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ABSTRACT
Refactoring aims to improve the quality of a software sys-
tems’ structure, which tends to degrade as the system evolves.
While manually determining useful refactorings can be chal-
lenging, search based techniques can automatically discover
useful refactorings. Current search based refactoring ap-
proaches require metrics to be combined in a complex fash-
ion, and produce a single sequence of refactorings. In this
paper we show how Pareto optimality can improve search
based refactoring, making the combination of metrics easier,
and aiding the presentation of multiple sequences of optimal
refactorings to users.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Software—Restructuring,
reverse engineering, and reengineering

General Terms
Experimentation

Keywords
Search based, software engineering, refactoring, Pareto op-
timality

1. INTRODUCTION
Software systems are subject to continual change and as

they evolve to reflect new requirements, their internal struc-
ture tends to degrade. The cumulative effect of such changes
can lead to systems that are unreliable, difficult to reason
about, and unreceptive to further change. Refactorings aim
to reverse this decline in software quality by applying a se-
ries of small, behaviour-preserving transformations, each of
which improves a certain aspect of the system [8]. Standard
examples of refactorings are: moving a method from one
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class, to another to better reflect that methods use; insert-
ing a class into the inheritance hierarchy to capture common
properties of subclasses.

Currently refactorings have to be determined and applied
by hand. While some useful refactorings can be easily identi-
fied, often it is difficult to determine those refactorings that
would improve a system’s structure. Unfortunately many
seemingly useful refactorings, whilst improving one aspect of
a system, make another aspect worse. This problem is par-
ticularly acute for large systems, or for systems with which
the would-be refactorer is unfamiliar. Therefore it has been
proposed to view refactoring as a search based technique,
where an automated system can discover useful refactorings
[15]. This can be achieved by determining an appropriate
metric that measures the overall quality of the system and
using it as a fitness function [10]. Useful refactorings are
those which improve the metric.

There are three problems with this approach. First how to
determine which are the useful metric(s) for a given system.
Second finding how best to combine multiple metrics [15].
Third is that while each run of the search generates a single
sequence of refactorings, the user is given no guidance as to
which sequence may be best for their given system, beyond
their relative fitness values.

In this paper we show how the concept of Pareto optimal-
ity can be applied to search based refactoring. Multiple runs
of our search based refactoring system lead to the production
of a Pareto front, the values of which represent Pareto opti-
mal sequences of refactorings. Intuitively, each value on the
front maximises the multiple metrics used to determine the
refactorings. Users can therefore choose a value on the front
that represents the trade-off between metrics most appro-
priate to them, in the knowledge that it is Pareto optimal.
We also show how the production of a Pareto front lessens
the need for complex combinations of metrics, since differing
fitness functions contribute different Pareto optimal values
to the front.

Through results obtained from 3 case studies on large real-
world systems, the primary contributions of this paper are as
follows: we show how Pareto optimality allows users to pick
from different optimal sequences of refactorings, according
to their preferences; we show that Pareto optimality applies
equally to sub-sequences of refactorings, allowing users to
pick refactoring sequences based on the resources available
to implement those refactorings; we show how Pareto op-
timality can be used to compare different fitness functions,
and to combine results from different fitness functions.



The rest of this paper is structured as follows. In section 2
we describe previous work on search based software transfor-
mation, categorising existing approaches as either ‘direct’ or
‘indirect’ in their approach. We then describe the problems
with existing approaches and outline the research questions
we wish to address. In section 3 we then detail the approach
we take to search based refactoring, including the indirect
search based refactoring system we have constructed. In
section 6 we show how Pareto optimality can be usefully
applied to search based refactoring, including on sub-sets of
data, and how many runs of our search based system it takes
to build up a good set of Pareto optimal values. Finally in
section 7 we show how Pareto optimality allows us to show
that some fitness functions subsume others, and how it can
combine the results of non-subsuming fitness functions.

2. BACKGROUND

2.1 Search based refactoring and
transformation

Program refactoring is closely related to source–to–source
program transformation, since both are concerned with al-
tering the concrete representation of the program, while pre-
serving its semantics. In both cases, the program is restruc-
tured in order to improve some property of the way in which
the program expresses the computation it denotes. Several
authors have previously considered the problem of automat-
ing the process of transforming or refactoring a program,
using Search Based Software Engineering. There are two
broad approaches considered in the literature. To distin-
guish between them in this paper, we call them the ‘direct’
and ‘indirect’ approach.

2.1.1 Direct Approach
In the direct approach, the program is directly optimized.

That is, the possible variants of the program form the search
space of the problem. Using this approach the transforma-
tion/refactoring steps are applied directly to the program,
denoting moves from the current program to a near neigh-
bour in the search space. This approach is best suited to a
local search, because semantic preservation can only be en-
sured by applying a valid transformation to the individual.
Therefore, with one exception, all work that has adopted
this approach, has used local search techniques, such as hill
climbing and simulated annealing.

The single exception is Ryan [17], who used Genetic Pro-
gramming (GP) to automate parallelization for supercom-
puters. GP evolves versions of the program that do not nec-
essarily preserve the semantics of the original, because GP
crossover and mutation operations may (either subtlely or
radically) alter the behaviour of the original program. This
means that it is possible that Ryan’s approach will produce
a version of the program that increases paralellizability, but
that is not faithful to the semantics of the original. To ad-
dress this problem of semantic compliance, Ryan used a set
of test cases to measure how close the GP-evolved solution
was to the original. This formed a part of the fitness assess-
ment for the GP.

However, the problem remains that subtle changes in se-
mantics might mean that the program merely appears to be
faithful to the semantics of the original, according to the se-
lected set of test cases. For refactoring, this is unacceptable,

as the refactored (i.e. transformed) version of the program
must be guaranteed to preserve the semantics of the original.

Apart from Ryan’s work on GP for parallelization, other
work on the direct approach has avoided the use of GAs
because of the problem of ensuring correctness when the
cross over operator is applied. The parallelization problem
was also addressed by Williams [21] using the direct ap-
proach with local search techniques. More recently, O’Keefe
and O’Cinnéide [15] have applied the direct approach to the
problem of refactoring. They use a collection of 12 met-
rics to measure the improvements achieved when methods
are moved between classes. These 12 lower–level metrics are
combined using various weightings to assess more subjective
and higher level indirect metrics such as ‘flexibility’ and ‘un-
derstandability’. The weightings represent the various de-
grees to which the authors believe that these 12 metrics
contribute to the higher level concepts indirectly measured.

2.1.2 Indirect Approach
In the indirect approach, the program is indirectly opti-

mized, via the optimization of the sequence of transforma-
tions to apply to the program. In this approach the pro-
gram is optimized by a sequence of transformations and it
is the set of possible sequences of transformations that form
the search space. Fitness is computed by applying the se-
quence of transformations to the program in question and
measuring the improvement in the metrics of interest. In
this way, the goal remains the refactoring/transformation
of the program, but the optimization is performed on the
transformation sequence and fitness is computed indirectly,
by applying the transformation sequence to the program.

In the indirect approach, it is possible to apply global
search techniques (such as genetic algorithms) because the
sequence of transformations can be subjected to arbitrary
crossover and mutation operations. The result would be an
arbitrarily changed sequence of transformations. However,
since all transformations are meaning preserving, all such
changes to the sequence are also guaranteed to be meaning
preserving.

The first authors to use search in this way were Cooper et
al. [5], who used biased random sampling to search a space
of high level, whole-program, transformations for compiler
optimization. The order of application of optimization steps
plays a crucial role in the quality of the results and so the
search problem is to identify the optimal application order.
Cooper et al. compare the results of their experiments with
those obtained using a fixed set of optimizations in a prede-
termined order, showing that search can find better orders
of application. Some whole program transformations may
enable others and this is highly program-dependent. There-
fore, no single ordering of whole program of transformations
will suit all programs.

Williams [21] also used a genetic algorithm to find se-
quences of whole-method transformations in order to opti-
mize method paralellizability. Williams compared the di-
rect and indirect approaches to the parallelization problem,
when applied to small laboratory example programs, report-
ing that the direct approach outperformed the indirect ap-
proach. Nisbet [14] also used a GA to find program restruc-
turing transformations for FORTRAN programs to execute
on parallel architectures.

Fatiregun et al. [6, 7] showed how search based trans-
formations could be used to reduce code size and construct



amorphous program slices. Their approach also followed
the indirect approach, treating the sequence of transforma-
tions to be applied as the individual to be optimized, allow-
ing them to explore the relative value of greedy, GA, hill
climbing and random algorithms. However, their transfor-
mation steps were smaller atomic level transformations than
the transformation tactics used by Williams and Nisbet, or
the transformation strategies used by Cooper et al. Also, for
Fatiregun et al., the goal was to reduce program size rather
than to improve performance.

Seng et al. [18] propose an indirect search based tech-
nique, using a GA over sets of refactorings. In contrast
to [15], the multiple weighted metrics they combine into a
single fitness function are based on well-known measures of
coupling between program components.

The indirect approach is an example of a search based
sequencing problem. Other related sequencing and prioriti-
zation problems have also been attacked using Search Based
Software Engineering, for example sequencing of require-
ments implementations [2, 9, 11], sequencing of work pack-
ages in project planning [1] and sequencing of test cases for
regression test case prioritization [12, 13, 16, 20].

In all of these problems, it is the sequence that is the final
result of the optimization process. By contrast, in search
based transformation/refactoring the final result is the pro-
gram obtained by applying the sequence of transformations
to the original program, making this a very different kind of
sequencing problem.

2.2 Problem Statement
In both the direct and indirect approach, previous work

has considered the search based transformation and refac-
toring problems as single objective search problems. Where
multiple metrics have been collected, for example, in the ap-
proach to refactoring due to O’Keefe and O’Cinneide [15],
the 12 directly computed source code metrics are combined,
using weights, into a single objective fitness function. Weight-
ing is a well-established approach to solving multiple objec-
tive problems, but it can suffer from several problems when
the choice of weight coefficients is unclear and when the var-
ious metric values are not independent, as is the case with
search based refactoring. This makes determining the rela-
tive quality of the fitness function difficult.

Furthermore, for some tasks, one may wish to add new
metrics into the fitness function (or remove certain metrics)
to get best use from the system; this is currently an ex-
tremely daunting task. A second issue is that multiple runs
of a search based refactoring system may return different
results. However, the user is given no guidance as to which
sequence of transformations may be best, beyond their rel-
ative fitness values; on their own these do not always give a
complete picture.

2.3 Research problems
In this paper we seek to address the following research

problems:

1. How to allow users to differentiate between the results
returned by multiple runs of a search based refactoring
system.

2. Whether it is possible to reduce the reliance of search
based refactoring on exceptionally well-crafted fitness

functions, requiring complex combinations of metrics
using differential weightings.

3. How search based refactoring may take into account
the level to which users wish to refactor. For exam-
ple, users may only have limited resources available to
implement refactorings.

3. APPROACH
We have built a general search based system in the Con-

verge language [19] which reads in arbitrary Java systems,
performs search based refactorings upon them, and returns
a sequence of refactorings as its output. As a system is
read in, it is converted into a UML-like design model where
low-level details in method bodies are largely ignored. The
system is capable of handling the full Java 1.5 language and
can be configured to express a wide variety of transforma-
tions, refactorings, and metrics.

3.1 CBO
In the interests of brevity, we consider two metrics which

measure the quality of a system. The first of those is the
Coupling Between Objects (CBO) metric from Briand et.
al.’s catalogue of metrics [3]; we define a second metric
SDMPC in section 5. CBO measures the coupling between
classes in a system and is formally defined thus:

CBO(c) = |{d ∈ C − {c}|uses(c, d) ∨ uses(d, c)}|

where C is the set of all classes in the system and uses(x, y)
is a predicate that is true if there is a relationship between
the two classes x and y e.g. an attribute or local variable of
type y in x. As this suggests, although our system refactors
at the design level, we record relationships between classes
that occur within method bodies. In order to calculate the
total CBO of an entire system we sum the CBO of each
class:

CBO(C) =
X

d∈C

CBO(d)

Since it is considered to be desirable to have systems with
lower degrees of coupling, it is desirable to minimise the
CBO value of any given system.

3.2 Refactorings
Following Seng et. al. [18] we consider only the move

method refactoring, also reusing the following simple heuris-
tic optimisations of the search:

• Each method can be moved a maximum of once.

• Do not move a method if it would cause the resulting
system to not compile (e.g. do not move a method
from a non-abstract class if it overrides a method in
an abstract superclass).

• Only move a method to a class it already has a rela-
tionship with.

A move method refactoring records three pieces of infor-
mation: the class c the method is being moved from, the
specific method m in c, and the class d that the method is
being moved to.



3.3 Systems under analysis
In this paper we report the results of experiments on the

following three systems:

JHotDraw v5.3 A GUI-based drawing application.

Maven v2.04 A system building tool similar in spirit to
make.

XOM v1.1 An XML API.

All three systems are non-trivial real world systems, in the
region of 20,000 to 40,000 lines of code. JHotDraw was
chosen because it has been used in a previous search based
refactoring system [18] and is often considered an example
of good design. Maven and XML represent very different
styles of applications, and have very different styles of sys-
tem design, than JHotDraw.

3.4 Determining search based refactorings
Our search based approach is indirect in nature because it

optimizes a sequence of refactorings. The search algorithm
itself is a non-deterministic, non-exhaustive hill climbing ap-
proach. In order to determine refactorings, we start with an
unadulterated system and record the system’s fitness value.
We then choose a random move method refactoring and ap-
ply the refactoring to the system. The fitness value of the
updated system is then calculated. If the new fitness value
is worse than the previous value, we discard the refactoring
and try another. If the new fitness value is better than the
previous, we add the refactoring to our current sequence of
refactorings, and apply the refactoring to the current system
to form the base for the next iteration.

During each iteration a large number of possible refactor-
ings can be tried; therefore we set a cut off point for checking
neighbours before concluding that we have reached a local
maximum. Our default cut-off point is to check 500 neigh-
bours.

A high-level view of our search algorithm is as follows
(where S is the input system and ff is the fitness function):

refactorings ← [ ]
last fitness ← ff(S, [ ])
repeat

for i = 0 to cutoff-point do
new refactoring ← pick a random refactoring
new fitness ← ff(S, refactorings + new refactoring)
if new fitness better than last fitness then

refactorings ← refactorings + new refactoring
last fitness ← new fitness
break

end if
end for
if i = cutoff-point then

break
end if

until true

The end result of our search is a sequence of refactorings and
a list of the before and after values of the various metrics
involved in the search. Note that the ordering of refactor-
ings is important since some refactorings may only improve
the fitness function after other refactorings have been per-
formed.

4. USING A SINGLE METRIC AS A
FITNESS FUNCTION

As a simple first experiment, we use the CBO metric as
the sole part of a fitness function to determine refactorings.
Using the XOM system as an example, its initial CBO value
is 351. A representative run of our search based refactoring
approach finds 68 move method refactorings such as:

Move makeProcessingInstruction from NodeFactory to Nodes
Move copy from FastReproducer to DocType
Move insertChild from NodeFactory to Element

The chain of refactorings found by the search reduces the
CBO value to 272. In practical terms this seeming improve-
ment is misleading since the improvement in CBO is at the
expense of other desirable aspects of the system. As an ex-
ample, Figure 1 shows that, when the search is guided solely
by CBO, the refactored system has emptied several classes
of methods, while leading to the creation of a so-called ‘god
class’ i.e. a class with an undesirably large number of meth-
ods in it [4].

In common with many APIs, XOM has a large number
of small methods which appear to be good candidates for
refactorings, so it is not surprising that XOM suffers from
this effect. Using this single metric, the same effect, albeit
less extreme, is also clearly observable on Maven; the effect
on JHotDraw is relatively small. As this shows, a metric
which can severely distort many of its inputs is likely to be
of very limited use in practise.
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Figure 1: Method distribution in XOM before and
after search based refactoring using the CBO metric
as the fitness function. The refactored system has
been achieved in large part by placing methods into
one single ‘god’ class.

5. COMBINING METRICS
Using a single metric to guide search based refactoring

has an obvious problems: optimizing only one aspect of the
system can make other important measures of quality un-
acceptably worse. Therefore it is common to combine more
than one metric when designing an appropriate fitness func-
tion, with the intuitive idea that the combination of metrics
should prevent any one metric being unduly favoured.



In the case of the previous example, statistical theory pro-
vides a simple ‘counter metric’ to CBO’s tendency to bloat a
small number of classes with large numbers of methods. The
second metric we use is the standard deviation of methods
per class in the system which we write as SDMPC(C) (note
that the number of methods in the system stays constant no
matter how many move method refactorings we use).

We now confront an immediate problem: how should we
combine these two metrics into one fitness function? Initial
candidates include CBO(C) ∗ SDMPC(C) or CBO(C) +
SDMPC(C), possibly with weightings attached to the indi-
vidual metrics. Previous search based refactoring approaches
[15, 18] combine metrics together in often complex fashions,
and with the choice of weightings for various metrics often
unclear. In similar fashion we initially arbitrarily define our
new fitness function to be CBO(C) ∗ SDMPC(C).
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Figure 2: 20 runs of the search based refactoring us-
ing the CBO(C) ∗ SDMPC(C) fitness function where
each run is in increasingly darker shades of grey.
Lower values are favoured for both axes. The search
started in the top-right corner of the graph.

Armed with this new fitness function, we run our search
based refactoring system again. Figure 2 shows the output
from running the system 20 times on XOM; each run takes
approximately 3 minutes on an AMD 4200+ desktop PC. As
expected, the new fitness function improves the CBO value
of the refactored system while also improving the SDMPC
of the system. However Figure 2 is more notable for two
things that it does not tell the user. First which is the ‘best’
of the 20 sequences of refactorings discovered? Second is
this a good fitness function? We tackle both questions in
subsequent sections.

6. PARETO OPTIMALITY
In this section we show how the concept of Pareto optimal-

ity naturally applies to search based refactoring. In order
to do that, we first define the concept of Pareto optimality
and a Pareto front.

6.1 Definition
In economics the concept a Pareto optimal value is effec-

tively a tuple of various metrics that can be made better or

worse. A value is Pareto optimal if moving from it to any
other value makes one of its constituent metrics worse; it
is said to be a value which is not dominated by any other
value. For any given set of values there will be one or more
Pareto optimal values. The sub-set of values that are all
Pareto optimal is termed the Pareto front of the set.

In the context of search based systems, one additional
concept is important. In theory, for a search based sys-
tem there is a ‘true’ Pareto front — that is, the front from
which no other combinations of refactorings can produce any
more Pareto optimal values. We assume that production of
this ‘true’ front is impossible analytically, and impractical
through exhaustive search. Therefore, the front of Pareto
optimal values we can create after any given number of runs
is considered to be an approximation to the ‘true’ front.
Further runs of the system may improve the front approxi-
mation (note that improvements may only improve part of
the front, leaving the rest of the front at its previous value).

However, we do not necessarily expect our approximation
to ever reach the ‘true’ front, and indeed we are unlikely to
be able to tell if this has happened, since we can not, in
general, determine in advance if further runs of the system
might improve the front further. Consequently, in the rest
of this paper, we assume that any given Pareto front is an
approximation of the ‘true’ Pareto front, since this is the
reality of Pareto fronts in search based systems.

6.2 Creating a Pareto front
Figure 2 showed the result of running the search based

system on XOM 20 times. However there is no obvious way
to determine which is the ‘best’ value(s) from the resulting
data. Since, in this case, lower values are better for both
axes, intuitively one might expect that the value in the ‘bot-
tom left’ would be the best possible value — however there
are several values that one could argue are the ‘real bottom
left’.

Figure 3 shows the Pareto front calculated from Figure 2,
with the front in the bottom left of the graph. The user can
thus select one of the values on the front knowing that, from
the existing runs, they are guaranteed to be picking one of
the Pareto optimal points.
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Figure 3: The XOM refactoring Pareto front from
Figure 2.
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Figure 4: The Pareto front created by 20 runs on
JHotDraw when limited to at most 50 refactorings.
For comparison the front of the complete search,
which involves several times as many transforma-
tions, is shown in light grey.

All the points on a Pareto front are, in isolation, consid-
ered equivalently good. In such cases, it might be that the
user may prefer some of the Pareto optimal points over oth-
ers. For example users who are more interested in achieving
a low CBO than they are in a low SDMPC may pick a point
on the left of the front.

Often one finds that the user has further criteria which
may narrow down which of the Pareto optimal values is most
suitable. In our case, an important additional criterion is the
number of refactorings required to reach a given point on the
Pareto front: often a developer would prefer to perform as
few refactorings as possible to achieve an improved system.
In Figure 3 for example, points on the front range from 211
to 231 refactorings.

6.3 Pareto fronts of data sub-sets
For search based refactoring, the additional criteria of the

number of refactorings that a developer would need to make
is more important in practice than we have hitherto given
credit. Because of the simplistic metrics we have used to
guide our search, large numbers of refactorings are gener-
ated. For example, for JHotDraw our search will typically
suggest over 350 refactorings. While more complex combi-
nations of metrics would reduce this number significantly
(see [18]), for large systems it is still likely to be the case
that developers may not have sufficient resources available
to make all suggested refactorings.

The concept of a Pareto front makes as much sense with
subsets of data as it does for complete sets. Thus we can
allow developers to determine how many resources they are
prepared to make available for refactoring, and to gener-
ate a Pareto front that respects that limit. Figure 4 shows
the Pareto front resulting from restricting the search based
refactoring of JHotDraw to the first 50 refactorings; for com-
parison the Pareto front for the full search (which requires
over 350 refactorings) is shown in the far bottom left.

As Figure 4 partly suggests, the number of points on, and

general shape of, the Pareto front for the sub-setted data
can, and generally will be, different than that of the front
for the full set of data. Although we do not show it here,
due to space limitations, we have found that one can get
surprisingly different shaped fronts for different sub-sets of
the refactorings.

6.4 Evolution of the Pareto front
approximation

Up until this point the various visualizations of the refac-
toring system we have shown have used 20 runs worth of
data. Part of the reason for choosing this figure is that it is
the point at which the visualizations used thus far remain
reasonably uncluttered. However, while it is intuitively clear
that the more runs one makes, the better Pareto front ap-
proximation will become, it is very important to know how
many runs a search based refactoring system will need to
achieve a reasonable approximation.

Figure 5 shows how the Pareto front approximation evolves
for the Maven system. It depicts the Pareto front approxi-
mation at each multiple of 20 runs (though iterations which
do not change the front are not shown). Since many iter-
ations evolve only part of the front, most iterations share
some points in common with previous iterations.

The first thing we observe is that the very first run of
the search system creates a front with 3 points in it: de-
pending on the fitness function, it is possible for a run of
the search system to generate multiple points on the front
approximation.

Our next observation relies on the fact that the visual-
ization captures not only the evolution of the Pareto front
approximation, but also only shows the first run to have
discovered any given point on the front (i.e. if both run M

and run N , where N > M , have point (x, y) then the graph
shows run M as being the source of that point). While the
front of the first run gives us little real indication of the front
achieved after 200 runs, we can see that by run 20 the Pareto
front has already evolved into a reasonable approximation
to the front achieved after 200 runs. Indeed, only runs 100
and 140 (and, to a lesser extent 60 and 180) make further
significant updates to the front approximation.

As Figure 5 shows, while longer runs of the search system
create better front approximations, one gets good results
after relatively few runs. For very large software systems,
where running the search system may be quite slow, this is
an important result as it allows developers to get reasonable
quality answers quickly. Furthermore since our search based
approach is an anytime algorithm, developers are free to ex-
ecute extra runs of the system if they feel they have not yet
achieved points of sufficient quality on the front approxima-
tion.

7. MULTIPLE FITNESS FUNCTIONS AND
PARETO OPTIMALITY

Pareto optimality allows us to determine whether one fit-
ness function is subsumed by another: broadly speaking, if
fitness function f produces data which, when merged with
the data produced from function f ′, contributes no points
to the Pareto front then we say that f is subsumed by f ′.
While theoretically one needs to test all possible inputs to
f to confirm this, one need only find one counter-example
to show non-subsumption.
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Figure 5: This shows the Pareto front approxima-
tion for Maven after each multiple of 20 runs (iter-
ations which do not evolve the front approximation
are not shown). When parts of a front approxima-
tion are shared with previous iterations, the first
iteration which discovered a point is indicated.

Earlier we noted that two of the more obvious ways to
combine the CBO and SDMPC metrics into a fitness func-
tion are CBO(C)∗SDMPC(C) and CBO(C)+SDMPC(C).
Thus far in this paper we have used the former of these two
fitness functions to guide our search based refactoring sys-
tem. Using the latter fitness function on any of the systems
under examination in this paper, we quickly find that it is
not subsumed by the former i.e. it produces distinct Pareto
optimal values.

Although it may not be immediately apparent, Pareto op-
timality confers a benefit potentially more useful than sim-
ply determining whether one fitness function is subsumed by
another. If two fitness functions generate different Pareto
optimal points, then we can naturally combine the different
points into a single front. As Figure 6 shows, for JHotDraw
the two different fitness functions give the user extra, and
indeed substantially different, Pareto optimal refactoring se-
quences to choose from.

As this shows, Pareto optimality has many benefits for
search based refactoring. It lessens the need for ‘perfect’
fitness functions; indeed, different fitness functions can in-
crease the diversity of Pareto optimal values presented to
the user.

7.1 Fitness values as tuple
The more diverse the points on the Pareto front, the more

choice the user of our search based refactoring system has.
In this section we show one example of a non-traditional
approach to a refactoring fitness function that can generate
significantly different points on the Pareto front.

First we treat the fitness function not as a combined value
of metrics, but as a tuple (CBO(C), SDMPC(C)) of the
two individual metrics. A fitness value (a, b) is considered
better than (x, y) iff (a < x∧b <= y)∨(b < y∧a <= x); in-
tuitively this says that a fitness value is better than another
provided it makes one metric better and the other metric no
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Figure 6: The Pareto front generated by 100 runs of
the two fitness functions CBO(C) ∗ SDMPC(C) and
CBO(C) + SDMPC(C) on JHotDraw. Notice that
both fitness functions contribute different point(s)
on the front.

worse. As Figure 7 clearly shows, this technique leads to sig-
nificantly different Pareto optimal points than the previous
two metrics. The purpose of this example is not necessarily
to show that this particular fitness function is useful, but
rather to show that non-traditional fitness functions may
yield useful Pareto optimal values.

8. FUTURE WORK
While we believe that this paper provides a solid founda-

tion for using the Pareto optimality concept in search based
refactoring, subsequent research could go in many different
directions. The most obvious future direction is to extend
our search based refactoring system to measure more com-
plex metrics and to investigate how different combinations of
metrics effect the results of the search, and we are currently
working to this end.

We also believe that evaluating different metrics and fit-
ness functions based on the notion of Pareto optimal value
subsumption could prove very important for practical uses
of search based refactoring. This will partly involve deter-
mining which metrics and fitness functions are subsumed
by others and, for those that are not subsumed, those that
provide the most diverse sets of Pareto optimal values.

We have performed some simple experiments which sug-
gest that treating refactoring fitness values as tuples may
prove more effective than the traditional coalesced fitness
values, since one can express more complex and realistic
constraints such as ‘accept a refactoring if it makes metric
M better but metric N no more than 1% worse than its
previous value’. Future research may allow small numbers
of metrics, when considered as part of a tuple, to provide
equally convincing real-world refactorings as a larger num-
ber of coallesced metrics.

9. CONCLUSIONS
In this paper we first defined the concept of ‘direct’ and

‘indirect’ approaches to search based refactoring and dis-



1035 1040 1045 1050 1055 1060

CBO

8.00

8.05

8.10

8.15

8.20

8.25

8.30

8.35

8.40

S
D

M
P

C

CBO * SDMPC
(CBO, SDMPC)
CBO + SDMPC

Figure 7: The Pareto front created by 100 runs each
of 3 different fitness functions on JHotDraw.

cussed how existing search based refactoring approaches rely
on complex fitness functions with weighted combinations of
metrics. We then presented a general-purpose search based
system running on several real-world open-source Java ap-
plications. By taking two simple metrics, we were able to
show how the concept of Pareto optimality can be usefully
applied to search based refactoring, and how it allows mul-
tiple fitness functions to present different Pareto optimal
values to the user.
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software maintenance. In Proc. Software Maintenance
and Reengineering, March 2006.

[16] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering,
27(10):929–948, Oct. 2001.

[17] C. Ryan. Automatic re-engineering of software using
genetic programming. Kluwer Academic Publishers,
2000.

[18] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In Proc. Genetic
and Evolutionary Computation, 2006.

[19] L. Tratt. Converge Reference Manual, September
2004.
http://www.convergepl.org/documentation/refmanual/

Accessed Jan 3 2006.

[20] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and
R. S. Roos. Time aware test suite prioritization. In
International Symposium on Software Testing and
Analysis (ISSTA 06), pages 1 – 12, Portland, Maine,
USA., 2006. ACM Press.

[21] K. P. Williams. Evolutionary Algorithms for
Automatic Parallelization. PhD thesis, University of
Reading, UK, Sept. 1998.


