534 research outputs found

    Pareto optimal search based refactoring at the design level.

    Get PDF
    Refactoring aims to improve the quality of a software systems’ structure, which tends to degrade as the system evolves. While manually determining useful refactorings can be challenging, search based techniques can automatically discover useful refactorings. Current search based refactoring approaches require metrics to be combined in a complex fashion, and produce a single sequence of refactorings. In this paper we show how Pareto optimality can improve search based refactoring, making the combination of metrics easier, and aiding the presentation of multiple sequences of optimal refactorings to users

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    An Empirical Study of Cohesion and Coupling: Balancing Optimisation and Disruption

    Get PDF
    Search based software engineering has been extensively applied to the problem of finding improved modular structures that maximise cohesion and minimise coupling. However, there has, hitherto, been no longitudinal study of developers’ implementations, over a series of sequential releases. Moreover, results validating whether developers respect the fitness functions are scarce, and the potentially disruptive effect of search-based remodularisation is usually overlooked. We present an empirical study of 233 sequential releases of 10 different systems; the largest empirical study reported in the literature so far, and the first longitudinal study. Our results provide evidence that developers do, indeed, respect the fitness functions used to optimise cohesion/coupling (they are statistically significantly better than arbitrary choices with p << 0.01), yet they also leave considerable room for further improvement (cohesion/coupling can be improved by 25% on average). However, we also report that optimising the structure is highly disruptive (on average more than 57% of the structure must change), while our results reveal that developers tend to avoid such disruption. Therefore, we introduce and evaluate a multi-objective evolutionary approach that minimises disruption while maximising cohesion/coupling improvement. This allows developers to balance reticence to disrupt existing modular structure, against their competing need to improve cohesion and coupling. The multi-objective approach is able to find modular structures that improve the cohesion of developers’ implementations by 22.52%, while causing an acceptably low level of disruption (within that already tolerated by developers)

    Handling High-Level Model Changes Using Search Based Software Engineering

    Full text link
    Model-Driven Engineering (MDE) considers models as first-class artifacts during the software lifecycle. The number of available tools, techniques, and approaches for MDE is increasing as its use gains traction in driving quality, and controlling cost in evolution of large software systems. Software models, defined as code abstractions, are iteratively refined, restructured, and evolved. This is due to many reasons such as fixing defects in design, reflecting changes in requirements, and modifying a design to enhance existing features. In this work, we focus on four main problems related to the evolution of software models: 1) the detection of applied model changes, 2) merging parallel evolved models, 3) detection of design defects in merged model, and 4) the recommendation of new changes to fix defects in software models. Regarding the first contribution, a-posteriori multi-objective change detection approach has been proposed for evolved models. The changes are expressed in terms of atomic and composite refactoring operations. The majority of existing approaches detects atomic changes but do not adequately address composite changes which mask atomic operations in intermediate models. For the second contribution, several approaches exist to construct a merged model by incorporating all non-conflicting operations of evolved models. Conflicts arise when the application of one operation disables the applicability of another one. The essence of the problem is to identify and prioritize conflicting operations based on importance and context – a gap in existing approaches. This work proposes a multi-objective formulation of model merging that aims to maximize the number of successfully applied merged operations. For the third and fourth contributions, the majority of existing works focuses on refactoring at source code level, and does not exploit the benefits of software design optimization at model level. However, refactoring at model level is inherently more challenging due to difficulty in assessing the potential impact on structural and behavioral features of the software system. This requires analysis of class and activity diagrams to appraise the overall system quality, feasibility, and inter-diagram consistency. This work focuses on designing, implementing, and evaluating a multi-objective refactoring framework for detection and fixing of design defects in software models.Ph.D.Information Systems Engineering, College of Engineering and Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/136077/1/Usman Mansoor Final.pdfDescription of Usman Mansoor Final.pdf : Dissertatio

    A Survey of Search-Based Refactoring for Software Maintenance

    Get PDF
    Abstract This survey reviews published materials related to the specific area of Search-Based Software Engineering that concerns software maintenance and, in particular, refactoring. The survey aims to give a comprehensive review of the use of search-based refactoring to maintain software. Fifty different papers have been selected from online databases to analyze and review the use of search-based refactoring in software engineering. The current state of the research is analyzed and patterns in the studies are investigated in order to assess gaps in the area and suggest opportunities for future research. The papers reviewed are tabulated in order to aid researchers in quickly referencing studies. The literature addresses different methods using search-based refactoring for software maintenance, as well as studies that investigate the optimization process and discuss components of the search. There are studies that analyze different software metrics, experiment with multi-objective techniques and propose refactoring tools for use. Analysis of the literature has indicated some opportunities for future research in the area. More experimentation of the techniques in an industrial environment and feedback from software developers is needed to support the approaches. Also, recent work with multi-objective techniques has shown that there are exciting possibilities for future research using these techniques with refactoring. This survey is beneficial as an introduction for any researchers aiming to work in the area of Search-Based Software Engineering with respect to software maintenance and will allow them to gain an understanding of the current landscape of the research and the insights gathered

    An Interactive and Dynamic Search-Based Approach to Software Refactoring Recommendations

    Get PDF
    Successful software products evolve through a process of continual change. However, this process may weaken the design of the software and make it unnecessarily complex, leading to significantly reduced productivity and increased fault-proneness. Refactoring improves the software design while preserving overall functionality and behavior, and is an important technique in managing the growing complexity of software systems. Most of the existing work on software refactoring uses either an entirely manual or a fully automated approach. Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical refactoring. On the other hand, fully automated refactoring yields a static list of refactorings which, when applied, leads to a new and often hard to comprehend design. Furthermore, it is difficult to merge these refactorings with other changes performed in parallel by developers. In this paper, we propose a refactoring recommendation approach that dynamically adapts and interactively suggests refactorings to developers and takes their feedback into consideration. Our approach uses NSGA-II to find a set of good refactoring solutions that improve software quality while minimizing the deviation from the initial design. These refactoring solutions are then analyzed to extract interesting common features between them such as the frequently occurring refactorings in the best non-dominated solutions. Based on this analysis, the refactorings are ranked and suggested to the developer in an interactive fashion as a sequence of transformations. The developer can approve, modify or reject each of the recommended refactorings, and this feedback is then used to update the proposed rankings of recommended refactorings. After a number of introduced code changes and interactions with the developer, the interactive NSGA-II algorithm is executed again on the new modified system to repair the set of refactoring solutions based on the new changes and the feedback received from the developer. We evaluated our approach on a set of eight open source systems and two industrial projects provided by an industrial partner. Statistical analysis of our experiments shows that our dynamic interactive refactoring approach performed significantly better than four existing search-based refactoring techniques and one fully-automated refactoring tool not based on heuristic search

    Model refactoring by example: A multi‐objective search based software engineering approach

    Full text link
    Declarative rules are frequently used in model refactoring in order to detect refactoring opportunities and to apply the appropriate ones. However, a large number of rules is required to obtain a complete specification of refactoring opportunities. Companies usually have accumulated examples of refactorings from past maintenance experiences. Based on these observations, we consider the model refactoring problem as a multi objective problem by suggesting refactoring sequences that aim to maximize both structural and textual similarity between a given model (the model to be refactored) and a set of poorly designed models in the base of examples (models that have undergone some refactorings) and minimize the structural similarity between a given model and a set of well‐designed models in the base of examples (models that do not need any refactoring). To this end, we use the Non‐dominated Sorting Genetic Algorithm (NSGA‐II) to find a set of representative Pareto optimal solutions that present the best trade‐off between structural and textual similarities of models. The validation results, based on 8 real world models taken from open‐source projects, confirm the effectiveness of our approach, yielding refactoring recommendations with an average correctness of over 80%. In addition, our approach outperforms 5 of the state‐of‐the‐art refactoring approaches.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143783/1/smr1916.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143783/2/smr1916_am.pd

    Interactive Multi-Objective Refactoring via Decision and Objective Space Exploration

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162566/1/ICSE2020_Decision_Objective_Spaces_copy (2).pdfSEL

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio
    corecore