
123

Enrique Cabello
Jorge Cardoso
Leszek A. Maciaszek
Marten van Sinderen (Eds.)

12th International Joint Conference, ICSOFT 2017
Madrid, Spain, July 24–26, 2017
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 868

Communications
in Computer and Information Science 868

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Enrique Cabello • Jorge Cardoso
Leszek A. Maciaszek • Marten van Sinderen (Eds.)

Software Technologies
12th International Joint Conference, ICSOFT 2017
Madrid, Spain, July 24–26, 2017
Revised Selected Papers

123

Editors
Enrique Cabello
King Juan Carlos University
Madrid
Spain

Jorge Cardoso
University of Coimbra
Coimbra
Portugal

Leszek A. Maciaszek
Wroclaw University of Economics
Wroclaw
Poland

Marten van Sinderen
Computer Science
University of Twente
Enschede
The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-93640-6 ISBN 978-3-319-93641-3 (eBook)
https://doi.org/10.1007/978-3-319-93641-3

Library of Congress Control Number: 2018947013

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 12th International Conference on Software Technologies (ICSOFT 2017),
held in Madrid, Spain, during July 24–26.

ICSOFT 2017 received 85 paper submissions from 33 countries, of which 15% are
included in this book. The papers were selected by the event chairs and their selection
is based on a number of criteria that include the classifications and comments provided
by the Program Committee members, the session chairs’ assessment, and also the
program chairs’ perception of the overall quality of papers included in the technical
program. The authors of selected papers were then invited to submit a revised and
extended version of their papers having at least 30% innovative material.

The purpose of the ICSOFT conferences, including its 12th edition in 2017, is to
bring together researchers and practitioners interested in developing and using software
technologies for the benefit of businesses and society at large. The conference solicits
papers and other contributions in themes ranging from software engineering and
development via showcasing cutting-edge software systems and applications to
addressing foundational innovative technologies for systems and applications of the
future.

The papers selected to be included in this book conform to the ICSOFT purpose and
contribute to the understanding of current research and practice on software tech-
nologies. The main topics covered in the papers include: software quality and metrics
(Chaps. 1, 2, 6 and 9), software testing and maintenance (Chap. 2), development
methods and models (Chaps. 3, 4, 5 and 9), systems security (Chap. 6), dynamic
software updates (Chap. 7), systems integration (Chap. 8), business process modelling
(Chap. 9), intelligent problem solving (Chap. 10), multi-agent systems (Chap. 12), and
solutions involving big data, the Internet of Things and business intelligence
(Chaps. 11 and 13).

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

July 2017 Enrique Cabello
Jorge Cardoso

Leszek Maciaszek
Marten van Sinderen

Organization

Conference Chair

Enrique Cabello Universidad Rey Juan Carlos, Spain

Program Co-chairs

Jorge Cardoso University of Coimbra, Portugal and Huawei German
Research Center, Munich, Germany

Leszek Maciaszek Wroclaw University of Economics, Poland
and Macquarie University, Sydney, Australia

Marten van Sinderen University of Twente, The Netherlands

Program Committee

Markus Aleksy ABB Corporate Research Center, Germany
Waleed Alsabhan KACST, UK
Bernhard Bauer University of Augsburg, Germany
Maurice H. ter Beek ISTI-CNR, Pisa, Italy
Wolfgang Bein University of Nevada, Las Vegas, USA
Fevzi Belli Izmir Institute of Technology, Turkey
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Mario Luca Bernardi Giustino Fortunato University, Italy
Jorge Bernardino Polytechnic Institute of Coimbra, ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Marcello M. Bersani Politecnico di Milano, Italy
Thomas Buchmann University of Bayreuth, Germany
Miroslav Bureš Czech Technical University, Czech Republic
Nelio Cacho Federal University of Rio Grande do Norte, Brazil
Antoni Lluís Mesquida

Calafat
Universitat de les Illes Balears, Spain

Jose Antonio
Calvo-Manzano

Universidad Politécnica de Madrid, Spain

Ana R. Cavalli Institute Telecom SudParis, France
Marta Cimitile Unitelma Sapienza, Italy
Felix J. Garcia Clemente University of Murcia, Spain
Kendra Cooper Independent Scholar, Canada
Agostino Cortesi Università Ca’ Foscari di Venezia, Italy
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Lidia Cuesta Universitat Politècnica de Catalunya, Spain

Sergiu Dascalu University of Nevada, Reno, USA
Jaime Delgado Universitat Politècnica de Catalunya, Spain
Steven Demurjian University of Connecticut, USA
John Derrick University of Sheffield, UK
Philippe Dugerdil Geneva School of Business Administration,

University of Applied Sciences of Western
Switzerland, Switzerland

Gregor Engels University of Paderborn, Germany
Morgan Ericsson Linnaeus University, Sweden
Maria Jose Escalona University of Seville, Spain
Jean-Rémy Falleri Bordeaux INP, France
João Faria University of Porto, Portugal
Cléver Ricardo Guareis

de Farias
University of São Paulo, Brazil

Chiara Di Francescomarino FBK-IRST, Italy
Matthias Galster University of Canterbury, New Zealand
Mauro Gaspari University of Bologna, Italy
Hamza Gharsellaoui Al-Jouf College of Technology, Saudi Arabia
Paola Giannini University of Piemonte Orientale, Italy
J. Paul Gibson Mines-Telecom, Telecom SudParis, France
Gregor Grambow AristaFlow GmbH, Germany
Hatim Hafiddi INPT, Morocco
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Christian Heinlein Aalen University, Germany
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Mercedes Hidalgo-Herrero Universidad Complutense de Madrid, Spain
Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-Eui Hong Chungbuk National University, South Korea
Zbigniew Huzar University of Wroclaw, Poland
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Bo Nørregaard Jørgensen University of Southern Denmark, Denmark
Hermann Kaindl Vienna University of Technology, Austria
Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka ESTECO SpA, Italy
Dean Kelley Minnesota State University, USA
Jitka Komarkova University of Pardubice, Czech Republic
Rob Kusters Eindhoven University of Technology and Open

University of the Netherlands, The Netherlands
Lamine Lafi University of Sousse, Tunisia
Konstantin Läufer Loyola University Chicago, USA
Pierre Leone University of Geneva, Switzerland
David Lorenz Open University, Israel
Ivan Lukovic University of Novi Sad, Serbia

VIII Organization

Stephane Maag Telecom SudParis, France
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Eda Marchetti ISTI-CNR, Italy
Katsuhisa Maruyama Ritsumeikan University, Japan
Manuel Mazzara Innopolis University, Russian Federation
Tom McBride University of Technology Sydney, Australia
Fuensanta

Medina-Dominguez
Carlos III Technical University of Madrid, Spain

Jose Ramon Gonzalez
de Mendivil

Universidad Publica de Navarra, Spain

Francesco Mercaldo National Research Council of Italy, Italy
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Greg Michaelson Heriot-Watt University, UK
Marian Cristian Mihaescu University of Craiova, Romania
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France
Mattia Monga Università degli Studi di Milano, Italy
Antonio Muñoz University of Malaga, Spain
Takako Nakatani Open University of Japan, Japan
Elena Navarro University of Castilla-La Mancha, Spain
Joan Navarro La Salle, Universitat Ramon Llull, Spain
Viorel Negru West University of Timisoara, Romania
Paolo Nesi University of Florence, Italy
Jianwei Niu University of Texas at San Antonio, USA
Rory O’Connor Dublin City University, Ireland
Marcos Palacios University of Oviedo, Spain
Catuscia Palamidessi Inria, France
Luis Pedro University of Aveiro, Portugal
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Dana Petcu West University of Timisoara, Romania
Dietmar Pfahl University of Tartu, Estonia
Giuseppe Polese Università degli Studi di Salerno, Italy
Traian Rebedea University Politehnica of Bucharest, Romania
Michel Reniers Eindhoven University of Technology, The Netherlands
Colette Rolland Université de Paris 1 Panthèon Sorbonne, France
Gustavo Rossi Lifia, Argentina
Matteo Rossi Politecnico di Milano, Italy
Stuart Harvey Rubin University of California San Diego, USA
Chandan Rupakheti Rose-Hulman Institute of Technology, USA
Gunter Saake Institute of Technical and Business Information

Systems, Germany
Krzysztof Sacha Warsaw University of Technology, Poland
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Organization IX

Luis Fernandez Sanz University of Alcala, Spain
Elad Michael Schiller Chalmers University of Technology, Sweden
Istvan Siket Hungarian Academy of Science, Research Group

on Artificial Intelligence, Hungary
Michal Smialek Warsaw University of Technology, Poland
Cosmin Stoica Spahiu University of Craiova, Romania
Miroslaw Staron University of Gothenburg, Sweden
Anca-Juliana Stoica Uppsala University, Sweden
Ketil Stølen SINTEF, Norway
Hiroki Suguri Miyagi University, Japan
Bedir Tekinerdogan Wageningen University, The Netherlands
Chouki Tibermacine LIRMM, CNRS and Montpellier University, France
Claudine Toffolon Université du Maine, France
Michael Vassilakopoulos University of Thessaly, Greece
Dessislava Vassileva Sofia University St. Kliment Ohridski, Bulgaria
László Vidács University of Szeged, Hungary
Sergiy Vilkomir East Carolina University, USA
Gianluigi Viscusi EPFL Lausanne, Switzerland
Christiane Gresse

von Wangenheim
Federal University of Santa Catarina, Brazil

Dietmar Winkler Vienna University of Technology, Austria
Dianxiang Xu Boise State University, USA
Jinhui Yao Xerox Research, USA
Murat Yilmaz Çankaya University, Turkey
Jingyu Zhang Macquarie University, Australia

Additional Reviewers

Doina Bein California State University, Fullerton, USA
Dominik Bork University of Vienna, Austria
Angela Chan University of Nevada, Reno, USA
Estrela Ferreira Cruz Instituto Politécnico de Viana do Castelo, Portugal
Alessandro Fantechi University of Florence, Italy
Dusan Gajic University of Novi Sad, Serbia
Jalal Kiswani University of Nevada, Reno, USA
Asia van de

Mortel-Fronczak
Eindhoven University of Technology, The Netherlands

Benedikt Pittl University of Vienna, Austria
Fredrik Seehusen Sintef, Norway
Rocky Slavin University of Texas at San Antonio, USA
Gábor Szárnyas Budapest University of Technology and Economics,

Hungary
Michael Walch University of Vienna, Austria

X Organization

Invited Speakers

Jan Bosch Chalmers University of Technology, Sweden
Siobhán Clarke Trinity College Dublin, Ireland
Stefano Ceri Politecnico di Milano, Italy
Andreas Holzinger Medical University Graz, Austria

Organization XI

Contents

Software Engineering

Assessing the User-Perceived Quality of Source Code Components Using
Static Analysis Metrics . 3

Valasia Dimaridou, Alexandros-Charalampos Kyprianidis,
Michail Papamichail, Themistoklis Diamantopoulos,
and Andreas Symeonidis

A Technology for Optimizing the Process of Maintaining Software
Up-to-Date . 28

Andrei Panu

From Specification to Implementation of an Automotive
Transport System . 49

Oussama Khlifi, Christian Siegwart, Olfa Mosbahi,
Mohamed Khalgui, and Georg Frey

Towards a Goal-Oriented Framework for Partial Agile Adoption. 69
Soreangsey Kiv, Samedi Heng, Yves Wautelet, and Manuel Kolp

Using Semantic Web to Establish Traceability Links Between
Heterogeneous Artifacts . 91

Nasser Mustafa and Yvan Labiche

A Machine Learning Approach for Game Bot Detection Through
Behavioural Features . 114

Mario Luca Bernardi, Marta Cimitile, Fabio Martinelli,
and Francesco Mercaldo

Genrih, a Runtime State Analysis System for Deciding the Applicability
of Dynamic Software Updates . 135

Oleg Šelajev and Allan Raundahl Gregersen

Software Systems and Applications

Identifying Class Integration Test Order Using an Improved Genetic
Algorithm-Based Approach . 163

Istvan Gergely Czibula, Gabriela Czibula, and Zsuzsanna Marian

Application of Fuzzy Logic to Assess the Quality of BPMN Models 188
Fadwa Yahya, Khouloud Boukadi, Hanêne Ben-Abdallah,
and Zakaria Maamar

Solving Multiobjective Knapsack Problem Using Scalarizing Function
Based Local Search . 210

Imen Ben Mansour, Ines Alaya, and Moncef Tagina

Monitoring and Control of Vehicles’ Carbon Emissions 229
Tsvetan Tsokov and Dessislava Petrova-Antonova

WOF: Towards Behavior Analysis and Representation of Emotions
in Adaptive Systems . 244

Ilham Alloui and Flavien Vernier

Classifying Big Data Analytic Approaches: A Generic Architecture. 268
Yudith Cardinale, Sonia Guehis, and Marta Rukoz

Towards a Digital Business Operating System . 296
Jan Bosch

Author Index . 309

XIV Contents

Software Engineering

Assessing the User-Perceived Quality
of Source Code Components Using

Static Analysis Metrics

Valasia Dimaridou, Alexandros-Charalampos Kyprianidis,
Michail Papamichail, Themistoklis Diamantopoulos(B),

and Andreas Symeonidis

Electrical and Computer Engineering Department,
Aristotle University of Thessaloniki, Thessaloniki, Greece

{valadima,alexkypr}@ece.auth.gr, {mpapamic,thdiaman}@issel.ee.auth.gr,
asymeon@eng.auth.gr

Abstract. Nowadays, developers tend to adopt a component-based soft-
ware engineering approach, reusing own implementations and/or resort-
ing to third-party source code. This practice is in principle cost-effective,
however it may also lead to low quality software products, if the com-
ponents to be reused exhibit low quality. Thus, several approaches have
been developed to measure the quality of software components. Most
of them, however, rely on the aid of experts for defining target qual-
ity scores and deriving metric thresholds, leading to results that are
context-dependent and subjective. In this work, we build a mechanism
that employs static analysis metrics extracted from GitHub projects and
defines a target quality score based on repositories’ stars and forks, which
indicate their adoption/acceptance by developers. Upon removing out-
liers with a one-class classifier, we employ Principal Feature Analysis
and examine the semantics among metrics to provide an analysis on five
axes for source code components (classes or packages): complexity, cou-
pling, size, degree of inheritance, and quality of documentation. Neural
networks are thus applied to estimate the final quality score given met-
rics from these axes. Preliminary evaluation indicates that our approach
effectively estimates software quality at both class and package levels.

Keywords: Code quality · Static analysis metrics
User-perceived quality · Principal Feature Analysis

1 Introduction

The continuously increasing need for software applications in practically every
domain, and the introduction of online open-source repositories have led to the
establishment of an agile, component-based software engineering paradigm. The
need for reusing existing (own or third-party) source code, either in the form
of software libraries or simply by applying copy-paste-integrate practices has
c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 3–27, 2018.
https://doi.org/10.1007/978-3-319-93641-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_1&domain=pdf

4 V. Dimaridou et al.

become more eminent than ever, since it can greatly reduce the time and cost
of software development [19]. In this context, developers often need to spend
considerable time and effort to integrate components and ensure high perfor-
mance. And still, this may lead to failures, since the reused code may not satisfy
basic functional or non-functional requirements. Thus, the quality assessment of
reusable components poses a major challenge for the research community.

An important aspect of this challenge is the fact that quality is context-
dependent and may mean different things to different people [17]. Hence, a
standardized approach for measuring quality has been proposed in the latest
ISO/IEC 25010:2011 [10], which defines a model with eight quality character-
istics: Functional Suitability, Usability, Maintainability, Portability, Reliability,
Performance and Efficiency, Security and Compatibility, out of which the first
four are usually assessed using static analysis and evaluated intuitively by devel-
opers. To accommodate reuse, developers usually structure their source code (or
assess third-party code) so that it is modular, exhibits loose coupling and high
cohesion, and provides information hiding and separation of concerns [16].

Current research efforts assess the quality of software components using
static analysis metrics [4,12,22,23], such as the known CK metrics [3]. Although
these efforts can be effective for the assessment of a quality characteristic (e.g.
[re]usability, maintainability or security), they do not actually provide an inter-
pretable analysis to the developer, and thus do not inform him/her about the
source code properties that need improvement. Moreover, the approaches that
are based on metric thresholds, whether defined manually [4,12,23] or derived
automatically using a model [24], are usually constrained by the lack of objective
ground truth values for software quality. As a result, these approaches typically
resort to expert help, which may be subjective, case-specific or even unavailable
[2]. An interesting alternative is proposed by Papamichail et al. [15] that employ
user-perceived quality as a measure of the quality of a software component.

In this work, we employ the concepts defined in [15] and build upon the
work originated from [5], which performs analysis only at class level, in order
to build a mechanism that associates the extent to which a software component
(class or package) is adopted/preferred by developers. We define a ground truth
score for the user-perceived quality of components based on popularity-related
information extracted from their GitHub repos, in the form of stars and forks.
Then, at each level, we employ a one-class classifier and build a model based
on static analysis metrics extracted from a set of popular GitHub projects. By
using Principal Feature Analysis and examining the semantics among metrics,
we provide the developer with not only a quality score, but also a comprehensive
analysis on five axes for the source code of a component, including scores on its
complexity, coupling, size, degree of inheritance, and the quality of its documen-
tation. Finally, for each level, we construct five Neural Networks models, one for
each of these code properties, and aggregate their output to provide an overall
quality scoring mechanism at class and package level, respectively.

The rest of this paper is organized as follows. Section 2 provides background
information on static analysis metrics and reviews current approaches on quality

Assessing the User-Perceived Quality of Source Code Components 5

estimation. Section 3 describes our benchmark dataset and designs a scoring
mechanism for the quality of source code components. The constructed models
are shown in Sect. 4, while Sect. 5 evaluates the performance of our system.
Finally, Sect. 6 concludes this paper and provides insight for further research.

2 Related Work

According to [14], research on software quality is as old as software development.
As software penetrates everyday life, assessing quality has become a major chal-
lenge. This is reflected in the various approaches proposed by current literature
that aspire to assess quality in a quantified manner. Most of these approaches
make use of static analysis metrics in order to train quality estimation mod-
els [12,18]. Estimating quality through static analysis metrics is a non-trivial
task, as it often requires determining quality thresholds [4], which is usually
performed by experts who manually examine the source code [8]. However, the
manual examination of source code, especially for large complex projects that
change on a regular basis, is not always feasible due to constraints in time and
resources. Moreover, expert help may be subjective and highly context-specific.

Other approaches may require multiple parameters for constructing quality
evaluation models [2], which are again highly dependent on the scope of the source
code and are easily affected by subjective judgment. Thus, a common practice
involves deriving metric thresholds by applying machine learning techniques on
a benchmark repository. Ferreira et al. [6] propose a methodology for estimating
thresholds by fitting the values of metrics into probability distributions, while [1]
follow a weight-based approach to derive thresholds by applying statistical analy-
sis on the metrics values. Other approaches involve deriving thresholds using boot-
strapping [7] and ROC curve analysis [20]. Still, these approaches are subject to the
projects selected for the benchmark repository.

An interesting approach that refrains from the need to use certain metrics
thresholds and proposes a fully automated quality evaluation methodology is
that of Papamichail et al. [15]. The authors design a system that reflects the
extent to which a software component is of high quality as perceived by devel-
opers. The proposed system makes use of crowdsourcing information (the popu-
larity of software projects) and a large set of static analysis metrics, in order to
provide a single quality score, which is computed using two models: a one-class-
classifier used to identify high quality code and a neural network that translates
the values of the static analysis metrics into quantified quality estimations.

Although the aforementioned approaches can be effective for certain cases,
their applicability in real-world scenarios is limited. The use of predefined thresh-
olds [4,8] results in the creation of models unable to cover the versatility of
today’s software, and thus applies only to restricted scenarios. On the other
hand, systems that overcome threshold issues by proposing automated quality
evaluation methodologies [15] often involve preprocessing steps (such as feature
extraction) or regression models that lead to a quality score which is not inter-
pretable. As a result, the developer is provided with no specific information on
the targeted changes to apply in order to improve source code quality.

6 V. Dimaridou et al.

Extending previous work [5], we have built a generic source code quality
estimation mechanism able to provide a quality score at both class and package
levels, which reflects the extent to which a component could/should be adopted
by developers. Our system refrains from expert-based knowledge and employs a
large set of static analysis metrics and crowdsourcing information from GitHub
stars and forks in order to train five quality estimation models for each level, each
one targeting a different property of source code. The individual scores are then
combined to produce a final quality score that is fully interpretable and provides
necessary information towards the axes that require improvement. By further
analyzing the correlation and the semantics of the metrics for each axis, we are
able to identify similar behaviors and thus select the ones that accumulate the
most valuable information, while at the same time describing the characteristics
of the source code component under examination.

3 Defining Quality

In this section, we quantify quality as perceived by developers using information
from GitHub stars and forks as ground truth. In addition, our analysis describes
how the different categories of source code metrics are related to major quality
characteristics as defined in ISO/IEC 25010:2011 [10].

3.1 Benchmark Dataset

Our dataset consists of a large set of static analysis metrics calculated for 102
repositories, selected from the 100 most starred and the 100 most forked GitHub
Java projects. The projects were sorted in descending order of stars and subse-
quently forks, and were selected to cover more than 100,000 classes and 7,300
projects. Certain statistics of the benchmark dataset are shown in Table 1.

Table 1. Dataset statistics [5].

Statistics Dataset

Total number of projects 102

Total number of packages 7, 372

Total number of classes 100, 233

Total number of methods 584, 856

Total lines of code 7, 985, 385

We compute a large set of static analysis metrics that cover the source code
properties of complexity, coupling, documentation, inheritance, and size. Cur-
rent literature [9,11] indicates that these properties are directly related to the
characteristics of Functional Suitability, Usability, Maintainability, and Porta-
bility, as defined by ISO/IEC 25010:2011 [10]. The metrics that were computed

Assessing the User-Perceived Quality of Source Code Components 7

Table 2. Overview of static metrics and their applicability on different levels.

Static analysis metrics Compute levels

Type Name Description Class Package

Complexity NL Nesting Level ×
NLE Nesting Level Else-If ×
WMC Weighted Methods per Class ×

Coupling CBO Coupling Between Object classes ×
CBOI CBO Inverse ×
NII Number of Incoming Invocations ×
NOI Number of Outgoing Invocations ×
RFC Response set For Class ×

Cohesion LCOM5 Lack of Cohesion in Methods 5 ×
Documentation AD API Documentation ×

CD Comment Density × ×
CLOC Comment Lines of Code × ×
DLOC Documentation Lines of Code ×
PDA Public Documented API × ×
PUA Public Undocumented API × ×
TAD Total API Documentation ×
TCD Total Comment Density × ×
TCLOC Total Comment Lines of Code × ×
TPDA Total Public Documented API ×
TPUA Total Public Undocumented API ×

Inheritance DIT Depth of Inheritance Tree ×
NOA Number of Ancestors ×
NOC Number of Children ×
NOD Number of Descendants ×
NOP Number of Parents ×

Size {L}LOC {Logical} Lines of Code × ×
N{A,G,M, S} Number of {Attributes, Getters,

Methods, Setters}
× ×

N{CL,EN, IN,P} Number of {Classes, Enums,
Interfaces, Packages}

×

NL{A,G,M, S} Number of Local {Attributes, Getters,
Methods, Setters}

×

NLP{A,M} Number of Local Public {Attributes,
Methods}

×

NP{A,M} Number of Public {Attributes,
Methods}

× ×

NOS Number of Statements ×
T{L}LOC Total {Logical} Lines of Code × ×
TNP{CL,EN, IN} Total Number of Public {Classes,

Enums, Interfaces}
×

TN{CL,DI, EN,FI} Total Number of {Classes, Directories,

Enums, Files}
×

8 V. Dimaridou et al.

using SourceMeter [21] are shown in Table 2. In our previous work [5], the metrics
were computed at class level, except for McCC that was computed at method
level and then averaged to obtain a value for the class. For this extended work
the metrics were computed at a package level, except for the metrics that are
available only at class level. These metrics were initially calculated at class level
and the median of each one was enumerated to obtain values for the packages.

3.2 Quality Score Formulation

As already mentioned, we use GitHub stars and forks as ground truth informa-
tion towards quantifying quality as perceived by developers. According to our
initial hypothesis, the number of stars can be used as a measure of the popularity
for a software project, while the number of forks as a measure of its reusability.
We make use of this information in order to define our target variable and con-
sequently build a quality scoring mechanism. Towards this direction, we aim to
define a quality score for every class and every package included in the dataset.

Given, however, that the number of stars and forks refer to repository level,
they are not directly suited for defining a score that reflects the quality of each
class or package, individually. Obviously, equally splitting the quality score com-
puted at repository level among all classes or packages is not optimal, as every
component has a different significance in terms of functionality and thus must
be rated as an independent entity. Consequently, in an effort to build a scor-
ing mechanism that is as objective as possible, we propose a methodology that
involves the values of static analysis metrics for modeling the significance of each
source code component (class or package) included in a given repository.

The quality score for every software component (class or package) of the
dataset is defined using the following equations:

Sstars(i, j) = (1 + NPM(j)) · Stars(i)
Ncomponents(i)

(1)

Sforks(i, j) = (1 + AD(j) + NM(j)) · Forks(i)
Ncomponents(i)

(2)

Qscore(i, j) = log(Sstars(i, j) + Sforks(i, j)) (3)

where Sstars(i, j) and Sforks(i, j) represent the quality scores for the j-th source
code component (class or package) contained in the i-th repository, based on the
number of GitHub stars and forks, respectively. Ncomponents(i) corresponds to
the number of source code components (classes or packages) contained in the i-th
repository, while Stars(i) and Forks(i) refer to the number of its GitHub stars
and forks, respectively. Finally, Qscore(i, j) is the overall quality score computed
for the j-th source code component (class or package) contained in the i-th
repository.

Our target set also involves the values of three metrics as a measure of the
significance for every individual class or package contained in a given repository.
Different significance implies different contribution to the number of GitHub

Assessing the User-Perceived Quality of Source Code Components 9

stars and forks of the repository and thus different quality scores. NPM(j) is
used to measure the degree to which the j-th class (or package) contributes to
the number of stars of the repository, as it refers to the number of methods and
thus the different functionalities exposed by the class (or package). As for the
contribution at the number of forks, we use AD(j), which refers to the ratio of
documented public methods, and NM(j), which refers to the number of methods
of the j-th class (or package), and therefore can be used as a measure of its
functionalities. Note that the provided functionalities pose a stronger criterion
for determining the reusability score of a source code component compared to
the documentation ratio, which contributes more as the number of methods
approaches to zero. Lastly, as seen in equation (3), the logarithmic scale is applied
as a smoothing factor for the diversity in the number of classes and packages
among different repositories. This smoothing factor is crucial, since this diversity
does not reflect the true quality difference among the repositories.

Figure 1 illustrates the distribution of the quality score (target set) for the
benchmark dataset classes and packages. Figure 1(a) refers to classes, while
Fig. 1(b) refers to packages. The majority of instances for both distributions
are accumulated in the interval [0.1, 0.5] and their frequency is decreasing as the
score reaches 1. This is expected, since the distributions of the ratings (stars or
forks) provided by developers typically exhibit few extreme values.

4 System Design

In this section we design our system for quality estimation based on static anal-
ysis metrics. We split the dataset of the previous section into two sets, one for
training and one for testing. The training set includes 90 repositories with 91531
classes distributed within 6632 packages and the test set includes 12 repositories
with 8702 classes distributed within 738 packages. For the training, we used all
available static analysis metrics except for those used for constructing the target
variable. In specific, AD, NPM, NM, and NCL were used only for the prepro-
cessing stage and then excluded from the models training to avoid skewing the
results. In addition, any components with missing metric values are removed
(e.g. empty class files or package files containing no classes); hence the updated
training set contains 5599 packages with 88180 class files and the updated test
set contains 556 packages with 7998 class files.

4.1 System Overview

Our system is shown in Fig. 3. The input is given in the form of static analysis
metrics, while the stars and forks of the GitHub repositories are required only for
the training of the system. As a result, the developer can provide a set of classes
or packages (or a full project), and receive a comprehensible quality analysis as
output. Our methodology involves three stages: the preprocessing stage, the met-
rics selection stage, and the model estimation stage. During preprocessing, the
target set is constructed using the analysis of Sect. 3, and the dataset is cleaned

10 V. Dimaridou et al.

Fig. 1. Distribution of the computed quality score at (a) class and (b) package level.

of duplicates and outliers. Metrics selection determines which metrics will be
used for each metric category, and model estimation involves training 5 models,
one for each category. The stages are analyzed in the following paragraphs.

4.2 Data Preprocessing

The preprocessing stage is used to eliminate potential outliers from the dataset
and thus make sure that the models are trained as effectively as possible. To
do so, we developed a one-class classifier for each level (class/package) using
Support Vector Machines (SVM) and trained it using metrics that were selected
by means of Principal Feature Analysis (PFA).

At first, the dataset is given as input in two PFA models which refer to classes
and packages, respectively. Each model performs Principal Component Analysis
(PCA) to extract the most informative principal components (PCs) from all
metrics applicable at each level. In the case of classes, we have 54 metrics, while
in the case of packages, we have 68. According to our methodology, we keep the
first 12 principal components, preserving 82.8% of the information in the case

Fig. 2. Overview of the quality estimation methodology [5].

Assessing the User-Perceived Quality of Source Code Components 11

of classes and 82.91% in the case of packages. Figure 3 depicts the percentage
of variance for each principal component. Figure 3(a) refers to class level, while
Fig. 3(b) refers to package level. We follow a methodology similar to that of [13]
in order to select the features that shall be kept. The transformation matrix
generated by each PCA includes values for the participation of each metric in
each principal component.

Fig. 3. Variance of principal components at (a) class and (b) package level.

We first cluster this matrix using hierarchical clustering and then select a
metric from each cluster. Given that different metrics may have similar trends
(e.g. McCabe Complexity with Lines of Code), complete linkage was selected
to avoid large heterogeneous clusters. The dendrograms of the clustering for
both classes and packages is shown in Fig. 4. Figure 4(a) refers to classes, while
Fig. 4(b) refers to packages.

The dendrograms reveal interesting associations among the metrics. The clus-
ters correspond to categories of metrics which are largely similar, such as the
metrics of the local class attributes, which include their number (NLA), the num-
ber of the public ones (NLPA), and the respective totals (TNLPA and TNLA)
that refer to all classes in the file. In both class and package levels, our clustering
reveals that keeping one of these metrics results in minimum information loss.
Thus, in this case we keep only TNLA. The selection of the kept metric from each
cluster in both cases (in red in Fig. 4) was performed by manual examination to
end up with a metrics set that conforms to the current state-of-the-practice. An
alternative would be to select the metric which is closest to a centroid computed
as the Euclidean mean of the cluster metrics.

After having selected the most representative metrics for each case, the next
step is to remove any outliers. Towards this direction, we use two SVM one-class
classifiers for this task, each applicable at a different level. The classifiers use
a radial basis function (RBF) kernel, with gamma and nu set to 0.01 and 0.1
respectively, and the training error tolerance is set to 0.01. Given that our dataset
contains popular high quality source code, outliers in our case are actually low

12 V. Dimaridou et al.

Fig. 4. Dendrogram of metrics clustering at (a) class and (b) package level. (Color
figure online)

quality classes or packages. These are discarded since the models of Fig. 2 are
trained on high quality source code. As an indicative assessment of our classifier,
we use the code violations data described in Sect. 3.

In total, the one-class classifiers ruled out 8815 classes corresponding to 9.99%
of the training set and 559 packages corresponding to 9.98% of the training set.
We compare the mean number of violations for these rejected classes/packages
and for the classes/packages that were accepted, for 8 categories of violations.
The results, which are shown in Table 3, indicate that our classifier success-
fully rules out low quality source code, as the number of violations for both the
rejected classes and packages is clearly higher than that of the accepted.

For instance, the classes rejected by the classifier are typically complex since
they each have on average approximately one complexity violation; on the other

Assessing the User-Perceived Quality of Source Code Components 13

Table 3. Mean number of violations of accepted and rejected components.

Violation types Mean number of violations

Classes Packages

Accepted Rejected Accepted Rejected

WarningInfo 18.5276 83.0935 376.3813 4106.3309

Clone 4.3106 20.9365 2.9785 10.7513

Cohesion 0.3225 0.7893 0.2980 0.6556

Complexity 0.0976 1.2456 0.0907 0.9320

Coupling 0.1767 1.5702 0.2350 1.2486

Documentation 12.5367 49.9751 13.9128 37.2039

Inheritance 0.0697 0.4696 0.0439 0.2280

Size 1.0134 8.1069 1.2812 5.6296

hand, the number of complexity violations for the accepted classes is minimal.
Furthermore, on average each rejected class has more than 8 size violations (e.g.
large method bodies), whereas accepted classes have approximately 1.

4.3 Models Preprocessing

Before model construction, we use PFA to select the most important metrics
for each of the five metric categories: complexity metrics, coupling metrics, size
metrics, inheritance metrics, and documentation metrics. As opposed to data
preprocessing, PFA is now used separately per category of metrics. We also
perform discretization on the float variables (TCD, NUMPAR, McCC) and on
the target variable and remove any duplicates in order to reduce the size of the
dataset and thus improve the training of the models.

Analysis at Class Level

Complexity Model. The dataset has four complexity metrics: NL, NLE, WMC,
and McCC. Using PCA and keeping the first 2 PCs (84.49% of the information),
the features are split in 3 clusters. Figure 5(a) shows the correlation of the metrics
with the first two PCs, with the selected metrics (NL, WMC, and McCC) in red.

Coupling Model. The coupling metrics are CBO, CBOI, NOI, NII, and RFC. By
keeping the first 2 PCs (84.95% of the information), we were able to select three
of them, i.e. CBO, NII, and RFC, so as to train the ANN. Figure 5(b) shows the
metrics in the first two PCs, with the selected metrics in red.

Documentation Model. The dataset includes five documentation metrics (CD,
CLOC, DLOC, TCLOC, TCD), out of which DLOC, TCLOC, and TCD were
found to effectively cover almost all valuable information (2 principal components

14 V. Dimaridou et al.

Fig. 5. Visualization of the top 2 PCs at class level for (a) complexity, (b) coupling,
(c) documentation, (d) inheritance and (e) size property [5]. (Color figure online)

with 98.73% of the information). Figure 5(c) depicts the correlation of the metrics
with the kept components, with the selected metrics in red.

Inheritance Model. For the inheritance metrics (DIT, NOA, NOC, NOD, NOP),
the PFA resulted in 2 PCs and two metrics, DIT and NOC, for 96.59% of the
information. Figure 5(d) shows the correlation of the metrics with the PCs, with
the selected metrics in red.

Assessing the User-Perceived Quality of Source Code Components 15

Size Model. The PCA for the size metrics indicated that almost all information,
83.65%, is represented by the first 6 PCs, while the first 2 (i.e. 53.80% of the
variance) are visualized in Fig. 5(e). Upon clustering, we select NPA, TLLOC,
TNA, TNG, TNLS, and NUMPAR in order to cover most information.

Analysis at Package Level

Complexity Model. The dataset has three complexity metrics: WMC, NL and
NLA. After using PCA and keeping the first two PCs (98.53% of the informa-
tion), the metrics are split in 2 clusters. Figure 6(a) depicts the correlation of
the metrics with the PCs, with the selected metrics (NL and WMC) in red.

Coupling Model. Regarding the coupling metrics, which for the dataset are CBO,
CBOI, NOI, NII, and RFC, three of them were found to effectively cover most of
the valuable information. In this case the first three principal components were
kept, which correspond to 90.29% of the information. The correlation of each
metric with the first two PCs is shown in Fig. 6(b), with the selected metrics
(CBOI, NII and RFC) in red.

Documentation Model. For the documentation model, upon using PCA and
keeping the first two PCs (86.13% of the information), we split the metrics in 3
clusters and keep TCD, DLOC and TCLOC as the most representative metrics.
Figure 6(c) shows the correlation of the metrics with the PCs, with the selected
metrics in red.

Inheritance Model. The inheritance dataset initially consists of DIT, NOA, NOC,
NOD and NOP. By applying PCA, 2 PCs were kept (93.06% of the information).
The process of selecting metrics resulted in 2 clusters, of which NOC and DIT
were selected as the Fig. 6(d) depicts.

Size Model. The PCA for this category indicated that the 83.57% of the infor-
mation is successfully represented by the 6 first principal components. Thus, as
Fig. 6(e) visualizes, NG, TNIN, TLLOC, NPA, TNLA and TNLS were selected
out of 33 size metrics of the original dataset.

4.4 Models Validation

We train five Artificial Neural Network (ANN) models for each level (class and
package), each one of them corresponding to one of the five metric properties.
All networks have one input, one hidden, and one output layer, while the number
of nodes for each layer and each network is shown in Table 4.

10-fold cross-validation was performed to assess the effectiveness of the
selected architectures. The validation error for each of the 10 folds and for each
of the five models is shown in Fig. 7.

Upon validating the architectures that were selected for our neural net-
works, in the following paragraphs, we describe our methodology for training our
models.

16 V. Dimaridou et al.

Fig. 6. Visualization of the top 2 PCs at package level for (a) complexity, (b) coupling,
(c) documentation, (d) inheritance and (e) size property. (Color figure online)

4.5 Models Construction

The model construction stage involves the training of five ANN models for each
level (class and package) using the architectures defined in the previous subsec-
tion. For each level, every model provides a quality score regarding a specific
metrics category, and all the scores are then aggregated to provide a final qual-
ity score for a given component. Although simply using the mean of the met-
rics is reasonable, we use weights to effectively cover the requirements of each

Assessing the User-Perceived Quality of Source Code Components 17

Table 4. Neural network architecture for each metrics category.

Metrics category Class Package

Input nodes Hidden nodes Input nodes Hidden nodes

Complexity 3 1 2 2

Coupling 3 2 3 3

Documentation 3 2 3 3

Inheritance 2 2 2 2

Size 6 4 6 4

Fig. 7. 10-fold cross-validation error for the 5 ANNs referring to (a) class level and (b)
package level.

individual developer. For instance, a developer may be more inclined towards
finding a well-documented component even if it is somewhat complex. In this
case, the weights of complexity and documentation could be adapted accordingly.

The default weight values for the models applicable at each level are set
according to the correlations between the metrics of each ANN and the respective
target score. Thus, for the complexity score, we first compute the correlation of
each metric with the target score (as defined in Sect. 3), and then calculate the
mean of the absolutes of these values. The weights for the other categories are
computed accordingly and all values are normalized so that their sum is equal
to 1. The computed weights for the models of each level are shown in Table 5,
while the final score is calculated by multiplying the individual scores with the
respective weights and computing their sum. Class level weights seem to be more
evenly distributed than package level weights. Interestingly, package level weights
for complexity, coupling, and inheritance are lower than those of documentation
and size, possibly owing to the fact that the latter categories include only metrics
computed directly at package level (and not aggregated from class level metrics).

18 V. Dimaridou et al.

Table 5. Quality score aggregation weights.

Metrics category Aggregation weights

Class level Package level

Complexity 0.207 0.192

Coupling 0.210 0.148

Documentation 0.197 0.322

Inheritance 0.177 0.043

Size 0.208 0.298

Figure 8 depicts the error distributions for the training and test sets of the
aggregated model at both levels (class and package), while the mean error per-
centages are in Table 6.

Fig. 8. Error histograms for the aggregated model at (a) class and (b) package level.

The ANNs are trained effectively, as their error rates are low and concentrate
mostly around 0. The differences in the distributions between the training and
test sets are also minimal, indicating that both models avoided overfitting.

5 Evaluation

5.1 One-Class Classifier Evaluation

Each one-class classifier (one for each level) is evaluated on the test set using the
code violations data described in Sect. 3. Regarding the class level, our classifier
ruled out 1594 classes corresponding to 19.93% of the classes, while for the
package level, our classifier ruled out 89 packages corresponding to 16% of the
packages. The mean number of violations for the rejected and the accepted
classes and packages are shown in Table 7, for all the 8 categories of violations.

Assessing the User-Perceived Quality of Source Code Components 19

Table 6. Mean error percentages of the ANN models.

Metrics category Error at class level Error at package level

Training Testing Training Testing

Complexity 10.44% 9.55% 11.20% 9.99%

Coupling 10.13% 8.73% 10.81% 10.08%

Documentation 11.13% 10.22% 7.62% 9.52%

Inheritance 13.62% 12.04% 12.15% 10.98%

Size 9.15% 8.73% 7.15% 9.21%

Final 11.35% 8.79% 7.86% 8.43%

Table 7. Number of violations of accepted and rejected components.

Violation types Mean number of violations

Classes Packages

Rejected Accepted Rejected Accepted

WarningInfo 57.6481 17.4574 1278.4831 312.3640

Clone 18.8338 4.1953 13.2359 2.4935

Cohesion 0.5922 0.3003 0.4831 0.2987

Complexity 1.5772 0.0963 1.3033 0.0985

Coupling 1.4737 0.2099 0.9494 0.2109

Documentation 26.2083 11.4102 23.9213 12.5620

Inheritance 1.2516 0.2854 0.5112 0.1113

Size 7.7114 0.9599 6.0505 1.2751

5.2 Quality Estimation Evaluation

Class Level. Although the error rates of our system are quite low (see Fig. 8),
we also have to assess whether its estimations are reasonable from a quality
perspective. This type of evaluation requires examining the metric values, and
studying their influence on the quality scores. To do so, we use a project as a
case study. The selected project, MPAndroidChart, was chosen at random as the
results are actually similar for all projects. For each of the 195 class files of the
project, we applied our methodology to construct the five scores corresponding
to the source code properties and aggregated them for the final quality score.

We use Parallel Coordinates Plots combined with Boxplots to examine how
quality scores are affected by the static analysis metrics (Figs. 9(a)–(f)). For each
category, we first calculate the quartiles for the score and construct the Boxplot.
After that, we split the data instances (metrics values) in four intervals according
to their quality score: [min, q1), [q1,med), [med, q3), [q3,max], where min and
max are the minimum and maximum score values, med is the median value,
and q1 and q3 are the first and third quartiles, respectively. Each line represents
the mean values of the metrics for a specific interval. For example, the blue line

20 V. Dimaridou et al.

Fig. 9. Parallel Coordinates Plots at class level for the score generated from (a) the
complexity model, (b) the coupling model, (c) the documentation model, (d) the inher-
itance model, (e) the size model, and (f) plot showing the score aggregation [5]. (Color
figure online)

refers to instances with scores in the [q3,max] interval. The line is constructed
by the mean values of the metrics NL, McCC, WMC and the mean quality
score in this interval, which are 1.88, 1.79, 44.08, and 0.43 respectively. The red,
orange, and cyan lines are constructed similarly using the instances with scores
in the [min, q1), [q1,med), and [med, q3) intervals, respectively.

Assessing the User-Perceived Quality of Source Code Components 21

Figure 9(a) refers to the complexity model. This plot results in the identifica-
tion of two dominant trends that influence the score. At first, McCC appears to
be crucial for the final score. High values of the metric result in low score, while
low ones lead to high score. This is expected since complex classes are prone to
containing bugs and overall imply low quality code. Secondly, the metrics WMC
and NL do not seem to correlate with the score individually; however they affect
it when combined. Low WMC values combined with high NL values result in
low quality scores, which is also quite rational given that more complex classes
with multiple nested levels are highly probable to exhibit low quality.

Figures 9(b) and (c) refer to the coupling and the documentation models,
respectively. Concerning coupling, the dominant metric for determining the score
appears to be RFC. High values denote that the classes include many different
methods and thus many different functionalities, resulting in high quality score.
As for the documentation model, the plot indicates that classes with high com-
ment density (TCD) and low number of documentation lines (DLOC) are given
a low quality score. This is expected as this combination probably denotes that
the class does not follow the Java documentation guidelines, i.e. it uses comments
instead of Javadoc.

Figures 9(d) and (e) refer to the inheritance and size models, respectively.
DIT appears to greatly influence the score generated by the inheritance model,
as its values are proportional to those of the score. This is expected as higher
values indicate that the class is more independent as it relies mostly on its
ancestors, and thus it is more reusable. Although higher DIT values may lead
to increased complexity, the values in this case are within acceptable levels, thus
the score is not negatively affected.

As for the size model, the quality score appears to be mainly influenced by
the values of TLLOC, TNA and NUMPAR. These metrics reflect the amount
of valuable information included in the class by measuring the lines of code and
the number of attributes and parameters. Classes with moderate size and many
attributes or parameters seem to receive high quality scores. This is expected
as attributes/parameters usually correspond to different functionalities. Addi-
tionally, a moderately sized class is common to contain considerable amount of
valuable information while not being very complex.

Finally, Fig. 9(f) illustrates how the individual quality scores (dashed lines)
are aggregated into one final score (solid line), which represents the quality degree
of the class as perceived by developers. The class indexes (project files) are sorted
in descending order of quality score. The results for each score illustrate several
interesting aspects of the project. For instance, it seems that the classes exhibit
similar inheritance behavior throughout the project. On the other hand, the size
quality score is diverse, as the project has classes with various size characteristics
(e.g. small or large number of methods), and thus their score may be affected
accordingly. Finally, the trends of the individual scores are in line with the final
score, while their variance gradually decreases as the final score increases. This
is expected as a class is typically of high quality if it exhibits acceptable metric
values in several categories.

22 V. Dimaridou et al.

Fig. 10. Parallel Coordinates Plots at package level for the score generated from (a)
the complexity model, (b) the coupling model, (c) the documentation model, (d) the
inheritance model, (e) the size model, and (f) plot showing the score aggregation.

Package Level. Following the same strategy as in the case of classes, we con-
structed Parallel Coordinates Plots combined with Boxplots towards examining
the influence of the values of the static analysis metrics on the quality score.
Figure 10 depicts the plots for each of the five source code properties under
evaluation and the aggregated plot of the final quality score.

Assessing the User-Perceived Quality of Source Code Components 23

At this point, it is worth noticing that only in the cases of size and docu-
mentation, the values of the static analysis metrics originate from the packages
themselves, while for the other three models the values of the static analysis
metrics originate from classes. As a result, the behaviors extracted in the cases
of size and documentation are considered more accurate which originates from
the fact that they do not accumulate noise due to aggregations. As already
noted in Subsect. 3.1, the median was used as an aggregation mechanism, which
is arguably an efficient measure as it is at least not easily influenced by extreme
metrics’ values.

Figure 10(a) refers to the complexity model. As it can be seen from the dia-
gram, the outcome of the complexity score appears to be highly influenced by
the values of WMC metric. High WMC values result in high score while lower
values appear to have the opposite impact. Although this is not expected as
higher complexity generally is interpreted as an negative characteristic, in this
case, given the intervals of the complexity-related metrics, we can see that the
project under evaluation appears to exhibit very low complexity. This is reflected
in the intervals of both NL and WMC which are [0, 1.2] and [0, 23], respectively.
Consequently, the extracted behaviour regarding the influence of WMC in the
outcome of the final score can be considered logical as extremely low values of
WMC (close to zero) indicate absence of valuable information and thus the score
is expected to be low.

Figures 10(b) and (c) refer to the coupling and the documentation model,
respectively. In the case of coupling, it is obvious that the values of the NII
(Number of Incoming Invocations) metric appear to highly influence the out-
come of the final score. High NII values result in high score, while low values
appear to have a negative impact. This is expected as NII metric reflects the sig-
nificance of a given package due to the fact that it measures the number of other
components that call its functions. In addition, we can see that high values of
CBOI (Coupling Between Objects Inverse) metric result in high coupling score
which is totally expected as CBOI reflects how decoupled is a given component.
As for the documentation model, it is obvious that the Total Comments Den-
sity (TCD) metric appears to influence the outcome of the final score. Moderate
values (around 20%) appear to result in high scores which is logical considering
the fact that those packages appear to have one line of comment for every five
lines of code.

Figures 10(d) and (e) refer to the inheritance and the size model, respectively.
As for the inheritance model, DIT metric values appear to greatly influence
the generated score in a proportional manner. This is expected as higher DIT
values indicate that a component is more independent as it relies mostly on its
ancestors, and thus it is more reusable. It is worth noticing that although higher
DIT values may lead to increased complexity, the values in this case are within
acceptable levels, thus the score is not negatively affected. As for the size model,
the packages that appear to have normal size as reflected in the values of TLLOC
(Total Logical Lines Of Code) metric receive high score. On the other hand, the
ones that appear to contain little information receive low score, as expected.

24 V. Dimaridou et al.

Finally, Fig. 10(f) illustrates how the individual quality scores (dashed lines)
are aggregated into one final score (solid line), which represents the quality degree
of the package as perceived by developers. The package indexes are sorted in
descending order of quality score. Similar to the case of classes, the trends of the
individual scores are in line with the final score. The score that originates from
the inheritance model exhibits the highest deviation from the final score, while
the lowest deviation is the one of the scores originating from the size and the
documentation models. This is expected as those two properties include metrics
that are applicable directly at package level.

5.3 Example Quality Estimation

Further assessing the validity of our system, for each category we manually exam-
ine the values of the static analysis metrics of 20 sample components (10 classes
and 10 packages) that received both high and low quality scores regarding each
one of the five source code properties, respectively. The scores for these classes
and packages are shown in Table 8. Note that the presented static analysis met-
rics refer to different classes and packages for each category. For the complexity
model, the class that received low score appears to be much more complex than
the one that received high score. This is reflected in the values of McCC and NL,
as the low-scored class includes more complex methods (8.5 versus 2.3), while
it also has more nesting levels (28 versus 4). The same applies for the packages
that received high and low scores, respectively.

For the coupling model, the high-quality class has significantly higher NII and
RFC values when compared to those of the low-quality class. This difference in
the number of exposed functionalities is reflected in the quality score. The same
applies for the inheritance model, where the class that received high score is a
lot more independent (higher DIT) and thus reusable than the class with the
low score. The same conclusions can be derived for the case of packages where it
is worth noticing that the difference between the values of the coupling-related
metrics between the high-scored and the low-scored package are smaller. This
is a result of the fact that the described coupling metrics are only applicable at
class level.

As for the inheritance score, it is obvious in both the cases of classes and
packages that the higher degree of independence as reflected in the low values of
NOC and NOP metrics results into high score. Finally, as for the documentation
and size models, in both cases the low-quality components (both classes and
packages) appear to have no valuable information. In the first case, this absence
is obvious from the extreme value of comments density (TCD) combined with
the minimal documentation (TCLOC). In the second case, the low-quality class
and package contain only 10 and 40 logical lines of code (TLLOC), respectively,
which indicates that they are of almost no value for the developers. On the other
hand, the high-quality components seem to have more reasonable metrics values.

Assessing the User-Perceived Quality of Source Code Components 25

Table 8. Static analysis metrics per property for 20 components (10 classes and 10
packages) with different quality scores.

Metrics Classes Packages

Category Name High
score
(80–90%)

Low score
(10–15%)

High
score
(80–90%)

Low score
(10–15%)

Complexity McCC 2.3 8.5 – –

WMC 273 51 12 6

NL 4 28 2 4

Coupling NII 88 0 21.5 4

RFC 65 7 30 8

CBO 5 35 3 14

Documentation TCD 0.3 0.8 0.35 0.82

DLOC 917 2 372 7

TCLOC 1,019 19 2654 24

Inheritance DIT 8 0 3 0

NOC 1 16 1 9

NOP 2 14 2 8

Size NUMPAR 27 3 – –

NCL – – 9 1

TNA 69 0 65 2

NPA 36 0 29 0

TLLOC 189 10 1214 40

TNLS 13 2 78 4

NM 9 1 98 1

5.4 Threats to Validity

The threats to the validity of our approach and our evaluation involve both its
applicability to software projects and its usage by the developers. Concerning
applicability, the dataset used is quite diverse; hence our methodology can be
seamlessly applied to any software project for which static analysis metrics can
be extracted. Concerning expected usage, developers would harness the quality
estimation capabilities of our approach in order to assess the quality of their
own or third-party software projects before (re)using them in their source code.
Future work on this aspect may involve integrating our approach in a system for
software component reuse, either as an online component search engine or as an
IDE plugin.

26 V. Dimaridou et al.

6 Conclusions

Given the late adoption of a component-based software engineering paradigm,
the need for estimating the quality of software components before reusing them
(or before publishing one’s components) is more eminent than ever. Although
previous work on the area of designing quality estimation systems is broad,
there is usually some reliance on expert help for model construction, which in
turn may lead to context-dependent and subjective results. In this work, we
employed information about the popularity of source code components to model
their quality as perceived by developers, an idea originating from [15] that was
found to be effective for estimating the quality of software classes [5].

We have proposed a component-based quality estimation approach, which
we construct and evaluate using a dataset of source code components, at class
and package level. Upon removing outliers using a one-class classifier, we apply
Principal Feature Analysis techniques to effectively determine the most infor-
mative metrics lying in five categories: complexity, coupling, documentation,
inheritance, and size metrics. The metrics are subsequently given to five neural
networks that output quality scores. Our evaluation indicates that our system
can be effective for estimating the quality of software components as well as
for providing a comprehensive analysis on the aforementioned five source code
quality axes.

Future work lies in several directions. At first, the design of our target vari-
able can be further investigated for different scenarios and different application
scopes. In addition, various feature selection techniques and models can be tested
to improve on current results. Finally, we could assess the effectiveness of our
methodology by means of a user study, and thus further validate our findings.

References

1. Alves, T.L., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark
data. In: IEEE International Conference on Software Maintenance (ICSM), pp.
1–10. IEEE (2010)

2. Cai, T., Lyu, M.R., Wong, K.F., Wong, M.: ComPARE: a generic quality assess-
ment environment for component-based software systems. In: proceedings of the
2001 International Symposium on Information Systems and Engineering (2001)

3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

4. Diamantopoulos, T., Thomopoulos, K., Symeonidis, A.: QualBoa: reusability-
aware recommendations of source code components. In: IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pp. 488–491. IEEE (2016)

5. Dimaridou, V., Kyprianidis, A.C., Papamichail, M., Diamantopoulos, T., Syme-
onidis, A.: Towards modeling the user-perceived quality of source code using
static analysis metrics. In: 12th International Conference on Software Technolo-
gies (ICSOFT), Madrid, Spain, pp. 73–84 (2017)

6. Ferreira, K.A., Bigonha, M.A., Bigonha, R.S., Mendes, L.F., Almeida, H.C.: Identi-
fying thresholds for object-oriented software metrics. J. Syst. Softw. 85(2), 244–257
(2012)

Assessing the User-Perceived Quality of Source Code Components 27

7. Foucault, M., Palyart, M., Falleri, J.R., Blanc, X.: Computing contextual met-
ric thresholds. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 1120–1125. ACM (2014)

8. Hegedűs, P., Bakota, T., Ladányi, G., Faragó, C., Ferenc, R.: A drill-down approach
for measuring maintainability at source code element level. Electron. Commun.
EASST 60 (2013)

9. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-
ability. In: 6th International Conference on the Quality of Information and Com-
munications Technology, QUATIC 2007, pp. 30–39. IEEE (2007)

10. ISO/IEC 25010:2011 (2011). https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:
ed-1:v1:en. Accessed Nov 2017

11. Kanellopoulos, Y., Antonellis, P., Antoniou, D., Makris, C., Theodoridis, E.,
Tjortjis, C., Tsirakis, N.: Code quality evaluation methodology using the ISO/IEC
9126 standard. Int. J. Softw. Eng. Appl. 1(3), 17–36 (2010)

12. Le Goues, C., Weimer, W.: Measuring code quality to improve specification mining.
IEEE Trans. Softw. Eng. 38(1), 175–190 (2012)

13. Lu, Y., Cohen, I., Zhou, X.S., Tian, Q.: Feature selection using principal feature
analysis. In: Proceedings of the 15th ACM International Conference on Multimedia,
pp. 301–304. ACM (2007)

14. Miguel, J.P., Mauricio, D., Rodŕıguez, G.: A review of software quality models for
the evaluation of software products. arXiv preprint arXiv:1412.2977 (2014)

15. Papamichail, M., Diamantopoulos, T., Symeonidis, A.: User-perceived source code
quality estimation based on static analysis metrics. In: IEEE International Con-
ference on Software Quality, Reliability and Security (QRS), pp. 100–107. IEEE
(2016)

16. Pfleeger, S.L., Atlee, J.M.: Software Engineering: Theory and Practice. Pearson
Education India, Delhi (1998)

17. Pfleeger, S., Kitchenham, B.: Software quality: the elusive target. IEEE Softw. 13,
12–21 (1996)

18. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:
measurement based open source software evaluation. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. ITIFIP, vol. 275, pp. 237–248.
Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09684-1 19

19. Schmidt, C.: Agile Software Development Teams. Progress in IS. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-26057-0

20. Shatnawi, R., Li, W., Swain, J., Newman, T.: Finding software metrics threshold
values using ROC curves. J. Softw.: Evol. Process 22(1), 1–16 (2010)

21. SourceMeter static analysis tool (2017). https://www.sourcemeter.com/. Accessed
Nov 2017

22. Taibi, F.: Empirical analysis of the reusability of object-oriented program code in
open-source software. Int. J. Comput. Inf. Syst. Control Eng. 8(1), 114–120 (2014)

23. Washizaki, H., Namiki, R., Fukuoka, T., Harada, Y., Watanabe, H.: A frame-
work for measuring and evaluating program source code quality. In: Münch, J.,
Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 284–299. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73460-4 26

24. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Unsupervised learning for expert-based
software quality estimation. In: HASE, pp. 149–155 (2004)

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
http://arxiv.org/abs/1412.2977
https://doi.org/10.1007/978-0-387-09684-1_19
https://doi.org/10.1007/978-3-319-26057-0
https://www.sourcemeter.com/
https://doi.org/10.1007/978-3-540-73460-4_26

A Technology for Optimizing the Process
of Maintaining Software Up-to-Date

Andrei Panu(B)

Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi,
Iasi, Romania

andrei.panu@info.uaic.ro

Abstract. In this paper we propose a solution for reducing the time
needed to make changes in an application in order to support a new
version of a software dependency (e.g., library, interpreter). When such
an update is available, we do not know if it comes with some changes
that can break the execution of the application. This issue is very seri-
ous in the case of interpreted languages, because errors appear at run-
time. System administrators and software developers are directly affected
by this problem. Usually the administrators do not know many details
about the applications hosted on their infrastructure, except the nec-
essary execution environment. Thus, when an update is available for a
library packaged separately or for an interpreter, they do not know if
the applications will run on the new version, being very hard for them
to take the decision to do the update. The developers of the applica-
tion must make an assessment and support the new version, but these
tasks are time consuming. Our approach automates this assessment by
analyzing the source code and verifying if and how the changes in the
new version affect the application. By having such kind of information
obtained automatically, it is easier for system administrators to take a
decision regarding the update and it is faster for developers to find out
which is the impact of the new version.

Keywords: Information extraction · Named entity recognition
Machine learning · Web mining · Software maintenance

1 Introduction

Cloud computing brought some significant changes in software development,
deployment, and execution. It has also changed the way we use and interact
with software applications, as professionals or as consumers. Nowadays we have
increasingly more applications that are accessible from everywhere using the
Internet, which do not need to be locally installed, and which are provided as
a service (SaaS – Software as a Service). These can be monolithic applications
of different sizes or can be composed of multiple services that run “in cloud”,
in various environments. Even mobile applications that are installed locally use

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 28–48, 2018.
https://doi.org/10.1007/978-3-319-93641-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_2&domain=pdf

A Technology for Optimizing the Process 29

backend services hosted on servers. All of them are executed in pre-configured
environments. After the applications are initially developed and deployed, some
challenges appear regarding their maintenance and the maintenance of their
execution environment. For example, when an update is available for the inter-
preter of a certain language (e.g. PHP, Python, etc.), system administrators face
a problem, especially if the update is a major one. One of their major tasks is to
maintain the infrastructure for running different applications and keep the sys-
tems up to date. When they are faced with updating the interpreter, on which
the deployed applications depend, to a new version, they have to answer ques-
tions like: will the existing applications run on the new version of the interpreter?
Are there any parts of the applications that will not run because of the changes?

These questions can not be answered easily. As they are usually not the devel-
opers of the hosted applications or services that rely on the interpreter, they do
not know what impact the update will have on their execution. The same situ-
ation exists in case of libraries which are packaged and installed independently
and on which the applications depend. Given the fact that the system adminis-
trators do not have any knowledge about the applications, except the necessary
versions of the interpreters/libraries when the applications were developed and
deployed, they can only base their decision on assumptions to make the update.
One intuitive assumption is that if there is a minor version update for the inter-
preter or library, everything should be fine, as no major changes in functionality
usually occur. In the majority of cases, this holds true, but it is still an assump-
tion, not a certainty. The problem arises when there is a major update and the
development team does not plan to update the application to support the new
release. The problem is very serious in case of interpreted languages, because
errors appear at run-time, only when certain blocks of code get executed, not
initially when everything gets compiled, as is the case with compiled languages.
Thus, we can have parts of an application that may work and parts that may
not work. The system administrators simply will not know if there will be parts
of the application that will not execute, they are not the developers, they are
not the testers. This problem scales, because a single administrator has multiple
applications running on his/her infrastructure. Our proposal offers a solution
for this situation, by automatically analyzing and providing information about
whether the new targeted version will bring some changes that will break the
execution of the hosted applications or not. Thus, the administrators will know
upfront if it is safe to do the update.

Nowadays there is also a shift regarding the management of the execution
environment, from the dedicated system administrators to the teams develop-
ing the applications, through the use of containers like Docker. This does not
solve the problem, only shifts it to the developers, although it does not mean
that administrators do not care about the situation of the environments of the
containers running on their infrastructure. Thus, when the development team
wants to update the interpreter or some libraries used, it faces the same problem
described above. Even though the team knows the internals of the application, it
does not know exactly which blocks of code will execute and which will not. The

30 A. Panu

Table 1. PHP major versions market share.

PHP version Market share

5 89.7%

7 9.4%

4 0.8%

3 <0.1%

Table 2. PHP 5 minor versions market share.

PHP version Market share Initial release End of life

5.6 32.5% 28 August 2014 31 December 2018

5.4 22.0% 1 March 2012 3 September 2015

5.3 20.8% 30 June 2009 14 August 2014

5.5 15.9% 20 June 2013 21 July 2016

5.2 8.2% 2 November 2006 6 January 2011

5.1 0.5% 24 November 2005 24 August 2006

5.0 <0.1% 13 July 2004 5 September 2005

solution is to make an assessment of the changes that need to be done by analyz-
ing the changelog/migration guide of the interpreter/library. This is a manual
procedure which is time consuming. Our solution helps reduce this time.

In order to better visualize the dimension of the problem, let us consider a sin-
gle example, the case of web applications built with PHP. This is one of the most
used server-side programming languages for developing web sites/applications,
having a market share of 83% (source accessed on 16 November 2017) [58].
Table 1 presents the market share of the major versions that are used (source [59]
accessed on 16 November 2017). As we can see, the most used is PHP 5, which
was released on 13 July 2004. The latest version, PHP 7, released on 3 Decem-
ber 2015, is increasingly adopted, but still there are many applications that
have not been ported. Having the biggest market share, we will further analyze
PHP 5. Table 2 presents the market share of the minor versions that are used
(sources [36,60] accessed on 16 November 2017). As we can see, the only version
that is still supported is 5.6, but this is used in only a third of existing applica-
tions. The second and third most used versions are unsupported since two and
three years ago. End of life means that they do not benefit of updates of any
kind [37]. Situations like these exist in case of all other languages that are used
for developing web applications.

In this paper we propose a novel approach [32,33] that addresses the specific
problem of keeping software applications up to date. It gives the administrators
an insight regarding the impact of doing the update, and the developers informa-
tion about the changes to be made, all that in an automatic manner, improving
their productivity for such kind of tasks. In the following section we present our

A Technology for Optimizing the Process 31

approach and give details about how it solves the presented problem. In Sect. 3
we describe a prototype platform that implements our ideas. Section 4 presents
some experimental results. Further, in Sect. 5, we present related solutions that
address the same problem. Our approach may also be applicable in other fields,
use cases which are briefly described in Sect. 6. Finally, Sect. 7 contains future
development and research ideas for the evolution of the technology.

2 Our Proposal

The approach that we propose towards solving the aforementioned problem is
a technology that is able to automatically scan the source code and verify if
the used functionalities are still supported in a targeted version of an inter-
preter/library. Our solution uses machine learning and natural language pro-
cessing techniques. It does not depend on the language used to develop the
software. As we have stated earlier, the focus is on interpreted languages. This
technology is comprised of three parts:

1. A static analysis tool that needs access to the source code, automatically
analyzes it, extracts the used functionalities, and queries a knowledge base
that helps answer questions like: is a certain functionality supported in the
new targeted version? If not, what are the changes that were made?

2. A knowledge base [30] created automatically that contains information about
the functionalities supported in every version of the interpreter/library;

3. A platform that extracts specific entities from online or offline manuals, inde-
pendently of the programming language, and populates and updates the
knowledge base.

Fig. 1. General workflow. (Source: [32]).

The general workflow of our approach is depicted in Fig. 1 [32]. The key
enabler of our technology is the knowledge base. The most important aspect is

32 A. Panu

the contained information and the way it is obtained. For the current version of
the platform that populates the knowledge base, which is presented in Sect. 3,
the functionalities taken into consideration are the supported functions in all
versions of the interpreter/library (the provided APIs). The analysis tool is the
part that must have access to the source code and which queries the remote
knowledge base to check if there are used functionalities that are not supported
anymore (or are marked to be removed in the future) in the targeted version. It
generates a report based on the findings. There are many important aspects to
be considered for the development of this tool, like:

– how to automatically identify the used libraries;
– how to automatically identify the used version of the libraries;
– how to extract from the code only those functions that are provided by

libraries or by the interpreter;
– how to identify where each function is defined (in other words, who provides

a certain function).

In this paper, the focus of our work is on the platform that creates and
updates the knowledge base. As we have mentioned, the data contained consists
of details regarding all the supported functions in targeted interpreters/libraries.
For each function, we have different attributes, like its signature’s components
(the function’s name, the number of parameters, the types of the parameters,
the order of the parameters), the return type, its short description, its avail-
ability (supported, deprecated, obsolete), and the version number of the inter-
preter/library in which it is supported. The sources of information that are used
are online manuals available on the Web or offline ones. The platform described in
Sect. 3 is capable to automatically extract the desired data, and does not depend
on the content (certain manuals for certain languages/libraries) or on the struc-
ture of the web pages. The extraction technology does not have implemented any
adapters for specific manuals. It supports any manual for any programming lan-
guage. The only restriction is regarding the syntax used for writing the functions
in the manual. This capability is achieved using machine learning algorithms and
different natural language processing techniques.

Being able to automatically obtain such kind of information regarding the
unsupported changes offers some major advantages in multiple fields [32,33], like
system administration, software maintenance, and even project management.
Our solution eases the job of system administrators to maintain their systems
up to date. They can now have an insight into what will happen with the execu-
tion of the application if an update is made, without waiting for some feedback
from the developers. Also, they do not need to know any details regarding the
implementation of the application. When the development team is required to
ensure maintenance and to update some dependencies, it faces the same diffi-
culty. Although it knows the application very well internally, it does not know
exactly which blocks of code will execute and which will not, in case of existing
changes of some functions. There are multiple approaches for solving this, like
executing unit or functional tests. This represents a very good method to find

A Technology for Optimizing the Process 33

out if the application works with the new version or what parts of it do not work
anymore. The major disadvantage is that there are many situations where these
automated tests were not developed or were implemented only for the core of
the application. Another approach is to do manual testing, which is a tedious
process and prone to human error. Running an automated tool, which checks if
deprecated or removed features are used, is another solution, but as we will see in
Sect. 5, existing tools are rather limited in scope and coverage. In case of the first
two approaches, after identifying the parts of the application that do not work
anymore, the developers must make an assessment of the changes that need to
be done, by consulting the changelog/migration guide of the dependency’s new
version. This manual procedure also requires some time. By having the tool that
is capable of scanning the code, interrogating our knowledge base and reporting
what functions are not supported anymore or suffered some changes, pointing
the developers exactly to the blocks of code that need to be modified, a lot of
time is earned, by eliminating the manual steps described above. The report also
provides details about the differences between the old and the new function(s),
easing the job of the developers to make the changes, by not requiring them to
manually search for that information. All these aspects will improve the delivery
time for the updates. Such a report that can be created automatically, contain-
ing all the changes that need to be done, is also very useful in case of project
estimation. When there is the intention to support a new version of a software
dependency, the developers are required to do an assessment of the changes. As
we have seen earlier, this is a tedious and time consuming process. The report
has a positive impact on productivity. It can be used by all the persons involved
in estimating a project to find out from the start what are the implications of
making a certain update (in the context described above), without requiring
some developers to make the assessment. It eliminates all that manual labor,
thus reducing the time needed to make the estimates.

By employing our solution which needs access to the source code, the admin-
istrators and the developers of the applications can have some real privacy con-
cerns. Privacy is a very important issue nowadays, and there are many legal
and technological aspects regarding this [2,34]. Privacy is a concept that has
a gradual nature, it can not be treated in an “all or nothing” manner. Each
software system introduces a different level of risk, so the level of privacy should
be “estimated as a measurement of the risk that data can be copied and used
outside its context” [2]. This risk regarding unauthorized access to private data
should be evaluated according to the information an application works with,
considering the impact a data breach could have. In this regard, in the paper
cited previously, we have proposed a framework for doing such an evaluation.
Our approach and design is in line with principles like Privacy by Design and
Privacy by Default [16]. The private data that we work with is represented by
the source code. The users of our solution are administrators and developers. A
third party can be the provider which hosts the extraction platform and manages
the knowledge base. The analysis tool is the only component that poses a pri-
vacy risk, because it must run on the users’ infrastructure and have access to the

34 A. Panu

private data. This tool extracts only the functions used in the code, which rep-
resent public information, they are provided by the interpreter/library, ignoring
everything else in the source code. Further, only those functions are transmitted
into the requests made to the knowledge base. Effectively no proprietary code is
extracted and transmitted. Thus, we consider that this tool must be open source,
in order to be easily verifiable that it does not leak the source code. Moreover,
if someone intercepts the communication, it will not get sensitive information.
Even though the information transmitted over the Internet is formed of publicly
available data, the communication channel should still be encrypted, because
the targeted version of an interpreter/library is sent and this might be of use for
an attacker.

3 System Architecture and Design

In this section we present the architecture of a prototype platform that is capa-
ble of automatically accessing the manuals of interpreters/libraries available on
the Web or offline, identifying and extracting specific entities, and populating
the knowledge base. Its components are designed to be context independent
and decoupled. Each component offers its functionality as an independent ser-
vice. The designed architecture is based on SOA (Service Oriented Architecture)
principles. The platform is fully implemented in Python. Figure 2 depicts the
system’s architecture. It has four main components, CorpusTrain SigDetection,
CorpusTrain VerDetection, WebMiner, OntoManager, and its functionality is
split into two phases, a training phase and an extraction phase.

In the first phase we train two classifiers for the purpose of detecting func-
tion signatures and version numbers of a targeted interpreter/library in which
the functions are supported. In case of the former, the training data contains
manually annotated information taken from PHP and Python online manu-
als. CorpusReader and CorpusReader TrainingData are the components used
for loading the training data into memory. CorpusTrain SigDetection creates
the feature sets, splits the data, and trains the classifier, generating Classifier
SigDetection. In case of the latter, the training data contains manually anno-
tated information taken from PHP, Python, and jQuery online manuals. The
same two components previously mentioned are used for loading the training
data. CorpusTrain VerDetection creates the feature sets, does the splitting, and
trains the classifiers, generating Classifier VerDetection.

The second phase consist of accessing the manuals, analyzing them, and
extracting specific knowledge.orchestratedby WebMiner. CorpusDownloader is
the component that accesses the desired data. Then, the downloaded informa-
tion is tokenized by CorpusReader. The data is sent to NER SigContext, which
identifies existing signatures and their descriptive contexts. For each signature,
NER SigComponents extracts the following elements: the function’s name, return
type, and parameters. Each descriptive context is sent to NER VersionNum-
ber, which extracts the version number(s) in which the function is available
or in which it was marked as deprecated or removed. Next, the description of

A Technology for Optimizing the Process 35

Fig. 2. System architecture. (Source: [33]).

each function is extracted by SigDescription, which searches for this informa-
tion in the descriptive contexts. Finally, all the extracted information is sent
to OntoManager, which manages the knowledge base. Further, we present the
technical details about the implementation of each component.

3.1 CorpusDownloader

This component represents a specialized Web crawler that accesses the online
manuals. It uses lxml [25], a library that processes XML documents and, implic-
itly, HTML ones. In the current version, the crawler uses XPath expressions
to navigate through manuals, which are custom build for each site, pointing it
exactly to the pages that contain information about functions. We implemented
it like this because we wanted to access only the pages that contain information
we are interested in, we did not want to analyze pages containing other data.
In future versions, this crawler will be generalized, being able to start from the
main page and navigate through the entire manual, selecting the pages that are
of interest. The content of each page is then downloaded and saved to a local
storage using Lynx [11]. This is a text web browser, but we use it as a headless
browser, without requiring any user input, to save the rendered content, exactly

36 A. Panu

like an user sees it. This approach is an optimization that improves the extrac-
tion process. The problem with libraries like lxml or BeatifulSoup, which are able
to download web pages and clean the HTML tags, providing only the content,
is generated by the fact that there are differences between how the content is
written in HTML and how it is rendered. They leave the content written and
positioned exactly how it was inside the tags and there are situations when a
sentence (e.g., a function signature) is split into multiple rows in HTML and
after removing the tags, it remains written on multiple rows, being way harder
to detect it. This depends on how the developers wrote the HTML code. By
using a headless browser, the advantages are that our component is independent
of the structure of the page, of its stylization, and, furthermore, it is not affected
from future layout changes. It gives us the content exactly like a human being
is seeing it. The only dependency is towards reaching the desired pages.

3.2 CorpusReader

This component loads the content that is provided by CorpusDownloader and
tokenizes it. Tokenization represents an important preprocessing step in a stan-
dard NLP pipeline. It refers to splitting a text into a set of tokens (e.g., sentences,
words, etc.). We split our content into sentences and, afterwards, each sentence
is split into words. The order of sentences and words is maintained. The sentence
segmentation is done using Punkt sentence segmenter from NLTK platform [28].
It contains an already trained model for English language. This model is built
using an unsupervised machine learning algorithm. For word segmentation, Penn
Treebank Tokenizer is used (also provided in NLTK), which uses regular expres-
sions to tokenize text. It uses spaces and punctuation signs to separate the words.
After that, all punctuation marks are removed, because, in the current version of
implementation, they do not bring any valuable information for our extraction
process, thus optimizing memory consumption.

3.3 CorpusReader TrainingData

This module loads the training data that is used for generating the classifiers
that can identify signatures and version numbers. It uses all the functionalities
provided by CorpusReader and, additionally, categorizes each instance based on
its label, which can be one of the following two: pos or neg. For the classifier that
detects signatures, the instances are stored in a list containing (sentence, label)
tuples. The training set is manually created with examples taken from PHP
and Python manuals and contains 575 instances, 279 positive examples and 296
negative examples. The negative ones were not randomly chosen, we wanted
them to contain sentences in which there are parenthesis or different blocks of
code where functions are called or defined, because the trained classifier must be
able to filter out these cases. For the classifier that detects version numbers, the
instances are stored in a list of lists, each sub-list being a sentence in the form
(word, label) tuples. The training set is manually created with examples taken
from PHP, Python, and jQuery manuals, and contains 518 instances, 62 being

A Technology for Optimizing the Process 37

positive examples and 456 negative. Again, the negative ones were not randomly
chosen, they contain various numbers that do not represent a version.

3.4 CorpusTrain SigDetection

This component trains a binary classifier for detecting signatures. The training
data from which the feature sets are obtained is provided by CorpusReader
TrainingData. The assigned labels are pos and neg. For a signature we use the
following features:

– if the character before last is ‘)’ parenthesis;
– if it contains an equal sign before first occurrence of ‘(’ char;
– if it contains special keywords (like if, for, foreach, while, etc.) before first ‘(’

char;
– the number of colons before first ‘(’ char;
– if there are more than three words before first ‘(’ char;
– if there are letters before first ‘(’ char;
– if it contains unusual words (like ones that do not contain letters or contain

only one character) before first ‘(’ char;
– if the last char is in a predefined list of chars (like !, @, &, *, etc.);
– if after last ‘)’ char there are more than one characters;
– if there is a single pair of top level brackets;
– if there are more than one top level bracket pairs.

We have also tested other features in various combination with the current
ones, through a trial-and-error process, but the performance was lower. The
tested features are: the last character in the sentence, number of parenthesis
groups, if the last character is ‘)’, the character before the last one, the number
of words before the first ‘(’ character, the total number of parenthesis.

The training data contains examples taken from PHP and Python manuals.
For training, we randomize and split the feature sets, the first 70% being used for
training and the rest for testing. The generated feature sets are used to train a
Naive Bayes classifier. Although it is one of the simplest models, we have chosen
Naive Bayes because it is known to give good results for various use cases and
because it does not need a large amount of training instances. The model has
an accuracy of approximately 98% on the test set. The generated classifier is
used further by Classifier SigDetection component, which offers a single service:
it receives a sentence and establishes if it represents a signature or not.

3.5 CorpusTrain VerDetection

This module also trains a Naive Bayes binary classifier for detecting version
numbers. The feature sets are obtained from the data provided by CorpusReader
TrainingData. The assigned labels are also pos and neg. We analyze each word
from each sentence, taking also into consideration the word’s context. The fol-
lowing features are used for learning:

38 A. Panu

– if the first character is ‘v’;
– the number of existing dots;
– if most frequent chars are digits;
– the word before;
– if the word before is in a gazetteer list (which contains names of programming

languages).

Through a trial-and-error process, we have tested other features in combi-
nation with the current ones, but we obtained lower performance. The tested
features are: the first character of the word and the 2nd word before.

The training data contains examples from PHP, Python and jQuery manuals.
The feature sets are randomized and split, the first 70% being used for training
and the rest for testing. The model has an accuracy of approximately 97% on the
test set. The generated classifier is used by Classifier VerDetection component,
which offers a single service: it receives a sentence and a word in that sentence,
and establishes if the word represents a version number.

3.6 SigContext

This component receives from WebMiner all sentences of the entire document
and uses the trained classifier to identify signatures. Afterwards, for each signa-
ture, it establishes its descriptive context. We define a descriptive context as the
list of sentences that refer to a single function and contain various information
about it. The algorithm for identifying the context is intuitive and models the
way a person analyzes the manual page: usually all the descriptive details are
after the line containing the signature or there are situations when there is a
line containing only the function’s name (as is the case with PHP manual). This
marks the beginning. The context ends when a line containing another signature
is identified or the end of document is reached. SigContext builds a model of the
document containing indexes that represents the positions of the signatures, the
start, and the end of their contexts.

3.7 NER Version Number

This component is capable of identifying the version numbers in which the func-
tions are supported or unsupported. Its sources of information are the list of
sentences and the model generated by SigContext, received from WebMiner.
First we check to see if there is a version mentioned outside the descriptive con-
texts, because there are situations when it is written at the beginning of the
document, meaning that the version applies to all the functions. If multiple ver-
sions are detected, we established the rule of choosing the first one. It is not the
best criterion, but based on a human analysis on different manuals, it proved
to offer acceptable results. Afterwards, we look inside each context. Every ver-
sion detected here will have a higher priority than the one detected outside the
contexts. For identifying the version numbers we use the trained classifier.

A Technology for Optimizing the Process 39

For each detected version, we further identify its availability status, which
can be one of the following: supported, deprecated, removed. We accomplish this
by analyzing the context of each number, searching for various keywords that
refer to this, like changed (in), removed (from), added (in), deprecated (since),
etc. For that, we have built a dictionary containing the stems of these keywords.
Then each word in the context of the version is stemmed and compared with the
entries in the dictionary in order to detect the state. Stemming is the technique
that removes affixes from a word. We use it as an optimization, allowing us not
to store all the forms of words in the dictionary. For this procedure, the Porter
stemming algorithm provided by NLTK is used.

3.8 NER SigComponents

This module receives from WebMiner a sentence representing a function and
identifies its components. The following elements are extracted:

– the function’s name;
– the function’s return type;
– the list of parameters;
– for each parameter, its type and order.

We defined several regular expression and hand-written rules for this extrac-
tion.

3.9 NER SigDescription

This component is capable of identifying a function’s short description, which
offers an explanation of its functionality. It receives the signature and its descrip-
tive context from WebMiner and searches for the description by analyzing the
grammatical structure of each sentence. The analysis is done using a dependency
parser provided by spaCy library [15]. This library outputs SVO triples (subject-
verb-object), which are further managed by textacy library [10]. The source of
information that our identification algorithm works with consists of the detected
lexical items and their grammatical functions. This algorithm implements some
observed patterns commonly used to express descriptions and selects the first
sentence that meets its rules. This represents a good choice because the descrip-
tion is usually near the signature. We first look at the subject linked to the root
verb. If it contains the function’s name, then the sentence is very probable to be
the description. If the root verb does not have a subject, we look at its tense. If
it is labeled as VB (base form) or VBZ (3rd person singular present), then it is
very likely to be the description, this being a very common way used to express
it. Also large sentences are split and each part analyzed individually, because of
the errors of the dependency parser in such cases, in identifying the root verb,
its subject, etc.

40 A. Panu

Table 3. Signature detection performance. (Source: [33]).

Man page No. of functions Detection rate

Node.JS 26 100%

Ruby 59 64.4%

PHP 1 100%

Python 30 100%

Laravel 80 98.75%

3.10 WebMiner

This is the orchestrator of the entire information extraction process. First, it
obtains the content of the manual page(s) from CorpusReader. The list of sen-
tences is sent to SigContext, which provides a model containing indexes of the
positions of signatures, the start and the end of their descriptive contexts. Each
signature is sent to NER SigComponents for obtaining its components. NER
Version Number receives the contexts and extracts the versions. Each context
is also sent to NER SigDescription to obtain the signature’s short description.
Finally, all data is put together and is sent to OntoManager.

3.11 OntoManager

This is the component that manages the data in the knowledge base. It receives
the extracted information from WebMiner and generates instances for the knowl-
edge base, taking care of not creating duplicates. The data is expressed using
RDF (Resource Description Framework) model. We manipulate the RDF triples
using RDFLib [46]. These triples contain information structured according to
concepts illustrated by our software ontology. This ontology was created using
Protege. We have created this ontology because the existing ones that are spe-
cific to our addressed domain, like SEON Code Ontology [62], Core Ontology of
Programs and Software (COPS) [21] and Core Software Ontology (CSO), with
its extension, Core Ontology of Software Components (COSC) [31], do not con-
tain all the conceptual descriptions that are needed in our case. Thus, we have
extended them with some new concepts, attributes and relations that model
accurately the extracted information.

4 Experimental Results

The performance of the platform for the current targeted use cases is given
by the capability of the classifiers used to detect the signatures and the version
numbers. As a validation test, we have pointed the platform to extract data from
various pages selected randomly from Node.JS (version 7.7.0) [29], Ruby [48],
PHP [35], Python (version 3.6.0) [44], and Laravel [22] online manuals. The
obtained results are summarized in Table 3. The second column contains the

A Technology for Optimizing the Process 41

total number of functions that exist in each page. The last column represents
the percentage of the detected signatures. Considering the results, we can say
that:

– in case of Node.js, all functions were extracted. We did not have any false
positives. All other existing functions (in the code samples and in the menu
of the page) were correctly filtered;

– in case of PHP, it correctly identified and extracted the function which is of
interest. Unfortunately, it also extracted 5 more functions (false positives),
because there are many code examples in the page and it did not succeed in
filtering all of them;

– in case of Python, all functions were extracted. We did not have any false
positives. Even though other mentions to functions exist in code samples and
in the menu of the page, they were successfully filtered;

– in case of Ruby, it only detected 38 functions out of a total of 59. This not
very good performance is due to the fact that in the respective page there are
functions which do not have parenthesis (e.g., binding, fork, chop), this being
a very important feature;

– in case of Laravel, it detected all the functions, except of one, whose name
contains a single character (e()). We did not have any false positives.

For all detected signatures, the module NER SigComponents successfully
extracted all of their elements (the name, the return type, the parameters, etc.).
Regarding the extraction of version numbers, we obtained the following results:

– for Node.JS: there are 26 functions on the page, 5 of them have specified a
single version (representing when it was added) and each of the others have
specified 2 versions (when it was added and since when it was deprecated).
The platform correctly identified all of them, with their status. We do not
have any false positives or negatives;

– for Ruby: there are no mentions to version numbers on the page, thus the
system correctly did not identify any;

– for PHP: the page contains a single function with 3 version numbers men-
tioned. The platform successfully identified all of them;

– for Python: the page contains 30 functions, 4 of them having specified two
versions, 1 of them having specified 3 versions, and the rest only 1 version.
The system correctly identified all of them, without any false positives or
negatives;

– for Laravel: the page does not mention any details about versions inside the
context of the functions, thus the system correctly did not identify any. How-
ever, there is a version number specified outside the descriptive contexts,
which the platform correctly identified.

Regarding the extraction of the short descriptions of functions, the obtained
results are summarized in Table 4. The second column contains the number of
signatures that were detected, each having a single description. The last column
represents the percentage of the identified descriptions. In case of Node.JS, it

42 A. Panu

Table 4. Description detection performance. (Source: [33]).

Man page No. of det. functions Detection rate

Node.JS 26 76.9%

Ruby 38 68.4%

PHP 6 100%

Python 30 93.3%

Laravel 79 96.2%

failed to identify 6 descriptions. For Ruby, it missed 12 descriptions. Regarding
PHP, it successfully identified the description of the single function. For the other
5 false positives, it did not detect anything because they are examples of code,
thus they do not have descriptions. In case of Python, it did not identify the
descriptions of 2 functions. Finally, for Laravel, it failed to extract 3 descriptions.

5 Related Solutions

Our approach has contributions in two directions: automating the compatibility
check and extracting entities in the programming domain. Various solutions that
address these problems exist, but with major differences. There are tools that
were developed with the same purpose as our solution, to verify the compati-
bility of a new software dependency version, but they are language dependent,
are not that general, and require a lot of manual work to create their source
of knowledge. For example, the most known and used tools for PHP are PHP
CodeSniffer [54] and PHPCompatibility [17]. The former is able to tokenize the
source code and to check for violations of code formatting standards, without
executing the code. The latter uses this functionality and defines a set of sniffs for
verifying version compatibility. A sniff is a code standard for PHP CodeSniffer,
created with a different purpose, namely detecting the use of backwards incom-
patible code. This tool generates a report containing all the identified problems.
The advantage over our solution is that it covers more types of changes that
occur between versions, not only available/deprecated/obsolete functions. The
major disadvantages are that its knowledge base (the sniffs) is created manually,
it supports only PHP, and only the changes introduced since version 5.0. Other
tools exist for different languages and libraries, like jquery-migrate [19] (migrates
older jQuery code to jQuery 3.0+), wp-deprecated-checker [57], (verifies the use of
deprecated functions in Wordpress), 2to3 [63] (automatically translates Python
2 code to Python 3), PHP7MAR [39] or php7cc [38] (they are PHP 7 migration
assistants). Again, the problems with all of them is that they require manual
effort to create their knowledge base, have restricted coverage and are built for a
specific language or library. More tools exist, but not for every language/library.

Another category of tools is represented by professional-grade IDEs, which
offer automatic code inspection functionalities. One such example is Php-
Storm [41], which provides a static code analyzer that checks for various code

A Technology for Optimizing the Process 43

inefficiencies. It can check for: probable bugs, code that never gets executed, pos-
sible performance issues, violations of coding guidelines and standards, confor-
mance to specifications, and others. All these inspections are manually created.
It does not focus on detecting code compatibility problems, thus support for this
kind of functionality is very limited, given by the existence of manually created
inspections, specifically for this situations. A third category of tools is repre-
sented by “linters” (e.g., PHPMD [40], Pylint [45]). They provide code analysis
functionality, but their focus is not on verifying if deprecated or removed func-
tions are used. They check for different coding standard violations and various
errors in how the code is written. In [32] we defined a criteria and presented a
comparison of all these tools with our solution.

There is also a lot of research conducted towards automatic verification of
backward compatibility problems [1,43,55,61]. These approaches do not pro-
vide the same functionality as our solution, they offer a complementary one.
They monitor and analyze software repositories, which represent their sources
of information. The analysis is done by using different techniques that evaluate
the differences between the old source code and the new one (entire code or only
the interfaces). The focus is on assessing if a new version of a software compo-
nent is compatible with its old version, from a functional point of view. They
do not mention anything regarding the capability to check for the use of missing
functions or to warn about functions that are marked as deprecated.

Our proposal has also a contribution regarding the possibility to identify and
extract entities in the programming domain. An overview of different entity types
which are being addressed by specialized NERs can be found in [27]. The focus
is mainly on extracting proper names (e.g., persons, organizations, locations)
and numeric expressions (e.g., time, date, money, percent). Fine-grained subcat-
egories are addressed, like “politician” and “entertainer” for “person” [50], or
“city”, “state”, “country” for “location”, or, for specific needs, types like “film”,
“scientist”, “email”, “phone number”, “research area”, “project name”, “book
title”. There is also a lot of research in the bioinformatics fields, where there
is the need to extract entities like “protein”, “DNA”, “RNA”, “cell type”, “cell
line”, etc. Another category of NER systems, named open domain NERs [3,14],
were developed to extract any type of entity. Although they can be used for any
domain, they were tested and fine-tuned for the most well known entity types
in the newspaper domains. For these kind of systems an extended named entity
hierarchy was proposed [52], containing various categories, but not a single one
referring to the programming domain. We did not find any NER system that
can extract entities in this domain.

Known commercial solutions that offer text analysis capabilities, like IBM
Watson (which integrated AlchemyAPI), OpenCalais, MeaningCloud, recognize
general terms, from categories like people, places, dates, not entities in the pro-
gramming context. We have tested these products [32] on some manual pages
chosen randomly from PHP [35], Python [44], and Node.js [29]. In the case of
the PHP page, IBM Watson and MeaningCloud could not extract anything,
while OpenCalais detected the programming language name and some other

44 A. Panu

terms, but nothing relevant for our purpose. From the Python page, IBM Wat-
son detected the terms “unc” as an organization and “r” as a person, OpenCalais
and MeaningCloud detected various IT terms, but still nothing relevant. Same
results were obtained in the case of the Node.js page, where neither product was
able to extract something relevant.

6 Additional Applicability

Our solution directly targets the persons involved in assuring software admin-
istration and software maintenance, for the use cases described previously. The
features offered by the platform can also be used in the context of the Semantic
Web [33]. The purpose of Semantic Web is to make the content available on
the Web understandable not only by humans, but also by computers, without
using artificial intelligence. This is mainly done by enriching the Web docu-
ments with semantic markup in order to add meaning to the content. Thus, a
machine will be able to process knowledge about text. There are many semantic
annotation formats that can be used in HTML documents, like Microformats,
RDFa, and Microdata. In order to facilitate the annotation process, many sys-
tems were developed [6,20,47,51,56]. Considering the annotation process, there
are tools that allow users to manually create annotations, and tools that create
them semi-automatically or automatically. In latter case, considering the meth-
ods used, they can be classified in two categories, pattern-based and machine
learning-based (using supervised or unsupervised learning techniques). The tools
that are based on supervised learning require training in order to identify our
specific types of entities. Also the majority of them require the existence of an
ontology that defines the semantics of the domain. To the best of our knowl-
edge, an ontology for the kind of information we deal with does not exist. Also,
the existing approaches typically cover real world entities. Our platform pro-
vides such an ontology and also the information extraction techniques needed
to identify and extract the entities that must be annotated (e.g. the function,
return type, parameters, parameters type, etc.). Thus, the capabilities of the
platform can enable automatic generation of semantic markup for specific Web
documents. A special tool must be developed that is able to match each entity
extracted by our platform with the information on a page, adding the appropri-
ate annotations.

Another use case is more advanced and represents a vision [33]. It refers to
assisting developers in the process of building new applications, especially for
the Internet of Things (IoT). In the context of the IoT, there is the need for a
single software application to have support for different devices from different
manufacturers. This capability is obtained usually through the implementation
of adapters, which are dedicated software modules for each device. Each mod-
ule uses the specific API (Application Programming Interface) of the vendor to
interact with its device. In the case of supporting devices from different manufac-
turers that have the same functionality (e.g. smart plugs, air quality monitors,
dimmer switches, thermostats, smoke detectors, etc.), each API is learned and

A Technology for Optimizing the Process 45

similar adapters are built, because the functions that interact with the devices
are mostly the same, like setting a certain value for a threshold or getting a
certain value. The differences are in their name and possibly parameters, but
their functionality is the same. Our idea implies the development of a single
adapter and the use of a special built tool that is able to analyze the functions
used in that adapter and propose the equivalent functions in the APIs of other
similar devices for which adapters must be developed. Our knowledge base, that
can contain all the functions in each API, is the source of information. Based
on that information, we envision the development of a new technology that is
able to suggest similar functions in the targeted APIs, by analyzing a function’s
signature, and most importantly, the meaning of its description and, eventually,
each parameter’s description. This capability can be achieved with our plat-
form by using NLP resources, like WordNet, a semantically oriented dictionary
of English, and techniques for analyzing the structure of a sentence (by using
context free grammars, dependency grammars, feature based grammars, etc.)
and its meaning (by using first order logic, λ calculus, etc.) [5]. To accomplish
semantic analysis is very hard. It represents the most complex phase of natural
language processing. There is a lot of ongoing research towards this goal and on
the task of computing sentence similarity [4,8,9,13,18,24,26,50]. There are also
many tools available capable of comparing the meaning of two sentences, with
different success rates [7,12,23,42,49,53]. At the moment, we think that existing
solutions can provide acceptable results, but still much further research must be
done to accomplish our vision. To the best of our knowledge, there is no available
system that is using this kind of techniques and is capable of generating code in
this context.

7 Conclusions and Further Work

Keeping software applications and their execution environments up-to-date
comes with some challenges. When an update for a software dependency (e.g.,
library, interpreter) is available, we do not know if the applications will work
flawlessly with the new version. Some assumptions can be made, depending on
whether it is a minor or major update, but they are not a certainty. This problem
is very serious in the case of applications developed using interpreted languages,
because the errors appear at runtime, not initially when everything is compiled,
as is the case of compiled languages. In this paper we addressed the first kind of
applications. In order to support the new version, an assessment must be made
regarding the changes that need to be done in an application. This is a very
time consuming task. We have proposed a novel approach that helps reduce the
needed time, thus improving productivity, by automatically analyzing the source
code and assessing the impact that the new release will have on the functionality
of the application. Our solution is based on three independent components: a
static code analysis tool, a knowledge base containing information about sup-
ported functionalities in every version of a targeted library/interpreter, and an
extraction platform that manages the data in the knowledge base. In this paper

46 A. Panu

the focus was on the platform’s prototype. It does not depend on any program-
ming language and it is based on an automated process that models the human
approach for learning an API from a manual. As we have seen, our proposal has
applicability in many fields, like system administration, software maintenance,
and project management. To the best of our knowledge, similar solutions do
not exist. The tools that were developed to address the same problem are lan-
guage dependent, are limited in coverage, and have their source of information
manually created.

Our approach is based on many functionalities, having varying degrees of
complexity, some even requiring further research. Improvements can be made
to any of them. Regarding the platform, updating the headless browser is con-
sidered, in order to be aligned with the latest HTML and CSS specifications,
for presenting the content adequately. Improvements to the performance of the
classifiers will be made, by refining the training and validation data sets. Other
features will also be implemented and various combinations of them will be
tested. Besides Naive Bayes, we plan to use other models to try to improve the
performance, with a special focus on artificial neural networks. Our efforts will
also be directed towards the development of the static code analysis tool.

References

1. Ahmed, H., Elgamal, A., Elshishiny, H., Ibrahim, M.: Verification of backward
compatibility of software components. US Patent 9,424,025 (2016)

2. Alboaie, S., Alboaie, L., Panu, A.: Levels of privacy for ehealth systems in the
cloud era. In: Proceedings of the 24th International Conference on Information
Systems Development, pp. 243–252 (2015)

3. Alfonseca, E., Manandhar, S.: An unsupervised method for general named entity
recognition and automated concept discovery. In: Proceedings of the 1st Interna-
tional Conference on General WordNet (2002)

4. Atoum, I., Otoom, A., Kulathuramaiyer, N.: A comprehensive comparative study
of word and sentence similarity measures. Int. J. Comput. Appl. 135(1), 10–17
(2016)

5. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media Inc., Newton (2017).
http://www.nltk.org/book/

6. Charton, E., Gagnon, M., Ozell, B.: Automatic semantic web annotation of named
entities. In: Butz, C., Lingras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 74–
85. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21043-3 10

7. Cortical.io: Similarity Explorer (2017). http://www.cortical.io/similarity-explorer.
html

8. Crockett, K., McLean, D., O’Shea, J.D., Bandar, Z.A., Li, Y.: Sentence similarity
based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8),
1138–1150 (2006)

9. Dao, T.N., Simpson, T.: Measuring similarity between sentences. WordNet.Net,
Technical report (2005)

10. DeWilde, B.: Textacy NLP library (2017). http://textacy.readthedocs.io/en/
latest/

11. Dickey, T.E.: Lynx Text Web Browser (2017). http://lynx.browser.org/

http://www.nltk.org/book/
https://doi.org/10.1007/978-3-642-21043-3_10
http://www.cortical.io/similarity-explorer.html
http://www.cortical.io/similarity-explorer.html
http://textacy.readthedocs.io/en/latest/
http://textacy.readthedocs.io/en/latest/
http://lynx.browser.org/

A Technology for Optimizing the Process 47

12. DKPro: DKPro Similarity Framework (2017). https://dkpro.github.io/dkpro-
similarity/

13. Erk, K.: Vector space models of word meaning and phrase meaning: a survey. Lang.
Linguist. Compass 6(10), 635–653 (2012)

14. Evans, R.: A framework for named entity recognition in the open domain. In:
Recent Advances in Natural Language Processing III: Selected Papers from
RANLP, vol. 260, pp. 267–274, 110 (2003)

15. ExplosionAI: Spacy NLP library (2017). https://spacy.io/
16. Ferretti, E.: Privacy by design and privacy by default (2015). http://europrivacy.

info/2015/06/09/privacydesign-privacy-default/
17. Godden, W: PHPCompatibility (2017). https://github.com/wimg/PHPCompati

bility
18. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with

convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1576–1586 (2015)

19. jquery-migrate (2017). https://github.com/jquery/jquery-migrate
20. Laclavik, M., Seleng, M., Ciglan, M., Hluch, L.: Ontea: platform for pattern based

automated semantic annotation. Comput. Inform. 28(4), 555–579 (2012)
21. Lando, P., Lapujade, A., Kassel, G., Furst, F.: Towards a general ontology of

computer programs. In: Proceedings of the International Conference on Software
and Data Technologies, pp. 163–170 (2007)

22. Laravel: Manual page (2017). https://laravel.com/docs/5.4/helpers
23. Linguatools: DISCO (2017). http://www.linguatools.de/disco/
24. Liu, H., Wang, P.: Assessing sentence similarity using wordnet based word simi-

larity. JSW 8(6), 1451–1458 (2013)
25. lxml: lxml XML toolkit (2017). http://lxml.de/
26. Miura, N., Takagi, T.: WSL: sentence similarity using semantic distance between

words. In: Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), Denver, Colorado, pp. 128–131. Association for Computational
Linguistics (2015)

27. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

28. NLTK: Natural Language Toolkit (2017). http://www.nltk.org/
29. Node.js: Manual page (2017). https://nodejs.org/api/util.html
30. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating

your first ontology (2001)
31. Oberle, D., Grimm, S., Staab, S.: An ontology for software. In: Staab, S., Studer,

R. (eds.) Handbook on Ontologies. IHIS, pp. 383–402. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 17

32. Panu, A.: Automation technology for software maintenance and system adminis-
tration. Ph.D. thesis. Alexandru Ioan Cuza University of Iasi (2017)

33. Panu, A.: A novel method for improving productivity in software administration
and maintenance. In: Proceedings of the 12th International Conference on Software
Technologies (ICSOFT 2017), Spain, 24–26 July 2017, pp. 220–229 (2017)

34. Pearson, S.: Taking account of privacy when designing cloud computing services.
In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, pp. 44–52. IEEE Computer Society (2009)

35. PHP: Manual page (2017). http://php.net/manual/en/function.chmod.php
36. PHP: Past Releases (2017). https://secure.php.net/releases/
37. PHP: Supported Versions (2017). http://php.net/supported-versions.php

https://dkpro.github.io/dkpro-similarity/
https://dkpro.github.io/dkpro-similarity/
https://spacy.io/
http://europrivacy.info/2015/06/09/privacydesign-privacy-default/
http://europrivacy.info/2015/06/09/privacydesign-privacy-default/
https://github.com/wimg/PHPCompatibility
https://github.com/wimg/PHPCompatibility
https://github.com/jquery/jquery-migrate
https://laravel.com/docs/5.4/helpers
http://www.linguatools.de/disco/
http://lxml.de/
http://www.nltk.org/
https://nodejs.org/api/util.html
https://doi.org/10.1007/978-3-540-92673-3_17
http://php.net/manual/en/function.chmod.php
https://secure.php.net/releases/
http://php.net/supported-versions.php

48 A. Panu

38. php7cc (2017). https://github.com/sstalle/php7cc
39. PHP7MAR (2017). https://github.com/Alexia/php7mar
40. PHPMD (2017). https://phpmd.org/
41. PhpStorm (2017). https://www.jetbrains.com/phpstorm/
42. Pilehvar, M.T., Jurgens, D., Navigli, R.: Align, disambiguate and walk: a unified

approach for measuring semantic similarity. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, pp. 1341–1351. ACL
(2013)

43. Ponomarenko, A., Rubanov, V.: Backward compatibility of software interfaces:
steps towards automatic verification. Program. Comput. Softw. 38(5), 257–267
(2012)

44. Python: Manual page (2017). https://docs.python.org/3/library/os.path.html
45. Pylint (2017). https://www.pylint.org/
46. RDFLib: RDFLib RDF library (2017). https://rdflib.readthedocs.io/en/stable/
47. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: Proceedings of the

2005 ACM Symposium on Applied Computing, SAC 2005, pp. 1634–1638. ACM,
New York (2005)

48. Ruby: Manual page (2017). https://ruby-doc.org/docs/ruby-doc-bundle/Manual/
man-1.4/function.html

49. RxNLP: Text Similarity API (2017). http://www.rxnlp.com/api-reference/text-
similarity-api-reference/

50. Sanborn, A., Skryzalin, J.: Deep learning for semantic similarity. In: CS224d: Deep
Learning for Natural Language Processing, Stanford, CA, USA. Stanford Univer-
sity (2015)

51. Sanchez, D., Isern, D., Millan, M.: Content annotation for the semantic web: an
automatic web based approach. Knowl. Inf. Syst. 27(3), 393–418 (2011)

52. Sekine, S., Nobata, C.: Deffinition, dictionaries and tagger for extended named
entity hierarchy. In: Proceedings of the Fourth International Conference on Lan-
guage Resources and Evaluation, LREC 2004, 26–28 May 2004, Lisbon, Portugal
(2004)

53. SEMILAR: A Semantic Similarity Toolkit (2017). http://deeptutor2.memphis.
edu/Semilar-Web/public/contact.html

54. Sherwood, G.: PHP CodeSniffer (2017). http://pear.php.net/package/PHPCode
Sniffer/

55. Tsantilis, E.: Method and system to monitor software interface updates and assess
backward compatibility. US Patent 7,600,219 (2009)

56. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: requirements and
a survey of the state of the art. Web Semant. 4(1), 14–28 (2006)

57. wp-deprecated-checker (2017). https://gist.github.com/jbuchbinder/7419000
58. W3Techs - World Wide Web Technology Surveys (2017). https://w3techs.com/
59. W3Techs: Usage statistics and market share of PHP for websites (2017). https://

w3techs.com/technologies/details/pl-php/all/all
60. W3Techs: Usage statistics and market share of PHP version 5 for websites (2017).

https://w3techs.com/technologies/details/pl-php/5/all
61. Welsch, Y., Poetzsch-Heffter, A.: Verifying backwards compatibility of object-

oriented libraries using Boogie. In: Proceedings of the 14th Workshop on Formal
Techniques for Java-Like Programs, FTfJP 2012, pp. 35–41. ACM (2012)

62. Wursch, M., Ghezzi, G., Hert, M., Reif, G., Gall, H.C.: SEON: a pyramid of ontolo-
gies for software evolution and its applications. Computing 94(11), 857–885 (2012)

63. 2to3 (2017). https://docs.python.org/3/library/2to3.html

https://github.com/sstalle/php7cc
https://github.com/Alexia/php7mar
https://phpmd.org/
https://www.jetbrains.com/phpstorm/
https://docs.python.org/3/library/os.path.html
https://www.pylint.org/
https://rdflib.readthedocs.io/en/stable/
https://ruby-doc.org/docs/ruby-doc-bundle/Manual/man-1.4/function.html
https://ruby-doc.org/docs/ruby-doc-bundle/Manual/man-1.4/function.html
http://www.rxnlp.com/api-reference/text-similarity-api-reference/
http://www.rxnlp.com/api-reference/text-similarity-api-reference/
http://deeptutor2.memphis.edu/Semilar-Web/public/contact.html
http://deeptutor2.memphis.edu/Semilar-Web/public/contact.html
http://pear.php.net/package/PHPCodeSniffer/
http://pear.php.net/package/PHPCodeSniffer/
https://gist.github.com/jbuchbinder/7419000
https://w3techs.com/
https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/5/all
https://docs.python.org/3/library/2to3.html

From Specification to Implementation
of an Automotive Transport System

Oussama Khlifi1,2,4(&), Christian Siegwart2, Olfa Mosbahi3,
Mohamed Khalgui3,5, and Georg Frey1,2

1 Chair of Automation, Saarland University, Saarbrücken, Germany
{oussama.khlifi,georg.frey}@aut.uni-saarland.de
2 ZeMA – Zentrum fur Mechatronik und Automatisierungstechnik

gemeinnützige GmbH, Saarbrücken, Germany
c.siegwart@zema.de

3 LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia
olfamosbahi@gmail.com, khalgui.mohamed@gmail.com
4 Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia

5 School of Electro-Mechanical Engineering, Xidian University,
Xi’an 710071, China

Abstract. Reconfiguration is often a major undertaking for systems because it
can violate memory usage, the required energy and the concerned real-time
constraints. The languages in which adaptive probabilistic systems are specified
should be clear and intuitive, and thus accessible to generation, inspection and
modification by humans. This paper introduces a new specification approach for
adaptive probabilistic discrete event systems running under resources con-
straints. The semantics of the formalism GR-TNCES are presented to optimize
the specification approach and applied to specify the requirements of an auto-
motive transport system to prove its relevance. Then, we model, simulate and
implement the proposed case study.

Keywords: Requirement specification � Adaptive systems � Statecharts
Modeling

1 Introduction

Probabilistic reconfigurable systems have ability to change their behaviors during
run-time process to cope with unpredictable significant changes at runtime such as
component failures. A system is nondeterministic if the set of enabled transitions is not
unique, i.e., some machines can have more than one enabled transition at the same
time. A reconfiguration/adaptation scenario is any automatic run-time operation that
adds/removes hardware/software components in the system. It can also modify the
connections between them, and possibly change the states in response to errors or
satisfy unpredictable user requirements. Thus, it is often a major issue for some critical
systems and other intelligent systems. Examples of reconfigurable systems include
different space systems, control plants and interactive software of varying nature [1].
A reactive system is not adequately described by a simple relationship that specifies

© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 49–68, 2018.
https://doi.org/10.1007/978-3-319-93641-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_3&domain=pdf

outputs as a function of inputs, but, rather, requires relating outputs to inputs through
their allowed combinations in time [2]. A variety of approaches and methods ranging
from model checking to static analysis, simulation and theorem proving are used to
ensure and prove the correctness of a system specification. A state-based description of
a system is assessed with respect to a properties expressed in an appropriate specifi-
cation language, e.g., temporal logic [3].

System specification is an important part of system design, thus the language used
to specify the system should be expressive enough to allow the designer to encode the
system constraints and functionalities. This is important especially for embedded
systems which are often used in critical real-time applications, i.e., if it is not possible
to specify these hard constraints, then, this specification language is useless in our
tasks. Thus, specification should be clear and intuitive, i.e., precise and conscientious to
ensure the analysis and simulation by computers [4]. Such a method should make it
possible to move easily with sufficient semantic from the initial stages of requirements
and specification to prototype, design, and to form the basis for modifications and
maintenance [5]. The included behavioral and control aspects should be based on large
extent of visual formalisms and admit a formal semantics that provides a precise and
unambiguous meaning [6]. For probabilistic reactive systems, the specification method
should deal with probabilistic reconfiguration under resources constraints, i.e., the
resources availability is not guaranteed after an adaptation process. Statecharts [7] and
temporal logic are currently used to specify various systems. Nevertheless, statecharts
are not able to specify reconfigurable probabilistic behavior and time constraints.
Moreover, temporal logic could not easily deal with unpredictable reconfiguration
scenarios during run-time process. It is not a trivial activity to specify reconfigurable
processes under limited energy and memory resources. These kinds of systems are
considered critical because such a system can violate its resources after any adaptation
scenarios [8].

The language used to specify the system must be expressive enough to allow the
designer to encode the system constraints and functionalities. In particular, a system
specification affects the safety and correctness of probabilistic adaptive systems, i.e., it
is used for the requirements specification and the formal verification. Typically, such
descriptions involve complex sequences of events, actions, conditions and information
flow, often with explicit timing, energy and memory constraints that combine to form
the overall behavior of a system [1]. This paper focus on the specification of systems,
those are able to undergo structural changes, i.e., it introduces a specification approach
based on GR-TNCES formalism “Generalized Reconfigurable Timed Net Condition
Event Systems” which enables us to cover the limits of statecharts and temporal logic.
We describe also how to encode system specification and its requirements with an
optimized and expressive approach. There are many systems which are operating under
energy and memory constraints [9], thus, the designer has to optimize the resources
consumption for an energy efficiency perspective. Moreover, the paper tries to present a
complete approach ranging from specification, modeling, and simulation to the
implementation of an automotive transport system. The authors specify the proposed
system with the aim to save energy in the skid conveyor and present the system model
using the environment ZIZO which is used for system modeling and simulation

50 O. Khlifi et al.

respecting the GR-TNCES formalism [10]. The implementation of the proposed model
is also described in this paper.

The remainder of this paper is organized as follows. The next Section describes the
preliminaries on top of system analysis and specification approach. Section 3 intro-
duces the new semantics of the proposed specification. The case study and the system’s
model are introduced in Sect. 4. Then, the implementation part is given in Sect. 5.
A discussion is provided in Sect. 6 and finally, Sect. 7 concludes the paper.

2 Background

In this section, we introduce the syntax and semantics of R-TNCES, GR-TNCES and
statecharts. We present also an approach used for system analysis.

2.1 System Analysis

Adaptive probabilistic systems under development should be specified and analyzed
[11] from three closely related points: functional, behavioral and structural [4]. In the
structural view, the hierarchical decomposition of the system under development into
its components is provided. We present also the information that flows between them,
e.g., data and control signals. Nevertheless, we do not specify when it will flow, how
often and in response to what. The functional view can identify a specified hierarchy of
active and exchanged signals between them. However, we do not specify the dynamics,
i.e., when the activities will start, whether or not they terminate, and whether they can
be carried out in parallel. In the functional view, we only specify that the data can flow
and not when it will terminate [4]. In other words, the functional view presents the
decomposition into activities and the possible flow of information, but not how those
activities and their associated inputs and outputs are controlled during the continued
behavior. It is the behavioral view [4] that is responsible for specifying the control
tasks, i.e., this is achieved by allowing a control activity to be presented on each level.
These controllers are responsible for specifying when, how and why things happen as
the system reacts over time.

2.2 Related Work

There have been a set of approaches for formal specification of different systems, e.g.,
the state/event approach, in the form of finite-state machines or state transition dia-
grams, has been suggested numerous times for system specification. It proposes state
machines for the user interface of interactive software, data-processing systems,
hardware system description, communication protocols and computer-aided instruction
[12]. There is also augmented transition networks used for hierarchical state/event
descriptions by authorizing a transition in one machine to be labelled using another
machine’s name [13]. Various methodologies were proposed for the specification of
complex systems, such as SADT [14] that focus on the system’s functional and
structural aspects, nevertheless, it does not provide any dynamic semantics related to
their behavioral characteristics. Zhang et al. [3] propose a new extension of Petri nets

From Specification to Implementation of an Automotive Transport System 51

called R-TNCES for reconfigurable systems without considering probabilistic behav-
iors. There were also different approaches based on formal methods: Zedan et al. [15]
present an object based formal method for the development of real-time systems which
is called ATOM, i.e., it is based on the refinement calculus and the formal specification
that contains a description of the system behavior. An executable specification model
[16] was proposed for an abstract transactional memory (lock-free technique) that offers
a parallel programming model for future chip multiprocessor systems.

2.3 Statecharts

The statecharts language is presented for specifying complex reactive systems [7].
RSML is another language based on statecharts with slightly different syntax and
semantics [5]. They both extend state-machine diagrams with parallelism, superstates,
and broadcast communications. The STATEMATE toolset implements a particular
semantics of statecharts. It presents a system model which consists of a finite number of
parallel local state machines with a finite set of events and inputs interacting with a
nondeterministic environment. Figure 1 [7] presents a simple example with two par-
allel state machines A and B which are synchronized using events. Arrows without
sources present the initial local states and the other arrows indicate local transitions,
which are identified with the form trig[cond]/acts, i.e., the trig is a trigger event, cond is
an optional guarding condition, and acts is a (possibly empty) list of action events. The
guarding condition is simply a predicate on local states of other state machines and/or
inputs to the system. The general idea is that if the trigger event occurs and the
guarding condition is either absent or evaluated to true, then the transition is enabled.
Initially, some external events, along with some inputs from the environment, arrive,
marking the beginning of a step. The system leaves the source local states, enters the
destination local states, and generates the action events (if any). The events are used to
enable some transitions as described above.

2.4 R-TNCES

An R-TNCES, is presented in [3], as a structure RTN = (B, R), where R is the control
module based on a set of reconfiguration functions R ¼ r1; . . .; rnf g and B is the
behavior module that is a union of multi TNCESs, represented as:

Fig. 1. Statechart example.

52 O. Khlifi et al.

B ¼ P; T;F;W ;CN;EN;DC;V ; Zð Þ where: (i) P (respectively, T) is a non-empty
finite set of places (respectively, transitions), (ii) F� P� Tð Þ [T � Pð Þ is a subset of
flow arcs, (iii) W : P� Tð Þ [T � Pð Þ ! 0; 1f g maps a flow arc to a weight,
W x; yð Þ[0 if x; yð Þ 2 F, and W x; yð Þ ¼ 0 otherwise, where x; y 2 P[T ,
(iv) CN� P� Tð Þ (respectively, EN� T � Tð Þ) is a subset of condition signals (re-
spectively, event signals), (v) DC : F \ P� Tð Þ ! f l1; h1½ �; . . .; ½l F \ P� Tð Þj j;
h F \ P� Tð Þj j�g is a subset of time constraints on output arcs, where
i 2 ½1; jF \ P� Tð Þj�; li; hi 2 N, and li\hi, (vi) V : T ! f_;^g maps an event-
processing mode (AND or OR) for every transition, (vii) Z ¼ ðM0;D0Þ, where M0 :
P ! 0; 1f g is the initial marking and D0 : P ! 0f g is the initial clock position.

2.5 GR-TNCES

The formalism GR-TNCES is introduced to model and control APDECS running under
memory and energy constraints [1]. A GR-TNCES is a network of R-TNCES. It is a
structure G ¼ P

R - TNCES where R - TNCES ¼ B; Rð Þ. R is the control module
based on a set of reconfiguration functions r1; . . .; rnf g running under memory and
energy controllers, and B is the behavior module which is a union of multi TNCES [3],
represented as follows: B ¼ P; T ;F;QW ;CN;EN;DC;V ; Z0ð Þ where:
(i) P (respectively, T) is a non-empty finite set of places (respectively, transitions);
(ii) F is a set of flow arcs with F� P� Tð Þ [T � Pð Þ;
(iii) QW ¼ Q;Wð Þ where Q : F ! 0; 1½ � is a real number that represents the prob-

ability on the arcs and W : P� Tð Þ [T � Pð Þ ! 0; 1f g maps a flow arc to a
weight. Specifically, W x; yð Þ[0 if x; yð Þ 2 F, and W x; yð Þ ¼ 0 otherwise,
where x; y 2 P[T ;

(iv) CN (respectively, EN) is a set of condition (respectively, event) signals with
CN� P� Tð Þ (respectively, EN� T � Tð Þ);

(v) DC : F� P� Tð Þ ! l; h½ � is a superset of time constraints on output arcs;
(vi) V : T ! f_;^g maps an event-processing mode (AND or OR) to each

transition;
(vii) Z0 ¼ T0; D0ð Þ where T0 : P ! 0; 1f g is the initial marking and D0 : P ! 0f g is

the initial clock position.

Each reconfiguration r is controlled by the controller module R. It is a structure
R consisting of a set of reconfiguration functions r1; . . .; rnf g. A reconfiguration
function r is a structure r ¼ Cond;Q;E0;M0; S;Xð Þ, where:
(i) Cond : CN ! true; falsef g: The precondition Cond of r could be evaluated to

either true or false and could be modeled by external condition signals;
(ii) Q : F ! 0::1½ �: Represents the probability to reach each TNCES branch. It could

be a functional (internal to the TNCES) or a reconfiguration probability. It is
used to describe the nondeterministic behavior of the system;

(iii) E0 : P ! 0::max½ �: The energy requirements of the chosen TNCES branch;
(iv) M0 : P ! 0::max½ �: The memory requirements of the chosen TNCES branch;

From Specification to Implementation of an Automotive Transport System 53

(v) S : TN �rð Þ ! TN r�ð Þ: Is the structure modification instruction of the reconfig-
uration scenario. It contains the reconfiguration structure process, i.e., the
information about the current state and the destination;

(vi) X: last state �rð Þ ! initial state r�ð Þ: Is the state processing function, where last
state �rð Þ (respectively, initial state r�ð Þ) denotes the last (respectively, initial)
state of •r (respectively, r•) before (respectively, after) the application of r.

Let TN ¼ P� T � F � QW � CN � EN � DC � V be the Cartesian product of all
feasible net structures that can be performed by a system. Let •r (respectively, r•) be the
source (respectively, target) R-TNCES before (respectively, after) the reconfiguration
function r is applied, where TN �rð Þ, TN r�ð Þ 2 TN. A state machine specified by an
R-TNCES called Structure_changer, is introduced to describe the control module. In
this state machine, each place corresponds to a specific TNCES that refers to a con-
figuration scenario. This place can be introduced as a macro-step which is composed of
a set of micro-steps as shown in Fig. 2 [8].

Initially, some external events along some inputs from the environment arrive,
marking the beginning of a macro-step. Then, the system leaves the source states, enters
the destination local states, and generates the action events (if any). Unless they are
regenerated by other transitions, the events disappear after one micro-step and the
macro-step is finished if there is no enabled transition. Each transition of the Struc-
ture_changer corresponds to a reconfiguration function. A place sp gets a token implies
that the TNCES to which sp corresponds is selected. If a transition stð8st 2 sp�Þ fires,
then it removes the token from sp and brings it into a place sp’ with sp’ 2 st•. Firing st
corresponds to the application of a reconfiguration function. The Structure_changer is
formalized as follows: Structure changer ¼ P; T ; F; Q; E0; M0ð Þ where 8t 2 T ; �tj j ¼
t�j j ¼ 1, and only one TNCES is performed at any time. Each place of this structure
contains the whole information about the corresponding TNCES, i.e., its energy and
memory requirements. Let ß be a TNCES and Cost TNCES be the needed resources by
this TNCES. The states of a GR-TNCES are defined as follows; a state ofG is a pair (TN
(ß), State(ß)), where TN(ß) denotes the net structure of G and State(ß) denotes a state of
G. The evolution of a GR-TNCES depends on which events, energy and memory
constraints take place. A reconfiguration function r ¼ Cond;Q;E0;M0; S;Xð Þ is enabled
at state (TN(ß), State(ß)) if the following conditions are met:

(i) TN(ß) = TN(•r), i.e., TN(ß) is equal to the net structure of •r and the firing time
constraints are valid,

Fig. 2. Macro-step, micro-step.

54 O. Khlifi et al.

(ii) Cond = true: The reconfiguration’s precondition is fulfilled,
(iii) The energy reserves E′ are enough: i.e., E0 [Cost TNCES E0

0

� �
,

(iv) The memory reserves M′ are enough: i.e., M0 [Cost TNCES M0ð Þ.
The reconfiguration function is a tuple based on the required energy and memory

resources compared with the current resources storage as well as the events and con-
ditions signals. To select the most probabilistic reconfiguration scenario RMax, the
controller chooses the maximal probabilistic transition to be fired in the next step. Let
(i) ‘\ e 2 EN e’ and ‘\ c 2 CN c’ be respectively the set of all possible Event-In and
Condition-In of the desired transition, (ii) E′ and M′ are respectively the energy and
memory reserves, (iii) ‘Cost TNCESMax E0

0

� �
’ and ‘Cost TNCESMax M0

0

� �
’ are respec-

tively the energy and memory required by the most probabilistic reconfigurable sce-
nario. The reconfiguration is applied by respecting this formula:

RMax � E0 [Cost TNCESMax E0
0

� �� � ^ M0 [Cost TNCESMax M0
0

� �� � ^ \ e
2 EN e ^ \ c 2 CN c ð1Þ

Indeed, the highest probabilistic scenario has to guarantee that: (i) the resource
constraints related to the energy and memory resources, and (ii) the events and con-
ditions should also occur at the firing time.

3 Specification Approach

To analyze GR-TNCES using state-exploration techniques, we focus separately on the
behavior and the control module. We consider the control module as a transition system
C;Rec; Inð Þ where C is a set of macro-steps, Rec � C � C a transition relation or
reconfiguration function. It maps the reconfiguration scenario to the respected con-
strains (energy, memory, probability). In represents the initial standard system con-
figuration, i.e., the start point is a static state. The reconfiguration function is a tuple of
the current configuration (macro-step), the corresponding events and conditions, the
desired probability, and the needed energy and memory resources compared to the
current storage. To execute the highest probabilistic reconfiguration scenario, the
controller has to choose the maximum probabilistic transition for the next step
respecting this formula:

RecMax � ðE0 [Cost TNCESMax E0ð ÞÞ ^ ðM0 [Cost TNCESMax M0ð ÞÞ ^ \ e2ENe ^ \ c2CNc

ð2Þ

which describes how macro-steps are selected [8], i.e., the highest probabilistic sce-
nario has to guarantee the resource constraints related to energy and memory reserves.
Moreover, the events and conditions should also occur, otherwise they are considered
to be true. For the low probabilistic reconfiguration, the transition relation will be
introduced as follows:

From Specification to Implementation of an Automotive Transport System 55

RecMin � ðE0 [Cost TNCESMin E0ð ÞÞ ^ ðM0 [Cost TNCESMin M0ð ÞÞ ^ \ e2ENe ^ \ c2CNc

ð3Þ

which describes how the macro-steps are selected [8], i.e., the lowest probabilistic
scenario has also to satisfy the resource constraints related to the energy and memory
reserves. The events and conditions should also occur, i.e., if there is no event, then the
input is considered to be true.

Once the macro-step is selected, the system executes the micro-steps of the selected
configuration. The behavior module is considered as a transition system (P, R, I) where
P is a set of global states, R�P � P a transition relation. It is a labeling function that
maps each transition to the holding properties in the corresponding transition, and I�P
a set of initial states. A transition in R is a tuple of the current local state (system source
state), the events and conditions occurring, the probabilistic value of the environment
inputs and the time period in which the transition could be fired. A path is sequence of
states that belongs to P, i.e., a state is reachable only if it appears on such trace path
execution. We symbolically encode the global state space P of a GR-TNCES system
using a set of variables Y as follows: For each system state m, we consider a state
variable from the local states of m. The set of initial states I is represented as:

I � \ m2Pm � m0 ^ \ e2Ei:e ^ \ c2CNi:c ^ T0 ¼ f1gð Þ ^ D0 ¼ f0gð Þ ð4Þ

where m0 is the initial local state, Ei and CNi are respectively the set of internal events
and internal guarding condition [8]. Initially, the system is in its initial local state, all
internal events and guarding conditions do not occur, the state is marked and the clock
position is null. The most important thing is the encoding of the nondeterministic
transition relation R. We focus on the encoding of the micro-step transition, i.e., for
each state variable var 2 Y , we present a variable var′ that has the same range as var
and intuitively represents its next-state value. Let Y0 be the set of all these primed
variables. We aim to define an expression over Y [Y0 to specify R, then for each local
transition t, let src(t), dst(t), evt(t), cond(t), time(t), mode(t), and prob(t), be respectively
the source local state, destination local state, trigger event, guarding condition, and the
firing time interval, the firing mode{AND, OR}, and the firing probability. The
expression evt(t) and cond(t) could be true if the transition t does not have a guarding
condition and event inputs. Let curr(t) be the current local state of the system and
enbprob tð Þ to be represented as:

enbprob tð Þ � curr tð Þ ^ evt tð Þ ^ cond tð Þ ^ time tð Þ ð5Þ

It is enabled once the trigger events and guarding conditions occurs simultaneously
at the desired running time if the firing mode is ‘AND’ [8]. We could deal with other
firing mode as described here:

56 O. Khlifi et al.

enbprob tð Þ � curr tð Þ ^ time tð Þ ^ evt tð Þ _ cond tð Þð Þ ð6Þ

It presents how the transition could be enabled if the firing mode is ‘OR’, i.e., it is
considered to be true if one trigger event or guarding condition occurs at the required
running time period of the selected transition [8]. Once the system executes a con-
figuration scenario, we aim to describe how the system deals with the micro-steps. For
each state m of the system, microm describes the progress of the system at run-time
process:

microm � ð\ t=curr tð Þ¼m enbprob tð Þ ! curr0 tð Þ ¼ dst tð Þ� �Þ _ ð \ t=curr tð Þ¼mð:enb tð Þ
! curr0 tð Þ ¼ curr tð ÞÞÞ ð7Þ

Indeed, the first conjunct guides the system states from the enabled transition to the
destination state, while the second conjunct blocks the system on the same position if
none of the transitions are enabled [8]. The fired transition can generate various events,
moreover, the generation of events evt(t) and conditions cond(t) are introduced
respectively as follows:

microe � ð[t=e2EvtðtÞenbprob tð ÞÞ $ e0 ð8Þ

The event is delivered by the union of the enabled transition that can send events to
activate different states of the system [8]. Similarly, the micro-step generates guarding
condition and it is represented as:

microc � ð[m=c2CndðtÞmicrom tð ÞÞ $ c0 ð9Þ

It is generated by a union of states to control the execution of various tasks of the
system [8]. Then, we introduce macro to encode the macro-step which is a conjunction
of micro states, micro events and micro conditions as follows:

Macro � \ e2CNmicroc ^ \ c2ENmicroc ^ \ m2Pmicrom ð10Þ

The presented specification approach makes possible to deal simultaneously with
unpredictable reconfiguration scenario [8], time constraints, and limited energy and
memory resources. It is useful to specify the system requirements in an optimizedmethod.

4 Test Case: Skid Conveyer

Skid conveyors are widely used to move materials over a fixed path in the automotive
industry. Transporting a body in the paint shop or a chassis from one workstation to
another in the final assemblies are typical examples. For this purposes, we define an
extended skid conveyor system showed in Fig. 3, which will be one part of the
automated commissioning line in the “Zentrum für Mechatronik und Automa-
tisierungstechnik” (ZeMA) in Saarbrücken, Germany. The following section describes
the functional requirements of the system.

From Specification to Implementation of an Automotive Transport System 57

4.1 Functional Requirements

The transport system should consist of three conveyor parts [17]. Currently, there is an
old system where all the motors are switched together and manually from one mode to
another. We aim to introduce new functional modes which offer the user to localize the
chassis on every part, i.e., in each conveyor part, the chassis should wait for 7 s to
establish other tasks by various robots. To minimize the consumed energy of the
system during the movement of the chassis, each unused actor should be switched off
or to a standby mode. For example once the chassis is in the third conveyor part, the
motor of the second one should be switched off. The activation/deactivation of the
motors is controlled based on the car position. Moreover, the worker should control the
system with a control panel showed in Fig. 4 with all the possible uses cases [8].

4.1.1 Control
Using this approach, it is possible to choose one operation mode for the system. The
requirements for these operation modes are explained in the following part. The system
is reconfigurable and we consider three possible reconfigurations:

• Automatic Mode. The worker activates and stops this mode using the panel. The
speed of the skid should be as well controlled. Then, all other sensors and actors
operate automatically, i.e., (i) the chassis position has to be clear, (ii) then, the
chassis moves from one workstation to another without user interaction. Since the
position of the chassis is logged, all unused actors can be switched Off. As soon as
the chassis is at the third position it should move backwards to the start position and
start again.

Fig. 3. CAD model.

Automa c
Mode

Manual
Mode

Pause
Mode

Fig. 4. Worker use cases.

58 O. Khlifi et al.

• Manual Mode. In this mode, the worker should manually control the system’s
functionalities, i.e., to start and stop all the conveyor parts individually and together
and controls the speed of the chassis.

• Pause Mode. In order to save energy the worker can activate and deactivate this
mode with the panel. If the mode is activated all sensors and actors are switched Off
or change to a standby mode.

4.1.2 Additional Information
If the worker uses this option, he can visualize all the relevant sensor and actor data.
For example whether the motor is ON or Off and its speed.

• Settings. This mode should help the worker to use the panel. It should be possible
to increase and reduce the contrast or to calibrate the screen.

• Diagnosis. If an error occurs, the worker can choose this mode and all sensor and
actor errors are displayed here.

4.2 System Encoding

The skid conveyor is supervised by a centralized controller, i.e., it enables to control
and switch the system from one configuration to a second one. To simplify the use case
specification, we consider that the system is not probabilistic and that the switching
mode is chosen by the user to be denoted by RTNskid = {Bskid, Rskid}. Let Eskid and
Mskid be respectively the energy and memory reserves of the skid. We use the proposed
specification approach to specify the system, and then each mode is represented by a
macro-step. We identify three macro-steps for the different modes: Rec1 = Macro1:
Automatic mode, Rec2 = Macro2: Manual mode, Rec3 = Macro3: Pause mode. This
is a reconfigurable system, i.e., it can switch the behavior from one mode to another
mode. Rskid represents the control module of the system as:

Rskid ¼ Rec1[Rec2[Rec3

¼ rRec1;Rec2; rRec1;Rec3; rRec2;Rec1; rRec2;Rec3; rRec3;Rec1; rRec3;Rec2
� �

For example, the second reconfiguration: “rRec1;Rec3” implies that “�r” = “Rec1”
and “r�” = “Rec3”. It enables to switch mode from the current to the next configu-
ration. Figure 5 [8] helps to explain the structure of the system and the possible
reconfiguration processes, i.e., it shows the possible switching mode between all the
macro-steps. The Idle position refers to initial state where the system clock is null and
the initial marking is true. It could be specified as follow:

I � \m 2 Pm
� Idle ^ \ e 2 Ei:e ^ \ c 2 CNi:c ^ T0 ¼ f1gð Þ ^ D0 ¼ f0gð Þ
� Idle

Then, according to the user choice, the system reacts to the received command. Let
EN1, EN2, EN3 be respectively the external events to activate Rec1, Rec2, Rec3.

From Specification to Implementation of an Automotive Transport System 59

Marco1 is introduced as the conjunction of the energy constraint, the memory con-
straint and the trigger event that will initiate the desired configuration:

Macro1 � Eskid [Cost ‘Macro1’ E0ð Þð Þ ^ Mskid[Cost ‘Macro1’ M0ð Þð Þ ^ EN1:

The system keeps the same running mode till it receives a trigger event from the
user to change the operational mode. The second reconfiguration is also introduced as
follow:

Macro2 � Eskid [Cost ‘Macro2’ E0ð Þð Þ ^ Mskid [Cost ‘Macro2’ M0ð Þð Þ ^ EN2:

The system could move for the third configuration once its conjunctions are vali-
dated. This configuration is introduced as followed:

Macro3 � Eskid [Cost ‘Macro3’ E0ð Þð Þ ^ Mskid [Cost ‘Macro2’ M0ð Þð Þ ^ EN3:

Once the configuration is selected, the system executes the different internal tasks
of the concerned macro-step. The behavior module of RTNskid is formally presented as
follows: Bskid ¼ P;T ;F;QW ;CN;EN;DC;V ;Z0ð Þ where the network structure of the
system is listed as: TNMaco1; TNMaco2; TNMaco3 2 TNskid .

We have P ¼ P1 [P2 [P3, T ¼ T1 [T2 [T3, F ¼ F1 [F2 [F3, W ¼ W1 [W2

[W3, CN ¼ CN1 [CN2 [CN3, EN ¼ EN1 [EN2 [EN3, DC ¼ DC1 [DC2 [DC3,
V tð Þ ¼ V1 tð Þ [V2 tð Þ [V3 tð Þ, and 8p 2 P1 \P2 \P3, Z0 pð Þ ¼ z01 pð Þ ¼ z02 pð Þ ¼
z03 pð Þ.

We focus on the behavioral module for the specification of the system require-
ments, and then we aim to introduce the micro-steps of the first macro-step. The authors
have to identify some properties of the system, e.g., ‘it should be possible to localize
the chassis on every part of the conveyor’. Let curr tð Þ be the system state that describes

Fig. 5. System model.

60 O. Khlifi et al.

the position of chassis and Pos1enb be the micro-step that represent the car position in
the first part of the skid. In case that the chassis should be in the first position at a
prefixed time period a1; b1½ �, the trigger events E1:1 and E1:2 should be detected at the
same period. We can formally introduce this micro-state as:

Pos1enb � curr tð Þ ^ E1:1 ^ E1:2 ^ time a1; b1½ �

which evaluates the transition, i.e., it could be enabled only if all the listed conjunctions
are validated. For the second position of the skid, it is formalized based on the same
rules as follow:

Pos2enb � curr tð Þ ^ E2:1 ^ E2:2 ^ time a2; b2½ �

Where (i) E2:1 and E2:2 are the corresponding events to detect that position, and
(ii) a2; b2½ � is the time period for this scenario. The proposed system aims to save the
energy consumption of the transport system, i.e., the corresponding motor for each
conveyor part should be Off if there is no car. Let m1act tð Þ be the active state of the first
motor and m2act tð Þ for the second motor. Here we define the rules for m2act tð Þ as:

m2act tð Þ � m1act tð Þ ^ curr tð Þ ^ E2:1 ^ E1:2

which represent that the active state of the second motor is a conjunction of the active
state of the first motor, the presence of the chassis in the conveyor, the occurrence of
the E1.2: (chassis at the end of conveyor 1) and E2.1: (chassis at the beginning of
conveyor 2). To optimize the energy consumption, the system has to switch ON/Off the
motors according to the position of the chassis. Once the second motor is turned ON,
the first should be turned Off. We formalize the switching rules.

:m1act tð Þ � m2act tð Þ ^ :curr tð Þ ^ E2:1 ^ :E1:2

which represent that stopping the first motor is initiated by the activation of the second
motor, the absence of the chassis in that position is confirmed by the non-occurrence of
the event E1.2 and the occurrence of the event E2.1. The enabled transitions can generate
many events for the synchronization of the system parts. Then, the micro event E2.1 is
delivered after the movement of the chassis from the first skid to second one
(curr tð Þ ! curr0enb tð Þ). The formalization is as follow:

microe � [t=e 2 EN1 tð Þcurr0enb tð Þ� � $ E2:1

The authors present the specification of the proposed case study requirements using
the presented approach. We move to the next step which is the modeling, simulation
and the implementation of the system.

From Specification to Implementation of an Automotive Transport System 61

4.3 System Modeling

In this Section, we present the automotive transport system model based on
GR-TNCES formalism using the environment ZIZO1 [10] which is developed as a
collaboration between Saarland University and Carthage University. It helps with the
modeling and simulation of distributed control systems. For the purpose of optimizing
the energy consumption of the old system, we present the requirements of the proposed
transport system model. Based on an active control strategy of the chassis position in
the skid, the new model uses additional sensors to detect the position of the workpiece
on the conveyor. Figure 6 introduces the ZIZO model as a distributed discrete event
system formed by four modules, e.g., the car in the conveyor, the sensors, the Pro-
grammable Logic Controller (PLC) and the three motors. Once the sensitive sensor
detects the chassis in the conveyor, it sends an event signal to the PLC to activate and
deactivate the corresponding motors based on the car position. The first module
includes six events corresponding to the six sensors installed in the three conveyor
parts. For the sensors module, it receives the events delivered by conveyor and transfers
them to the PLC. It has three extra-events designed by “No-Car2”, “No-Car4”, and
“No-Car6” corresponding to the events received from sensors. The third module
corresponds to the PLC which controls the whole system, i.e., it receives signals from
the sensors to control the state of the motors (active, standby, off). The events “M1.
ON”, “M1.SB”, “M1.Act”, and “M1.Off” are responsible respectively to drive the states
of the motors “Start, Standby, Active and Off”.

4.4 Simulation

To evaluate the energy optimization of the proposed model, we refer to the old system,
i.e., we compare the consumed energy by the different models. Supposing that the
motor needs four energy units (tokens) per second in the “Active” mode, one token in

Fig. 6. Transport system model.

1 www.aut.uni-saarland.de/forschung/forschung-zizo-tool-khlifi/.

62 O. Khlifi et al.

http://www.aut.uni-saarland.de/forschung/forschung-zizo-tool-khlifi/

the “Standby” mode and zero unit if it is Off. Figure 7 shows the energy consumption
curves during a simulation time (30 s), i.e., it presents the variation of the systems’
consumed tokens. The curves corresponding to the consumption of the proposed
energy efficient mode are on the right graph and the old model’s consumption is on the
left graph. The proposed efficient mode aims to reduce the number of active motors
simultaneously, i.e., the idea is based on the detection of the car position to activate and
deactivate the corresponding motors. The consumption curves present three stable parts
which correspond to the deactivation period of the motors in the old model and the
Standby mode in the proposed model. We notice an important diminution of the
consumed energy by the proposed model, i.e., in the first part (2–4 s), the consumption
is highly optimized (21 to 7 tokens) since only one motor is active compared to three
motors in the old model. To move the car to the second position (16–19 s), the
proposed model consumes 26 tokens; on the other hand, the basic model consumes 44
energy units for the same task which is considered as a valuable optimization. Indeed,
the sensors detect the car position and the PLC controls the activation and deactivation
of the motors, i.e., it deactivates the first motor and activates on the second one. For the
third part of the system, we succeed to save 22 energy units compared to the basic plant
model.

5 Test Case: Implementation

After the successful specification, modeling, and simulation part, the conveyor system
is created at Zentrum für Mechatronik und Automatisierungstechnik GmbH in Saar-
brücken. As already shown, skid conveyors are transport systems that are widely used
in the automotive industry. The skid conveyor belongs to the category of elevated
continuous conveyors. Especially the beginning of the end of line area in an automotive
production is one important application area. Here, the chassis moves continuously
from one work station to the next and workers add for example the wiring harness or
cockpit to the chassis. Advantages of this system are a good ergonomic working
position and a good accessibility. In Sect. 4, the functional requirements and the
control of the system is already described. This section shows the mechanical prop-
erties, the control system, and the implementation of these requirements.

Fig. 7. Comparison of the consumed energy.

From Specification to Implementation of an Automotive Transport System 63

5.1 Mechanical Design

As you can see in Fig. 8, the system is modular designed, i.e., it consists of three parts
each equipped with one motor. This motor drives a belt with five rollers that transport a
skid with the chassis on it. In order to realize energy efficient operations the system is
extended by a new control system and inductive sensors. Inductive sensors generate a
magnetic field that changes according to the material in immediate proximity to the
sensor. With the help of these field sensors, it is possible to localize the chassis position
on the conveyor. The following part shows the mechanical details of common skid
conveyor systems [18]:

• Payload: up to 5500 kg
• Conveying speed: up to 2 m/s
• Gradient: up to 3°
• Web width: 1000 mm
• Load per roller: 400–800 kg.

5.2 Control System Design

The system is controlled by the interaction of different components of Fig. 9. A Pro-
grammable Logic Controller (PLC) forms the central unit of the control system and
connects all sensors of the system. The PLC program, that is executed repeatedly,
controls the process and communicates via PROFINET with the drives and the mobile
panel. The drive system is a modular system that ranges from the control unit and
power modules to the motors. User handling is realized with a mobile panel, i.e., this
panel is programmed and then the user can operate the system via touchscreen.

Fig. 8. Skid conveyor system at ZeMA.

64 O. Khlifi et al.

5.3 Software Implementation

In order to control the skid conveyor system, the PLC has to be programmed with the
desired functionality. The international standard IEC 61131 [19] represents the stan-
dard for programmable logic controllers and according to the standard; there are several
possible programming languages. In our case, we used the programming languages
structured text (ST) and function block diagram (FBD) to realize the desired control
behaviour. For its usefulness, a graphical user interface is implemented in the panel;
therefore, we made use of a process visualization system. In this way, the user can
select one of the three following user modes that are implemented in the PLC:

• Automatic mode,
• Manual mode, and
• Pause mode,

We strictly concentrate on the description of Sect. 4, i.e., we implemented the
functionality in the PLC program with the mentioned programming languages. In the
requirements is also explained that we can switch the components into energy saving
modes in the pause mode for example. This fact is realized with the help of the
PROFIenergy profile which is a PROFINET [20] based profile that makes it possible to
set certain components into energy efficient modes as soon as the pause mode is
activated. In this case, the PLC sends a command to the components to start and end
the standby mode.

Reference: www.siemens.de

Reference: www.siemens.de

Re
fe

re
nc

e:
 w

w
w

.s
ie

m
en

s.
de

Drive System

PLC

HMI

Reference: www.siemens.deReference: www.ifm.de

MotorsInduc ve Sensors

Fig. 9. Design of the control system.

From Specification to Implementation of an Automotive Transport System 65

6 Discussion

We proposed a new specification approach that is much more expressive and optimized
compared to statecharts used in symbolic model checking. The proposed approach has
ability to cope with reconfigurable systems and timed constraints which is not possible
in statecharts. It is possible to express more restrictions related to timed systems and
real time process and enables to describe systems that could change their behavior
recognized as adaptive systems. It is also possible to use deferent firing mode for the
system transition states: i.e., we can opt from AND/OR mode according to the system
requirements. (“AND” if all the transition inputs are required and “OR” is used if one
them could validate the transition). Thanks to this approach, it is possible to check the
availability of resources before starting such a reconfiguration process, i.e., to guarantee
the non-resources violation once the system executes its tasks. Unpredictable behaviors
are also covered here, i.e., the specification approach is able to describe the proba-
bilistic behavior. We present also a complete approach ranging from specification,
modeling, and simulation to the real implementation of the proposed automotive
transport system. The ZIZO model proofs that the proposed model saves the energy
consumed by the transport system compared with the old version of the system.

7 Conclusion

This paper proposes a new specification approach dealing with unpredictable flexible
control systems running under memory and energy resources constraints. It is an
expressive method that could specify limited memory and energy reserves, proba-
bilistic behaviours, and reconfigurable processes which was not discussed in the pre-
vious work. The proposed approach is based on GR-TNCES formalism which enables
us to express the probabilistic reconfiguration scenario of such a system. An auto-
motive transport system is the considered case study to concretize the contribution. We
present therefore the specification, modelling, simulation, and implementation of the
transport system. The reconfigurations and the functionalities of the system are spec-
ified thanks to this approach. A new GR-TNCES model with aim to save energy is
developed and simulated using ZIZO to evaluate its energy consumption compared to
old system model. The reported results of the improved system show an important
reduction of the consumed energy, i.e., more than 60% in the first part of the conveyor
and more than 40% in the second part. The implementation of the real transport system
is also presented in this work. During the next step of this project, we will work on the
validation of the proposed model through a real energy data measurement of the skid
conveyor.

Acknowledgement. This work was supported by Zentrum für Mechatronik und Automa-
tisierungstechnik” (ZeMA) and “ERASMUS + Program” at Saarland University – promoted by
the European Program. This research work is a collaboration between Saarland University,
Germany and University of Carthage, Tunisia.

66 O. Khlifi et al.

References

1. Khlifi, O., Mosbahi, O., Khalgui, M., Frey, G.: GR-TNCES: new extensions of R-TNCES
for modeling and verification of flexible systems under energy and memory constraints. In:
International Conference on Software Technologies, Colmar, France, pp. 373–380 (2015)

2. Bortolussi. L., et al.: Verification of Complex Adaptive Systems (2015). http://homepage.
lnu.se/staff/daweaa/papers/2015CASVerification.pdf

3. Zhang, J., Khalgui, M., Li, Z.W., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man Cybern.
Syst. 43(4), 757–772 (2013)

4. Harel, D., et al.: STATEMATE: a working environment for the development of complex
reactive systems. IEEE Trans. Softw. Eng. 16(4), 403–414 (1990)

5. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements specification for
process-control systems. IEEE Trans. Softw. Eng. 20(9), 684–707 (1994)

6. Bastide, R., Buchs, D.: Models, formalisms and methods for object-oriented distributed
computing. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997. LNCS, vol. 1357, pp. 221–255.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69687-3_45

7. Chan, W., et al.: Optimizing symbolic model checking for statecharts. IEEE Trans. Softw.
Eng. 27(2), 170–190 (2001)

8. Khlifi, O., Siegwart, C., Mosbahi, O., Khalgui, M., Frey, G.: Specification approach using
GR-TNCES -application to an automotive transport system. In: 12th International
Conference on Software Technologies, Madrid, Spain (2017)

9. Andrade, E., Maciel, P., Callou, G., Nogueira, B.: A methodology for mapping SysML
activity diagram to time petri net for requirement validation of embedded real-time systems
with energy constraints. In: 3rd International Conference on Digital Society, Cancun,
Mexico, pp. 266–271 (2009)

10. Salem, M.O.B., Mosbahi, O., Khalgui, M., Frey, G.: ZiZo: modeling, simulation and
verification of reconfigurable real-time control tasks sharing adaptive resources: application
to the medical project BROS. In: International Conference on Health Informatics, Portugal,
pp. 20–31 (2015)

11. Chen, Y.F., Li, Z.W., Zhou, M.C.: Optimal supervisory control of flexible manufacturing
systems by petri nets: a set classification approach. IEEE Trans. Autom. Sci. Eng. 11(2),
549–563 (2014)

12. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

13. Wasserman, A.: Extending state transition diagrams for the specification of human-computer
interaction. IEEE Trans. Softw. Eng. 11(8), 699–713 (1985)

14. Ross, D.: Structured analysis (SA): a language for communicating ideas. IEEE Trans. Softw.
Eng. SE-3(1), 16–34 (1997)

15. Zedan, H., Cau, A., Chen, Z.: Yang. H.: ATOM: an object-based formal method for
real-time systems. Ann. Softw. Eng. 7, 235–256 (1999)

16. El-kustaban, A., Moszkowski, B., Cau, A.: Specification analysis of transactional memory
using ITL and AnaTempura. In: Lecture Notes in Engineering and Computer Science,
pp. 176–181 (2012)

17. Khlifi, O., Siegwart, C., Mosbahi, O., Khalgui, M., Frey, G.: Modeling and simulation of an
energy efficient skid conveyor using ZIZO. In: 13th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Lisbon, Portugal, pp. 551–558 (2016).
ISBN 978-989-758-198-4

From Specification to Implementation of an Automotive Transport System 67

http://homepage.lnu.se/staff/daweaa/papers/2015CASVerification.pdf
http://homepage.lnu.se/staff/daweaa/papers/2015CASVerification.pdf
http://dx.doi.org/10.1007/3-540-69687-3_45

18. Hompel, M., Schmidt, T., Nagel, L.: Materialflusssysteme: Förder und Lagertechnik
(Material Flow Systems: Conveyor and Storage Techniques). Springer, Berlin (2007).
https://doi.org/10.1007/978-3-540-73236-5. ISBN 978-3-540-73235-8

19. IEC 61131-3: Programmable controllers – part 3: programming languages, International
Standard, International Electrotechnical Commission (2013)

20. PROFIBUS Nutzerorganisation e.V., “Pi White Paper: The PROFIenergy Profile,”
Karlsruhe, Germany, pp. 10–11 (2010)

68 O. Khlifi et al.

http://dx.doi.org/10.1007/978-3-540-73236-5

Towards a Goal-Oriented Framework
for Partial Agile Adoption

Soreangsey Kiv1(B), Samedi Heng1, Yves Wautelet2, and Manuel Kolp1

1 Louvain Research Institute in Management and Organizations (LouRIM),
Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium

{soreansey.kiv,samedi.heng,manuel.kolp}@uclouvain.be
2 Faculty of Economics and Business (FEB), Leuven, KU, Belgium

yves.wautelet@kuleuven.be

Abstract. The agile paradigm is used today for software development
and project as an alternative to structured and traditional heavier life
cycles. Different meta-models have been proposed trying to unify agile
methods. Yet, very few of them focus on agile partial method adoption.
Intuitively, choosing which practices to adopt from agile methods should
be made based on their most prioritized goals in the software develop-
ment process. The paper answers this issue by building a goal-oriented
meta-model where each agile concept is seen as a goal to achieve and
explaining how goal modeling can help the software team to partially
adopt agile methods. This will also make it easier to identify vulnerabil-
ities associated with each goal and minimize risks.

Keywords: Agile methods · Partial adoption · Goal modeling
Meta-model · Requirements engineering

1 Introduction

Software development approaches such as eXtreme Proramming (XP) [1],
Feature-Driven Development (FDD) [2], Dynamic Systems Development Method
(DSDM) [3], Crystal family [4], Scrum [5] have led to the definition of the Agile
Manifesto [6,7] to offer alternatives to traditional software life cycle. The man-
ifesto defines a set of values and principles to be followed by software develop-
ment processes, the most important principle being iterative life cycles (Dem-
ing/Shewart cycle, spiral, sprint, scrum, ...). Many studies demonstrated that
iterative processes and phases allow change, increase quality and reduce the risk
of failure. Agile and iterative processes have thus emerged as popular approaches.

Intuitively, when software teams want to partially adopt agile methods –
either one or the combination of multiple methodologies – they should have in
mind the reasons why they want to do it and the goals they want to achieve after
the adoption. Tripp and Armstrong [8] conduct an exploratory study and point
out different motives for agile adoption, all with different project management
configurations focusing on agile practices for software development. Campanelli
c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 69–90, 2018.
https://doi.org/10.1007/978-3-319-93641-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_4&domain=pdf

70 S. Kiv et al.

and Parreiras [9] highlight that 42% of the papers working on agile tailoring use
goals as one of their criteria for practice selection. For instance, among others,
the Strategic Analysis for Agile Practices framework [10] proposes to link the
selection of agile practices to the organization’s business goals.

Unfortunately, these business goals along with other criteria are often
described textually. To ensure wide diffusion in academia, we believe that explicit
formalisms should be proposed. By using meta-models such as [11–13], methods
can be described in a more precise (and formal) way and offer more explicit repre-
sentation and guidelines. This has led us to propose, by means of a meta-model,
a partial agile adoption framework based on a goal perspective. Our motivation
contrasts with previous goal-based agile tailoring approaches in the sense that we
employ the original (software development) goals behind agile methods creation
(i.e., the Agile Manifesto) rather than business goals. This perspective coincides
also with the work of [14] which emphasizes that agile practices should follow the
agile values which are fundamental to define the culture of the software company.

Our main objective is to build a goal-oriented meta-model where each agile
concept will be seen as a goal to achieve and to which dependencies between roles
and resources are associated. A complementary objective is to explain how we
make use of social intentional modeling and our meta-model to help the software
team to partially adopt agile methods. This paper is an extended version of [15].

The paper is organized as follows. Section 2 discusses various agile methods
and meta-models proposed in literature. Their pros and cons are highlighted.
Section 3 presents our framework for partial agile adoption. We first expose our
agile meta-model through its tactical and operational levels. Then, we discuss the
use of the intentional i* framework [16] to instantiate our meta-model for better
visualization. Next, we provide a methodology for using our framework for partial
agile methods adoption. Section 4 provides a validation for our approach. Finally,
we conclude the paper in Sect. 5 including a discussion on future directions.

2 Related Work

Over the last decade, many agile methods have been proposed to meet spe-
cific requirements and situations. For instance, Scrum has the objective to put
more focus on project management considerations while XP is designed to be
more responsive to customer requirement changes [12]. [17] points out that agile
methods tend to be compliant with small development teams and focus more on
people rather than processes or artifacts. Other well-known instances and inspi-
rations of agile-based frameworks can be found in the literature, some are even
derived from other disciplines than software and information systems engineer-
ing: Agile Unified Process (AUP) [18], OpenUP [19] and Agile Modeling [20],
Kanban [21,22], Lean Software Development [23], Lean Office and Organization
[24], etc.

Agile methods are generally described textually as a series of values, prin-
ciples and practices [1,5,6]. To formalize their descriptions and to make the
method adoption process better and faster, and at the same time to minimize

Towards a Goal-Oriented Framework for Partial Agile Adoption 71

the risks, meta-models have been created in different perspectives. We overview
relevant related studies on agile metamodeling below.

Schwaber [25] proposes a meta-model to support the construction of agile
methods. By relying on metrics on a Situational Method Engineering framework
[26], he provides guidance to agile methodologists during the construction and
throughout the development process itself. Rather than working on a single agile
method, Mikulėnas et al. [12] focus, on their part, on a meta-model enabling
the fusion of different agile methods referred as partial agile methods adoption.
The core idea is to decompose each agile method into components which, in
theory, could always be categorized into a common pre-defined structure. This
offers great flexibility in adopting agile methods since one can manually select
and combine different alternative components coming from different methods at
will.

Interestingly, Lin et al. [27] and Esfahani et al. [13] have shed more light on
goal-oriented meta-models. Lin et al. [27] propose a novel goal-oriented method
to model a software development process on the top of the AUP [18], called
Goal Oriented Agile Unified Process (GOAUP) that could also be applied to
OpenUP and other agile-oriented forks of the Unified Process. Goal-Net theory
[28] is used to model the hierarchical goals in the AUP through a so-called Goal-
Net diagram. In that purpose, each iteration has one main goal. Esfahani et
al. [13] propose a more sophisticated goal-oriented meta-model that put focus
on social interaction in which human relations are clearly defined. For example,
the relationship/dependency between roles in required processes and the skills
are associated with each goal in turn described with certain vulnerabilities to
minimize the risks of the adoption process. Although many other meta-models
have been proposed [11–13,27–31], none of them focuses specifically on partial
agile adoption in an intentional goal-oriented perspective. The closest research
work related to ours is [13], in which goal-oriented software process modeling
has been used to model micro-processes (i.e., practices). However, the authors
focus rather on how to visualize agile methods, mainly Scrum, through social
modeling while our work aims at using a goal-oriented framework specifically
dedicated to partial agile methods adoption.

Wautelet et al. [32] use a process fragment approach (see [33]) to include
requirements models developed in previous contributions (i.e. [34–36]) as arti-
facts of any agile software development method. To this end, the authors instan-
tiate the generic process fragment template of [37] and map each concept to
the i* framework [38] for visual representation. Their approach is of particular
interest here in the sense that they also depict a software development process
with i* but the adoption of the process fragment is done on an ad-hoc basis
rather than on the basis of values. Indeed, while our partial agile process selec-
tion mechanisms relies on high level values, their approach is targeted to simply
include some specific software development practices within an existing agile
method in an as-is fashion without any element selection process. Our approach
is thus top-down while theirs is rather a bottom-up add-on to enrich the software
engineering stage of the parent agile method adopting their process fragment.

72 S. Kiv et al.

Finally, let us note that their use of the i* concepts for the visual representation
of the software development process is not aligned with ours; it is indeed not
driven by the same ontological basis. They rely on a third-party process fragment
while we here develop our custom meta-model later mapped to i*.

Last but not least, we have chosen to represent the process elements in our
partial agile method adoption framework with i* even if specific frameworks for
software development process representation exist. We can notably refer here to
the Software & Systems Process Engineering Metamodel (SPEM) [39] (see [40]
for an application on agent-oriented iterative life cycle representation), ISO/IEC
12207 [41] and ISO/IEC 15504 [42]. The major drawback of these frameworks is
that they are not goal-oriented so that they do not allow tracing the rationale
behind each operational level element choice. In other words, they are designed
for representing a single software development method at operational level not
for reasoning about a possible composition of several methods.

3 A Framework for Partial Agile Adoption

As evoked, our objective is to introduce a framework for partial agile methods
adoption in a goal-oreinted and social perspective. The aim is threefold: to pro-
vide (1) a goal-oriented meta-model for describing agile methods, (2) a goal and
social representation by using the i* framework and (3) an approach for practices
selection and adoption.

Goal-Oriented Meta-model: This section describes how the meta-model is
created, how each agile concept is seen in the goal perspective and finally, how
this meta-model can be accommodated to any agile method.

Goal and Social Representation: Up to this point, agile concepts have been
discussed and represented in the meta-model. This section describes how to use
a social intentional modeling framework such as i* for a better visualization of
socio-intentional dependencies.

Approach for Practices Selection and Adoption: This section explains
how representation of goal-oriented agile concepts with i* can be useful for prac-
tices selection and how it can help practitioners to identify the possible risks.

3.1 Goal-Oriented Agile Methods Meta-model

The Agile Manifesto introduced four values and twelve principles [6] agile prac-
titioners should respect in order to be agile compliant. Following Madeyski [43],
“agile values are the large-scale criteria we use to judge what we see, what we
think and what we do”. Most agile methods nevertheless come with their own set
of practices – for instance, Scrum possesses 14 practices and XP has 13 practices

Towards a Goal-Oriented Framework for Partial Agile Adoption 73

(see Table 2) – in fact, these practices are the particular means to fulfill some
values and principles of the Agile Manifesto. Madi et al. [14] mentioned that
values of the Agile Manifesto are fundamental for any agile method because a
set of practices can be followed on their basis and knowing the most important
agile values is the key to follow the best set of practices. According to Sidky et
al. [44], practices are concrete activities and practical techniques used to develop
and manage software projects in accordance with the agile principles.

Based on both [14,44], value and principle are the key elements that define
which practices to adopt. However, we can see that values are actually the
abstract ideas implemented by principles. Thus, principles are considered as
the bridge that narrows the gap between the abstract general values and the
detailed specific practices [45].

To the best of our knowledge, relationships between agile values, principles
and practices have never been explicitly stated. However, they can be literally
understood from their own descriptions. For instance, one of the four agile values,
– “Individuals and interactions over processes and tools” – can easily be related
to the software team and its interactions. Basically, we can say that a principle
contributes to this value if it helps to improve the ability of the software team
(P1, P3, P4 and P5) and their interactions (P2)1.

Principles of the Agile Manifesto are however still an abstraction and they
focus on multiple aspects of software development. Laanti et al. [46] conducted
research on decomposing each principle into fine-grained elements which they
called the emphasis of the principle. We define the latter concept in our meta-
model as Agile Feature. It allows better mapping practices with principles. In
other words, an agile feature allows filling the gap between principles and prac-
tices. For example, the principle P1, “build project around motivated individuals.
Give them the environment and support they need, and trust them to get the job
done”, means that one should emphasize on motivation of individual, working
environment, support and trust. The latter are referred to as “agile features” in
our meta-model. To achieve this principle, if practitioners use Scrum and XP
methods, the suitable practices are2:

– Motivated individuals: this can be fulfilled using practices “Daily meeting”
(SP4 or XP4), “Three questions” (SP5) and “Sign up” (XP3). “Daily meet-
ing” and “Three questions” help to motivate members by asking them to
report everyday on the problems they face and the help they need to solve
them. “Sign up” practice helps to improve the individual’s motivation by
encouraging them to volunteer in choosing the task to perform;

– Good environment: this can be fulfilled by using practices “Daily meeting”
(SP4 or XP4), “Three questions” (SP5) and “Sustainable pace” (XP1). “Daily
meeting” and “Three questions” can help to improve the working environment
by knowing what bothers each individual and removing the problem as quickly

1 Principles are denoted as Px, x ∈ {1 . . . 12} as seen in Table 3.
2 Scrum practices are denoted as SPx, x ∈ {1 . . . 14} and XP practices are denoted as
XPx, x ∈ {1 . . . 13} as seen in Table 3.

74 S. Kiv et al.

as possible. “Sustainable pace” helps planning releases and at the same time
keeps the team from getting into a death march;

– Support: this can be fulfilled by using practice “Pair programming” (XP2). It
is a kind of technique where two people work together using a single computer.
This kind of technique will improve the quality of the code and at the same
time make individuals feel supported, for example when the partner says “let’s
try your idea first”;

– Trust: this can be fulfilled by using practices “Sign up” (XP3) and “Collective
ownership” (XP9). These two practices can only be adopted when the team
trusts each other in choosing the task to do.

By understanding the textual meaning, we can always find which principles
contribute to which values, which agile features emphasize which principles and
which practices can help to achieve which agile features.

Finally, in order to adopt the relevant practices, we need certain roles to
perform, with/without using/producing the artifact(s).

Principle

Agile_Feature

Practice Artifact

Value

Role

Principle

Agile_Feature

Value

ArtifactRole Practice

1..*

1..*

1..*

1..*

1..*

1..*

1..* 0..*1..* 1..*

produces/requiresis responsible for

achieved by

emphasizes on

contributes to

Fig. 1. Goal-oriented agile meta-model [15].

To sum up, our meta-model is built on top of these abstractions: value,
principle, agile feature, practice, role and artifact. Figure 1 exposes the meta-
model of agile methods in a goal-oriented perspective, the main components
are:

Towards a Goal-Oriented Framework for Partial Agile Adoption 75

– Value is the large-scale criteria used to judge what we see, what we think and
what we do [43]. It is seen as the top-level goal in agile methods adoption;

– Principle helps to establish a mind-set for solid software engineering practices
[47]. It comes into agile methods and acts as a bridge to narrow the gap
between values and practices [43];

– Agile feature is the distinctive characteristic of each principle, as defined by
[46]. These agile features can help to narrow the gap between principles and
practices, and consequently the relevant practices can be better identified by
the development team;

– Practice is the concrete activity and practical technique that is used to
develop and manage software projects in a manner consistent with the agile
principles [44];

– Role in agile methods refers to the allocation of specific roles through which
the software production in a development team is carried out [44];

– Artifact is the resource produced during software development. It can be tan-
gible like user stories [34,48] or intangible like working software functionality.

Modern agile methods have usually been proposed with their own set of val-
ues, principles, practices, roles and artifacts. Redundancy or overlapping between
these elements from one method to another is inevitable and elements may be
named differently in different methods, yet they are referring to the same idea.
Thus, we strongly believe that a principle can contribute to many values (having
the same goal), one agile feature can emphasize on many principles (having the
same meaning) and so on. Hence, all relationships between agile concepts in our
meta-model are of the type “many-to-many”.

3.2 Goal and Social Dependency Representation

In order to visualize the instance of the elements from our meta-model as a
goal perspective, we use the Strategy Dependency (SD) model. The analysis
based on graphical representation allows us to see which practices can fulfill
which goals (i.e., values, principles and agile features) and identify the relevant
practices to fulfill a selected goal. Moreover, the SD model allows us to consider
the social dependency between roles involved in the software development team
for some practices. This allows the team to identify the vulnerabilities of adopting
a particular practice.

We briefly describe hereafter the related concepts of the i* framework and
explain how we map elements in our meta-model with elements in i*.

The i* Modeling Framework. Goal/Intention and social dependencies
between the various components over a specific goal should be visualized using
goal-oriented modeling frameworks. As already said, in this paper, we use the
i* framework because of its popularity and its social and intentional modeling
possibilities. A full description of the i* concepts can be found in [49] but we
summarize the important ones below for self-sufficiency:

76 S. Kiv et al.

– Hard-goal is an intentional desire of an actor. The specific way of how the
goal is to be satisfied is not described;

– Soft-goal is similar to (hard) goals except that the criteria for the goal’s
satisfaction are not clear-cut. It is up to the actor to judge;

– Task is a particular way of attaining a goal;
– Resource is the finished product of some deliberation-action process;
– Role is an abstract characterization of the behavior of a social actor within

some specialized context or domain of endeavor. Its characteristics are easily
transferable to other social actors;

– Agent is an actor with concrete, physical manifestations, such as a human
individual. An agent has dependencies that apply regardless of what roles
he/she/it happens to be playing;

– Contribution link (some+) is a positive contribution whose strength is
unknown;

– Contribution link (and) is a kind of contribution where the parent is satisfied
if all of the offsprings are satisfied;

– Contribution link (make) is a positive contribution strong enough to satisfy
a soft-goal;

– Task dependency is a relationship where the depender depends on the
dependee to carry out an activity (task);

– Resource dependency is a relationship where the depender depends on the
dependee for the availability of an entity (physical or informational).

These elements are used in two main models: the Strategic Dependency model
(SD) and Strategic Rationale model (SR). The SD model describes external
dependency relationships between goals, actors using hard-goal, soft-goal, task
and resource elements. These four kinds of dependencies are suitable to represent
respectively the functional goal, the functional goal without a clear-cut of satisfi-
ability, the functional goal with a specific activity or practice to achieve and the
resource or artifact needed during the development. In addition to the SD, the SR
model provides a deeper representation of the internal, intentional dependency
with the means-end, task-decomposition and contribution links to describe the
stakeholders’ interests and the (combination of) activities, sub-goals, artifacts
that help to achieve the main goal.

Mapping Our Agile Meta-model Concepts with i*. The mapping is per-
formed with a heuristic search using the idea of Cartesian product. Indeed, for
every concept in our meta-model, we compare its definition/objective to all the
possible i* elements that can be found. The best match should have the clos-
est objective/definition. We first map the classes and finish with mapping their
relationships. We managed to map all the concepts and their relationships with
i* elements and detail hereafter the motivation of our mapping for each concept
(Table 1):

Towards a Goal-Oriented Framework for Partial Agile Adoption 77

Table 1. Mapping agile concepts with i* [15].

Agile concepts i* concepts

Value Soft-goal

Principle Soft-goal

Agile feature Soft-goal

Practice Task

Artifact Resource

Role Role or agent

Contributes to Contribution link (some+)

Emphasizes on Contribution link (and or make)

Achieved by Contribution link

Is responsible for Task dependency

Produces/requires Resource dependency

– Value, principle and agile feature are represented as Soft-goal. These concepts
are described in agile methods as the objectives to be achieved without any
defined criterion. For instance, “Individuals and interactions over processes
and tools” explains why software team members and their interactions are
important for the development but there is no explicit explanation of how
the team should be structured nor what kind of interactions they need in
order to attain the benefit of this value. Similar explanations apply for the
concepts of principle and agile feature;

– Practice is described as a set of activities that the software team must follow
in order to realize its benefit. It is represented as a Task in i*. Within a
practice, there are tasks to perform and they can require effort from many
roles in the whole team. For example, the practice “Daily meeting” requires
“Scrum Master” or “XP Coach” to organize the meeting and requires the
participation of an “Agile team”. However, we have chosen not to discuss
about tasks in this paper for several reasons. First, the term task has never
been explained as the core concept in agile methods. Second, there is no
clearcut on how we can define task within a practice. In order to do so, we
need a long and well defined literature review. This is beyond the objective
of this paper which is a preliminary study of the agile partial adoption in the
goal perspective;

– Artifact is the resource required or created when performing a practice. For
example “User stories” are the resources needed for a “Sprint planning” and
from this practice, a “Sprint backlog” is created. In i*, an artifact is repre-
sented as a resource;

– Role exists in many forms in different agile methods. Each role has differ-
ent responsibilities and can be played by different or the same actor. It is
represented as a Role or Agent in the i* framework;

78 S. Kiv et al.

– Contributes to is the relationship between value and principle which are soft-
goals. It is represented as a contribution link with the “some+” tag, as the
strength of its contribution to satisfy is unknown;

– Emphasizes on is the relationship between principle and agile feature. Each
principle is decomposed into different parts used to emphasize it. This kind
of relationship is represented by a contribution link with the tag “and” while
principle is the parent and can be fully satisfied only if all of the children,
agile features, are satisfied. Some principles having only one feature, the “con-
tribution link” with the tag “make” is then used to represent them. That one
feature is the only thing to be satisfied to fulfill the principle it emphasizes;

– Achieved by is the relationship between agile feature (soft-goal) and practice
(task). This relationship is a “contribution link” where the tag used depends
on the practice to adopt and the feature to achieve;

– Is responsible for is the relationship between an agile role and the practice
under its responsibility. It is represented by task dependency;

– Produces/requires is the relationship between an agile role and the artifact
it requires or creates. It is represented by an i* resource dependency, which
roles depend on each other for the resource needed.

3.3 Partial Agile Adoption Process

Partial agile methods adoption aims at choosing the right practices and integrat-
ing them successfully into software development process. To do so, the develop-
ment team should use one or a combination of multiple methodologies to specify
the goals to be achieved by the end of the adoption process. Thus, in our goal-
based framework, the adoption process starts from defining the goals, followed
by other steps to be performed in an iterative and incremental3 way. We divide
these steps into two levels: tactical and operational levels.

– At the tactical level, the software team defines goals to be achieved with the
adoption of the agile methods. Then the team selects related practices by
using the meta-model presented in the previous section;

– At the operational level, the software team identifies possible risks to manage
in order to successfully adopt agile practices.

Figure 2 illustrates the process of partial agile methods adoption using our
framework.

The steps of the partial agile methods adoption process are:

– Defining Goals: the software development team defines the goals/objectives
they want to achieve after adopting the agile methods. The goals here refer
to the ones the development team adheres to and not the business goals they
aim to satisfy with the software development. In our research, we refer to
the goals behind the agile methods creation, i.e., values, principles and agile
features;

3 One iteration per method candidate to be partially adapted.

Towards a Goal-Oriented Framework for Partial Agile Adoption 79

Defining
goals

Selecting
practices

T
actical L

evel

Checking
vulnerabilities

Implementing
pratices

Solving
vulnerabilities

O
p

eratio
n

al L
evel

Have new goals
to be achieved?

Any risk?

Adopting
Agile Methods

no

yes

no

yes

Fig. 2. Goal-oriented partial agile adoption process.

– Selecting Practices: as seen in our meta-model, a practice is linked to an agile
feature. So, based on the previously defined goals (value, principle and agile
feature), using the i* representation at this step allows the teams to identify
practices relevant to fulfill those goals. The team can thus select a set of
practices to be adopted. Section 4.2 gives details and an example;

– Checking Vulnerabilities: the team cannot successfully integrate agile prac-
tices into the development process unless the role that is in charge of
these practices performs correctly and artifacts consumed by practices are
sufficiently provided. That is why, in our framework, various relation-
ships/dependencies between agile practices, roles, and resources are visualized
using the SD model. This will enable the team to see the possible vulnerabili-
ties. Indeed, when a role is unable to perform correctly, the required practices
or artifacts cannot be provided. Extra information on how to build depen-
dencies and visualize them in the SD diagram can be found in Sect. 4.3;

– Solving Vulnerabilities: based on the results of the dependency checks, if any
risk is identified and associated with the practices, the team needs to solve
the cause of vulnerability by reinforcing the roles and artifacts needed;

– Implementing Practices: If there is not any risk, the team can directly start
implementing the practices into their development process.

4 Validation

In order to fully validate the framework, two necessary steps should be car-
ried out: theoretical and practical validation. The theoretical validation aims at
verifying that all the agile concepts can always be mapped to our meta-model
and showing that it can help a practitioner in selecting practices and identify-
ing vulnerabilities. The practical validation aims at validating whether or not

80 S. Kiv et al.

the framework is useful for the development team in the real case of partial
agile methods adoption. However, as a preliminary study, we only focus on the
theoretical validation in this paper.

A significant number of agile practices are available within the agile commu-
nity. The Agile Alliance [50] has documented some of the well-known ones. Nev-
ertheless, we cannot consider all agile practices to discuss them in this paper. We
thus have chosen to work only with the two most popular agile methods, namely
Scrum and XP. Concretely, the theoretical validation is conducted at two levels,
i.e., the tactical and operational ones. Firstly, at the tactical level, the relation-
ships between value, principle, agile feature and practice will be discussed and
visualized. Practitioners can follow our methodology to find out which practices
fulfill their desired goals. Secondly, at the operational level, the dependencies
between selected practices, roles and artifacts will be described and visualized
by using an SD diagram. This step helps practitioners to identify the vulnera-
bilities of adopting those practices. We briefly describe Scrum and XP methods
in the following section and describe validations at the tactical and operational
levels.

4.1 Scrum and XP

Scrum , the most commonly used agile method [51], is a framework within
which people can address flexible adaptive problems, while productively and
creatively delivering products of the highest possible value [52]. It is neither
a process nor a technique for building products. It is rather a method within
which we can employ various processes and techniques. It consists of Scrum
Teams and their associated roles, events, artifacts, and rules. Each component
within the framework serves a specific purpose and is essential to the success
and usage of Scrum. The rules of Scrum bind together the events, roles, and
artifacts, governing the relationships and interaction between them. Scrum has
never been described with clear-cut practices. Based on the Agile Alliance [50],
the Scrum practices are exposed in Table 2.

As described in [1], XP is a process for the business of software development
that makes the whole software team focus on common and reachable goals. Using
XP values and principles, software teams apply appropriate practices in their own
context. XP practices are chosen for their encouragement of human creativity
and their acceptance of human frailty. One of the goals of XP is to bring account-
ability and transparency to software development to run software development
like any other business activity. Another goal is to achieve more effective and
efficient development with far fewer defects than is currently expected. Finally,
XP aims to achieve these goals by celebrating and serving the human needs of
everyone touched by software development sponsors, managers, testers, users,
and programmers. Based on the Agile Alliance [50], XP practices are exposed in
Table 2.

Towards a Goal-Oriented Framework for Partial Agile Adoption 81

Table 2. Scrum and XP practices.

Scrum practices XP practices

SP1: Iterative development, SP2:
Timebox, SP3: Iteration, SP4:
Daily meeting, SP5: Three
questions, SP6: Burndown chart,
SP7: Task board, SP8: Definition
of done, SP9: Definition of ready,
SP10: Point estimates, SP11:
Relative estimates, SP12:
Planning poker, SP13: Backlog,
SP14: Backlog grooming

XP1: Sustainable pace, XP2: Pair
programming, XP3: Sign up,
XP4: Daily meeting, XP5:
Iteration, XP6: Velocity, XP7:
Frequent release, XP8: User
stories, XP9: Collective ownership,
XP10: Continuous integration,
XP11: Simple design, XP12:
Refactoring, XP13: Test Driven
Development (TDD)

4.2 Tactical Level Application: Towards Practices Selection

Validation at the tactical level is performed in two steps. The first one consists
in showing that values, principles, agile features and practices really contribute
to one another. The second step aims at explaining how the representation in
i* helps agile practitioners to find the relevant practices supporting their goals.
Both steps are described hereafter.

Mapping Agile Values, Principles, Features and Practices. As men-
tioned, relationships between the specific agile values, principles and practices
have never been explicitly stated but can be understood from their descriptions.
With many agile methods proposed over the years, a lot of agile values, principles
and practices can be used to validate the idea.

We took the four values and twelve principles of the Agile Manifesto, twenty
three agile features defined in [46] and twenty seven practices from Scrum and
XP to analyze and build the relationships between one another. The mapping
is done empirically based on our understanding and interpretation. However, we
carried out a double check with senior researchers and professors. The result is
summarized in Table 3.

As a result, each value is contributed by at least one principle, each principle
is emphasized by at least one agile feature and each agile feature can be achieved
by at least one practice. Inversely, all practices can help to achieve at least
one agile feature, each agile feature emphasizes one principle and each principle
contributes to one value.

Nevertheless, this validation does not involve agile features that emphasize
on multiple principles, and none of the principles contributes to multiple values.
However, we strongly believe that, with many values and principles from differ-
ent agile methods, their relationships of emphasis and contribution will become
multiple.

82 S. Kiv et al.

Table 3. Mapping agile values, principles, features and practices (Scrum and XP).

Value Principle Agile feature Agile practices

V1: Individuals
and interactions
over processes and
tools

P1: Build projects around
motivated individuals. Give them
the environment and support
they need, and trust them to get
the job done

AF1: Motivated
individuals

SP4, SP5, XP3, XP4

AF2: Good
environment

SP4, SP5, XP1, XP4

AF3: Support XP2

AF4: Trust XP3, XP9

P2: The most efficient and
effective method of conveying
information to and within a
development team is face-to-face
conversation

AF5: Efficiency
(for conveying
information)

SP12, SP13, SP14, XP8

AF6:
Communication

SP4, SP5, SP12, SP14, XP2, XP4

P3: Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely

AF7:
Sustainability

SP1, SP2, SP3, SP6, SP7,
SP10, SP11, XP1, XP5,
XP6, XP7, XP10

AF8: People SP5, SP4, XP2, XP3, XP4

P4: The best architectures,
requirements, and designs emerge
from self-organizing teams

AF9:
Self-organization

SP4, SP12, XP2,
XP3, XP4, XP9

P5: At regular intervals, the
team reflects on how to become
more effective, then tunes and
adjusts its behavior accordingly

AF10: Built-in
improvement of
efficiency and
behavior

SP4, SP5, XP4

V2: Working
software over
comprehensive
documentation

P6: Our highest priority is to
satisfy the customer through
early and continuous delivery of
valuable software

AF11: Customer
satisfaction

SP8, SP9, SP12, SP13, SP14, XP8,
XP13

AF12:
Continuous
delivery

SP2, SP1, SP3, XP5, XP10

AF13: Value SP13, XP8

AF14: Early
deliveries

XP11, XP12

P7: Deliver working software
frequently, from a couple of
weeks to a couple of months,
with a preference to the shorter
timescale

AF15: Frequent
deliveries

SP1, SP2, SP3, XP5, XP7,
XP10, XP11, XP12

P8: Working software is the
primary measure of progress

AF16: Measure
progress via
deliverables

SP6, SP10, SP11, XP6

P9: Simplicity—the art of
maximizing the amount of work
not done—is essential

AF17: Simplicity SP1, SP3, XP5, XP7, XP10, XP11

AF18: Optimize
work

XP12

V3: Customer
collaboration over
contract
negotiation

P10: Business people and
developers must work together
daily throughout the project

AF19:
Collaboration

SP4, SP5, SP12, SP14, XP2, XP3,
XP4, XP9

V4: Responding
to change over
following a plan

P11: Welcome changing
requirements, even late in
development

AF20:
Adaptability

SP1, SP3, XP5, XP7, XP10, XP11

AF21:
Competitiveness

SP1, SP3, XP5, XP7, XP10, XP11

AF22: Customer
benefit

SP12, SP13, SP14

P12: Continuous attention to
technical excellence and good
design enhances agility

AF23: Focus on
technical
excellence

SP1, SP3, XP2, XP5, XP9, XP10,
XP13

Towards a Goal-Oriented Framework for Partial Agile Adoption 83

Fig. 3. Relationship between values, principles, features and practices at the tactical
level [15].

Agile Practices Selection. Figure 3 depicts the relationship between the dif-
ferent agile concepts: value, principle, agile feature and practice. They are rep-
resented at four different levels, the lower levels contributing to the upper ones.
Due to lack of space, only practices that help to achieve the two principles con-
tributing to a value are shown. In Fig. 3, the value “Individual and interaction
over processes and tools” is contributed by two principles: “Build project around
motivated individual. Give them the environment and support they need and
trust them to get the job done” and “The most efficient and effective method of
conveying information to and within a development team is face-to-face conver-
sation”. Each principle is emphasized by multiple agile features such as “Trust”,
“Support”, “Good environment” and “Motivated individuals”. Each agile feature
can be achieved by multiple agile practices of Scrum and XP. For example, we
can achieve the feature “Trust” by using the practices “Collective ownership”
and “Sign up”.

4.3 Operational Level Application: Towards Practices
Implementation

This section presents how our framework helps agile practitioners in adopting
agile methods at the operational level. The relationships, particularly dependen-

84 S. Kiv et al.

cies, between roles required to perform the practices will be described first. Then
we will explain how the SD model can help practitioners to identify vulnerabil-
ities and what they should do to avoid them.

Dependency Between Roles: How to Define Depender and Dependee?
In agile methods, the many roles can be grouped into four main categories:

– Product owner: the role who demands (and pays) for software;
– Coordinator: the role (Scrum Master or XP Coach) who coordinates the differ-

ent roles to make sure that development is running smoothly and all practices
are adopted correctly;

– Development team: the group of people with many roles (developer, tester,
designer, etc.) who perform a set of activities (design, develop, test, etc.) to
build software;

– Agile team: all roles in the team (Development team and Coordinator) who
work together to deliver software answering to the demand of product owner.

There may be multiple dependencies, back and forth, between the roles to
perform a practice. However, it is always possible to identify which dependency is
crucial and which role plays an important part for a successful practice adoption.
For instance, for “Daily meeting”, one can easily spot that the participation
of the team is important but the most important part is the organization by
the Scrum Master. A ceremony which is well-organized and well-guided can go
smoothly and members will get involved easily. This is to say that, to successfully
adopt “Daily meeting”, Agile team is the depender who depends on Scrum
Master who is the dependee. On the other hand, for the practice “Sign up”
or “Pair programming”, the guidance from the coordinator is needed but its
success depends strongly on the effort and the motivation of the team. In this
case, Scrum Master or XP Coach is the depender and Agile team is the
dependee.

In the aforementioned examples, we did not mention Product Owner as the
depender since Product Owner is not the main beneficiary of these practices.
Product Owner does not care whether practices “Daily meeting” or “Sign up”
or “Pair programming” are adopted successfully or not. The practice in Scrum
and XP that give benefits to Product Owner is “Frequent release” since it can
help to deliver the product frequently to the Product Owner.

Table 4 exposes the dependency of the selected practices discussed in the pre-
vious section. A whole list of dependencies between roles to perform Scrum and
XP practices and justification can be found at https://goo.gl/nRP6VN (Sect. 9).

Dependency Representation in i*. A role, in the meta-model, is in charge
of carrying out practices. The description of all the dependencies, critical roles
and artifacts can help the organization and the software team to better analyze
the chances of success or the probability of failure and thus be prepared to
mitigate the risks. For instance, if many critical practices heavily depend on a
particular role, the probability of failure increases when that role is not reliable.

https://goo.gl/nRP6VN

Towards a Goal-Oriented Framework for Partial Agile Adoption 85

Table 4. Role dependencies.

Depender Practice Dependee Justification

XP coach Collective ownership Development team Depends strongly on
team cooperate with each
other on the same work

XP coach Sign up Development team Depends strongly on
team to select task
voluntarily

XP coach Pair programming Development team Depends strongly on
team to work together on
the same computer

Development team Sustainable pace XP coach Depends strongly on the
guidance

Development team Three question Scrum master Depends strongly on the
guidance

Development team Daily meeting Scrum master/XP
coach

Depends strongly on the
guidance

Agile team Backlog grooming Product owner Depends strongly on
product owner to make
sure that product backlog
remain correct

Agile team Planning poker Product owner Depends strongly on
product owner to explain
each user story

Agile team Backlog Product owner Depends strongly on
product owner to create
the list of user stories and
prioritize them

Agile team User stories Product owner Depends strongly on
product owner to write
user stories

Consequently, software teams must carefully assign it or adopt better practices
to reduce or avoid such risks. By visualizing this concept in i*, one can easily
understand how each role is involved in a particular process to achieve a goal.

Figure 4 shows the dependencies between roles to perform the practices in
Scrum and XP, illustrated in Fig. 3, at the operational level.

When practices in different methods are merged, so will do the roles. The
software team has to decide which roles to keep and which to eliminate. In our
example, the XP coach depends on the developer in only two practices from XP;
i.e. to perform “Pair programming” and “Collective ownership”. Since the XP
Coach is just a depender which is not crucial, it can be replaced by the Scrum
Master. As for the developer role, even if it is necessary to perform the practices,
it is already included in the software team.

In the figure, Agile team (Scrum Master and Development team) depends on
the Product Owner to perform the “Backlog grooming”, “Creating user stories”,

86 S. Kiv et al.

Fig. 4. Scrum methodology at the operational level.

“Building the backlog” and “Planning poker” practices. Scrum Master depends
on Development team to do the “Sign up”, “Pair programming” and “Collective
ownership”. Development team depends on Scrum Master to make sure that
“Daily meeting”, “Three questions” and “Sustainable pace” are used correctly.

Vulnerability Check. In order to achieve all the goals in Fig. 3 using Scrum
and XP, all the 10 practices must be adopted successfully. Among them, 6 prac-
tices that depend on Scrum Master and Development team do not seem to
present any problem. But the four other practices depending on the Product
Owner may have vulnerability. In general, the Product Owner is not always
available and he/she is limited in time. Adopting four practices at the same
time might be difficult for him/her. Based on this vulnerability, it is necessary
that the Scrum Master manages to communicate effectively with the Product
Owner despite his/her tight schedule.

Towards a Goal-Oriented Framework for Partial Agile Adoption 87

5 Conclusion

This paper introduced a new framework for socio-intentional based partial
agile methods adoption. The framework offers three main contributions: a goal-
oriented meta-model, a goal and social representation by using the i* frame-
work and an approach for practices selection and adoption. We based our meta
model on the Agile Manifesto concepts and different popular agile methods. It
allows the software team to quickly understand not only the objective (goal) of
each concept (i.e., value, principle, agile feature and practice, role and artifact),
but also their relationships and dependencies. To illustrate such relationships
between agile concepts on an intentional and social perspective, we adopted the
i* framework. This enables a visualization more effective for the software team
to quickly identify the practices to adopt based on their goals. Vulnerabilities
can also be easily spotted.

To validate the framework, we took the agile values and principles of the
Agile Manifesto as well as the 23 agile features from [46] and the 27 prac-
tices from Scrum and XP as instances of our meta-model. Results show that
all these instances are objects of the right classes having the right relationships
between each other as represented in the meta-model. All these instances can
also be visualized using i* and facilitate the agile practices selection and adoption
process.

This framework helps agile practitioners to partially adopt methods and fulfill
their goal. We acknowledge, however, that an in-depth study on agile methods
is needed to improve our meta-model with a systematic review and a qualitative
research study. At the time of writing, this systematic literature review is already
under progress.

To make sure that the software team can successfully adopt agile methods,
we will also add an evaluation of the specific adoption process. We aim not only
at offering a roadmap for the software team to adopt agile methods, but also a
set of performance indicators during the adoption process.

A wider variety of choices in terms of practices should also be offered. To
allow such possibility, one could introduce a weighting scheme, between differ-
ent alternatives, such as a risk indicator, when adopting a particular practice.
Finally, in the long run, we aim at developing a software tool for showcasing our
meta-model.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co. Inc., Boston (2000)

2. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development, 1st
edn. Pearson Education, New York City (2001)

3. Stapleton, J.: DSDM: The Method in Practice. Addison-Wesley Longman Publish-
ing Co. Inc., Boston (1997)

4. Cockburn, A.: Surviving Object-oriented Projects: A Manager’s Guide. Addison-
Wesley Longman Publishing Co. Inc., Boston (1998)

88 S. Kiv et al.

5. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

6. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 28–35 (2001)
7. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on

agile methods: a comparative analysis. In: Clarke, L.A., Dillon, L., Tichy, W.F.
(eds.) Proceedings of the 25th International Conference on Software Engineering,
3–10 May 2003, pp. 244–254. IEEE Computer Society, Portland (2003)

8. Tripp, J.F., Armstrong, D.J.: Exploring the relationship between organizational
adoption motives and the tailoring of agile methods. In: 47th Hawaii International
Conference on System Sciences (HICSS), pp. 4799–4806. IEEE (2014)

9. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring - a systematic literature
review. J. Syst. Softw. 110, 85–100 (2015)

10. Esfahani, H.C., Yu, E.S.K., Annosi, M.C.: Towards the strategic analysis of agile
practices. In: Nurcan, S. (ed.) Proceedings of the CAiSE Forum 2011, Volume
734 of CEUR Workshop Proceedings, London, UK, 22–24 June 2011, pp. 155–162.
CEUR-WS.org (2011)

11. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process meta-
models and the creation of a new generic standard. Inf. Softw. Technol. 47, 49–65
(2005)

12. Mikulėnas, G., Butleris, R., Nemuraitė, L.: An approach for the metamodel of the
framework for a partial agile method adaptation. Inf. Technol. Control 40, 71–82
(2011)

13. Esfahani, H.C., Cabot, J., Yu, E.S.K.: Adopting agile methods: can goal-oriented
social modeling help? In: Loucopoulos, P., Cavarero, J. (eds.) Proceedings of the
Fourth IEEE International Conference on Research Challenges in Information Sci-
ence, RCIS 2010, Nice, France, 19–21 May 2010, pp. 223–234. IEEE (2010)

14. Madi, T., Dahalin, Z., Baharom, F.: Content analysis on agile values: a percep-
tion from software practitioners. In: 2011 5th Malaysian Conference on Software
Engineering (MySEC), pp. 423–428. IEEE (2011)

15. Kiv, S., Heng, S., Kolp, M., Wautelet, Y.: An intentional perspective on partial
agile adoption. In: Proceedings of the 12th International Conference on Software
Technologies - Volume 1, pp. 116–127. ICSOFT, INSTICC, SciTePress (2017)

16. Yu, E.S.: Social modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P.,
Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol.
5600, pp. 99–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02463-4 7

17. Jacobson, I., Ng, P.W., Spence, I.: The essential unified process-a fresh start for
processd. Dr. Dobbs J. 31, 40+ (2006)

18. Ambler, S.: The Agile Unified Process (AUP). Ambysoft (2005). http://www.
agilealliance.hu/materials/books/SWA-AUP.pdf

19. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP
and RUP (Addison-Wesley Object Technology (Paperback)). Addison-Wesley Pro-
fessional, Boston (2006)

20. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Wiley, Hoboken (2002)

21. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: a sys-
tematic literature review. In: 2013 39th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 9–16. IEEE (2013)

22. Liker, J.K.: The Toyota Way. Esensi (2004)
23. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.

Addison-Wesley, Boston (2003)

https://doi.org/10.1007/978-3-642-02463-4_7
https://doi.org/10.1007/978-3-642-02463-4_7
http://www.agilealliance.hu/materials/books/SWA-AUP.pdf
http://www.agilealliance.hu/materials/books/SWA-AUP.pdf

Towards a Goal-Oriented Framework for Partial Agile Adoption 89

24. Chiarini, A.: Lean Organization: From the Tools of the Toyota Production System
to Lean Office. Springer, Heidelberg (2013). https://doi.org/10.1007/978-88-470-
2510-3

25. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
26. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational Method

Engineering. Springer, Heidelberg (2014)
27. Lin, J., Yu, H., Shen, Z., Miao, C.: Using goal net to model user stories in agile

software development. In: 15th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Comput-
ing, SNPD 2014, Las Vegas, NV, USA, 30 June–2 July 2014, pp. 1–6. IEEE Com-
puter Society (2014)

28. Shen, Z., Miao, C., Tao, X., Gay, R.: Goal oriented modeling for intelligent soft-
ware agents. In: Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2004), pp. 540–543. IEEE (2004)

29. Bézivin, J.: In search of a basic principle for model driven engineering. Novatica J.
Special Issue 5, 21–24 (2004)

30. Schuppenies, R., Steinhauer, S.: Software process engineering metamodel. OMG
group, November 2002

31. Damiani, E., Colombo, A., Frati, F., Bellettini, C.: A metamodel for modeling and
measuring scrum development process. In: Concas, G., Damiani, E., Scotto, M.,
Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 74–83. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73101-6 11

32. Wautelet, Y., Heng, S., Kiv, S., Kolp, M.: User-story driven development of multi-
agent systems: a process fragment for agile methods. Comput. Lang. Syst. Struct.
50, 159–176 (2017)

33. Pourmasoumi, A., Kahani, M., Bagheri, E., Asadi, M.: Process fragmentation: an
ontological perspective. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S.,
Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 184–199. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19237-6 12

34. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 15

35. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., Poelmans, S.: Building a rationale
diagram for evaluating user story sets. In: Tenth IEEE International Conference
on Research Challenges in Information Science, RCIS 2016, Grenoble, France, 1–3
June 2016, pp. 1–12. IEEE (2016)

36. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story
sets with the use case model. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS,
vol. 9975, pp. 127–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47717-6 11

37. Seidita, V., Cossentino, M., Chella, A.: A proposal of process fragment definition
and documentation. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS (LNAI), vol. 7541, pp. 221–237. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34799-3 15

38. Yu, E., Mylopoulos, J.: Understanding “why” in software process modelling, anal-
ysis, and design. In: Proceedings of the 16th International Conference on Software
Engineering, pp. 159–168. IEEE Computer Society Press (1994)

39. OMG: Software & systems process engineering meta-model specification. Version
2.0. Technical report, Object Management Group (2008)

https://doi.org/10.1007/978-88-470-2510-3
https://doi.org/10.1007/978-88-470-2510-3
https://doi.org/10.1007/978-3-540-73101-6_11
https://doi.org/10.1007/978-3-319-19237-6_12
https://doi.org/10.1007/978-3-319-07881-6_15
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-642-34799-3_15

90 S. Kiv et al.

40. Faulkner, S., Kolp, M., Wautelet, Y., Achbany, Y.: A formal description lan-
guage for multi-agent architectures. In: Kolp, M., Henderson-Sellers, B., Moura-
tidis, H., Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS-2006. LNCS (LNAI),
vol. 4898, pp. 143–163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-77990-2 9

41. ISO/IEC: ISO/IEC 12207:2008: Systems and software engineering - software life
cycle processes (2008)

42. Van Loon, H.: Process Assessment and ISO/IEC 15504: A Reference Book.
Springer, Heidelberg (2004)

43. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Prac-
tice, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2010)

44. Sidky, A.S., Arthur, J.D., Bohner, S.A.: A disciplined approach to adopting agile
practices: the agile adoption framework. ISSE 3, 203–216 (2007)

45. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate
managed product development. Empirical Softw. Eng. 11, 203–225 (2006)

46. Laanti, M., Similä, J., Abrahamsson, P.: Definitions of agile software development
and agility. In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013.
CCIS, vol. 364, pp. 247–258. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39179-8 22

47. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave
Macmillan, Basingstoke (2005)

48. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co. Inc., Redwood City (2004)

49. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

50. AgileAlliance: Subway map to agile practices (2005). https://www.agilealliance.
org/

51. VersionOne: 10th annual state of agile development survey (2016)
52. Schwaber, K., Sutherland, J.: The scrum guide. Scrum Alliance 21 (2011)

https://doi.org/10.1007/978-3-540-77990-2_9
https://doi.org/10.1007/978-3-540-77990-2_9
https://doi.org/10.1007/978-3-642-39179-8_22
https://doi.org/10.1007/978-3-642-39179-8_22
https://www.agilealliance.org/
https://www.agilealliance.org/

Using Semantic Web to Establish Traceability
Links Between Heterogeneous Artifacts

Nasser Mustafa1(&) and Yvan Labiche2(&)

1 University of Nottingham, 199 Taikang East Road, Ningbo, China
Nasser.mustafa@nottingham.edu.cn

2 Carleton University, 1125 Colonel by Dr, Ottawa, Canada
labiche@sce.carleton.ca

Abstract. Semantic Web enables the users of the World Wide Web (WWW) to
create non-traditional data repositories. The data can be linked in a flat hierarchy
structure that allows the extensibility of data without the need for changing the
structure itself. The linked data along with other rules can be used to infer or
extract other data. We propose a semantic web technique that employs the
Resource Description Framework (RDF) for building a trace links taxonomy.
The taxonomy can be utilized to link heterogeneous artifacts coming from
different domains of expertise. This technique allows users to refer to any trace
link type in the taxonomy using a unique Uniform Resource Identifier (URI).
The taxonomy can also be integrated to a traceability framework using the Open
Service for Lifecycle Collaboration (OSLC) in order to accommodate the
traceability of heterogeneous artifacts. We present validation criteria for vali-
dating the taxonomy requirements and validate the solution through a set of test
cases. A simple case study is used in order to provide meaningful results.

Keywords: Traceability � Trace links � Semantic web � Taxonomy
Linked data � Resource description factor
Open Service for Lifecycle Collaboration

1 Introduction

Capturing traceability information among artifacts ensures product quality and assists
tracking functional and non-functional requirements, and performing system validation
and impact analysis. Software artifacts can be produced during Requirement Engi-
neering (RE), Model Driven Engineering (MDE), and Systems Engineering (SE). They
are heterogeneous in nature since they are produced by different tools, and for different
system disciplines. Establishing relationships between these artifacts requires different
types of trace links with precise semantics. Unfortunately, there is a lack of consensus
among software practitioners for defining precise trace links semantics. This is an issue
since using different, either overlapping or conflicting semantics for trace links can
have adverse effect on product quality [2]. The heterogeneity of artifacts that are
involved in the development of a complex system requires various types of trace links.
The variations between RE, MDE, and SE domains require different types of trace links

© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 91–113, 2018.
https://doi.org/10.1007/978-3-319-93641-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_5&domain=pdf

to relate their artifacts. There are situations in which ambiguity exists in capturing
traceability information among artifacts as a result of the absence of a reference model
that describes the various types of trace links and their exact purposes.

This research paper is motivated by the need for a traceability framework that can
be used to accommodate traceability of heterogeneous artifacts. In order to demonstrate
this need, we consider the example of a full flight simulator. A full flight simulator
typically includes software (e.g., simulating specific hardware components, simulating
missions), visuals and audio (e.g., audio rendering of sound inside the flight deck,
video rendering of typical airports), mechanical systems (e.g., to provide accurate force
feedback to the pilot, to provide motion for the entire flight deck simulator), com-
munication systems (e.g., air traffic). In this example, several heterogeneous models
need to be related to one another during system engineering. For instance, a model
would be for mission simulation that can be used to create specific training scenarios.
One model would be a Simulink hydraulic actuation system; one model would be a
simulation model of a hardware component; one (graphical) model would be used to
represent takeoff and landing characteristics (e.g., visuals, air traffic data) of typical
airport; one model would record the requirements for the whole system and the
requirements for its many (software and hardware) parts; one model would record data
about verification and validation activities; one model would record faults and failures.
These models are also heterogeneous because they are not typically specified using a
common notation and semantic, i.e., a common metamodel. Indeed, some software
elements can be specified with the UML [12], some system levels characteristics can be
modeled with SysML [13], some hardware elements can be modeled with Simulink
models, and some information can even be provided in plain language (e.g., require-
ments). In this example, different trace links are needed based on users’ needs. For
instance, a user might need to trace the effect of changing the lever position in the pilot
cockpit to the wing’s slats. Since this process involves the generation of several signals
within the simulator, therefore, many types of trace links are required based on the
granularity level of traceability. At higher level of traceability, a user might be inter-
ested in identifying only the components (models) involved, and at a fine-grained level,
the user might be interested in determining the involved activities that are realized be
an UML activity diagram. Those two levels require different types of trace links with
different semantics. This scenario and others encouraged us to build a trace links
taxonomy that combines all trace links across different domains.

The rest of this paper is structured as follows. Section 2 presents related work on
trace links and their limitations. Section 3 highlights the requirements for trace links
taxonomy and introduces the RDF technique. Section 4 explains the design decisions
for the proposed taxonomy. Section 5 describes the design implementation, focusing
on the benefit of using RDF in building the trace links taxonomy. Section 6 shows our
validation criteria, the requirements validation, and discusses the validation of the
taxonomy through a case study. Section 7 concludes the paper.

92 N. Mustafa and Y. Labiche

2 Literature Review

We conducted a systematic literature review [17], following standard and well-
recognized principles for conducting systematic literature reviews [19], on the topic of
traceability. The review covered papers published between the years 2000–2016 in five
major computing libraries (i.e., IEEE Xplore, ACM, Google Scholar, Science Direct,
and Springer). We specified the following search string in order to extract the trace-
ability publications in RE, MDE, and SE: Traceability AND (Heterogeneous OR
Modeling OR Models OR MDE OR Model Driven OR Trace Link OR Requirement
Engineering OR Systems Engineering OR Software Engineering). Based on our
review, we identified some research papers that define traceability and traceability
relations [2, 3, 5, 7, 21–27], other papers that classify or identify some types of trace
links [2–11, 14–16, 18, 23, 24, 29–32], and some papers that discuss the need for trace
link semantics [20, 28, 32–34]. Although these papers provide valuable information on
traceability definitions and classifications, we couldn’t find any paper that suggests a
technique for building a trace links taxonomy that combines the trace links from all
domains into a unified taxonomy. Most of these studies are confined to defining trace
links and their semantics only for a specific problem or domain, i.e., solutions are
problem or domain specific. For instance, there is a great deal of effort on classifying
traceability links and their usage in RE [2, 7], though classifications only apply to RE.

This section elucidates important aspects about our review of traceability in RE,
MDE, and SE. Section 2.1 discusses traceability and trace links definitions while
Sect. 2.2 discusses existing trace links classifications in RE, MDE, and SE. The review
in this section will be used as a core for our work in order to collect all trace links types
for building the taxonomy.

2.1 Traceability Definitions

Traceability is defined by the IEEE [22] as “the degree to which a relationship can be
established between two or more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one
another”. This definition applies to traceability in RE, MDE, and SE as well. The IEEE
definition is extended to include other types and subtypes of relationships.
Cleland-Huang and colleagues [23] describe trace link semantics and types. A trace
link semantics refers to the purpose or meaning of the relationship between associated
artifacts. A trace link type refers to the characterization of all trace links that have a
similar structure (syntax) and/or purpose (semantics). The description of a trace link
type encapsulates the definition of a trace link semantics since it is explained based on
the link’s semantic role, and may include other properties such as the rationale for
creating a trace link. For instance, all trace links that relate two artifacts where one
artifact is derived from another have the trace link type “derived from”. The “derived
from” type represents the meaning of the relation between such artifacts. Therefore, we
might have similar or extended types of trace links among the RE, MDE, and SE
domains. Readers should note that we use a notion of trace link and relation

Using Semantic Web to Establish Traceability Links 93

interchangeably, however, there is a difference between both terms since the latter
refers to all trace links created between two sets of trace artifact types [23].

In RE, several types of trace links are introduced as a result of traceability defi-
nitions. Gotel and colleagues [3] defined traceability as the ability to describe and
follow the life of a requirement in both forward and backward directions. In this
context, a pre-requirement specification refers to the aspects of a requirement’s life
prior to its inclusion in the requirement specification, and a post-requirement specifi-
cation refers to the aspects of a requirement’s life that result from its inclusion in the
requirement specification [24]. Also, there are the notions of vertical and horizontal
traceability [7, 23, 25, 37]. Horizontal traceability refers to tracing artifacts created in
the same system lifecycle phase, or at the same level of abstraction. For instance,
tracing two requirements based on the “derived from” relationship is horizontal.
Vertical traceability refers to tracing artifacts created in different phases or at different
levels of abstraction, such as tracing a requirement in the requirement specification
phase to a test case in the testing phase.

In MDE, Aizenbud-Reshef and colleagues [26] defined traceability as “any rela-
tionship that exists between artifacts involved in the software-engineering life cycle”.
This definition is broader than the RE definition since it assumes other types of trace
links such as explicit links which can be generated during model transformation,
implicit links which are computed based on existing information, and statistical links
that can be inferred based on history.

In SE, Mason [5] extended the notions of vertical and horizontal traceability by
introducing the terms Micro, Macro, Inter, and Intra traceability. The Micro and Macro
terms are introduced to differentiate traceability within and across decomposition
levels. The Intra and Inter terms are introduced to differentiate traceability within and
across system descriptions (i.e., interactions between systems). For instance, the
Inter-Micro-Horizontal traceability refers to the ability to describe and navigate rela-
tionships across system descriptions, within a decomposition level, between develop-
ment or assessment artifacts of the same type.

Our aim is to build a trace links taxonomy which has well-defined semantics and
that encompasses various types of trace links in the RE, MDE, and SE disciplines. This
is important for many reasons. First, in RE, many artifacts are produced during
requirements elicitation, analysis, and validation, hence, require different types of trace
links with different semantics. Second, in MDE, which permits model transformations,
a large number of trace links is required to link artifacts in source and target models,
some of which are generated automatically while others require manual generation;
relating these artifacts requires well-defined semantics for trace links, which are slightly
different from what one can define in RE or SE. Third, in SE, the development of a
complex system involves the generation of heterogeneous artifacts as a result of using
different modeling tools for modeling different aspects of the system, from different
disciplines (e.g., electrical, software). Fourth, comprehending the rationale for creating
different types of trace links among artifacts at different levels of granularity requires
well-defined trace links semantics. Fifth, there are situations that require many types of
trace links in the same domain but for different purposes. For instance, when linking
two requirements, a requirement derived from another requires a different trace link
than a requirement clarified by another. Sixth, the meaning of a trace link can be

94 N. Mustafa and Y. Labiche

viewed differently by different stakeholders. For instance, a trace link between a
requirement and a design element may be viewed by a designer as a constraint the
requirement imposes on the design element, while an end user might view the same
link as a design element produced by the requirement [2]. Finally, with the various
types of modeling tools across different domains, it is a necessity to have a trace links
taxonomy that can be integrated with other API’s. In other words, we need a portable
taxonomy that can be integrated easily with other tools.

The contribution of this paper includes the followings. First, we propose require-
ments for a trace links taxonomy. Second, we offer a technique to build a trace links
taxonomy which has well-defined semantics and that can accommodate the classifi-
cation of trace links in RE, MDE, and SE. The taxonomy employs the Open Service for
Lifecycle Collaboration (OSLC), and the Resource Description Framework (RDF) [38]
for defining a set of properties and their values for each trace link. Third, we validate
the taxonomy through a case study that requires heterogeneous artifacts from multiple
domains.

In an effort to have more insight about trace links and their classifications we
conducted a systematic literature review about traceability aspects [17]. Based on our
review, we identified some research papers that define traceability and traceability
relations, papers that classify or identify some types of trace links, and papers that
discuss the need for trace links semantics. Although these papers provide valuable
information on traceability definitions and classifications, we couldn’t find any paper
that suggests a technique for building a trace links taxonomy that combines trace links
from all domains. Most of these studies are confined to defining trace links and their
semantics only for a specific problem or domain, i.e., solutions are problem or domain
specific. For instance, there is a great deal of effort on classifying traceability links and
their usage in RE [2, 7], though classifications only apply to RE.

2.2 Traceability Classifications

In general, relations between artifacts are classified based on the development phase or
the abstraction level (i.e., horizontal and vertical). However, other classifications are
introduced to fit the RE, MDE, and SE needs. The trace links classifications which we
found are either problem oriented, i.e., tailored to special cases, and are not applicable
within a general context (e.g., between requirement and source code), or target one
domain only (e.g., RE or MDE). This section summarizes our effort in collecting and
organizing these classifications in order to build a trace links taxonomy. We first
discuss each domain separately (RE, MDE and SE in this order) and then summarize
our observations [1].

Requirement Engineering Classifications. In RE, relationship between artifacts are
discussed extensively [2–4, 6–11, 14–16, 18, 23, 24, 29, 39]; among these papers, we
found two papers that discuss trace links classifications [2, 7]. Spanoudakis and Zisman
[7] classified requirement traceability links into eight categories, which include various
link types, based on their support to certain software activities such as analysis, vali-
dation, or supporting stakeholders decisions. These links include the following types
and the information is summarized in Tables 1 and 2:

Using Semantic Web to Establish Traceability Links 95

• The dependency links which relate artifacts in which the existence of one artifact
relies on the existence of the other. This type can be used to relate requirements to
each other, or requirements and design elements (artifacts) such as decision objects.
Dependency relations are one of the most widely used dependency links in RE and
have different uses and forms [7]. For instance, Xu and Ramesh [8] use dependency
relations in workflow management systems between business process objects,
decision objects, and workflow system objects. Dependency relations are used in
product and service families [29] to support the management of variability, i.e.,
ensuring that the changed artifacts reflect the intended system functionality.
Knethen and colleagues [35] suggested their use between documentation entities
such as requirements and use cases, and logical entities such as functions for fine
grained impact analysis. Pohl and Alexander [9, 10] use them to link requirement
scenarios and code, and Riebisch and Philippow [11] use them to support the design
and implementation of product lines. Other forms of dependency links are sug-
gested in the literature. For instance, Spanoudakis and colleagues [6] refer to them
as requires-feature-in relations, as they link parts of use case specifications to
customer requirements specifications. Also, they are called causal conformance by
Maletic et al. [14] who use them to link documents that represent an implied
ordering (e.g., bug reports cannot be produced before implementation report). Gotel
and colleagues [16] referred to them as developmental relations which are used to
trace requirements to other artifacts in another phase of the development lifecycle.
Finally, they are referred by Constantopoulos et al. [18] to as correspondence
relations which link requirements, design, and code artifacts.

• The evolutionary relations are used to link requirements in which one requirement
replaces another. This category contains the replace, based-on, formalize, and
elaborate trace links. Pinheiro [15] showed the use of replace and abandon trace
links during requirements evolution. A requirement is replaced by another if a
mistake is discovered the original requirement will be abandoned. Gotel [16] called
the evolution relations temporal relations which refer to linking requirements in
terms of their historical order. Maleic and colleagues [14] called the evolution
relations non-causal conformance relations to link documents which conform to
each other.

Table 1. Trace links classifications in RE, source [1].

Trace link type

[2] Product-related Process-related

Evolution Rationale Dependency Satisfaction

Derive,
elaborate,
depend-on

Select, affect Is-a, part-of,
contain, used-by,
performed-by

Define, allocate-to, depend-on, created-by, verify, generate

[7] Dependency Evolution Generalize/refine Satisfaction Overlap Conflict Rationale Contribution

Replace,
based-on,
formalize,
elaborate

Based-on,
affect,
resolve,
generate

96 N. Mustafa and Y. Labiche

• The generalization/refinement relations show how complex system components can
be divided into other artifacts, or how one artifact can be refined by another. In
Ramesh and Jarke’s classification [2], generalization/refinement is considered a
dependency abstraction link. Gotel [16] refers to them as containment relations
since they are used to link composite artifacts and their components.

• The satisfiability relations link artifacts that are constrained by each other, e.g., a
requirement that complies with the conditions of another requirement. This type is
classified as a product-related trace link to relate requirements to design artifacts [2].
Satisfiability has sub-types such as the establish (cardinality 1–1 between two
artifacts) and contribute (cardinality 1-m between artifacts) relations [28]. Pinheiro
[15] defined satisfiability based on derivation, e.g., if a requirement is satisfied then
its derivation is satisfied, and refinement, i.e., if a requirement refines another
requirement, then satisfying the first requirement, implies satisfying the second.
between artifacts of common features (e.g., linking a goal specification in an i*
model and a use case in a UML model) [36]. Spanoudakis et al. [6] use the overlap
relations in an analysis model between use cases and classes. Gotel and Finkelstein
[16] called them adopts relations; they are used between artifacts in which a target
artifact embeds information of the source artifact.

• The conflict relations link two artifacts that have a conflict, such as two require-
ments that are conflicting with each other [2]. Special types of conflict relations
such as based-on, affect, resolve, and generate are used to facilitate conflict

Table 2. Other classifications for RE trace links, source [1].

Trace link type

[3] Contribution
[6] Requires-feature-in Overlap
[8] Dependency Rationale
[9] X
[10] X
[11] X
[14] Causal-dependency

conformance
Non-causal
conformance

[15] Satisfy
Derive
Refine

[16] Developmental Temporal Containment Adopt
[18] Correspondence
[20] X
[28] Satisfy

Establish
Contribute

[35] Inconsistency
[36] X

Using Semantic Web to Establish Traceability Links 97

resolution between conflicting artifacts. Kozlenkov and Zisman [39] referred to
conflict relations as inconsistency relations. For instance, inconsistency relations are
established when two similar goals in a specification or different specifications
cannot be achieved.

• The rationalization relations link two artifacts in which one of them captures the
rationale behind the creation or evolution of the other. Letelier [20] used this type to
relate rationale specification artifacts (e.g., decisions, assumptions) to software
specifications at different levels of granularity (e.g., document or part of a docu-
ment, diagram, or a model). Rationalization relations are used also to relate design
rationales to design artifacts [8].

• The Contribution relations relate requirements and their stakeholders [3], for
instance to link requirements to the stakeholders who contributed them.

Another classification for trace links in RE is introduced by Ramesh and Jarke [2].
Their classification is based on a study about the use of trace links by different orga-
nizations that involve high-end and low-end users with respect to their traceability
practices. They classified traceability links into two main categories: process-related
and product-related links. The process-related links can be discovered by observing the
history of operations performed in a process. The product-related links describe the
relationships between artifacts independent of their creation. Furthermore, the authors
identified sub-categories of these two main categories. The process-related category is
divided further into evolution links and rationale links, which we described earlier. On
the other hand, the product-related links are decomposed into two main types: satis-
faction links and dependency links, which we described earlier. The authors deduced
other types of relations from the abovementioned categories based on the needs of
low-end and high-end users. For instance, with respect to low-end users’, the original
or derived requirements can be allocated-to system components that interface-with
external systems. Also, requirements can be developed-for compliance-verification-
procedures (e.g., test, simulation, and prototype). Compliance-verification-procedures
generate change proposals or used-by resources. With respect to high-end users,
traceable artifacts (e.g., requirements, components, designs) are based-on a rationale.
Decisions depends-on assumptions, or select or evaluate alternatives. Also, decisions
may affect requirements, and arguments oppose or support alternatives.

Model Driven Engineering Classification. In MDE, artifacts are modeled using
different modeling languages such as the UML [40, 41]. During model transformation,
trace links between these artifacts are generated explicitly by adding additional code
into the transformation, or implicitly through the transformation tool [31]. Paige and
colleagues [4] classified MDE trace links into implicit and explicit trace links. Implicit
trace links are classified based on query, transformation, composition (merging),
update, deletion and creation, model-to-text, and sequences operations. Explicit trace
links are classified as model-to-model links which relate MDE artifacts with each other,
and model-to-artifact links which relate MDE artifacts with non-MDE artifacts such as
linking a UML model to its requirement(s). The model-to-model links are further
classified into static and dynamic links. A static link represents a relationship that stays
the same over time between models elements such as consistent-with (e.g., two models
remain consistent with each other), and dependency in which the structure and meaning

98 N. Mustafa and Y. Labiche

of one model depend on another model. This type is further classified into the fol-
lowing trace links: is-a (sub-typing), has-a (e.g., references), part-of, import, export,
usage, and refinement. A dynamic link represents a relationship that might evolve over
time. This category has several types of links such as calls (e.g., a model calls the
behaviors provided by another), notifies (e.g., changed artifacts that need intervention),
and generates (e.g., links two models where one model produces the other). The
model-to-artifact category contains the satisfies trace link which indicates that an
artifact such as a requirement is satisfied by a model, allocated-to which relates
information in a non-model artifact to a model that represents that information, per-
forms which relates a task to a model that carries the task, explains and supports trace
links which are used when a model is explained by a non-model artifact. Table 3
depicts the existing classifications of MDE trace links.

In SysML [41], the classification of trace links between model elements follows the
same RE pattern. Requirements in SysML are classified into different categories using a
Stereotype. For instance, requirements can be stereotyped to represent operational,
functional, performance, design constraints, reliability, and maintainability require-
ments. The SysML requirement diagram models these requirements in hierarchies.
Therefore, the semantic of a trace links in SysML depends on the type of the rela-
tionship between two requirements, or between a requirement and a design element or a
test case for example. There are four main types of trace links in SysML: A derived
trace link links a requirement to its derived one; A satisfy trace link relates a
requirement to a design element that satisfies it such as a Use case; A verify trace link
links a requirement to a test case that verifies it; A refine trace link links a requirement
to a design element that refines it. It is important to differentiate between the usage or
the semantic of derive and refine trace links. A derive trace link is used to link two
requirements while a refine trace link links a requirement to a design element that
refines it or vice versa such as a text requirement with an activity diagram [42].

Systems Engineering Classifications. In SE, Mason et al. [5] define directional and
temporal traceability. They also extended the definitions of vertical and horizontal
traceability by introducing the terms micro, macro, inter, and intra. The micro and
macro terms differentiate traceability within and across decomposition levels. Intra and
inter differentiate traceability within and across system descriptions (i.e., interactions
between systems). For instance, the inter-micro-horizontal traceability refers to the

Table 3. MDE trace links classifications, source [1].

Trace link type

[4] Implicit Explicit
Model-to-model Model-to-artifact
Static Dynamic Satisfy,

allocated-to,
explain, perform,
support

Consistent-with Dependency Call,
notify,
generate

Export, usage, is-a,
has-a, part-of,
import, refine

Using Semantic Web to Establish Traceability Links 99

ability to describe and navigate relationships across system descriptions, within a
decomposition level, between development or assessment artifacts of the same type.
This is illustrated in Table 4. Temporal traceability represents the links between syn-
chronized artifacts, such as linking an artifact and its subsequently revised one, in a
model based on a time event. Many trace link types are stemed from the formentioned
terms as depectited by Table 4.

Final Observations. As evidenced by the above discussions, existing classifications of
trace links have the following drawbacks:

• Each classification is either problem specific or domain specific.
• Classifications are inconsistent with respect to their interpretations of link seman-

tics. They often refer to the same semantics with different names. We conjecture this
is a side effect of the first drawback. For instance, Spanoudakis and Zisman [7]
classified is-a as an evolution link while Paige and colleagues [4] classify it as
dependency link.

• Classifications are redundant, which we conjecture is also a side effect of the first
drawback. For instance, the rationale trace links appear in RE, MDE, and SE
classifications.

• Classifications don’t integrate all usages of a trace link across different domains. In
other words, the purpose of a certain trace link does not necessarily appear in all
classifications to be used in all domains. To obtain a complete picture of traceability
information across those domains requires that we merge (union) classifications
(while removing redundancies and inconsistencies).

• There is no tool support for these classifications that would allow a user to navigate
or to query about certain links across different domains.

3 Taxonomy Requirements

The abovementioned limitations encouraged us to think about a new method for
integrating all trace links classifications into a taxonomy that would provide the rela-
tionship between different trace links. In the light of the previous discussion, we
identified that the new taxonomy shall have the following characteristics, or taxonomy
requirements (TRQ):

Table 4. Trace links types in systems engineering, source [1].

Trace link type

[5] Temporal Directional
Vertical Horizontal
Micro Macro Micro Macro
Inter/intra Inter/intra inter/intra Inter/intra

100 N. Mustafa and Y. Labiche

• TRQ 1: the taxonomy shall provide semantic specifications for trace links that relate
various artifact types in different domains and at different levels of granularity.

• TRQ 2: the taxonomy shall address the need for different types of users (e.g.,
analysts, designers, programmers, testers), and therefore different domains.

• TRQ 3: the taxonomy shall allow the specification of a trace link only once and
relate it to different domains without duplications.

• TRQ 4: the taxonomy shall be flexible to allow users to add new properties of trace
links without changing the existing structure of the taxonomy.

• TRQ 5: the taxonomy shall be portable enough to allow easy access to local users
(i.e., connected to a private network) or global users (i.e., connected to the Internet)
because this will facilitate tool integration.

• TRQ 6: the taxonomy shall have a universal format that is not tailored to a specific
environment or application.

4 Taxonomy Design

There are two essential components that should exist in order to build our trace links
taxonomy: (a) providing a set of controlled vocabulary (Metadata), the controlled
vocabulary is a collection of terms that have well-defined descriptions across contexts,
and (b) identifying the relationships between these terms, which constitute the taxon-
omy. A taxonomy or Ontology in a broader context is the knowledge domain which is
represented by the collection of terms and the relationships between those terms. An
Ontology can be defined using the Web Ontology Language (OWL) [37], which is an
extension of RDF. Many organizations standardized their controlled vocabulary and
made it available freely for use on the internet. For instance, the Friend of a Friend
(FOAF) [43] has standard vocabulary/Ontology for social networks across the web, and
the Description of a Project (DOAP) [44] describes open source software projects.

4.1 Design Decisions

Our design method relies on our systematic literature review during which we collected
all the terms that refer to trace links types in the SE, MDE and RE domains. We then
processed that information as follows:

• Identify all articles that discuss trace links classification in RE, MDE, and SE.
• Identify the terms that describe general types of trace links. Usually, these are nouns

or adjectives that describe the relationship between artifacts such as dependency,
evolution, and vertical.

• Identify all terms that describe the relationship between specific types of artifacts.
These relationships are identified by the role name of the association between
artifacts. They are usually represented as verbs such as perform, generate, and
depend-on.

• Consider the terms that represent general types as classes, and the terms that rep-
resent relationships between specific artifacts as instances. In other words, the term
or the relationship that cannot be decomposed into other terms is considered as an

Using Semantic Web to Establish Traceability Links 101

instance. For example, in Table 1, evolution is considered as a class because it is a
general type that encompasses other relationships such as derive, elaborate, and
depend-on, while derive is an instance since it doesn’t includes any other
relationship.

• Provide a naming convention for the general types and the relationships. We have
done that by screening all the conjugations that refer to the same type or a relation
and give it a unique name. For instance, we considered the evolution and evolu-
tionary terms as identical terms that refer to a general type (i.e., class), which we
chose to call evolution. Moreover, we considered the terms perform, performs, and
performed as identical terms that refer to a specific relationship (i.e., instance) and
we called it perform.

• We removed redundant trace links or relations information that share a purpose or
usage. This is achieved by finding all trace links or relations that have identical
usage or purpose and then creating one node that specifies them. For instance, in the
dependency type that exists in the RE classification [2, 7] and the MDE classifi-
cation [4], we created a shared node which represents the dependency relation and
showed its hierarchical classification with respect to each domain.

• We also provide a set of properties for instances. Each instance must have unique
values that differentiate it from other instances. Even though we limit the properties
to include an Id, a name, a usage, a type, and a definition, other properties can be
added. The name represents the instance name, and the type represents the Class
name.

5 Taxonomy Implementation

The taxonomy utilizes the OSLC and the RDF [38] for relating all trace links. This idea
is borrowed from the semantic web technology in which arbitrary data are linked in a
flat structure using the RDF, and referenced by the Uniform Resource Identifier (URI).
A URI can reference any resource or element such as documents, images, services, a
UML diagram, or a group of other resources by assigning it a unique reference.

The RDF has three components: the subject (resource), the predicate (property),
and the object (property value). The subject is the element that needs to be described
with an assigned unique identifier, the predicate represents the characteristic or feature
of that element, and an object is the value of that feature. The object in turns can be a
subject that has other properties, which form nested subjects. RDF files are written
using the RDF/XML format which is a common format on the web.

RDF files are written using the RDF/XML format or the Web Ontology Language
(OWL) which are common formats for writing ontologies. For instance, the code for
describing the trace link taxonomy in RDF can be written as shown in Fig. 1. The
figure has two parts. The top part (lines 1–8) defines the taxonomy (i.e., schema,
syntax, data types). In this part, lines 2 and 8 indicate the namespace of the taxonomy,
which represents its URI written in RDF and OWL. The reason for defining another
URI in OWL can be seen clearly in the bottom part (lines 9–14). OWL is used to
validate the semantics of anything written in RDF. In other words, RDF can be used to

102 N. Mustafa and Y. Labiche

describe anything, however, to ensure correct relationships between things written in
RDF, OWL must be used to specify these relationships. Therefore, the owl tags in lines
10 and 14 imply that a relationship exists between the dependency trace link and the
other trace links, i.e., product-related-link, re-link, and static that are enclosed within
the owl tags.

The URI of any trace link in the taxonomy is the concatenation of the taxonomy
URI and the trace link name. For instance, the URI of the dependency trace link is
http://www.ontorion.com/ontologies/TraceLinksTaxonomy#Dependency. The benefit
of using the URI is its uniqueness since this URI is a unique identifier for the de-
pendency trace link within this taxonomy. In addition, it can be combined with other
URI’s anywhere to reason or query about the trace link across many namespaces.

The rationale for employing RDF in creating a trace links taxonomy is manifold:

• The RDF eliminates trace links redundancy among different domains, which means
resources can be described only once and referenced as many times as we need.

• The RDF supports multiple inheritance in situations where a trace link is classified
under more than one category.

• The RDF data is portable, it can be transformed into many formats such as XML,
HTML, and OWL.

• The RDF data can be visualized graphically as a directed graph, an undirected
graph, or a tree.

Fig. 1. RDF example, source [1].

Using Semantic Web to Establish Traceability Links 103

http://www.ontorion.com/ontologies/TraceLinksTaxonomy#Dependency

• Using the RDF, the taxonomy can be built by referencing trace links from local
repositories or external resources such as the Internet.

• The RDF provides the reusability of the same data by different users, which adheres
to the principle of open linked data.

• The use of the non-hierarchical RDF structure can provide an easy navigation; a
user can reference any trace link in the hierarchy without having any knowledge
about its parent(s) or siblings.

• Using the RDF is a step toward standardization and providing semantics for trace
links in SE, MDE and RE.

• The RDF data provides simplicity of access since it is machine-readable data that
can be shared with others.

• Using the RDF, it is easy to reason (e.g., what, who) about any trace link in the
taxonomy.

• Using the RDF, it is easy to query a taxonomy using query services such as
SPARQL [38]; the query can be customized based on a user’s needs.

We used the Fluent editor application [45] for coding the rules of the taxonomy as
described in Sect. 4.1. The editor provides features for authoring complex ontologies
that use controlled English as a language for knowledge modeling. It allows users to
import and export the knowledge model into different formats such as RDF, XML, and
OWL. In addition, it supports building and visualizing ontologies as interactive dia-
grams or trees. Finally, the application allows for integrating ontologies with the R
Language [46], in which quantitative and qualitative analysis can be performed.

The taxonomy implements all trace links across the RE, MDE, and SE domains. It
shows the relationships between all trace links in these domains. For instance, the
diagram in Fig. 2 depicts partial classification of MDE trace links. On the top of the
diagram, we can see the root of all elements in the taxonomy which is represented by
the word “thing” which in turn is connected to a trace-link class. A trace-link is a
general type that has a sub-type mde-link. Following this path we reach the leaf nodes
such as Usage, Is-A, and Export, which implies those nodes cannot have subtypes.
Figure 3 shows an excerpt of the trace links taxonomy, we could not provide the

Fig. 2. The leaf and type.

104 N. Mustafa and Y. Labiche

complete taxonomy here since it occupies a big space and it is very hard to visualize all
the trace links connections. However, we were, able eliminate the existing redundan-
cies across the RE, SE, and MDE domains. For instance, the dependency trace link and
some of its leaves (e.g., Refinement) are duplicated in RE and MDE classifications, our
taxonomy removes those redundancies by linking the dependency to re-link and
mde-link, see Fig. 3. Also, at the top left corner of the diagram of Fig. 3., the
Allocate-to trace link belongs to the model-to-artifact and evolution categories, we
defied it only one in the taxonomy.

6 Taxonomy Validation

The validation of the taxonomy involves the definition of validation criteria, the val-
idation of the taxonomy requirements proposed in Sect. 3, and proposing test cases to
be validated through a case study. In addition, we use validation by construction
whenever necessary to support our argument.

Fig. 3. The trace links taxonomy (excerpt), source [1].

Using Semantic Web to Establish Traceability Links 105

6.1 Validation Criteria

The taxonomy can be validated by (a) ensuring that it satisfies the taxonomy
requirements that we proposed in Sect. 3 in order to resolve the issues about existing
classifications, and (b) it can accommodate any traceability problem.

Regarding part (a), we proposed the following validation criteria in order to ensure
that all requirements can be satisfied:

• TaxCr 1. Trace Links redundancy. This criterion validates TRQ 7 which states
whether a trace link exists more than once in the taxonomy. It should only appear
once.

• TaxCr 2. The capability of the taxonomy to accommodate the classification of trace
links related to RE, MDE, and SE. This criterion validates TRQ 8 and TRQ 9.

• TaxCr 3. Consistency. This Criterion validates also TRQ 10 whether a trace link has
only one definition.

• TaxCr 4. Extensibility and maintainability. This criterion validates TRQ 11 which
states how easy a trace link or a property can be added to the taxonomy without
changing its design.

• TaxCr 5. Tool Support. This criterion validates TRQ 12 and TRQ 13 which define
whether the taxonomy data can be saved, exported to other formats or applications,
or performing queries about it.

6.2 Requirements Validation

We validated the requirements of the taxonomy using the validation criteria of
Sect. 6.1. The following results are obtained which indicate that the taxonomy meets its
requirements.

• Requirement TRQ 1 is verified by construction. Recall TRQ1 is about the speci-
fications of trace link semantics for various artifact types, from different domains
and at different levels of granularity. We specified a set of properties for each trace
link that define its usage or purpose, its name, type, and definition. These properties
provide a semantic for each trace link. Moreover, we established relationships
between trace links that exist in more than one domain, these relationships can be
used to reason about each trace link. In addition, the URI for each trace link can be
used to link artifacts at different levels of granularity: a URI can refer to a single
model element (e.g., an operation in a class of a UML diagram, a block in a block
diagram), an aggregate of model elements (e.g., a class in a class diagram), a model
or document (e.g., a standard document PDF).

• Requirement TRQ 2 is verified by checking whether the taxonomy can link artifacts
from different domains and can address the needs of different users. The taxonomy
integrates all, at least all those we have identified from a systematic search in the
literature and therefore from prominent literature, trace link types that can relate
artifacts produced during system analysis, design, coding, and testing, and during
model-to-model transformations.

106 N. Mustafa and Y. Labiche

• Requirement TRQ 3 is verified thanks to TaxCr 1 and TaxCr 2. Recall TRQ 3 is
about the specification of trace links that are not redundant and that can relate
different domains. This requirement is also verified by construction. Indeed, we
designed the taxonomy such that any trace link type is specified only once to
prevent trace link redundancy. At the same time, our design allows for a trace link
to be related to more than one domain. For instance, the Is_A trace link in Fig. 3.
(Lower right corner) appears only once in the taxonomy, however, it is of type
dependency that belongs to the MDE and RE types of traceability data.

• Requirement TRQ 4 is verified thanks to TaxCr 3, which means the requirement is
verified by construction. Recall TRQ 4 is about flexibility. The flat hierarchy nature
of the taxonomy allows inserting any new trace link type in the taxonomy without
the need for reorganizing the taxonomy structure. The new specification can be
added anywhere in the RDF code. The same argument applies when we want to add
new properties for trace link types; the added properties will apply to all trace links
in the taxonomy.

• Requirement TRQ 5 is verified thanks to TaxCr 4 that refers to the use of the URI.
Recall that TRQ5 is about portability as well as local/remote access. This was our
main purpose for using the RDF. Any trace link in the taxonomy can be referenced
to by using its URI as shown in Fig. 1. The taxonomy URI references the taxonomy
itself and each trace link within the taxonomy can be referenced by using its own
URI. Line 10 in Fig. 1 is a good example.

• Requirement TRQ 6 is verified thanks to TaxCr 5. Recall TRQ 6 is about a uni-
versal format so the solution can apply to various contexts and is not tied to any
tooling support. The taxonomy data can be exported in many universal formats such
as HTML, XML, and OWL. In addition, the OWL provides not only data serial-
ization but also verification for the taxonomy semantics.

6.3 Case Study

We describe here a case study from the aviation industry, specifically the Slat/Flap in
Airbus aircrafts. We first discuss one important requirement for the Slat/Flap and how it
is refined. Then we summarize software development and modeling assumptions for
the construction of the Slat/Flap system. We then show how our taxonomy can be used
in this context.

Requirement(s). Slats and Flaps are retracted or extended during an aircraft flying and
landing. This involves synchronization between various software and hardware com-
ponents in the aircraft in order to have a safe flight. When a pilot changes the Slat/Flap
lever to a certain position, a Command Sensor Unit (CSU) converts the selection into a
set of discrete electrical signals. The signals are dispatched and validated by each
Slat/Flap Control Computer (SFCC). Accordingly, each SFCC sends a signal inde-
pendently to the associated hydraulic solenoid on the Power Control Unit (PCU) to
allow the hydraulic motors to change the Slat/Flap to the new angle [47].

In A320 and A321 aircraft models, each SFCC produces slightly different outputs
as a result of their design by separate vendors. The ambiguity between the outputs of

Using Semantic Web to Establish Traceability Links 107

the two SFCC’s mandates traceability for the Slat/Flap requirements through all phases
of development in order to find the cause of the outputs variations.

The original Slat/Flap requirement for the A321 aircraft states that: “Slat retraction
shall be inhibited at a high angle of attack”. The development of SFCC’s that satisfy
this requirement is split into two lanes developed independently by two teams that have
no interaction with each other. Moreover, the data required to develop each lane is
obtained from different sources. As a result, an inconsistency in the control signals of
the two SFCC lanes may occur.

The main Slat/Flap requirement is refined at different levels of granularity, and the
description of the main requirement and its refinements span over several documents.

The main requirement and its refinements are summarized in Table 5.

Software Development Process and Modeling. We assume that the IBM DOOR
requirement management system is used to store the main requirement and its refine-
ments. Moreover, we assume that these requirements are realized by different UML and
Simulink models. More over these requirements are realized by different UML dia-
grams which include an Activity diagram, a State Machine diagram, and a Component
diagram. In addition, we use the Simulink block diagram to model the input/output
signals of the Alpha-Lock/Speed-Baulk function. In this case study, the Activity dia-
gram represents the different activities performed by a unit called Air Data/Inertial
Reference Unit (ADIRU) and the Slat/Flap Control Computers (SFCC) as stated in
RQ2. The ADIRU supplies the Corrected Angle of Attack (CAoA) and the Computed
Airspeed (CAS) data to the SFCC. The SFCC uses this data to prevent Slat retraction
when the CAoA is too large, or the CAS is too low. The Component diagram shows the
relationship between the various physical aspects that realize the Slat/Flap requirement
and its refined ones. The components are interfaced with each other through different
ports. The signal flow diagram provides the input-output signals for the Alpha-Lock/
Speed-Baulk function. We assume the signal flow is represented by a block diagram in
Simulink. The diagram represents the main blocks represent the Command Selection
Unit (CSU) which receives the pilot selection as input, converts it to discrete signals
and output the signals to the two Slat/Flap control computers, SFCC1 and SFCC2
simultaneously.

Table 5. Slat/Flap requirements.

Req# Description

RQ1 States the main Slat/Flap requirement that is “Slat retraction shall be inhibited at
high angle of attack”

RQ2 Refines RQ1 by adding more conditions related to the high Angle of attack (Alpha-
lock), and the Low level of attack (Speed Baulk)

RQ3 Shows the rationale about the Slat Alpha-Lock/Speed-Baulk function by expressing
the conditions that lead to different function states: disabled, engaged, and reset

RQ4 Refines RQ3 by specifying the values of the Computed Air Speed (CAS) and
Computed Angel of Attack (CAoA) for the disabled, engaged, and reset states

RQ5 Provides the input/output signals for Slat/Flap retraction in RQ1, which are specified
by the Alpha-Lock/Speed-Baulk function in RQ2

108 N. Mustafa and Y. Labiche

Trace Links Identification. We identified several types of trace links between the
artifacts of the Slat/Flap problem. They are summarized in Table 6. As indicated by the
table, we first established traceability links between requirements, specifically between
the main Slat/Flap requirement and its refinements: these are indicated by the first eight
rows in the table. For instance, we set a link between requirement RQ1 and RQ2; as per
the discussion about requirement RQ1 and its refinements, RQ2 is a refinement of
RQ1; as per our taxonomy, the leaf type is therefore Refine trace links that belongs to
evolution link (subtype), which is an re-link type (main type). The other requirement-
to-requirement links are of the same kind: re-link/evolution/Refine; which is in line with
the discussion we reported about requirement(s).

We then establish traceability links between diagrams and requirements: trace-
ability links 9–12 in the table. Indeed those diagrams are trace to their requirements, the
semantic of the trace link here is Satisfy.

Last, we establish traceability links between diagrams: traceability links 13–15 in
the table. The traceability in this case exist between either heterogeneous or homo-
geneous models. The model-to-model relationship in lines 13 and 14 exist between two
heterogeneous models (i.e., Simulink and UML models) that don not conform to the
same metamodel. We identify the trace links between those two models as follows:
first, at higher level of abstraction, the trace link type is se-link (i.e., it is not an MDE or
RE type). Second, since the two models don not conform to the same metamodel, this
means the trace link type is Vertical. Third, the two models are modeled within the
same system, this implies the trace link type between them is Intra. Finally, the two
models represent a description of the system at the same level (i.e., during the design
phase), which implies aMicro trace link type. We classify the link between the artifacts
in the latter case as se-link, specifically Intra-Micro trace link, since the two models are
within the same system (i.e., Intra), and within the same phase (i.e., Micro). Indeed this
is horizontal traceability since the two models are UML models that conform to the
same metamodel.

We provided in Table 6 three different types of trace links classifications based on
the granularity of the artifacts and the user needs. As mentioned earlier, at higher level
of abstraction, the user can chose the re-link, mde-link, or the se-link. If the user wants
to be more specific about the semantic of the trace link, he/she can use one of the types
provided in the last column of Table 6. For instance, at a high level of abstraction, the
trace link between RQ1 and RQ2 is re-link since we have two requirements are linked
together at the elicitation phase. However, in order to specify exactly how RQ1 and
RQ2 are related to each other, the user can chose the Refine trace link to indicate that
RQ2 is a refinement RQ1.

The test cases in Table 6 are configured with the trace links taxonomy in order to
check whether the taxonomy can satisfy those test cases. Our findings show that all test
cases have passed. The taxonomy provides all the trace links needed to link those
artifacts.

Using Semantic Web to Establish Traceability Links 109

7 Conclusion and Future Work

Existing trace links classifications have some drawbacks that affect their usage in
relating artifacts from different domains (e.g., software, system, mechanical). We have
proposed a trace link taxonomy that can be used as part of a traceability framework to
capture traceability information among artifacts. The taxonomy is built be linking local
and external resources (taxonomy elements) to form a flat hierarchical structure. We
implemented the taxonomy using the Resource Description Framework, which allows
for referencing elements using their URI. This technique provides many advantages
over other classical techniques such as allowing the definition of relational or hierar-
chical structures. It offers interoperability and portability of data among different
platforms. Moreover, data are readable by human and machines as well, and it can be
transformed into several textual and graphical formats.

The trace link taxonomy we describe coalesces elements and concepts of taxonomies
previously defined for different domains: specifically requirement engineering, system
engineering andmodel driven engineering.When unifying taxonomieswe take good care
and remove redundant concepts. Our taxonomy provides a precise semantic for each trace
link by allowing the user to specify its name and usage, among other properties. More-
over, it offers trace links editing, filtering and searching. Furthermore, the taxonomy is a
knowledge base from which we can reason about its elements and infer relationships and
provide statistics about trace links. Our taxonomy is created to satisfy specific require-
ments, is verified, and validated on a case study from the aerospace domain.

Table 6. Possible cases for relating the artifacts produced by the Slat/Flap requirement.

Case
no.

Source artifact Target artifact Trace link
Main type Subtype Leaf-type

1 RQ1 RQ2 re-link Evolution Refine
2 RQ1 RQ3 re-link Evolution Refine
3 RQ1 RQ4 re-link Evolution Refine
4 RQ1 RQ5 re-link Evolution Refine
5 RQ2 RQ3 re-link Evolution Refine
6 RQ3 RQ4 re-link Evolution Refine
7 RQ4 RQ5 re-link Evolution Refine
8 Activity diagram RQ2 mde-link Model-to-artifact Satisfy
9 State machine

diagram
RQ4 mde-link Model-to-artifact Satisfy

10 Component diagram RQ2 mde-link Model-to-artifact Satisfy
11 Block diagram RQ2 mde-link Model-to-artifact Satisfy
12 Block diagram Component

diagram
se-link Vertical Intra-micro

13 Block diagram Activity diagram se-link Vertical Intra-micro
14 Activity diagram Component

diagram
se-link Horizontal Intra-micro

110 N. Mustafa and Y. Labiche

As a future work, this taxonomy can be extended by adding more trace link
properties and trace links types, though we believe that thanks to our systematic
literature review, we likely have collected and integrated most of that information
already. Researchers in software engineering and traceability are invited to build upon
this taxonomy. We believe this taxonomy can be used as a base for standardizing trace
links semantics. Future work should, of course, consider using our taxonomy so as to
increase our confidence that it addresses needs of various stakeholders dealing with
traceability, as we expect it does.

References

1. Mustafa, N., Labiche, Y.: Employing linked in building a trace links taxonomy. In:
International Conference of Software Technologies, Spain (2017)

2. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng. 27(1), 58–93 (2011)

3. Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: 1st
International Conference on Requirements Engineering, Utrecht, The Netherlands (1994)

4. Paige, F., et al.: Building model-driven engineering traceability classifications. In: European
Conference on Model Driven Architecture - Traceability Workshop, Berlin, Germany (2008)

5. Mason, P., et al.: Meta-modelling approach to traceability for avionics: a framework for
managing the engineering of computer based aerospace systems. In: 10th IEEE International
Conference on Engineering of Computer-Based Systems. IEEE, Huntsville (2003)

6. Spanoudakis, G., et al.: Rule-based generation of requirements traceability relations. Syst.
Softw. 72(2), 105–127 (2004)

7. Spanoudakis, G., Zisman, A.: Software traceability: a road map. In: Chang, S.K. (ed.)
Handbook of Software Engineering and Knowledge Engineering, pp. 395–428 (2005)

8. Xu, P., Ramesh, B.: Supporting workflow management systems with traceability. In: 35th
Annual Hawaii International Conference on System Sciences. IEEE, Hawaii (2002)

9. Pohl, K.: PRO-ART: enabling requirements pre-traceability. In: 2nd IEEE International
Conference on Requirements Engineering. IEEE Computer Society (1996)

10. Alexander, I.: Semi automatic tracing of requirement versions to use cases – experience and
challenges. In: 2nd International Workshop on Traceability in Emerging Forms of Software
Engineering, Canada (2003)

11. Riebisch, M., Philippow, I.: Evolution of product lines using traceability. In: Workshop on
Engineering Complex Object-Oriented Systems for Evolution, Florida (2001)

12. Object Management Group: Unified Modeling Language (UML) (2015). http://www.uml.
org/. Accessed 10 May 2015

13. OMG, O.M.G.: OMG systems modeling language (2014). http://www.omgsysml.org/.
Accessed 10 June 2014

14. Maletic, J.I., et al.: Using a hypertext model for traceability link conformance analysis. In:
2nd International Workshop on Traceability for Emerging Forms of Software Engineering,
Canada (2003)

15. Pinheiro, F.A.C., Goguen, J.A.: An object-oriented tool for tracing requirements. IEEE
Softw. 13(2), 52–64 (1996)

16. Gotel, O., Finkelstein, A.: Contribution structures. In: 2nd International Symposium on
Requirements Engineering, IEEE (1995)

Using Semantic Web to Establish Traceability Links 111

http://www.uml.org/
http://www.uml.org/
http://www.omgsysml.org/

17. Mustafa, N., Labiche, Y.: The need for traceability in heterogeneous systems: a systematic
literature review. In: IEEE International Computers, Software and Applications Conference,
Italy (2017)

18. Constantopoulos, P.J.M., Mylopoulos, Y., Vassiliou, Y.: The software information base: a
server for reuse. Int. J. Very Large Data Bases 4(1), 1–43 (1993)

19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering, in EBSE Technical report (2007)

20. Letelier, P.: A framework for requirements traceability in UML-based projects. In: 1st
International Workshop on Traceability in Emerging Forms of Software Engineering (2002)

21. Mustafa, N., Labiche, Y.: Modeling traceabibility for heterogeneous systems. In: 10th
International Conference on Software Engineering and Applications. SCITEPRESS, Colmar
(2015)

22. IEEE: IEEE Standard Glossary of Software Engineering Terminology. In: IEEE Standard
Glossary of Software Engineering Terminology, I.S. board Editor, New York (1990)

23. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4471-2239-5

24. Gotel, O., et al.: Traceability fundamentals. In: Cleland-Huang, J., Gotel, O., Zisman, A.
(eds.) Software and Systems Traceability, pp. 3–22. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-1-4471-2239-5_1

25. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model.
In: IEEE International Symposium on Requirements Engineering (1993)

26. Aizenbud-Reshef, N., et al.: Model traceability. IBM Syst. J. Model Driven Softw.
Develop. 45(3), 515–526 (2006)

27. Mustafa, N., Labiche, Y.: Toward traceability modeling for the engineering of heterogeneous
systems. In: International Conference on Model Driven Engineering and Software
Development, Angers, Loire Valley, France (2015)

28. Dick, J.: Rich traceability. In: 1st International Workshop on Traceability for Emerging
forms of Software Engineering (2002)

29. Mohan, K., Ramesh, B.: Managing variability with traceability in product and service
families. In: 35th Annual Hawaii International Conference on System Sciences. IEEE,
Hawaii (2002)

30. Grammel, B.: Automatic generation of trace links in model-driven software development.
Fakultät Informatik, Technische Universität Dresden (2014)

31. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 144–
156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72901-3_11

32. Paige, R.F., et al.: Rigorous identification and encoding of trace-links in model-driven
engineering. Softw. Syst. Model. 10(4), 469–487 (2011)

33. Lucia, A.D., Fasano, F., Oliveto, R.: Recovering traceability links in software artifact
management systems using information retrieval methods. ACM Trans. Softw. Eng.
Methodol. 16(4), 13 (2007)

34. Rummler, A., Grammel, B., Pohl, C.: Improving traceability in model-driven development
of business applications. In: European Conference on Model Driven Architecture -
Traceability Workshop (2007)

35. Knethen, A.: Automatic change support based on a trace model. In: 1st International
Workshop on Traceability in Emerging Forms of Software Engineering, Edinburgh (2002)

36. Filho, G.C., Zisman, A., Spanoudakis, G.: Traceability approach for i* and UML models. In:
International Workshop on Software Engineering for Large-Scale Multi-Agent Systems,
Portland (2003)

112 N. Mustafa and Y. Labiche

http://dx.doi.org/10.1007/978-1-4471-2239-5
http://dx.doi.org/10.1007/978-1-4471-2239-5_1
http://dx.doi.org/10.1007/978-1-4471-2239-5_1
http://dx.doi.org/10.1007/978-3-540-72901-3_11

37. LindVall, M., Sandahl, K.: Practical implications of traceability. Softw. Pract. Exp. 26(10),
1161–1180 (1996)

38. W3C: Resource Description Framework (2016). https://www.w3.org/RDF/. Accessed 15
Oct 2016

39. Kozlenkov, A., Zisman, A.: Are their design specifications consistent with our requirements?
In: IEEE Joint International Conference on Requirements Engineering. IEEE (2002)

40. OMG, O.M.G.: Unified Modeling Language (2014). http://www.uml.org/. Accessed 10 July
2014

41. OMG, O.M.G.: Systems Modeling Language (2014). http://www.omgsysml.org/. Accessed
10 June 2014

42. Roques, P.: Modeling requirements with SysML. In: Requirement Engineering Magazine.
IREB (2015)

43. Miller, L., Brickley, D.: FOAF (2016). http://www.foaf-project.org/. Accessed 3 Nov 2016
44. Dumbill, E.: Description of a Project (2016). http://lov.okfn.org/dataset/lov/vocabs/doap.

Accessed 3 Nov 2016
45. Cognitum: Fluent Editor 2015 (2017). http://www.cognitum.eu/semantics/FluentEditor/.

Accessed 2 Feb 2017
46. R Foundation: The R project for statistical computing (2017). https://www.r-project.org/.

Accessed 2 Feb 2017
47. Bretschneider, M., et al.: Model-based safety analysis of a flap control system. Int. Counc.

Syst. Eng. 14(1), 246–256 (2004)

Using Semantic Web to Establish Traceability Links 113

https://www.w3.org/RDF/
http://www.uml.org/
http://www.omgsysml.org/
http://www.foaf-project.org/
http://lov.okfn.org/dataset/lov/vocabs/doap
http://www.cognitum.eu/semantics/FluentEditor/
https://www.r-project.org/

A Machine Learning Approach for Game
Bot Detection Through Behavioural

Features

Mario Luca Bernardi1, Marta Cimitile2(B), Fabio Martinelli3,
and Francesco Mercaldo3

1 Giustino Fortunato University, Benevento, Italy
2 Unitelma Sapienza, Roma, Italy
marta.cimitile@unitelma.it

3 Institute for Informatics and Telematics,
National Research Council of Italy (CNR), Pisa, Italy

Abstract. In the last years, online games market has been interested
by a sudden growth due to the birth of new gaming infrastructures that
offer more effective and innovative services and products. Simultane-
ously to the diffusion of on line games, there was an increasing use of
game bots to automatically perform malicious tasks. Game bots users
aim to obtain some rewards by automating the most tedious and pro-
longed activities arousing the disappointment of the game community.
Therefore, the detection and the expulsion of game bots from the game
environment, become critical issues for the game’s developers that want
to ensure the satisfaction of all the players. This paper describes an
approach for the game bot detection in the online role player games
consisting to distinguish between game bots and human behavior and
based on the adoption of supervised and unsupervised machine learn-
ing techniques. These techniques are used to discriminate between users
and game bots basing on some user behavioral features. The approach
is applied to a real-world dataset of a popular role player game and the
obtained results are encouraging.

Keywords: Game bot · Machine learning · Cluster analysis
Game bot detection · Security · Testing

1 Introduction

The worldwide games market is largely grown in the last years (the revenue
increases of 7.8% in the first quarter of 2017 with respect to the year before)1 due
to the development of innovative online gaming platforms and the availability of
a huge and high-quality games offering. As a matter of fact, an increasing interest

1 https://newzoo.com/solutions/standard/market-forecasts/global-games-market-rep
ort/.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 114–134, 2018.
https://doi.org/10.1007/978-3-319-93641-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_6&domain=pdf
https://newzoo.com/solutions/standard/market-forecasts/global-games-market-report/
https://newzoo.com/solutions/standard/market-forecasts/global-games-market-report/

A Machine Learning Approach for Game Bot Detection 115

has been pointed to the on line games, that thanks to the diffusion of Internet
network, are become very popular. Differently from traditional games, on line
games are partially or primarily played through the Internet network or another
computer network [1]. These games are made available through modern gaming
platforms that include PCs, consoles and mobile devices, and offer many gen-
res (i.e., first-person shooters, strategy games and massively multiplayer online
role-playing games) [2]. Moreover, online games can have a different design (from
simple text-based environments to more complex graphics and virtual worlds) [3]
and attract players from a variety of ages, nationalities, and occupations [4,5].
However, given their diffusion and their characteristics, on line games represent
an appealing scenario for attackers to perpetrate illegal activities in the online
world [6]. They are interested to perform illegal activities for several reasons:
get economic gain (cyber assets can be changed into real currency) [7], capture
reserved information about the other players or became popular in the game
community. Several malicious tasks are performed by using game bots able to
repeat continuously a given activity in the online game. Game bots consist of an
artificial intelligent software that simulates human behavior in a video game [8].
Since they automatize playing actions, game bots can earn more cyber assets
than human users because they can play at a full time without any break. More-
over, game bots cause harm to the human users because they consume game
resources reducing the player opportunities: for example, game bots defeat all
monsters and harvest the available items before the human users. Basing on
the above considerations, we can conclude that game bots damage the game
provider reputation and reduce the game’s lifecycle [9]. This paper extends and
explores a method for game bots detection in a Multiplayer Online Role-Playing
Game (MMORPG environment) proposed in [10,11]. MMORPGs are a kind of
online game were a large number of players interact with one another within a
virtual world. The method uses some features (i.e., Player Information, Player
Actions, Group Activities, Social Interaction Diversity and Network Measures)
to distinguish game bots from human players behavior. This discrimination is
performed by using some classifiers built thought supervised and unsupervised
(i.e., cluster analysis) machine learning techniques. The effectiveness of our pro-
posed approach is evaluated in a real context consisting of a dataset obtained
from the operation of Aion: The Tower of Eternity2 game. It is a MMORPG
fantasy free-to-play popular game where all the operations performed by real
players and game bots are identified and labeled by the game company. The rest
of the paper is organized as follows: the next section provides an overview of
the related work. In Sects. 3 and 4 the proposed features and the detection tech-
niques are illustrated. In Sect. 5, authors evaluate if it is possible to detect game
bots by using the set of the proposed behavioral features and evaluate the effec-
tiveness of the proposed approach to discriminate human and botnet behaviors
in a real MMORPG game. Section 5 shows the results of the evaluation finally,
conclusion and future works are given in the last section.

2 https://en.aion.gameforge.com/website/.

https://en.aion.gameforge.com/website/

116 M. L. Bernardi et al.

2 Related Work

A great number of approaches are recently proposed on the topic of game bots
detection. Several methods adopt data mining techniques to analyze the log data
extracted by the game server. These approaches are favorite by the game ser-
vice providers because they allow to detect and block the game bots without any
interference with the game user playing and without the deployment of additional
software on the client-side. Some server-side approaches are focused on the anal-
ysis of users interactions and social activity [12] assuming that game bots and
human player have different game style discriminating them (these approaches
are also called behavioral approaches). For example, in [13], the social behav-
iors of both human and game bots are modeled and compared through the use
of behavioral features. In [14], some thresholds are fixed to discriminate the
different behaviors of the game bots and the human players basing on their
activities. In [15], the bot detection is performed by analyzing the sequences of
window events (described as a set of attributes) produced by the game play-
ers. Learning algorithms are used to distinguish and classify human from game
bots event sequences. Authors, in [16,17] describe a manifold learning approach
consisting to analyze the avatars movement trajectories to distinguish game
bots from human players (they are assumed to have different movement tra-
jectories). Moreover, in [18] authors compare the traffic generated by the game
bots versus human players to perform game bots detection. A specific focus on
the MMORPG environment is in [19] where the characteristics of a MMORPG
environment are analyzed and a method for detecting GFGs (i.e., gold farming
groups) is explored. MMOPG is also considered in [20]. Here, authors perform
action sequence analysis on a server-side account theft detection system to pro-
tect game users from malicious players. Moreover, several approaches are based
on the analysis of behavioral approaches [9,21–24]. For example, [13] uses some
features to capture the social behavior of the game players assuming that game
bots and humans tend to form their social network in different ways. The behav-
ioral approaches analyze a limited number of features (one or two behavioral
features) having, as consequence, a high dependence of the approach from the
single game domain. This limit is discussed and faced in [25], where authors
propose a new approach based on a larger set of features. It uses both game
and player-related features similar to our proposed approach. With respect to
[25], in our proposed approach the obtained results show a higher precision in
the game bot detection. Moreover, differently from [25], in this work, a feature
selection step is provided in order to improve the performance in the real envi-
ronments. This step aims to select the most discriminative features (they will
become input for the classification step) between human users and game bot
and the time employed to build the classifiers is evaluated as the maximum time
interval to detect a game bot behavior.

A Machine Learning Approach for Game Bot Detection 117

3 Background

In order to evaluate the effectiveness of the behavioral feature sets to discrim-
inate between human and game bot, we use supervised and the unsupervised
[26] machine learning approaches. Indeed, machine learning tasks are typically
classified into these two categories, depending on the nature of the learning avail-
able to a learning system [27,28]. Supervised learning is the machine learning
task of inferring a function from the labeled training data. In this case, the
training data consist of a set of training examples. In supervised learning, each
example is a pair consisting of an input object (i.e., the behavioral feature sets)
and the desired output value (i.e., the game bot of the human label). A super-
vised learning algorithm analyzes the training data and produces an inferred
function, which can be used for mapping new features without a label. The opti-
mal scenario will allow for the algorithm to correctly determine the class labels
for unseen instances. Differently, the unsupervised machine learning (also called
cluster analysis) is the machine learning task of inferring a function to describe
hidden structure from “unlabeled” data (a classification or categorization is not
included in the observations). For this reason, using this approach is possible
to infer the human and the game bot label without previous knowledge about
the nature of the feature sets considered (i.e., these algorithms do not require
the label). Relating to supervised machine learning classification, we consider six
different algorithms of classification: J48, DecisionStump, HoeffdingTree, Ran-
domForest, RandomTree and REPTree [29,30]. The supervised used algorithms
are listed in the following:

– J48 [31]: It is an open source Java implementation of the C4.5 decision tree
algorithm. It is a statistical classifier based on id3 algorithm [32]. Basically, it
computes the potential information for every considered attribute, given by
a test on the attribute and the gain in information is calculated that would
result from a test on the attribute.

– DecisionStump [33]: A decision tree-based model with one internal root node
immediately connected to the terminal nodes. The prediction is allowed by a
decision stump basing on the value of just one input feature.

– HoeffdingTree [34]: An incremental, anytime decision tree induction algorithm
learning from massive data streams. Basing on the assumption that the dis-
tribution generating examples does not change over time, it often uses a small
sample to choose an optimal splitting attribute.

– RandomForest [35]: It operates by constructing, at training time, a multitude
of decision trees and outputting the class that is the mode (the most frequent
value appearing in a set of data) of the classes of the individual trees.

– RandomTree [36]: It constructs a tree containing some randomly chosen
attributes at each node. No pruning is performed.

– REPTree [37]: It builds a decision tree using information gain/variance
and reduces errors using reduced-error pruning. The values are ordered for
numeric attributes once and missing values are recovered with by splitting
the corresponding instances into pieces.

118 M. L. Bernardi et al.

With regards to the unsupervised machine learning classification, we consider
the following six cluster analysis algorithms: SimpleKMeans, FarthestFirst, Fil-
teredClusterer, MakeDensityBasedClusterer, Cobweb, DBScan.

– SimpleKMeans [38]: Cluster data using the k-means algorithm with the
Euclidean distance. The k-means clustering aims to partition n observations
into k clusters in which each observation belongs to the cluster with the near-
est mean, serving as a prototype of the cluster.

– FarthestFirst [39]: The farthest-first traversal of a bounded metric space com-
putes a sequence of points in the space, where the first point is selected
arbitrarily and each successive point is as far as possible from the set of
previously-selected points.

– FilteredClusterer [40]: Algorithm for running an arbitrary clusterer on data
that has been passed through an arbitrary filter. Like the clusterer, the struc-
ture of the filter is based exclusively on the training data and test instances
will be processed by the filter without changing their structure.

– MakeDensityBasedClusterer [41]: Algorithm for wrapping a clusterer to
return a distribution and density. It fits normal distributions and discrete
distributions within each cluster produced by the wrapped clusterer.

– Cobweb [42]: It is an incremental system for hierarchical conceptual clustering.
This algorithm incrementally organizes observations into a classification tree.
Each node in a classification tree represents a class (concept) and it is labeled
by a probabilistic concept that summarizes the attribute-value distributions
of objects classified under the node. This classification tree can be used to
predict missing attributes or the class of a new object.

– DBScan [43]: The Density-based spatial clustering of applications with noise
(DBSCAN) is a data clustering algorithm. It is a density-based clustering
algorithm: given a set of points in some space, it groups together points that
are closely packed together (points with many nearby neighbors), marking
as outliers the points that lie alone in low-density regions (whose nearest
neighbors are too far away). DBSCAN is one of the most common clustering
algorithms and also most cited in scientific literature.

4 The Method

As discussed in Sect. 1, our proposed approach aims to discriminate game
bots from human players basing on their different behavior in the context of
MMORPG games. For this reason, we propose a set of behavioral features and
we evaluate their capability to discriminate human users and game bots. The
considered features were extracted and computed by a real game company (as
described in [9]). They are grouped in the following categories: Player Infor-
mation (PI), Player Actions (PA) (they describe the player’s characteristics),
Group Activities (GA), Social Interaction Diversity (SID) and Network Mea-
sures (NM). The first two features groups describe players characteristics, while
the other features categories are referred to the game characteristics. Table 1
shows the considered features for each category listed above.

A Machine Learning Approach for Game Bot Detection 119

Table 1. The features involved in the study with the correspondent category [44].

Category Features

Player Information PI1,PI2,PI3,PI4

Player Actions PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10

Group Activities GA1,GA2

Social Interaction Diversity SID1

Network Measures NM1,NM2,NM3,NM4,NM5,NM6,NM7,NM8,NM9

Looking to the table, the Player Information (PI) features describe how the
players perform some game tasks. The main assumption is that the PI features
analysis shows a gap between the values of these features for game bots and
for human users. The considered PI features are the followings: login frequency
(PI1), play time (PI2), game money (PI3) and a number of IP address (PI4). Sim-
ilarly, the PA features are introduced to investigate whether the player actions
can reflect the differences between game bots and human users. For instance,
game bots are often connected to the game at a full time and can play for 24
consecutive hours, differently from human users, that typically are not able to
play during several time-windows (i.e., work time, sleeping time). This allows
them to reach a certain rank level and obtain more powers to fight the ene-
mies effectively. Moreover, more player kill points can be acquired by defeating
players of opposing factions. Player kill points can be used to purchase various
items from vendors and to determine a player’s rank within the game world. In
the Aion game3, the more player kill points a player has, the higher is the rank
of the player. The high ranking player can feel a sense of accomplishment. The
attackers are interested to obtain game powers because they can resell these
powers to the other game users4. Finally, the game bots sit more frequently
than human users in order to recover health and many points. The considered
PA features are: sitting (PA1) (i.e., an action taken by players to recover their
health), earning experience points (PA2), obtaining items (PA3), earning game
money (PA4), earning player kill points (PA5), harvesting items (PA6), resur-
recting (PA7), restoring experience points (PA8), being killed by a non-player
and/or player character (PA9), and using portals (PA10). The GA features are
introduced to evaluate the different behavior of game bots and human players
with respect to their participation in the group activities. The rationale behind
the GA feature is that there is a gap between the values of the social features
of game bots and those of human users because game bots do not attempt to
social as humans. For example, game bots are not interested in the activities
that allow increasing the socialization among the player’s community but they
only perform social activities that are required to obtain game advantages. As
matter of fact, as a consequence of the game bot protract play time, we expected

3 https://sites.google.com/a/hksecurity.net/ocslab/Datasets/game-bot-detection.
4 http://www.geek.com/games/.

https://sites.google.com/a/hksecurity.net/ocslab/Datasets/game-bot-detection
http://www.geek.com/games/

120 M. L. Bernardi et al.

that the GA category is different between game bots and human users. The GA
category includes the average duration of party play (GA1) and the number of
guild activities (GA2). For example, looking to the GA1, party play is a group
play formed by two or more players in order to undertake quests or missions
together. Party play aims to complete difficult quests by collaboration and enjoy
socialization. Differently, from other players, game bots perform party play, with
the only goal to acquire game money and items faster and more efficiently in
order to obtain powers. For this reason, we expected that the value obtained for
GA1 is different between game bots and human users. The concept of party play
is also useful to understand the SID1 features defined as the entropy of party
play. Game bots concentrate only on particular actions, whereas human users
execute multiple tasks as needed to thrive in the online game world. Finally, the
NM category regards the player’s social interaction network that can be repre-
sented as a graph with characters as the nodes and interactions between them as
the edges. An edge between two nodes (players) in this graph may, for example,
highlight the transfer of an item between the two nodes. The features of NM
include the degree centrality (NM1), betweenness centrality (NM2), closeness
(NM3), eigenvector centrality (NM4), eccentricity (NM5), authority (NM6), hub
(NM7), PageRank (NM8), and clustering coefficient (NM9). The NM category
features are explained in Table 2.

5 The Evaluation

The proposed experiment aims to evaluate the effectiveness of the feature vector
we propose, with respect to the goals stated in the introduction. More specifically,
the capability of the behavioral features to discriminate the game bots by the
human user behavior is here evaluated. A classification of the proposed features
values is carried out by using several state-of-the-art machine learning classifiers
built with the behavioral feature categories we considered. In this study, a real
dataset, obtained from the operation of a popular and free available game called
Aion, is used. It contains all in-game action logs for 88 days, between April 9th
and July 5th of 2010. During this period, 49,739 players attend the game for
at least three hours. Among these players, 7702 characters are identified by the
game company as game bots. The banned list provided by the game company is
used in our evaluation as the ground truth after that each banned user has been
vetted and manually verified by human labor and active monitoring. Starting by
the log released by the game company, in our dataset we aggregated the values
of the features related to the same user and we labeled the feature vectors as
“human players” or “game bot”. Moreover, in the dataset all the private and
personal information of the players are protected by the anonymity. The evalua-
tion consists of some main steps: (i) a comparison of the descriptive statistics of
the behavioral features populations; (ii) the hypotheses testing, aiming to verify
if the feature categories have different distributions for the populations of game
bot and human behavior; and (iii) the classification analysis aimed at assess-
ing whether the behavioral feature categories are able to correctly classify game

A Machine Learning Approach for Game Bot Detection 121

Table 2. The features belonging to the Network Measures category with their
description [44].

NM category feature Description

Degree centrality This features represents the centrality focused on the
degree. The more edges an actor has, the more important
it is

Betweenness centrality It counts the number of shortest paths between two nodes
on which a given actor resides

Closeness centrality An actor is considered important if it is relatively close to
all other actors. Closeness is based on the inverse of the
distance of each actor to every other actor in the network

Eigenvector centrality Indicates that a given node has a relationship with other
valuable nodes. A high eigenvector value for an actor
means that a node has several neighbors with high
eigenvector values

Eccentricity The eccentricity of node v is calculated by computing the
shortest path between node v and all other nodes in the
graph; then the longest shortest path is chosen

Authority Exhibits a node pointed to by many good hubs

Hub Exhibits a node that points to many good authorities

PageRank Assigns a numerical weight to each element of a
hyperlinked set of documents, such as the World Wide
Web, with the purpose of “measuring” its relative
importance within the set

Clustering coefficient It quantifies how close neighbors are to being a clique: a
clique is a subset of all of the edges connecting pairs of
vertices of an undirected graph

bot and human behavior. The classification analysis is performed by using both
supervised and unsupervised machine learning algorithms.

5.1 Descriptive Statistics

In this section the box plots of the distribution of game bot and human behavior
features are shown in order to demonstrate their differences. Figures 1, 2 and 3
show the box plots for a subset of features belonging to each category consid-
ered in the study. Figure 1(a) shows the box plot related to the login frequency
time feature (PI1) between game bot and human users. Since they assume sim-
ilar values, we can conclude that game bot and human user login with similar
frequency. In our opinion, the limit of this feature is that it does not consider
the login time but only the login frequency. Figure 1(b) shows the box plot for
the play time feature (PI2). The figure highlights that the distributions between
game bots and human users are very different: as matter of fact, while human
user presents a small distribution, the game bot one exhibits higher play time

122 M. L. Bernardi et al.

Fig. 1. The box plot relating to the game bot and human distributions for the login
frequency feature (a) the play time feature (b) the sitting feature (c) and for the earning
experience points feature (d).

Fig. 2. The box plot relating to the game bot and human distributions for the party
play time feature (a) and the guild activities feature (b), belonging to the Group
Activities category.

A Machine Learning Approach for Game Bot Detection 123

Fig. 3. The box plot relating to the game bot and human distributions for the degree
centrality feature (a) and the betweenness centrality feature (b), belonging to the
Network Measures category.

values. The reason is that game bot is able to play the game without any break,
differently from human users.

Figure 1(c) and (d) show the box plot related to game bot and human dis-
tributions for the feature belonging to the Player Actions category. Figure 1(c)
shows that the sitting time distribution for game bots seems to be wider if com-
pared with the human users one. This feature is related to the number of rounds
that game bots and human users are able to play.

Figure 1(d) shows the box plot related to earning experience points feature
(PA2). This feature evaluates the ability to earn points in order to buy power
for the character. The figure shows a wider dimension of game bots distribution
with respect to the human users one confirming that the game bots are able to
gather more points if compared with human users.

Figure 2(a) shows the box plot related to the party play time feature (GA1).
The distribution obtained for the human user box plots is wider if compared with
the game bots one. This happens because game bots usually have not interest to
make party play in order to play o socialize with other users: the focus of game
bots is only to disturb human users and gather points in order to have character
reinforcements.

Figure 2(b) shows the box plot related to the guild activities feature (GA2).
The feature is related to the capacity of a player to perform missions in coop-
eration with other players. Confirming the previous box plot, game bot has no
interest to cooperate in the play, while human user usually needs to play together
in order to complete successfully difficult missions.

Figure 4 shows the distributions for the SID1 feature. The distributions
appear very similar, highlighting that both game bots and human users interact
with them, for this reason, the considered feature is not discriminative between
the observed populations.

Figure 3(a) shows the box plot related to the NM1 feature. These box plots
exhibit that human users present a wider degree centrality if compared with
game bots. We conclude that human users have more friends if compared with
game bots.

Figure 3(b) shows the NM2 feature box plot. As in the previous box plots, the
human user’s distribution is wider than the game bots one. It happens because
the human user tries to reach an objective by using the shortest path, differently
from game bots that do not consider this.

124 M. L. Bernardi et al.

Fig. 4. The box plot relating to the game bot and human distributions for the party
play entropy, belonging to the Social Interaction category [44].

5.2 Hypothesis Testing

Basing on the research goals discussed in Sect. 1, the hypotheses testing and the
null hypothesis can be the following:

H1: There are statistically significant differences between the considered fea-
tures of game bots and human users
H0: There are no statistically significant differences between the considered
features of game bots and human users

The null hypothesis was tested with three different tests in order to enforce
the conclusion validity: Mann-Whitney, Kolmogorov-Smirnov Test and Wald-
Wolfowitz. For all the tests the p-level is fixed to 0.05. The purpose of these
tests is to determine the level of significance, i.e., the risk (the probability) that
erroneous conclusions be drawn: since we set the significance level equal to 0.05,
we accept to make mistakes 5 times out of 100. The hypothesis testing aims at
evaluating if the features present different distributions for the populations of
the game bot and human behavioral characteristics with statistical evidence. We
assume valid the results when the null hypothesis is rejected by both the tests
performed. Table 3 shows the results of hypothesis testing: the null hypothesis
H0 can be rejected for all the features. This means that there is statistical
evidence that the feature vector is a potential candidate for correctly classifying
between game bot and human behavioral characteristics. This result will provide
an evaluation of the risk enforced by the fact that three tests are used and the
selected features produce values which belong to two different distributions (i.e.,
the one related to the game bots and the human users). With the classification
analysis, we will be able to establish the accuracy of the features in associating
any behavioral feature to the game bot or to the human distribution.

5.3 Classification Analysis

This step consists of building classifiers in order to evaluate the feature vector
accuracy to distinguish between game bots and human users. Four metrics were

A Machine Learning Approach for Game Bot Detection 125

Table 3. Results of the hypothesis test of the null hypothesis H0.

Variable Mann-Whitney Kolmogorov-Smirnov Wald-Wolfowitz

PI1 0.000000 p < .001 0.000

PI2 0.000000 p < .001 0.000

PI3 0.000000 p < .001 0.000

PI4 0.000000 p < .001 0.000

PA1 0.000000 p < .001 0.000

PA2 0.000000 p < .001 0.000

PA3 0.000000 p < .001 0.000

PA4 0.000000 p < .001 0.000

PA5 0.000000 p < .001 0.000

PA6 0.000000 p < .001 0.000

PA7 0.000000 p < .001 0.000

PA8 0.000000 p < .001 0.000

PA9 0.000000 p < .001 0.000

PA10 0.000000 p < .001 0.000

GA1 0.000000 p < .001 0.000

GA2 0.000000 p < .001 0.000

SI1 0.000000 p < .001 0.000

NM1 0.000000 p < .001 0.000

NM2 0.000000 p < .001 0.000

NM3 0.000000 p < .001 0.000

NM4 0.000000 p < .001 0.000

NM5 0.000000 p < .001 0.000

NM6 0.000000 p < .001 0.000

NM7 0.000000 p < .001 0.000

NM8 0.000000 p < .001 0.000

NM9 0.000000 p < .001 0.000

used to evaluate the classification results: Precision, Recall, F-Measure and ROC
Area. The precision has been computed as the proportion of the examples that
truly belong to class X among all those which were assigned to the class. It is the
ratio of the number of relevant records retrieved to the total number of irrelevant
and relevant records retrieved:

Precision =
tp

tp + fp

where tp indicates the number of true positives and fp indicates the number of
false positives. The recall has been computed as the proportion of examples that
were assigned to class X, among all the examples that truly belong to the class,

126 M. L. Bernardi et al.

i.e., how much part of the class was captured. It is the ratio of the number of
relevant records retrieved to the total number of relevant records:

Recall =
tp

tp + fn

where tp indicates the number of true positives and fn indicates the number of
false negatives. The F-Measure is a measure of a test’s accuracy. This score can
be interpreted as a weighted average of the precision and recall:

F -Measure = 2 ∗ Precision ∗ Recall

Precision + Recall

The Roc Area is defined as the probability that a positive instance randomly
chosen is classified above a negative randomly chosen. The classifier training
is performed by defining T as a set of labeled traces (M, l), where each M is
associated to a label l ∈ {B,H} (where B represents the game bot, while H the
human user). For each M, a feature vector F ∈ Ry is build, where y is the number
of the features used in training phase (y = 4 for the PI category, y = 9 for the
PA category, y = 2 for the GA category, y = 1 for the SID category and y = 9
for the NM category). In the learning phase, we use a k-fold cross-validation:
the dataset is randomly partitioned into k subsets. A single subset is retained as
the validation dataset for testing the model, while the remaining k − 1 subsets
of the original dataset are used as training data. We repeated the process for
k = 10 times; each one of the k subsets has been used once as the validation
dataset. To obtain a single estimate, we computed the average of the k results
from the folds. We evaluated the effectiveness of the classification method with
the following procedure:

1. build a training set T ⊂ D;
2. build a testing set T ′ = D ÷ T;
3. run the training phase on T ;
4. apply the learned classifier to each element of T ′.

Each classification was performed using 20% of the dataset as training dataset
and 80% as testing dataset employing the full feature set. The obtained results
are shown in Table 4.

Looking at the table, we can conclude that a precision equal to 0.952 and
a recall of 0.953 is obtained by using the J48 algorithm to classify the feature
belonging to PI category. Similarly, a precision equal to 0.954 and a recall of 0.955
is obtained with the RandomForest algorithm classifying the feature belonging
to PA category while RepTree algorithm shows a precision equal to 0.858 and
a recall a 0.882 on the feature belonging to GA category. J48 also gives a pre-
cision equal to 0.836 and a recall equal to 0.875 on the feature belonging to
SID category. Finally, a precision equal to 0.923 and a recall 0.928 using the
RandomForest algorithm classifying the feature belonging to NM category. The
table also shows that we obtained the best results (in terms of precision and
recall) when classifying the features related to the PI and PA categories.

A Machine Learning Approach for Game Bot Detection 127

Table 4. Classification results: Precision, Recall, F-Measure and RocArea for classi-
fying the feature categories, computed with six different classification algorithms [44].

Category Algorithm Precision Recall F-Measure Roc Area Time

PI J48 0.95 0.951 0.949 0.856 1.97

DecisionStump 0.942 0.944 0.941 0.823 0.21

HoeffdingTree 0.941 0.944 0.941 0.872 0.3

RandomForest 0.952 0.953 0.950 0.895 37.8

RandomTree 0.917 0.916 0.916 0.814 0.64

REPTree 0.946 0.948 0.945 0.880 0.93

PA J48 0.948 0.950 0.947 0.862 7.01

DecisionStump 0.934 0.936 0.935 0.830 0.58

HoeffdingTree 0.942 0.944 0.942 0.872 0.94

RandomForest 0.954 0.955 0.953 0.95 57.23

RandomTree 0.952 0.952 0.921 0.901 4.01

REPTree 0.948 0.950 0.948 0.888 3.36

GA J48 0.858 0.881 0.843 0.764 0.38

DecisionStump 0.764 0.874 0.816 0.721 0.05

HoeffdingTree 0.854 0.880 0.839 0.783 0.17

RandomForest 0.820 0.855 0.833 0.766 17.71

RandomTree 0.820 0.854 0.833 0.758 0.42

REPTree 0.858 0.882 0.845 0.784 0.47

SID J48 0.836 0.875 0.821 0.698 0.37

DecisionStump 0.764 0.874 0.816 0.690 0.06

HoeffdingTree 0.826 0.874 0.823 0.710 0.32

RandomForest 0.805 0.863 0.822 0.688 8.31

RandomTree 0.805 0.865 0.822 0.682 0.14

REPTree 0.829 0.874 0.823 0.717 0.11

NM J48 0.917 0.923 0.917 0.810 24.75

DecisionStump 0.871 0.884 0.875 0.673 0.99

HoeffdingTree 0.892 0.903 0.891 0.769 2.68

RandomForest 0.923 0.928 0.923 0.858 42.42

RandomTree 0.886 0.887 0.887 0.751 0.69

REPTree 0.917 0.923 0.917 0.845 5.5

Table 5 shows the results with the unsupervised machine learning classifica-
tion.

We obtained the best precision result by using the MakeDensityBasedClus-
terer algorithm (i.e., 0.954) and the best recall is obtained by using the same
classification algorithm (0.955) in the PA category feature classification. We

128 M. L. Bernardi et al.

Table 5. Classification results: Precision, Recall, F-Measure and RocArea for clas-
sifying the feature categories, computed with six different unsupervised classification
algorithms.

Category Algorithm Precision Recall F-Measure Roc Area Time

PI SimpleKMeans 0.93 0.93 0.93 0.843 1.79

FarthestFirst 0.92 0.93 0.92 0.839 1.98

FilteredClusterer 0.91 0.92 0.907 0.841 1.89

MakeDensityBasedClusterer 0.905 0.918 0.911 0.840 49.06

Cobweb 0.927 0.919 0.922 0.839 39.58

DBScan 0.934 0.948 0971 0.836 42.73

PA SimpleKMeans 0.948 0.927 0.964 0.871 2.37

FarthestFirst 0.939 0.935 0.936 0.872 3.84

FilteredClusterer 0.926 0.934 0.92 0.868 3.94

MakeDensityBasedClusterer 0.954 0.955 0.953 0.845 47.85

Cobweb 0.926 0.918 0.921 0.862 44.25

DBScan 0.921 0.924 0.922 0.873 40.68

GA SimpleKMeans 0.839 0.874 0.856 0.722 1.92

FarthestFirst 0.801 0.827 0.813 0.747 3.29

FilteredClusterer 0.833 0.879 0.855 0.779 3.98

MakeDensityBasedClusterer 0.838 0.875 0.856 0.739 31.48

Cobweb 0.811 0.825 0.817 0.749 32.19

DBScan 0.814 0.830 0.821 0.751 35.28

SID SimpleKMeans 0.827 0.841 0.833 0.719 2.01

FarthestFirst 0.787 0.798 0.792 0.702 1.93

FilteredClusterer 0.799 0.778 0.788 0.705 2.16

MakeDensityBasedClusterer 0.799 0.801 0.799 0.718 37.98

Cobweb 0.809 0.817 0.812 0.702 41.85

DBScan 0.789 0.799 0.799 0.793 39.84

NM SimpleKMeans 0.902 0.919 0.914 0.819 3.06

FarthestFirst 0.899 0.857 0.877 0.709 2.87

FilteredClusterer 0.899 0.854 0.876 0.714 2.48

MakeDensityBasedClusterer 0.923 0.928 0.923 0.858 42.42

Cobweb 0.876 0.890 0.882 0.744 43.87

DBScan 0.839 0.875 0.853 0.732 44.28

highlight in addition that with regards to the PA category using the other algo-
rithms the worst precision and recall values are obtained by the DBScan algo-
rithm (0.921 of precision and 0.924 of recall). With the classification of the PI
features category, we obtain a precision ranging from 0.91 (with the Filtered-
Clusterer algorithm) to 0.934 (with the DBScan algorithm) and a recall ranging

A Machine Learning Approach for Game Bot Detection 129

from 0.918 (using the MakeDensityBasedClusterer) to 0.948 with the DBSCan
algorithm. For the others features categories we obtained the following results:

– with regards to the GA category, a precision ranging from 0.801 (with the
FarthestFirst algorithm) to 0.839 (with the SimpleKMeans algorithm) and a
recall ranging to 0.825 (with the Coweb algorithm) to 0.879 (with the Fil-
teredClusterer algorithm);

– with regards to the SID category, a precision ranging from 0.787 (with the
FarthestFirst algorithm) to 0.809 (with the Coweb algorithm) and a recall
ranging to 0.778 (with the FilteredClusterer algorithm) to 0.841 (with the
SimpleKMeans algorithm);

– with regards to the NM category, a precision ranging from 0.839 (with
the DBScan algorithm) to 0.923 (with the MakeDensityBasedClusterer algo-
rithm) and a recall ranging to 0.854 (with the FilteredClusterer algorithm)
to 0.928 (with the MakeDensityBasedClusterer algorithm).

Looking to the tables, the best feature categories, in both the supervised
and the unsupervised classifications, are the PA and PI category; for this rea-
son, we perform a feature selection on these categories in order to investigate
whether using a small feature set we are able to obtain better results. As matter
of fact, the feature selection is employed to improve the ability of classifier in
discriminating human and game bot instances and decrease training time. The
used feature selection algorithm is the BestFirst, that implements a best-first
search strategy to navigate attribute subsets which basically explores a graph
by expanding the most promising node chosen according to a specified rule. We
obtained that the most discriminating feature in the PI category is just the play
time (PI2), while in PA category there are four best features: sitting (PA1),
earning experience points (PA2), obtaining items (PA3) and earning player kill
points (PA5). In order to evaluate if the new features set belonging to PI and PA
categories are able to overcome the results obtained in Table 4, we build different
(supervised and unsupervised) classifiers. Table 6 shows the results we obtained
using the supervised classification algorithms, while Table 7 shows the results we
obtained using the unsupervised classification algorithms.

The values of precision and recall are increased for both the features cate-
gories we considered. For the PI category, the best precision value (RandomFor-
est) is incremented from 0.952 to 0.954 and the recall one is incremented from
0.953 to 0.984. For the PA category, the best precision value (RandomForest) it
is incremented from 0.954 to 0.960 and the recall one is incremented from 0.955
to 0.986. The time analysis confirms the effectiveness of the feature selection step
in order to quickly identify the game bot: as matter of fact with the exception of
the RandomForest algorithm, the remaining ones are able to learn the classifiers
in less than 1 s.

Confirming the trend related to the supervised classification algorithms, also
considering the unsupervised classification algorithms, we obtain an increment
of the performance. As a matter of fact, the value of precision and recall are
increased for both the features categories we considered in the unsupervised
machine learning:

130 M. L. Bernardi et al.

Table 6. Feature Selection Classification results: Precision, Recall, F-Measure and
RocArea for classifying the feature resulting of the feature selection process with
the features of PI and PA categories, computed with six different classification algo-
rithms [44].

Category Algorithm Precision Recall F-Measure Roc Area Time

PI selected J48 0.954 0.984 0.969 0.824 0.36

DecisionStump 0.954 0.984 0.969 0.823 0.05

HoeffdingTree 0.953 0.985 0.968 0.845 0.41

RandomForest 0.943 0.944 0.943 0.831 15.06

RandomTree 0.943 0.944 0.943 0.774 0.37

REPTree 0.954 0.984 0.969 0.837 0.33

PA selected J48 0.958 0.986 0.972 0.870 0.48

DecisionStump 0.957 0.971 0.964 0.830 0.15

HoeffdingTree 0.957 0.985 0.971 0.882 0.25

RandomForest 0.960 0.986 0.973 0.890 56.67

RandomTree 0.954 0.954 0.954 0.818 0.98

REPTree 0.959 0.985 0.972 0.889 0.74

Table 7. Feature Selection Classification results: Precision, Recall, F-Measure and
RocArea for classifying the feature resulting of the feature selection process with the
features of PI and PA categories, computed with six different unsupervised classification
algorithms.

Category Algorithm Precision Recall F-Measure Roc Area Time

PI selected SimpleKMeans 0.97 0.95 0.95 0.896 0.08

FarthestFirst 0.99 0.87 0.92 0.867 0.12

FilteredClusterer 0.97 0.95 0.95 0.891 0.14

MakeDensityBasedClusterer 0.97 0.95 0.95 0.891 12.04

Cobweb 0.98 0.84 0.93 0.864 11.27

DBScan 0.97 0.86 0.93 0.859 12.58

PA selected SimpleKMeans 0.96 0.94 0.94 0.848 0.12

FarthestFirst 0.96 0.94 0.94 0.838 0.24

FilteredClusterer 0.94 0.92 0.91 0.831 0.18

MakeDensityBasedClusterer 0.97 0.95 0.95 0.891 12.04

Cobweb 0.97 0.83 0.88 0.827 14.86

DBScan 0.96 0.85 0.09 0.839 15.02

– relating to the PI category, the best precision value it is incremented from
0.934 to 0.95;

– relating to the PA category, the best precision value it is incremented from
0.954 to 0.97.

With regards to the time performance analysis, we confirm an increasing number
in the time to learn the several unsupervised classifiers.

A Machine Learning Approach for Game Bot Detection 131

6 Conclusions

Online games are a widespread form of entertainment allowing users geographi-
cally distributed to play together, obtain upgrades for their characters by defeat-
ing monsters and enemies, and earn the game currency that can be changed in
the real money. In this scenario, same attachers can use game bots to acquire
a higher number of game points since game bots are able to play without any
interruption disturbing the game of the human players. In this paper the method
introduced in [10,11] is described and largely evaluated. The aims is to discrim-
inate an human user from a game bot classifying a set of behavioral features.
We consider a set of features related to the player and to the game. On this
features a classification is performed by obtaining in the best case a precision
equal to 0.96 and a recall equal to 0.986. Moreover the same evaluation is also
repeated by using cluster analysis algorithms and the best obtained results are
good (0.99 for the best precision and 0.95 for the best recall). As future work
we plan to investigate whether the feature vector we considered in this work is
able to detect game bots in social network. Furthermore, we will consider the
adoption of Process Mining techniques [45] and Formal Methods [46] in order
to extract the game bots patterns with the aim to verify whether are different
from the human users one.

Acknowledgements. This work has been partially supported by H2020 EU-funded
projects NeCS and C3ISP and EIT-Digital Project HII.

References

1. Adams, E.: Fundamentals of Game Design (2014)
2. Quandt, T., Kröger, S.: Multiplayer: The Social Aspects of Digital Gaming, vol. 3.

Routledge, Abingdon (2013)
3. Seay, A.F., Jerome, W.J., Lee, K.S., Kraut, R.E.: Project massive: a study of

online gaming communities. In: CHI 2004 Extended Abstracts on Human Factors
in Computing Systems, pp. 1421–1424. ACM (2004)

4. Yee, N.: Maps of digital desires: exploring the topography of gender and play in
online games. In: Beyond Barbie and Mortal Kombat: New Perspectives on Gender
and Gaming, pp. 83–89 (2008)

5. Griffiths, M.D., Davies, M.N., Chappell, D.: Online computer gaming: a compari-
son of adolescent and adult gamers. J. Adolesc. 27, 87–96 (2004)

6. Chen, Y.C., Chen, P.S., Song, R., Korba, L.: Online gaming crime and security
issue-cases and countermeasures from Taiwan. In: PST, pp. 131–136 (2004)

7. Paulson, R.A., Weber, J.E.: Cyberextortion: an overview of distributed denial of
service attacks against online gaming companies. Issues Inf. Syst. 7, 52–56 (2006)

8. Yampolskiy, R.V., Govindaraju, V.: Embedded noninteractive continuous bot
detection. Comput. Entertain. (CIE) 5, 7 (2008)

9. Kang, A.R., Jeong, S.H., Mohaisen, A., Kim, H.K.: Multimodal game bot detection
using user behavioral characteristics. SpringerPlus 5, 523 (2016)

10. Cabello, E., Cardoso, J., Ludwig, A., Maciaszek, L.A., van Sinderen, M. (eds.):
ICSOFT 2016. CCIS, vol. 743. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62569-0

https://doi.org/10.1007/978-3-319-62569-0
https://doi.org/10.1007/978-3-319-62569-0

132 M. L. Bernardi et al.

11. Bernardi, M.L., Cimitile, M., Mercaldo, F.: A time series classification approach
to game bot detection. In: Proceeding of the 7th ACM International Conference
on Web Intelligence, Mining and Semantics, pp. 512–519 (2017)

12. Varvello, M., Voelker, G.M.: Second life: a social network of humans and bots.
In: Proceedings of the 20th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, NOSSDAV 2010, pp. 9–14. ACM,
New York (2010)

13. Oh, J., Borbora, Z.H., Sharma, D., Srivastava, J.: Bot detection based on social
interactions in MMORPGs. In: 2013 International Conference on Social Computing
(SocialCom), pp. 536–543. IEEE (2013)

14. Kang, A.R., Woo, J., Park, J., Kim, H.K.: Online game bot detection based on
party-play log analysis. Comput. Math. Appl. 65, 1384–1395 (2013)

15. Kim, H., Hong, S., Kim, J.: Detection of auto programs for MMORPGs. In: Zhang,
S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1281–1284. Springer,
Heidelberg (2005). https://doi.org/10.1007/11589990 187

16. Chen, K.T., Pao, H.K.K., Chang, H.C.: Game bot identification based on manifold
learning. In: Proceedings of the 7th ACM SIGCOMM Workshop on Network and
System Support for Games, pp. 21–26. ACM (2008)

17. Chen, K.-T., Liao, A., Pao, H.-K.K., Chu, H.-H.: Game bot detection based on
avatar trajectory. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS,
vol. 5309, pp. 94–105. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89222-9 11

18. Chen, K.T., Jiang, J.W., Huang, P., Chu, H.H., Lei, C.L., Chen, W.C.: Identi-
fying MMORPG bots: a traffic analysis approach. In: Proceedings of the 2006
ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology, ACE 2006. ACM, New York (2006)

19. Kwon, H., Mohaisen, A., Woo, J., Kim, Y., Lee, E., Kim, H.K.: Crime scene recon-
struction: online gold farming network analysis. IEEE Trans. Inf. Forensics Secur.
12, 544–556 (2017)

20. Kim, H., Yang, S., Kim, H.K.: Crime scene re-investigation: a postmortem analysis
of game account stealers’ behaviors. CoRR abs/1705.00242 (2017)

21. Thawonmas, R., Kashifuji, Y., Chen, K.T.: Detection of MMORPG bots based
on behavior analysis. In: Proceedings of the 2008 International Conference on
Advances in Computer Entertainment Technology, pp. 91–94. ACM (2008)

22. Kashifuji, Y.: Detection of MMORPG bots based on behavior analysis. In: ACE
2008 (2008)

23. Hilaire, S., Kim, H., Kim, C.: How to deal with bot scum in MMORPGs? In: 2010
IEEE International Workshop Technical Committee on Communications Quality
and Reliability (CQR), pp. 1–6. IEEE (2010)

24. Mishima, Y., Fukuda, K., Esaki, H.: An analysis of players and bots behaviors in
MMORPG. In: 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), pp. 870–876. IEEE (2013)

25. Chung, Y., Park, C.Y., Kim, N., Cho, H., Yoon, T.B., Lee, H., Lee, J.: A behavior
analysis-based game bot detection approach considering various play styles. CoRR
abs/1509.02458 (2015)

26. Mitchell, T.M.: Machine learning and data mining. Commun. ACM 42, 30–36
(1999)

https://doi.org/10.1007/11589990_187
https://doi.org/10.1007/978-3-540-89222-9_11
https://doi.org/10.1007/978-3-540-89222-9_11

A Machine Learning Approach for Game Bot Detection 133

27. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial
Intelligence Approach. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-662-12405-5

28. Estai, M., Kanagasingam, Y., Xiao, D., Vignarajan, J., Bunt, S., Kruger, E., Ten-
nant, M.: End-user acceptance of a cloud-based teledentistry system and Android
phone app for remote screening for oral diseases. J. Telemed. Telecare 23, 44–52
(2017)

29. Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., Visaggio, C.A.: Effective-
ness of opcode ngrams for detection of multi family Android malware. In: 2015
10th International Conference on Availability, Reliability and Security (ARES),
pp. 333–340. IEEE (2015)

30. Canfora, G., Mercaldo, F., Visaggio, C.A.: A classifier of malicious Android appli-
cations. In: 2013 Eighth International Conference on Availability, Reliability and
Security (ARES), pp. 607–614. IEEE (2013)

31. Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision trees with minimal costs. In:
Proceedings of the Twenty-First International Conference on Machine learning, p.
69. ACM (2004)

32. Jin, C., De-Lin, L., Fen-Xiang, M.: An improved ID3 decision tree algorithm. In:
4th International Conference on Computer Science and Education, ICCSE 2009,
pp. 127–130. IEEE (2009)

33. Pang, J., Huang, Q., Jiang, S.: Multiple instance boost using graph embedding
based decision stump for pedestrian detection. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 541–552. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88693-8 40

34. Hang, Y., Fong, S.: Investigating the impact of bursty traffic on Hoeffding Tree
Algorithm in stream mining over internet. In: 2010 Second International Confer-
ence on Evolving Internet (INTERNET), pp. 147–152. IEEE (2010)

35. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R
News 2, 18–22 (2002)

36. Cutler, A., Zhao, G.: Pert-perfect random tree ensembles. Comput. Sci. Stat. 33,
490–497 (2001)

37. Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects.
Adv. Space Res. 41, 1955–1959 (2008)

38. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.:
The analysis of a simple k-means clustering algorithm. In: Proceedings of the Six-
teenth Annual Symposium on Computational Geometry, pp. 100–109. ACM (2000)

39. Kumar, M., et al.: An optimized farthest first clustering algorithm. In: 2013 Nirma
University International Conference on Engineering (NUiCONE), pp. 1–5. IEEE
(2013)

40. Panda, M., Patra, M.: A novel classification via clustering method for anomaly
based network intrusion detection system. Int. J. Recent Trends Eng. 2, 1–6 (2009)

41. Pandey, A.K., Pandey, P., Jaiswal, K., Sen, A.K.: Datamining clustering techniques
in the prediction of heart disease using attribute selection method. Heart Dis. 14,
16–17 (2013)

42. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach.
Learn. 2, 139–172 (1987)

43. Dua, S., Du, X.: Data Mining and Machine Learning in Cybersecurity. CRC Press,
Boca Raton (2016)

https://doi.org/10.1007/978-3-662-12405-5
https://doi.org/10.1007/978-3-662-12405-5
https://doi.org/10.1007/978-3-540-88693-8_40

134 M. L. Bernardi et al.

44. Bernardi, M.L., Cimitile, M., Distante, D., Mercaldo, F.: Game bot detection in
online role player game through behavioural features. In: Proceeding of the 12th
International Conference on Software Technologies (2017)

45. Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi, F.M.: Do activity
lifecycles affect the validity of a business rule in a business process? Inf. Syst. 62,
42–59 (2016)

46. Francesco, N.D., Lettieri, G., Santone, A., Vaglini, G.: Heuristic search for equiv-
alence checking. Softw. Syst. Model. 15, 513–530 (2016)

Genrih, a Runtime State Analysis System
for Deciding the Applicability of Dynamic

Software Updates

Oleg Šelajev1(B) and Allan Raundahl Gregersen2(B)

1 University of Tartu, Tartu, Estonia
shelajev@gmail.com

2 ZeroTurnaround, Tartu, Estonia
allan.gregersen@zeroturnaround.com

Abstract. Dynamic Software updating (DSU) systems enable applica-
tions to be upgraded without service interruption. However, the impli-
cations of changed program assumptions may result in unwanted run-
time phenomena after the dynamic update if the momentary state of the
application does not satisfy those changed assumptions. Hence, in order
to enable dynamic updates in a safe manner, the updating mechanism
needs to reason about the runtime state at update time.

We present a runtime state analysis system, Genrih, that enhances
an existing dynamic update system with the ability to take automated
informed decisions concerning the safety of a particular program update.
Genrih will determine if the automated default state transformations of
the underlying DSU system are sufficient for the given update. In Gen-
rih the atomic changes that constitute the update patch are analyzed in
combination with the present runtime state of the application. Based on
that analysis Genrih determines whether updating the system will lead
to observable unwanted runtime phenomena.

While Genrih is powerful enough to block updates until the runtime
state satisfies the update to allow for a safe update, for practical purposes
it observes the runtime state and produces notifications for enhanced
analysis and crash management. The practical evaluation shows that
the designed system imposes acceptable overhead and can help educate
developers about runtime phenomena.

Keywords: Dynamic software update · Runtime phenomena
State analysis · Reliability · Availability

1 Introduction

Software projects for existing applications inevitable grow and evolve continu-
ously. Efficiently and safely accommodating changes to the applications is as
relevant as ever. The Dynamic Software Update (DSU) research field deals with
the ability to apply changes to a system at runtime without service interruption
c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 135–159, 2018.
https://doi.org/10.1007/978-3-319-93641-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_7&domain=pdf

136 O. Šelajev and A. R. Gregersen

and without affecting the behavior of the application. The historical motivation
for contributing to the DSU field has its origin in the desire to generically han-
dle runtime updates of mission-critical applications that cannot tolerate main-
tenance downtime. In the past decades several strong contributions have been
made in this field, [1–5,11]. While the ability to update mission-critical systems
is instrumental to achieve the ultimate goal of DSU, research on the safety,
[6–8] and in particular the finding that to achieve guaranteed safety, a portion of
human intervention and input is required to apply safe dynamic updates, [5,9].

Applying updates while applications run is a complex task which roughly
divides into two main parts; (1) ensuring that the new behavior of the updated
program is reflected after having applied the update and (2) transforming the
existing runtime state of the application to accommodate the needs of the new
program specification.

The first part has been addressed in the literature by making the program-
ming language runtime aware of possible dynamic updates, [10,11] employing
architectures that make dynamic updates easier, [2]. An alternative approach
has been to extend and enhance existing runtime platforms dynamically to add
support for dynamic updates, [4,12].

The second part constitutes a more complex issue, which in the general case
of guaranteeing the safety of a particular dynamic update, has been shown to be
unsolvable, [1]. Hence, the human intervention required from program experts
to transform the runtime state to conform to the structure of the new version
is tedious. The current state-of-the-art way to handle necessary change to the
runtime state at the update time is to manually specify state transformation
functions that will convert the existing runtime state into a representation suit-
able for the new version of the program.

Since the safety of mission-critical systems is paramount, and we do not know
how to automate the state transformation fully, the DSU systems cannot risk
employing automatic state transfer solutions, [8]. However, defining these state
transformation functions is not easy, time-consuming, and error-prone. More-
over, requiring the manual intervention of the programmer is not always appro-
priate. For example, applying dynamic updates in the development environment
to avoid long pauses.

The current state of the art DSU systems that do not require manual actions
from the developers, and hence cannot fully guarantee safety, statically analyze
the code to determine when it can be updated, [13].

With the above generic issues in mind, this paper suggests a solution, Genrih
that grants developers immediate feedback on the update safety for specific
program patches based on the program runtime state at the time of the dynamic
update attempt. We limit ourselves to investigating DSU of Java applications.
Java represents a popular member of the family of the statically typed object-
oriented programming languages and has multiple DSU solutions available.

In Genrih, developers need not specify safepoints at which the DSU system
can perform the update in a safe manner. Genrih, will, depending on the configu-
ration, either block unsafe updates until the program reaches a safe runtime state
(possibly indefinitely) or allow unsafe updates to be carried out while providing

Genrih, a Runtime State Analysis System 137

detailed logging information about particular known runtime phenomena, [14].
While applying unsafe updates sounds like a bad idea, the main reasoning behind
this operational mode, is that Genrih can be utilized as an educational tool for
developers working with a state-of-the-art DSU system like JRebel, [4].

Having obtained feedback from many clients of JRebel, one of the main
difficulties when working with a DSU at development time, is that whenever an
app failure happens one of the first things developers ask themselves is whether
the failure was due to the DSU. Genrih greatly improves this scenario, in the
sense that it provides immediate feedback on possible unwanted specific side-
effects that can be expected from the updates. This is a strong step towards
more dynamic update safety since developers will learn how to best architect
their systems to ease possible dynamic software updates.

The main contribution of this paper is to propose a system that automatically
decides at runtime if the automatic state mapping of a given update mechanism is
sufficient for the update. The proposed system is orthogonal to the DSU solution
used for the updates. The practical evaluation is performed on a prototype which
is built with JRebel and Rubah updating functionality in mind.

This paper is an extended version of the 2017 ICSOFT paper “Using Run-
time State Analysis to Decide Applicability of Dynamic Software Updates”, [15].
While some parts of this paper have been completely rewritten, e.g., abstract,
introduction and conclusion, others have been improved and sharpened. More-
over, in this paper we’ve added a second DSU system, Rubah, to underpin the
generality of our approach, Genrih, and performed additional tests and perfor-
mance evaluation of Genrih’s approach.

The remainder of this paper is as follows. In Sect. 2 we establish the frame-
work for the terminology used in the paper as well, as well as explaining the
basic idea behind Genrih. Section 3 will then turn to how we implemented Gen-
rih by going through the main components of the system. This ends up with
a prototype implementation that will be utilized is experiments as explained
in Sect. 4. We evaluate the performance implications in Sect. 5 and discuss our
main findings of the research in Sect. 6. Section 7 details related work while we
finally conclude in Sect. 8.

2 Background

Looking at the full set of possible code changes that can be applied to Java
application classes, a subset can potentially lead to certain runtime phenomena
if applied without concern, [16]. However, if the DSU system applies changes
deterministically, the manifestation of those runtime phenomena after applying
a code change between the old and the new class is determined solely by the DSU
and the runtime state at the exact time of the update. Hence, every change can
potentially cause only a limited number of runtime phenomena. One example
would be when a new field is added to a class which by nature will leave the field
uninitialized. Logically, this can cause a NullPointerException in the event the
field is being read from an instance that existed before the update. This is an

138 O. Šelajev and A. R. Gregersen

example of the so-called absent application state phenomena. More interestingly,
adding a new field cannot lead to other types of runtime phenomena, like for
example “phantom objects” phenomena or any other from the list below. In
the paper describing runtime phenomena, [14], Gregersen and Jørgensen have
mapped certain observed phenomena to the individual class changes that were
responsible for them.

The following paragraphs list the set of possible Java code changes and their
related runtime phenomena that will be used throughout this paper. The defini-
tions of the runtime phenomena are taken from the work conducted by Gregersen
and Jørgensen, [14].

Phantom objects are live objects whose classes have been removed or inval-
idated by a dynamic update, [14]. Changes that can introduce phantom objects
are, for example, removing a class, adding modifier abstract to the class defini-
tion, replacing a class with an interface. Indeed, if the update adds a modifier
abstract to a definition of a class or replaces it with the interface, it means that
in the new version of the application, no instances of that class can be instan-
tiated. Hence, in the new version of the application, the very existence of such
objects should by definition be impossible. Any instances of this class that did
exist before the update will turn into phantom objects that have no place in the
correctly behaving Java application.

Absent state is defined as the situation in which objects or classes having
been created in a previous version once migrated to the new version,lacks a por-
tion of the expected state, [14]. Adding an instance or static field to a class, which
might not be initialized during the update, as previously described is probably
the most straightforward example of introducing the absent state phenomena.
There are a number of individual code changes that can lead to the manifestation
of the absent state phenomena. For example, adding a new subclass with the
intent to differentiate between objects using polymorphism can cause it. Since
no objects existing prior the update can be of the new subclass, differentiating
by type will fail despite the fact that it might succeed during a fresh run, where
objects are created based upon the new assumptions there were introduced with
the new design. Another example of a specific code change that can cause the
absent state phenomena is if the declared superclass (extends clause) of a class
is changed. All existing objects of the class are not reconstructed, so the set
of fields declared within the new super hierarchy will not have been initialized
since the constructor for those objects ran prior to the dynamic update. Yet
another example would be to remove the static modifier from an inner class.
Behind the scenes of the Java compilation phase (javac) what happens is that
a new synthetic field for referencing the outer instance from within the code of
the inner class is generated. It will not be possible to automatically deduce the
outer instance during the update so the value of this new synthetic field will stay
absent.

Lost state takes place when existing state that can be used to differentiate
between objects is lost. Removing fields or changing the type of a field can
produce the lost state phenomena. In these cases, the information held by the

Genrih, a Runtime State Analysis System 139

field prior to the update is inaccessible from the new code by virtue of the
state being either removed or overwritten with a default value of the new type,
possibly even null.

Oblivious update phenomenon is the absence of an expected runtime effect
that would have occurred if the system was started from scratch. For example, a
change to a constructor does not affect all instances having been previously con-
structor before the update, [14]. Like constructor changes the class-level variant
of constructors, namely static initializers, can cause oblivious update phenomena
when changed since a class can be loaded only once within the JVM.

There are a few other runtime phenomena that are observable after updates,
but in this paper we focus on these four key phenomena being described and
analyzed in the prior work by Gregersen and Jørgensen, [14]. The description of
the runtime phenomena given above maps the runtime phenomena to individual
changes that cause them. Naturally, if we reverse the mapping, then we can
map individual code changes to potential application level runtime phenomena.
With this at hand, knowing the set of individual code changes that constitute a
dynamic update, it will be possible to predict potential unwanted phenomena if
applied by a given DSU solution.

The phenomena listed in the Gregersen’s work is orthogonal to the exact
approach used by the dynamic update system and are solely dependent on the
runtime state of the application. These phenomena occur only when the appli-
cation state satisfies certain conditions, which can be expressed as queries to
the runtime state that evaluate if phenomena dictated by the changes might be
observed. The non-determinism of the phenomena and their dependency of the
runtime state is analyzed in the same work which introduced them, [14].

As an example of a query determining if the runtime phenomena may occur
on any access to the instances of a given class initialized before the update,
would be if the answer is yes to the question “are instances of the class or any
of its subclasses present in the application?” given the runtime state at the time
of the update.

The above simple query can be directly applied in a more useful scenario,
and it can determine if the following runtime phenomena might be observed:
phantom objects due to a class removed code change, adding abstract modifier
code change or a changing a class to an interface code change. The base query
for determining lost state phenomenon would also be: “are instances of the class
or any of its subclasses present in the application?”, however, for this case it
can be specialized to analyze if the field of those object instances can be used to
differentiate them.

Oblivious update caused by changing the constructor code can be predicted
by the same query, however, if it is caused by changing a static initializer of a
class, then a simpler query whether the class is loaded into the JVM suffices
since static initializers are not executed for every object instance as mentioned
previously.

By describing the queries to determine runtime phenomena, we implicitly
presented a mapping between the runtime phenomena and the changes that

140 O. Šelajev and A. R. Gregersen

cause them. The reverse mapping of possible runtime phenomena caused by the
changes to the classes of the applications can serve as a good first approximation
for the mapping database approach for verifying the update safety. Further work
can improve on those mappings and include more changes to effects mappings
to cover more ground. The exact implementation of the mapping that was used
in the evaluation of the approach is discussed further in the following section.

Note, that it is possible to derive less conservative queries for specific runtime
phenomena, but for this paper, we used the most straightforward ones, usually
saying that the phenomenon is possible to occur if the instances of the changed
class exist on the heap. We deliberately kept it simple, since, for the sake of
this work, we wanted to emphasize the fact that with the combination of easily
available data of individual code changes and simple queries on the runtime
state, we’re able to build a system that is useful in practice. Obviously, static
analysis of, e.g., call sites of new fields could be used to rule out the possibility
for certain phenomena, thus improving the precision of the approach, but not
the basic idea behind it.

The approach described in the Static Analysis for Dynamic Updates tool
paper, [17], is capable of discovering the atomic changes that were found to
be responsible for the above-mentioned phenomena during the experiment. The
tool compares application classes one by one and returns the list of individual
changes in them. In this paper, we present a runtime state analysis engine that
provides an insight into the runtime state of the application and is capable of
serving the queries mentioned above. This runtime state analysis engine forms
the last component of the system required to establish if an update can lead to
the observable runtime phenomena. Thus, the main components of Genrih are
(1) the class diff tool as described above, (2) a database to map these changes
to the corresponding runtime phenomena, (3) an analytic engine to inspect the
runtime state can provably establish if the update is safe from introducing these
unwanted effects into the updated application and (4) the DSU system of choice
to perform the actual dynamic updates.

3 A System for Predicting Runtime Phenomena

Deciding if the state transformation functions are adequate for a given update
is equivalent to analyzing whether the update will produce runtime phenom-
ena. The system implementing the dynamic state analysis to predict if a given
update can result in observable runtime phenomena is orthogonal to the actual
DSU solution performing the update. The architecture of the integration with
DSU solutions is quite straightforward. It requires the access to the original and
changed versions of the classes involved in the update before the actual update
happening; then it will run the analysis of the application state on the heap and
determine if applying the update is safe or if any application level phenomena
can be observed afterward.

The system to predict the potential faultiness of a dynamic update con-
sists of the following components: an runtime state analysis engine that is able

Genrih, a Runtime State Analysis System 141

Fig. 1. Architechture of runtime analysis system.

to respond to queries about the current runtime state; a class diff tool that
determines which changes has occurred between two versions of the application
classes; a mapping between the changes into the possible runtime phenomena
caused by these changes, and a world stopper that can pause the JVM to ensure
that the analysis is sound, and the application state does not change between
the analysis and the execution of the update by the DSU solution.

The overall architecture of the designed system is depicted by Fig. 1, origi-
nally produced for the ICSOFT version of this paper, [15].

Genrih is developed as a standalone component separate from both applica-
tion code and the DSU solution that performs updates. It embeds both the diff
tool to compare class files and the runtime state analysis engine, which uses JVM
native agent capabilities to inspect the runtime state. The arrows on the Fig. 1,
show the main communication patterns between the components. Genrih does
not act upon the application itself, but rather integrates with the DSU solution
to obtain changed classes and then it notifies about the update safety. The native
agent inside the system uses the Java Virtual Machine Tool Interface (JVMTI),
[18] to gain access to the runtime state that is not otherwise possible to obtain
from regular Java code. Note that the capabilities of non-native javaagent or
application level code are not enough to perform the analysis of the Java heap
to the extent necessary.

The rest of this section describes responsibilities and a possible implementa-
tion of each component and how they all come together to predict the faultiness.

142 O. Šelajev and A. R. Gregersen

3.1 State Analysis Engine

The JVM stores objects on the heap. The memory on the heap is managed:
the memory for new objects is allocated automatically, reachable objects are
often moved around, unreachable objects are garbage collected and the memory
claimed by them can be reused.

As we saw above most of the queries to determine the possibility of a phe-
nomena consist of two questions: (1) is class T loaded into the JVM and (2) are
there initialized and not yet garbage collected instances of the class T, sometimes
including its subclasses.

Luckily, we can answer both of these questions for a given class T by lever-
aging the JVM tool interface (JVMTI) and a native agent. JVMTI provides a
way to inspect the state of the running JVM program and influence its execu-
tion. Determining if a class is loaded in the JVM can be done from the JVM
itself, especially if we are not interested in the class loading details and can
query just the system class loader. We can use the findLoadedClass method of
the ClassLoader class to obtain this information.

To count the number of the instances of a class T, we can make use of
JVMTI’s “iterate through heap” function that takes a class which instances to
iterate and a callback function to call for every instance. For our purposes, the
callback function just increments a counter for every found instance. If after the
invocation of the “iterate through heap” with the given class argument the result
is non-zero, there are instances of the given class.

The native agent approach to leverage iterating through heap is general
enough to cover more complex queries that might be necessary to introduce
for possible future enhancements of the system. For example, if one needs to
investigate a removal of the field and the possibility of lost state phenomenon, a
more complex callback that inspects every instance found by the iterate through
the heap function to determine if the field in question has a distinguishing value
or not. If all the objects have the field initialized to the default value for the field
type, removing the field does not lose any data.

The discussion section contains more details about which queries were imple-
mented in the prototype of the described system and why.

3.2 Class Diff Tool

The DSU solution must have access to the new versions of the classes to update
the definitions in the JVM. We can use a simple cache mechanism to store
the bytecode of the loaded classes by the class name. To reduce the memory
footprint, we can potentially ask the DSU solution if the class in question is
reloadable, meaning if there is a possibility that the bytecode for that will change
and avoid storing the bytecode for classes that won’t be updated. Alternatively,
caching to disk can be utilized, but such a scheme can introduce additional
performance overhead. However, this becomes an engineering challenge, so for
the purposes of this paper, we implemented the in-memory approach.

Genrih, a Runtime State Analysis System 143

The class diff tool, [17], consumes two sets of classes: old and new; and
produces a list of events that describe how the classes in the new set differ from
their respective counterparts in the old set.

For the class definitions that are different in the old version and the new
version, there are three main results of the diff analysis: old class does not
exist, new class does not exist, and both classes exist. First two cases are natu-
rally mapped to the class added and class removed changes respectively. If both
class definitions exist, class diff tool analyzes them for the differences. The class
diff tool described in the Static Analysis for Dynamic Updates paper, [17] does
exactly that, it takes two definitions of a class and returns a list of the events:
new instance field added, new static method event, etc. Each individual change
event has a reference to the class and the class member: method, field, or ini-
tializer that were affected by the change.

The analysis engine can run the diff tool on every class for which both the old
and the new versions are present and obtain the list of exact changes between
them. Then the entries within the list are mapped to the possible runtime phe-
nomena they might surface which in turn is fed to the runtime state analysis
component to determine the possibility of the phenomena given the current run-
time state of the application.

3.3 Changes to Phenomena to Runtime State Queries

We need to map the exact changes that occurred between the old and the new
versions of the classes involved in the dynamic update. During an update, we
have the class definitions for both old and new versions of the application. The
output of the class diff tool described above is the list of change events that are
found in these versions.

In the current work, we investigate the following changes that were previously
found to be causing the runtime phenomena, [14]. The first column of the Table 1,
taken from the original version of this paper, [15], specifies the changes, the
second lists the runtime phenomena they can produce, and the third column
describes the queries, which reveal whether the phenomena might be observable.

From all of the changes that can lead to runtime phenomena which at the same
time are recognized by the system we designed, we handpicked a subset for show-
casing the approach. While other changes are also interesting, these have been pre-
viously recognized to lead to the runtime phenomena described above, [14].

In future research, the mapping for the changes can be more thorough, how-
ever, being able to predict the faultiness with respect to the runtime phenomena
observation after the dynamic update containing these changes is a useful result
in itself.

The mapping provided above can be directly translated to code via a series of
if-else statements, where the class T is the class currently being diffed. When the
queries that correspond to the possibility of observing the runtime phenomena
are obtained, the runtime state analysis engine evaluates them using the queries
it knows how to answer. The result shows whether the update is safe from the
application level runtime phenomena, with respect to the phenomena and the
changes that we analyze.

144 O. Šelajev and A. R. Gregersen

Table 1. Changes to phenomena to queries table.

Change type Phenomena Analysis queries

Class T made abstract change Phantom objects: instances of
class T are on the heap

Class T is loaded and
instances of T are on
the heap

Class T removed change Phantom objects: instances of
class T or subclasses are on the
heap

Class T is loaded and
instances of T or
subclasses are on the
heap

Constructor of class T changed Oblivious update: existing
instances have run previous
version of constructor

Class T is loaded and
instances of T or
subclasses are on the
heap

New instance field change in
class T

Absent state: old instances of T
won’t have the new field
initialized

Class T is loaded and
instances of T or
subclasses are on the
heap

New static field change in class T Absent state: static field might
not be initialized

Class T is loaded

Static initializer changed in
class T

Oblivious update: new version
of static initializer is not
executed

Class T is loaded

Super class of class T changed Absent state: instances of T or
subclasses might not have field
of the new superclass initialized

Class T is loaded and
instances of T or
subclasses are on the
heap or the hierarchy
from the new superclass
to Object does not
declare any fields

Modifier static removed from
inner class T

Absent state: implicit field out
on instances of T is not
initialized

Class T is loaded and
instances of T or
subclasses are on the
heap

3.4 World Stopper

A JVM embodies a multithreaded environment where different threads, like the
garbage collector, mutate the global state all the time. The direct consequence
of this is that to ensure the soundness of the analysis, we have to synchronize the
analysis and the update with the JVM activities external to the DSU solution at
hand. One way to do this is to rely on the JVM pausing its work for the internal
bookkeeping. However, this might not be utterly portable, so the more direct
solution is to use the JVMTI thread suspending functionality and iterate over
all threads that are not involved in the dynamic update. Stopping the threads
for the analysis bears an obvious performance overhead, which we measure in
the practical part of the current research.

On the other hand, stopping the JVM for the analysis adds the benefit of
knowing exactly what methods are currently active on the stack. If a method

Genrih, a Runtime State Analysis System 145

Fig. 2. Update process with Genrih.

body or its signature have been changed in the update and the method is cur-
rently running, applying the update can lead to various unwanted side-effects.
For example, if the update removed a method which currently executing code
tries to call, the best the system can do is to throw a NoSuchMethodErrors
to communicate inability to locate the method in the updated code. Moreover,
stopping the world for the analysis allows the system to inspect if methods that
have been changed are currently active. Such runtime check alone can simplify
the type safety of the update process by preventing the updates that modify
the currently active methods from being applied. However, in the spirit of not
intervening with the update process, one can emit a notification that a cur-
rently active method is changed and possible side-effects including among others
exceptions about class members not found.

In the following subsections, we describe how our system has been integrated
into two state-of-the-art DSU systems for Java, namely JRebel and Rubah.

3.5 A Prototype to Enhance JRebel

We implemented a prototype of the system to predict if runtime phenomena
may surface when specific updates are applied dynamically. We call the system
Genrih and it is integrated with JRebel dynamic updating functionality.

The general workflow of performing a dynamic update with the runtime state
analysis is illustrated in the Fig. 2 from the original version of the current paper
[15].

The runtime state analysis system marked as Genrih in the Fig. 2 receives
a request from the DSU solution that an update is available and the list of
classes that are going to be involved in the current update. These classes are

146 O. Šelajev and A. R. Gregersen

diffed to obtain the exact changes in the update. The system then stops all the
activity in the JVM using the world stopper described above. At this moment
no state can be mutated in the application, so we run the analysis of the heap
by evaluating the queries that are mapped to the changes. The dynamic update
proceeds as follows, if the update is runtime phenomena free at the current point
in time, we signal the DSU solution to continue with the update and replace the
class definitions involved. After this process finishes, we can resume the paused
threads and report that the update has successfully finished.

Otherwise, Genrih still resumes the threads, but schedule the analysis after a
small random delay up to 500 ms hoping that the runtime state of the application
will have changed by then, removing the objects that are responsible for the
possible phenomena after the update. If the following analysis runs show that
the state has not changed enough, and the runtime phenomena are still possible,
Genrih emits a notification to the developer saying what runtime phenomena
are possible and what change is causing it and if known, which objects contain
the state leading to the observable difference in behavior.

In the actual system which enhances the existing development time DSU
solutions, after showing the notification, Genrih should allow the system to pro-
ceed with the update, not to stall the development process.

The exact details of how the DSU solution we integrate with is performing
the update are orthogonal to the safety evaluation. Thus, we can treat it as a
black box. The only integration points that we are interested in are:

– a signal that the update is available;
– a list of the classes involved in the update;
– the functionality to signal if Genrih determined whether the update is safe to

apply.

These requirements are relatively humble, and the integration with an exist-
ing DSU solutions is fairly straightforward.

Genrih implements the runtime state analysis engine, the mapping func-
tionality of class changes to potential side effects, integrations with JRebel and
Rubah, and the use of a class diff tool.

3.6 Enhancing Rubah

Rubah is another state-of-the-art dynamic software update system for Java [5].
It was developed in an academic setting and the source code is publicly available
[19], which made it an ideal candidate system to integrate with Genrih. In this
section, we discuss how the update procedure of Rubah works on top of the stock
JVM, how it is different from JRebel’s seamless and completely transparent
approach, and whether it complicates the runtime state analysis Genrih has to
perform.

Rubah implements the dynamic updates entirely through libraries and appli-
cation bytecode processing, and the main contributions lie within the algorithms
relating to post-update state transformations. Rubah performs those algorithms

Genrih, a Runtime State Analysis System 147

in a lazy and parallel manner, which reduce the time required for the update.
Moreover, the steady-state performance overhead imposed by Rubah before and
after applying updates is quite moderate.

Rubah is primarily built to apply dynamic updates to applications at pro-
duction time. Thus it tries to make the update procedure as precise and deter-
ministic as possible, sacrificing the developer transparency. It requires quite a bit
of manual manipulation by the developer to retrofit the program to be Rubah
compatible. Likewise, Rubah requires human intervention to prepare and trigger
an update. Below is a general description of how Rubah operates.

To run a Rubah-enabled application, developers need to start Rubah instead
of their own application directly. This allows Rubah to load and manage the
application using a combination of a custom class loading and class versioning
scheme. Rubah utilizes the class versioning scheme to distinguish between the
classes in the old and new versions of the application.

The manual developer intervention required to retrofit the programs to be
updatable by Rubah include the following. Rubah offers a thread abstraction
‘RubahThread’, which is compatible with the JDK thread API and is a drop-
in replacement for that. The Rubah runtime has knowledge of RubahThreads
and can stop and restart them during the update. If all application threads are
Rubah threads, the application can be updated, otherwise, the update results
in a crash due to the fact Rubah will try to stop normal Java threads. To
ensure that the update is seemingly safe, Rubah does not automatically allow
the program to be updated at any moment in time. The developer has to specify
markers for safepoints for when the update can be applied. While the marker
is a simple call ‘Rubah.update(“marker”);’ it does require a deep understanding
of the update procedure by the developer. On top of that, the developer has
to generate descriptor files for all versions of the application. Such a descriptor
file is a list of the classes of the application and some meta-information about
them. There is a tool for descriptor generation available for Rubah. Based on
the descriptor files and the application jar files for both versions in the update,
Rubah generates a stub state migration class. That class has to be available
to the update and specifies the logic of transforming the objects from the old
representation to the new.

During the update, Rubah performs the following: it loads the new version of
the application in memory, stops all running threads in the application, migrates
the program state transforming the objects using the generated transformation
classes, migrates the control flow of the program by restarting the Rubah threads.
After the update, the freshly created Rubah threads run the new version of the
program on the transformed runtime state. There are corollaries of the update
procedure, which are important for devising a runtime state analysis system
and, especially, for applying Rubah for the DSU in development setting this
work concentrates on.

The update procedure disregards and loses any state that is held on the
stack of the currently running threads. The Rubah threads get restarted, and
the normal Java threads just crash, so any information that is stored in the local

148 O. Šelajev and A. R. Gregersen

variables of the method call stack will get lost. Arguably, it is not a problem
for the production time dynamic software update, where one would expect the
application to be fault-tolerant. The stub state transformations Rubah gener-
ates are quite limited in functionality, field values of fields which do not change
between the versions are copied into the new objects, but introducing new fields,
changing field types or introducing new static fields are handled by just changing
the class schema and initializing the fields to the default JVM values: 0, false,
null. While in production such conservative approach is beneficial, the developer
has the full control of the migration code and assumes no “magic” updates,
during development time it limits the amount of update Rubah can safely per-
form without the runtime phenomena occurring (assuming the developer does
not modify the state migration file which is a counter-productive way to spend
time).

A default Rubah update that includes the class schema transformations, for
example, adding a new instance field, would almost certainly cause a runtime
phenomena if the objects transformed reside in the Java memory during the
update. Which makes it an excellent setting to test Genrih.

To integrate Genrih with Rubah one needs the same interface to the underly-
ing DSU solution as we described in the previous section about JRebel. It needs
to receive a signal about the update happening, the list of changed classes, and
a way to emit a notification to the developer if the update will potentially cause
runtime phenomena.

Rubah’s source code is fairly well organized, the update is handled by a state
machine in the ‘rubah.runtime.state.States’ class. It is a natural entry point to
inject Genrih’s code into the Rubah runtime.

Rubah threads are the extension of the normal JDK threads, so Genrih’s
code operating on stopping and resuming threads for the runtime state analysis
works without modifications. Heap analysis is also DSU agnostic with the only
exception that the conservative queries to the runtime state can lead to more
false positives under a more powerful DSU which can handle more state trans-
formations correctly out of the box. Given Rubah’s approach to leave all state
transformation code on the developer, and reasonable lack of interest to specify
migrations for the updates manually in the development time DSU problems,
Genrih’s conservative approach works well for Rubah.

The next section describes the experiment of updating a real-world game
application with the runtime analysis system capable of predicting runtime phe-
nomena occurring because of these changes to the code.

4 Experiment

For JRebel, we have evaluated the designed system on the update scenarios
of a Space Invaders game that Gregersen and Jørgensen have used to prove
the existence of the runtime phenomena, [14]. The choice of the application
for the experiment is influenced by the lack of the systematic benchmarks or
analysis of the development time DSU solutions. Also, reusing a code base that

Genrih, a Runtime State Analysis System 149

certainly contains several versions of the application different enough to produce
runtime phenomena after the updates is more relevant to the current work than
performing the experiment on an arbitrary code.

The performed experiment was designed to provide information about two
hypotheses:

1. The system can predict that an update will not cause side effects or provide
an immediately qualified feedback regarding possible runtime phenomena.

2. When or if the runtime state at the update time will not lead to the side
effects, the system carries the update out without the considerable overhead.

The experiment process follows the given procedure. Two versions of the
Space Invaders game are manually investigated to find out the changes that
correspond to the update. Both versions of the game are started to determine
what is the expected behavior of the program.

After some state is reached using the old version of the code, we update the
code base to the new version and build the application without stopping the
use of it. If the update is successful, we try to observe the runtime phenomena
predicted by the manual code analysis. If we observe the side effects, we consult
the output of Genrih to verify that the phenomena were predicted, and the
notification of its effects is present.

Although the experiment procedure is not automated and relies on manually
constructing pre-update runtime state, it does mimic the typical application
development scenarios, which are the main interest of this work.

The first part of the experiment determines that updating an application
with JRebel without considering the runtime phenomena can indeed crash the
application. The application under test is the Space Invaders game, the versions
of which differ in how they assign the color of the Shot object. In the old version,
the color is a constant Color.YELLOW returned from a shot.getColor() method.

In the new version of the code, Shot class has an instance field: Color color
that is initialized to Color.GREEN at the end of the only constructor for the
class and returned from the getter. The default value for the color field is null and
all objects initialized within the new version of the game running have the field
Initialized during the regular constructor execution. If the color field happens to
be null, at the moment the redrawing routine asks for it, the NullPointerExcep-
tion is thrown and the program crashes. Both versions of the game work if they
start from scratch, and the shot objects flying through the screen have correct
colors: yellow and green respectively.

When there are no shots visible on the screen when JRebel updates the
application, the update succeeds. The shots that are fired afterward are green.
However, if the shots are visible on the game field during the update, the game
crashes with the NullPointerException, because the shots do not have the color
initialized.

If this update is triggered with Genrih performing runtime state analysis,
it correctly logs the possibility of the absent state phenomenon on the pre-
update shots instances. This feedback together with the exception stack trace is
sufficient to identify the update of the crash reasonably.

150 O. Šelajev and A. R. Gregersen

The next phase of the experiment involved significantly updating Space
Invaders code, going to another major revision of the game. The functional
changes in the update add barrier entities that have to be drawn on the field
and make the aliens move and shoot back.

Updating from the initial version of the game to the new shooting version of
the game with JRebel brings no visible runtime phenomena. The game proceeds
as expected, having the new behavior in place. However, updating the game back
to the old version of the code, which has no information about aliens being able
to shoot, crashes the program with a NoSuchMethodError, because the method
Aliens.fire(), called from the main game loop is not present anymore.

With the runtime analysis system, the update forward to the shooting version
of the code goes in the following fashion. The forward update determines the
new instance fields in the Game class with the following declarations.

private Shots alienShots = new Shots();

private Barriers barriers = new Barriers();

The runtime analysis shows that there is one Game object on the heap, so
the update is postponed due to possible absent state on the Game object after
the update. However, since after the update, the application does not crash this
false positive feedback is easily ignored.

The downgrade from the shooting version of the game to the basic one crashes
with the NoSuchMethodError and the notification from Genrih: “Threads are
currently running method Game.gameLoop() that is changed. An unpredictable
update can happen”. Together with the NoSuchMethodError stack trace, that
originates in the Game.gameLoop() method, this information is sufficient to con-
sider the DSU being responsible for the crash, not the application logic.

An important additional observation is that, however, most of the time some
thread is executing the Game.gameLoop() method, there is a small window of
time, during the game tick, when it is not on the stack. Then the update pro-
ceeds without triggering errors. The dependency of the updates on the current
runtime state and given that Genrih can predict if the update will cause no
runtime phenomena opens possibilities to stall the update process until the run-
time state changes, so the runtime phenomena are impossible. We discuss such
advancements of Genrih in the discussion section.

The following updates to even more complicated Space Invaders versions
occurred similarly. Without the runtime analysis, adding features and state to
the code are handled by existing JRebel well. The downgrades often result in
the NoSuchMethodErrors caused by calling methods that no longer exist in the
new version from the old version of the method still running during the update.
Which is the result of not checking the if the updated code is currently actively
executed on in the program.

The experiment shows that the designed system provides immediate feedback
on the runtime phenomena using an existing stock DSU solution. This feedback
and the nature of errors originated in the runtime phenomena clearly indicate
that these errors are due to updating the application rather than the code itself.

Genrih, a Runtime State Analysis System 151

Debugging the issue with such feedback that strongly suggests the origin of these
errors in the updating process is more straightforward than without it.

Rubah cannot update an arbitrary Java application out of the box; the
code has to be retrofitted to be aware of Rubah, including the use of Rubah
threads and manually inserted markers for places where the code can be updated.
Allegedly, the changes to the programs are minimal, the original research paper
for Rubah has the programmer’s effort estimates for some Java applications: H2
database, Voldemort key-value store, and the Jake2 video game. Retrofitting first
two require patches of about 680 lines for each version to make it Rubah aware.
Jake2 update is simpler, measuring at around 80 lines of patch per version. It
makes it harder to evaluate Rubah on the same set of the updates as JRebel.
For the sake of experiment, and to show the generality of the approach, we ran a
set of synthetic tests for Rubah on trivial Java applications. The tests included
the changes: adding a new instance field without the default value to the objects
held in memory, adding new instance fields with the default values, adding static
fields with the default values specified, adding new methods, changing the sig-
natures of the running methods, changing class hierarchy and deleting existing
classes.

The experiment setup was synthetic, the main class that starts a Rubah
thread which loops over a counter and calls a method in the class under update.

The result of the updates is that any data-manipulating change is not handled
by Rubah out of the box with the state migrations and results in the absent
state and program crash with the NullPointerExceptions. Genrih’s integration
with Rubah works and produces the notifications about the pre-update objects
existing on the heap and that accessing the new fields on them could result in a
NullPointerException.

Another side effect of Rubah’s approach is that the active method checks
never produce any notifications because Rubah stops all running Rubah threads
prior the update with a consequence that there are not threads running any code
which is updated.

All in all Genrih’s integration with Rubah shows that it is capable of predict-
ing possible runtime phenomena, requires almost no changes compared to the
integration with JRebel, and does not interfere with Rubah’s ability to execute
the updates.

In addition to these synthetic tests, we ran the benchmarks on H2, Voldemort
and Jake2 applications that were used for assessing Rubah’s performance in the
original paper. Since these applications were manually chosen and retrofitted
for Rubah, the updates do not produce runtime phenomena. However, they
show that Genrih does not interfere with updating large long-running Java
applications.

More detailed analysis of the experimental results is presented later in the
discussion section.

152 O. Šelajev and A. R. Gregersen

5 Performance Evaluation

This chapter describes the performance overhead of automatically determining
the applicability of the state transfer functions of a DSU during the dynamic
update. The designed system:

– requesting the list of classes involved in the update,
– running the diff on the old and the new version of the classes to find the exact

changes,
– querying the runtime state analysis engine about the current runtime state

for possible runtime phenomena caused by the changes (for every changed
class).

Requesting the changed classes and diffing the result can be done in parallel
with running the application, so the impact of these actions is negligible and the
complexity of the operations is linear in the number of classes changed.

Performing the state analysis is more complex. First of all, it must happen
when the application is paused so that the state will remain unchanged between
the analysis and the actual moment of the update.

The runtime state analysis engine offers the following API for the queries:

boolean isClassLoaded(String className)

boolean hasInstances(String className)

boolean hasFieldInitializer(Class klass, String fieldName)

boolean hasNonDefaultFieldValues(String className, String fieldName)

boolean isMethodRunning(String classname, String methodName)

This chapter focuses on analyzing the performance of the implementation of
the runtime state analysis engine used in the experiment. The main measure-
ments indicate how much time do individual calls to these methods take and the
results can be extrapolated to estimate how much time can a single analysis run
take. Given that the number of possible queries is limited and is linear in the
number of changed classes, the extrapolation is straightforward.

The machine where the benchmarks were run has the following configura-
tion: MacBook Pro (Retina, 13-in., Early 2013) with the 2.6 GHz Intel Core
i5 processor, 8 GB 1600 MHz DDR3 memory, and a flash storage hard drive.
Java version “1.8.0”, Java(TM) SE Runtime Environment (build 1.8.0-b132),
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed mode) was used to
perform the experiments.

The benchmark was run from a JVM process with the heap size of 1GB.
During the benchmark, about 70% of the heap was filled with the objects of
dynamically generated classes to model the real world performance. We also
started 32 background threads to provide the load for the isMethodRunning
query comparable to a real-world use.

To perform benchmarks we utilized Java Microbenchmark Harness (JMH),
[20]. The benchmark was configured to measure the average time of the execution
of an operation based on 10 sample properly warmed runs. Table 2, originally

Genrih, a Runtime State Analysis System 153

Table 2. Runtime queries benchmark.

Benchmark Score Error Units

isClassLoaded 0.001 ±0.000 ms/op

fieldInitializer 0.761 ±0.062 ms/op

hasInstances 1.430 ±0.343 ms/op

nonDefaultFields 1.513 ±0.306 ms/op

isMethodRunning 0.099 ±0.014 ms/op

produced for the shorter version of the current paper [15], shows the output of
a random run of the benchmark using ten iterations.

The time growth is linear of the number of the instances the system has
to traverse. For a million of active object instances, it takes consistently under
60 ms. Varying heap size did not influence the timing on the heap sizes up to
3 GB.

The results suggest that the overhead of running a performance check on
an incrementally small update to the application code is sub-second. During the
experiment with the Space Invaders game, the updates were postponed by 500 ms
if the runtime state does not allow to perform it immediately. The analysis did
not noticeably slow down the user experience.

Since we have the integration with Rubah whose original paper features per-
formance benchmarks for long-running Java applications H2 database, Volde-
mort key-value store, and a video game Jake2, we executed the fast versions of
H2 and Voldemort benchmarks on a MacBook Pro, 13-in., 2016, with a 3.1 GHz
Intel Core i5 processor, and 16 GB of 2133 MHz LPDDR3 memory.

The main goal of the benchmarks is to assess the performance overhead of the
application after Rubah applied an update, but they also time the update pause
to assess the performance of the novel Rubah parallel and lazy state transforma-
tions. Based on the results of the benchmark runs Genrih does not increase the
average pause time of the update dramatically, the overhead of running Genrih
analysis is approximately 10% of the pause time on small workloads and less
than 1% of the larger heaps. The main source of this overhead is that Genrih
by default is configured to wait 500 ms and perform the second runtime state
analysis to see if the application state changes. In Rubah’s case, it almost always
does not change, since the application threads are already stopped by Rubah.
However, even 10% update time overhead is appropriate for the development
time DSU and is a great tradeoff for the additional information about the safety
of the update.

6 Discussion

The current research concentrates on the design of a runtime state analysis
system for the JVM that can automatically determine if the state transformation

154 O. Šelajev and A. R. Gregersen

functions of a given DSU solution can satisfy a given update. It does so by
analyzing the individual changes that the update consists of and querying the
runtime state to verify if the declared capabilities of the DSU can handle the
scenario at hand.

The proposed system primarily tackles updates performed during develop-
ment, where the changes to the application are frequent and typically smaller
than the difference between two releases of the application. The main benefit
of such system is that the developer after introducing the change would likely
run the exact piece of code that was changed to verify the correctness of the
introduced functionality. As such, any incompatibilities in the runtime state
representations in the old and new code have a much higher chance of being
stumbled upon and producing a runtime phenomena of the update.

Sometimes the inability to apply an update dynamically can be noticeable.
The incomplete update can lead to application errors or crashes. Others, how-
ever, are subtle and have less obvious consequences. The errors require developers
to investigate the code base to determine the cause of the occurring behavior.
That is counterproductive to the core idea of the DSU for the development
environments, which is to save time.

In the previous section, we showed a series of dynamic updates of a sample
Java application, the Space Invaders game, that illustrated two things. First, the
runtime phenomena occur during the dynamic updates, and the updating sys-
tems can lack the sophistication to distinguish a safely applicable update from
those that will result in a system crash or invalid runtime state of the applica-
tion. Since the problem of automatic state transformations is not solvable in the
general case, [1], any system not requiring manual intervention of the program-
mer has blind spots for the particular changes and will break the update. This
also one can always design an application whose behavior after being updated
differs from the behavior of a clean run of the new version. One straightforward
way to do this is to rely on the application level data to differentiate between the
behaviors. For example, to kill the application process if a certain marker class
is already loaded. The old version of the code will then load the class, and pro-
ceed to wait for the user input. The new version of the application checks if the
marker class is already loaded and decides whether to kill itself. The only way to
solve issues like that is to specify the state transformation functions manually.
However, it is imperative to avoid the manual intervention from the developer
during the updates, since it removes all the time-saving benefits of the dynamic
updates.

Second, that our proposed state analysis engine can predict the applicability
of the update by querying the runtime state efficiently.

Without the runtime analysis system, even a minor update can result in
application crashes as the experiment section showed in the example of dynamic
updates applied both with JRebel and Rubah.

The non-deterministic nature of such errors, due to runtime phenomena being
dependent on the runtime state at the moment of the update complicates debug-
ging and makes verification of code correctness time-consuming work.

Genrih, a Runtime State Analysis System 155

The runtime analysis and feedback system described in this paper, can sig-
nificantly decrease the frustration of encountering unexpected behavior in the
updated application.

Indeed, as the experiment showed, we can determine that the state trans-
formation functions do not satisfy the update at hand. Additionally due to the
knowledge of what changes the update consists of and which objects are on the
heap or active methods on the stack might produce the runtime phenomena,
we preventively notify the developer about the upcoming errors, reducing how
unexpected these are.

The list of runtime phenomena the system can predict covers the changes
to Java programs previously identified to be capable of producing runtime phe-
nomena: adding or removing static and instance fields of the objects, changing
actively running methods or the hierarchy of the loaded classes. The updates
performed during the experiment show several significant runtime phenomena
types and show that we can apply the knowledge of the capabilities of the state
transformation functions of a particular DSU solution with regards to these.

To utilize the described system with an arbitrary DSU, one needs informa-
tion regarding which individual class changes are supported by the default state
transformations of the DSU. In this work, we implemented integration with two
DSU systems JRebel and Rubah. To support both systems we needed to intro-
duce very minor changes to the proposed system’s code, mostly to utilize the
default DSU logging framework for the notifications and error messages.

The experiments showed that both JRebel and Rubah updates can cause
runtime phenomena and that Genrih’s runtime state analysis system can predict
several classes of the runtime phenomena as possible before the update is applied.
The conservative approach to predicting runtime phenomena can lead to false
positive notifications for both systems, but it is conservative enough to work
with both JRebel and Rubah without requiring to tweak it for the particular
DSU at hand.

Additionally, the proposed system can potentially be configured to postpone
the updates from happening until the runtime phenomena are not possible: until
the runtime state transformations are manageable by the DSU at hand.

This approach will use the runtime analysis to determine if the update might
lead to the phenomena and apply only safe updates. Otherwise, the update is not
continued and rescheduled after a short delay. When a window of opportunity
appears when the runtime state changes and the state transformation capabilities
of the DSU fit it better.

The exact details of such setup require more research. Using the proposed sys-
tem to analyze the practical data for applying development time DSU solutions
will provide the necessary experimental data for the research of the production
systems.

The ability to predict the runtime phenomena by observing the current run-
time state of the application allows us to make the daunting task of developing
DSU friendly applications easier. Moreover, the ability to identify updates that
are complicated for the DSU solutions can be used to collect a corpus of update

156 O. Šelajev and A. R. Gregersen

scenarios for a comprehensive DSU benchmark for Java programs. The exist-
ing research of the unified DSU benchmarks concentrates on the updates of the
production systems written in lower level languages.

Dynamic Software Update is a complex problem, so any advancement in
making it more widespread is a good step forward. Which makes the current work
of enhancing the availability of DSU solutions that provide essential information
about the predictability and applicability of an update significant.

7 Related Work

To provide the context for this paper, in this section we list some prior work on
dynamic software updates focusing on the alternative DSU approaches or on the
work which focuses on the safety of the updates.

The field of analyzing the safety of the dynamic updates is not particularly
new, but the work is mostly focused on safeguarding the updates to the produc-
tion and mission-critical systems. Such goal requires rigorous proof of the safety
criteria and is not focusing on making the updating system easy and fast to use.

In the paper which gave the direct inspiration to the current work, Gregersen
and Jørgensen identified the changes to the Java programs which can lead to
runtime phenomena after the updates [14].

Bazzi et al. researched the state mapping problem for DSU and tried to limit
the problem of the general DSU to make automatic DSU solutions practically
possible, [21].

Zhao et al. devised an automated static analysis system, [13], that suggests
safe points in a program, which can be run on the arbitrary applications without
prior specification of the original safe points.

There also exist multiple dynamic software update solutions for the Java
programs, [3,12].

The DSU systems we integrated Genrih with are Rubah [5] and JRebel [4].
Rubah uses bytecode rewriting to enable dynamic update on the stock JVM. The
main novelty of Rubah was the lazy state transformation approach to speedup
the update times. On the downside, Rubah requires programmers effort to make
applications updatable, which makes it less attractive for the development time
updates.

JRebel is a state-of-the-art development time DSU solution for Java capa-
ble of reloading all changes to the application seamlessly, [4]. However, JRebel
does not implement any non-trivial measures to ensure runtime phenomena free
updates, which made JRebel a perfect candidate for a stock DSU solution to be
enhanced with Genrih.

Rather than trying to devise a generic solution capable of updating the run-
ning application at any moment of time, another approach to making dynamic
updates safe is to allow developers to specify the “quiescence” safe points in
the application code where it is safe to apply the updates. For some applica-
tion architectures, like the event-driven systems, such approach, is incredibly
straightforward and does not require extensive changes to the application archi-
tecture.

Genrih, a Runtime State Analysis System 157

Hayden et al. integrated multi-threaded quiescence into Kitsune and experi-
mented with updating a real-life event-driven system to evaluate the performance
of the approach. The results suggest that in an event-driven system it is relatively
easy and fast to catch all the threads into a safe point, [2].

Another Hayden et al. work focuses on techniques for establishing the correct-
ness of the dynamic updates, [6]. They present a methodology for automatically
verifying the correctness of dynamic updates using specifications provided by
developers. The main approach lies in the provably correct merge transforma-
tion of the old and new versions of the code into a merged entity; that is later
analyzed both statically and using a symbolic executor for the correctness of the
dynamic update.

Giuffrida et al. introduced a system for live updates that uses time-traveling
snapshot techniques to maintain the balance and transfer the runtime state back
and forth between two versions of the code, [22]. Their approach also trades
the time for an update for its safety, and not particularly applicable to the
development time DSU.

The main focus of the existing research on DSU seems to be concentrated
either on making the production system updates more timely and safe by intro-
ducing manually or statically determined safe points or encouraging to create
the DSU aware applications by following a certain programming approach. How-
ever, to the best of our knowledge, inspecting runtime state of a statically typed
object-oriented runtime to determine if an update is safe has not been previously
discussed in details.

8 Conclusion

Previous research has determined that applying updates to the running code on
the fly can result in the visible application-level side effects due to the runtime
phenomena occurring after the update. The main reason for the phenomena to
occur is breaking application assumptions about the runtime state because the
update cannot automatically convert all the runtime state.

In this paper, we have proposed Genrih, a system that enhances an existing
DSU system for statically typed programming languages with capabilities to
analyze whether the runtime state of an application satisfies queries for avoiding
unwanted runtime phenomena.

The main contribution of the paper is the design and the implementation of a
runtime state analysis system that can automatically decide if the state transfor-
mation functions of the underlying DSU is sufficient for the current update. It is
orthogonal to the actual solution performing the dynamic update and depends
on just a handful of information about the update mechanics. This is under-
pinned by the fact that Genrih was tested with two major DSU systems, JRebel
and Rubah.

Genrih operates by combining the knowledge of the exact changes an update
consists of, as well as the current runtime state to determine what runtime
phenomena can be observed if the update is applied immediately. We provided

158 O. Šelajev and A. R. Gregersen

a construction of a mapping for the types of changes to a Java program that
has been identified as capable of surfacing the observable runtime phenomena.
We implemented a prototype of the system that is capable of predicting the
possibility of these phenomena. The system prototype was integrated with both
JRebel and Rubah dynamic updating functionality for Java applications to show
the generality of the approach.

The main result is that it qualifies the DSU friendliness for the particular
updates. At the same time, it provides preemptive feedback describing the run-
time phenomena possibly caused by the update and their origins. Hence, Genrih
serves both as an educational tool in the sense that developers will become aware
of certain pitfalls but also as a mean to eliminate a major time waste the existing
dynamic software update solutions which operate primarily at development time
are susceptible to – debugging errors introduced by the runtime phenomena of
the dynamic updates.

References

1. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. IEEE Trans. Softw. Eng. 22, 120–131 (1996)

2. Hayden, C.M., Saur, K., Hicks, M., Foster, J.S.: A study of dynamic software
update quiescence for multithreaded programs. In: Proceedings of the 4th Interna-
tional Workshop on Hot Topics in Software Upgrades (HotSWUp), pp. 6–10. IEEE
Press, Piscataway (2012)

3. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-
centric approach. SIGPLAN Not. 44, 1–12 (2009)

4. Kabanov, J., Vene, V.: A thousand years of productivity: the JRebel story. Softw.:
Pract. Exper. 44, 105–127 (2014)

5. Pina, L., Veiga, L., Hicks, M.: Rubah: DSU for Java on a stock JVM. In: Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, (OOPSLA 2014), pp. 103–119. ACM, New
York (2014). https://doi.org/10.1145/2660193.2660220

6. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verify-
ing the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski,
A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27705-4 22

7. Hayden, C.M., Smith, E.K., Hardisty, E.A., Hicks, M., Foster, J.S.: Evaluating
dynamic software update safety using systematic testing. IEEE Trans. Softw. Eng.
38, 1340–1354 (2012)

8. Hayden, C.M.: Clear, correct, and efficient dynamic software updates. Ph 3543
(2012)

9. Arnold, J., Kaashoek, M.F.: Ksplice: automatic rebootless kernel updates. In: Pro-
ceedings of the 4th ACM European Conference on Computer Systems, EuroSys
2009, (Nuremberg, Germany, April 2009), pp. 187–198. ACM, New York (2009)

10. Erlang: Erlang reloading documentation (2017). http://www.erlang.org/doc/
reference manual/code loading.html. Accessed 17 May 2017

11. Würthinger, T., Wimmer, C., Stadler, L.: Dynamic code evolution for Java. In:
Proceedings of the 8th International Conference on the Principles and Practice of
Programming in Java, PPPJ, pp. 10–19. ACM, New York (2010)

https://doi.org/10.1145/2660193.2660220
https://doi.org/10.1007/978-3-642-27705-4_22
http://www.erlang.org/doc/reference_manual/code_loading.html
http://www.erlang.org/doc/reference_manual/code_loading.html

Genrih, a Runtime State Analysis System 159

12. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of Java applications - balancing
change flexibility vs. programming transparency. J. Softw. Maint. Evol. 21, 81–112
(2009)

13. Zhao, Z., Ma, X., Xu, C., Yang, W.: Automated recommendation of dynamic soft-
ware update points: an exploratory study. In: Proceedings of the 6th Asia-Pacific
Symposium on Internetware (INTERNETWARE 2014), pp. 136–144. ACM, New
York (2014). https://doi.org/10.1145/2677832.2677853

14. Gregersen, A.R., Jørgensen, B.N.: Run-time phenomena in dynamic software
updating: causes and effects. In: Proceedings of the 12th International Workshop
on Principles of Software Evolution and the 7th Annual ERCIM Workshop on Soft-
ware Evolution (IWPSE-EVOL 2011), pp. 6–15. ACM, New York (2011). https://
doi.org/10.1145/2024445.2024448

15. Šelajev, O., Gregersen, A.: Using runtime state analysis to decide applicability of
dynamic software updates. In: Proceedings of the 12th International Conference
on Software Technologies, pp. 38–49 (2017)

16. Gregersen, A.R.: Implications of modular systems on dynamic updating. In: Pro-
ceedings of the 14th International ACM Sigsoft Symposium on Component Based
Software Engineering, (CBSE 2011), pp. 169–178. ACM, New York (2011). https://
doi.org/10.1145/2000229.2000254

17. Šelajev, O., Raudjärv, R., Kabanov, J.: Static analysis for dynamic updates. In:
Proceedings of the 9th Central and Eastern European Software Engineering Con-
ference in Russia, (CEE-SECR 2013). ACM, New York (2013)

18. Oracle: JVMTI documentation (2017). http://docs.oracle.com/javase/8/docs/
platform/jvmti/jvmti.html#whatIs. Accessed 18 May 2017

19. Pina, L.: Rubah source code (2014). https://github.com/plum-umd/rubah.
Accessed 22 Nov 2017

20. Shipilev, A.: Java microbenchmark harness (2017). http://openjdk.java.net/
projects/code-tools/jmh/. Accessed 17 May 2017

21. Bazzi, R.A., Makris, K., Nayeri, P., Shen, J.: Dynamic software updates: the state
mapping problem. In: Proceedings of the 2nd International Workshop on Hot Top-
ics in Software Upgrades, (HotSWUp 2009), Article no. 7, 2 p. ACM, New York
(2009)

22. Giuffrida, C., Iorgulescu, C., Kuijsten, A., Tanenbaum, A.S.: Back to the future:
fault-tolerant live update with time-traveling state transfer. In: Proceedings of
the 27th USENIX Conference on Large Installation System Administration (LISA
2013), pp. 89–104. USENIX Association, Berkeley (2013)

https://doi.org/10.1145/2677832.2677853
https://doi.org/10.1145/2024445.2024448
https://doi.org/10.1145/2024445.2024448
https://doi.org/10.1145/2000229.2000254
https://doi.org/10.1145/2000229.2000254
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#whatIs
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#whatIs
https://github.com/plum-umd/rubah
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

Software Systems and Applications

Identifying Class Integration Test Order
Using an Improved Genetic
Algorithm-Based Approach

Istvan Gergely Czibula, Gabriela Czibula, and Zsuzsanna Marian(B)

Department of Computer Science, Babeş-Bolyai University,
M. Kogalniceanu Street, Cluj-Napoca, Romania
{istvanc,gabis,marianzsu}@cs.ubbcluj.ro

Abstract. Software testing is a very difficult activity, representing a
large part from a software system’s development process. Within the
class-based integration testing methodology, determining the order in
which the application classes have to be tested is of major importance
for reducing the testing time and cost. The Class Integration Test Order
(CITO) problem deals with identifying the testing order of classes which
minimizes stub creation effort, and subsequently testing cost. In this
paper we propose an efficient approach using a genetic algorithm with
stochastic acceptance for determining the class integration test order
which minimizes the stubbing effort needed during the class-based inte-
gration testing. In our proposal, we estimate the stub creation complex-
ity by allocating weights to different types of dependencies between the
classes in the software system’s Object Relation Diagram. Four synthetic
examples and six software systems often used in the CITO literature are
used as case studies for experimentally evaluating our proposal. The
effectiveness of our approach is confirmed by the obtained results that
outperform the existing related work which provide experimental results
on the case studies considered in this paper.

Keywords: Integration testing · Class integration test order
Genetic algorithm

1 Introduction

Search-Based Software Testing is an important subfield of the Search-Based Soft-
ware Engineering domain in which different metaheuristic search algorithms
are used for solving software engineering related problems. Besides search algo-
rithms, other approaches and machine learning algorithms have been proposed
for solving NP-complete software engineering problems, including testing-related
activities. Machine learning approaches are appropriate for such problems, since
they offer adaptive automated and semi-automated solutions in situations char-
acterized by large and complex problem spaces.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 163–187, 2018.
https://doi.org/10.1007/978-3-319-93641-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_8&domain=pdf

164 I. G. Czibula et al.

Class-based integration testing is a systematic testing technique applied when
the application classes of a software are integrated in the final software system.
The classes are integrated sequentially and after adding each class the obtained
system is tested. If no errors have been found during testing at some point in
the integration, then the next application class will be integrated. An important
problem during integration testing of object-oriented software systems is the one
of deciding the order in which the application classes should be integrated in the
final software, called the class integration test order (CITO) problem [1].

In most situations, there is a dependency relation between the application
classes, namely a class may require another class to be available before it can
be tested. In cases when dependency cycles exist among the application classes
from a software system, at least one dependency has to be broken and a stub for
emulating the behavior of the required class has to be created [2]. If, at a partic-
ular step during class-based integration testing, one adds a class which depends
on another application class that has not been integrated yet, a simulation of
that class is necessary. This is done by creating a stub for the required class,
more precisely a dummy class that replaces the required one and simulates its
behavior. Stubs are those parts of a software system that are built for simulating
components of the software which are not developed or unit tested yet, but are
needed to test classes that depend on them [1]. There is a difference between
specific and generic stubs. A specific stub replicates only the class functionalities
for a specific client class, while generic (realistic) stubs reproduce all functional-
ities that the original class can provide. Therefore when a class is used by many
client classes we will need only one generic stub, but as many specific stubs as
the number of client classes. Since stub creation increases the cost of the inte-
gration testing process, it is essential to reduce stubbing cost by determining a
class order for integration testing that minimizes the overall stubbing effort.

The CITO problem does not cover aspects related to the actual creation
of stubs nor does it approach the problem of test case effectiveness. The main
objective of the CITO problem is to reduce the number of stubs needed, not to
increase early bug detection. Software developers are still responsible for creating
stub classes that closely model the effective class to be stubbed.

There are numerous strategies proposed in the literature for solving the CITO
problem with the aim of minimizing the stubbing effort required during the inte-
gration process. The stubbing effort estimates the cost of creating the stubs
needed during the integration testing. It can be computed either as the number
of needed stubs or considering measures related to coupling, number of attributes
and methods or the complexity of the methods that need to be replicated. Most
of the solutions existing in the literature for the CITO problem can be divided in
two categories: graph-based approaches and genetic algorithm-based approaches
[3]. The graph-based approaches consider the Object Relation Diagram (ORD)
which represents the classes and the relationship between them in object-oriented
software systems. As shown by Briand et al. in [4], the graph-based solu-
tions for solving the CITO problem are very hard to be adapted to take into
account several factors related to the stub creation (like constraints connected to

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 165

organizational or contractual reasons, number of calls or distinct methods).
Another shortcoming of graph-based solutions is that they consist of identify-
ing and removing Strongly Connected Components that maximize the number of
broken cycles. However, there are situations when breaking only one dependency
is more costly than breaking two dependencies and thus, the obtained solutions
can be sub-optimal [4]. The authors also show that the genetic algorithms-based
approaches are able to mitigate the above mentioned drawbacks.

A more general approach of the class integration test order determination
problem is the test case ordering (TCO) problem. The TCO problem can be
formulated as the problem of constructing a sorted collection of test cases, col-
lection that reflects an optimal execution order of the test cases, in order to
optimize a certain objective function (criterion).

In this paper we are approaching the CITO problem as a combinatorial opti-
mization problem, with the goal of determining the order in which the application
classes should be tested for minimizing the total cost of stubbing. We consider
the stubbing cost as the effort for creating the specific stubs needed during the
class-based integration testing. The complexity of creating a stub is estimated
by assigning weights to different types of dependencies (i.e., aggregation, asso-
ciation, inheritance) in the software system’s Object Relation Diagram.

We have proposed in [5] an efficient approach for optimizing the class inte-
gration test order using a genetic algorithm with stochastic acceptance. Our
proposal was based on a static analysis of object-oriented software systems and
improved the existing strategies based on genetic algorithms for finding a solu-
tion for the CITO problem. A general theoretical model that can be applied
both for generic stubs and specific stubs with different weighting strategies was
also provided in [5].

In this paper, we extend the experimental evaluation and the analysis from
our previous approach from [5]. Experiments are performed on four synthetic
examples and on other six case studies often used in the literature for the class
integration test ordering problem. The potential of our proposal is confirmed
by the obtained results which are better than those of existing related work
which provide experimental results on the case studies considered in this paper.
We mention that the approach introduced in this paper is general. Even if it is
presented to solve the CITO problem, it can be easily extended for solving the
more general TCO problem.

The paper is organized as follows. We start by reviewing in Sect. 2 existing
approaches which provide solutions for the CITO problem considering weighted
stubs and give experimental results on the case studies that are considered in this
paper. Our approach based on a genetic algorithm with stochastic acceptance
for solving the CITO problem is introduced in the Sect. 3. Section 4 describes
the case studies used for evaluation and also provides the experimental settings
and results. An analysis of our approach as well as a comparison of the results
obtained by our proposal with some state-of-the-art techniques are provided in
Sect. 5. Our conclusions as well as several future research directions are presented
in Sect. 6.

166 I. G. Czibula et al.

2 Related Work

In this section we will present a short overview of existing approaches for the
CITO problem, focusing mainly on the ones that, like our approach, consider that
not every stub has the same complexity. Most of these approaches build a graph,
called Object Relation Diagram (ORD), where nodes represent the application
classes and directed edges represent the relationships between these classes.
Edges often have labels that represent the type of the relationship between the
two classes. The number of relationships can be different from one approach to
another, but the most frequently used relations are inheritance, aggregation and
association.

If the ORD contains no cycles then a simple topological sorting can give the
integration order. For such systems, a bottom-up integration strategy can be
used, and no stubs are needed. But in most software systems there are cyclic
dependencies between the classes in the ORD as shown by Melton and Tempero
in [6] where a study was conducted on 78 Java software systems with different
sizes (from 17 to 11644 classes). The authors concluded that almost all systems
contained cycles, moreover, about 85% of them contained strongly connected
components of at least 10 classes. In order to eliminate the cycles, either edges
or nodes have to be removed from the ORD. When an edge is removed a specific
stub will be needed to simulate it, however when a node is removed - together
with all incoming and outgoing edges - either one single generic stub has to
be created or a specific stub for every incoming edge connected to the removed
node.

The first paper that considered the CITO problem was written by
Kung et al. [7]. They consider an ORD with inheritance, aggregation and associ-
ation relations. The first step of their approach is to transform it into an acyclic
one, by first replacing clusters of mutually reachable nodes with one single node.
A topological sorting of this acyclic graph will give the major level of nodes.
For finding the minor level of nodes, the order inside the clusters, association
relations are removed, since every cycle has to contain at least one association
edge.

Major and minor level numbers are used by Tai and Daniels as well [8],
but they are computed differently. For assigning major level numbers, only the
inheritance and aggregation relations of the ORD are considered and a Depth
First Search (DFS) is performed. Minor levels are assigned to nodes that have
the same major level. Strongly Connected Components (SCC) are identified for
the nodes belonging to the same major level, and to each association edge e a
weight is assigned as the sum of the number of incoming edges to the source
node of e and the number of outgoing edges from the target node of e. The edge
with the highest weight is removed, because it has a higher chance of breaking
many cycles. This process is repeated until no cycles are left.

Le Traon et al. propose in [9] a solution for the CITO problem based on a test
dependency graph (TDG) which is constructed by mapping the UML diagram
to a graphical model of dependencies. A TDG is more detailed than an ORD,
because it can contain method-to-class and method-to-method relations as well.

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 167

The authors propose an adaptation of the Bourdoncle algorithm for determining
the testing strategy. The proposed solution has a time complexity of O(n4) and
offers an heuristic which provides results very close to the optimal one.

TDG is used by Le Hanh et al. as well in [10] where they present two integra-
tion strategies, a graph-based one and a genetic algorithm (GA) based one. For
the graph-based approach, called Triskell, they find the node that participates in
the maximum number of cycles and remove it (consider that it will be stubbed).
This produces one generic stub, and a specific stub for each incoming edge into
the node. Relation types are considered only if two nodes participate in the same
number of cycles, in this case the node with more association relations partici-
pating in cycles is removed. They repeat the process until no cycles are left. The
GA approach considers only the number of stubs, no relations are considered.

In [1] Briand et al. propose a graph-based approach, which identifies SCC in
the graph, and for each association edge in each SCC computes a weight which is
similar to the weight computed by Tai and Daniels, but instead of taking the sum,
for an edge they take the product of the number of incoming edges to the source
node and the number of outgoing edges from the target node. They remove the
edge with the highest weight and continue until no cycles are left. In [11] Briand
et al. proposed a Genetic Algorithm based approach as well. They use constraints
to make sure that inheritance and aggregation relations will not be broken (they
specify partial ordering of nodes based on these relations) and compute weights for
association edges. The weight of an association relation depends on the complexity
of the class represented by the target node, and this complexity depends on the
number of methods and/or number of attributes of the class.

Mao and Lu present in [12] an approach, called AICTO, which breaks only asso-
ciation edges, but tries to estimate the complexity of the association relation by
computing weights for these edges. The authors take into consideration how many
methods are called and attributes are accessed, but also the number of cycles in
which the edge participates (with a formula similar to the one from [1]).

While previous approaches considered weights mainly just for association
edges (since inheritance and aggregation edges are never removed), the app-
roach presented by Malloy et al. in [13] considers weights for 6 different relations:
association, composition, dependency, inheritance, ownedElement, polymorphic.
They use the ORD and find SCC in it. For each SCC they compute the weight
of the edges and remove the edge with the minimum weight. For the experi-
mental evaluation they use 7 case studies of different sizes and two different
sets of weights. The only difference between the two sets of weights was the
weight assigned to inheritance edges. In the first set of weights, inheritance has
weight 2, which is a low value, making it probable that inheritance edges will
be removed. In the second set, inheritance has a weight of 100 which makes
removal of inheritance edges very unlikely. They conclude that in the situations
when no inheritance edges are removed, approximately twice as many stubs are
needed. Similar experiments were performed by Kraft et al. in [14] and the same
conclusions were reached regarding the removal of inheritance edges. For one
case study made of 236 classes, removing 9 inheritance edges reduced the total

168 I. G. Czibula et al.

number of required stubs by 600, compared to a version where inheritance edges
were not allowed to be removed.

Another graph-based approach is the one presented by Abdurazik and Offutt
[15]. The novelty in their approach is that they consider weights for both edges
and nodes in the ORD (though the weights for the nodes are computed consider-
ing the weights for the edges). They consider 9 different relations between classes
and compute the weight of an edge based on several measures of coupling. Their
algorithm computes for each edge a Cycle to Weight Ratio, which considers both
the number of cycles that include that edge and the weight of the edge. The edge
with the maximum CWR is removed, and the process is repeated until no cycles
are left.

Bansal et al. present an approach which is based on the approach presented by
Malloy, but they introduce two new relation types specific for C++ applications:
friend coupling and exception coupling and define weights to them: 25 and 5 [3].
They also present an overview of existing graph-based and genetic algorithm-
based approaches.

Guizzo et al. propose in [16] a Hyper-heuristic HITO for the Integration and
Test Order (ITO) problem, for determining a sequence to integrate and test
software units with a minimal cost. HITO combines a crossover operator and
a mutation operator used by Evolutionary Algorithms (EAs) for selecting the
best heuristic [16]. The work of Guizzo et al. was the first approaching the ITO
problem using hyper-heuristics. The authors have shown that the application of
multi-objective evolutionary algorithms (MOEAs) may be suitable for the CITO
problem, but applying them may be difficult [16].

Mariani et al. present in [17] GEMOITO, a hyper-heuristic based on Gram-
matical Evolution (GE), which aims to automatically generate a Multi-Objective
Evolutionary Algorithm (MOEA) for solving the ITO problem. The goal of the
proposed approach is to reduce the effort for choosing, implementing and con-
figuring the search techniques which can be used for solving the ITO problem.
The authors emphasize that the proposed hyper-heuristic can generate MOEAs
that are statistically better or equivalent to the conventional ones.

An approach that is neither graph-based nor search-based is presented by
Zhang et al. in [18]. Similar to Briand, they consider that the complexity of a
stub depends on the number of accessed attributes and called methods in the
class that is stubbed. For every class they compute a test cost and a test revenue.
The test cost is the complexity of the stubs needed to integrate the given class,
while the test revenue is the complexity of the stubs that will not be created
later if the given class is integrated now (the complexity of the stubs of classes
not integrated yet that depend on the given class). At every iteration the class
with the greatest difference between test revenue and test cost is integrated,
together with all the classes with zero test cost (classes not requiring stubs).
After every iteration test cost and revenue are recomputed. Zhang et al. show
that the results produced by this approach are comparable and sometimes better
than results of existing approaches and the algorithm runs faster than graph- or
search-based approaches.

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 169

3 Methodology

In this section we introduce our proposal for optimizing class integration test
order using a genetic algorithm (GA) with stochastic acceptance. GAs are used
due to their flexibility and applicability in successful solving of a large variety
of optimization problems.

Our approach is based on a static analysis of object-oriented software systems
and on computing the stubbing effort as the cost of creating the specific stubs
needed during the integration testing. We consider that the cost (effort) needed
to create a stub depends on the type of the dependency between the classes.
Consequently, we will work with weighted stubs where the complexity of creating
a stub will be computed by assigning weights to different types of dependencies
between the application classes. In our model every edge labelled with a given
dependency type will have the same weight, i.e., every association relation will
have the same weight and every inheritance will have the same weight, etc.

We mention that if the weights associated to the relationships are all equal
(see the equal weighting scheme from Sect. 4.1), the GA proposed in this
section will provide a class ordering which minimizes the number of non-weighted
specific stubs.

We start by describing in Sect. 3.1 how the class relationships are used in the
literature for stubbing, followed by the dependencies and weighting scheme con-
sidered in our approach. Section 3.2 presents the main characteristics of genetic
algorithms, while Sect. 3.3 introduces the genetic algorithm model proposed for
the CITO problem.

3.1 Stubbing Relationships

Kung et al. [7] show that if there are no dependency cycles among classes in the
ORD of a software system, the integration order can be simply obtained by per-
forming a reverse topological ordering of classes based on their dependencies [1].
But if cyclic dependencies among classes can be found, most existing strategies
propose breaking some dependencies for obtaining an acyclic graph and then
applying a topological sorting on it. Breaking a dependency requires a stub for
the target class when integrating and testing the source class [1].

Three types of dependencies between application classes in the ORD are
considered by Kung et al. [7]: Association/Usage (As), Aggregation (Ag) and
Inheritance (I). In order to obtain an acyclic graph, the authors propose the
removal of association relationships. They consider that at least one association
relationship exists in each directed cycle of an ORD and this type of relation is
the weakest one between related classes.

A literature review reveals that many approaches consider that by remov-
ing association relationships simpler stubs are created compared to those
obtained by selecting aggregation or inheritance relationships [7,8,19]. However,
Le Traon et al. [20] propose a strategy allowing to break aggregation or inheri-
tance relations, which may lead to complex stubs. The results obtained by Malloy
et al. [13] revealed that the removal of inheritance relationships is more effective

170 I. G. Czibula et al.

for cycle breaking. Kraft et al. [14] consider six different types of dependencies
between application classes, some of them specific for the C++ programming
language, and use the following relationship between the costs (weights) asso-
ciated to them: cost(dependency) = cost(association) = cost(polymorphic) <
cost(composition) = cost(ownedElement) � cost(inheritance).

In our proposal we are considering a Weighted ORD with the three depen-
dency types considered by Kung et al. [7], where each relationship (As, Ag and I)
has an associated weight. The weighting scheme reflects the relative effort needed
to implement a stub class for a particular client class that has a dependency on
the stubbed class.

We will assign different weights to these relationships, in order to test how the
relationships influence the total cost of stubbing. A stub class is a replacement for
an existing dependency in the system, and we consider that the main factor that
influences the effort needed for creating it is the type of the dependency. Three
weighting schemes in accordance with the relations defined by Kraft et al. in [14]
(DW2, DW3 and DW4 from Table 1) will be considered, in which the inheritance
(I) relationship is the strongest relationship between the application classes,
followed by the aggregation (Ag) and then by the association (As) relationship
which is viewed as the weakest relation between the classes. In order to test the
complexity of stubbing the inheritance relationship, we will also use a weighting
scheme, DW1 from Table 1, in which the strongest relationship is Ag followed
by I and As that have the same weight.

Even if our current implementation considers only I, As and Ag relationships
between the application classes, our approach can be simply extended to consider
other relationships between the classes, such as the coupling between them.

3.2 Genetic Algorithms

Genetic Algorithms (GAs) represent a specific type of metaheuristic optimiza-
tion techniques which are inspired from the biological processes of evolution
and selection in nature. They are mainly used for solving search and optimiza-
tion problems. Since GAs are based on heuristics, there is no guarantee that
they will converge to the global optimum. However, they are able to provide a
solution close to the optimal one and prevent the search from falling into local
minima [21].

The main idea behind GAs is that a population of individuals adapts to
environmental changes over multiple generations, and the fittest individuals from
the population are those who survive longer [22].

GAs start with a population of noInd candidate solutions, also called indi-
viduals or chromosomes, usually randomly generated. Each individual from the
population is characterized by a numerical value called its fitness, which indi-
cates how “good” is that individual for solving the considered problem. Over a
number of iterations (generations) or until acceptable solutions are found, the
population is evolved using genetic operators as follows. A pair of chromosomes
is selected (using a selection strategy), then we cross-over (with probability pc)
the selected pair and form two offspring and lastly we mutate the two offspring

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 171

(with probability pm) and add the obtained individuals in the new population.
At the end of the iterative process, the individual with the maximum fitness
from the current population is reported as a solution.

Figure 1 describes the skeleton of a simple GA.

Fig. 1. The skeleton of a GA [5].

3.3 The Proposed GA Model

Let us consider that the analyzed software system S is composed by a set of
classes C1, C2, . . . , Cn. Starting from the ORD graph built for the software sys-
tem and based on a static analysis of it, we aim to identify an appropriate order
in which the application classes should be integrated (and tested) in the final
software. The solution is viewed as a permutation of the classes representing
the integration order that needs the minimum stubbing effort. Consequently,
the optimal solution for the CITO problem is viewed as a permutation τ of
{1, 2, . . . , n} which minimizes the total cost for creating the stubs needed when
the classes are integrated and tested in the order τ : Cτ = (Cτ1 , Cτ2 , . . . , Cτn

)
(n > 1). The stubbing effort required for the integration testing of a sequence
of classes Cτ = (Cτ1 , Cτ2 , . . . , Cτn

) is denoted by CostCτ
and is defined as in

Formula (1) [5]:

Cost(Cτ) =
n∑

i=1

stub(Cτi
, Cτi−1 , . . . , Cτ1) (1)

172 I. G. Czibula et al.

where stub(Cτi
, Cτi−1 , . . . , Cτ1) represents the cost for creating the weighted

stubs for integrating the class Cτi
to the system formed by the classes

{Cτi−1 , Cτi−2 , . . . , Cτ1}. This cost is computed by summing the weights asso-
ciated with the relationships between class Cτi

and all its neighboring classes
from the Weighted ORD which were not already integrated.

An individual from the GA population is an integer-valued vector whose
length is equal to the number of application classes from the analyzed soft-
ware system and represents a possible order for integrating the classes dur-
ing the integration testing. Thus, a candidate solution to the CITO problem
is encoded in an individual (chromosome) ind = (ind1, ind2 . . . indn) repre-
senting a permutation of {1, 2, . . . , n} (1 ≤ indi ≤ n ∀i ∈ {1, 2 . . . n} and
indi �= indj ∀1 ≤ i, j ≤ n, i �= j).

We define the value of the fitness function for a given individual ind as in
Formula (2) [5].

fitness(ind) = Max − Cost(Cind) (2)

where Max represents a large positive constant. Considering the definition of
the fitness given in Formula (2), maximizing the fitness of a chromosome ind
will be equivalent with minimizing the stubbing cost required when the classes
are integrated and tested in the order Cind. Accordingly, the components of the
fittest individual reported by the GA will give us the class integration test order.

The improvements we propose to the classical GA model are presented in
the following.

It is well-known that a limitation of GAs is that they are very sensitive
to the initial population. In order to overcome this limitation and to assure
a proper exploration of the search space, the initial population is generated
using an heuristic which will be described in the following. Given the fact that
every chromosome represents a permutation, the dimension of the search space
is n! where n is the number of classes in the system. In order to evenly divide
the search space we will generate the k-combinations for the set of classes,
where k is chosen based on the size of the initial population. For example if we
have the set of classes {A,B,C,D,E, F,G,H} we can generate 2-combinations:
{A,B}, {A,C}, . . . in total 28 different sets with 2 elements. We use the k-sets
when generating the initial population by creating chromosomes that start with
genes according to the generated k-combinations followed by randomly generated
genes.

The GA model we propose for solving the CITO problem also consid-
ers a selection operator based on the stochastic acceptance technique [23]. In
this algorithm, the widely used roulette-wheel selection operator used in the
population for reproduction is replaced with the following one: an individ-
ual ind is randomly selected and this selection is accepted with probability
fitness(ind)/fitness(M), where M is the fittest individual (has the highest fit-
ness value). If the individual is not accepted, a new one will be randomly selected
and accepted with the given probability and so on until the first accepted indi-
vidual. Through the stochastic acceptance based selection operator, the fittest
individual will always be accepted if selected. Several studies in the literature

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 173

indicate that the selection based on stochastic acceptance performs considerably
better than versions based on linear or binary search [23].

In our proposed GA we used a variant of the Order Crossover 1 operator,
known as C1, which is specific for using GAs for permutation problems [24].
Basically, a sequence of consecutive genes is removed from the first parent and
is directly copied to the child. The remaining genes are placed in the offspring in
the order in which they appear in the second parent. From the time performance
viewpoint, C1 is the fastest crossover operator that generates valid chromosomes
(preserves the ordering constrains).

The mutation operator is a variant of the swap mutation, but we swap a
randomly generated gene with its adjacent gene.

We have also used elitism in our GA, which means that the next generation
will always contain a small proportion (Pelitism) of the fittest individuals from
the current population.

4 Computational Experiments

We provide in this section an experimental evaluation of our GA approach pre-
sented in Sect. 3.3 for solving the CITO problem on ten case studies often used
in the literature: four synthetic examples and six real-life case studies.

4.1 Parameters Setting

For the GA model proposed in Sect. 3.3 we used our own implementation, with-
out any third party libraries. The following parameters setting will be used for
all experiments: the constant Max used in the fitness computation was set to
10000; the number of individuals from the GA population noInd is 2 · C2

n; the
mutation and crossover probabilities are pm = 0.3 and pc = 0.3; the proportion
Pelitism used for the elitism parameter was considered 0.1 (10% of the popula-
tion survives from one generation to another). As a termination condition for
our GA we used a predefined number of trials depending on the number of appli-
cation classes, 50 ·n. Regarding the parameters, we tried different values, but no
significant difference was observed in the obtained results.

The experiments are conducted in two directions, considering different
weighting schemes for the stubs in computing the stubbing effort.

1. Equal Weighting. In this scheme, equal weights (e.g. 1) are assigned for all
stubs, independent of the type of relationship between a client class and the
application class to be stubbed. Such a weighting method allows us to deter-
mine the number (and list) of non-weighted specific stubs. For this scheme,
the solution with the minimum stubbing effort is the class ordering with the
minimum number of required specific stubs.

2. Differential Weighting. In this scheme we assigned different weights for
the different types of relations from the ORD. The values for the weights
were selected after analyzing the similar literature which assigns weights for

174 I. G. Czibula et al.

the stubs [13], as well as our software development experience. In order to
analyze how different values for the weights influence the number of required
stubs, we have decided to use four sets of weights described in Table 1.

Table 1. Differential weighting schemes.

Differential weighting scheme Weights

Inheritance Association Aggregation

DW1 5 5 20

DW2 30 5 20

DW3 100 5 20

DW4 100 20 20

For the first set of weights (DW1) we decided to assign a larger weight to
aggregation and equal weights for inheritance and association. The second set
of weights DW2 is the one used in [5] and was chosen based on the values found
in the literature and the general principle that inheritance relations are the
hardest to stub and association relations are the easiest. For the third set, DW3,
we increased the cost of inheritance, similarly to the experiments presented in
[13]. In the fourth set of weights, DW4, we assigned the same cost to association
and aggregation and a much larger cost to inheritance. A similar weight set was
used in [14]. The main goal of the last three sets of weights is to see how the
cost of inheritance is related to the number of stubs, since some results from
the literature show that assigning a high weight to inheritance will lead to a lot
more stubs [13,14].

The ratio between the values of the weights from every set shows the differ-
ence between the complexity of stubbing different relations. In case of DW3, for
example, the weights show that we consider that it is 4 times more complicated
to stub an aggregation relation than an association (or that we consider that
creating 4 stubs for association is as complex as creating one stub for aggrega-
tion) and that stubbing inheritance is 20 times harder than stubbing association
and 5 times harder than stubbing aggregation.

4.2 Example

We start our experiments with a simple example illustrating how our approach
works. In our example there are four application classes A, B, C and D, as shown
by the ORD from Fig. 2. On Fig. 2, a directed edge between two application
classes indicates that a relationship exists between them and the edge is labeled
with the type of relationship: I for Inheritance, As for Association and Ag for
Aggregation.

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 175

Fig. 2. The sample software system. The directed edges between the classes illustrate
a relationship between them.

We consider in the following only the differential weighting scheme DW2
for the relationships between classes. Using a brute force approach, we deter-
mined all the possible permutations of the 4 application classes from the system
illustrated in Fig. 2 and the total cost Cost for creating the weighted stubs for
integrating the classes in the order corresponding to each permutation. Table 2
presents each permutation with its corresponding Cost and the required num-
ber of stubs. The permutation corresponding to the minimum stubbing cost is
highlighted.

Table 2. All the possible permutations, with their associated stubbing cost Cost
(Eq. (1)).

No. Class order Stubbing cost Stubs No. Class order Stubbing cost Stubs

1 ABCD 40 2 13 CBAD 50 2
2 ABDC 45 3 14 CBDA 80 3
3 ACBD 40 2 15 CABD 70 3
4 ACDB 25 2 16 CADB 55 3
5 ADBC 30 3 17 CDBA 65 3
6 ADCB 30 3 18 CDAB 85 4
7 BACD 20 1 19 DACB 60 4
8 BADC 25 2 20 DABC 60 4
9 BCAD 50 2 21 DCAB 90 5
10 BCDA 80 3 22 DCBA 70 4
11 BDAC 55 3 23 DBAC 40 3
12 BDCA 85 4 24 DBCA 70 4

From Table 2 we observe that a good order for testing the classes with a
minimum stubbing effort of 20 is BACD. If the application classes are integrated
in the order BACD, a single stub is required for class D.

176 I. G. Czibula et al.

While in case of the example from Fig. 2 the permutation with the minimum
stubbing cost is the one with the minimum number of stubs, this is not always
the case. For example, the permutation ADBC has a stubbing cost of 30 and
requires 3 stubs. Permutation ACBD on the other hand has a higher cost, 40,
but requires only 2 stubs. In our approach, even if the number of stubs is lower,
ACBD is a worse integration order than ADBC because it has a higher cost.

Considering that the application classes from the system from Fig. 2 are
numbered as C1 = A,C2 = B,C3 = C,C4 = D, the solution encoded by the GA
is a permutation of {1, 2, 3, 4} representing a possible integration ordering of the
application classes. After applying the GA algorithm with the parameter setting
described in Sect. 4.1, the obtained solution is {2, 1, 3, 4} corresponding to the
class ordering BACD which is shown in Table 2 to be the order which implies
the minimum stubbing cost of 20 and the minimum number of stubs of 1.

4.3 Case Studies

For our experiments, we have selected four synthetic case studies and six software
systems often used in the CITO literature. In order to mitigate some threats to
external validity issues, in our experiments we have chosen software systems of
various size, complexity and domain (as shown in Table 3). Even if an industrial
software system would probably have more classes, for those systems integration
testing would be performed on component-level, instead of class-level. Integra-
tion of classes from one component should be done on the class-level [1].

A description of the case studies is given in Table 3, where the second column
depicts the number of classes and the third column presents the number of
dependencies between the application classes. For each case study, the existing
number of cycles between the application classes is given in the fourth column.
The number of cycles indicates the complexity of the stubbing process, since a
larger number of cycles leads to a larger number of stubs needed in the integration
process.

The first synthetic example consists of 8 classes, and its ORD is presented in
Fig. 3. This case study was considered for evaluation in several papers approach-
ing the CITO problem [1,3,15,25,26].

Our second synthetic example consists of 8-classes as well, and its Object
Relation Diagram is depicted in Fig. 4. This example was previously used in the
CITO literature for weighted stubs [10].

The third synthetic example consists of 10 classes and was used in [12]. The
ORD of this case study is presented on Fig. 2 from [12] and it contains the same
three types of dependency relations that we have considered.

The fourth system that we used as a case study is a real system, denoted by
SMDS, which is a Telecommunication Switching System [25]. This system was
previously used in the CITO literature by [9,10,25]. We have built the labelled
Object-Relation Diagram of SMDS from [25], where both the UML diagram of
the system and its corresponding unlabelled ORD is given. The UML diagram
contains 37 classes, while the ORD has 38 classes. Since we do not know the labels
for the edges of the extra class, our case study has only 37 classes. However, this

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 177

Fig. 3. ORD for the first simple 8-class example [5].

Fig. 4. ORD for the second simple 8-class example [5].

difference in the number of classes does not influence the results, because the
extra class has only outgoing edges, it does not participate in any cycles.

The next five case studies used in our experiments are taken from the Briand
benchmark [11] and were used in different papers from the CITO literature [1,18,
27]. The systems from this benchmark are the following: ATM (automated teller

178 I. G. Czibula et al.

machine simulation), Ant (a Java-based build tool for maintaining, updating
and regenerating related programs and files according to their dependencies),
SPM (Security Patrol Monitoring), BCEL (Byte Code Engineering Library, a
tool for manipulating binary Java files) and DNS (a Java implementation of
the Domain Naming System). For all these systems, we have used the Object
Relation Diagram from the Appendix provided by Briand et al. [11].

The last case study is a synthetic example, called Elevator, used in [18]. It
consists of 12 classes and its ORD is presented on Fig. 2 from [18].

Table 3. Description of the case studies [5].

Case study # of classes # of dependencies # of cycles

8-class first example [25] 8 17 11

8-class second example [10] 8 16 7

10-class example [12] 10 18 10

SMDS [25] 37 72 35

ATM [1] 21 67 30

Ant [1] 25 83 654

SPM [1] 19 72 1178

BCEL [1] 45 294 416091

DNS [1] 61 276 16

Elevator [18] 12 27 23

4.4 Results

We have applied our GA approach for the case studies presented in Table 3.
Results for the equal weighting scheme are presented in Table 4, while results
for the differential weighting schemes DW1-DW4 from Table 1 are presented in
Table 5. Due to some randomness in the execution, the GA was run 20 times
for every weighting scheme. We found that, in every case, the number of stubs
reported is the same, except for the Ant case study with equal weighting. For
this case study we have run our GA 100 times out of which in 85 cases it reported
9 stubs, while in the other 15 cases it reported 10 stubs. We have to mention
that even if our GA obtains the same number of stubs for different runs, the
class ordering which produces this number of stubs, as well as the corresponding
sequence of stubs, may be slightly different.

For the equal weighting scheme, the class ordering, the number of stubs and
the minimum stubbing cost provided by the proposed GA is shown in Table 4.
If multiple permutations of classes providing the same number of stubs were
obtained by the GA, we illustrate in Table 4 one of them. For the Ant case study,
we give the permutation that produces the most frequent number of stubs, which
is 9. In Table 5 the stubbing cost and the number of weighted stubs is presented

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 179

for every case study and differential weighting scheme. When the same stubbing
cost and number of stubs is reported for different weighting schemes, they are
presented in one single row.

Table 4. Stubs obtained by our GA approach for the case studies for equal weighting.

Case study Minimum
cost

of
stubs

Class order (permutation)

8-class first
example

4 4 A, H, D, E, F, C, B, G

8-class second
example

2 2 C, A, D, B, F, H, E, G

10-class
example

6 6 C2, C4, C3, S1, Rec, S0, S2, C0, S3, C1

SMDS 20 20 18, 37, 20, 6, 17, 10, 29, 14, 13, 22, 16, 25,
24, 11, 33, 32, 2, 7, 23, 8, 34, 12, 26, 1, 9,
27, 5, 19, 28, 3, 15, 21, 36, 35, 31, 30, 4

ATM 7 7 21, 16, 20, 7, 17, 6, 5, 1, 4, 2, 9, 3, 8, 11, 10,
19, 15, 13, 18, 14, 12

Ant 9 or 10 9 or 10 4, 9, 17, 12, 15, 3, 16, 19, 21, 1, 23, 22, 10,
24, 20, 5, 2, 18, 6, 11, 8, 25, 7, 14, 13

SPM 16 16 3, 9, 15, 18, 11, 17, 16, 6, 1, 14, 2, 10, 12,
13, 8, 7, 5, 19, 4

BCEL 58 58 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 19, 21, 22,
25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40,
41, 25, 29, 32, 34, 37, 38, 39, 40

DNS 6 6 1, 45, 36, 6, 8, 13, 42, 20, 10, 31, 15, 18, 28,
17, 41, 14, 33, 16, 5, 2, 19, 7, 9, 11, 40, 27,
12, 25, 32, 34, 43, 21, 37, 4, 22, 39, 35, 44,
26, 30, 29, 38, 24, 3, 23

Elevator 5 5 8, 10, 4, 1, 9, 5, 6, 2, 3, 7, 0, 11

5 Discussion

In this section we provide an analysis of our GA approach for both equal and
differential weighting schemes, then a comparison to similar related work from
the CITO literature will be conducted.

5.1 Analysis of Out Approach

Analyzing the results from Table 5 we can see that the number of weighted
stubs is the same for all four sets of weights in case of seven case studies: 8-
class first example, 8-class second example, 10-class example, ATM, SPM, DNS

180 I. G. Czibula et al.

Table 5. Results obtained by the GA using different weights for the relationships
between the classes.

Case study Differential weighting scheme(s) Stubbing cost # of weighted stubs

8-class first example
DW1, DW2, DW3 20 4

DW4 80 4

8-class second example
DW1, DW2, DW3 10 2

DW4 40 2

10-class example
DW1, DW2, DW3 30 6

DW4 120 6

SMDS
DW1, DW2, DW3 235 20

DW4 400 20

Ant
DW1, DW3 50 10

DW2 60 9
DW4 180 9

ATM
DW1, DW2, DW3 35 7

DW4 140 7

SPM
DW1, DW2, DW3 80 16

DW4 320 16

BCEL
DW1 290 58

DW2, DW3 300 60
DW4 1200 60

DNS
DW1, DW2, DW3 30 6

DW4 120 6

Elevator
DW1, DW2, DW3 25 5

DW4 100 5

and Elevator. Since the association relation has the smallest weight in every set
of weights (even if in DW1 and DW4 there is another relation with the same
weight) this means that the optimal class integration test order can be achieved
by stubbing only association relations. This can also be seen by the fact that
for these case studies the stubbing cost (given in the third column of Table 5)
is equal to the weight of the association relation multiplied by the number of
weighted stubs (given in the last column of Table 5). Looking at the results
returned by the GA we observed that in case of DW1 and DW4, where there is
another relation with the same weight as the association, it is possible that the
best solution requires the stubbing of an inheritance (for DW1) or aggregation
(for DW4) relation. However, the costs from DW2 and DW3 show that there
exist solutions where only association relations are stubbed.

Interestingly, in case of the SMDS system, all four sets of weights return the
same number of stubs, 20, but from the associated Stubbing cost we can see that
for this case study we cannot find an integration order where only association
relations are broken. In the first three sets of weights, the weight of an association
relation is 5, so the cost of breaking 20 association edges would be 100, but the
cost reported in Table 5 is 235. Checking the exact integration orders returned
by the GA, we observed that in all situations 11 associations and 9 aggregations

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 181

were stubbed, and since in the first three weighting schemes these relations have
the same weights (5 and 20 respectively) the stubbing cost was the same. The
reason why we need these 9 aggregation relations stubbed is the presence of 9
two-class circles where both edges from the circle have the aggregation label.

In case of the Ant system, the sets of weights for DW1 and DW3 return
a solution where 10 specific stubs are required, while the other two weighting
schemes return solutions that require 9 stubs. The stubbing cost from DW3
shows that there is a solution where only association relations are stubbed, but
it requires 10 stubs. If we want to reduce the number of stubs, we have to stub
an aggregation relation as well.

For the BCEL system, the DW1 scheme returns a solution where 58 stubs
are required, while all other schemes return solutions requiring 60 stubs. This
means that we can find again a solution where only association relation are
stubbed, but it requires two extra stubs compared to the solution from DW1. In
case of DW1, out of the 58 specific stubs that have to be created for the given
class integration order, four inheritance and 54 association relations have to be
stubbed.

Comparing the results from Tables 4 and 5 we can see that the number of
required stubs for equal weighting is always equal to the minimum number of
stubs from the differential weighting scheme. This is not surprising, since equal
weighting does not differentiate between types of relations, all dependencies have
a weight of 1, shown by the fact that in Table 4 the minimum cost is always equal
to the number of stubs.

The results from Table 5 are very different from the ones reported by Malloy
and Kraft for similar weight settings. While they reported significant differences
in the number of required stubs depending on whether inheritance had a large
weight or not, in our experiments for most case studies there was no difference
in the number of stubs and even for those two case studies where there was a
difference it was really small (1 and 2 stubs). Unfortunately, the case studies
used by Malloy and Kraft are not openly available on the internet, so we could
not run our algorithm on them.

In order to try and explain this difference, we checked whether the systems
used by Malloy and Kraft in [13,14] had a larger percentage of inheritance rela-
tions than our systems, but actually the opposite is true. In our case studies, on
average 12% of the relations are inheritance (minimum is 0 for Elevator, maxi-
mum is 22% for the 10-class example). If we consider only the six real life case
studies, which are also the systems with a larger number of classes, the average is
11%. In case of the systems used by Malloy and Kraft (both papers use the same
systems) on average only 4% of the dependencies are inheritance (minimum is
0, maximum is 8%).

In general, Malloy and Kraft used larger systems than our case studies. How-
ever, if we look only at the results of their case studies with 43–50 classes (4 out
of the 7 case studies have a number of classes in this interval) for two of them
there still is a significant difference in the number of required stubs (approxi-
mately 25 stubs) between the two main settings (do not break inheritance at all

182 I. G. Czibula et al.

or break anything). For the other two systems the difference is really small (0
and 1 stubs).

In conclusion the reason for the difference between the results reported in
[13,14] and the findings of our experiments might be some difference between
the systems that cannot be found by looking at the size of the system or the
percentage of inheritance relations. We mention that most of our systems are
written in Java while the systems used by Malloy and Kraft are written in C++.
However, we are not sure whether this difference is relevant or not, but we intend
to continue our investigation using other case studies of different sizes and from
different programming languages.

From Tables 4 and 5 we can observe that for each case study, for all the
differential weighting schemes DW1-DW4, the GA provided the same number
of stubs for all the 20 runs of the algorithm. Thus, if we are looking at the
obtained number of stubs, under the parameter setting from Sect. 4.1, our GA
with stochastic acceptance has a deterministic behavior for differential weighting
for all case studies. For the equal weighting scheme for the Ant case study we
had two different solutions (but the solution with the less number of stubs is
the most frequently reported one). This suggests that the differential weighting
might contribute to making the GA deterministic.

5.2 Comparison to Related Work

In the following we provide a comparison of the results obtained by the pro-
posed GA approach to the results reported in the literature for the case studies
considered for evaluation. The comparison is depicted in Table 6. For the simple
case studies we have also computed the optimal number of stubs using a brute
force approach. For the larger software systems, the brute force method is not
feasible, due to its exponential time complexity. The best result obtained using
a non-brute force approach (i.e., the one which reports the minimum number of
weighted stubs) is highlighted. For each result we indicate the paper where the
result was taken from.

For the brute force approach we implemented a parallel algorithm based on
Heap’s algorithm for generating permutations and we run the experiment on a
server machine with 16 cores. The running times for the larger systems are over
48 h while the proposed GA approach finds the optimal ordering in less than
3 min/run for every system (the genetic algorithm is not parallel, it uses only a
single core). For the two smaller systems the required time is less than 30 s.

For the 8-class examples, we found in the literature results reported consid-
ering the differential weighting scheme and the same weights as in DW2 [3]. For
the 10-class example and the Elevator case studies, we have found results for
weighted approaches, but with weights considered differently than in our app-
roach. Unlike for the simple case studies, for the case studies from the Briand
benchmark and SMDS there are no results reported in the literature considering
weighted stubs as in our approach (i.e. assigning different weights for specific
types of relationships between the application classes). For these systems, only
the results obtained for generic and specific stubs are available. That is why, for

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 183

Table 6. Comparison to related work considering weighted and specific stubs [5].

Case study Weighting scheme Approach # of stubs

8-class Differential
Our GA solution 4

first Brute force 4
1 example weighting (DW2) Tai et al. [3] 5

Le Traon et al. [3] 5
Le Traon et al. [3] 6
Le Traon et al. [3] 4
Briand et al. [3] 4
Malloy et al. [3] 6

Abdurazik et al. [3] 4
AICTO [12] 4

8-class Differential
Our GA solution 2

second Brute force 2
2 example weighting (DW2) Kung et al. [10] 4

Tai and Daniels [10] 2
Hanh et al. - Triskell strategy[10] 2

Hanh et al. - Genetic algorithm [10] 3

10-class Differential
Our GA solution 6

Brute force 6
example weighting Tai [12] 7

3 Briand [12] 8
Briand [12] 7
AICTO [12] 6

SMDS

Our GA solution 20
Le Traon et al. − Optimal [9] 20

4 Equal Le Traon et al. − RC [9] 25−48
Le Traon et al. − MC [9] 26

Weighting Le Traon et al. − RT [9] 27-47
Le Traon et al. − MT [9] 28−38
Buordoncle algorithm [9] 23

Ant
Equal

Our GA solution 9 or 10
5 Briand et al. [1] 11

weighting Tai and Daniels [1] 28
Le Traon et al. [1] 19

ATM
Equal

Our GA solution 7
Briand et al. [1] 7

6 weighting Tai and Daniels [1] 8
Le Traon et al. [1] 7

SPM
Equal

Our GA solution 16
Briand et al. [1] 17

7 weighting Tai and Daniels [1] 20
Le Traon et al. [1] 27

BCEL
Equal

Our GA solution 58
8 Briand et al. [1] 70

weighting Tai and Daniels [1] 128
Le Traon et al. [1] 67

DNS
Equal

Our GA solution 6
9 Briand et al. [1] 6

weighting Tai and Daniels [1] 27
Le Traon et al. [1] 10

Elevator Differential
Our GA solution 5

10 Brute force 5
weighting Zhang [18] 5

184 I. G. Czibula et al.

the case studies from the Briand benchmark and the SMDS system we applied
our GA with stochastic acceptance under the equal weighting scheme which is
equivalent to obtaining the specific stubs.

The first line from Table 6 shows the results for the first 8-class example from
Fig. 3. Bansal et al. [3] report the results obtained by several approaches from
the literature on this case study. The approach from Le Traon et al. provides
multiple solutions with different number of stubs and we included all of them in
the table. Results for this case study are reported in [12] as well. The second line
of Table 6 contains the comparison of the results for the second 8-class example
from Fig. 4. This case study was previously used by Le Hanh et al. [10], where
the result of several approaches are reported for it.

The third line contains the results for the 10-class case study, which was used
in [12], where the results of Tai’s and Briand’s graph-based algorithms are also
reported for it (for Briand two results are reported). All three approaches (Tai,
Briand and AICTO itself) break only association relations so we compare these
results with the results of differential weighting.

For our fourth case study, the SMDS software, we found in the literature the
results reported by Le Traon et al. in [9] for various approaches for the CITO
problem considering only non-weighted specific stubs (i.e. the equal weighting
scheme from our approach).

The next lines from Table 6 depict the comparison of the results obtained
using our GA with those provided by Briand et al. [1] on Ant, ATM, SPM,
BCEL and DNS systems. The last row from Table 6 shows the results for the
Elevator case study, which was used only in [18].

Table 6 shows that the results provided by our GA approach are better than
or at least equal to the results reported by approaches existing in the literature
considering the case studies used in our experiments. In 11 cases, the number of

Fig. 5. GA performance compared to the average performance of the related work on
the considered data sets.

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 185

weighted stubs obtained is the same as the one from the related work, while in
26 situations a smaller number of weighted stubs was obtained by our approach.
The comparison to the related work is graphically illustrated in Fig. 5. For each
case study we represent the average number of weighted stubs reported in the
literature and through the dashed bars the number of weighted stubs reported
by our GA solution.

6 Conclusions and Future Work

We extended in this paper our previous approach from [5] which focused on the
problem of class integration test ordering and introduced a genetic algorithm
with stochastic acceptance for determining an integration test order strategy for
object-oriented systems. The goal was to identify, based on a static analysis of
object-oriented software systems, the test order requiring a minimum stubbing
effort. We considered a weighted cost for creating the specific stubs needed for
testing. Ten case studies were considered in our experimental evaluation, both
synthetic examples and systems used in the literature for the CITO problem.
The results obtained using our approach outperformed those of existing similar
work.

An analysis of the GA results considering different weights for the relation-
ships between the application classes was performed with the aim of investigating
the importance of the relationships between the classes in the stubbing process.
The result of our analysis showed that, at least for most of the considered sys-
tems, changing the weights assigned to different relations does not influence the
number of required stubs, since most stubbed relations are associations anyway.
For the case studies where there was a difference between the number of stubs,
this was very small.

In the future, we aim to apply the GA proposed in this paper for large
scale software systems in order to test its scalability. For a better handling of
systems with a large number of application classes, a parallel implementation
of the GA will be further developed. We will also investigate new dependencies
between application classes (such as direct or indirect coupling) for computing
the stubbing effort, as well as assigning weights not only to the dependencies
in the ORD, but also to the application classes. Another direction which we
will investigate in the future is that of learning (possibly through supervision or
reinforcement) appropriate values for weighting the dependencies between the
application classes from the software systems.

References

1. Briand, L.C., Labiche, Y., Wang, Y.: Revisiting strategies for ordering class integra-
tion testing in the presence of dependency cycles. Technical report TR SCE-01-02,
Carleton University (2002)

186 I. G. Czibula et al.

2. Assunção, W.K.G., Colanzi, T.E., Pozo, A.T.R., Vergilio, S.R.: Establishing inte-
gration test orders of classes with several coupling measures. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO
2011. ACM, New York, pp. 1867–1874 (2011)

3. Bansal, P., Sabharwal, S., Sidhu, P.: An investigation of strategies for finding test
order during integration testing of object oriented applications. In: Proceedings of
International Conference on Methods and Models in Computer Science, pp. 1–8
(2009)

4. Briand, L.C., Feng, J., Labiche, Y.: Using genetic algorithms and coupling measures
to devise optimal integration test orders. In: Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering, SEKE 2002, pp.
43–50. ACM, New York (2002)

5. Czibula, I.G., Czibula, G., Marian, Z.: An improved approach for class test order-
ing optimization using genetic algorithms. In: Proceedings of the International
Conference on Software Technologies, Madrid, Spain, pp. 23–37 (2017)

6. Melton, H., Tempero, E.: An empirical study of cycles among classes in Java.
Empir. Softw. Eng. 12, 389–415 (2007)

7. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C.: A test strategy for object-
oriented programs. In: Proceedings of the Nineteenth Annual International Com-
puter Software and Applications Conference, COMPSAC 1995, pp. 239–244 (1995)

8. Tai, K.C., Daniels, F.J.: Test order for inter-class integration testing of object-
oriented software. In: Proceedings of the 21st International Computer Software and
Applications Conference, COMPSAC 1997, pp. 602–607. IEEE Computer Society,
Washington, DC (1997)

9. Le Traon, Y., Jéron, T., Jezequel, J.M., Morel, P.: Efficient object-oriented inte-
gration and regression testing. IEEE Trans. Reliab. 49, 12–25 (2000)

10. Le Hanh, V., Akif, K., Le Traon, Y., Jézéque, J.-M.: Selecting an efficient OO
integration testing strategy: an experimental comparison of actual strategies. In:
Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 381–401. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45337-7 20

11. Briand, L.C., Feng, J., Labiche, Y.: Experimenting with genetic algorithms and
coupling measures to devise optimal integration test orders. Technical report TR
SCE-02-03, Carleton University (2002)

12. Mao, C., Lu, Y.: AICTO: an improved algorithm for planning inter-class test order.
In: Proceedings of the 2005 International Conference on Computer and Information
Technology, pp. 927–931 (2005)

13. Malloy, B.A., Clarke, P.J., Lloyd, E.L.: A parameterized cost model to order classes
for class-based testing of C++ applications. In: 14th International Symposium on
Software Reliability Engineering, ISSRE 2003, pp. 353–364 (2003)

14. Kraft, N.A., Lloyd, E.L., Malloy, B.A., Clarke, P.J.: The implementation of an
extensible system for comparison and visualization of class ordering methodologies.
J. Syst. Softw. 79, 1092–1109 (2006)

15. Abdurazik, A., Offutt, J.: Using coupling-based weights for the class integration
and test order problem. Comput. J. 52(5), 557–570 (2009)

16. Guizzo, G., Fritsche, G.M., Vergilio, S.R., Pozo, A.T.R.: A hyper-heuristic for the
multi-objective integration and test order problem. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp.
1343–1350. ACM, New York (2015)

https://doi.org/10.1007/3-540-45337-7_20

Identifying CITO Using an Improved Genetic Algorithm-Based Approach 187

17. Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.: Grammatical evolution for the
multi-objective integration and test order problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, GECCO 2016, pp. 1069–1076.
ACM, New York (2016)

18. Zhang, M., Jiang, S., Zhang, Y., Wang, X., Yu, Q.: A multi-level feedback approach
for the class integration and test order problem. J. Syst. Softw. 133, 54–67 (2017)

19. Abdurazik, A., Offutt, J.: Coupling-based class integration and test order. In: Pro-
ceedings of the 2006 International Workshop on Automation of Software Test, pp.
50–56 (2006)

20. Le Traon, Y., Jéron, T., Jézéquel, J.M., Morel, P.: Efficient OO integration and
regression testing. IEEE Trans. Reliab. 49, 12–25 (2000)

21. Whitley, D.: An overview of evolutionary algorithms: practical issues and common
pitfalls. Inf. Softw. Technol. 43, 817–831 (2001)

22. Melanie, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge
(1999)

23. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance.
Phys. A: Stat. Mech. Appl. 391, 2193–2196 (2012)

24. Whitley, D., Yoo, N.-W.: Modeling simple genetic algorithms for permutation prob-
lems. In: Foundations of Genetic Algorithms, pp. 163–184. Morgan Kaufmann
(1995)

25. Hewett, R., Kijsanayothin, P.: Automated test order generation for software com-
ponent integration testing. In: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE 2009, pp. 211–220. IEEE
Computer Society, Washington, DC (2009)

26. Borner, L., Paech, B.: Integration test order strategies to consider test focus and
simulation effort. In: Proceedings of the First International Conference on Advances
in System Testing and Validation Lifecycle, pp. 80–85 (2009)

27. da Veiga Cabral, R., Pozo, A., Vergilio, S.R.: A pareto ant colony algorithm applied
to the class integration and test order problem. In: Petrenko, A., Simão, A., Mal-
donado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 16–29. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16573-3 3

https://doi.org/10.1007/978-3-642-16573-3_3

Application of Fuzzy Logic to Assess
the Quality of BPMN Models

Fadwa Yahya1(B), Khouloud Boukadi1, Hanêne Ben-Abdallah2,
and Zakaria Maamar3

1 Sfax University, Sfax, Tunisia
{inaya.yahya,khouloud.boukadi}@fsegs.rnu.tn

2 King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
hbenabdallah@kau.edu.sa

3 Zayed University, Dubai, UAE
zakaria.maamar@zu.ac.ae

Abstract. Modeling is the first stage in a Business Process’s (BP) life-
cycle. A high-quality BP model is vital to the successful implementa-
tion, execution, and monitoring stages. Different works have evaluated
BP models from a quality perspective. These works either used formal
verification or a set of quality metrics. This paper adopts quality metric
and targets models represented in Business Process Modeling and Nota-
tion (BPMN). It proposes an approach based on fuzzy logic along with a
tool system developed under eclipse framework. The preliminary exper-
imental evaluation of the proposed system shows encouraging results.

Keywords: Business Process · BPMN · Model quality
Quality metrics · Fuzzy logic

1 Introduction

A Business Process (BP) model covers different dimensions of an enterprise
such as functional, organizational, behavioral, and informational [4]. Integrating
all these dimensions into one high-quality model is vital to the survivability
of any enterprise [17,22]. Indeed, such a model will support activities such as
implementation, deployment, execution, and continuous improvement in short,
the BP lifecycle [31]. A high-quality BP model will also guarantee its acceptance
by end-users and thus prevents common BP problems like model reality divide
where the modeled and executed processes are not aligned [26].

In the literature, BP model quality assessment has been dealt with using
two main approaches: application of formal verification techniques [15,30], or
evaluation of a set of quality metrics calculated on the BP model [14,17,22].
Formal techniques are known for their complexity and thus, are unpopular.
In addition, they do not provide any qualitative analysis of the model in terms
of complexity, comprehensibility, and modifiability.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 188–209, 2018.
https://doi.org/10.1007/978-3-319-93641-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_9&domain=pdf

Application of Fuzzy Logic to Assess the Quality of BPMN Models 189

Adopting a qualitative assessment of BP models, researchers proposed to
calculate a set of metrics either on static (e.g., [14,17,22]), or simulated BP
model (e.g., [8]). In these works, several quality metrics are used either to assess
certain quality characteristics of the BP model itself (complexity, maintainabil-
ity, integrity, etc. [11,14,20]) or to predict the BP performance (the mutual
impact between the BP and its underlying information system [8]). The main
challenges in metric-based assessment are: what are the quality characteristics
of a BP model? How to relate the metrics to quality characteristics? And how
to interpret the values of the metrics?

The lack of consensus over the quality characteristics of BP models is mak-
ing the assessment of these models a challenge. Several researchers explored the
similarities between processes and software products to adopt these products’
quality characteristics. In particular, they adopted the eight quality character-
istics defined in the ISO/IEC 25010 [9] standard quality model, (e.g., [20,24]).
Because ISO/IEC 25010 quality model does not define any technique for evalu-
ating the characteristics, different studies recommend metrics for assessing the
quality of BP models (e.g., [3,20,24,27,28]). In addition, based on the quality
metrics, some researchers proposed the development of an automated framework
to evaluate BP model quality, e.g., [14,22,25]. The common barrier hindering
the development of such a framework is the lack of a consensus about thresh-
old values of the quality metrics, which are required to interpret/evaluate a BP
model’s quality [17,22].

This paper, which is a revised and extended version of our paper presented at
the 12th International Conference on Software Technologies (ICSOFT 2017) [32],
addresses the lack of consensus of quality metrics along with their assessment
through a fuzzy logic-based approach for evaluating the quality of BP models
with an emphasis on comprehensibility and modifiability characteristics. The
choice of these characteristics is justified by their importance to guarantee that
a BP model can be easily implemented, deployed, and executed. These charac-
teristics also are important when dealing with the continuous improvement of
a BP.

The herein proposed approach consists of two phases: threshold determi-
nation and fuzzy logic application. The first phase applies data mining, specifi-
cally decision trees, to determine approximate thresholds for each quality metric.
These thresholds will be used for interpreting the comprehensibility or modifi-
ability levels of BP models in BPMN [10]. To this end, we use a BP reposi-
tory, called “SOA-based Business Process Database”1, developed by our Mir@cl
laboratory team. This repository contains 1000 BPs of organizations operating
in different sectors. The second phase uses the approximate thresholds iden-
tified in the first phase along with fuzzy logic [33] to assess the quality of a
BPMN model. The use of fuzzy logic aims at dealing with the approximate and
imprecise nature of the obtained thresholds. Indeed, according to Zadeh, fuzzy
logic operates perfectly in an environment of “imperfect information” [34].

1 https://sites.google.com/site/bposcteam2015/ressources.

https://sites.google.com/site/bposcteam2015/ressources

190 F. Yahya et al.

The proposed approach is implemented in a system that allows the qualita-
tive assessment of BPMN models in terms of comprehensibility and modifiability.
To prove the performance of the proposed system, we conducted two types of
experiments. The first involves students from the faculty of Economics and man-
agement of Sfax while the second is done through the proposed system. These
preliminary experimental evaluations of the proposed system show encouraging
results.

This paper has 3 contributions: (i) identification of approximate thresholds
for the different quality metrics to be used for assessing the quality of BP models
in terms of comprehensibility and modifiability; (ii) management of the approx-
imate and imprecise nature of the identified thresholds using fuzzy logic; and
(iii) development of a system that supports the proposed approach.

The remainder of this paper is organized as follows: Sect. 2 summarizes exist-
ing works on the adoption of quality metrics and the definition of their thresh-
olds for the assessment of the comprehensibility and modifiability of BP models.
Section 3 presents the proposed approach mining metrics’ thresholds. Section 4
shows how we use fuzzy logic to support the approximate and imprecise nature
of the defined thresholds. Section 5 illustrates the developed system of BP model
quality assessment and evaluates it through two types of experiments. Finally,
Sect. 6 summarizes the paper and gives some directions for future work.

2 Related Work

We first introduce the quality metrics used for assessing BP models quality.
Then, we discuss works on BP model quality assessment.

2.1 Quality Metrics

Different research initiatives adopt quality metrics from software engineering to
assess the quality of BP models as BPs are a kind of software systems [2,5,19,24].

To identify the necessary metrics, we conducted a literature review on existing
quality metrics for assessing the comprehensibility and modifiability levels of BP
models. To shortlist the relevant metrics, we raised the following questions:

1. Is the metric validated either theoretically or empirically?
2. Is there a technique for calculating the metric?
3. Is it possible to calculate the metric for a BP in BPMN?
4. Is the metric used to evaluate the comprehensibility and/or modifiability of

BP models?

At the end of this study, only a few number metrics were selected. The
metrics were eliminated essentially by the first question; indeed, several metrics
are adopted from the software engineering domain but they are not validated in
the BP domain theoretically nor empirically [16]. In addition, some metrics were
excluded because of the 3rd question, i.e., they are not adopted for BPMN [20].
The retained metrics are listed below and detailed in [2,12,28,29]:

Application of Fuzzy Logic to Assess the Quality of BPMN Models 191

– Control Flow Complexity (CFC) measures the complexity introduced by
XOR, OR, and AND split constructs.

CFC(p) =
∑

a∈P∧a∈XOR−Split CFCXOR(a) +
∑

a∈P∧a∈OR−Split CFCOR(a)
+

∑
a∈P∧a∈AND−Split CFCAND(a)

(1)
where:

• CFCXOR(a) = n;
• CFCOR(a) = 2n − 1;
• CFCAND(a) = 1;
• n = number of outgoing arcs.

– Halstead-based Process Complexity (HPC) estimates the length N , volume
V , and difficulty D of a process as follows:

N = n1 ∗ log2(n1) + n2 ∗ log2(n2) (2)

V = (N1 + N2) ∗ log2(n1 + n2) (3)

D = (
n1

2
) ∗ (

N2

n2
) (4)

where:
• n1 is the number of activities, splits and joins, and control-flow elements

of a BP.
• n2 is the number of data variables manipulated by the BP and its activ-

ities.
• N1 and N2 are respectively the total number of elements and data occur-

rences.
– Interface Complexity (IC) measures the complexity of a process as follows:

IC = length ∗ (NbOfInputs ∗ NbOfOutputs)2 (5)

– Number of Activities (NOA) measures the number of activities (task and
sub-process) of a BP.

– Number of Activities, Joins and Splits (NOAJS) measures number of activi-
ties, joins, and splits of a BP.

– Coefficient of Network Complexity (CNC) is the ratio of the total number of
arcs in a process model to its total number of nodes.

– Cross Connectivity (CC) expresses the sum of the connectivity between all
pairs of nodes, relative to the theoretical maximum number of paths between
all nodes.

– Coupling metric (CP) calculates the coupling degree of a process. This cou-
pling degree depends on the complexity of connections between the tasks and
the type of these connections (i.e., AND, OR, XOR).

– Density (D) is the ratio of the total number of arcs to the maximum number
of arcs.

Table 1 shows the usability of these metrics for measuring either comprehen-
sibility and/or modifiability as defined in the literature.

192 F. Yahya et al.

Table 1. Identified quality metrics for assessing comprehensibility and modifiabil-
ity [32].

Quality metrics Comprehensibility Modifiability

CFC � �

HPC �

IC �

NOA � �

NOAJS � �

CNC � �

CC �

CP � �

D � �

�: The metric is used to assess the comprehensibility
or the modifiability.

2.2 Business Process Evaluation

Despite the importance of BP models to enterprises, there is a serious lack of
an effective approach and system for assessing BP models quality [20,24]. Our
literature review revealed that ISO standards for quality assessment and quality
metrics are the basis of the different assessment tentatives. However, the lack of
thresholds for the defined quality metrics to be used during BP models quality
assessment remains a concern.

Makni et al. [11] propose a tool for evaluating the quality of BP models
using existing complexity, coupling, and cohesion quality metrics. However, the
authors did not focus on the identification of thresholds as the proposed tools
ensure the evaluation based on thresholds introduced by the user for the different
metrics.

Sánchez-González et al. use the Bender method [1] to identify thresholds for
some quality metrics [22]. The Bender method allows quantitative risk assess-
ment in epidemiological studies based on the logistic regression model. It has two
major limitations: (i) logistic regression model requires a binary variable and (ii)
necessity to arbitrarily define P0 probability, which is used to calculate the Value
of an Acceptable Risk Level (VARL). The Bender method was also used in [25]
to define threshold for the CFC metric. In [23] the same authors conduct an
experiment to determine threshold values for gateway complexity metrics to be
used for the evaluation of the understandability and modifiability of BP models.
The authors also propose a Gateway Complexity Indicator (GCI) defined based
on the identified threshold values for the selected gateway complexity measures.

Mendling et al. propose an approach for predicting errors in BP models [14].
The approach uses a set of quality metrics included in the literature for evalu-
ating the quality of BP models. The authors use logistic regression [1] and ROC
curves [7] to determine thresholds for the concerned metrics.

Application of Fuzzy Logic to Assess the Quality of BPMN Models 193

Sadowska proposed a meta-model for assessing the quality of BPMN 2.0 pro-
cess models [20]. This meta-model is built upon the ISO/IEC 25010 standard [9].
To evaluate the different quality characteristics, the author uses a set of quality
metrics like CFC and density. In addition, she used a BP repository of 57 BPs
in BPMN along with K-means to classify the possible values of quality metrics
into 4 clusters. Based on the used quality metrics and the defined clusters the
author proposed a system that supports the evaluation of BP models quality.

Our literature review reveals the lack of a consensus concerning thresholds
values for BP models quality assessment. This is one of the important obstacles
hindering the development of an effective system supporting qualitative assess-
ment of BP models.

3 Determination of Quality Metrics Thresholds

We detail our approach for estimating thresholds of evaluating BP model quality
in terms of modifiability and comprehensibility. This approach is based on a
data mining technique for instance decision tree. Four steps are required: data
collection to build a repository of BPs, data preparation to create the learning
and test datasets, data mining to build a decision tree, and finally validation to
assess the performance of the resulted decision tree.

3.1 Data Collection

As part of the research agenda of our lab, we created “SOA-based Business
Process Database” by collecting around 1000 BPs that belong to different insti-
tutions, this should guarantee that our approach is generic (e.g., academic insti-
tutions, commercial enterprises, healthcare centers, and banks). Furthermore,
from each type of organization, we examined different BPs; for example, from
academic institutions, we considered, among others, student registration, exam
preparation, timetable creation, etc. All these BPs are modeled in BPMN 2.0.

After data collection, we examined the processes in conjunction with design
instructors from the IT department of our university (considered as experts).
The goal is to classify these processes according to how easy they are to com-
prehend and modify. To this end, we organized ourselves into four groups. Each
group examined 250 processes. Afterward, we conducted a cross-validation pro-
cess among the different groups. Finally, we organized the BPs of the “SOA-
based Business Process Database” into three levels of comprehensibility (easy
to understand, moderately difficult to understand, and difficult to understand)
and three levels of modifiability (easy to modify, moderately difficult to modify,
and difficult to modify).

3.2 Data Preparation

To prepare the data for the next phases, we built two matrices based on the
“SOA-based Business Process Database”. The first is devoted to comprehensi-
bility data, while the second is dedicated to modifiability data. Each row in a

194 F. Yahya et al.

matrix represents a BP in the database and each column represents a quality
metric among the identified quality metrics to measure comprehensibility and
modifiability (Sect. 2.1). The last column of each matrix represents the afore-
mentioned levels of comprehensibility and modifiability.

We used these matrices to create two sub-databases from each matrix:
one for learning known as “training database” and one for testing known as
“test database”. The “training database” includes 70% of the processes in the
database, and the “test database” comprises the rest.

3.3 Data Mining

We used decision trees to extract thresholds for quality metrics from the “SOA-
based Business Process Database”. For more details about decision trees readers
are referred to [18,21].

To create the required decision trees (for comprehensibility and modifiabil-
ity), we used WEKA system, which is recognized as a landmark system in data
mining and machine learning [6]. WEKA supports several algorithms for the con-
struction of decision trees like J48, ADTree, and REPTree. In this work, we first
used all of the provided algorithms, and then we have chosen the best one (i.e.,
the one that have a lower error rate) based on the validation stage (Sect. 3.4).

3.4 Validation

The literature proposes several possible ratios for assessing the quality of a pre-
diction model. We used: precision (6), recall (7), f-measure (8), and global error
rate (9). In the following, we discuss J48, ADTree, and REPTree algorithms,
selected because of their acceptable values of the used ratios.

Precision =
CorrectEntitiesFound

TotalEntitiesFound
(6)

Recall =
CorrectEntitiesFound

TotalCorrectEntities
(7)

F -measure = 2 ∗ Precision ∗ Recall

Precision + Recall
(8)

GlobalErrorRate = 1 − CorrectEntitiesFound

TotalEntities
(9)

– Training Database-based Validation
First, we calculate these ratios after testing the resulting decision trees (i.e.,
comprehensibility and modifiability trees) on the training database. Tables 2
and 3 show, respectively, the values of the different ratios for the three algo-
rithms per decision tree. These tables depict that J48 algorithm gives the
best values of precision, recall, F-measure, and global error rates for both
comprehensibility and modifiability.

Application of Fuzzy Logic to Assess the Quality of BPMN Models 195

Table 2 shows that we achieved very acceptable results with J48, for assessing
the comprehenisibility of BP models: the values of precision, recall, and F-
measure are 97.3% and the global error rate is 2.7%. Similarly, Table 3 shows
that J48 can also be used for assessing the modifiability of BP models as the
values of precision, recall, and F-measure are 96.1% while the global error rate
is 3.8%. However, to prove the effectiveness of the proposed decision trees, we
need to use another database like the “test database”.

Table 2. J48 versus ADTree versus REPTree for comprehensibility decision-tree [32].

J48 ADTree REPTree

Precision 0.973 0.961 0.942

Recall 0.973 0.96 0.94

F-measure 0.973 0.96 0.941

Global error rate 0.027 0.04 0.06

Table 3. J48 versus ADTree versus REPTree for modifiability decision-tree [32].

J48 ADTree REPTree

Precision 0.961 0.92 0.925

Recall 0.961 0.92 0.924

F-measure 0.961 0.92 0.924

Global error rate 0.038 0.08 0.075

– Test Database-based Validation
To assess the performance of the proposed decision trees and choose the
most suitable algorithm among those provided by WEKA, we evaluated the
obtained trees using the “test database”. At this stage, we apply each decision
tree to all BPs of the “test database” to assess the comprehensibility and mod-
ifiability levels of each process. This assessment is performed independently of
the assessments already done by experts. The goal is to compare the experts’
judgments with the obtained assessments trees and hence, to identify the
error rate of our decision trees.
Tables 4 and 5 list the values of the four used ratios for evaluating the per-
formance of the proposed comprehensibility and modifiability decision trees.
These tables show that we achieved very acceptable results using the “test
database” and J48. Indeed, the values of precision are: 96.9% for comprehensi-
bility tree and 94.3% for modifiability tree. The values of recall and f-measure
are: 96.7% for comprehensibility and 94% for modifiability. Finally, the global
error rate is 3.3% for comprehensibility tree and 6% for modifiability tree.

196 F. Yahya et al.

Table 4. J48 versus ADTree versus REPTree for comprehensibility decision-tree [32].

J48 ADTree REPTree

Precision 0.969 0.971 0.962

Recall 0.967 0.967 0.953

F-measure 0.967 0.968 0.955

Global error rate 0.033 0.033 0.046

Table 5. J48 versus ADTree versus REPTree for modifiability decision-tree [32].

J48 ADTree REPTree

Precision 0.943 0.875 0.92

Recall 0.94 0.87 0.897

F-measure 0.94 0.869 0.899

Global error rate 0.06 0.13 0.103

3.5 Discussions

Decision tree is used to classify the BPs of the “SOA-based Business Process
Database” according to their level of comprehensibility (first decision tree) and
modifiability (second decision tree). Based on these decision trees, we defined
some decision rules along with the thresholds of the different quality metrics for
evaluating both comprehensibility and modifiability of a BP model.

1. Evaluation of the Comprehensibility Level
Table 6 presents the identified thresholds and their linguistic interpretations.
These interpretations are performed by the members of our research team.
However, the identified thresholds remain usually approximate and imprecise
as they depend on the experts’ judgments during the first phase, “data col-
lection” (Sect. 3.1). In the next Section, we detail the use of fuzzy logic to
manage these approximate and imprecise thresholds.
Table 7 presents an extract of the decision rules that determine the compre-
hensibility level based on the values of the quality metrics.

2. Evaluation of the Modifiability Level
Table 8 presents the identified thresholds and their linguistic interpretations,
which are determined by the members of our research team. Same as the case
of comprehensibility, the identified thresholds are approximate and imprecise.
To handle this approximate and imprecise nature of thresholds, we use fuzzy
logic (Sect. 4).
Table 9 presents an extract of the decision rules that determine the modifia-
bility level based on the values of the quality metrics.

Application of Fuzzy Logic to Assess the Quality of BPMN Models 197

Table 6. Thresholds for the evaluation of comprehensibility.

Quality metric Thresholds Linguistic interpretation

IC IC < 12 Low

12 ≤ IC < 17 Moderate

17 < IC ≤ 59 High

IC > 59 Very high

CNC CNC ≤ 1.26 Low

CNC ≤ 1.65 Moderate

CNC > 1.65 High

NOAJS NOAJS ≤ 39 Low

39 < NOAJS ≤ 55 Moderate

NOAJS > 55 High

CFC CFC ≤ 3 Low

3 < CFC ≤ 9 Moderate

9 < CFC ≤ 18 High

CFC > 18 Very high

NOA NOA ≤ 26 Low

26 < NOA ≤ 45 Moderate

NOA > 45 High

D D ≤ 0.043 Low

D > 0.043 High

CP CP ≤ 0.031 Low

CP > 0.031 High

4 Fuzzy Logic for Business Process Quality-Assessment

In this paper, we use fuzzy logic along with the identified thresholds to assess
the quality of BP models. Fuzzy logic is known for being appropriate for han-
dling approximate and imprecise values like those for the quality metrics’ thresh-
olds. Fuzzy-logic application goes through 3 stages: fuzzification, inference, and
defuzzification. The fuzzification is based on a set of membership functions that
transform the crisp values of the quality metrics into linguistic values (e.g., low,
medium, high) known as fuzzy sets. The inference uses a set of fuzzy decision
rules to assess the quality of BP models. Finally, the defuzzification step pro-
duces a quantifiable (crisp value) result. In the remainder of this Section, we
detail the use of fuzzy logic to assess the quality of BP models.

4.1 Fuzzification

Fuzzification converts crisp values of input variables (i.e., quality metrics) into
fuzzy sets (i.e., linguistic values). This conversion is ensured thanks to a set

198 F. Yahya et al.

Table 7. Excerpt of decision rules to assess the level of comprehensibility [32].

Decision rule

R1 If IC ≤ 12 Then Easy to understand

R2 If IC ≤ 17 and IC > 12 and CNC ≤ 1.26 Then Easy to
understand

R3 If IC ≤ 17 and IC > 12 and CNC > 1.26 and CFC ≤ 3
Then Moderately difficult to understand

Table 8. Thresholds for the evaluation of modifiability.

Quality metric Thresholds Linguistic interpretation

CNC CNC ≤ 1.30 Very low

1.30 < CNC ≤ 1.54 Low

1.54 < CNC ≤ 1.61 Moderate

1.61 < CNC ≤ 1.85 High

CNC > 1.85 Very high

NOAJS NOAJS ≤ 7 Very low

7 < NOAJS ≤ 17 Low

17 < NOAJS ≤ 33 Moderate

33 < NOAJS ≤ 55 High

NOAJS > 55 Very high

CFC CFC ≤ 3 Low

3 < CFC ≤ 9 Moderate

CFC > 9 High

NOA NOA ≤ 6 Very low

6 < NOA ≤ 12 Low

12 < NOA ≤ 26 Moderate

26 < NOA ≤ 44 High

NOA > 44 Very high

D D ≤ 0.043 Low

D > 0.043 High

CP CP ≤ 0.032 Low

0.032 < CP ≤ 0.077 Moderate

0.077 < CP ≤ 0.09 High

CP > 0.09 Very high

HPC V HPC V ≤ 14 Low

14 < HPC V ≤ 53 Moderate

HPC V > 53 High

HPC D HPC D ≤ 5.25 Low

HPC D > 5.25 High

Application of Fuzzy Logic to Assess the Quality of BPMN Models 199

Table 9. Excerpt of decision rules to assess the level of modifiability [32].

Decision rule

R1 If CFC ≤ 9 and HPC V ≤ 53 and NOA ≤ 6 Then Easy to
modify

R2 If HPC V ≤ 53 and NOA > 6 and CFC ≤ 3 and NOA ≤ 12
and CP ≤ 0.077 Then Easy to modify

R3 If NOA ≤ 26 and CFC > 3 and NOA > 12 and
HPC V ≤ 14 Then Moderately difficult to modify

of membership functions that we defined based on the identified approximate
thresholds (Sect. 3.5). We defined one membership function for each possible
fuzzy set per quality metric (Sect. 3.5).

Fig. 1. Membership function definition [32].

In the first part of Fig. 1 (i.e., without fuzzification), a and b values repre-
sent the approximate thresholds determined through the use of decision trees
and fuzzy sets associated with the different intervals fixed by experts (i.e., low,
moderate, and high). In this figure, each value of a quality metric can belong
only to one single fuzzy set with a membership degree equals to 1. This case is
true when the fixed thresholds are exact and precise. However, because it is not
the case of the thresholds defined in this paper, we use the membership function

200 F. Yahya et al.

depicted in the second part of Fig. 1 (i.e., with fuzzification). The values of a’,
a”, b’, and b” are defined by experts for each quality metric. Each value within
[a’, a”] and [b’, b”] intervals belong to two fuzzy sets with different mem-
bership degrees. For example, the value “x” belongs to the two fuzzy sets “low”
and “moderate” with membership degree “x1” and “x2”, respectively.

4.2 Inference

The inference is based on a set of fuzzy decision rules written in a natural
language and according to a specific syntax “if X is A and/or Y is B then Z
is C”, where X and Y are input variables, Z is an output variable, and A, B,
C are their corresponding linguistic values. We defined fuzzy decision rules to
determine the comprehensibility and modifiability levels of a BP model based
on the set of quality metrics. We defined the required fuzzy decision rules based
on the rules obtained from the decision tree (Sect. 3.5). To this end, we replaced
the crisp values with their corresponding linguistic values and rewrote the rules
according to the syntax required by fuzzy logic. The total number of defined fuzzy
decision rules is 210 rules for assessing comprehensibility and 260 for assessing
modifiability. Tables 10 and 11, respectively, depict an extract of the defined
fuzzy decision rules for comprehensibility and modifiability.

Table 10. Excerpt of fuzzy decision rules to assess the comprehensibility level [32].

Fuzzy decision rule

FR1 IF IC IS Low THEN ComprehensibilityLevel IS EasyToUnderstand

FR2 IF IC IS Moderate AND CNC IS Low THEN ComprehensibilityLevel
IS EasyToUnderstand

FR3 IF IC IS Moderate AND CNC IS Moderate AND CFC IS Low THEN
ComprehensibilityLevel IS ModeratelyDifficultToUnderstand

Table 11. Excerpt of fuzzy decision rules to assess the modifiability level [32].

Fuzzy decision rule

FR1 IF CFC IS Moderate AND HPC V IS Moderate AND NOA
IS VeryLow THEN ModifiabilityLevel IS EasyToModify

FR2 IF HPC V IS Moderate AND NOA IS VeryLow AND CFC IS
Low AND CP IS Moderate THEN ModifiabilityLevel IS
EasyToModify

FR3 IF HPC V IS High AND CFC IS Low AND NOA IS Low
AND CP IS Moderate THEN ModifiabilityLevel IS
ModeratelyDifficultToModify

Application of Fuzzy Logic to Assess the Quality of BPMN Models 201

4.3 Defuzzification

Defuzzification is the process which converts the fuzzy value of the output vari-
able (i.e., comprehensibility or modifiability level), obtained by the inference
engine, into a crisp value. To do so, it aggregates the fuzzy outputs of all the
activated fuzzy decision rules to a one fuzzy set, which will be transformed into
a crisp value.

In the literature, there are several defuzzification techniques like: center of
gravity (used in our work), center average, and maximum. For the center of
gravity technique, the crisp value of the output variable is calculated using the
following formula:

y* =

∫
U
y ∗ µ(y) dy

∫
U
µ(y) dy

(10)

where µ is the universe of discourse that considers all the output values according
to the activated fuzzy decision rules.

Defuzzification determines the level of comprehensibility or modifiability of
a BP model as well as the degree of certainty of this level. For example, a BP
model can be easy to understand with a certainty degree of 70%.

5 System Development: BP-FuzzQual

This section introduces the proposed system as well as its experimental evalua-
tion.

5.1 Architecture

We developed a system called BP-FuzzQual that stands for assessing the quality
of BP models. It is developed in Java with Jdom and JFuzzyLogic libraries
and under eclipse framework. BP-FuzzQual’s functional architecture is shown
in Fig. 2. A complete video demonstrating the different steps of the BP quality
assessment using our system is available at: https://youtube/qaCDjd– 54.

BP-FuzzQual’s modules are described below:

– Parser: takes as input a BP model in BPMN and determines the crisp val-
ues of each used quality metric for estimating either comprehensibility or
modifiability of a BP model.

– Fuzzy Control: is implemented in Fuzzy Control Language (FCL) which
follows the IEC1131 standard, the first international standard for process
control software. FCL includes four components: function block interface,
fuzzification, rule block, and defuzzification. FCL also allows defining a fifth
optional component called optional parameters. The use of the four required
components is detailed in what follows:

• Function Block Interface: defines the set of input and output param-
eters as well as local variables, if required.

https://www.youtube.com/watch?v=qaCDjd--_54

202 F. Yahya et al.

Fig. 2. Functional architecture of BP-FuzzQual [32].

• Fuzzification: defines a set of membership functions for each quality
metric (Sect. 4.1). Based on these functions, fuzzification converts the
crisp values of the quality metric into linguistic values that will be used
by the inference engine.

• Rule Block: includes the set of fuzzy decision rules that estimate the
quality of the BP model (Sect. 4.2).

• Defuzzification: converts the linguistic value of the output variable
“comprehensibility and modifiability levels” into crisp values. As per
Sect. 4.3 the proposed system uses the center of gravity technique to per-
form this conversion.

– Decision Maker: runs the FCL code in order to estimate the quality of the
BP model. This module takes as input the crisp values produced by the parser
module and communicates them to the fuzzy control module. The decision
maker module is developed using java language.

5.2 Experiments

We carried out two sets of experiments. The first set involved anonymous stu-
dents from our faculty and the second was done using BP-FuzzQual. These
experiments were supported by additional resources listed below:

– Business Process Model: we used the BP model depicted in Fig. 3. In
this model, we use abstract labels in tasks and pools in order to bypass the
complexity that could be caused by the business domain.

– Participants: the experiments are done in conjunction with 60 person who
are mainly students from our faculty. Indeed, we involved Ph.D. students
in computer science, students in research master, professional master and
fundamental license in computer science during these experiments.

– Comprehensibility Exercise: participants had to respond to a set of
multiple-choice questions to assess if they understand the BP model. At the
end of the exercise, each participant must choose a level of comprehensibility
for this model from the three possible levels: easy to understand, moderately

Application of Fuzzy Logic to Assess the Quality of BPMN Models 203

difficult to understand or difficult to understand. The exercise is available at:
https://sites.google.com/site/bposcteam2015/ressources.

– Modifiability Exercise: participants had to make changes in the BP model
depicted in Fig. 3. Indeed, they had to delete or add activities, events, and
gateways. At the end of the exercise, each participant had to choose a level of
difficulty to modify the model among the three possible levels: easy to modify,
moderately difficult to modify or difficult to modify. The exercise is available
at: https://sites.google.com/site/bposcteam2015/ressources.

Fig. 3. Example of BP model in BPMN [32].

Experiment 1. Figure 4 represents the number of correct and incorrect answers
for the first exercise. In this figure, 78% of the responses are correct showing
that the majority of students understood the BP model. This is also confirmed
through their responses to the last question of the first exercise, which is about
their ability to understand the BP model. Indeed, as depicted in Fig. 5, 76% of
students considered the BP model as moderately difficult to understand, 14% as
easy to understand, and 10% as difficult to understand.

Figure 6 represents the number of correct and incorrect answers for the second
exercise. In this figure, 69% of the responses are correct showing that the major-
ity of students have correctly modified the BP model. In addition, as depicted
in Fig. 7 53% of students considered the BP model as moderately difficult to
modify, 33% as difficult to modify, and 14% as easy to modify.
Experiment 2. Uses BPMN2 modeler to design the BP model as well as our
tool to estimate the comprehensibility and modifiability levels of the BP model
presented in Fig. 3.

https://sites.google.com/site/bposcteam2015/ressources
https://sites.google.com/site/bposcteam2015/ressources

204 F. Yahya et al.

Fig. 4. Correct and incorrect answers for comprehensibility assessment [32].

Fig. 5. Students’ judgments about the BP model comprehensibility-level [32].

Fig. 6. Correct and incorrect answers for modifiability assessment [32].

For instance, the estimated comprehensibility level of the BP model of Fig. 3
is “Moderately difficult to understand with a certainty degree of 63%”. Figure 8
shows the interface for comprehensibility assessment.

Application of Fuzzy Logic to Assess the Quality of BPMN Models 205

Fig. 7. Students judgment about the BP model modifiability-level [32].

Fig. 8. Comprehensibility assessment interface [32].

For instance, the estimated modifiability level of the BP model of Fig. 3 is
“Moderately difficult to modify with a certainty degree of 100%”. Figure 9 shows
the interface dedicated for modifiability assessment.

To sum up, the experiments show that the students considered the BP model
as moderately difficult to understand; this is proved by their responses to the
comprehensibility questions. This is in line with the evaluation done by BP-
FuzzQual, which considers the BP model as moderately difficult to understand.
Similarly, when dealing with modifiability, the students consider the BP model as

206 F. Yahya et al.

Fig. 9. Modifiability assessment interface [32].

around moderately difficult to modify and difficult to modify while BP-FuzzQual
considers that the BP model is moderately difficult to modify. Overall, these
conforming results show that our approach produces encouraging results that
should be proved through additional experiments.

6 Conclusion

The quality of a Business Process (BP) model is critical to the successful achieve-
ment of this model’s lifecycle phases. The higher the quality is, the “easier” the
execution and evaluation of these phases become. The literature refers to dif-
ferent techniques that aim at improving a BP model quality [13,14,17]. Some
techniques assist BP engineers develop high-quality models while others propose
metrics to assess the quality. However, despite all these initiatives, there is not
a common framework for assessing BP model quality. This lack of a common
framework is due, among other things, to the absence of a consensus on what a
“good” model is.

In this paper, we proposed a fuzzy-based approach for assessing the quality
of BPMN-based BP models with emphasis on two quality characteristics that
are comprehensibility and modifiability. The approach is based on the ISO/IEC
25010 standard [9] along with a set of quality metrics like CFC, NOA, and
NOAJS reported in the BP model quality literature. In addition, for a concise
interpretation of the quality metrics, the approach uses data mining techniques

Application of Fuzzy Logic to Assess the Quality of BPMN Models 207

(decision tree) to determine thresholds that high-quality BP models should
attain and/or maintain. To tackle the approximate nature of these thresholds
during BP model quality assessment, we beefed-up our approach with fuzzy logic.
Furthermore, we automated the assessment process with an in-house Java-based
tool that calculates the values of the different metrics. Based on these values the
tool determines the comprehensibility and modifiability levels of a BP model.
The preliminary experiments’ results are very supportive of mixing data mining
and fuzzy logic for better assessment of BP model quality.

In terms of future work, we would like to examine the integration of other
ISO/IEC 25010 quality metrics and characteristics, like compatibility and reli-
ability, into our approach. Developing recommendations to BP engineers for
higher quality BP models, is also part of our future work.

References

1. Bender, R.: Quantitative risk assessment in epidemiological studies investigating
threshold effects. Biom. J. 41(3), 305–319 (1999)

2. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity
of process models. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp.
117–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 13

3. Cardoso, J., Vanderfeesten, I., Reijers, H.A.: Computing coupling for business
process models (2010). http://eden.dei.uc.pt/∼jcardoso/Research/Papers/Old
%20paper%20format/Caise-19th-Coupling-Cardoso-Vanderfeesten.pdf. Accessed
20 Sept 2012

4. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9), 75–90
(1992)

5. Guceglioglu, A.S., Demirors, O.: Using software quality characteristics to measure
business process quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg
(2005). https://doi.org/10.1007/11538394 26

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

7. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

8. Heinrich, R.: Aligning business process quality and information system quality.
Ph.D. thesis (2013)

9. ISO: ISO/IEC 25010:2011 - systems and software engineering - systems and soft-
ware quality requirements and evaluation (square) - system and software quality
models (2011). https://www.iso.org/standard/35733.html. Accessed 08 Dec 2016

10. ISO: ISO/IEC 19510:2013 - information technology - object management group
business process model and notation (2013). http://www.iso.org/iso/catalogue
detail.htm?csnumber=62652. Accessed 17 Oct 2016

11. Makni, L., Khlif, W., Haddar, N.Z., Ben-Abdallah, H.: A tool for evaluating the
quality of business process models. In: ISSS/BPSC, pp. 230–242. Citeseer (2010)

12. Mendling, J.: Testing density as a complexity metric for EPCs. In: German EPC
Workshop on Density of Process Models (2006)

https://doi.org/10.1007/11837862_13
http://eden.dei.uc.pt/~jcardoso/Research/Papers/Old%20paper%20format/Caise-19th-Coupling-Cardoso-Vanderfeesten.pdf
http://eden.dei.uc.pt/~jcardoso/Research/Papers/Old%20paper%20format/Caise-19th-Coupling-Cardoso-Vanderfeesten.pdf
https://doi.org/10.1007/11538394_26
https://www.iso.org/standard/35733.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62652
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62652

208 F. Yahya et al.

13. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

14. Mendling, J., Sánchez-González, L., Garcia, F., La Rosa, M.: Thresholds for error
probability measures of business process models. J. Syst. Softw. 85(5), 1188–1197
(2012)

15. Morimoto, S.: A survey of formal verification for business process modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS,
vol. 5102, pp. 514–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69387-1 58

16. Muketha, G., Ghani, A., Selamat, M., Atan, R.: A survey of business process
complexity metrics. Inf. Technol. J. 9(7), 1336–1344 (2010)

17. de Oca, I.M.M., Snoeck, M., Reijers, H.A., Rodŕıguez-Morffi, A.: A systematic lit-
erature review of studies on business process modeling quality. Inf. Softw. Technol.
58, 187–205 (2015)

18. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
19. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow

process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS,
vol. 3080, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25970-1 19

20. Sadowska, M.: An approach to assessing the quality of business process models
expressed in BPMN. e-Inf. Softw. Eng. J. 9(1), 57–77 (2015)

21. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

22. Sánchez-González, L., Garćıa, F., Mendling, J., Ruiz, F.: Quality assessment of
business process models based on thresholds. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 78–95. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16934-2 9

23. Sánchez-González, L., Garćıa, F., Ruiz, F., Mendling, J.: Quality indicators for
business process models from a gateway complexity perspective. Inf. Softw. Tech-
nol. 54(11), 1159–1174 (2012)

24. Sánchez-GonzáLez, L., GarćıA, F., Ruiz, F., Piattini, M.: Toward a quality frame-
work for business process models. Int. J. Coop. Inf. Syst. 22(01), 1350003 (2013)

25. Sánchez-González, L., Ruiz, F., Garćıa, F., Cardoso, J.: Towards thresholds of
control flow complexity measures for BPMN models. In: Proceedings of the 2011
ACM symposium on Applied computing, pp. 1445–1450. ACM (2011)

26. Schmidt, R., Nurcan, S.: Augmenting BPM with social software. In: Rinderle-Ma,
S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 201–206. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9 19

27. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.:
Quality metrics for business process models. BPM Workflow Handb. 144, 179–190
(2007)

28. Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.:
On a quest for good process models: the cross-connectivity metric. In: Bellahsène,
Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-69534-9 36

29. Vanderfeesten, I.T., Cardoso, J., Reijers, H.A.: A weighted coupling metric for
business process models. In: CAiSE Forum, vol. 247 (2007)

30. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: 2011 IEEE International Conference
on Systems, Man, and Cybernetics, SMC, pp. 1173–1180. IEEE (2011)

https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-540-25970-1_19
https://doi.org/10.1007/978-3-540-25970-1_19
https://doi.org/10.1007/978-3-642-16934-2_9
https://doi.org/10.1007/978-3-642-12186-9_19
https://doi.org/10.1007/978-3-540-69534-9_36

Application of Fuzzy Logic to Assess the Quality of BPMN Models 209

31. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2

32. Yahya, F., Boukadi, K., Ben-Abdallah, H., Maamar, Z.: A fuzzy logic-based app-
roach for assessing the quality of business process models. In: Proceedings of the
12th International Conference on Software Technologies - Volume 1, ICSOFT, pp.
61–72. INSTICC, SciTePress (2017)

33. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
34. Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)

https://doi.org/10.1007/978-3-642-28616-2

Solving Multiobjective Knapsack
Problem Using Scalarizing Function

Based Local Search

Imen Ben Mansour(B), Ines Alaya, and Moncef Tagina

National School of Computer Sciences,
University of Manouba, 2010 Manouba, Tunisia

{imen.benmansour,ines.alaya,moncef.tagina}@ensi-uma.tn

Abstract. Multiobjective optimization has grown to become an active
research area since almost all real-world problems have multiple, usu-
ally conflicting, objectives. In this paper, we focus on the multiobjective
knapsack problem, we solve instances with two, three and four objec-
tives from the literature. We define an iterated local search algorithm
in which a Tchebycheff function is used as a selection process to gener-
ate a good approximation of the efficient set. The proposed algorithm,
Min-Max TLS, designs an efficient neighborhood function based on a
permutation process. Min-Max TLS is compared with state-of-the-art
approaches such as 2PPLS and MOTGA. Results show that our algo-
rithm can achieve a good balance between exploitation and exploration
during the search process.

Keywords: Multiobjective knapsack problem · Iterated local search
Scalarization functions · Tchebycheff functions

1 Introduction

Many real-life optimization problems can hardly be formulated as a mono-
objective problem, which explains the permanent growing interest in the field
of multiobjective optimization. For instance, in transportation problem there is
more than one objective to optimize. The cost of the transport, the duration and
the capacity of the transport, all of this could be objectives to be optimized. In
such problems, usually optimizing one objective, leads to degrading other objec-
tives. Thus, finding a good trade-off between several conflicting objectives is one
of the main goals of the multiobjective optimization problems (MOPs). So, it
consists in optimizing simultaneously several conflicting objectives in order to
find a set of solutions called Pareto front or set or non-dominated set.

The multiobjective multidimensional knapsack problem (MOMKP) which is
one of the hardest multiobjective combinatorial optimization problems, presents
a formal model for many real-world problems. It can be modelized as resource
allocation [1], portfolio optimization [2] and budget allocation [3]. Moreover,

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 210–228, 2018.
https://doi.org/10.1007/978-3-319-93641-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_10&domain=pdf

Solving Multiobjective Knapsack Problem 211

MOMKP can be modelized as a subproblem such as the flight crew choice
[4] and many other general integer programs. The main goal of MOMKP con-
sists in selecting a subset of items in order to maximize m objective functions
with respect to q resource constraints. To solve this NP-hard problem, several
approaches based on metaheuristics were proposed in the literature: In [5], Zit-
zler et al. introduced the well-known SPEA2 which is an elitist algorithm, based
on a ranking dominance procedure. Deb et al. proposed the NSGAII [6], another
well-known multiobjective evolutionary algorithm that is also an elitist approach
and uses a different ranking dominance procedure. In [7], a memetic algorithm
integrates a tabu search method, called MEMOTS, was devised. A generic ACO
algorithm (m-ACO) was presented and instantiated with four variants In [8].
m-ACO is parameterized by the number of ant colonies and the number of the
pheromone structures. Recently, an indicator based ant colony approach which
is abbreviated as IBACO is proposed in [9]. The algorithm uses the indicator
optimization principle to guide ants during their search in the most promising
areas by reinforcing the best solutions by rewarding pheromone.

Related Works. Local search approaches have been widely employed on the
NP-hard multiobjective optimization problems, including problems formulated
as a multiobjective multidimensional knapsack problem [10–12]. Indeed, its sim-
ple and practical appearance has enabled it to be efficient in many real-world
problem such as railway transportation, airline operations, portfolio optimiza-
tion and computer networks [13]. Motivated by the success of these methods,
several papers propose scalarization-based local search methods for MOMKP.
These methods have received a great interest from the scientific community
because of their success for solving multiobjective problems. They represent a
simple way to transform a multiobjective problem into one single or a family
of single objective optimization problems. In [14], Lust and Teghem present the
two-phase Pareto local search (2PPLS). The algorithm uses a Pareto-based local
search combined with a very-large scale neighborhood method based on vec-
tors weight. The 2PPLS combines Pareto local search and aggregation to solve
MOMKP, it consists of two main phases. Phase 1 generates an approximation of
all the supported solutions by solving a number of linear aggregation problems.
Phase 2 applies a Pareto local search to every solution generated in Phase 1 to
find non-supported Pareto optimal solutions. In [15], a genetic algorithm based
on Tchebycheff scalarization function called MOTGA has been proposed. The
algorithm was applied to the MOMKP problem. The Pareto front is divided
into a few small parts. Each part is approximated by a stage and each stage is
guided by a different Tchebycheff aggregation function. More recently, a memetic
algorithm based on decomposition (MOMAD) was proposed in [16]. MOMAD
combines the ideas of the two approaches: the 2PPLS and the evolutionary algo-
rithm MOEA/D introduced in [17]. In MOMAD, a Pareto local search method
is first applied for the neighborhood search then a single objective local search
is applied to each perturbed solution.

Motivations and Contributions. From the previously mentioned state-of-
the-art algorithms, one can say that scalarization and weighted based methods

212 I. Ben Mansour et al.

present promising approaches to solve MOMKP. In the literature, various efforts
have been directed toward the use of the metaheuristics to solve the MOMKP.
Generally, these approaches present a good way to solve NP-hard problems. How-
ever, if a heuristic searching method is used these approaches may be very time
consuming, especially for the large size instances. So, the challenge is optimizing
both the quality results and the time-consuming. In this work, we propose an
iterated multiobjective local search based on Tchebycheff function: Min-Max
TLS for MOMKP. In order to investigate the impact of the choice of the Tcheby-
cheff function on the selection process, the two well-known Tchebycheff functions
are studied in this work: the weighted Tchebycheff: WT [18] and the augmented
weighted Tchebycheff: AugWT [19]. Moreover, one of the key aspects that has to
be considered is the neighborhood structure since it plays a central role in a local
search algorithm. Min-Max TLS integrates an efficient weighted neighborhood
structure called Min-Max N (s) to explore the neighborhood. Min-Max N (s)
allows to establish an order between items according to their profitability. It has
the goal of finding the item that minimizes an extraction ratio to permute it
with items that maximize an insertion ratio in order to improve the quality of
the obtained solutions in a small computational time. Furthermore, in weighted
based methods, the generation of the weight vectors presents a significant point
and influences the quality of the generated solutions. Thus, Min-Max TLS
defines a weight vector generation method called Gw: Gradual weight vector
generation method. Gw creates a set of weight vectors, corresponding to search
directions, guiding the search gradually on almost all regions of the Pareto front.

The paper is organized as follows. In the next section, we define the multi-
objective optimization problems. In Sect. 3, we present the multiobjective mul-
tidimensional knapsack problem. In Sect. 4, the Tchebycheff functions used in
this paper are described. Section 5 presents our main contributions, the pro-
posed algorithm and its different main functions. Then, in Sect. 6, we discuss
the experimental results obtained from Min-Max TLS. Finally, in Sect. 7, we
end the paper with the conclusion and our perspectives.

2 Multiobjective Optimization Problems

Before introducing the MOMKP, let us introduce some useful notations and
definitions related to a general multiobjective optimization problem.

Let X denote the decision space of a general optimization problem, Z the cor-
responding objective space and m objective functions f1, f2, . . . , fm that assign
to each decision vector x ∈ X one objective vector z = (f1(x), f2(x) . . . , fm(x)) ∈
Z. In the following, we assume that all objective functions are to be maximized:

Definition 1. A decision vector x ∈ X is said to dominate another decision
vector x′ ∈ X, noted x � x′, iff ∀i ∈ {1, 2, . . . ,m}, fi(x) ≥ fi(x′) and ∃j ∈
{1, 2, . . . ,m}, fj(x) > fj(x′);

Definition 2. A decision vector x is called weakly non-dominated, if there exists
no x′ ∈ X such that for all i ∈ {1, 2, . . . ,m}, fi(x′) > fi(x);

Solving Multiobjective Knapsack Problem 213

Definition 3. A decision vector x is Pareto-optimal or non-dominated, if a
decision vector x′ which dominates x does not exist.

The goal of a MOP is to find the set of all non-dominated solutions called
Pareto set. When using a metaheuristic approach, the goal is to find a Pareto
set approximation.

3 MOMKP Formulation

The multiobjective multidimensional knapsack problem could be formulated as
follows:

Maximize

n∑

j=1

pk
j xj k = 1, 2, . . . ,m (1)

Subject to
n∑

j=1

wi
jxj ≤ bi i = 1, 2, . . . , q (2)

xj ∈ {0, 1} j = 1, 2, . . . , n

where n is the number of items, for each item Ij is assigned a decision variable
xj equal to 1 if the item is selected, 0 otherwise. Each item Ij has a profit pk

j

relatively to the objective k and a weight wi
j relatively to the resource i. The aim

of the problem is to select a subset of items in order to maximize m objective
functions while not exceeding q resource constraints. bi is the total quantity
available for the resource i.

In this paper, the considered instances assume that the number of objective
functions is equal to the number of resources (m = q).

4 Tchebycheff Functions

For decomposing a multiobjective optimization problem into one single-objective
many scalarization functions exist. In following, we introduce two among the
most commonly-used methods based on the Tchebycheff metric:

4.1 The Weighted Tchebycheff Function

minimizeWT (x|λ, z∗) = max
1≤k≤m

{λk|z∗
k − fk(x)|}

Subject to x ∈ X
(3)

where x is the solution to evaluate, λ = (λ1, λ2, . . . , λm) is the weight vector,
such that λk ≥ 0 for all k = 1, 2, . . . ,m and

∑m
k=1 λk = 1. The ideal point

z∗ = (z∗
1 , z∗

2 , . . . , z∗
m) in the objective space is used as a reference point, calculated

as follows:
z∗
k = max{fk(x)|x ∈ X}, k = 1, 2, . . . ,m (4)

214 I. Ben Mansour et al.

4.2 The Augmented Weighted Tchebycheff Function

One of the main advantage of the weighted Tchebycheff method is that by
varying appropriately the weight vectors and/or the reference point, every non-
dominated solution of the Pareto front of the studied MOP, explicitly includes
non-convex and discrete problems, can be found [20]. On the other hand, the
weighted Tchebycheff method generates also the weakly non-dominated solu-
tions which is often undesirable in MOP. In [19], Steuer and Choo suggested
to add an l1-term, parameterized by ε, to WT (x|λ, z∗) that helps to avoid the
weakly non-dominated solutions. The resulting function is defined as follows:

AugWT (x|λ, z∗) = minimizeWT (x|λ, z∗) + ε

m∑

k=1

{λk|z∗
k − fk(x)|}

Subject to x ∈ X

(5)

where ε ≥ 0 is usually chosen as a small positive constant and z∗ is calculated
as defined in Eq. 4.

5 Our Proposed Approach Min-Max TLS: Min-Max
Tchebycheff Based Local Search

The proposed approach Min-Max TLS is detailed in the following:

Begin
V ← Generate Weight V ectors(H)
Repeat

P ← Perturbation(P , N)
A ← Non−dominated solutions(P)
λ ← Select Weight V ector (V , H)
ForAll (s ∈ P) do

Repeat
UpdateReferencePoint
s∗ ← Neighborhood(s)
I f (Acceptance(s∗ , w , P)) then

P ′ ← Replace(s∗ , w , P)
EndIf

Unt i l s∗ 	= w
EndForAll
A ← Non−dominated solutions(A ∪ P ′

)
Unt i l (Tmax i s reached)

End

Let P be the current population of Min-Max TLS of size N . Initially, a
weight vector is selected from the set V of H weight vectors, generated according
to the proposed Gw method. Then, for each solution s of P the neighborhood
is explored following the proposed weighted neighborhood structure Min-Max

Solving Multiobjective Knapsack Problem 215

N (s), until a good solution is found i.e. one which is better than at least the
worst solution w in P in terms of the used Tchebycheff function. This process
is iterated until all solutions in P are explored. All the non-dominated solutions
found during the local search step are stored in the archive A. The algorithm
stops when a maximum number of iterations Tmax is met and the archive A is
returned.

5.1 Weight Vectors Generation

In order to generate the set V, we propose the Gw method: Let λ =
(λ1, λ2, . . . , λm) be the weight vector, such that λk ≥ 0 for all k = 1, 2, . . . ,m
and

∑m
k=1 λk = 1. For the bi-objective case, the weight vectors are calculated as

follow:

λ1(t) = ln
[(

4 ∗ t ∗ e

FQ

)
+ cos

(
2 ∗ π ∗ t

FQ

)]
(6)

λ2(t) = 1.0 − λ1(t) (7)

where t is the iteration index and e is exp (1). The weight vectors are controlled
by FQ, which is the weight change frequency. If the FQ is well set, the population
can move smoothly from one point to another thus whole regions of the objective
space can be explored and different Pareto-optimal points covering the Pareto
front can be found through this appropriate variation of research orientations.
Moreover, FQ is used to set the number of weight vectors to be generated. Let
FQ = 800 and m = 2, H = (FQ/4)m−1 = 200. Figure 1 shows an example of
how the weight vector values λ1 and λ2 change within 200 iterations and FQ
set to 800 during the local search process.

Fig. 1. The weight vector value change within Tmax = 200 and FQ = 800 [21].

216 I. Ben Mansour et al.

The extension of the Gw method with more than two objectives is theoret-
ically straightforward. In the following, we describe the method Gw, in case of
four objectives (m = 4).

Begin
For (i from 0 to FQ/4) do

λ1=ln
[(

4∗i∗e
FQ

)
+ cos

(
2∗π∗i
FQ

)]

For (j from 0 to FQ/4) do

λ2=(1.0−λ1)∗ln
[(

4∗j∗e
FQ

)
+ cos

(
2∗π∗j
FQ

)]

For (k from 0 to FQ/4) do

λ3=(1.0−λ1−λ2)∗ln
[(

4∗k∗e
FQ

)
+ cos

(
2∗π∗k
FQ

)]

λ4=1.0 − λ1 − λ2 − λ3

EndFor
EndFor

EndFor
End

The algorithm shown above is executed only once before the beginning of the
main loop of Min-Max TLS. Once the initial population is generated, a weight
vector is selected from the set V, according to the iteration index and assigned to
the solution to be evaluated in such way that all the member of the population
have the same weight vector during the same iteration.

5.2 Initial Population Initialization

Like in most evolutionary approaches, the first initial population in Min-Max
TLS is randomly created. In Min-Max TLS, a solution s is composed of two
subsets I+l = {I+1 , I+2 , . . . , I+T } and I−

l
= {I−

1 , I−
2 , . . . , I−

NT } where I+l is the
subset of the items selected in the solution s, T is the number of taken items, I−

l
is the subset of the remaining items (unselected items) and NT is the number
of untaken items. To create a first random population, Min-Max TLS creates
N random solutions. Every solution s is created by selecting a random item Ij

among the n items. If any resource capacity is violated by the item Ij , Ij is added
to the subset I−

l
otherwise Ij is added to the solution s and to the subset I+l .

This process is iterated until all items are placed.

5.3 Perturbation

After the update of the archive A, a new population is generated. In order to
reach different and new region of the search space, where the exploration starts in
the next local search step, we propose to use a perturbation function to generate
the new population: At each iteration, N new solutions are randomly selected
from the archive A if the size of A exceeds N , else if the archive size is less
than the size of the population, the missing solutions are created randomly as

Solving Multiobjective Knapsack Problem 217

done in the first initial population. Let μ be the rate of noise, for every solution
s we remove randomly (μ ∗ T) items from the subset I+l and we add them to
the subset I−

l
of the solution s. Then, as long as we do not violate any resource

constraints. Items are randomly added from I−
l

to I+l . In fact, this random move
allows us to reach new local optima. They can be weak or strong noise which
means moving to a near local optima or jump totally to a new region where it
is considerably difficult to find a new local optima.

5.4 Update Reference Point

When a new solution is introduced in the population, the reference point z∗

is updated. After the initialization process of the population and after each
neighborhood exploration, the new maximal value of all objective functions is
calculated according to Eq. 4.

5.5 Neighborhood Structure

The generation of the neighborhood is one of the most important part of a
local search algorithm. In this paper, we use a proposed weighted neighbor-
hood structure Min-Max N (s). By means of the two proposed algorithms:
Min-Extraction-Item algorithm and Max-Insertion-Item algorithm, Min-
Max N (s) tries to gives a better neighbor of a solution s.

Min-Extraction-Item. The Min-Extraction-Item algorithm can be formu-
lated as follows:

Begin
For (l+ from 1 to T) do

Compute U(l+)
Add Item I+l to LU

EndFor
Sort LU in ascending order

End

For each taken item I+l the ratio U(l+) is calculated as follows:

U(l+) =
∑m

k=1 λk(t)pk
l+∑q

i=1 wi
l+

(8)

where λk(t) is the weight vector selected from the set V,
∑m

k=1 λk(t)pk
l+ is the

weighted profit of the item I+l and
∑q

i=1 wi
l+ is its overall weight. The ratio U(l+)

measures the utility value of each item, the lower this ratio is, the worst the item
is. Once the ratio U(l+) is calculated for all items I+l = {I+1 , I+2 , . . . , I+T }, a list
LU containing all the items I+l is created and sorted in ascending order according
to the ratio U(l+) of each item. So that the worst items that minimize the ratio
U(l+) are placed on the top of the list. The Min-Extraction-Item algorithm is
executed only when a new solution s is selected for neighborhood exploration.

218 I. Ben Mansour et al.

Max-Insertion-Item. The Max-Insertion-Item algorithm is outlined as fol-
lows:

Begin
For (l from 1 to NT) do

Compute U(l)
Add Item I−

l
to LU

EndFor
Sort LU in decreasing order
End

For each untaken item I−
l

the ratio U(l), inspired from [22], is calculated. We

define Ri(s) = bi −
∑T

l=1 wi
l as the remaining quantity of the resource i after the

construction of the solution s. The ratio U(l) of an item I−
l

can be calculated
as follows:

U(l) =

∑m
k=1 λk(t)pk

l

∑q
i=1

(
wi

l

Ri(s)

) (9)

where pk
l

and wi
l

are respectively the profit and the weight of the candidate
item. The ratio U(l) measures the quality of the candidate item according to the
solution s where the higher this ratio is, the better the item is. As done with
the taken items in the Min-Extraction-Item algorithm, a list LU containing all
the candidate items I−

l
is created and sorted in decreasing order according to

the ratio U(l) of each item. So that the most profitable items that maximize the
ratio U(l) are placed on the top of the list.

Min-Max N (s). A neighbor s∗ is created by removing an item from the list LU

and adding items from the list LU as long as no resource constraint is violated.
In the following, we describe the neighborhood generation procedure.

Begin
Min−Extraction−Item(T)
While (s∗ i s the worst)

Max−Insertion−Item(NT)
s∗ ← Remove LU (l+) from s
While (no c on s t r a i n t i s v i o l a t ed)

s∗ ← Add LU (l) to solution s
EndWhile

EndWhile
End

5.6 Acceptance Criterion and Replacement Function

In the local search algorithms, the neighborhood exploration stops at the first
better solution or when the entire neighborhood is explored. In this work, we

Solving Multiobjective Knapsack Problem 219

choose to stop the exploration once the first better neighbor is found relatively
to the used Tchebycheff function. This choice is guided by one main reason is
that this mechanism allows to speed up the convergence of the population.

The neighbor s∗ is accepted in the population if its fitness value, calcu-
lated according to the Weighted Tchebycheff function (Eq. 3) or the Augmented
Weighted Tchebycheff function (Eq. 5), is better than the worst solution w in
the current population. If so, s∗ replaces the worst solution w. Otherwise the
neighbor is rejected, the next item on the list LU is selected, i.e. the item to
be removed from the solution s, and the algorithm outlined above is executed
again. This process is iterated until a neighbor s∗ better than at least the worst
solution w is found.

6 Experimental Results

The experiments carried out consider two versions of Min-Max TLS: Min-
Max TLSWT and Min-Max TLSAugWT where the solutions are evaluated using
respectively the Weighted Tchebycheff function and the Augmented Weighted
Tchebycheff function. In order to evaluate the quality of the proposed algorithm
and to have a fair comparison, we choose to compare the two proposed versions
of Min-Max TLS with scalarizition-local search-based methods: MOMAD [16],
2PPLS [14] and MOTGA [15]. For both of the two versions as well as the com-
pared algorithms, we considered the benchmark instances defined in [23], that are
widely used in testing several multiobjective heuristics, containing nine instances
with 250, 500 and 750 items, in combination with 2, 3 and 4 objectives.

6.1 Experimental Setup

The used parameter settings for Min-Max TLS are adjusted experimentally and
presented as follow: The population size N is set to 10, we choose a small rate
noise μ = 0.05 to apply on selected solutions in order to focus the search around
the most useful solutions. The parameter ε used in the AugWT function is set
to 10−3 as suggested in [20], to ensure that weakly non-dominated solutions are
avoided and that all non-dominated solutions of the studied (potentially non-
convex) problem can be found. The change frequency FQ and the maximum
number of iteration Tmax are set according to the Table 1. In order to let the
weight vectors change smoothly from one iteration to another, so the whole
search space will be explored, the number of generated weight vectors H and the
stopping criterion Tmax are set to (FQ/4)m−1. MOMAD, 2PPLS and MOTGA
were configured as recommended by their authors, for each algorithm and each
instance 30 runs are considered.

6.2 Performance Metrics

In order to evaluate the results generated by the different algorithms, we used
three measures:

220 I. Ben Mansour et al.

Table 1. The change frequency FQ and Tmax setting.

Number of objectives FQ Tmax

2 800 200

3 40 100

4 20 125

– The hypervolume Difference: which computes the difference between a refer-
ence set, which corresponds to the set of the non-dominated solutions obtained
from the union of all solutions of the different runs, and the set of solutions to
be evaluated in terms of hypervolume as defined in [23]. The obtained values
have to be as close as possible to zero to prove the efficiency of an algorithm
against the other approaches;

– The Mann-Whitney Statistical Test: [24] is applied to the results obtained
by the hypervolume difference in order to prove that the difference between
two algorithms are statistically significant. We reject the null-hypothesis “no
significant difference between the two algorithms A and B” if the P-value is
lower than the significance level 5%;

– The summary Attainment Surface: [25] is used to compare the approach
behaviors in a graphical way. The attainment surface is defined by the objec-
tive vectors that have been attained by at least one approximation set of the
tested algorithm. In the following we compare the median (50%) attainment
surface of the fronts non-dominated solutions found for 30 runs of all the
compared algorithms.

All the computational results were obtained by the performance assessment soft-
ware package PISA provided in http://www.tik.ee.ethz.ch/sop/pisa/.

6.3 Comparison Results

We performed 30 independent runs of each compared algorithm on all the
tested instances. In order to have a good idea of the overall performance of
each approach, the average hypervolume is computed for each algorithm and
each instance. The hypervolume difference results of the proposed algorithms
Min-Max TLSWT and Min-Max TLSAugWT , and the compared algorithms
MOMAD, 2PPLS and MOTGA appear in Table 2. m × n denotes the tested
instance, m is the number of objectives, n is the number of items and (N/A)
denotes that the results are not available. By analyzing the Table 2, it is clear that
our proposed approach performs better than the other compared algorithms. In
fact, Min-Min TLS gives better hypervolume difference results than MOMAD
on all the tested instances and better than MOTGA in eight out of nine instances.
Moreover, it seems that the average results of MOMAD and MOTGA decrease
according to the size of the problem. For the largest and hardest instances, the
quality of the obtained results of MOMAD and MOTGA decease clearly which
is not the case of Min-Max TLS. Thus, the difference between the compared

http://www.tik.ee.ethz.ch/sop/pisa/

Solving Multiobjective Knapsack Problem 221

approaches became much more important with the largest instances. By com-
paring Min-Max TLS with 2PPLS on the three bi-objective instances, the two
approaches obtained about the same hypervolume values except on the 2 × 500
instance where 2PPLS preforms better than Min-Max TLS.

Table 2. Hypervolume difference average values of Min-Max TLSWT , Min-Max
TLSAugWT , MOMAD, 2PPLS and MOTGA.

Instances Min-Max
TLSWT

Min-Max
TLSAugWT

MOMAD 2PPLS MOTGA

2 × 250 2.35E−01 2.52E−01 3.16E−01 2.32E−01 2.72E−01

2 × 500 1.93E−01 2.16E−01 3.56E−01 1.20E−01 1.41E−01

2 × 750 2.14E−01 2.13E−01 3.00E−01 2.10E−01 2.90E−01

3 × 250 2.12E−01 2.21E−01 3.93E−01 N/A 3.29E−01

3 × 500 2.27E−01 2.16E−01 4.56E−01 N/A 3.96E−01

3 × 750 1.91E−01 1.96E−01 4.31E−01 N/A 2.90E−01

4 × 250 2.20E−01 2.18E−01 3.76E−01 N/A 3.79E01

4 × 500 1.93E−01 1.84E−01 3.97E−01 N/A 3.97E−01

4 × 750 1.88E−01 1.76E−01 4.59E−01 N/A 4.27E−01

Table 3 represents the results obtained by the Mann-Whitney statistical
test. The table contains the number of the algorithm which is statistically
outperformed by the corresponding algorithm. For example, on the 2 × 250
instance, Min-Max TLSWT statistically outperformed the algorithm number
3 and the algorithm number 5 which correspond to the MOMAD algorithm and
the MOTGA algorithm respectively. “ ” means that the corresponding algo-
rithm does not statistically outperforms any other algorithm, as is the case
with 2PPLS on the 2 × 750 instance. By analyzing the results of the Mann-
Whitney statistical test shown in the Table 3, the first important information
that we can extract from the table is that Min-Max TLS outperforms signif-
icantly MOMAD and MOTGA on all the largest and hardest instances with 3
and 4 objectives. However, MOMAD and MOTGA never significantly outper-
form the results returned by the proposed approach on these instances. From the
three bi-objective instances, we can observe that Min-Max TLS outperforms
significantly MOMAD and MOTGA on 2 × 750 and 2 × 250 instances. On the
2 × 500 instance, Min-Max TLS outperforms only MOMAD.

Figures 2, 3 and 4 compare the average hypervolume difference of Min-Max
TLSWT and Min-Max TLSAugWT according to the number of objectives for
instances with 250, 500 and 750 items respectively. These figures show clearly the
behaviors of the two versions. As it was previously remarked, the hypervolume
values of Min-Max TLSWT are slightly better than Min-Max TLSAugWT on
the smallest instances (2 and 3 objectives with 250 and 2 objectives with 500
items see Figs. 2 and 3) while with the largest instances with 4 objectives and

222 I. Ben Mansour et al.

Table 3. Mann-Whitney statistical test results of Min-Max TLSWT , Min-Max
TLSAugWT , MOMAD, 2PPLS and MOTGA.

Instances Min-Max
TLSWT

Min-Max
TLSAugWT

MOMAD 2PPLS MOTGA

Algorithm Number 1 2 3 4 5

2 × 250 3, 5 3

2 × 500 3 3 1, 2 1, 2

2 × 750 3, 5 3, 5

3 × 250 3, 5 3, 5 N/A

3 × 500 3, 5 3, 5 N/A

3 × 750 3, 5 3, 5 N/A

4 × 250 3, 5 3, 5 N/A

4 × 500 3, 5 3, 5 N/A

4 × 750 3, 5 3, 5 N/A

with 500 and 750 items (Figs. 3 and 4 respectively), Min-Max TLSAugWT finds
slightly better values than Min-Max TLSWT . As a conclusion, one can say that,
according to Tables 2 and 3 and Figs. 2, 3 and 4, Min-Max TLSAugWT slightly
outperforms Min-Max TLSWT for 5 out of the 9 instances in terms of the
average hypervolume difference but statistically there is no significant difference
between the two versions: Min-Max TLSWT and Min-Max TLSAugWT .

Table 4 gives the average computational time consumed by each algorithm in
seconds. From the table, it is clear that our proposed approach Min-Max TLS
consumes significant shorter CPU time than the other approaches. In fact, the
time consumed by Min-Max TLS is shorter than the other approaches for some
instances about 8 times. When comparing the CPU time of Min-Max TLSWT

against Min-Max TLSAugWT , one can observe that the two algorithms consume
almost the same running time. Nevertheless, Min-Max TLSAugWT consumes
slightly more running time than Min-Max TLSWT on the same instances.

Figures 5, 6 and 7 show the median attainment surfaces of the approximation
sets returned by the two versions Min-Max TLSWT and Min-Max TLSAugWT ,
MOMAD, 2PPLS and MOTGA for respectively the bi-objectives instances
2×250, 2×500 and 2×750. The first important remarque that can be observed
from these figures is that all the tested approaches provide a well-distributed
Pareto front where the obtained points cover almost all the Pareto front. In
Fig. 5, the surfaces are almost confused, it is difficult to distinguish the algo-
rithms. For the two other instances, Figs. 6 and 7, the surfaces of MOMAD,
2PPLS and MOTGA are slightly above the surfaces returned by Min-Max
TLSWT and Min-Max TLSAugWT on a small middle region of the Pareto front.
While throughout the extremity, both of the surfaces of Min-Max TLSWT and
Min-Max TLSAugWT are close to those of MOMAD, 2PPLS and MOTGA. We
note that there is no clear difference between the surfaces obtained by Min-Max

Solving Multiobjective Knapsack Problem 223

Fig. 2. Average hypervolume difference of Min-Max TLSWT and Min-Max
TLSAugWT with 250 items [21].

Fig. 3. Average hypervolume difference of Min-Max TLSWT and Min-Max
TLSAugWT with 500 items [21].

TLSWT and Min-Max TLSAugWT . Thus, these graphics confirm the numeri-
cal results obtained previously, where we have found that, generally, for the
bi-objective instances the compared algorithms are not significantly different.

224 I. Ben Mansour et al.

Fig. 4. Average hypervolume difference of Min-Max TLSWT and Min-Max
TLSAugWT with 750 items [21].

Table 4. Average CPU Time of Min-Max TLSWT , Min-Max TLSAugWT , MOMAD,
2PPLS and MOTGA in seconds [21].

Instances Min-Max
TLSWT

Min-Max
TLSAugWT

MOMAD 2PPLS MOTGA

2 × 250 0.6 0.8 5.2 3.1 0.9

2 × 500 1.9 2.3 15.5 14.8 3.3

2 × 750 4.0 4.3 23.5 25.1 9.6

3 × 250 1.0 1.0 7.5 N/A 8.8

3 × 500 3.4 3.7 19.1 N/A 15.2

3 × 750 5.8 6.4 35.7 N/A 40.7

4 × 250 4.8 5.0 10.7 N/A 8.6

4 × 500 13.6 16.1 25.5 N/A 27.4

4 × 750 24.3 28.8 45.7 N/A 43.2

6.4 Discussion

As a conclusion of this experimentation section, the results have shown that
the proposed approach performs better than the compared approaches. When
evaluating the Min-Max TLS algorithm for solving the MOMKP, some useful
conclusions can be extracted. First, the Min-Max TLS performs statistically
better especially for the largest and hardest instances where the best values for
the instances with 3 and 4 objectives are found by the two versions of Min-
Max TLS. Second, the difference between the two versions Min-Max TLSWT

Solving Multiobjective Knapsack Problem 225

Fig. 5. Illustration of the median attainment surfaces obtained by Min-Max TLSWT ,
Min-Max TLSAugWT , MOMAD, 2PPLS, MOTGA with 2 × 250 instance [21].

Fig. 6. Illustration of the median attainment surfaces obtained by Min-Max TLSWT ,
Min-Max TLSAugWT , MOMAD, 2PPLS, MOTGA with 2 × 500 instance [21].

and Min-Max TLSAugWT is very small. Min-Max TLS performs slightly better
using AugWT function. Third, Min-Max TLSAugWT needs more computational
time than Min-Max TLSWT . In fact, the augmented weighted Tchebycheff ver-
sion consumes slightly more CPU time than the weighted Tchebycheff version,
especially with the largest instances but produces better results.

226 I. Ben Mansour et al.

Fig. 7. Illustration of the median attainment surfaces obtained by Min-Max TLSWT ,
Min-Max TLSAugWT , MOMAD, 2PPLS, MOTGA with 2 × 750 instance [21].

Finally, let us mention that the efficiency of the proposed approach is due to
many factors: the proposed Gw method, the perturbation function, the neigh-
borhood structure, the acceptance criterion and the replacement strategy. The
Gw method has a significant role in Min-Max TLS. Like any weighted app-
roach, the selection of the weights can lead to a better performance. In fact, the
Gw method tries to appropriately varying the search directions, all the member
of population attempt to target almost all parts on the Pareto front. Hence, dif-
ferent Pareto-optimal points can be obtained. Furthermore, the initialization of
the local search population is a very important function. The used perturbation
function allows to generate a new population using information about the good
solutions obtained during the previous iterations. Also, the neighborhood struc-
ture is a crucial part of the local search algorithm. Here, the proposed Min-Max
N (s) tries to remove the least valuable item and replace it with the most prof-
itable items according to the current solution. Therefore, it provides an efficient
way to speed up the search while leading the algorithm to converge. Lastly, the
acceptance criterion and the replacement strategy. The used replacement strat-
egy in this work is a convergence-promoting mechanism, it favors exploitation.
While the acceptance criterion, which can be considered as a diversity-promoting
mechanism, favors more the exploration. Thus, both of them help to provide a
good balance between exploration and exploitation during the search process.

7 Conclusions and Perspectives

This paper presents an approach to solve the multiobjective multidimensional
knapsack problem. Based on local search method and the scalarization concept,

Solving Multiobjective Knapsack Problem 227

more precisely the Tchebycheff metric, we propose two variants of Min-Max
TLS: Min-Max TLSWT and Min-Max TLSAugWT . Compared to three of the
well-known state-of-the-art approaches, our experimental results have shown the
efficiency of Min-Max TLS to solve almost all instances of MOMKP on a short
processing time. Once we have different scalarizing functions, as improvement of
this work, it would be interesting to propose an adaptive version of Min-Max
TLS. In this version, an automatically mechanism can be implemented in order to
choose between the Weighted Tchebycheff and the Augmented Weighted Tcheby-
cheff, which can lead to better results since search ability depends strongly on
these functions. Another perspective of this work is to combine Min-Max TLS
with another metaheuristic method as the ant colony approach. The ant colony
approach could replace the initial population function, since the use of this meta-
heuristic combined with a local search method is known to be efficient on many
combinatorial problems.

Acknowlegment. This is an extended and revised version of a conference paper that
was presented in ICSOFT 2017 [21].

References

1. Shih, H.: Fuzzy approach to multilevel knapsack problems. Comput. Math. Appl.
49, 1157–1176 (2005)

2. Penn, M., Hasson, D., Avriel, M.: Solving the 0/1 proportional knapsack problem
by sampling. J. Optim. Theory Appl. 80, 261–272 (1994)

3. Smeraldi, F., Malacaria, P.: How to spend it: optimal investment for cyber security.
In: Proceedings of the 1st International Workshop on Agents and CyberSecurity
(2014)

4. Ehrgott, M., Ryan, D.M.: Constructing robust crew schedules with bicriteria opti-
mization. J. Multi-Criteria Decis. Anal. 11, 139–150 (2002)

5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al.
(eds.) Evolutionary Methods for Design, Optimisation and Control with Applica-
tion to Industrial Problems (EUROGEN 2001), International Center for Numerical
Methods in Engineering (CIMNE), vol. 1, pp. 95–100 (2002)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 181–197 (2002)

7. Lust, T., Teghem, J.: Memots: a memetic algorithm integrating tabu search for
combinatorial multiobjective optimization. RAIRO - Oper. Res. 42, 3–33 (2008)

8. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective opti-
mization problems. In: 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007), vol. 1, pp. 450–457 (2007)

9. Ben Mansour, I., Alaya, I.: Indicator based ant colony optimization for multi-
objective knapsack problem. In: 19th Annual Conference Knowledge-Based and
Intelligent Information & Engineering Systems, vol. 60, pp. 448–457 (2015)

10. Alsheddy, A., Tsang, E.: Guided Pareto local search and its application to the 0/1
multi-objective knapsack problems. In: Proceedings of the Eighth Metaheuristic
International Conference (MIC 2009) (2009)

228 I. Ben Mansour et al.

11. Vianna, D.S., Dianin, M.F.: Local search based heuristics for the multiobjective
multidimensional knapsack problem. Prod. J. 1, 478–487 (2013)

12. Liefooghe, A., Paquete, L., Figueira, J.: On local search for bi-objective knapsack
problems. Evol. Comput. 21, 179–196 (2013)

13. Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective
combinatorial optimization. Top 12, 1–63 (2004)

14. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Int. Trans. Oper. Res. 19, 495–520 (2012)

15. Alves, M.J., Almeida, M.: MOTGA: a multiobjective Tchebycheff based genetic
algorithm for the multidimensional knapsack problem. Comput. OR 34, 3458–3470
(2007)

16. Ke, L., Zhang, Q., Battiti, R.: A simple yet efficient multiobjective combinatorial
optimization method using decomposition and Pareto local search. IEEE Trans.
Cybern. (2014)

17. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

18. Bowman, V.J.: On the relationship of the Tchebycheff norm and the efficient fron-
tier of multiple-criteria objectives. In: Thieriez, H., Zionts, S. (eds.) Multiple Cri-
teria Decision Making, vo. 1, pp. 76–85 (1976)

19. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for mul-
tiple objective programming. Math. Program. 26(3), 326–344 (1983)

20. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Applica-
tion. Wiley, New York (1986)

21. Ben Mansour, I., Alaya, I., Tagina, M.: A min-max Tchebycheff based local search
approach for MOMKP. In: Proceedings of the 12th International Conference on
Software Technologies, ICSOFT, INSTICC, vol. 1, pp. 140–150. SciTePress (2017)

22. Alaya, I., Solnon, C., Ghédira, K.: Ant algorithm for the multi-dimensional knap-
sack problem. Proc. Int. Conf. Bioinspir. Optim. Methods Appl. (BIOMA) 1, 63–72
(2004)

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1, 257–271
(1999)

24. Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastive multiobjective optimizers. Technical report TIK-Report (2005)

25. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assess-
ment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele,
L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp.
213–225. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 15

https://doi.org/10.1007/3-540-44719-9_15

Monitoring and Control of Vehicles’ Carbon
Emissions

Tsvetan Tsokov1 and Dessislava Petrova-Antonova2(&)

1 Department of Information Technologies, Sofia University,
5 James Bourchier Blvd., 1164 Sofia, Bulgaria

tsvetan.tso@gmail.com
2 Department of Software Engineering, Sofia University,

125 Tsarigradsko shoes Blvd., 1113 Sofia, Bulgaria
d.petrova@fmi.uni-sofia.bg

Abstract. Machine-to-machine communication, known as Internet of Things
(IoT), allows machines to connect using variety of sensors and devices. Thus,
feedbacks to govern energy, agriculture, transportation and environment are able
to be obtained. The IoT provides opportunity not only for creation of new
businesses and investments, but for reduction of carbon emissions. It enables
production of highly automated and connected vehicles that change the global
automotive market. Following the current IoT trends, this paper proposes a
solution for real-time monitoring of vehicles and control of carbon emissions,
called EcoLogic. The EcoLogic is composed of hardware module and several
applications providing cloud services. The hardware module is based on
Arduino and Raspberry Pi embedded systems and measures several physical
parameters by sensors or extracts them from the onboard diagnostic system of
the vehicle for further analysis. The cloud applications process the incoming
data, store it into a SAP HANA database and analyze it to provide feedback and
control of carbon emissions.

Keywords: Clustering � Internet of Things � Reduction of carbon emissions
Sensor data processing

1 Introduction

1.1 A Subsection Sample

As of now, in Europe we witness the outburst of a new industrial revolution, labelled
Industry 4.0 and driven by new-generation ICT such as Big Data, Internet of Things
(IoT), Cloud computing, Internet of Services (IoS), Robotics, etc. The ubiquitous use of
sensors, wide spread of wireless communications and networks, growing computing
power at lower cost and the development of ‘Big Data’ analytics, as well as the
deployment of increasingly intelligent robots and machines, has the potential to trans-
form the way goods are manufactured in Europe [5]. Industry as one of the pillars of the
EU economy – the manufacturing sector accounts for 2 million enterprises, 33 million
jobs and 60% of productivity growth. The new, digital industrial revolution provides the
businesses with technologies for bigger flexibility, extensive customization, increased

© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 229–243, 2018.
https://doi.org/10.1007/978-3-319-93641-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_11&domain=pdf

speed, better quality and improved productivity. It opens new horizons for enterprises to
become more adventurous, to develop innovative products and services which better
serve the needs of the customers.

According to Gartner, the IoT is “the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal states or
the external environment”. As sensors spread across almost every industry, the IoT
triggers a massive influx of Big Data and is one of the key drivers of the Big Data
phenomenon. According to EC the market value of the IoT in the EU is expected to
exceed one trillion euros in 2020. For the past six years, the EC has been actively
cooperating with the industry and with EU Member States and third countries to
unleash the potential of the IoT technology. Nevertheless, the huge variety of vendors
and the low level of standardization create severe problems of interoperability.
Moreover, as the number of devices increases drastically, this poses additional chal-
lenges related to security especially in the case of heterogeneity and limitations of
network capacities.

One of the sectors that is most affected by the IoT is automotive industry. IoT
technologies enable production of highly automated and connected vehicles that will
change the global automotive market. Recently, tens of millions of cars are said to be
connected to the Internet and their number is expected to become hundreds of millions
in the near future [6]. At the same time, mobile communication technology is recog-
nized to have considerable potential to enable carbon emissions reduction across a
variety of applications in a wide range of sectors [7]. According to Global
e-Sustainability Initiative, 70% of the carbon savings currently being made come from
the use of machine-to-machine (M2 M) technologies. The greater savings comes from
buildings (29%) and transportation (28%). The survey data shows that 68% of
smartphone users are willing to adopt behaviours that could result in even more sub-
stantial future reductions to personal carbon emissions. IoT is pointed as a key lever to
reduce the carbon emissions in a statistic of A.T. Kearney [8]. In particular, car sharing,
automotive telematics and smart home are the most promising cases.

Inspired by the low-carbon economy roadmap of European commission and the
grate opportunity provided by the IoT technologies for reducing the carbon emissions,
this paper proposes a solution for real-time monitoring of vehicles and detection of
rising levels of carbon emissions, called EcoLogic. The proposed solution includes
hardware module, which collects sensor data related to vehicle’s carbon emissions such
as air pressure, air temperature and fuel mixture and sends it to cloud-based applica-
tions for further analysis. The results from the analysis are used to control the carbon
emissions through smart notifications and vehicle’s power limitations. A preliminary
implementation of EcoLogic platform is outlined in [9]. The contribution of this paper
consists in:

• more comprehensive description EcoLogic platform’s architecture and
implementation;

• an empirical evidence of the feasibility of EcoLogic platform through usage
example from real environment.

230 T. Tsokov and D. Petrova-Antonova

The rest of the paper is organized as follows. Section 2 outlines the related work.
Section 3 presents the general concept of EcoLogic platform, while Sect. 4 describes
its architecture. Section 5 the usage of EcoLogic platform in real environment. Finally,
Sect. 6 concludes the paper and gives directions for future work.

2 Related Work

The current software solutions for tracking and monitoring vehicles give evidence for
the efforts of using IoT technologies in automotive industry. This section presents those
that are closest in functionality to the proposed one.

Geotab provides a service for monitoring and analysis of vehicles using integrated
hardware module that sends data to private cloud platform. The hardware module is
directly connected to the onboard diagnostic system of the vehicle and collects data
about fuel consumption, travelled distance and other parameters [1]. The analysis
provided by the cloud platform allows identification of vehicles with suboptimal fuel
consumption [2]. Unfortunately, Geotab solution does not provide control over vehi-
cle’s parameters and does not detect anomalies related to increasing rate of carbon
emissions.

The data logger of Madgetech provides functionality for regular monitoring of
carbon dioxide levels [3]. It measures the carbon emissions in exhaust system of
vehicles and sends data to private cloud platform through a wireless network. The
measured data is visualized by mobile application, but further analysis is not supported.
In addition, functionality for control of the carbon emissions is not provided.

The CanTrack solution provides a system for real-time GPS tracking of vehicles
[4]. Its Driver Behaviour Module support driver profiling based on 5 key driving
elements including driving style, speeding and idling. The drivers are assisted to avoid
traffic delays, blocked roads and accidents through real-time and directional traffic
information. After a collision has been detected system alerts are generated in order to
provide accurate location information to emergency services if required. A drawback of
the CanTrack solution is that it works only with GPS data and does not takes into
account the vehicle’s parameters related to carbon emissions.

The presented software solutions for tracking and monitoring vehicles are com-
pared using the following criteria:

• C1: Measurement of large range of parameters through sensors, including direct or
indirect measurement of carbon emissions’ rate.

• C2: Sending sensor data to cloud platform for storage.
• C3: Detection of anomalies related to increasing rate of carbon emissions or

catching of vehicles’ failures.
• C4: Support of mechanism for notification and control over vehicle’s parameters

using effectors.
• C5: Support of configuration allowing system to work with heterogeneous vehicles,

sensors and effectors.
• C6: Providing of Software Development Kit.

Monitoring and Control of Vehicles’ Carbon Emissions 231

The results from comparison are presented in Table 1.

As can be seen from Table 1, all software solutions store the collected vehicles’
data on a cloud platform. Unfortunately, they use private cloud and thus the data is not
accessible for analysis by the stakeholders. Furthermore, none of them perform
detection of anomalies related to increasing rate of carbon emissions or catching of
vehicles’ failures. Support of mechanism for notification and control over vehicle’s
parameters using effectors is not provided by Geotab and Madgetech. Therefore, to the
best of our knowledge there is no complete solution that covers all functional char-
acteristics related to the comparison criteria above.

3 EcoLogic General Concept

The EcoLogic is composed of hardware modules, which are installed on vehicles and
applications providing services, which are deployed on a cloud platform. Its archi-
tecture is shown in Fig. 1.

Table 1. Comparison of software solutions for tracking and monitoring vehicles.

Criterion Geotab Madgetech Cantrack

C1 Yes No No
C2 Yes Yes Yes
C3 No No No
C4 No No Yes
C5 Yes No No
C6 Yes No No

Adapter Controller

Analytics

Web UI

Database

Air/fuel ratio

Air pressure

Air temperature

Actuator (LED)

LCD

Cloud platform

HTTPSHTTPS
MQTT

Connected vehicle

Fig. 1. EcoLogic general architecture.

232 T. Tsokov and D. Petrova-Antonova

The hardware module measures several physical parameters by sensors or extracts
them from the onboard diagnostic system of the vehicle. The data is sent to the cloud
platform. The measured physical parameters are:

• Air/fuel ratio, which is measured by lambda sonde sensor, which is located into the
exhaust system of the vehicle.

• Absolute pressure of the air that is consumed by the engine.
• Temperature of the air that is consumed by the engine.

The cloud applications are implemented as microservices, which are designed in a
platform independent way in order to have the possibility for deployment on different
cloud platforms. The cloud applications are communicating with a database, which is
provided by backing service from the cloud platform. They process the incoming data,
store it into the database and analyze it. The hardware modules communicate with the
cloud platform with wireless network via HTTPS or MQTT protocols. The following
physical parameters are calculated on the base of the incoming sensor data:

• Mass of the consumed air by the engine;
• Mass of the consumed fuel by the engine;
• Mass of the carbon dioxide emissions, exposed into the atmosphere.

All measured and calculated physical parameters are stored in the database.
A cloud-based Analytics application performs an anomaly detection on the streamed
data by searching for vehicles that have not optimal amount of carbon dioxide emis-
sions or system failures. The anomaly detection process is based on clustering analysis.
When some vehicle is detected by the system as an anomaly, with non-optimal amount
of emissions, the hardware module is notified automatically by the cloud platform and
hardware actuator is activated to reduce the amount of emissions. In this way the
system monitors and controls the amount of carbon dioxide emissions in the atmo-
sphere in real time. The hardware modules are equipped with three actuators:

• Liquid crystal display (LCD), which visualize the measured and calculated physical
parameters to the driver.

• Light-emitting diode (LED), which indicates to the driver that the amount of carbon
dioxide emissions is not optimal or there is a system failure (not optimal
parameters).

• Actuator, which controls the amount of injected fuel in the engine and regulates the
amount of emissions.

Currently, the EcoLogic has only the LCD display and LED. The purpose of the
LED is to notify the driver to manually reduce the speed and change the driving
behaviour, which leads to reduction of the amount of emissions.

The cloud platform provides web user interface that is publicly available and
accessible by clients via HTTPS protocol.

The user management of the system is composed of two roles: driver and operator.
The process flow of the system is the following:

Monitoring and Control of Vehicles’ Carbon Emissions 233

• Driver buys a hardware module from a dealer.
• The driver installs the hardware module into vehicle.
• The driver registers the vehicle with the hardware module and sensors in the system.

All components have unique identification numbers.
• Drivers are authorized to monitor, analyze and control their own registered vehicles.
• Operators are authorized to monitor, analyze and control all registered vehicles by

regions.
• Each driver gets score points proportional to the amount of carbon dioxide emis-

sions exposed in the atmosphere by their vehicles. Drivers can participate in
greenhouse gas trading and decrease pollution taxes with their score points.

4 EcoLogic Architecture and Implementation

The EcoLogic platform consists of six software components: Arduino application,
Raspberry Pi application, Java EE backend application, JavaScript Web UI applica-
tion, Analytics application and SAP HANA Database. Its software architecture is
presented in Fig. 2.

Fig. 2. EcoLogic software architecture.

234 T. Tsokov and D. Petrova-Antonova

The Arduino and Raspberry Pi applications work on Olimexino328 and Raspberry
Pi B+ embedded systems accordingly. They built the hardware module that operate on
the vehicle. The Java EE Backend application is a server-side application working on
SAP Cloud Platform. It provides REST web services to the Raspberry Pi application
and JavaScript Web UI application using HTTPS protocol. The Raspberry Pi appli-
cation communicates with the Java EE backend application, which performs pro-
cessing of the measured parameters from the hardware module and sends notifications
for control of the effector in the vehicle. The Java EE backend application is connected
to the Database, where the vehicles’ parameters and rules for anomaly detection are
stored. The Analytics application performs data analysis using queries and stored
procedures provided by the database. It provides REST web services to the Java EE
Backend application over HTTPS protocol.

4.1 EcoLogic Database

The SAP NAHA Database of EcoLogic platform supports Multitenant Database
Containers (MDCs). The MDC system always has one system database and zero or
several MDCs, also known as tenant databases. Two database schemas are created for
the purpose of EcoLogic platform. They are shown in presented in Fig. 3. The first one,
called MAIN schema, includes three tables, namely Vehicle, Sensor and Measurement.
The second one, named MDC_DATA schema, is created for the purpose of analysis. It
has one table, named Measurements, that is created in the context of the Vehicle table.

The table Vehicle of the MAIN schema stores data for the vehicles such as model,
engine capacity of the vehicle, mass of the consumed air by the engine, mass of the
consumed fuel by the engine, mass of the carbon dioxide emissions, ecological state of
the vehicle and limit of the carbon dioxide emissions. Additional column is added to

Fig. 3. Database model of EcoLogic platform.

Monitoring and Control of Vehicles’ Carbon Emissions 235

store Boolean value indicating if the state of the Actuator should be regulated auto-
matically or not. The primary key of the Vehicle table uniquely identifies each vehicle’s
record in it.

The Sensor table of the MAIN schema stores data for the sensors such as type of the
sensor, description, vehicle’s identifier and measurements. The relationship between
the Vehicle table and Sensor table is one to many. Thus, the physical parameters of
each vehicle could be measured with different type of sensors. Currently, three types of
sensors are supported: MAP for measuring the pressure of the air, TEMP for measuring
the temperature of the air and AFR for measuring the air/fuel ratio. The primary key of
the Sensor table uniquely identifies each sensor’s record in it.

The Measurement table of the MAIN schema stores data for the measured values
by the sensors such as unit, value and timestamp. The relationship between the Sensor
table and Measurement table is one to many. Thus, each sensor could provide zero or
more measurements of particular physical parameter.

TheMeasurements table of the MDC_DATA schema gives a view of the monitored
vehicles and their last measured physical parameters. It is used to perform clustering
analysis by the Analytics application.

4.2 EcoLogic Hardware Module

As it was already mentioned, the EcoLogic hardware module consists of Olimexino328
and Raspberry Pi B+ embedded systems, communicating each other. Its architecture is
presented in Fig. 4.

Fig. 4. Architecture of the hardware module.

236 T. Tsokov and D. Petrova-Antonova

The Arduino application, working on the Olimexino328 embedded system, is
implemented with the programming language C++ using Wiring library. It measures
the physical parameters of the vehicle through the sensors, processes and visualizes
them on the 4 � 16 LCD display.

The Raspberry Pi application acts as a proxy between the Arduino application and
the JavaScript Web UI application. It receives the measured physical parameters from
the Arduino application and sends them to the JavaScript Web UI application. It
receives notifications in case of non-optimal physical parameters or rising levels of
carbon dioxide emissions. The Raspberry Pi B+ embedded system uses a system on a
chip (SoC), which includes an ARM compatible central processing unit and Raspbian
operational system that is Linux based. It is connected to the internet through 802.11n
wireless network. The Raspberry application is implemented with Java programming
language using WiringPi, Pi4 J and Apache HttpClient libraries.

4.3 Java EE Backend Application

The Java EE backend application is implemented with Java Enterprise Edition. It is a
server-side application that provides web services implemented as Java servlets:
AddMeasurementServlet, DataManagerServlet and AnalyticsServlet. Its class diagram
is shown in Fig. 5.

Fig. 5. Class diagram of Java EE backend application.

Monitoring and Control of Vehicles’ Carbon Emissions 237

The AddMeasurementServlet servlets communicates with the hardware module. It
receives data, interprets, processes and stores it to the MAIN:Measurement and
MDC_DATA.Vehicles:Measurements tables of the database. The DataManagerServlet
servlet performs create, read, update and delete (CRUD) operations over Vehicle,
Sensor and Management tables of the database for the purpose of the JavaScript Web
UI application. The AnalyticsServlet servlet communicates with the Analytics appli-
cation in order to provide JSON data related to the detected anomalies.

4.4 Analytics Application

The Analytics application consists of the following components:

• Java Analytics Application;
• Automated Predictive Analytics Library that provides machine learning algorithms;
• Measurements Application that provides web services for create, read and update of

data.

The Analytics application operates on the Measurements table of MDC_DATA
database schema. It uses K-Means algorithm for clustering analysis, where the number
of clusters (K) is the number of engine capacities of the registered vehicles in the
EcoLogic platform. The Analytics application provides REST API that handles requests
and responses in JSON format. Listing 1 shows the request for anomaly detection,
while Listing 2 presents the corresponding response.

Listing 1. Request for anomaly detection.

Host: /api/analytics/outliers/sync
Method: HTTP GET
Body (JSON):
{
 "datasetID": 1,
 "targetColumn": "CO2EMISSIONSMASS",
 "skippedVariables": ["ID", "STOREDAT", "MAP", "AFR", "TEMP"],
 "numberOfOutliers": 10,
 "weightVariable":"AIRMASS",
 "numberOfReasons": 4
}

238 T. Tsokov and D. Petrova-Antonova

Listing 2. Response of anomaly detection

{
"modelPerformance": {
 "confidenceIndicator": 1,
 "predictionConfidence": 0.9942,
 "predictivePower": 0.995,
 "qualityRating": 5
 },
 "numberOfOutliers": 1,
 "outliers": [
 {
 "dataPoint": {
 "VEHICLEID": "7252436",
 "ENGINECAPACITY": 1400,
 "AIRMASS": 25.57,
 "FUELMASS": 3.48,
 "CO2EMISSIONSMASS": 6.02
 },
 "errorBar": 0.2220971039702342,
 "predictedValue": 5.733528320778292,
 "realValue": "6.02",
 "reasons": [
 {
 "value": "3.48",
 "variable": "FUELMASS"
 },
 {
 "value": "25.57",
 "variable": "AIRMASS"
 },
 {
 "value": "1400",
 "variable": "ENGINECAPACITY"
 }]}]}

4.5 JavaScript Web UI Application

The JavaScript Web UI application is implemented with ECMAScript 5, HTML5, CSS
and SAPUI5. It follows the Model-View-Controller (MVC) architecture and provides
the following functionality:

Monitoring and Control of Vehicles’ Carbon Emissions 239

• Performs create, read, update and delete (CRUD) operations over the database;
• Visualizes the current physical parameters of the vehicles;
• Provides hand control of the vehicles’ emissions;
• Activation and deactivation of the option for automatic control of the vehicles’

emissions;
• Visualizes the vehicles with non-optimal physical parameters or rising levels of

carbon dioxide emissions.

5 EcoLogic Usage Example

This section provides evidence for functioning of the EcoLogic platform in real
environment. The user interface of both hardware and software modules is presented.

Figure 6 shows the hardware module installed on a real vehicle. It is equipped with
the Olimexino328 and Raspberry Pi B+ embedded systems, power box and wireless
adapter. The LCD display visualizes the pressure and the temperature of the air, as well
as the air/fuel ration.

Figure 7 shows a dialog from the web user interface, where the automatic control of
the emissions is switched off. The data on the screen is presented on two panels, named
Vehicle and Sensors.

Fig. 6. User interface of hardware module.

240 T. Tsokov and D. Petrova-Antonova

The Vehicle panel shows the data for the selected vehicle such as engine capacity,
air and fuel mass, carbon dioxide emissions, etc. The Sensors panel displays the last
collected data from sensors such as temperature and pressure of the air and air/fuel
ratio. When the user selects a particular physical parameter, a new dialog with the latter
measurements from the corresponding sensor is shown. It is presented in Fig. 8.

Fig. 7. User dialog with vehicle data.

Fig. 8. Latter measurements of given sensor.

Monitoring and Control of Vehicles’ Carbon Emissions 241

When the user clicks on the “Analyze data” button of the dialog from Fig. 7, a new
dialog with the results after execution of the algorithm for anomaly detection is coming
up. It is presented in Fig. 9.

The dialog in Fig. 9 has two panels, named Anomaly Detection with K-means
clustering and Anomalies. The first one shows the parameters for execution the the
K-means clustering algorithm, while the second one presents a list with vehicles for
which anomalies are found. Except the physical parameters of the vehicles, three
additional parameters can be seen as follows:

• Predicted value – calculated expected value of carbon dioxide emissions;
• Error bar – magnitude of the error that is calculated based on the expected and

obtained values of the carbon dioxide emissions;
• Reasons – parameters that indicate anomaly.

The results from testing the analytics functionality of EcoLogic platform are pre-
sented in [9]. A case study with two datasets was performed. The first data set contains
known anomalies and is publicly available [10]. The second one collects data from a
real vehicle with internal combustion engine, which works on petrol and has capacity
of 1800 cubic centimeters. It was extended proportionally with appropriate simulated
data in order to obtain bigger dataset. The obtained results from the experiments prove
the feasibility of the EcoLogic platform to detect anomalies in the vehicles’ behavior
related to increased carbon emissions.

Fig. 9. Detection of anomalies.

242 T. Tsokov and D. Petrova-Antonova

6 Conclusions and Future Work

The present work addresses the applicability of IoT technologies to reduce the carbon
emissions produced by the vehicles. It presents a fully completed solution called
EcoLogic, which is ready for production usage to solve a global problem for the
environment. The main advantage of EcoLogic platform is that it is independent from
the underlying hardware and software due to ability to work with variety sensors or
extract data from the onboard diagnostic system of different vehicles as well as ability
to deploy on diverse cloud environments. In addition, cloud implementation based on
micro-services provides high scalability, resilience and opportunity to work with big
amounts of data.

Future work includes integration of new application protocols such as CoAP, DDS
and AMQP that can be used by default, since currently only HTTPS and MQTT are
supported. Implementation of analytics functionality for prediction of potential failures
in vehicles, based on the current and historical data is also considered.

Acknowledgements. The authors acknowledge the financial support by the National Scientific
Fund, Bulgarian Ministry of Education and Science within the project no. DN02/11 and project
no. DN12/9, and by the Scientific Fund of Sofia University within project no. 80-10-
162/25.04.2018.

References

1. GO7. UK: Geotab (2017)
2. MyGeotab. UK: Geotab (2017)
3. Data Loggers. USA: Madgetech
4. CanTrack GPS. UK: CanTrack Global Ltd
5. Davies, R.: Industry 4.0 digitalisation for productivity and growth. European Union (2015)
6. Automotive IT-Kongress 4.0 (2015): http://www.t-systems.de/news-media/automotiveit-

kongress-industrie-4-0-veraendert-automobilindustrie/1339486. Accessed 13 Nov 2017
7. Stephens, A., Iglesias, M., Plotnek, J.: GeSI Mobile Carbon Impact (2015). http://gesi.org/

files/Reports/GeSI%20mobile%20carbon%20impact.pdf. Accessed 13 Nov 2017
8. A.T. Kearney: Internet of Things, a key lever to reduce CO2 emissions (2015). http://www.

atkearney.fr/documents/877508/879237/20151113_IoT+Impact+on+energy_Europe+EN.
pdf/6757111f-21da-49ee-82fd-915ff42dc26d. Accessed 12 Nov 2017

9. Tsokov, T., Petrova-Antonova, D.: EcoLogic: IoT platform for control of carbon emissions.
In: Proceeding of the 12th International Conference on Software Technologies (ICSOFT),
Madrid, Spain, 24–26 July, vol. 1, pp. 178–185 (2017)

10. Philip Mugglestone: SAP HANA Academy (2014). https://github.com/saphanaacademy/
PAL/tree/master/Source%20Data/PAL. Accessed 06 Feb 2017

Monitoring and Control of Vehicles’ Carbon Emissions 243

http://www.t-systems.de/news-media/automotiveit-kongress-industrie-4-0-veraendert-automobilindustrie/1339486
http://www.t-systems.de/news-media/automotiveit-kongress-industrie-4-0-veraendert-automobilindustrie/1339486
http://gesi.org/files/Reports/GeSI%20mobile%20carbon%20impact.pdf
http://gesi.org/files/Reports/GeSI%20mobile%20carbon%20impact.pdf
http://www.atkearney.fr/documents/877508/879237/20151113_IoT%2bImpact%2bon%2benergy_Europe%2bEN.pdf/6757111f-21da-49ee-82fd-915ff42dc26d
http://www.atkearney.fr/documents/877508/879237/20151113_IoT%2bImpact%2bon%2benergy_Europe%2bEN.pdf/6757111f-21da-49ee-82fd-915ff42dc26d
http://www.atkearney.fr/documents/877508/879237/20151113_IoT%2bImpact%2bon%2benergy_Europe%2bEN.pdf/6757111f-21da-49ee-82fd-915ff42dc26d
https://github.com/saphanaacademy/PAL/tree/master/Source%20Data/PAL
https://github.com/saphanaacademy/PAL/tree/master/Source%20Data/PAL

WOF: Towards Behavior Analysis
and Representation of Emotions

in Adaptive Systems

Ilham Alloui(B) and Flavien Vernier

LISTIC, Univ. Savoie Mont Blanc, 74000 Annecy, France
ilham.alloui@univ-smb.fr

Abstract. With the increasing use of new technologies such as Commu-
nicating Objects (COT) and the Internet of Things (IoT) in our daily life
(connected objects, mobile devices, etc.), designing Intelligent Adaptive
Distributed software Systems (DIASs) has become an important research
issue. Human face the problem of mastering the complexity and sophis-
tication of such systems as those require an important cognitive load for
end-users who usually are not expert. Starting from the principle that it
is to technology-based systems to adapt to end-users and not the reverse,
we address the issue of how to help developers design and produce such
systems. We then propose WOF, an object oriented Framework founded
on the concept of Wise Object (WO), a metaphor to refer to human
introspection and learning capabilities.

To make systems able to learn by themselves, we designed introspec-
tion, monitoring and analysis software mechanisms such that WOs can
learn and construct their own knowledge. We then define a WO as a
software-based entity able to learn by itself on itself (i.e. on services it
is intended to provide) and also on the others (i.e. the way others use
its services). A WO is seen as an avatar of either a physical or a logical
object (e.g. device/software component).

In this paper, we introduce the main requirements for DIASs as well as
the design principles of WOF. We detail the WOF conceptual architec-
ture and the Java implementation we built for it. To provide application
developers with relevant support, we designed WOF with the minimum
intrusion in the application source code. Adaptation and distribution
related mechanisms defined in WOF can be inherited by application
classes. In our Java implementation of WOF, object classes produced by
a developer inherit the behavior of Wise Object (WO) class. An instan-
tiated system is a Wise Object System (WOS) composed of WOs that
interact through an event bus. In the first version of WOF, a WO was
able to use introspection and monitoring built-in mechanisms to con-
struct knowledge on: (a) services it is intended to render; (b) the usage
done of its services. In the current version, we integrated an event-based
WO simulator and a set of Analyzer classes to provide a WO with the
possibility to use different analysis models and methods on its data. Our
major goal is that a WO can be able to identify common usage of its ser-
vices and to detect unusual usage. We use the metaphor of emotions to

c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 244–267, 2018.
https://doi.org/10.1007/978-3-319-93641-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_12&domain=pdf

WOF: Towards Behavior Analysis and Representation of Emotions 245

refer to unusual behavior (stress, surprise, etc.). We show in the paper
a first experiment based on a statistical analysis method founded on
stationary processes to identify usual/unusual behavior.

Keywords: Object oriented design · Architecture models
Adaptive systems · Introspection · Decentralized control
Behavior analysis · Emotion representation

1 Introduction

With the increasing use of new technologies such as Communicating Objects
(COT) and the Internet of Things (IoT) in our daily life (connected objects,
mobile devices, etc.), designing Intelligent Adaptive Distributed software Sys-
tems (DIASs) has become an important research issue. Human face the problem
of mastering the complexity and sophistication of such systems as those require
an important cognitive load for end-users who usually are not expert.

Multiplicity of users, heterogeneity, new usages, decentralization, dynamic
execution environments, volumes of information result in new system design
requirements: technologies should adapt to users more than users should do to
technologies. In the domain of home automation for example, both end-users
and system developers face problems:

– end-users: instructions accompanying the devices are too complex and it is
hard for non-expert users to master the whole behavior of the system; such
systems are usually designed to meet general requirements through a set of
predefined configurations (a limited number of scenarios in the best case).
A user may need a set of services in a given context and a different set of
services in another context. A user does not need to use all what a system
could provide in terms of information or services.

– developers lack software support that help them build home automation sys-
tems able to adapt to end-users. Self-adaptation mechanisms are not mature
yet and most existing support approaches are either too specific or too
abstract to be helpful as stated in [1].

All along the paper, we use a simple example of home automation system
(see Fig. 1). To illustrate our purposes. Let us consider a system composed of a
roller shutter (actuator) and a control key composed of two buttons (sensors).

In the general case and in a manual mode, with a one-button control key, a
person can: bring the shutter either to a higher or to a lower position. With a
second button, the user can tune inclination of the shutter blades to get more or
less light from the outside. As the two buttons cannot be activated at the same
time, the user must proceed in two times: first, obtain the desired height (e.g.
70%) then the desired inclination (e.g. 45%). For such systems, three roles are
generally defined: system developer, system configurator and end-user. Assume
an end-user is at his office and that according to time and weather, his/her
requirements for the shutter change (height and inclination). This would solicit

246 I. Alloui and F. Vernier

Fig. 1. An example of home automation system.

the end-user all along the day and even more when there are several shutters
with different exposure to the sun. From a developer’s point of view, very few
support is available to easily construct adaptive systems: when provided, such
support is too specific and cannot be easily reused in another context. Adaptation
mechanisms and intelligence are generally merged with the application objects
which make them difficult and costly to reuse in another application or domain.

Starting from the principle that it is to technology-based systems to adapt
to end-users and not the reverse, we address the issue of how to help developers
design and produce such systems. We then propose WOF, an object oriented
Framework founded on the concept of Wise Object (WO), a metaphor to refer
to human introspection and learning capabilities.

To make systems able to learn by themselves, we designed introspection,
monitoring and analysis software mechanisms such that WOs can learn and
construct their own knowledge and experience.

According to this approach (see Fig. 2), “wise” buttons and shutters would
gradually construct their experience (e.g. by recording effect of service invoca-
tion on their state, statistics on invoked services, etc.) and adapt their behavior
according to the context (e.g. physical characteristics of a room, an abstract
state defined by a set of data related to the weather, the number of persons in
the office, etc.). From the development perspective, we separate in the WOF
objects’ “wisdom” and intelligence logic (we name abilities) from objects’ appli-
cation services (we name capabilities) they are intended to render.

To provide application developers with relevant support, we designed WOF
with the minimum intrusion in the application source code. Adaptation and dis-
tribution related mechanisms defined in WOF can be inherited by application

WOF: Towards Behavior Analysis and Representation of Emotions 247

Fig. 2. A wise home automation system.

classes. In our Java implementation of WOF, object classes produced by a devel-
oper inherit the behavior of Wise Object (WO) class. An instantiated system is
a Wise Object System (WOS) composed of WOs that interact through an event
bus. In the first version of WOF, a WO was able to use introspection and moni-
toring built-in mechanisms to construct knowledge on: (a) services it is intended
to render; (b) the usage done of its services. In the current version, we inte-
grated an event-based WO simulator and a set of Analyzer classes to provide
a WO with the possibility to use different analysis models and methods on its
data. Our major goal is that a WO can be able to identify common usage of its
services and to detect unusual usage. We use the metaphor of emotions to refer
to unusual behavior (stress, surprise, etc.). We show in the paper a first experi-
ment based on a statistical analysis method founded on stationary processes to
identify usual/unusual behavior.

In the paper, we focus mainly on the architecture of the WO and WOS, their
global structure and behavior. In Sect. 2, we discuss the challenges and require-
ments for DIASs. Then we present design principles and fundamental concepts
underlying WOF in Sect. 3. In Sect. 4 we detail the structure and behavior of a
WO and a WO System (WOS) and present the architectural patterns we adopted
in our design. We focus in section Sect. 5 on WO knowledge analysis using sta-
tistical approaches, in particular to identify common usage and detect unusual
behavior. To illustrate how to use the WOF, we give an example in the home
automation domain in Sect. 6. Finally, in Sect. 7 we discuss our approach and
conclude with ongoing work and some perspectives.

248 I. Alloui and F. Vernier

2 Requirements

A technology-based system should be able to: (1) know by itself on itself, i.e. to
learn how it is intended to behaves, to consequently reduce the learning effort
needed by end-users (even experimented ones); (2) know by itself on its usage
to adapt to users’ habits. In addition like any service-based system (3) such
system should be able to improve the quality of services it is offering. WOF
aims at helping developers producing such systems while meeting end-users’
requirements:

– Requirement 1 : We need non-intrusive systems that serve users while requir-
ing just some (and not all) of their attention and only when necessary. This
contributes to calm-technology [2] that describes a state of technological matu-
rity where a user’s primary task is not computing, but being human. As
claimed in [3], new technologies might become highly interruptive in human’s
daily life. Though calm-technology has been proposed first by Weiser and
Brown in early 90’s [2], it remains a challenging issue in technology design.

– Requirement 2 : We need systems composed of autonomous entities that are
able to independently adapt to a changing context. If we take two temper-
ature sensors installed respectively inside and outside the home, each one
reacts differently based on its own experience (knowledge). A difference in
temperature that is considered as normal outside (e.g. 5◦) is considered as
significant inside. Another situation is when an unexpected behavior occurs,
for example a continuous switching on - switching off of a button. In such a
case, the system should be able to identify unusual behavior according to its
experience and to decide what to do (e.g. raising an alert);

– Requirement 3 : In an ideal world, an end-user declares his/her needs (a goal)
and the system looks for the most optimal way to reach it. This relates to
goal-oriented interaction and optimization. The home automaton system user
in our example would input the request “I want the shutter at height h
and inclination i” and the system based on its experience would choose the
“best” way to reach this state for example by planning a set of actions that
could be the shortest one or the safest or the less energy consuming, etc.
according to the non-functional quality attributes that have been considered
while designing the system [4].

Many approaches are proposed to design and develop the kinds of systems
we target: multi-agent systems [5], intelligent systems [6], self-X systems [7],
adaptive systems [8]. In those approaches, a system entity (or agent) is able to
learn on its environment through interactions with other entities. Our aim is to
go a step forward by enhancing a system entity with the ability to learn by its
own on the way it has been designed to behave. There are at least two advantages
to this: (a) as each entity evolves independently from the others, it can control
actions to perform at its level according to the current situation. This enables a
decentralized control in the system; (b) each entity can improve its performance
and then the performance of the whole system, i.e. a collaborative performance.

WOF: Towards Behavior Analysis and Representation of Emotions 249

While valuable, existing design approaches are generally either domain-
specific or too abstract to provide effective support to developers. The IBM
MAPE-K known cycle for autonomic computing [9] is very helpful to under-
stand required components for self-adaptive systems but still not sufficient to
implement them. Recently, more attention has been given to design activities of
self-adaptive systems: in [1], authors propose design patterns for self-adaptive
systems where roles and interactions of MAPE-K components are explicitly
defined. In [10] authors propose a general guide for developers to take deci-
sions when designing self-adaptive systems. Our goal is to offer developers an
object oriented concrete architecture support, ready to use for constructing wise
systems. We view this as complementary to the work results cited above where
more abstract architectures have been defined.

From a system development perspective, our design decisions are mainly
guided by the following characteristics: software support should be non-intrusive,
reusable and generic enough to be maintainable and used in different application
domains with different strategies. Developers should be able to use the frame-
work with the minimum of constraints and intrusion in the source code of the
application. We consequently separated in the WOF the objects’ “wisdom” and
intelligence logic (we name abilities) from application services (we name capa-
bilities) they are intended to render.

3 Fundamental Concepts of WOF

We introduce the fundamental concepts of WO and WOS from a runtime per-
spective. We adapt to this end the IBM MAPE-K known cycle for autonomic
computing [9].

3.1 Concept of WO

We define a Wise Object (WO) as a software object able to learn by itself
on itself and on its environment (other WOs, external knowledge), to deliver
expected services according to the current state and using its own experience.
Wisdom refers to the experience such object acquires by its own during its life.
We intentionally use terms dedicated to humans as a metaphor. A Wise Object
is able to learn on itself using introspection. A Wise Object is considered as a
software avatar intended to “connect” to either a physical entity/device (e.g. a
vacuum cleaner) or a logical entity. In the case of a vacuum cleaner, the WO
could learn how to clean a room depending on its shape and dimensions. In
the course of time, it would in addition improve its performance (less time, less
energy consumption, etc.).

– its autonomy: it is able to behave with no human intervention;
– its adaptiveness: it changes its behavior when its environment changes;
– its intelligence: it observes itself and its environment, analyzes them and uses its

knowledge to decide how to behave (introspection and monitoring, planning);

250 I. Alloui and F. Vernier

(a) WO Dream IAPE-K

(b) WO Awake MAPE-K

Fig. 3. WO MAPE-Ks [11].

– its ability to communicate: with its environment that includes other WOs
and end-users in a decentralized way (i.e. different locations).

We designed WO in a way its behavior splits into two states we named
Dream and Awake. The former is dedicated to introspection, learning, knowledge
analysis and management when the WO is not busy with service execution. The
latter is the state the WO is in when it is delivering a service to an end-user
or answering an action request from the environment. The WO then monitors
such execution and usage done with application services it is responsible for. We
use the word Dream as a metaphor for a state where services invoked by the
WO do not have any impact on the real system: this functions as if the WO is
disconnected from the application device/component/object it is related to.

WOF: Towards Behavior Analysis and Representation of Emotions 251

To ensure adaptiveness, each WO has a set of mechanisms that allow it to
perform a kind of MAPE-K loops [9]. Dream and Awake MAPE-K are respec-
tively depicted by Fig. 3(a) and (b). Let us call the dream MAPE-K a IAPE-K,
due to the fact that in the dream case the Monitoring is actually Introspection.

When dreaming, a WO introspects itself to discover services it is responsible
for, analyzes impact of their execution on its own state and then plans revision
actions on its knowledge. WO constructs its experience gradually, along the
dream states. This means that WO knowledge is not necessarily complete and
is subject to revisions. Revision may result in adaptation, for instance recording
a new behavior, or in optimization like creating a shortening among an action
list to reach more quickly a desired state.

When awake, a WO observes and analyzes what and how services are invoked
and in what context. According to its experience and to analysis results, a WO
is able to communicate an emotion if necessary. We define a WO emotion as
a distance between the common usage (usual behavior) and the current usage
of its services. According to this metaphor, a WO can be surprised if one of its
services is used while it has never been the case before. A WO can stress if one
of its services is more frequently used or conversely, a WO can be bored. WO
emotions are intended to be used as a new information by other WOs and/or
the end-users. This is crucial to adaptation at a WOS level (e.g. managing a
new behavior) and to attract attention on potential problems (e.g. alerts when
temperature is unusually too high). With respect to its emotional state, a WO
plans relevant actions (e.g. raising alarms, opening windows and doors, cutting
off electricity, etc.).

3.2 Concept of WOS (WO System)

We define a WOS as a distributed object system composed of a set of commu-
nicating WOs. Communicated data/information (e.g. emotions) are used by the
WOS to adapt to the current context. It is worth noting that each WO is not
aware of the existence of other WOs. WOs may be on different locations and
it is the charge of the WOS to handle data/information that coordinate WOs’
behaviors. The way this is done is itself an open research question. In our case,
we defined the concept of Managers (see Sect. 4) to carry out communication
and coordination among WOs. This is close to the Implicit Information Sharing
Pattern introduced in [12].

4 Design Models of WO and WOS

WOF is an object oriented framework built on the top of a set of interrelated
packages. This section introduces our design model of the concepts presented in
the previous section.

252 I. Alloui and F. Vernier

4.1 Design Model of WO

Figure 4 shows the UML Class diagram for WO. This model is intentionally
simplified and highlights the main classes that compose a WO. WO Class is an
abstract class that manages the knowledge of its sub-classes. Knowledge man-
aged by a WO is of two kinds: capability-related (i.e. knowledge on applica-
tion services) and usage-related (knowledge on service usage). In our present
experiment, we have chosen a graph-based representation for knowledge on WO
capabilities and usage done of them. Knowledge on WO capabilities is expressed
as a state-transition graph while that on WO usage is expressed as a Markov
graph where usage-related statistics are maintained. The Markov graph clearly
depends on the usage of an object (a WO instance) as 2 WO instances of a same
class may be used differently.

Let us recall that WO behavior is split into two states. The dream state
and the awake state, see Fig. 5. The dream state is dedicated to acquiring the
capability knowledge and to analyzing the usage knowledge. The awake state is
the state where the WO executes its methods invoked by other objects or by
itself, and, monitors such execution and usage.

To build capability-related knowledge, the WO executes the methods of its
sub-class (i.e. the application class) to know their effect on the attributes of this
sub-class. This knowledge is itself represented by a state-transition diagram.
Each set of attribute values produces a state in the diagram and a method
invocation produces a transition. The main constraint in this step is that method
invocation must have no real effect on other objects of the application when the
WO is dreaming. This is possible thanks to the system architecture described in
Sect. 4.2.

Regarding usage-related knowledge on an application object, two kind of
situations are studied: emotions and adaptation of behavior.

As introduced in Sect. 3, an emotion of a WO is defined as a distance between
its current usage and its common usage. WO can be stressed if one of its methods
is more frequently used or conversely, a WO can be bored. WO can be surprised
if one of its method is used and this was never happened before.

When a WO expresses an emotion, this information is caught by the WOS
and/or other WOs and that may consequently lead to behavior adaptation.
At the object level, two instances of the same class that are used differently
– different frequencies, different methods... – may have different emotions, thus,
different behavior and interaction within the WOS.

A WO uses its capability-related knowledge to compute a path from a current
state to a known state [13]. According to the frequency of the paths used, a WO
can adapt its behavior. For example, if a path is often used between non-adjacent
states, the WO can build a shortcut transition between the initial state and
the destination state; it then can also build the corresponding method within
its subclass instance (application object). This modifies the capability-related
graph of this instance.

WOF: Towards Behavior Analysis and Representation of Emotions 253

F
ig
.
4
.

U
M

L
cl

a
ss

d
ia

g
ra

m
o
f
W

O
.

254 I. Alloui and F. Vernier

(a) WO short state diagram

(b) WO detailed state diagram

Fig. 5. UML state diagram of WO built-in behavior [11].

4.2 Design Model of WOS

As explained in Sect. 3, WOs are not aware of the existence of other WOs. They
are distributed and communicate data/information towards their environment.
WOs may be on different locations and one or many Managers carry out com-
munication and coordination among them. In this paper, we propose a concrete
architecture based on a bus system, where any WO communicates with other
objects through the bus. This architecture has many advantages.

A first one is the scalability. It is easier to add WOs, managers, loggers... on
this kind of architecture than to modify a hierarchical architecture. Moreover,
this architecture is obviously distributed and enables distribution/decentralizion
of WOs in the environment.

WOF: Towards Behavior Analysis and Representation of Emotions 255

The third main advantage is the ability for a WO to disconnect/reconnect
from/to the bus when needed. This makes it possible the implementation of the
Dream state (see Sect. 3). Let us recall that in the dream state, a WO can invoke
its own methods to build its capability-related graph, but these invocations must
not have any effect on the subject system.

Thus, when a WO enters the Dream state, it disconnects itself from the bus
and can invoke its methods without impact on the real world system. More
precisely, the WO disconnects its “sending system” from the bus, but it contin-
ues receiving data/information via the bus. Therefore, if a WO in Dream state
receives a request, it reconnects to the bus, goes out from the Dream state to
enter into Awake state and serves the request.

Figure 6 shows the UML class diagram of a bus-based WO system. This model
is simplified and highlights the main classes. The system uses an Event/Action
mechanism for WOs’ interactions. On an event, a state change occurs in a WO, an
action may be triggered on another WO. The peers “Event/Action” are defined
by Event, Condition, Action (ECA) rules that are managed by a Manager. When
this latter catches events (StateChangeEvent), it checks the rules and conditions
and posts a request for action (ActionEvent) on the bus. From the WO point
of view, if one of its subclass instance state changes at Awake state, it posts a
StateChangeEvent on the bus. When a WO receives an ActionEvent, two cases
may occur: either the WO is in Awake state or in Dream state. If the WO is
in Awake state, it goes to the end of its current action and starts the action
corresponding to the received request. If the WO is in Dream state, it stops
dreaming and enters into the Awake state to start the action corresponding to
the received request.

In our Java implementation of WOF, object classes produced by a developer
inherit the behavior of Wise Object (WO) class. An instantiated system is defined
as a wise system composed of Wise Objects that interact through a (or a set
of distributed) Manager(s) implemented by an event-based bus according to
publish-subscribe design pattern.

4.3 Design Model of WO Data Analyzers

As stated all along the paper, a WO is able to collect and analyze usage-related
data. To enrich the WOF framework and to offer the possibility to use different
analysis models and methods on the same data, we associate a WO with a set
of Analyzer classes according to a Factory-like design pattern [14]. This design
decision aims at defining a set of analyzers on collections of data (i.e. instances
of “Graph”) with the possibility to compare analysis results.

Therefore an Analyzer class named “daClass” is statically registered into
the WO class using “registerDAClass(daClass: Class<DataAnalyzer>)” static
method, where “DataAnalyzer” is the abstract class for analyzers. Analyzers of
a WO – the analyzers of knowledge graphs of the WO – are then instantiated
in the WO constructor. Figure 7 illustrates this design model. This approach is
close to factory pattern where the factory is the WO class, the “DataAnalyzers”
are the products and the WO instances are the clients.

256 I. Alloui and F. Vernier

F
ig
.
6
.

U
M

L
cl

a
ss

d
ia

g
ra

m
o
f
a

b
u
s-

b
a
se

d
W

O
sy

st
em

.

WOF: Towards Behavior Analysis and Representation of Emotions 257

F
ig
.
7
.

U
M

L
cl

a
ss

d
ia

g
ra

m
o
f
W

O
d
a
ta

a
n
a
ly

ze
r

p
a
tt

er
n
.

258 I. Alloui and F. Vernier

The “DataAnalyzer” abstract class implements the “Runnable” interface so
that an analyzer is implemented by an independent thread. This abstract class
defines 3 abstract methods: “DataAnalyzer(g:Graph)”, “resume()” and “sus-
pend()”. The first “DataAnalyzer(g:Graph)” is the default constructor that
requires the graph of knowledge to analyze. The second “resume()” starts or
resumes the analyzer. Let us recall that the analysis – the learning activity –
only occurs within the dream state of a WO. Therefore, the analyzers must be
stopped and resumed accordingly. The last method “suspend()” suspends the
analyzer. As depicted by Fig. 7, we realized an implementation of the “DataAn-
alyzer” abstract class: “StatAnalyzer”.

The “StatAnalyzer” performs a statistical analysis of events: occurrences of
graph transitions. It stores for each transition the dates of its occurrences in a
“VectorAnalyzer”. Each “VectorAnalyzer” of a “StatAnalyzer” is characterized
by a “windowSize” that represents the memory size of the vector. When the vec-
tor is full, if a new event occurs, the oldest is forgotten: removed from the vector.
Moreover, as the analyzer only performs the analysis during the dream states of a
WO, it also stores information about the data that has already been analyzed to
resume analysis from where it stopped at the last suspend. Regarding the “Vec-
torAnalyzer”, this class extends the descriptive statistics library of the “The
Apache Commons Mathematics Library”. The descriptive statistics provides a
dataset of values of a single variable and computes descriptive statistics based
on stored data. The number of values that can be stored in the dataset may
be limited or not. The “VectorAnalyzer” extends this class to provide statistics
about the evolution of means, variances and autocorrelations, when a new value
is added into the dataset. A representation of this evolution – a distance with
the stationarity – is stored in the “emotion” vector. The next section describes
this analysis approach.

5 Statistical Analysis and WO Emotions

The first analyzer we implements is based on the weaker forms of stationarity of
the process [15]. The stationarity study focuses on the occurrences of the event.
We call event the invocation of a method from a given state (i.e. the execution
of a transition of the knowledge graph). Figure 8 gives a graph of knowledge,
with 4 possible events: t1, t2, t3 and t4. This events occur at different times,
for example, on Fig. 8 the event t1 occurs at times

[
e1t1, e

2
t1, e

3
t1 . . .

]
In this first

analysis, we do not study the correlation between the events.
Let x(i) a continuous and stationary time random process. The weaker forms

of stationarity (WSS) defines that the mean E [x(i)] and variance V ar [x(i)] do
not vary with respect to time and the autocovariance Cov [x(i), x(i − k)] only
depends on range k.

This process is a WSS process if and only if:

E [x(i)] = μ ∀i,
V ar [x(i)] = σ2 �= ∞ ∀i,
Cov [x(i), x(i − k)] = f(k) = ρk ∀i∀k.

WOF: Towards Behavior Analysis and Representation of Emotions 259

Fig. 8. Example of time series for knowledge graph analysis.

This definition implies the analysis of the whole time series. In our case, the
common usage can change and we define it by the stationarity. Therefore, we
compute the stationarity – the common usage – on a sliding window of size w:

E [x(i)] = μ ∀i ∈ [t − w, t],
V ar [x(i)] = σ2 �= ∞ ∀i ∈ [t − w, t],
Cov [x(i), x(i − k)] = f(k) = ρk ∀i ∈ [t − w, t]∀k,

where the time series x(i) are the occurrences
[
et−w
τ . . . ei

τ . . . et
τ

]
of a given event

– i.e. transition – τ between t −w and t.
According to this definition of the stationarity, we define an emotion as the

distance between the current usage and the common usage, in other words the
distance with the stationarity measure. We define this distance d(x(i)) by the
following centered normalized scale where:

d(x(i)) =

⎧
⎪⎪⎨

⎪⎪⎩

d(E [x(i)]) = E[x(i)]−E[x(j)]
(max(E[x(j)])−min(E[x(j)]))/2

,

d(V ar [x(i)]) = V ar[x(i)]−V ar[x(j)]
(max(V ar[x(j)])−min(V ar[x(j)]))/2

,

d(Cov [x(i), x(i− k)]) = Cov[x(i),x(i−k)]−Cov[x(j),x(j−k)]
(max(Cov[x(j),x(j−k)])−min(Cov[x(j),x(j−k)]))/2

,

where j ∈ [t − w, t] and E [x(j)], V ar [x(j)] and Cov [x(j), x(j − k)] are respec-
tively the means of means, variances and autocovariances on the range [t − w, t].

Thus, when a new event occurs at t + 1, we compute the distance with the
common usage between t − w and t. If all values of the distance – d(E [x(i)]),
d(V ar [x(i)]) and d(Cov [x(i), x(i − k)]) – are in [−1, 1] this is considered as a
common behavior, otherwise this is identified as a behavior change (unusual
usage) relatively to the knowledge on the common usage.

6 An Illustrating Example “Home Automation”

The concept of WO has many scopes of application. It can be used to adapt an
application to its environment, to monitor an application from inside, to manage

260 I. Alloui and F. Vernier

an application according to the usage done of it... In this section, we highlight
the WO behavior within a home automation application. This choice is justified
by the fact that:

– home automation systems are usually based on a bus where many devices are
plugged on;

– home automation devices have behavior that can be represented by a simple
state diagram.

According to the first point, a home automation system can be directly mapped
onto a WO system based on a bus where the home automation devices are related
to WOs. The second point avoids the combinatorial explosion that can appear
due to a large number of states to manage in a state diagram.

Let us take a simple example of a switch and a shutter. The switch is modeled
by 2 states “on” and “off” and 3 transitions “on()” , “off()” and “switch()”.

Listing 1.1. Switch Java code.

public class Switch extends Wo {
public boolean po s i t i o n ;

public Switch () {
super () ;

}
public void on () {

invoke () ;
p o s i t i o n = true ;
invoked () ;

}
public void o f f () {

invoke () ;
p o s i t i o n = fa l se ;
invoked () ;

}
public void switch () {

invoke () ;
i f (p o s i t i o n){

po s i t i o n = fa l se ;
} else {

po s i t i o n = true ;
}
invoked () ;

}

}
The shutter is modeled by n states that represent its elevation between 0%

and 100%. If the elevation is 0%, the shutter is totally closed and if the elevation
is 100%, the shutter is totally open. To avoid a continuous system, the shutter
can only go up or down step by step.

WOF: Towards Behavior Analysis and Representation of Emotions 261

Listing 1.2. Shutter Java code.

public class Rol l i ngShut t e r extends Wo {
private int e l e v a t i o n = 0 ;
private stat ic int s tep = 20 ;

public Rol l i ngShut t e r () {
super () ;

}

public void down(){
methodInvocate () ;
i f (this . e l eva t i on >0){

this . e l e v a t i o n −= Rol l i ngShut t e r . s tep ;
}
i f (this . e l e v a t i o n <= 0){

this . e l e v a t i o n = 0 ;
}
methodInvocated () ;

}

public void up () {
methodInvocate () ;
i f (! this . e l e v a t i o n < 100){

this . e l e v a t i o n += Ro l l i ngShut t e r . s tep ;
i f (this . e l e v a t i o n >= 100){

this . e l e v a t i o n = 100 ;
}

}
methodInvocated () ;

}
As one design principle behind WOF is to minimize intrusion within the

application source code, we have succeeded to limit them to the number of
two “warts”. The examples highlight those 2 intrusions in the code. They are
concretized by two methods implemented in the WO Class – methodInvocate()
and methodInvocated() – and must be called at the beginning and the end of
any method of the WO subclass (application class). Those methods monitor the
execution of a method on a WO instance. We discuss about these “warts” in the
last section.

In our example, an instance of Switch and another of RollingShutter are
created. Two ECA rules are defined to connect those WOs:

– [SwitchInstance.on?/True/RollingShutterInstance.up()]
– [SwitchInstance.off?/True/RollingShutterInstance.down()]

They define that when the event “on” occurs on the switch, the action – method –
“up” must be executed on the rolling shutter and that when the event “off”
occurs on the switch, the action “down” must be executed on the rolling shutter.
For the experiment and feasibility study, the action on the SwitchInstance –
“on()” and “off()” invocations – are simulated using the WO simulator we are

262 I. Alloui and F. Vernier

SwitchInstance RollingShutterInstance

on off up down

0 1769 3 1774
1 6015 5 6016
1 6624 5 6625

4263 10435 4264 10436
8523 10435 8525 10444
9963 11026 9968 11028
9964 11026 9966 11028
10994 12615 10997 12616
10995 15811 10996 15816

...

Log 1. First event log stored on each WO.

developing. The actions “on” and “off” occur according to a Poisson distribution
and depend on the elevation of the rolling shutter. The likelihood of action “off”
occurrence is RollingShutterInstance.elevation/100, the likelihood of action
“on” occurrence is inversely proportional. When an action occurs, “on” or “off”,
it can occur x times successively without delay, where x is bounded by the
number of occurrences to reach the bound of shutter elevation, respectively 100%
and 0%.

Presently, a WO acquires knowledge about its capabilities using a graph
representation. The knowledge about its usage is the logs of all its actions/events
and can be presented by a Markov graph. The logging presented in Log 1 shows
the events occurred on each WO of the system. This information is collected from
each WO. With this information each WO can determine its current behavior and
a manager can determine the system behavior. This is discussed in Sect. 7. Log 2
gives Markov graph logging representation. Let us note that the Markov graph
representation hides time-related information as it is based on the frequency of
occurrences. Log 2 shows that the wise part of the Switch instance detects the 2
states and the 6 transitions. It also shows a 2 × 2 adjacency matrix followed by
a description of the 6 transitions including their usage-related statistics.

Log 2 shows for instance that from the state 0 with the position attribute at
false, the SwitchInstance may execute method “on()” or “switch()” and go to
state 1 or execute method “off()” and remain in the same state 0. Usage-related
statistics show that method “switch()” is never used from the state 0 all along
the 1000 iterations.

Regarding the RollingShutter instance, the logging after the 2nd iteration
(Log 3) and the last Log 4 are given. Log 3 shows that the wise part of the
RollingShutter instance detects 6 states and 10 transitions (green values of adja-
cency matrix). Consequently, it has not detected all the possible transitions yet.
This incomplete knowledge is not a problem, during the next Dream state or if
it uses those transitions during the Awake state, the WO part of the applica-
tion object will update its knowledge. The last Log 4 shows that all states and
transitions are detected (learnt).

WOF: Towards Behavior Analysis and Representation of Emotions 263

Graph:

2 States, 6 Transitions

0 1

0: 1 1

1: 1 1

State [0 , false] :

Adjacency on->[1 , true] - 0.313,

switch->[1 , true] - 0.0,

off->[0 , false] - 0.687,

State [1 , true] :

Adjacency off->[0 , false] - 0.311,

on->[1 , true] - 0.689,

switch->[0 , false] - 0.0,

Current State: 1

Log 2. Switch log after 1000 iterations.

Graph:

6 States, 10 Transitions

0 1 2 3 4 5

0: 1 1 0 0 0 0

1: 1 0 1 0 0 0

2: 0 1 0 1 0 0

3: 0 0 1 0 1 0

4: 0 0 0 1 0 1

5: 0 0 0 0 0 0

State [0 , 0 , 20] :

Adjacency down->[0 , 0 , 20] - 0.0,

up->[1 , 20 , 20] - 1.0,

State [1 , 20 , 20] :

Adjacency up->[2 , 40 , 20] - 1.0,

down->[0 , 0 , 20] - 0.0,

State [2 , 40 , 20] :

Adjacency down->[1 , 20 , 20] - 1.0,

up->[3 , 60 , 20] - 0.0,

State [3 , 60 , 20] :

Adjacency up->[4 , 80 , 20] - 0.0,

down->[2 , 40 , 20] - 0.0,

State [4 , 80 , 20] :

Adjacency down->[3 , 60 , 20] - 0.0,

up->[5 , 100 , 20] - 0.0,

State [5 , 100 , 20] :

Adjacency ,

Current State: 1

Log 3. Rolling shutter log after the 2nd iteration.

Another analysis of the log is given by Fig. 9. This figure presents the “emo-
tion” for the event “on” from state 0, computed from the statistical analysis
presented in Sect. 5. Figures 9(a)–(d) present the analysis of the common usage

264 I. Alloui and F. Vernier

Graph:

6 States, 12 Transitions

0 1 2 3 4 5

0: 1 1 0 0 0 0

1: 1 0 1 0 0 0

2: 0 1 0 1 0 0

3: 0 0 1 0 1 0

4: 0 0 0 1 0 1

5: 0 0 0 0 1 1

State [0 , 0 , 20] :

Adjacency down->[0 , 0 , 20] - 0.0,

up->[1 , 20 , 20] - 1.0,

State [1 , 20 , 20] :

Adjacency up->[2 , 40 , 20] - 0.653,

down->[0 , 0 , 20] - 0.347,

State [2 , 40 , 20] :

Adjacency down->[1 , 20 , 20] - 0.456,

up->[3 , 60 , 20] - 0.544,

State [3 , 60 , 20] :

Adjacency up->[4 , 80 , 20] - 0.443,

down->[2 , 40 , 20] - 0.557,

State [4 , 80 , 20] :

Adjacency up->[5 , 100 , 20] - 0.375,

down->[3 , 60 , 20] - 0.625,

State [5 , 100 , 20] :

Adjacency up->[5 , 100 , 20] - 0.0,

down->[4 , 80 , 20] - 1.0,

Current State: 1

Log 4. Rolling shutter log after the last iteration.

with different sizes of memory (window size of “VectorAnalyzer”). Between −1
and 1, the behavior is considered as usual, because it already has appeared in
the past stored in the memory. Out of the range [−1..1] an unusual behavior
is detected relatively to the knowledge in memory and the more important the
distance with the range is, the more important the emotion is. Those results are
consistent from the data analysis point of view: the bigger the time window is,
the smoother the result is. From the emotion point of view, it means that the
wider the memory is, the less unusual behavior is detected.

It is worth noticing that this example is intentionally simple as our goal is
to highlight the kind of knowledge a WO can currently acquire and analyze.
Capability graphs and usage logging are the knowledge base for WOs. We discus
the management and use of this knowledge in Sect. 7.

WOF: Towards Behavior Analysis and Representation of Emotions 265

(a) memory size: 10 (b) memory size: 20

(c) memory size: 40 (d) memory size: 80

Fig. 9. Evolution of emotions according to memory size.

7 Discussion and Concluding Remarks

Our work addresses the issue of designing distributed adaptive software systems
through WOF: a software object-based framework implemented in Java. At a
conceptual level, WOF is built around the concept of “wise object” (WO), i.e. a
software object able to: (a) learn on its capabilities (services), (b) learn on the
way is being used and (c) perform data analysis to identify common usage and
detect unusual behavior. At a concrete level, a WO uses: (a) introspection and
monitoring mechanisms to construct its knowledge, (b) an event-based bus to
communicate with the system and (c) a set of analyzers to identify both usual
and unusual behaviors.

Regarding data analysis, we implemented a first statistical analyzer, based
on the theory of stationary processes. This experiment is a step forward towards
behavior analysis and emotion representation in adaptive systems. As shown in
the paper, an emotion is defined as a distance between an unusual behavior and
a common behavior.

Our work and experiments around WOF raised many research issues and
perspectives. A first main perspective is to use other knowledge aggregation the-
ories/techniques to represent emotions of a Wise Object : solutions may involve
techniques from information fusion, multi-criterion scales or fuzzy modeling.
A second one is to generalize behavior analysis and emotion representation to

266 I. Alloui and F. Vernier

a WOS (Wise Object System): this requires knowledge aggregation to extract
relevant information on the whole system starting from individual WOs.

In the present version of WOF, intrusiveness in application source code is
limited to the inheritance relationship and two warts: the WO methods method-
Invocate() and methodInvocated() that must be called at the beginning and
the end of an application method. Regarding this issue, we envisage different
solutions in the next version of WOF: (a) add dynamic Java code on-the-fly
at runtime; (b) use Aspect Oriented Programming [16]; (c) use dynamic proxy
classes.

We are convinced that wise systems are a promising approach to help humans
integrate new technologies both in their daily life as end-users and in develop-
ment processes as system developers. We use home automation to illustrate our
work results but those can also apply to other domains like health that heavily
rely on human expertise. Authors in [17,18] propose interactive Machine Learn-
ing (iML) to solve computationally hard problems. With regard to this, WOF
puts the “human-in-the-loop” in two cases: when defining ECA rules to connect
distributed WOs and when validating capability-related knowledge constructed
by WOs.

To validate our approach, we recently initiated a new internal project called
COMDA whose aim is to study and test our research ideas on a real system.
The latter consists of a set of connected objects (sofa, chairs, etc.) to identify
unusual situations like “no life sign in the living-room this morning” which is
crucial in the domain of person ageing in place.

References

1. Abuseta, Y., Swesi, K.: Design patterns for self adaptive systems engineering.
CoRR abs/1508.01330 (2015)

2. Weiser, M., Brown, J.S.: Designing calm technology. PowerGrid J. 1(01) (1996)
3. Amber Case: Amber case 2011, we are all cyborgs now. TED Talk (2010)
4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-

Wesley, Reading (c1998). Online version: Bass, L.: Software Architecture in Prac-
tice. Addison-Wesley, Reading c1998 (OCoLC)605442178

5. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley Publish-
ing, Hoboken (2009)

6. Roventa, E., Spircu, T.: Management of Knowledge Imperfection in Building Intel-
ligent Systems. Studies in Fuzziness and Soft Computing. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77463-1

7. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comput. Surv. 40, 7:1–7:28 (2008)

8. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (2009)

9. IBM: An architectural blueprint for autonomic computing. Technical report, IBM
(2005)

10. Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes, A., Shaw, M., Smit, M.: A
design space for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A.,
Shaw, M. (eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol.
7475, pp. 33–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35813-5 2

https://doi.org/10.1007/978-3-540-77463-1
https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1007/978-3-642-35813-5_2

WOF: Towards Behavior Analysis and Representation of Emotions 267

11. Alloui, I., Vernier, F.: A wise object framework for distributed intelligent adaptive
systems. In: ICSOFT 2017, Madrid, Spain (2017)

12. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

13. Moreaux, P., Sartor, F., Vernier, F.: An effective approach for home services man-
agement. In: 20th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Garching, pp. 47–51. IEEE (2012)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co. Inc.,
Boston (1995)

15. Lindgren, G.: Stationary Stochastic Processes: Theory and Applications. Texts in
Statistical Science. Chapman and Hall, New York (2012)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0053381

17. Holzinger, A.: Interactive machine learning for health informatics: when do we need
the human-in-the-loop? Brain Inform. 3, 119–131 (2016)

18. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.:
Towards interactive machine learning (iML): applying ant colony algorithms to
solve the traveling salesman problem with the human-in-the-loop approach. In:
Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-
ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-45507-5 6

https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-319-45507-5_6
https://doi.org/10.1007/978-3-319-45507-5_6

Classifying Big Data Analytic
Approaches: A Generic Architecture

Yudith Cardinale1(B), Sonia Guehis2,3, and Marta Rukoz2,3

1 Dpto. de Computación y TI, Universidad Simón Boĺıvar,
Caracas 1080-A, Venezuela

ycardinale@usb.ve
2 Université Paris Nanterre, 92001 Nanterre, France

3 Université Paris Dauphine, PSL Research University, CNRS, UMR[7243],
LAMSADE, 75016 Paris, France

{sonia.guehis,marta.rukoz}@dauphine.fr

Abstract. The explosion of the huge amount of generated data to be
analyzed by several applications, imposes the trend of the moment, the
Big Data boom, which in turn causes the existence of a vast landscape of
architectural solutions. Non expert users who have to decide which ana-
lytical solutions are the most appropriates for their particular constraints
and specific requirements in a Big Data context, are today lost, faced
with a panoply of disparate and diverse solutions. To support users in
this hard selection task, in a previous work, we proposed a generic archi-
tecture to classify Big Data Analytical Approaches and a set of criteria of
comparison/evaluation. In this paper, we extend our classification archi-
tecture to consider more types of Big Data analytic tools and approaches
and improve the list of criteria to evaluate them. We classify different
existing Big Data analytics solutions according to our proposed generic
architecture and qualitatively evaluate them in terms of the criteria of
comparison. Additionally, we propose a preliminary design of a decision
support system, intended to generate suggestions to users based on such
classification and on a qualitative evaluation in terms of previous users
experiences, users requirements, nature of the analysis they need, and
the set of evaluation criteria.

Keywords: Big Data Analytic · Analytic models for big data
Analytical data management applications

1 Introduction

The Big Data phenomenon revolutionized and impacted the modern computing
industry, which have reviewed their policies, architectures, and their production
environment to support a continuous increase on the computational power that
produces an overwhelming flow of data [1]. Big Data databases have recently
become important NoSQL (being non-relational, distributed, open-source, and
horizontally scalable) and NewSQL (taking the advantages of relational and
c© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 268–295, 2018.
https://doi.org/10.1007/978-3-319-93641-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_13&domain=pdf

Classifying Big Data Analytic Approaches: A Generic Architecture 269

NoSQL systems) data repositories in enterprises as the center for data analytics,
while enterprise data warehouses (EDWs) continue to support critical business
analytics [2,3]. This scenario induced a paradigm shift in the large scale data
processing and data mining, computing architecture, and data analysis mecha-
nisms. This new paradigm has spurred the development of novel solutions from
both industry (e.g., analysis of web-data, clickstream, network-monitoring logs)
and science (e.g., analysis of data produced by massive-scale simulations, sensor
deployments, telescopes, particle accelerators, genome sequencers) [4,5].

In this context, analytical data management applications, affected by the
explosion of the amount of generated data, are shifting away their analytical
databases towards a vast landscape of architectural solutions combining storage
techniques, programming models, languages, and tools. In this scenario, non
expert users who have to decide which analytical solution is the most appropriate
for their particular constraints and specific requirements in a Big Data context,
is today lost, faced with a panoply of disparate and diverse solutions.

To support users in this hard selection task, in a previous work [6], we pro-
posed: (i) a generic architecture to classify Big Data Analytical Approaches,
focused on the data storage layer, the parallel programming model, the type
of database, and the query language that can be used; these aspects represent
the main features that allow to distinguish classical EDWs from analytical Big
Data approaches; and (ii) a set of criteria of comparison/evaluation, such as
On-Line Analytical Processing (OLAP) support, scalability, and fault tolerance
support. In this paper, we extend our previous proposed classification architec-
ture to consider a more wide typology of Big Data tools and approaches and
we improve the list of evaluation criteria, by including other important aspects
for analytic processing, such as Machine Learning support. We classify different
existing Big Data analytics solutions according to our proposed generic archi-
tecture and qualitatively evaluate them in terms of the criteria of comparison.
Additionally, in this work we propose a preliminary design of a decision sup-
port system. The decision support system is intended to generate suggestions
to users based on such classification and on a qualitative evaluation in terms of
previous users experiences, users requirements, nature of the analysis they need,
and the set of evaluation criteria. This work represents another step towards
the construction of a more sophisticate Decision Support System that will help
non-expert users in selecting an appropriate Big Data Analytic Approach.

Our contributions are presented as follows. Section 2 presents a review of
most popular programming models, with their respective processing frameworks,
and query languages Big Data analytics. Our new extended architecture and
classification for analytic approaches are presented in Sect. 3. In Sect. 4, diverse
solutions for analytic Big Data are studied. Section 5 presents the related work.
Section 6 presents the preliminary design of a decision support system. We finally
conclude in Sect. 7.

270 Y. Cardinale et al.

2 Preliminaries

The large-scale parallel Big Data processing scenario has brought new challenges
in the programming models in order to process and analyze such huge amount
of data. It is necessary a new model of cluster computing, in which data-parallel
computations can be executed on clusters of unreliable machines. Currently,
there exist popular processing frameworks that materialize a specific program-
ming model and automatically provide locality-aware scheduling, fault tolerance,
and load balancing. While programming models and processing frameworks are
most focused on supporting the implementation of complex parallel algorithms
and on the efficient distribution of tasks, there exists another axis related to
querying and analyzing that huge amount of data. Several languages have been
proposed with the intention of improving the programming efficiency for task
description and dataset analysis. In this section we recall the most popular and
recent programming models and frameworks for Big Data processing and the
classification of query language that we proposed in our previous work [6].

2.1 Big Data Programming Models

Classical parallel programming models, such as master-slave with Message Pass-
ing Interface (MPI) and multithreading with Open Multi-Processing (OpenMP),
are not adequate for Big Data scenarios due to the high network bandwidth
demanded to move data to processing nodes and the need to manually deal
with fault tolerance and load balancing [4]. However, inspired on them, there
have been deployments of cluster computing models, which aggregate computa-
tional power, main memory, and I/O bandwidth of shared-nothing commodity
machines, combined with new parallel programming models [7,8]. In general, the
underlying system that implements the programming model (i.e., the processing
framework), also manages the automatic scheduling, load balancing, and fault
tolerance without user intervention. The main difference between classical par-
allel models and the new ones is that, instead of moving data, the processing
functions are taken to the data.

– The Pioneer: MapReduce Model. The most popular model of data par-
allel programming in the context of Big Data is MapReduce [9]. Along with
it, Hadoop1 is its most popular core framework implementation for carrying
out analytic on Big Data. With simple distributed functions (based on Lisp
primitives), the idea of this parallel programming model is to combine map
and reduce operations with an associated implementation given by users (i.e.,
user-defined functions – UDF) and executed on a set of n nodes, each with
data. Hadoop framework is in charge of splitting input data into small chunks,
designated as key/value pairs, storing them on different compute nodes, and
invoking map tasks to execute the UDF. The map tasks generate intermediate
key/value pairs according to the UDF. Subsequently, the framework initiates

1 http://hadoop.apache.org.

http://hadoop.apache.org

Classifying Big Data Analytic Approaches: A Generic Architecture 271

a Sort and Shuffle phase to combine all the intermediate values related to the
same key and channelizes data to parallel executing reduce tasks for aggre-
gation. MapReduce has inspired other models that extend it to cater different
and specific needs of applications, as we explain in the following.

– MapReduce with Parallelization Contracts: PACT Model. In [10],
it is proposed a programming model which extends the MapReduce model
with Parallelization Contracts (PACT) and additional second-order functions.
PACT programs are represented by Directed Acyclic Graphs (DAGs), in
which edges represent communication channels that transfer data between
different subprograms and vertices are sequential executable programs that
process the data that they get from input channels and write it to output
channels. Nephele/PACT [11] is a distributed execution framework that sup-
ports PACT programs execution. A PACT consists of one UDF which is called
Input Contract and an optional Output Contract. UDFs for Input Contract
are similar to map and reduce, but additionally user can also define other type
of Input Contracts, such as cross, CoGroup, and match. Output Contracts
are optional and can be used for optimizations. The main differences between
MapReduce and PACT programming models are: (i) PACT allows additional
functions that fit more complex data processing tasks, which are not natu-
rally and efficiently expressible as map or reduce functions, as they occur in
fields like relational query processing or data mining; (ii) MapReduce systems
tie the programming model and the execution model (conducting sub-optimal
solutions); with PACT, it is possible to generate several parallelization strate-
gies, hence offering optimization opportunities; and (iii) MapReduce loses all
semantic information from the application, except the information that a
function is either a map or a reduce, PACT model preserves more semantic
information through a larger set of functions.

– MapReduce with “in memory” Operations: Models for real time
analytics. To ensure real time processing, new programming models propose
“in-memory” operations. The Spark system [12] was the first proposal of this
kind of programming model, more recently the Apache Storm project2 and
the Apache Flink project3 propose other “in-memory” programming models.
The Spark programming model, unlike acyclic data flows problems (such those
treated with MapReduce and PACT), focuses on applications that reuse a
working set of data across multiple parallel operations. It provides two main
abstractions for parallel programming: Resilient Distributed Datasets (RDDs)
and parallel operations on these datasets (invoked by passing a function to
apply on a dataset). The RDD is a read-only collection of objects partitioned
across a set of machines that can be rebuilt if a partition is lost. Therefore,
users can explicitly cache an RDD in memory across machines and reuse it
in multiple MapReduce-like parallel operations. Storm, as PACT, is based on
DAG that represents a topology, composed by spouts, bolts, and streams. In
a topology, spouts and bolts act as the vertices of the graph, a spout acts

2 http://storm.apache.org.
3 https://flink.apache.org.

http://storm.apache.org
https://flink.apache.org

272 Y. Cardinale et al.

as a data receiver from external sources and creator of streams for bolts to
support the actual processing. Streams are defined as unbounded data that
continuously arrives at the system and are represented as the edges of the
DAG. Thus, a topology acts as a pipeline to transform data. Similar to Storm,
the Flink framework is an hybrid engine that effectively supports both batch
and real-time processing, but focused on streaming first. The components
of the stream processing model in Flink include streams, operators, sources,
and sinks. Flink manages MemorySegments, a distribution unit of memory
(represented by a regular Java byte array). Beside programming model which
allow iterative algorithms (i.e., cyclic data flows), Spark, Storm, and Flink
overcome MapReduce and PACT by handling most of their operations “in
memory”.

2.2 A Classification of Big Data Query Languages

The wide diversification of data store interfaces has led the loss of a common
programming paradigm for querying multistore and heterogeneous repositories
and has created the need for a new generation of special federation between
Hadoop-like Big Data platforms, NoSQL and NewSQL data stores, and EDWs.
Mostly, the idea of all query languages is to execute different queries to multiple,
heterogeneous data stores through a single query engine. We have classified these
query languages in Procedural Languages, Language Extensions, and SQL-like
Declarative Languages [6,13].

– Procedural languages. This type of query languages are built on top of
frameworks that do not provide transparent functions (e.g., map and reduce)
and cannot cover all the common operations. Therefore, programmers have
to spend time on programming the basic functions, which are typically hard
to maintain and reuse. Hence, simpler procedural language have been pro-
posed. The most popular of this kind of languages are Sawzall of Google [14],
PIG Latin of Yahoo! [15], and more recently Jaql [16]. They are domain-
specific, statically-typed, and script-like programming language used on top
of MapReduce. These procedural languages have limited optimizations built
in and are more suitable for reasonably experienced analysts, who are com-
fortable with a procedural programming style, but need the ability to iterate
quickly over massive volumes of data.

– Language Extensions. Some works have proposed extensions to classical
languages to provide simple operations for parallel and pipeline computations,
usually with special purpose optimizers, to be used on top of the core frame-
works. The most representatives in this category are FlumeJava proposed by
Google [17] and LINQ (Language INtegrated Query) [18]. FlumeJava is a Java
library for developing and running data-parallel pipelines on top of MapRe-
duce, as a regular single-process Java program. LINQ embeds a statically
typed query language in a host programming language, such as C#, provid-
ing SQL-like construct and allowing a hybrid of declarative and imperative
programming.

Classifying Big Data Analytic Approaches: A Generic Architecture 273

– Declarative Query Languages. In this category, we classify those lan-
guages also built on top of the core frameworks with intermediate to advanced
optimizations, which compile declarative queries into MapReduce-style jobs.
The most popular focused on this use-case are HiveQL of Facebook [19], Ten-
zing of Google [13], SCOPE of Microsoft [20,21], Spark SQL [22] on top of
Spark framework, and Cheetah [23]. These languages are suitable for report-
ing and analysis functionalities. However, since they are built on, it is hard
to achieve interactive query response times, with them. Besides, they can
be considered unnatural and restrictive by programmers who prefer writing
imperative scripts or code to perform data analysis.

3 Generic Architecture for Analytical Approaches

Basically, a Big Data analytical approach architecture is composed of four main
components: Data Sources, Data Ingestion module, Analytic Processing module,
and Analytical Requests module. A generic representation of this architecture is
shown in Fig. 1 and described as follows:

– Data Sources: They constitute the inputs of an analytical system and often
consider heterogeneous (i.e., structured, semi-structured, and unstructured)
and sparse data (e.g., measures of sensors, log files streaming, mails and
documents, social media content, transactional data, XML files).

– Data Ingestion Module. This module is in charge of moving data struc-
tured and especially unstructured data from their sources, into a system where
it can be stored and analyzed. Data ingestion may be continuous or asyn-
chronous, and can be processed in real-time, batched, or both (like lambda
architectures [24]) depending upon the characteristics of the source and the
destination. Most of the time, sources and destinations have not the same
data timing, format, and protocol; hence, transformations or conversions are
required to be usable by the destination system. Other functionalities can be
available at this module, like data cleaning, filtering, aggregation, and inte-
gration. There exist many tools that can be integrated in the Data Ingestion
module like Pentaho Data Integration (DI)4, Talend5, Apache Flume [25],
Kafka [26], Sqoop [27], and Scribe [28]. Pentaho DI and Talend enable users
to ingest, diverse data from any source, providing support for Hadoop dis-
tributions, Spark, NoSQL data stores, and analytic databases. Pentaho DI
also allows integrating advanced analytic models from R, Python, and Weka
to operationalize predictive models. Apache Flume is a distributed, reliable
system for efficiently collecting, aggregating, and moving large amounts of
log data from many different sources to a centralized data store. Kafka, orig-
inally developed by LinkedIn, is an open-source, fast, scalable, durable, and
fault-tolerant publish-subscribe messaging system, working very well in com-
bination with Apache Storm and Apache HBase for instance. Apache Sqoop

4 http://www.pentaho.com/product/data-integration.
5 http://www.talend.com.

http://www.pentaho.com/product/data-integration
http://www.talend.com

274 Y. Cardinale et al.

tool is designed for transferring bulk data between HDFS and structured data
stores as RDBMS. Scribe is an open-source tool, initiated by Facebook and
designed for aggregating log data streamed in real-time from a large number
of servers.

– Analytic Processing Module. It constitutes the hard core studied within
this paper and can be defined as the chosen approach for the analysis phase
implementation in terms of data storage (i.e., disk or memory) and the data
model used (e.g., relational, NoSQL). Then, several criteria, such as parallel
programming model (e.g., MapReduce, PACT) and scalability allow compar-
ing approaches in the same class. This module is essentially composed of at
least three layers:
• Data Storage Layer. Considering an analytical approach, this layer

describes whether data will be persisted locally, placed in the cloud, or
cached in-memory, into a specific data model, such as a file system, a
NoSQL repository, a parallel RDBMS, or a graph database.

• Programming Model Layer. This layer represents the specific program-
ming model (i.e., MapReduce, PACT, “in-memory”) and the correspond-
ing processing frameworks (e.g., Haddop, Storm, Spark, Nephle/Pact,
Flink) that can be used. Depending on the applications needs, its pri-
orities in terms of latency and throughput, and given the specifications of
each analytic solution, a programming model and a processing framework
are more suitable rather than another.

• Data Analysis Layer. This layer can contain one or more analysis tools
or “blocks” of different types:

* Machine Learning (ML). This block contains libraries or toolk-
its facilitating learning tasks to analysts and statisticians who do not
have advanced programming skills. Apache Mahout6 and MLlib7 are
the most known ML libraries. Apache Mahout is designed for eas-
ily creating an environment for building perform and scalable ML
applications. MLlib is the Apache Spark’s scalable ML Library and
covers the same range of learning categories as Mahout, but addition-
ally offers the regression models, which lack to Mahout. Furthermore,
relying on Spark’s iterative batch and streaming approach and the
use of in-memory computation, makes MLlib running jobs faster than
Mahout. This advantage can be seen as inconvenient, considering the
fact that MLlib is tied to Spark and cannot be performed on mul-
tiple platforms. There exist others ML frameworks like Distributed
Wekahttps8, H2O9, Oryx10, SAMOA11.
* Scripting. This block presents high level abstraction hiding some
complexity and simplifying the programming process. For instance,

6 http://mahout.apache.org/.
7 https://spark.apache.org/mllib/.
8 http://www.cs.waikato.ac.nz/ml/index.html.
9 https://www.h2o.ai/h2o/.

10 http://oryx.io.
11 https://samoa.incubator.apache.org.

http://mahout.apache.org/
https://spark.apache.org/mllib/
http://www.cs.waikato.ac.nz/ml/index.html
https://www.h2o.ai/h2o/
http://oryx.io
https://samoa.incubator.apache.org

Classifying Big Data Analytic Approaches: A Generic Architecture 275

Pig [15] offers a scripting language supporting UDF written in
Python, Java, JavaScript, and Ruby. Cascading12 simplifies the devel-
opment of data-intensive applications and defines a Java API for
defining complex data flows and integrating those flows with back-end
systems, it presents also a query planner for mapping and executing
logical flows onto a computing platform.
* Query Language/Engine. This block represents the query lan-
guage and its respective query engine, as the ones described in
Sect. 2.2, that can be used in an analytic solution.
* OLAP. This component refers to the existence of OLAP operations
and features implemented on the top of the underlying system.
* Search Engine. Search engines find matching items according to
a set of criteria specified by the user. Tools in this block not only
ensure search, but also navigation and discovery of information. Elas-
ticsearch13 and Solr14 are the most known open source search engines.
* Graph analytics. This component presents several API devel-
oped for Graph and Graph-parallel computation, built on top of
the analytic processing layer. Some examples of this kind of tools
are Haloop [29], which allows iterative applications to be assem-
bled from existing Hadoop programs without modification and sig-
nificantly improves their efficiency; PageRank [30], a graph analysis
algorithm that assigns weights (ranks) to each vertex by iteratively
aggregating the weights of its inbound neighbors; GraphX [31] is an
embedded graph processing framework built on top of Apache Spark
for distributed graph computation, it implements a variant of the
popular Pregel [32] interface as well as a range of common graph
operations.

– Analytical Requests. This module considers Visualization, Reporting,
Business Intelligent (BI), and Dashboards Generation functionalities. Based
on the analytic data and through different query languages (e.g., procedural,
SQL-like), this module can generate outputs in several formats with picto-
rial or graphical representation (dashboards, graphics, reports, etc.), which
enables decision makers to see analytics presented visually.

We focus in the Analytics Processing module to classify the different Big Data
analytic approaches.

3.1 Architecture for Analytic Processing Classification

Concerning the Analytic Processing component, several architectures exist in
the Big Data context. At the beginning of the Big Data era, research studies
were focused on the scalability and volume aspects of the gathered data. Thus,
the data model (i.e., NoSQL, relational, graph) was an important decision to
12 http://www.cascading.org.
13 https://www.elastic.co/fr/products/elasticsearch.
14 http://lucene.apache.org/solr/.

http://www.cascading.org
https://www.elastic.co/fr/products/elasticsearch
http://lucene.apache.org/solr/

276 Y. Cardinale et al.

Fig. 1. Generic architecture for a Big Data Analytical approach.

implement Big Data solutions. Nowadays, due to the massive growth in areas
such as social networks, cyber physical systems, smart buildings, and smart
cities, the attention is diverted on the data velocity aspect. Facing the streaming
data generated continually, the need of real-time analytics emerge to comply
different applications requirements that demand immediate responses. Hence,
tools supporting real-time issues now compete with batch solutions.

For this reason, the first aspect that we consider to classify the analytic
approaches is related to the data model, as it is shown in our reference archi-
tecture depicted in Fig. 1. Specifically we have defined NoSQL based, relational
parallel database based, and graph based classes. Then, each class is divided into
two groups according to its analytical processing mode, batch or real-time, and
consequently defining the need of a persistent disk storage or an in-memory stor-
age, respectively. There exist hybrid architectures considering both batch and
real-time processing, that have been called lambda architectures [24] and consist
of three layers: Speed Layer (to process stream data), Batch Layer (to process
batch data), and Serving layer (to merge both modes and present separate and
common views). We find the lambda architecture included in our architecture
by considering batch and real-time blocks (on any class) as lambda batch and
stream layers, respectively, while the lambda server layer can be constituted
by some blocks of our Data Analysis Layer (i.e., ML, Scripting, OLAP, Query
Engine, Search engine, Graph Analytics). Other systems integrate both analyt-
ical and classical transactional applications in a same engine called NewSQL
analytical architecture, in order to provide both batch and real-time processing.
We detail each class as follows:

A- NoSQL based Architecture. This class of architecture uses NoSQL
database model, relying on DFS (Distributed File System) or not. It gen-
erally relies on the parallel programming model offered by MapReduce, in

Classifying Big Data Analytic Approaches: A Generic Architecture 277

which the processing workload is spread across many commodity compute
nodes. The data is partitioned among the compute nodes at run time and the
underlined framework handles inter-machine communication and machine
failures. This kind of architecture is designed by the class A in Fig. 1.

B- Relational Parallel Database based Architecture. It is based, as clas-
sical databases, on relational tables stored on disk. It implements features
like indexing, compression, materialized views, I/O sharing, caching results.
Among these architectures there are: shared-nothing (multiple autonomous
nodes, each owning its own persistent storage devices and running separate
copies of the DBMS), shared-memory or shared anything (a global memory
address space is shared and one DBMS is present), and shared-disk (based
on multiple loosely coupled processing nodes similar to shared-nothing, but
a global disk subsystem is accessible to the DBMS of any processing node).
However, most of current analytical DBMS systems deploy a shared-nothing
architecture parallel database. In this architecture, the analytical solution
is based on the conjunction of the parallel (sharing-nothing) databases with
a parallel programming model. This architecture is designed by class B in
Fig. 1.

C- Graph Database based Architecture. Facing the data generation
growth, there is an emerging class of inter-connected data, that can be accu-
mulative or variable over time, on which it is necessary novel analytics –
both over the network structure and across the time-variant attribute values
–. Graph structure is more appropriate for this class of data. Large graphs
appear in a wide range of computational domains, thus new infrastructure
and programming model challenges for managing and processing this graphs
emerge. The compromise between high throughput (for the offline graph
analytics) and low latency (for processing high velocity graph structured
streaming data) is the challenge of graph applications. We describe in the
next section graph-based analytics tools, ones that process in batch-mode
and others more recent graph-based tools dealing with real-time analytic
processing of streaming data. We can see this type of architecture designed
by class C in Fig. 1.

3.2 Criteria of Comparison

To compare the different approaches on each class, we establish a set of criteria
related to the processing and interaction facilities (e.g., ML support, OLAP-like
support, query languages used, Cloud services support), as well as implemen-
tation criteria related to performance aspects (e.g., scalability, programming
model, fault tolerance support).

– OLAP Support. Some analytical solutions integrate OLAP in their system
allowing operators for mining and analyzing data directly over the data ana-
lytic support (i.e., without extraction). For solutions evaluation, this property
is fixed to integrated when OLAP is integrated or not-integrated other-
wise.

278 Y. Cardinale et al.

– Query Languages. This criterion specifies the language on which the
user relies on for querying the system. It could be procedural, language
extension, or declarative (see Sect. 2.2).

– Cloud Services Support. The three types of architectures described above
can be offered as a product (with no cloud support) or as a service deployed
in the cloud. In the case of cloud support, it can be done partially, such
as Infrastructure as a Service (IaaS, which provides the hardware support
and basic storage and computing services) and Data Warehouse as a Service
(DWaaS), or as a whole analytical solution in the cloud, i.e., Platform as a
Service (PaaS), which provides the whole computing platform to develop Big
Data analytical applications.

– Scalability. This criterion measures the availability on demand of compute
and storage capacity, according to the volume of data and business needs. For
this property in the evaluation of solutions, we fix the values large-scale
or medium-scale (for the case where systems do not scale to thousands of
nodes).

– Fault Tolerance. This criterion establishes the capability of providing trans-
parent recovery from failures. In the context of analytical workloads, we con-
sider the following fault tolerance techniques: the classical Log-based (i.e.,
write-ahead log), which is used for almost every database management sys-
tem and Hadoop-based techniques, which provides data replication. In the
latter, we consider two types of recovery techniques: Hadoop-file, where the
data replication recovery control is implemented at the HDFS level (i.e., on
the worked nodes allowing re-execute only the part of systems containing the
failed data) and Hadoop-programming, where the recovery control is imple-
mented at the model program level.

– Programming Model. It precises for each item which programming model
is adopted. We consider MapReduce, PACT, in-memory models and we mention
ad-hoc for specific implementations.

– Machine Learning. Since ML techniques are currently used in many areas
including commerce, finance, healthcare, and entertainment, it is nowadays
associated to the Big Data dilemma and can be coupled to the analytical
aspect. Taking into account ML facility support, some analytic solutions can
be more attractive to users rather than another. For solutions evaluation,
this property is fixed to yes when a library/API exists and was planned to
be combined to the solution or no otherwise.

4 Describing Some Big Data Analytic Systems

In this section we describe some well-known frameworks/systems for analytic
processing on the three classes of architectures.

4.1 NoSQL Based Architectures

Several tools which are NoSQL based architecture exist. Some of them execute
the analysis of the data off-line, thus they are classified as batch solutions.
Most popular tools in this classification are:

Classifying Big Data Analytic Approaches: A Generic Architecture 279

– Avatara. It leverages an offline elastic computing infrastructure, such as
Hadoop, to precompute its cubes and perform joins outside of the serving
system [33]. These cubes are bulk loaded into a serving system periodically
(e.g., every couple of hours). It uses Hadoop as its batch computing infras-
tructure and Voldemort [34], a key-value storage, as its cube analytical ser-
vice. The Hadoop batch engine can handle terabytes of input data with a
turnaround time of hours. While Voldemort, as the key-value store behind
the query engine, responds to client queries in real-time. Avatara works well
while cubes are small, for far bigger cubes, there will be significant network
overhead in moving the cubes from Voldemort for each query.

– Apache Kylin15. It is a distributed analytic engine supporting definition of
cubes, dimensions, and metrics. It provides SQL interface and OLAP capabil-
ity based on Hadoop Ecosystem and HDFS environment. It is based on Hive
data warehouse to answer mid-latency analytic queries and on materialized
OLAP views stored on a HBase cluster to answer low-latency queries.

– Hive. It is an open-source project that aims at providing data warehouse
solutions and has been built by the Facebook Data Infrastructure Team on top
of the Hadoop environment. It supports ad-hoc queries with a SQL-like query
language called HiveQL [19]. These queries are compiled into MapReduce jobs
that are executed using Hadoop. The HiveQL includes its own system type
and Data Definition Language (DDL) which can be used to create, drop,
and alter tables in a database. It also contains a system catalog which stores
metadata about the underlying table, containing schema information and
statistics, much like DBMS engines. Hive currently provides only a simple,
naive rule-based optimizer.

– Cloudera Impala16. It is a parallel query engine that runs on Apache
Hadoop. It enables users to issue low-latency SQL queries to data stored
in HDFS and Apache HBase without requiring data movement or transfor-
mation. Impala uses the same file and data formats, metadata, security, and
resource management frameworks used by MapReduce, Apache Hive, Apache
Pig, and other Hadoop software. Impala allows to perform analytics on data
stored in Hadoop via SQL or business intelligence tools. It gives a good per-
formance while retaining a familiar user experience. By using Impala, a large-
scale data processing and interactive queries can be done on the same system
using the same data and metadata without the need to migrate data sets into
specialized systems or proprietary formats.

Other solutions can be classified as NoSQL based real-time solutions,
because they execute the analysis over the streaming data, some examples are:

– Shark. It is a data analysis system that leverages distributed shared mem-
ory to support data analytics at scale and focuses on in-memory processing
of analysis queries [22]. It supports both SQL query processing and ML func-
tions. It is built on the distributed shared memory RDD abstraction from

15 http://kylin.apache.org.
16 https://www.cloudera.com/products/open-source/apache-hadoop/impala.html.

http://kylin.apache.org
https://www.cloudera.com/products/open-source/apache-hadoop/impala.html

280 Y. Cardinale et al.

Spark, which provides efficient mechanisms for fault recovery. If one node fails,
Shark generates deterministic operations necessary for building lost data par-
titions in the other nodes, parallelizing the process across the cluster. Shark
is compatible with Apache Hive, thus it can be used to query an existing
Hive data warehouse and to query data in systems that support the Hadoop
storage API, including HDFS and Amazon S3.

– Mesa. Google Mesa [35] leverages common Google infrastructure and
services, such as Colossus (the successor of Google File System) [36],
BigTable [37], and MapReduce. To achieve storage scalability and availability,
data is horizontally partitioned and replicated. Updates may be applied at the
granularity of a single table or across many tables. To ensure consistent and
repeatable queries during updates, the underlying data is multi-versioned. To
achieve update scalability, data updates are batched, assigned a new version
number, and periodically (e.g., every few minutes) incorporated into Mesa.
To achieve update consistency across multiple data centers, Mesa uses a dis-
tributed synchronization protocol based on Paxos [38].

Discussion and Comparison. NoSQL-based systems have shown to have supe-
rior performance than other systems (such as parallel databases) in minimizing
the amount of work that is lost when a hardware failure occurs [8,39]. In addition,
Hadoop (which is the open source implementations of MapReduce) represents
a very cheap solution. However, for certain cases, MapReduce is not a suitable
choice, specially when intermediate processes need to interact, when lot of data is
required in a processing, and in real time scenarios, in which other architectures
are more appropriate.

4.2 Relational Parallel Databases Based Architectures

Several projects aim to provide low-latency engines, whose architectures resemble
shared-nothing parallel databases, such as projects which embed MapReduce
and related concepts into traditional parallel DBMSs. We classify as parallel
databases batch solutions, those that execute the analysis of the data off-line.
Some examples are:

– PowerDrill. It is a system which combines the advantages of columnar data
layout with other known techniques (such as using composite range partitions)
and extensive algorithmic engineering on key data structures [40]. Compared
to Google’s Dremel that uses streaming from DFS, PowerDrill relies on having
as much data in memory as possible. Consequently, it is faster than Dremel,
but it supports only a limited set of selected data sources, while Dremel
supports thousands of different data sets. PowerDrill uses two dictionaries
as basic data structures for representing a data column. Since it relies on
memory storage, several optimizations are proposed to keep small the mem-
ory footprint of these structures. PowerDrill is constrained by the available
memory for maintaining the necessary data structures.

Classifying Big Data Analytic Approaches: A Generic Architecture 281

– Teradata. It is a system which tightly integrates Hadoop and a parallel data
warehouse, allowing a query to access data in both stores by moving (or stor-
ing) data (i.e., the working set of a query) between each store as needed [41].
This approach is based on having corresponding data partitions in each store
co-located on the same physical node. Thus reducing network transfers and
improving locality for data access and loading between the stores. However,
this requires a mechanism whereby each system is aware of the other sys-
tems partitioning strategy; the partitioning is fixed and determined up-front.
Even though these projects offer solutions by providing a simple SQL query
interface and hiding the complexity of the physical cluster, they can be pro-
hibitively expensive at web scale.

– Microsoft Azure17. It is a solution provided by Microsoft for developing
scalable applications for the cloud. It uses Windows Azure Hypervisor (WAH)
as the underlying cloud infrastructure and .NET as the application container.
It also offers services including Binary Large OBject (BLOB) storage and SQL
service based on SQL Azure relational storage. The analytics related services
provide distributed analytics and storage, as well as interactive analytics, big
data analytics, data lakes, ML, and data warehousing.

– AsterData System. It is a nCluster shared-nothing relational database18,
that uses SQL/MapReduce (SQL/MR) UDF framework, which is designed
to facilitate parallel computation of procedural functions across hundreds of
servers working together as a single relational database [42]. The framework
leverages ideas from the MapReduce programming paradigm to provide users
with a straightforward API through which they can implement a UDF in
the language of their choice. Moreover, it allows maximum flexibility, since
the output schema of the UDF is specified by the function itself at query
plan-time.

– Google’s Dremel. It is a system that supports interactive analysis of very
large datasets over shared clusters of commodity machines [43]. Dremel is
based on a nested column-oriented storage that is designed to complement
MapReduce and uses streaming from DFS. It is used in conjunction with
MapReduce to analyze outputs of MapReduce pipelines or rapidly prototype
larger computations. It has the capability of running aggregation queries over
trillion-row tables in seconds by combining multi-level execution trees and
columnar data layout. The system scales to thousands of CPUs and petabytes
of data and has thousands of users at Google.

– Polybase. It is a feature of Microsoft SQL Server Parallel Data Warehouse
(PDW), which allows directly reading HDFS data into databases, by using
SQL [44]. It allows to reference HDFS data through external PDW tables
and joined with native PDW tables using SQL queries. It employs a split
query processing paradigm in which SQL operators on HDFS-resident data
are translated into MapReduce jobs by the PDW query optimizer and then
executed on the Hadoop cluster.

17 http://www.microsoft.com/azure.
18 http://www.asterdata.com/.

http://www.microsoft.com/azure
http://www.asterdata.com/

282 Y. Cardinale et al.

– Cubrick. It is an architecture that enables data analysis of large dynamic
datasets [45]. It is an in-memory distributed multidimensional database that
can execute OLAP operations such as slice and dice, roll up, and drill down
over terabytes of data. Data in a Cubrick cube is range partitioned in every
dimension, composing a set of data containers, called bricks, where data is
stored sparsely in an unordered and append-only fashion, providing high data
ingestion ratios and indexed access through every dimension. Unlike tradi-
tional data cubes, Cubrick does not rely on any pre-calculation, rather it
distributes the data and executes queries on-the-fly leveraging MPP architec-
tures. Cubrick is implemented at Facebook from the ground up.

– Amazon Redshift. It is an SQL-compliant, massively-parallel, query pro-
cessing, and database management system designed to support analytics
workload [46]. Redshift has a query execution engine based on ParAccel19, a
parallel relational database system using a shared-nothing architecture with
a columnar orientation, adaptive compression, memory-centric design. How-
ever, it is mostly PostgreSQL-like, which means it has rich connectivity via
both JDBC and ODBC and hence Business Intelligence tools. Based on EC2,
Amazon Redshift solution competes with traditional data warehouse solu-
tions by offering DWaaS, that it is translated on easy deployment and hard-
ware procurement, the automated patching provisioning, scaling, backup, and
security.

– Nanocubes20. It is an in-memory data cube engine offering efficient storage
and querying over spatio-temporal multidimensional datasets. It enables real-
time exploratory visualization of those datasets. The approach is based on the
construction of a data cube (i.e., a nanocube), which fits in a modern laptop’s
main memory, and then computes queries over that nanocube using OLAP
operations like roll up and drill down.

Other solutions can be classified as parallel-based real-time or NewSQL
analytical solutions, because they execute the analysis over the streaming
data or transaction applications data, such as:

– Druid. It is a distributed and column-oriented database designed for effi-
ciently support OLAP queries over real-time data [47]. A Druid cluster is
composed of different types of nodes, each type having a specific role (real-
time node, historical nodes, broker nodes, and coordinator nodes), that oper-
ate independently. Real-time nodes ingest and query event streams using an
in-memory index to buffer events. The in-memory index is regularly persisted
to disk. Persisted indexes are then merged together periodically before get-
ting handed off. Historical nodes are the main workers of a Druid cluster,
they load and serve the immutable blocks of data (segments) created by the
real-time nodes. Broker nodes route queries to real-time and historical nodes
and merge partial results returned from the two types of nodes. Coordina-
tor nodes are essentially responsible for managing and distribute the data on

19 http://www.actian.com.
20 http://nanocubes.net.

http://www.actian.com
http://nanocubes.net

Classifying Big Data Analytic Approaches: A Generic Architecture 283

historical nodes: loading new data, dropping outdated data, replicating. A
query API is provided in Druid, with a new proposed query language based
on JSON Objects in input and output.

– Vertica. It is a distributed relational DBMS that commercializes the ideas
of the C-Store project [48]. The Vertica model uses data as tables of columns
(attributes), though the data is not physically arranged in this manner. It
supports the full range of standard INSERT, UPDATE, DELETE constructs
for logically inserting and modifying data as well as a bulk loader and full SQL
support for querying. Vertica supports both dynamic updates and real-time
querying of transactional data.

– SAP HANA21. SAP HANA is an in-memory and column-oriented rela-
tional DBMS. It provides both transactional and real-time analytics pro-
cessing on a single system with one copy of the data. The SAP HANA in-
memory DBMS provides interfaces to relational data (through SQL and Mul-
tidimensional expressions, or MDX), as well as interfaces to column-based
relational DBMS, which allows to support geospatial, graph, streaming, and
textual/unstructured data. The approach offers multiple in-memory stores:
row-based, column-wise, and also object graph store.

– Flink (See footnote 3) (formerly known as Stratosphere). It is an open-
source framework designed for processing real-time and batch data. It con-
tains an execution engine which includes query processing algorithms in exter-
nal memory and the PACT programming model together with its associated
framework Nephele. Through Nephele/PACT, it is possible to treat low level
programming abstractions consisting of a set of parallelization primitives and
schema-less data interpreted by the UDFs written in Java. Flink executes
the analytic process directly from the data source (i.e., data is not stored
before the analytical processing), by converting data to binary formats after
the initial scans. Besides, it provides a support for iterative programs that
make repeated passes over a data set updating a model until they converge to
a solution a dataflow Graph is compiled down by all Flink Programs. Nodes
represents operations (map, reduce, join or filter), edges represent the flow of
data between operations. In addition, the Flink open-source community has
developed libraries for machine learning and graph processing.

Discussion and Comparison. Classical parallel database systems serve some
of the Big Data analysis needs and are highly optimized for storing and query-
ing relational data. However, they are expensive, difficult to administer, and lack
fault-tolerance for long-running queries [8,39]. Facing the Big Data generating
growth, new relational database systems have been designed to support fault
tolerance through replication, flow control, and distributed query processing,
providing the same scalable performance of NoSQL databases. Some of these
systems try to facilitate parallel computation across hundreds of servers either
by integrating parallel databases and frameworks such as Hadoop or SQL/MR-
UDF (e.g., Teradata, AsterdData), or by using SQL directly over a DFS (e.g.,

21 https://help.sap.com/viewer/product/SAP HANA PLATFORM/2.0.00/en-US.

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/2.0.00/en-US

284 Y. Cardinale et al.

Polybase, Dremel). Others also support real-time data analysis (e.g., Druid and
SAP HANA). HANA support transactional real-time data analysis, however
Druid support streaming data. By the other side, SAP-HANA simultaneously
also supports classical transactional processing. Cubrick, Druid, and SAP HANA
are in-memory column-oriented relational DBMS and Vertica is a disk-store sys-
tem. Teradata, Vertica, Cubricks, Druid, Nanocubes, and Flink (Stratosphere)
have in common the support for OLAP operations. Cubrick is distinguished by
the execution on the fly, without pre-calculations and multidimensional index-
ing techniques, supporting ad-hoc query, which is not provided for most current
OLAP DBMSs.

4.3 Graph Based Architectures

In the literature, several works propose distributed graph frameworks with func-
tionalities on fast graph parallel computation, exploration, and querying with
specific graph programming model, in most cases they are called vertex-centric
systems. Graph-based solutions that execute the analysis of the data off-line are
classified as batch solutions. Most popular tools in this classification are:

– Pregel [32]. It is a Large-scale graph computing distributed programming
framework, based on the Bulk Synchronous Processing (BSP) [49]. Pregel,
developed by Google, provides a natural API for programming graph algo-
rithms while managing the details of distribution, messaging, and fault toler-
ance. Pregel expresses naturally computation dependencies. It offers a vertex-
centric graph programming abstraction that uses a BSP model with individual
tasks being composed as if operating independently on a single vertex. Each
barrier synchronization step is called a super-step and vertices distributed
across a cluster exchange through messages with neighbors at these synchro-
nization boundaries. The distributed graph programming model so built, is
simple but elegant, similar to MapReduce. However, in practice, the barriers
are costly and the number of super-steps required can be large depending on
the type of algorithm. Source code of the Pregel project was not made public.

– Apache Giraph22. It was designed to bring large-scale graph processing
to the open source community, based loosely on the Pregel model, while
providing the ability to run on existing Hadoop infrastructure. Giraph adds
several functionalities compared to the basic Pregel model (master computa-
tion, shared aggregators, edge-oriented input, out-of-core computation, etc.).
Apache Giraph is currently used at Facebook to analyze the social graph
formed by users and their connections.

– GraphLab [50]. It expresses asynchronous, dynamic, graph-parallel compu-
tation, while ensuring data consistency. It also achieves a high degree of paral-
lel performance in a persistent shared-memory model, by setting a sequential
shared memory abstraction to several vertices. Each vertex can read and
write to data on adjacent vertices and edges. The GraphLab runtime is then

22 Apache Giraph - http://giraph.apache.org.

http://giraph.apache.org

Classifying Big Data Analytic Approaches: A Generic Architecture 285

responsible for ensuring a consistent parallel execution. Originally, GraphLab
was developed for ML tasks, but it proves to be efficient at a broad range of
other data-mining tasks.

– Goffish [51]. It is a Sub-Graph Centric Framework for Large-Scale Graph
Analytics co-designed with a distributed persistent graph storage for large
scale graph analytics on commodity clusters, offering the added natural flex-
ibility of shared memory sub-graph computation. Goffish is composed essen-
tially of two components: the GoFS distributed storage layer for storing
time series graphs, and the Gopher subgraph-centric programming model
for imposing and executing graph on-line analytics. Gopher is based on the
scalable vertex centric BSP like Pregel, Giraph, and GraphLab. They are
analogous to the HDFS file system and MapReduce programming model for
Hadoop, but have been designed and developed with a focus on timeseries
graph analytics. Goffish proposes a distributed storage model optimized for
time-series graphs called Graph-oriented File System (GoFS). GoFS parti-
tions the graph based on topology, groups instances over time on disk, and
allows attribute-value pairs to be associated with the vertices and edges of
the instances. In particular, GoFS is designed to scale out for common data
access patterns over time-series graphs, and this data layout is intelligently
leveraged by Gopher during execution.

Other solutions can be classified as graph-based real-time solutions,
because they execute the analysis over the streaming data, such as:

– Trinity [52]. It is a general purpose distributed graph system over a memory
cloud. Trinity offers efficient parallel computing and support of fast graph
exploration thanks to network communication and optimized memory man-
agement. Memory cloud is a globally addressable, in-memory key-value stored
over a cluster of machines. Trinity supports both low-latency on-line query
processing and high-throughput off-line (batch) analytics on billion-node. It
is considered in our classification as batch processing, from analytics point of
view.

– GraphCEP [53]. It is a real-time data analytics using parallel complex
event and graph processing. Complex event processing (CEP) [54] systems
allows the detection of multiple instances of a queried pattern on an incoming
streams in parallel. Streams are divided into partitions processed in parallel
by an elastic number of operator instances. The idea behind GraphCEP is
to combine Parallel CEP to graph processing in order to bring a streaming
graph-structured data analysis solution.

– Microsoft Graph Engine (GE)23. It is based on Trinity, improved as an
open-source, distributed, in-memory, large graph processing engine. It relies
on a strongly-typed RAM store and a general distributed computation engine.
Data can be inserted into GE and retrieved at high speed since it is kept
in-memory and only written back to disk as needed. GE is a graph data man-
agement system designed for managing real-life graphs with rich associated
data.

23 Graph Engine https://www.graphengine.io.

https://www.graphengine.io

286 Y. Cardinale et al.

Discussion and Comparison. We notice that Pregel, Apache Giraph, and
GraphLab have the use of Bulk Synchronous Processing in common. Practical
differences can be emphasized. Pregel is closed source which makes it unopened
to evolution and integration. GraphLab is written in C++ and make its inter-
operability with existent Hadoop infrastructure tedious and time consuming.
Giraph is written in Java and has vertex and edge input formats that can access
MapReduce input formats. Users can insert Giraph applications into existing
Hadoop pipelines and leverage operational expertise from Hadoop. However,
GraphLab do not scale at Facebook data size for instance with over 1.39B users
and hundreds of billions of social connections. Trinity offers a shared memory
abstraction in a distributed memory infrastructure. Algorithms use both mes-
sage passing and a distributed address space called memory cloud. However, this
assumes large memory machines with high speed interconnects. GraphCE com-
bines the scalability and the efficiency of distributed graph processing systems
and the expressiveness and timeliness of CEP and performs better results than
those of CEP or Graph systems.

4.4 General Discussion

Traditional BI operations are oriented to perform analytical queries and ML
algorithms on historical data. Thus data warehouses were focused on execut-
ing complex read-only queries (i.e., aggregations, multiway joins) that take a
long time to process large data sets (e.g., seconds or even minutes). Each of
these queries can be significantly different than the previous. The first analytical
solutions for the Big Data were inspired on the classical systems where gener-
ally data warehouse and OLAP systems were treated by different engines and
the target distributed architectures. On the other side, originally, neither HDFS
nor MapReduce were designed with real-time performance in mind, thus real-
time treatments required move data out from Hadoop to another system able to
deliver real-time processing In order to improve these systems, some solutions
have been proposed coupling in-memory file systems, such as Ignite system24

and HDFS, allowing to deliver real-time processing without moving data out
of Hadoop onto another platform. Others systems have integrated in only one
engine in charge of managing both the historical data for batch processing and
the new data for real-time processing.

We summarize our classification in Table 1 and compare the revised
approaches according to the established criteria: used query language, scalability,
OLAP support, fault tolerance support, cloud support, programming model, and
ML support. Generally, solutions in the class A offer materialized views stored on
NoSQL databases and updated in short period of times to offer OLAP facilities,
meanwhile for in-memory based architectures the OLAP facility is embedded in
the system. Approaches based on parallel databases do not scale to huge amount
of nodes, however they have generally, best performance than the other archi-
tectures. Most languages used are declarative SQL-compliant. Regarding fault

24 https://ignite.apache.org.

https://ignite.apache.org

Classifying Big Data Analytic Approaches: A Generic Architecture 287

tolerance, most Big Data approaches leverage on Hadoop facilities, instead of the
classical log-based mechanism. Currently, Big Data analytical solutions trend to
move to the cloud, either partially or as whole solution (PaaS). Concerning the
parallel programming model, most solutions described in this work implement
MapReduce programming model native with Hadoop as the underline support
or were extended in order to consider this programming model. Other solutions
have extended the MapReduce programming model such Cubrick and Shark that
also support Spark modeling with RDD.

New applications, besides perform analysis on historical data like traditional
BI operations, need to support an analysis of the historical data aggregated
with tackled data items as they arrive by the streaming. In this context, several
solutions have been proposed. We can distinguished two groups treating real-
time differently:

– Lambda Architectures: represented by systems which separate batch pro-
cessing system (e.g., Hadoop, Spark) to compute a comprehensive view on
historical data, while simultaneously use a stream processing system (e.g.,
Storm, Spark) to provide views of incoming data. It requires the application
developer to write a query for multiple systems if they want to combine data
from different databases. Flink from the class B or Shark from the class A
are examples of Lambda Architecture.

– Transactional-Analytical Hybrid Architectures: represented by sys-
tems that integrate execution engines within a single DBMS to support OLTP
(On line Transactions Processing) with high throughput and low latency
demands of workloads, while also allowing for complex, longer running OLAP
queries to operate on both new data (fresh data or transactional data) and
historical data. SAP HANA, Teradata and Vertica belonging to the class B,
are examples of this kind of architecture.

The Lambda architecture gives a fresh views by analysis compiled on-line, with a
possibility to generate batch or real-time views separately, but needs the manage-
ment of different frameworks (for batch and real-time). Transactional-Analytical
Hybrid architectures offers faster OLAP analytics, with higher concurrency and
the ability to update data as it is being analyzed.

Graph-based architectures may interest some specific context and domain
where data are closely connected with explicit relationship between them and
where modeling data in a graph structure is more suitable. Even though graph-
based solutions have proven their performance, as well in batch mode as real-time
processing, migration to graph systems, when the existing system is relational
for instance, may be time-consuming, costly.

5 Related Work

General comparative studies of the most popular Big Data frameworks are pre-
sented in extensive surveys conducted to discuss Big Data frameworks for ana-
lytics [55,56]. Authors base the comparison on a list of qualitative criteria, some

288 Y. Cardinale et al.

T
a
b
le

1
.
C

o
m

p
a
ra

ti
v
e

ta
b
le

o
f
th

e
st

u
d
ie

d
a
n
a
ly

ti
c

B
ig

D
a
ta

a
p
p
ro

a
ch

es
.

A
rc
hi
te
ct
ur
e

T
oo

l
Q
ue
ry

Sc
al
ab

ili
ty

O
L
A
P

F
au

lt
O
n

P
ro
gr
am

m
in
g

M
L

L
an

gu
ag
e

T
ol
er
an

ce
th
e
cl
ou

d
m
od

el
A
va
ta
ra

L
an
gu

ag
e
ex
te
ns
io
ns

L
ar
ge
-s
ca
le

in
te
gr
at
ed

H
ad
oo
p-
pr
og
ra
m
m
in
g

no
M
ap
R
ed
uc
e

no
N
oS

Q
L

H
iv
e

D
ec
la
ra
tiv

e
(H

iv
eQ

L
)

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo

p-
pr
og

ra
m
m
in
g

D
W
aa
S

M
ap
R
ed
uc
e

ye
s
H
iv
em

al
l

ba
se
d

C
lo
ud

er
a
Im

pa
la

D
ec
la
ra
tiv

e
(H

iv
eQ

L
)
an
d

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo

p-
pr
og

ra
m
m
in
g

D
W
aa
S

M
ap
R
ed
uc

ye
s

A
rc
hi
te
ct
ur
es

Pr
oc
ed
ur
al
(P
IG

L
at
in
)

C
lo
ud
er
a
O
ry
x

(C
la
ss

A
)

A
pa
ch
e
K
yl
in

L
an
gu
ag
e
ex
te
ns
io
ns

L
ar
ge
-s
ca
le

in
te
gr
at
ed

H
ad
oo
p-
pr
og
ra
m
m
in
g

no
M
ap
R
ed
uc
e

no
M
es
a

L
an
gu
ag
e
ex
te
ns
io
n

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e

D
W
aa
S

M
ap
R
ed
uc
e

no
Sh

ar
k

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e

no
R
D
D
-S
pa
rk

ye
s

(H
iv
eQ

L
)

(R
D
D
pr
op
er
tie
s
on

Sp
ar
k)

Po
w
er
D
ri
ll

Pr
oc
ed
ur
al

M
ed
iu
m
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

no
ad
-h
oc

no
R
el
at
io
na
l

Te
ra
da
ta

Pr
oc
ed
ur
al

M
ed
iu
m
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo

p-
fil
e

D
W
aa
S

M
ap
R
ed
uc
e

ye
s
T
hi
nk

D
ee
p

Pa
ra
lle
l

M
ic
ro
so
ft
A
zu
re

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e
an
d

Ia
aS

M
ap
R
ed
uc
e

ye
s
A
zu
re

M
L

D
at
ab
as
e

(S
Q
L
A
zu
re
)

H
ad
oo
p-
pr
og
ra
m
m
in
g

Pa
aS

ba
se
d

A
st
er
D
at
a

D
ec
la
ra
tiv

e
M
ed
iu
m
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e

Ia
aS

M
ap
R
ed
uc
e

no
A
rc
hi
te
ct
ur
es

G
oo

gl
e’
s
D
re
m
el

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

Ia
aS

(B
ig
Q
ue
ry
)

M
ap
R
ed
uc
e

no
(C
la
ss

B
)

A
m
az
on

R
ed
sh
if
t

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

no
ti
nt
eg
ra
te
d

H
ad
oo

p-
fil
e

Pa
aS

,D
W
aa
S

M
ap
R
ed
uc
e

no
V
er
tic
a

D
ec
la
ra
tiv

e
M
ed
iu
m
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e

no
M
ap
R
ed
uc
e

no
C
ub

ri
ck

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

in
te
gr
at
ed

L
og

-b
as
ed

no
ad
-h
oc

no
D
ru
id

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

in
te
gr
at
ed

L
og
-b
as
ed

no
ad
-h
oc

no
(b
as
ed

on
JS
O
N
)

SA
P
H
A
N
A

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

in
te
gr
at
ed

L
og

-b
as
ed

Pa
aS

ad
-h
oc

ye
s
PA

L
N
an
oc
ub

es
D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

in
te
gr
at
ed

L
og
-b
as
ed

no
ad
-h
oc

Fl
in
k

D
ec
la
ra
tiv

e
(M

et
eo
r)

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og

-b
as
ed

Ia
aS

N
ep
he
le
/P
A
C
T
ye
s
Fl
in
kM

L
21

Pr
eg
el

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

no
ad
-h
oc

no
G
ra
ph

G
ir
ap
h

D
ec
la
ra
tiv

e
L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

H
ad
oo
p-
fil
e

no
M
ap
R
ed
uc
e

no
ba
se
d

G
ra
ph

L
ab

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

ye
s

ad
-h
oc

ye
s

A
rc
hi
te
ct
ur
es

G
of
fis
h

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og

-b
as
ed

ye
s

ad
-h
oc

no
(C
la
ss

C
)

T
ri
ni
ty

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

ye
s

ad
-h
oc

no
G
ra
ph

C
E
P

Pr
oc
ed
ur
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

L
og
-b
as
ed

no
ad
-h
oc

no
G
ra
ph

E
ng

in
e

Pr
oc
ed
ru
al

L
ar
ge
-s
ca
le

no
t-
in
te
gr
at
ed

lo
g-
ba
se
d

no
ad
-h
oc

no

Classifying Big Data Analytic Approaches: A Generic Architecture 289

of them similar to our proposal (e.g., fault tolerance support, scalability, pro-
gramming model, supported programming language). Some of them also show
experiments to evaluate performance, scalability, and the resource usage. These
studies are useful to evaluate general advantages and drawbacks of the analytics
tools, however, none of these surveys propose a generic classification of those
tools.

Some other recent studies present comparative analyses of some aspects in
the context of Big Data [57–59]. Authors in [57] present a comparative study
between two cloud architectures: Microsoft Azure and Amazon AWS Cloud ser-
vices. They consider price, administration, support, and specification criteria to
compare them. The work presented in [58] proposes a classification of technolo-
gies, products, and services for Big Data Systems, based an a reference architec-
ture representing data stores, functionality, and data flows. For each solution,
they present a mapping between the use case and the reference architecture.
The paper studies data analytics infrastructures at Facebook, LinkedIn, Twit-
ter, Netflix, and BlockMon. A set of criteria to compare ML tools for Big Data is
presented in [59]. Several ML frameworks are evaluated in the context of several
processing engines (e.g., Spark, MapReduce, Storm, Flink) according to their
scalability, speed, coverage, usability, and extensibility. These criteria support
the decision of selection an appropriate ML tool, to users that have knowledge
on ML, by providing as much information as possible and quantifying what the
tradeoffs will be for learning from Big Data. However, these works are specific
systems-concentrated and do not provide a general vision of existing approaches.

The work presented in [60] is the most related to our paper. It aims to
define the six pillars (namely Storage, Processing, Orchestration, Assistance,
Interfacing, and Development) on which Big Data analytics ecosystem is built.
For each pillar, different approaches and popular systems implementing them
are detailed. Based on that, a set of personalized ecosystem recommendations is
presented for different business use cases. Even though authors argue that the
paper assists practitioners in building more optimized ecosystems, we think that
proposing solutions for each pillar does not necessarily imply a global coherent
Big Data analytic system. Even though our proposed classification considers
building blocks on which Big Data analytics Ecosystem is built (presented as
layers in the generic architecture), our aim is to provide the whole view of the
analytical approaches. Practitioners can determine which analytical solution,
instead of a set of building blocks, is the most appropriate according to their
needs.

6 A Decision Support System to Select Big Data
Analytics: A Perspective

In this section we propose a general idea of a Decision Support System (DSS)
that based on our proposed architecture can recommend an appropriate clas-
sification of Big Data analytic approach according to the specific case of the
user. The proposed architecture of our DSS is inspired on the integrated model

290 Y. Cardinale et al.

for decision making described in [61]. Even though the approach presented in
that work is focused on DSS that use Big Data techniques to support decision-
making processes in organizations, we think that the proposed model can be
adapted for a DSS to select Big Data analytic tools. Also, we have revised other
works proposed to support the selection of DBMS [62] and cloud databases [63],
which use ontologies and ranking approaches to generate, evaluate, and compare
candidates to select.

Authors in [61] define a DSS as interactive, computer-based Information Sys-
tems that help decision makers utilize data, models, solvers, visualizations, and
the user interface to solve semi-structured or unstructured problems. Selecting
Big Data tools can be considered as a semi-structured problem, as long as we can
formally describe the Big Data approaches, the user use case, and criteria, based
for example on ontologies. Authors state that the process of decision-making
(also called Business Intelligence – BI) is marked by two kinds of elements: orga-
nizational and technical. The organizational elements are those related to the
daily functioning of companies where decisions must be made and aligned with
the companies strategy. In our case, we can consider that these elements can
be extracted from the specific use case or scenario presented by the user. Also,
as authors suggest, it can be centered on data analytics over the data collected
from previous experiences and the feedback obtained from users. The technical
elements include the toolset used to aid the decision making process such as
information systems, data repositories, formal modeling, analysis of decision. It
is focused on tools and technologies for data storage and mining for knowledge
discovery. These elements are the most important in our work.

The main objective of a DSS is to support a decision by determining which
alternatives to solve the problem are more appropriate. In our case, the alterna-
tives are defined by our proposed classification: which Big Data analytic classi-
fication is the most appropriate for the specific use case of the user. According
to the authors of [61], DSS have a set of basic elements that includes a data
base and a model base with their respective management, the business rules to
process data according a chosen model, and a user interface. Data and model
bases and their respective management system allow for business rules in pro-
cessing data according to a model to formulate the possibilities of solutions for
the problem. In our case, the data base are the registered experiences obtained
from users, the model base is our proposed classification architecture, the busi-
ness rules are defined based on our proposed set of criteria for evaluation. Thus,
based on the integrated model proposed in [61], we propose a similar architecture
for our DSS, as shown in Fig. 2. The Content acquisition can be done through
private data and public data sources. The private data source is managed and
produced by the DSS and represents the users experiences, users feedback, suc-
cessfully scenarios, etc., registered in our system in structured repositories. The
public data represents experiences not registered in the system, opinions, texts,
videos, photos, etc., that can be unstructured data. In contrast to the proposal
in [61], regarding the use of Business Intelligence to generate alternatives, we
pretend to use multi-criteria decision making methods as in [62,63] to rank the

Classifying Big Data Analytic Approaches: A Generic Architecture 291

classification candidates in terms of our list of criteria of evaluation and the
criteria weights provided by users.

The Generation of alternatives in terms of our proposed criteria. The front
end of the DSS should offer different visualization, reports, and recommendations
in a user-friend interface. Finally, Feedback from users, learning from the user
selection alternatives and use cases presented.

Fig. 2. Architecture of the decision support system.

We also pretend to define a core ontology for our DSS to facilitate the gen-
eration, ranking, and evaluation of candidates based on user requirements and
the list of criteria of comparison. The ontology should allow to model the differ-
ent proposed classifications (i.e., provide concepts related to Big Data analytic
tools), the list of criteria of comparison (i.e., concepts that describe how to define
and evaluate each criterion of comparison), and the use cases (i.e., concepts that
provide facilities to users to model their use cases), as well as to model users
feedback (i.e., concepts related to the evaluation of the experiences of users with
Big Data analytics tools).

The user specifies its use case and the criteria weights for the multi-criteria
decision making method, through the user interface, by using for example an
interactive process or an XML-like or JSON-like language. Then, the DSS auto-
matically generates the model of the use case based on the ontology.

7 Conclusions

Social networks, Internet of Things and cyber physical systems constitutes
sources of huge amount of generated data. Several Big Data Analytical

292 Y. Cardinale et al.

approaches exist with different architectures. We address in this paper the clas-
sification of Big Data analytical approaches. We propose and present a generic
architecture for Big Data analytical approaches allowing to classify them accord-
ing to the data storage layer: the type of database used and the data model and
the processing mode: real-time or batch. We focus on the three most recently
used architectures, as far as we know: NoSQL-based, Parallel databases based,
and graph based architectures. We compare several implementations based on
criteria such as: OLAP support, scalability as the capacity to adapt the volume of
data and business needs, type of language supported, and fault tolerance in terms
of the need of restarting a query if one of the node involved in the query pro-
cessing fails. Machine Learning algorithms may be implemented through libraries
built on top of the analytic processing layer, we considered this possibility as
criteria of choice of an analytical tool rather than another. Finally, we present
a general idea of a decision support system to select Big Data Analytic solution
as perspective of our future work.

References

1. Kune, R., Konugurthi, P.K., Agarwal, A., Chillarige, R.R., Buyya, R.: The
anatomy of big data computing. Softw. Pract. Exp. 46, 79–105 (2016)

2. Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in
cloud environments: NoSQL and NewSQL data stores. J. Cloud Comput.: Adv.
Syst. Appl. 2, 22 (2013)

3. Pavlo, A., Aslett, M.: What’s really new with NewSQL? SIGMOD Rec. 45, 45–55
(2016)

4. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171–209
(2014)

5. Philip Chen, C., Zhang, C.Y.: Data-intensive applications, challenges, techniques
and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

6. Cardinale, Y., Guehis, S., Rukoz, M.: Big data analytic approaches classification.
In: Proceedings of the International Conference on Software Technologies, ICSOFT
2017, pp. 151–162. SCITEPRESS (2017)

7. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

8. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A comparison of approaches to large-scale data analysis. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pp.
165–178 (2009)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

10. Battré, D., et al.: Nephele/PACTs: a programming model and execution frame-
work for web-scale analytical processing. In: Proceedings of Symposium on Cloud
Computing, pp. 119–130 (2010)

11. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud. In:
Proceedings of Workshop on Many-Task Computing on Grids and Supercomputers,
pp. 8:1–8:10 (2009)

Classifying Big Data Analytic Approaches: A Generic Architecture 293

12. Zaharia, M., Chowdhury, M., Das, T., Dave, A., et al.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Pro-
ceedings of Conference on Networked Systems Design and Implementation, pp.
15–28 (2012)

13. Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., et al.: Tenzing: a SQL implemen-
tation on the MapReduce framework. PVLDB 4, 1318–1327 (2011)

14. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel
analysis with Sawzall. Sci. Program. 13, 277–298 (2005)

15. Olston, C., Reed, B., Srivastava, U., Kumar, R., et al.: Pig latin: A not-so-foreign
language for data processing. In: Proceedings of International Conference on Man-
agement of Data, pp. 1099–1110 (2008)

16. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., et al.: Jaql:
a scripting language for large scale semistructured data analysis. PVLDB 4, 1272–
1283 (2011)

17. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines. SIGPLAN Not.
45, 363–375 (2010)

18. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and
XML in the .NET framework. In: Proceedings of ACM International Conference
on Management of Data, p. 706 (2006)

19. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., et al.: Hive - a petabyte
scale data warehouse using hadoop. In: Proceedings of International Conference
on Data Engineering, pp. 996–1005 (2010)

20. Zhou, J., Bruno, N., Wu, M.C., Larson, P.A., Chaiken, R., Shakib, D.: SCOPE:
parallel databases meet MapReduce. VLDB J. 21, 611–636 (2012)

21. Chaiken, R., Jenkins, B., et al.: SCOPE: easy and efficient parallel processing of
massive data sets. VLDB Endow. 1, 1265–1276 (2008)

22. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark:
SQL and rich analytics at scale. In: Proceedings of ACM International Conference
on Management of Data, pp. 13–24 (2013)

23. Chen, S.: Cheetah: a high performance, custom data warehouse on top of MapRe-
duce. VLDB Endow. 3, 1459–1468 (2010)

24. Hasani, Z., Kon-Popovska, M., Velinov, G.: Lambda architecture for real time big
data analytic. In: ICT Innovations 2014 Web Proceedings, pp. 133–143 (2014)

25. (Apache Flume). http://flume.apache.org/
26. Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede,

N., Rao, J., Kreps, J., Stein, J.: Building a replicated logging system with Apache
Kafka. Proc. VLDB Endow. 8, 1654–1655 (2015)

27. (Apache Sqoop). http://sqoop.apache.org/
28. Lee, G., Lin, J., Liu, C., Lorek, A., Ryaboy, D.: The unified logging infrastructure

for data analytics at Twitter. VLDB Endow. 5, 1771–1780 (2012)
29. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale

iterative data analysis. VLDB J. 21, 169–190 (2012)
30. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:

bringing order to the web. In: Proceedings of the International WWW Conference,
Brisbane, Australia, pp. 161–172 (1998)

31. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
GraphX: graph processing in a distributed dataflow framework. In: Proceedings of
the USENIX Conference on Operating Systems Design and Implementation, pp.
599–613 (2014)

http://flume.apache.org/
http://sqoop.apache.org/

294 Y. Cardinale et al.

32. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the ACM International Conference on Management of Data, pp. 135–146. ACM
(2010)

33. Wu, L., Sumbaly, R., Riccomini, C., Koo, G., Kim, H.J., Kreps, J., Shah, S.:
Avatara: OLAP for web-scale analytics products. Proc. VLDB Endow. 5, 1874–
1877 (2012)

34. Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C., Shah, S.: Serving large-
scale batch computed data with project Voldemort. In: Proceedings of the USENIX
Conference on File and Storage Technologies, p. 18 (2012)

35. Gupta, A., Yang, F., Govig, J., Kirsch, A., Chan, K., Lai, K., Wu, S., Dhoot,
S.G., Kumar, A.R., Agiwal, A., Bhansali, S., Hong, M., Cameron, J., et al.: Mesa:
geo-replicated, near real-time, scalable data warehousing. PVLDB 7, 1259–1270
(2014)

36. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. SIGOPS Oper.
Syst. Rev. 37, 29–43 (2003)

37. Fay, C., Jeffrey, D., Sanjay, G., et al.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26, 4:1–4:26 (2008)

38. Lamport, L.: Paxos made simple. ACM SIGACT News (Distrib. Comput. Column)
32, 51–58 (2001)

39. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53,
64–71 (2010)

40. Hall, A., Bachmann, O., Büssow, R., Gănceanu, S., Nunkesser, M.: Processing a
trillion cells per mouse click. VLDB Endow. 5, 1436–1446 (2012)

41. Xu, Y., Kostamaa, P., Gao, L.: Integrating hadoop and parallel DBMs. In: Proceed-
ings of SIGMOD International Conference on Management of Data, pp. 969–974
(2010)

42. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach
to self-describing, polymorphic, and parallelizable user-defined functions. VLDB
Endow. 2, 1402–1413 (2009)

43. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vas-
silakis, T.: Dremel: interactive analysis of web-scale datasets. Commun. ACM 54,
114–123 (2011)

44. DeWitt, D.J., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes,
A., Flasza, M., Gramling, J.: Split query processing in polybase. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 1255–1266
(2013)

45. Pedro, E., Rocha, P., Luis, E.d.B., Chris, C.: Cubrick: a scalable distributed
MOLAP database for fast analytics. In: Proceedings of International Conference
on Very Large Databases, pp. 1–4 (2015)

46. Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R., Stefani, S., Srinivasan,
V.: Amazon redshift and the case for simpler data warehouses. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 1917–
1923 (2015)

47. Yang, F., Tschetter, E., Léauté, X., Ray, N., et al.: Druid: a real-time analytical
data store. In: Proceedings of ACM International Conference on Management of
Data, pp. 157–168 (2014)

48. Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., Bear, C.:
The vertica analytic database: C-store 7 years later. VLDB Endow. 5, 1790–1801
(2012)

Classifying Big Data Analytic Approaches: A Generic Architecture 295

49. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33,
103–111 (1990)

50. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5, 716–727 (2012)

51. Simmhan, Y., Wickramaarachchi, C., Kumbhare, A.G., Fr̂ıncu, M., Nagarkar, S.,
Ravi, S., Raghavendra, C.S., Prasanna, V.K.: Scalable analytics over distributed
time-series graphs using goffish. CoRR abs/1406.5975 (2014)

52. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 505–516 (2013)

53. Mayer, R., Mayer, C., Tariq, M.A., Rothermel, K.: GraphCEP: real-time data
analytics using parallel complex event and graph processing. In: Proceedings of
the ACM International Conference on Distributed and Event-based Systems, pp.
309–316 (2016)

54. Mayer, R., Koldehofe, B., Rothermel, K.: Predictable low-latency event detection
with parallel complex event processing. IEEE Internet Things J. 2, 1 (2015)

55. Acharjya, D.P., Ahmed, K.: A survey on big data analytics: challenges, open
research issues and tools. Int. J. Adv. Comput. Sci. Appl. 7, 511–518 (2016)

56. Inoubli, W., Aridhi, S., Mezni, H., Jung, A.: An experimental survey on big data
frameworks. ArXiv e-prints, pp. 1–41 (2017)

57. Madhuri, T., Sowjanya, P.: Microsoft Azure v/s Amazon AWS cloud services: a
comparative study. J. Innov. Res. Sci. Eng. Technol. 5, 3904–3908 (2016)

58. Pkknen, P., Pakkala, D.: Reference architecture and classification of technologies,
products and services for big data systems. Big Data Res. 2, 166–186 (2015)

59. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open
source tools for machine learning with big data in the hadoop ecosystem. J. Big
Data 2, 1–36 (2015)

60. Khalifa, S., Elshater, Y., Sundaravarathan, K., Bhat, A., Martin, P., Imam, F.,
Rope, D., et al.: The six pillars for building big data analytics ecosystems. ACM
Comput. Surv. 49, 33:1–33:36 (2016)

61. Poleto, T., de Carvalho, V.D.H., Costa, A.P.C.S.: The roles of big data in the
decision-support process: an empirical investigation. In: Delibašić, B., Hernández,
J.E., Papathanasiou, J., Dargam, F., Zaraté, P., Ribeiro, R., Liu, S., Linden, I.
(eds.) ICDSST 2015. LNBIP, vol. 216, pp. 10–21. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18533-0 2

62. Lahcene, B., Ladjel, B., Yassine, O.: Coupling multi-criteria decision making and
ontologies for recommending DBMS. In: Proceedings of International Conference
on Management of Data (2017)

63. Sahri, S., Moussa, R., Long, D.D.E., Benbernou, S.: DBaaS-expert: a recommender
for the selection of the right cloud database. In: Andreasen, T., Christiansen, H.,
Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 315–324.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1 32

https://doi.org/10.1007/978-3-319-18533-0_2
https://doi.org/10.1007/978-3-319-18533-0_2
https://doi.org/10.1007/978-3-319-08326-1_32

Towards a Digital Business Operating System

Jan Bosch(&)

Chalmers University of Technology, Gothenburg, Sweden
jan@janbosch.com

Abstract. With the increasingly important role of software in industry and
society overall, the traditional ways of organizing are becoming increasingly
outdated. To remain competitive, companies need to adopt a new, digital
business operating mechanism. In this paper, we present such a system con-
sisting of four dimensions, i.e. speed, data, ecosystems and empowerment, and
three scopes of work, i.e. operations, development and innovation.

Keywords: Agile practices � Data-driven development � Software ecosystems
Empowerment

1 Introduction

Software is eating the world, Marc Andreessen wrote in his Wallstreet Journal OpEd
[1]. Industry after industry is seeing a fundamental shift in R&D investment away from
mechanics and electronics and towards software is increasing [5]. This is driven by the
fact that it is the software in modern products, rather than the mechanics and hardware,
defines the value. Often referred to as digitalization, this transformation plays an
increasingly important role in the industry and it has profound implications on the way
software-intensive systems companies operate.

In this article, we analyze these implications in more detail. To do so, we first
analyze the key trends in industry and society that we have identified, ranging from the
transition from products to services to the constantly growing size of software in typical
systems. Based on these trends, we identify four key factors, i.e. speed, data,
ecosystems and empowerment. We apply these four key factors to three scopes of
activity, i.e. operations, development and innovation. Based on our collaboration with
industry, we suggest that this model is critical for the software-intensive systems
industry to adopt going forward as companies are under severe pressure to improve
their capability to deliver on these software-driven needs.

The work presented in this article has been conducted in the context of Software
Center (www.software-center.se), a collaboration around software engineering research
between more than 10 companies, including Ericsson, Volvo Cars, Grundfos, Saab,
Jeppesen (part of Boeing), Siemens and Bosch, and five Swedish universities. The
findings presented here are consequently based on significant amounts of industry
experience.

The remainder of the paper is organized as follows. The next section introduces
what we see as the key trends affecting the industry. Subsequently, we present an
overview of the new digital business operating system that companies need to adopt in

© Springer International Publishing AG, part of Springer Nature 2018
E. Cabello et al. (Eds.): ICSOFT 2017, CCIS 868, pp. 296–308, 2018.
https://doi.org/10.1007/978-3-319-93641-3_14

http://www.software-center.se
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93641-3_14&domain=pdf

order to survive and thrive in the digital transformation. The following sections then
describe in some more detail the aforementioned four key factors. Finally, we discuss
the typical types of activities that exist in the organization, i.e. operations, development
and innovation, and describe how these relate to the key factors. Finally, we conclude
the paper by summarizing our findings.

2 Trends in Industry and Society

To an attentive observer, it is clear that the world is changing continuously and that the
pace of this change is accelerating. This change is driven by the constant evolution of
technology and especially by digital technology. Digital technologies experience
exponential improvements due to Moore’s Law concerning chips and microprocessors
(the doubling of transistor density every 18 months). However, there are other tech-
nologies in play as well. For instance, the cost of transporting a bit halves every nine
months and the cost of storing a bit in digital storage halves every twelve months.
These exponential technology developments lead to fundamental shifts in industry and
in society and give cause to several trends. In this section, we discuss some of these
trends in more detail.

2.1 Shifting Nature of Product Innovation

Especially in the embedded systems industry, for a long time the key technology that
received attention for innovation were the mechanical parts of the system or product.
Even if the product contains electronics and software, these technologies were treated
as secondary and not necessarily central to the product. This is clearly illustrated by the
development process for software as this was subjugated to the process for mechanical
systems.

The key trend is that software has become the differentiating technology for many
products whereas mechanics and hardware (electronics) are rapidly becoming com-
modity. System architecture separates the mechanics and electronics from the software,
resulting two, largely independent release processes. This allows software to be
updated very frequently, both before the product leaves the factory and after it has been
deployed in the field at customers.

In the Software Center, several companies are undergoing this transformation. For
instance, AB Volvo estimates that 70% of all innovation in their trucks is driven by
software. Volvo Cars estimates that 80–90% of their innovation is driven by electronics
and software. Over the last decade, the R&D budget at telecom company Ericsson has
shifted towards software, which now represents more than 80% of the budget.

2.2 From Products to Services

Both in the B2C and in the B2B world, there is a shift taking place from ownership to
access and from CAPEX to OPEX. One of the reasons is that it allows companies to
rapidly change course when customer demand changes. Especially newer generations
such as Generation Y and the millennials have changed their values from owning to

Towards a Digital Business Operating System 297

having access to expensive items1. For instance, the typical car is used less than an hour
per day and is not used the other 23+ h.

Because of this development, many companies transition from selling products to
delivering services. This requires significant changes to business models but also
means that the products now become a cost rather than revenue generators, changing
the key incentives for companies. For instance, maximizing the economic life of the
product after deployment is an important cost reduction measure, which often requires
deploying new software in products in the field.

To illustrate this point, the fastest growing business unit of Ericsson is its global
services business. This unit has grown faster in terms of revenue and staff than the
product units. Also, automotive companies expect that by the mid 2020, more than half
of their cars will be utilized through service agreements rather than through ownership.

2.3 From Technology- to Customer-Driven Innovation

Although technology forms the foundation for innovation, for several industries,
despite the use of patents and other IP protection mechanisms, new technologies tend to
become available to all players at roughly the same time. This causes these companies
to have very little benefit in terms of differentiation because of new technologies. In
response, companies increasingly prioritize customer-driven innovation [3]. This
requires deep engagement with customers as well as quantitatively analyzing customer
behavior using collected data from instrumentation of deployed software systems, both
online and offline. In [3], we study several case companies that adopted new techniques
to collect more customer insight as part of their product development.

2.4 The Size of Software

Depending on the industry, the size of software in software-intensive systems increases
with an order of magnitude every five to ten years. The main challenge is that a
software system that is 10 times the size of a previous generation requires new
architectural approaches, different ways of organizing development, significant mod-
ularization of testing, release and post-deployment upgrades as well as the complica-
tions of running a larger R&D organization.

Although there are several studies documenting this trend, one of the most illus-
trative studies is by Ebert and Jones [5] that analyze this trend for embedded systems

2.5 Need for Speed

As discussed in the introduction, in society, we see a continuous acceleration of user
adoption of new technologies, products and solutions. For example, it took Facebook
10 months to reach a million users whereas the mobile app “draw something” reached
that number in just days. With the “consumerization” of the enterprise, also inside
corporations the adoption of new applications, technologies and systems accelerates.

1 https://en.wikipedia.org/wiki/Sharing_economy.

298 J. Bosch

https://en.wikipedia.org/wiki/Sharing_economy

Companies need to respond to new customer needs and requests at unprecedented
speeds. This requires a level of enterprise-wide agility that is often exceedingly difficult
to accomplish in conventional, hierarchical organizations. This “need for speed”
requires different ways of organizing, building and architecting software and software
development in companies.

2.6 Playing Nice with Others

Many software-intensive systems industries become increasingly aware of the oppor-
tunities that exist when using one’s ecosystem of partners in a more proactive and
intentional fashion. The strategic challenge has shifted from internal scale, efficiency
and quality and serving customers in a one-to-one relationship to creating and con-
tributing to an ecosystem of players, including, among others, suppliers, complemen-
tors, customers and potentially even competitors. The ecosystem trend is not just
visible in the mobile industry with its app stores, but also in B2B markets such as those
surrounding SAP and Microsoft Office. Establishing and evolving an ecosystem of
partners of different types has become the key differentiator in several industries and
may easily be the cause of winning in a market or being relegated to a less dominant
position. In [4] we discuss several cases that show improved competitiveness of
companies that effectively use their ecosystem.

3 Towards a Digital Business Operating System (DiBOS)

The trends that we discussed in the previous section have one important commonality:
the traditional way of building and deploying products using waterfall-style approa-
ches, requirements-driven prioritization and standardization of work processes is falling
short. The traditional company is unable to meet these trends in a fashion that allows it
to stay competitive. The problem is that it is not one change that is required or one
function that needs to transform. Instead, it is the entire business operating system that
needs to be replaced. In order to succeed in a digitizing world, organizations need to
adopt a new digital business operating system (DiBOS) [2].

As shown in Fig. 1, DiBOS consists of four dimensions and three scopes of work.
The four dimensions are speed, data, ecosystems and empowerment. The scopes of
work include operations, development and innovation. In the rest of this section, we
describe the four dimensions. In the next section, we describe the scopes of work.

3.1 Speed

The ability of companies to rapidly convert identified customer needs into working
solutions in the hands of customers is increasingly important for maintaining a com-
petitive position. The times where companies could spend years developing new
products is long gone and customers expect fast responses to their needs and contin-
uous improvement of the functionality in their systems.

Towards a Digital Business Operating System 299

Our research over the last decade has shown that companies evolve in predictable
ways. The main source of variation is timing, i.e. when changes happen, not the
changes that actually are driven forward. In Fig. 2, we show the typical evolution path
for companies.

As the figure shows, companies evolve through five stages:

• Traditional Development. This indicates the starting point for companies before
any modern development methods are adopted. The traditional exhibits many
aspects of a waterfall style approach. These aspects include a relatively long time
between the decision of what to build and the delivery of the associated

Fig. 1. Illustrating DiBOS.

Fig. 2. Speed dimension of DiBOS.

300 J. Bosch

functionality. Also, typically there is a sequential process where requirements,
architecture design, detailed design, implementation, testing and release are per-
formed sequentially. Finally, the R&D organization is functionally organized based
on the process steps.

• Agile Development. One of the inefficiencies of traditional approaches is the
number of internal handovers between different functions. In response to these and
other inefficiencies, many organizations have adopted several agile practices,
including teams, sprints, backlogs, daily standups, clear definitions of done, etc.
Adoption of agile practices focuses predominantly on the agile team itself and to a
lesser extent on the interactions between the team and the rest of the organization.

• Continuous Integration. Once the agile teams have been established and are
operating based on agile principles, the attention shifts towards making sure that
these teams are building code that actually works. Continuous integration, typically
a set of software systems that build and test software immediately after it is checked
in, offers as the main advantage that the organization has constant and accurate
insight into the state of development.

• Continuous Deployment. When continuous integration is established and institu-
tionalized, there always is a production quality software version available. Once
customers realize this, they will demand early access to the software assuming the
new features provide benefit for them. This pressure from the market often leads to
continuous deployment, i.e. the frequent (at least once per agile sprint) release of
new software to some or all customers.

• R&D as an Experiment System. Once continuous deployment is established for
some or all customers, organizations realize that one can also test the implications
of new features on customers and systems in the field by deploying partially
implemented features to verify that the expected value of a new feature is indeed
realized. This allows companies to redirect or stop development of features if the
data from the field are not in line with expectations. This allows for a significant
increase in the accuracy of R&D investments.

3.2 Data

Data is often referred to as the new oil. Every company is eager to collect and store
data, but the effective use of that data is not always as well established as one would
wish. Also, the type of data collected by companies traditionally not concerned with
data tends to be concerned with quality issues such as defects, troubleshooting and
logging. Research by others and us shows, for instance, that more than half of all
features in a typical software system are hardly ever or never used. However, because
companies frequently fail to collect data about feature usage. There is no data that can
be used for building the right features or removing features that are not used.

Our research shows that companies evolve through their use of data in a repeatable
and predictable pattern.

The evolution pattern is shown in Fig. 3 and below we describe each step in some
more detail:

Towards a Digital Business Operating System 301

• Ad-Hoc. At the lowest level, the organization has no systematic use of data con-
cerning the performance of the system or the behavior of users. Not only are data
not used, they are not even collected or analyzed. In the cases someone in the
organization decides to use data, the collection, analysis, reporting and decision
making based on the data all need to be done manually.

• Collection. Once a certain level of awareness of the relevance of data is established
in the organization, the next step is to start to instrument the software in its products
and systems with the intent of putting the data in a data warehouse. Although
initially the goal will be to collect as much data as possible, soon the discussion
turns to what types of data should be collected and for what purposes.

• Automation. As managers and others provide requests to the data analytics team, it
will become clear that certain queries come back frequently. When this happens,
often dashboards are defined and initiated. At this stage, the collection, analysis and
reporting on the data are automated and decision making is supported.

• Data Innovation. As dashboards and continuous reporting of data become the
norm, the awareness of the limitations of static dashboards becomes apparent. In
response, data analysts and users of the dashboards start to collaborate to drive a
continuous flow of new metrics and KPIs, typically replacing existing ones,
resulting in a dynamically evolving data-driven way of working.

• Evidence-based Organization. Once we reach the final stage, the entire organi-
zation, and not only R&D, uses data-driven decision making and experimentation
considered to be the most powerful tool to accomplish this. The organization has
adopted Edwards Deming’s motto: In God we trust; all others must bring data.

3.3 Ecosystems

Upon hearing the word “ecosystem”, most in the software industry think of app stores
for mobile phones. However, any company is part of multiple ecosystems [6],
including an innovation ecosystem to share the cost and risk of innovation, a differ-
entiation ecosystem where the company looks to complement its own solutions with
functionality offered by others to strengthen the value proposition to its customers and a
commodity functionality ecosystem where the company seeks to limit its own R&D
resource investment by engaging in the ecosystem to share maintenance cost, replace
internal software with COTS or OSS components, etc (Fig. 4).

Fig. 3. Data dimension of DiBOS.

302 J. Bosch

Similar to the other dimensions, we have identified that companies engage with
their ecosystems in a predictable pattern, evolving from being internally focused to
strategically engaging with multiple ecosystems. Below we discuss each step in some
more detail:

• Internally Focused. The first and basic stage is where the company is exclusively
internally focused. As no company is an island, the company, of course, has to
interact with other companies, but the basic principle is that everything that can be
done in house is done internally.

• Ad-hoc Ecosystem Engagement. The next step is where the company starts to
engage the ecosystem in an ad hoc fashion. Often driven by some crisis or cost
efficiency program, the company realizes that some issue or problem could be
addressed by stopping to do something by itself and to give it to another
organization.

• Tactical Ecosystem Engagement. Once the first step towards relying on an outside
company has been accomplished and the results are satisfactory, there is a shift in
the culture where more areas that are contextual for a company are considered for
outsourcing. The initial approach tends to be more tactical in nature, meaning that
the selection of partners and collaboration with these partners is more structured
than in the previous step, but still the engagement is tactical in nature.

• Strategic Single Ecosystem Engagement. The next step is where the company
starts to build long-term relationships where co-evolution in the context of a
symbiotic relationship can be realized. At this stage, the companies also collaborate
outside of individual contracts and perform joint strategy development, transition
responsibility for certain types of functionality to each other and together look for
ways to increase the overall value in the ecosystem.

• Strategic Multi Ecosystem Engagement. The final stage is where the company has
matured to the point that it can handle all its ecosystems in a strategic fashion. Here,
the company allocates its own resources predominantly to differentiation and relies
on and orchestrates its ecosystems for collaborative innovation and sharing the cost
of commodity functionality.

Fig. 4. Ecosystem dimension of DiBOS.

Towards a Digital Business Operating System 303

3.4 Empowerment

One of the surprising, but often ignored, facts of life is that organizations almost all
look the same. Starting from a CEO, there is a group of functional leaders in the C-suite
and below that there are multiple levels of managers until we reach front-line people
that actually do some work. This traditional, hierarchical way of organizing has served
the western world well for most of the 20th century, but as the business environment
experiences an increasingly rapid pace of change, it becomes harder and harder for
these traditional organizations to stay competitive. Over the last decade, a new class of
organizations has emerged that is concerned with empowerment of individuals,
removes the formal manager role so that people do not have a boss and introducing
alternative mechanisms for coordinating between individuals in the organization.

In Fig. 5, we show the stages that an organization evolves through to transition
from a hierarchical organization to an empowered organization. Below, we describe
these stages in some more detail:

• Traditional. The traditional organization is the hierarchical organization where
employees report to managers who report to manager until the CEO is reached. In
these companies, the culture, ways of working, formal operating mechanisms, etc.
are all driven by hierarchy, communication up and down the line, etc.

• Agile. The first step towards toward empowerment is provided by adopting agile
practices. When going agile, at least teams receive a higher degree of autonomy and
have more freedom on how they work, even if decisions related to what they should
work on are still driven by the traditional organization.

• Cross-functional. When adopting agile practices beyond individual teams, often
there is a need to involve functions upstream, such as product management, and
downstream, such as the release organization. This often leads to cross-functional
ways of working as well as cross-functional teams that have high degrees of
autonomy. At this stage, management shifts toward outcomes and cross-functional
organizations are left to their own devices as long as they deliver on the desired
outcomes.

Fig. 5. Empowerment dimension of DiBOS.

304 J. Bosch

• Self-managed. When the end-to-end R&D organization has successfully adopted
empowerment, the rest of organization is likely to follow suit, resulting in an
organization where every individual and team is self-managed. The challenge at this
stage is that even though everyone is self-managing, the culture often still expects or
relies on some hierarchical operating mechanisms such as a setting business
strategy.

• Empowered. In the final stage, every part of the organization is fully empowered
and operates based on peer-to-peer coordination, evolving strategies and frequent
self-reflection on performance and the quality of the organization for its employees.

4 Operationalizing DiBOS

In the previous section, we discussed the four dimensions of DiBOS. However, there is
a second dimension to how companies function. As we showed in Fig. 1, there are
three types of activity, i.e. operations, development and innovation. In the next sec-
tions, we discuss each type and its relation to the four dimensions discussed earlier.

4.1 Operations

Once a company puts a product or service in market, an operations organization will be
required that addresses the lifecycle of product or service. This starts from marketing
and sales, followed by installation and start of operation at the customer, ongoing
support, releases of updates, maintenance and finally sun-setting. Depending on the
product or service this lifecycle may take decades, as is the case for military equipment
and telecommunications infrastructure, or months, as is the case for many mobile
phones.

Although the four dimensions of DiBOS were developed primarily for develop-
ment, these are relevant for operations as well:

• Speed. During operations, agility and responsiveness clearly is a differentiator for
companies as it provides customers with a rapid response to their issues and con-
cerns. Also, through the use of continuous deployment, the company can identify
and resolve issues before customers even realize that there is a problem.

• Data. In the case of connected products and online services, insight into customer
behavior and the performance of deployed systems is incredibly powerful as a
mechanism to proactively serve customers. In addition, it can be very effectively
used for cross-selling and up-selling of services to customers as the company has
insight into the operational performance of its customers.

• Ecosystems. Similar to development, also the operations organization faces deci-
sions on what to do by itself and were to orchestrate its ecosystem and rely on
partners for certain aspects of operations.

• Empowerment. Finally, especially in operations organizations where many of the
staff are no white-collar professionals, there is a tendency to standardize processes
and to force people in a rigid operational model. However, empowering these

Towards a Digital Business Operating System 305

people when having established the right culture often is incredibly powerful in
terms of the quality of service offered to customers while finding cost-effective
solutions for the company itself.

4.2 Development

The four dimensions of DiBOS were initially developed for the development and R&D
organization of the company. Our experience that R&D in many ways is the embod-
iment of the business strategy as this part of the company takes all the design decisions
that enable or complicate certain business strategies. As the business and operational
organizations often become aware of the need for specific solutions, R&D either has
prepared for these needs much earlier or will need to scramble to respond to the needs
in the market.

As DiBOS has initially been developed for development predominantly, the four
dimensions relate to this activity as follows:

• Speed. The speed dimension is concerned with agile practices, continuous inte-
gration of functionality and continuous deployment at customers. Climbing the
speed dimension allows the company to shorten many of its feedback cycles and
transition from opinion-based decision making to data-driven decision making.

• Data. Our research shows that half or more of the features developed for typical
software systems are never used or used so seldom that the feature does not provide
a relevant return on investment on the R&D cost in terms of business value.
Instrumenting software that is frequently deployed allows for iterative development
of features to ensure, with each iteration, that the R&D investment is resulting in the
desired outcome.

• Ecosystems. Our TeLESM model [6] suggests that a product or family of related
products are part of three ecosystems, i.e. an innovation, a differentiation and a
commodity ecosystem. Each of these ecosystems needs to be engaged with different
drivers and success metrics and the ecosystem dimension describes how to
accomplish this.

• Empowerment. Traditional development approaches assumed a requirement cen-
tric way of working, but in our experience organizations that are mature in their
strategy development and are able to convert this strategy into quantitative outcome
metrics can shift its teams to outcome driven development. This means that teams
do not build towards specifications, but rather experiment with the aim of accom-
plishing a certain outcome. This is allows for more empowerment of teams.

4.3 Innovation

Innovation is the lifeblood of any organization and those that fail on this lose their
competitive position over time as more and more of their offerings to customers
become commoditized. In many ways, innovation is the predecessor of development as
it seeks to find those items that are worthwhile to customers and that should be
developed in a mature, productive fashion [3].

306 J. Bosch

DiBOS offers several tools and enables for innovation in the four dimensions as we
discuss below:

• Speed. Innovation aims at testing as many ideas as possible with customers and
other ecosystem partners against the lowest cost per experiment. Speed in devel-
opment and deployment of these experiments with customers is a key enabler for
innovation.

• Data. One of the key dangers of innovation is to rely on the opinions of senior
leaders in the organization, or the opinions of anyone else for that matter. Instead,
prioritization of innovation efforts should be based on data about customer behavior
as well as the behavior of systems deployed in the field.

• Ecosystems. The TeLESM model [6] that we mentioned in the previous section
explicitly identifies the innovation layer and ecosystem as a key part of the model.
Sharing the cost and risk of innovation is an important factor for many companies as
it allows for a wider innovation funnel.

• Empowerment. One of the painful lessons for many organizations is that the more
senior the leader in the organization, the more likely it is that the opinion of this
leader concerning an innovative idea is wrong. Instead, we need to allow individ-
uals and teams to use a part of their time to pursue their innovative ideas without
having to worry about management interference. This obviously requires empow-
erment of individuals and teams.

5 Conclusion

As Marc Andreessen wrote in his Wallstreet Journal OpEd [1], software is eating the
world. Across the industry we see a fundamental shift in R&D investment from
“atoms”, i.e. mechanics and electronics, to “bits”, i.e. software [5]. In modern products,
value is shifting to the software, rather than the mechanics and hardware. Often referred
to as digitalization, this transformation plays a disrupting role in the industry and it has
profound implications on the way software-intensive systems companies operate.

In this paper, we analyzed the key trends in industry and society that are causing
this disruption, ranging from the transition from products to services to the constantly
growing size of software in typical systems. Our conclusion is that companies need to
adopt a new digital business operating system (DiBOS). DiBOS consists of four
dimensions, i.e. speed, data, ecosystems and empowerment, that are central for the
software-intensive systems industry going forward as companies are under severe
pressure to improve their capability to deliver on these software-driven needs. In
addition, it considers three scopes of work, i.e. operations, development and innova-
tion. Our research shows that DiBOS and its constituent parts offer a comprehensive
model to evolve towards in order to become a digital company.

The work presented in this article has been conducted in the context of Software
Center (www.software-center.se), a collaboration around software engineering research
between eleven companies, including Ericsson, Volvo Cars, Grundfos, Saab, Jeppesen
(part of Boeing), Siemens and Bosch, and five Swedish universities. The findings
presented here are consequently based on significant amounts of industry experience.

Towards a Digital Business Operating System 307

http://www.software-center.se

In future work, we aim to further develop the methods, techniques and tools that
underlie DiBOS as well as continue to validate the model in more industry contexts in
order to ensure its relevance and applicability.

References

1. Andreessen, M.: Why software is eating the world. Wall Str. J. 20 August 2011. http://www.
wsj.com/articles/SB10001424053111903480904576512250915629460. Accessed 18 Feb
2015

2. Bosch, J.: Speed, Data and Ecosystems: Excelling in a Software-Driven World. CRC Press,
Boca Raton (2017)

3. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in high-
tech industries. J. Prod. Innov. Manag. 32(5), 793–807 (2014)

4. Bosch-Sijtsema, P.M., Bosch, J.: Plays nice with others? Multiple ecosystems, various roles
and divergent engagement models. Technol. Anal. Strat. Manag. 27, 960–974 (2015)

5. Ebert, C., Jones, C.: Embedded software: facts, figures, and future. IEEE Comput. 42, 42–53
(2009)

6. Olsson, H.H., Bosch, J.: From Ad-Hoc towards strategic ecosystem management: the three-
layer ecosystem strategy model. J. Softw. Evol. Process 29(7), e1876 (2017). https://doi.org/
10.1002/smr.1876

308 J. Bosch

http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://dx.doi.org/10.1002/smr.1876
http://dx.doi.org/10.1002/smr.1876

Author Index

Alaya, Ines 210
Alloui, Ilham 244

Ben Mansour, Imen 210
Ben-Abdallah, Hanêne 188
Bernardi, Mario Luca 114
Bosch, Jan 296
Boukadi, Khouloud 188

Cardinale, Yudith 268
Cimitile, Marta 114
Czibula, Gabriela 163
Czibula, Istvan Gergely 163

Diamantopoulos, Themistoklis 3
Dimaridou, Valasia 3

Frey, Georg 49

Gregersen, Allan Raundahl 135
Guehis, Sonia 268

Heng, Samedi 69

Khalgui, Mohamed 49
Khlifi, Oussama 49
Kiv, Soreangsey 69
Kolp, Manuel 69
Kyprianidis, Alexandros-Charalampos 3

Labiche, Yvan 91

Maamar, Zakaria 188
Marian, Zsuzsanna 163
Martinelli, Fabio 114
Mercaldo, Francesco 114
Mosbahi, Olfa 49
Mustafa, Nasser 91

Panu, Andrei 28
Papamichail, Michail 3
Petrova-Antonova, Dessislava 229

Rukoz, Marta 268

Šelajev, Oleg 135
Siegwart, Christian 49
Symeonidis, Andreas 3

Tagina, Moncef 210
Tsokov, Tsvetan 229

Vernier, Flavien 244

Wautelet, Yves 69

Yahya, Fadwa 188

	Preface
	Organization
	Contents
	Software Engineering
	Assessing the User-Perceived Quality of Source Code Components Using Static Analysis Metrics
	1 Introduction
	2 Related Work
	3 Defining Quality
	3.1 Benchmark Dataset
	3.2 Quality Score Formulation

	4 System Design
	4.1 System Overview
	4.2 Data Preprocessing
	4.3 Models Preprocessing
	4.4 Models Validation
	4.5 Models Construction

	5 Evaluation
	5.1 One-Class Classifier Evaluation
	5.2 Quality Estimation Evaluation
	5.3 Example Quality Estimation
	5.4 Threats to Validity

	6 Conclusions
	References

	A Technology for Optimizing the Process of Maintaining Software Up-to-Date
	1 Introduction
	2 Our Proposal
	3 System Architecture and Design
	3.1 CorpusDownloader
	3.2 CorpusReader
	3.3 CorpusReader TrainingData
	3.4 CorpusTrain SigDetection
	3.5 CorpusTrain VerDetection
	3.6 SigContext
	3.7 NER Version Number
	3.8 NER SigComponents
	3.9 NER SigDescription
	3.10 WebMiner
	3.11 OntoManager

	4 Experimental Results
	5 Related Solutions
	6 Additional Applicability
	7 Conclusions and Further Work
	References

	From Specification to Implementation of an Automotive Transport System
	Abstract
	1 Introduction
	2 Background
	2.1 System Analysis
	2.2 Related Work
	2.3 Statecharts
	2.4 R-TNCES
	2.5 GR-TNCES

	3 Specification Approach
	4 Test Case: Skid Conveyer
	4.1 Functional Requirements
	4.1.1 Control
	4.1.2 Additional Information

	4.2 System Encoding
	4.3 System Modeling
	4.4 Simulation

	5 Test Case: Implementation
	5.1 Mechanical Design
	5.2 Control System Design
	5.3 Software Implementation

	6 Discussion
	7 Conclusion
	Acknowledgement
	References

	Towards a Goal-Oriented Framework for Partial Agile Adoption
	1 Introduction
	2 Related Work
	3 A Framework for Partial Agile Adoption
	3.1 Goal-Oriented Agile Methods Meta-model
	3.2 Goal and Social Dependency Representation
	3.3 Partial Agile Adoption Process

	4 Validation
	4.1 Scrum and XP
	4.2 Tactical Level Application: Towards Practices Selection
	4.3 Operational Level Application: Towards Practices Implementation

	5 Conclusion
	References

	Using Semantic Web to Establish Traceability Links Between Heterogeneous Artifacts
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Traceability Definitions
	2.2 Traceability Classifications

	3 Taxonomy Requirements
	4 Taxonomy Design
	4.1 Design Decisions

	5 Taxonomy Implementation
	6 Taxonomy Validation
	6.1 Validation Criteria
	6.2 Requirements Validation
	6.3 Case Study

	7 Conclusion and Future Work
	References

	A Machine Learning Approach for Game Bot Detection Through Behavioural Features
	1 Introduction
	2 Related Work
	3 Background
	4 The Method
	5 The Evaluation
	5.1 Descriptive Statistics
	5.2 Hypothesis Testing
	5.3 Classification Analysis

	6 Conclusions
	References

	Genrih, a Runtime State Analysis System for Deciding the Applicability of Dynamic Software Updates
	1 Introduction
	2 Background
	3 A System for Predicting Runtime Phenomena
	3.1 State Analysis Engine
	3.2 Class Diff Tool
	3.3 Changes to Phenomena to Runtime State Queries
	3.4 World Stopper
	3.5 A Prototype to Enhance JRebel
	3.6 Enhancing Rubah

	4 Experiment
	5 Performance Evaluation
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Software Systems and Applications
	Identifying Class Integration Test Order Using an Improved Genetic Algorithm-Based Approach
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Stubbing Relationships
	3.2 Genetic Algorithms
	3.3 The Proposed GA Model

	4 Computational Experiments
	4.1 Parameters Setting
	4.2 Example
	4.3 Case Studies
	4.4 Results

	5 Discussion
	5.1 Analysis of Out Approach
	5.2 Comparison to Related Work

	6 Conclusions and Future Work
	References

	Application of Fuzzy Logic to Assess the Quality of BPMN Models
	1 Introduction
	2 Related Work
	2.1 Quality Metrics
	2.2 Business Process Evaluation

	3 Determination of Quality Metrics Thresholds
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Data Mining
	3.4 Validation
	3.5 Discussions

	4 Fuzzy Logic for Business Process Quality-Assessment
	4.1 Fuzzification
	4.2 Inference
	4.3 Defuzzification

	5 System Development: BP-FuzzQual
	5.1 Architecture
	5.2 Experiments

	6 Conclusion
	References

	Solving Multiobjective Knapsack Problem Using Scalarizing Function Based Local Search
	1 Introduction
	2 Multiobjective Optimization Problems
	3 MOMKP Formulation
	4 Tchebycheff Functions
	4.1 The Weighted Tchebycheff Function
	4.2 The Augmented Weighted Tchebycheff Function

	5 Our Proposed Approach Min-Max TLS: Min-Max Tchebycheff Based Local Search
	5.1 Weight Vectors Generation
	5.2 Initial Population Initialization
	5.3 Perturbation
	5.4 Update Reference Point
	5.5 Neighborhood Structure
	5.6 Acceptance Criterion and Replacement Function

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Performance Metrics
	6.3 Comparison Results
	6.4 Discussion

	7 Conclusions and Perspectives
	References

	Monitoring and Control of Vehicles’ Carbon Emissions
	Abstract
	1 Introduction
	1.1 A Subsection Sample

	2 Related Work
	3 EcoLogic General Concept
	4 EcoLogic Architecture and Implementation
	4.1 EcoLogic Database
	4.2 EcoLogic Hardware Module
	4.3 Java EE Backend Application
	4.4 Analytics Application
	4.5 JavaScript Web UI Application

	5 EcoLogic Usage Example
	6 Conclusions and Future Work
	Acknowledgements
	References

	WOF: Towards Behavior Analysis and Representation of Emotions in Adaptive Systems
	1 Introduction
	2 Requirements
	3 Fundamental Concepts of WOF
	3.1 Concept of WO
	3.2 Concept of WOS (WO System)

	4 Design Models of WO and WOS
	4.1 Design Model of WO
	4.2 Design Model of WOS
	4.3 Design Model of WO Data Analyzers

	5 Statistical Analysis and WO Emotions
	6 An Illustrating Example ``Home Automation''
	7 Discussion and Concluding Remarks
	References

	Classifying Big Data Analytic Approaches: A Generic Architecture
	1 Introduction
	2 Preliminaries
	2.1 Big Data Programming Models
	2.2 A Classification of Big Data Query Languages

	3 Generic Architecture for Analytical Approaches
	3.1 Architecture for Analytic Processing Classification
	3.2 Criteria of Comparison

	4 Describing Some Big Data Analytic Systems
	4.1 NoSQL Based Architectures
	4.2 Relational Parallel Databases Based Architectures
	4.3 Graph Based Architectures
	4.4 General Discussion

	5 Related Work
	6 A Decision Support System to Select Big Data Analytics: A Perspective
	7 Conclusions
	References

	Towards a Digital Business Operating System
	Abstract
	1 Introduction
	2 Trends in Industry and Society
	2.1 Shifting Nature of Product Innovation
	2.2 From Products to Services
	2.3 From Technology- to Customer-Driven Innovation
	2.4 The Size of Software
	2.5 Need for Speed
	2.6 Playing Nice with Others

	3 Towards a Digital Business Operating System (DiBOS)
	3.1 Speed
	3.2 Data
	3.3 Ecosystems
	3.4 Empowerment

	4 Operationalizing DiBOS
	4.1 Operations
	4.2 Development
	4.3 Innovation

	5 Conclusion
	References

	Author Index

