - s~!, with the highest
error reported at the 2-hour lead-time and the lowest for the 4-hour lead-time forecast.

Likewise, for this period, the @Q,,(%) ranged in [£36.9, 52.2%] between the two models,
with the smallest percent for the 4-hour forecast and the highest for the 1-hour forecast.

Conclusively, any contrast of the observed ABM and MAS model simulated hydrographs
requires an assessment or rule on what to compare. As seen from across the table, with
the November 2015 storm dataset, between the ABM and the MAS model simulated flood
hydrographs, the models show significantly correlated, at all lead times forecast in the range
[0.77, 0.88] with the value of p<.001 at a = 0.05 again suggesting the acceptance and the
good performance of the MAS hydrologic model. From the correlation analysis, the coeffi-
cient of determination would yield that the ABM model could account for 59 to 79% of the
variability detected in the results of the observed flood hydrographs of the MAS model. Con-
cerning the decision agent inferences on the hourly forecasted flows, the system computed a
FA that was on average 2.4, LOW, which was seen to intercept with the CAUTION level,
to a lesser degree. Overall, this period had a similar trait to that which was observed for

the ABM synthetic storm of May 2015 which also presented on average a low value of the FA.
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Figure 5.27: Observed (ABM) and simulated (MAS) hydrographs comparisons with the ABM
synthetic data of November 2015 storm for time-horizons, where a) one-hour, b) two-hour,
¢) three-hour, and d) four-hour forecast.
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Table 5.14: Verification metrics for 4-hour lead-time forecast between the observed ABM
synthetic November 2015 storm hydrograph and simulated MAS hydrograph, along with the

computed flood-awareness.

Cor. Coef.  Coef. of Det. RMSE Per'cent Obs. (ABM)  Sim. (MAS)
i R} [mPestt] 0TI Ok G, Qo A
%) 57 md s
November 2015
Simulation
Period
qlh 0.88 0.79 37.4 52.2 475.7 724.3 2.5
q2h 0.77 0.59 39.1 15.8 389.9 451.8 2.5
q3h 0.79 0.63 36.7 -10.9 475.7 423.8 2.5
q4h 0.80 0.64 33.9 9.5 389.9 427.2 2.2

5.5.5 Conclusions

This section introduced the implementation of the MAS hydrologic model with the necessary
BDI-based agents to carry out the task of flood hydrograph forecasting and decision making
with the proposed MAS hydrologic model organization with the purpose to recreate the
forecasting of streamflows in the humid tropics, by simplifying the ordeals of the conventional
mathematical, physically oriented hydrologic modeling setup..

Several experiments were run to validate the MAS model simulation of flood hydrographs
for a 1 to 4-hour lead-time by comparing the simulated flood hydrographs outputs of the
MAS hydrologic model with those of the ABM hydrologic model outputs. The investigation
of ML algorithms, among several others, such as "random forest (RF)" and "support vec-
tor regression (SVR)", was selected as the schemes with which the MAS hydrologic model
forecaster agents were facilitated with the task of forecasting the hourly flows, at lead-times
1, 2, 3 and 4-hours ahead with the multi-step-ahead strategy. For these agents to carry
out their forecasting task, they required the cooperation of several agents within the MAS
model organization, e.g. the hydrometric sensor agents (e.g., AgentRNSn, AgentWLSn, and
AgentSFSn) who oversee capturing the incoming data from the hydrometric sensors, the
AgentSV, who verifies that the sensors that capture data are functional, the AgentHDBM
who manages and stores sensor raw data on behalf of the AgentSV, preprocessed data gen-
erated by the AgentDPP and AgentData2Lags, the assessment of flow forecast results and
inference, on behalf of the AgentFL. The AgentDPP has overseen data imputation prepro-
cessing and the AgentData2Lags the creation of the lagged data matrix, from the raw data
for use by the agent forecasters to make the hourly forecasts.

The results from the training and testing sessions of the MAS model forecasting agents,
for flow forecasting, with the RF and SVR agent’s implementation, indicates the SVR fore-
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casters agents during the training and testing sessions to be capable of dealing with extreme
complex values, whereas those with the RF implementation concerning the lower values of
the RMSE, and the percentage error in the simulated @), performance good at flow estima-
tion in general. Overall, the SVR implementation, despite overestimation, shows at some
level of degree to approximate the value of the observed ABM @),;. However, for both agents
group implemented, the lowest measures of the correlation coefficients, were observed at the

3 and 4 hour time periods.

To further enhance and validate the forecasting capacity of the agents in the MAS, each
forecast produced by the RF and SVR group of agent forecaster models implementation
for 1, 2, 3 and 4-hour ahead forecast is merged and averaged by the decision-making agent
(AgentFL) to aggregate the final absolute values of each lead-time forecast that is used by
the decision agent to performer the flood-awareness levels inference computations.

The validation data was based on the simulations of four selected validation storm events,
obtained from the ABM hydrologic model simulation outputs on which the MAS hydrologic
model forecaster agents made lead-time predictions and the decision agent inferred the flood-
awareness level for each forecasted flow at lead-time 1, 2, 3, and 4-hour respectively; however,
it should be noted that this parameter (flood-awareness level) is not used in the validation
phase of MAS simulations against the ABM outputs.

The experiments in this section show that the proposed MAS hydrologic model when
tested against the observed ABM simulated validation storm hydrographs despite running
with the entire simulation process from capturing the data by the sensor agents to deal-
ing with data preprocessing by the agent performing imputations and the management of
the forecast results delivered by the agent forecasters to the decision-making agent, allows
simulating the flood hydrographs reasonably well. However, although the purpose of the
validation experiments was contrasting the MAS model simulation to that of the ABM ob-
served outputs, the The RMSE and the coefficient of similarity "r" statistics were utilized
equally like quantitative indicators to assess the modeling outcomes between the MAS model
flood hydrograph modeling output and the observed ABM flood hydrograph output., which
suggests that the MAS model implementation is efficiently good in assuming the proposed
task and shows that these experiments will be useful both to the hydrologic and water re-
sources community. In addition, it is important to recall that despite an initial start-up of
a hydrologic simulation at the catchment level through was carried with the use of a tool
whose paradigm, in theory, is not specifically that of a tool for hydrological simulation stud-
ies per se, it has demonstrated through its characteristics of the "agentification of GIS data'
of the components of a specific domain and that after the calibration and validation process
it will demonstrate a satisfactory approximation to the curves of certain flood hydrographs
as indicated by the results of the evaluation metrics (Table [4.17).
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Therefore, the initial implementation of a blueprint of an agent-based concept for a
hydrologic model to simulate the flood hydrographs in the context of a tropical basin domain,
its calibration, and validation phases were successfully implemented in the GAMA agent
platform, and that it requires further work to enhance and improve this feature. However,
it was found the literature review falls significantly short of being sufficient in containing
verification and validation procedures for multi-agent models, since they are difficult to
achieve, as some researchers may argue [460-462|. There may exist several papers on MAS,
but most of them seldom address the calibration and verification topic, it is just simply
ignored. If this is the case, there is the need to implement methods for watershed and
hydrologic simulations, calibration, and validation. Fortunately, this blueprint had placed
the sketch that allowed its extension with the BDI-concept to build upon the MAS hydrologic
model framework.
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Chapter 6

Key Conclusions

This research study and experimentation represented a challenge for the formulation of a
practical MAS for the forecasting of streamflows implemented with experimental hybrid,
computational learning paradigms through practical hydroinformatics skills. To solve the
social issues related to hydrologic generated flood problems, researchers and the hydrologic
engineer may resort to conceptual models or numerical models that are customary physically
based, which are usually not simple to use, are complex to implement because of the large
number of resources required and most times, due to lack of experience, the results are dif-
ficult to interpret and this not to mention the professional water resources manager whose
knowledge or use of these tools are few or absent. The ideal scenario with computational
intelligence models in contrast to their conventional hydrological model’s counterpart is that
they do not require most of the physical variables of the latter, making them useful for their
ability to extract information from hydrometric time series, even from those with poor data.
It was explored the application of several artificial intelligence approaches, including those
of data-driven modeling, soft computing, agent-based, and multi-agent conceptions. Given
these circumstances, the Medio catchment, Panama was selected as a test case. Besides,
like most all catchments in the Republic of Panama, the Medio catchment is not thoroughly
studied, data availability is a problem and the precipitation regime in the area is very high,
and it is highly prone to flooding events. That being the case six objectives were put in
place to design, develop, and validate a multi-agent conceptual framework to deal with the
inundation problems within humid watersheds. Therefore, the first of these six objectives,
which was completed, was to comprehend the hydrology of the Medio catchment by per-
forming physical modeling of the environment. To comply with this task, it was utilized the
non-commercially available "Hydrologic Modeling System (HEC-HMS)", the "River Analysis
System (HEC-RAS)', the "Quantum Geographic Information System (QGIS)" application,
and the "Whitebox Geospatial Analysis Tools (Whitebox-GAT)".

The second objective was to design the MAS architecture for the domain-specific MAS
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framework for supporting flood forecasting in the tropical river basin domain. To accomplish
this objective, it is realized that a very few of the exiting MAS platforms (e.g., JADE,
JADEX, NetLogo, Mesa, just to mention the most used) could not fill the expectations,
and after the careful exploration of such, though some would provide the BDI architecture,
they lacked the features of the GIS that was needed to set up a unique catchment emulating
environment capability until the GAMA simulation platform was identified and it was able to
implement the domain knowledge on this system following the flood ontology-based approach
in Section 4.1.3.

The third objective was to identify the specifications for such a catchment domain MAS
architecture. So, to comply with this objective, it was necessary to set up the MAS framework
from the designed architecture on top of the selected agent platform (in this case GAMA)
and implement the system using an integrated approach of hydrological, hydraulic, and
data-driven modeling, and artificial intelligence techniques for flood forecasting.

The fourth objective addresses an integral part of the forecasting framework behavioral
capabilities of each of the agents composing the system. Therefore, to fulfill this endeavor,
implementing the BDI model organizational structure for agents’ behavior, communication,
and interactions skills that compose the MAS to manage the data obtained by the framework
tool application had to be properly identified and abstracted.

Then, the fifth and sixth objective deals with the computer-based simulation of the MAS
to provide the necessary verification of the functionality of the system that was implemented
via the second, third, and fourth objectives and its future deployment to a real-world scenario
as the proposed hourly flood forecasting and flood-awareness tool provided the appropriate
means. Therefore, experimental tasks such as simulation, calibration, and verification of the
MAS outputs against the results from the hydrologic and hydrodynamic models had to be
conducted and completed appropriately as can be referenced from Chapters 4 and 5 of this
thesis.

6.1 Summary

The motivations that started the goal of this research thesis design has been to address
the problems of inundation by flooding in the tropical river basin by proposing, on the one
hand, a cognitive approach regarding the BDI theory to embody simulation of water surges
caused by river flooding and to represent decision actions processes by human actors from
the warnings issued by the multi-agent system models and, by the other hand, a validation
of this approach in a complete watershed domain (simulation environment) model in which

flood forecasting of this type have not been simulated.
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The subsequent points summarize the conclusions of this research;

- Efficient hydrologic modeling and assessment with conventional tools require a great
deal of physically-oriented information types and given their degree of complexities, can
represent a complicated task to implement. On the other hand, artificial intelligence and
its various paradigms can offer expedient and proper solutions to hydrologic modeling and
flood assessment. However, although they may not require huge physical data, the length
and quality of the time series data they require are essential for the excellent performance
of their forecasting models.

- Why MAS for flood forecasting and not just simply conventional models? As distributed
systems in the case of streamflow forecasting and assessment of flooding, AI implementa-
tions are better because many computational tasks before modeling (e.g., data cleaning,
data imputation, data preparation) that would require a dedicated person to accomplish,

can be left unattended and performed by specialized agents with cognitive abilities and skills.

- Besides, the rainfall-runoff events that trigger river flooding are not usually localized,
so of relevance is the information upstream of the catchment to the information downstream
of the catchment which suggests the information may not be uniformly distributed, avail-
able, or steady. With the MAS approach, the process of decision-making amid localized
or non-localized events can generate results of the same reliability, even if a section of the
hydrometric sensor node is unavailable at the time.

- Last, though the agents of this administration team up for the same aim, they do not
have different objectives or isolation of their own, each entity that takes part has different
capabilities, their representation, and their operation in real-time may vary as this is best
reflected with agents and their roles.

6.2 Future Perspectives

The experimental findings of this research demonstrate and provide insight on the capacity
to make use of agent technologies, combined and implemented with artificial intelligence
and hybridization alternatives for flood forecasting. However, as it is not until recently that
the agent’s paradigms and even the adoption of principles from computational intelligence,
such as soft computing (i.e., Fuzzy Logics) techniques by the hydrological community for the

solution of problems related to floods still have gaps for research and development especially
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with the constant changes in the current climate regime.

The research has also disclosed the advantages of the multi-agent systems as a good
surrogate for real-time hydrologic modeling at the catchment level, given its capacity as a
distributed system, decentralized philosophy, and the capacity of communication through a
high-level messaging protocol, and interactions using skilled cognitive agents, a characteristic

not typical of the conventional physically based models.

Model training, testing, calibration, and validation with storm scenarios were completed
with data that at some point had to be reconstructed due to the severity of missing instances
in the actual data record. Therefore, the data feed for model simulation was not done in
real-time, as is intended the system must do directly from the hydrometric sensors, but data

was feed directly into the models from the hydro files.

Many were the challenges encountered, been the main one of the datasets from two
available hydrometric stations that measure precipitation, river stage, and streamflow in
real-time, only one was currently used, the other was severely impaired and GIS information
on the catchment is scarce, so all river hydraulic, and GIS features, physiographic quantities,
and constants had to be estimated and treated from the DEM downloaded. Additionally,
the existence in the literature of adequate methods and methodologies for validating multi-
agent system models for hydrologic problem solving is either scarce or non-available and
surely represents a challenge for research and development to take better advantage of the

agent technology.

Finally, all simulations and model development show to efficiently model the problems
aforementioned. Therefore, it is advisable as future works to obtain new and complete
datasets, an updated DEM, and new hydraulic measurements of the current physical condi-
tions of the river’s course for updating the MAS model and with such provide deployment
of the system for in situ testing.
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Appendix A
Acronyms

ABM Agent-based Modeling

ABMS Agent-Based Modeling And Simulation

ABS Agent-Based Systems

ABSS Agent-Based Social Simulation

ACL Agent Communication Language

AHD Aswan High Dam

AT Artificial Intelligence

AMCMAS Automatic Methods for Calibration
ANFIS Adaptive Neural Fuzzy Inference Systems
ANN Artificial Neural Network

ANYMAS ANY Time Multi-Agent System

API Application Programming Interface

AR Auto-Regressive

ARIMA Autoregressive Integrated Moving Average
ARMA Mixed-Auto-Regressive with Moving Average
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

BANN Bayesian Artificial Neural Network
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BDI Belief Desire Intention

CA Cellular Automata

CART C(lassification and Regression Trees
CAS Complex Adaptive Systems
CBR Case Based Reasoning

CLA C(lassifier

CS Computer Science

Data2Lags Data to Lags

DB Database

DEM Digital Elevation Model

DM Data Mining

DMM Data-Driven Model

DPP Data Pre-Processing

EC Evolutionary Computing

EDA Environment Domain Agents
ENSO El Nifio Southern Oscillation
EP Evolutionary Programming

ES Evolution Strategies

EWS Early Warning Systems

FA Flood-Awareness

FCST Forecaster

FFBP Feed-Forward-Back-Propagation
FIPA The Foundation for Intelligent Physical Agents
FIS Fuzzy Inference Systems

FL Fuzzy Logic
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GAs Genetic Algorithms

GAMA Generic Agent-based Modeling Architecture
GAML Gama Modeling Language

GDEM Global Digital Elevation Model

GEOTIFF Geographic Tag Image File Format

GEP Gene Expression Programming

GIS Geographic Information System

GT Game Theory

GRNN General Regression Neural Network

GP Genetic Programming

HDBM Historic Database Management

HDSL Historic Data Storage Level

HEC-HMS Hydrologic Engineering Center-Hydrologic Modeling System
HORS High-Order Response Surface

HSn Hydrometric Sensor

HSnL Hydrometric Sensor Level

H3 Hydrometric Station No.3

IBM Individual-Based Model

ICTs Information and Communications Technologies
IMAHDA Intelligent Multi-Agent Hybrid Distributed Architecture
IoT Internet of Things

JADE Java Agent Development Environment

JADEX Java Agent Development Environment Extension
KNN k-Nearest Neighbors

KQML Knowledge Query and Manipulation Language
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LASSO Least Absolute Shrinkage and Selection Operator
LIBSVM A Support Vector Machine Library

LM Linear Model

MACSim Multi-Agent Control Simulation

MAR Missing Randomly

MAS Multi-Agent System

MCAR Entirely Missing at Random

MFs Membership functions

MICE Multiple Imputation by Chained Equations
MI Multiple imputation

ML Machine Learning

MLP Multilayer Perceptron

MNAR Data Not Randomly Absent

MOO Multi-Objective Optimization

NGOs Non-Governmental Organization

NLTS Nonlinear Time Series

NNET Neural Net

OCHA United Nations Office for the Coordination of Humanitarian Affairs
OMG Object Management Group

OOP Object Oriented Programming

OWL Web Ontology Language

PBPMs Physics-Based Process Models

PIs Prediction Intervals

PSO Particle Swarm Optimization

P2P Point-to-Point
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QGIS Q Geographic Information System

R, r Correlation Coefficient

R? Coefficient of determination

RBF Radial Basis Function

RDF Resource Description Framework

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RNSn Rain Sensor

RPart Recursive Partitioning And Regression Trees
SCLAL System Classifier Level

SCS Soil Conservation Service

SDPPL Sensor Data Preprocessing Level
SEST Statistical Estimators

SFSn Streamflow Sensor

SOM Self-Organizing Maps

SPARQL Protocol and RDF Query Language
SQL Structured Query Language

SSN Semantic Sensor Network

SVM Support Vector Machines

SV Sensor Verification

SVR Support Vector Regression

SWAT Soil and Water Assessment Tool
SWEET Semantic Web for Earth and Environment Technology Ontology

TDNN Time-Delay-Neural-Network
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TTP Time to Peak

UH Unit Hydrograph

UI User Interface

UIL User Interface Level

UML Unified Modeling Language

VGE Virtual Geographic Environment

VSAT Very Small Aperture Terminal

WDT Wavelet Denoising Technique

WEKA Waikato Environment for Knowledge Analysis
WLSn Water Level Sensor

WRE Water Resources Engineering

XGBoost Optimized Distributed Gradient Boosting
XMI Metadata Interchange

XML Extensible Markup Language
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Appendix B

Used Symbols

7 The Period of Duration of a Phenomenon

Q1[I (7)] Transform Function that Relates a System Input/Output
I (1) A Conservative Magnitude Entering a System
O (1) A Conservative Magnitude Leaving a System
2 Transform Function that Denotes System Properties
RN Rainfall at Time t

WLy River Stage at Time t

Q) River Discharge, Streamflow, Flow at Time t

T; Inter-Event Time

1, Initial Abstraction

CN Runoff Curve Number

S Maximum Abstraction

At Estimation of Lag Period

T. Time of Concentration

T;, Lag Time

S, Sine of the Channel

L Length of Main Stream

Qp, Qpr Peak Discharge

V0lee Maximum Volume

Qp% Percentage Error in Peak Runoff

Pl; Plan Name(BDI)

Int Plan Intention(BDI)

Cont Plan Perspective(BDI)

Pr Plan Priority(BDI)

B Agent Behavior(BDI)

qlh, q2h, q3h, q4h Forecasted Lead Time Streamflow
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FAlh, FA2h, FA3h, FA4h Computed Lead Time Flood-Awareness
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Appendix C

Glossary

The important terminologies addressed in this thesis that apply to the modeling problem

domain.

Table C.1: A Glossary of Technical Terms and Concepts used in the Flood Ontology Domain.

Item Word Synonym Definition Source
1 Alert alarm, warning, flood Meteorological message issued WMO [347]
warning, storm warn- to provide appropriate warn-
ing, weather warning ings of hazardous weather con-
ditions.
2 Catchment river basin, watershed, Same as Item No. 48
drainage basin
3 Climatic weather, atmosphere, Are changes occurring among WMO [347]
Events atmospheric conditions, the environmental variables at
environment, setting, a precise location and differ
climatic anomaly regarding the averaged values
over two regions or space of the
globe.
4 Climatological =~ Weather Events Same as Item No. 1
Events
5 Coastal Flood  storm surge, wind- Same as Item No. 8 and 24
induced surge, high
flood, hurricane surge,
6 Convective thunderstorms Thunderstorm produced by a WMO [347]
Storm convective cloud.
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
7 Cross-section cross sectional area, In a natural watercourse or Adrien [463]
transverse section, cross man-made channel, the cross-
sectional shape section is the perpendicular
section to the direction of the
main flow.
8 Damage flood destruction, flood The water level at which Licker [464]
devastation, flood stage the overtopping of a water
course induces destructive con-
sequences overland.
9 DEM digital elevation model A GIS map-like product stored Adrien [463]
in digital file format; usually
contain grid points with lo-
cations (x), elevations (y), or
depth (z) variables used in
many catchments’ hydrologic
studies.
10 Discharge flow, outflow, flow rate, Mass of water flowing along the WMO [347]
current cross-sectional area of a water-
way at different intervals.
11 Drought aridity, dryness, water The lack of occurring hydrolog- WMO [347]
shortage ical imbalance produced by the
absence of rainfall due to ex-
tended periods of drought.
12 Environmental —adverse environmental Incidents involving the release Lee [465]
Catastrophes conditions, environmen- (or potential release) of haz-
tal disaster, ecological ardous materials into the envi-
disasters, ecological ronment which require immedi-
catastrophes, environ- ate corrective actions.
mental emergencies
13 Extratropical storm surge The change in the observed WMO [347]
Storm stage caused by a turbu-
lent climatic state with strong
breezes.
14 Extreme Tem- severe, highest, maxi- Is the intervals of high and WMO [347]

perature

mum (temperature)

low temperature occurring
throughout a particular pe-

riod.
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
15 Flash Flood alluvion, flood, deluge, A rapidly occurring flood, with  WMO [347]
inundation, torrent, seldom any warning, typically
high water, flooding, resulting from an ice melt, dam
tsunami, overflow, tidal break or a period of extreme
wave, overflow, surge precipitation covering a small
area of land.
16 Flood deluge, inundation, Is the inundation of water oc- WMO [347]
outpouring, submerge, curring overland and in low de-
flooding, surge pressions of the earth by flood
waters.
17 Flood Water deluge, flood, flooding, Same as Item No. 8
inundation, surge
18 Flow Depth depth  of discharge, The depth of water in a water Licker [464]
depth of flow, critical course at which the smallest en-
depth, flow profile, ergy of flow is at the bed.
regime, region, zone
19 Flow Direction  through-flow, travel The pathway water would fol- Adrien [463]
direction, direction of low given the rainfall-runoff
flow, flow path event. This water in excess
would flow downstream on the
steepest path of the catchment.
20 Flow Duration  flow period, flow rate, The amount of time a flow Ward [466]
rate of flow, flow dura- event of a certain magnitude
tion curve occurs.
21 Flow Rate discharge, streamflow, The rate of water conveyance Adrien [463]
river flow, rate of flow, through a river or canal ("EPA-
flowrate, 40CFR146.3"), measured in
units of volume into time.
22 Forest Fire wildfire, wild-land fire, A compressed smoke screen oc- WMO [347]
brush fire, smoke pall casionally rises from the burn-
ing of organic plant material in
the wild, or a large city, or an
industrial area..
23 GeoSpatial geographic, geographi- Area or space. Ward [466]

cal, land, regional, ter-
ritorial, region, spatial,
local
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
24 GIS geographic information Computer database manage- Ward [466]
system ment system for spatially dis-
tributed attributes.
25 Groundwater underground water, wa- The source of water extending Ward [466]
ter table, aquifer, sub- under the earth’s ground.
soil water, subsurface,
subterranean
26 Hydrograph The representation of flow rate Ward [466]
with respect to time in graphic
or table format.
27 Hydrological hydrological cycle, It is the consecutive phases of WMO [347]
water, aquatic, hy- the dynamics of the water cy-
drologic, hydrology, cle.
hydrographic,  hydro,
hydropower
28 Hydrological hydrologic, hydrological The commonly known hydro- Licker [464]
Events cycle, hydrographic, hy- logical cycle, as the process the
drographical, water drives the exchange of energy
from the great water masses,
to the atmosphere, and back to
the great water masses.
29 Hydrometric hydrometry, hydromet- Same as Item No. 44, 45 and
Sensor rical, measurement, 46
measuring, gauging
(gaging), hydrometric
station
30 Hyetograph The representation of precipi- Ward [466]
tation intensity with respect to
time in graphic format.
31 Lake pond, lagoon, lacus- A landlocked body of water, Licker [464]
trine, reservoir, with or without an outlet on
earth’s surface, formed by nat-
ural processes of geo-ecological
successions, the melting of
enormous masses of ice or man-
made.
32 Land Slide landslips, landfall, mud The movement of enormous Licker |[464]

slides, mud flows, up-
heavals

masses of land produced by the
earth’s gravitational processes.
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
33 Local Storm A mesometeorological deluge of  Licker [464]
localized scale effects.
34 Meteorological — meteorological phenom- Of or pertaining to meteorol- Licker [464]
Events ena, weather events, ogy or weather.
weather  phenomena,
climatic events, weather
conditions, weather
patterns, meteorologi-
cal, weather, climate,
adverse weather condi-
tions
35 Overland surface runoff That part of the precipitation WMO [347]
Flood which flows on the ground sur-
face.
36 Rain Gauge pluviometer,  pluvio- A manual or electronic instru- Adrien [463]
graph ment that is used to collect,
measure and record precipita-
tion amounts at single sam-
pling point intervals in time.
37 Raster grid, screen, frame, ar- A GIS image-like product that Ward [466]
ray stores watersheds elementary
data of rivers (lines), solid ob-
jects (points), and water bodies
(polygons) in a raster or vector-
ized format, just as "pixels" in
a picture.
38 Rating Curve discharge curve, dis- The relationship between the Adrien [463]
charge rating curve, stage and the streamflow in a
stage-discharge rela- channel, displayed in a graphic

tionship

or tabular form.
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
39 Reservoir pool, lake, store, re- A natural (e.g., lake, pond, Adrien [463]
serve, pond, tank, basin)or man-made (e.g., dam,
repository, source tank, reservoir) area containing
water. In water resources man-
agement, these confinements
serve as sources of potable wa-
ter distribution, irrigation and
recreational purposes, electri-
cal power generation, as well
as in engineering flood control
measures.
40 Return Period  period of return, recur- The expected yearly event of Ward [466]
rence period, recurrence a hydrological episode that oc-
interval curs with an excess beyond the
expectations.
41 Risk danger, hazard, threat, In Climatology, is the degree WMO [347]
peril of probability that unfavorable
weather will occur over a cer-
tain period.
42 River stream, creek, water A natural large body of fresh Licker |[464]
course, water way, trib- water extending over a large
utary, flood, flow extension on the earth’s sur-
face, and usually occurs season-
ally with its flow moving down-
hill approaching another body
of water.
43 River Flood river inundation, river Same as Item No. 8
overflow, outpouring,
flooding
44 River Stage river water level, river Same as Item No. 42
water hight
45 Roughness Co- roughness factor, fric- A property of watercourses and Adrien [463]
efficient tion coefficient, channel canals, related to the frictional
bed rugosity forces excerpted on water flow-
ing over the bottom and across
the features of the hydraulic ge-
ometry of the conduits.
46 Shapefile A geographic information sys- Adrien [463]

tem (GIS) file in ArcView.
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Table C.1 — Resumed from the last sheet

Item Word Synonym Definition Source
47 Slope gradient, inclination A zone on the land with a tilted Licker [464]
part.
48 Stage level, water level, flood The surface water in a stream WMO [347]
stage, river level, river elevating above or below a ref-
stage erenced gauge point.
49 Streamflow flood forecasting Forecasting of water level WMO [347]
Forecast height, discharge, the moni-
toring of an inundation event,
from its initial to its final stage,
specifically the maximum flow
that results from precipitation,
or melting of snow.
50 Streamflow flow meter, current me- A device that measures the Adrien [463]
Sensor ter, fluid meter, ven- quantity of water passing
turi, manometer, mag- through a fixed station in
netic flowmeter rivers streams over determined
periods.
51 Surface Water  run-off water, run off, The occurrence of water Ward [466]
courses either flowing or con-
tained in depressions overland.
52 Tropical Storm  tropical cyclone, tropi- Is the hazard produced by the WMO [347]
cal depression, cyclone, gathering of non-frontage ex-
typhoon, hurricane, tensive and convective water
storm, tempest, tropic movements and surface wind
thunder, vortex, tor- circulations in the tropics and
nado, cyclonic, wind- below tropics zones.
storm
53 Vector direction, line, heading ~ Another commonly used for- Ward [466]
mat for storing GIS data.
54 Water  Level stage gauge, level radar A gauge providing the stage of Adrien [463]
Gauge the water surface elevation in a
river at specified points.
55 Water Re- aquatic resources, water The naturally existing bodies Lee [465]
sources related, water supplies, of water covering an extension

hydro resources, water

reserves

of areas upon the face of the
earth because of the driving dy-
namics of the hydrologic cycle.
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Table C.1 — Resumed from the last sheet

Item Word

Synonym

Definition Source

56

o7

Water Volume

Watershed

body of water, quantity
of water, channel stor-
age, water quantity, vol-

ume of water

catchment, drainage
basin, hydrological

basin, river basin.

The sum of all the retained Adrien [463]
waters, including the detection

waters and stored in the rivers,

excluding those stored in de-

pressions, this sum has as its

route the area of outflow de-

fined in a basin.

Surface area drained by a por- WMO [347]
tion or the totality of one or

several given watercourses.
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