205 research outputs found

    Inductor losses estimation in DC-DC converters by means of averaging technique

    Get PDF
    A suitable inductor modeling for power electronic DC-DC converters is presented in this paper. It is developed with the aim of improving inductor losses estimation achievable by averaged models, which inherently neglect inductor current ripple. In order to account for its contribution to the overall inductor losses, an appropriate parallel resistance is thus enclosed into the inductor model, whose value should be chosen in accordance with the DC-DC converter operating conditions. This allows the development of improved averaged models of DC-DC converters, especially in terms of power losses estimation. The effectiveness of the proposed modeling approach has been validated through a simulation study, which refers to the case of a boost DC-DC converter and is performed by means of a suitable circuit simulator designed for rapid modelling of switching power systems (SIMetrix/SIMPLIS)

    State-space average Modeling of DC-DC Converters with parasitic in Discontinuous Conduction Mode (DCM)

    Get PDF
    Discontinuous Conduction Mode occurs due to low load current operation of converters which employ current or voltage unidirectional switches.The switching ripples in inductor current or capacitor voltage causes the polarity to reverse of the applied switch current or voltage and thus a zero current mode is reached. Nowadays, converters are so designed,to operate in DCM for all loads due to its higher efficiency and lower losses.In this thesis, we have derived the Reduced Order & Full Order Averaged Models for the Buck and Boost configuration of converters. Also we calculated the output transfer function of boost converter which can be further utilized for designing of controller. Then, parasites effects have been taken into account for Boost Converter and accordingly, its various transfer functions (Control, Output Impedance, etc.) and various bode diagram have been plotted and compared with ideal cases

    Study and design of topologies and components for high power density DC-DC converters

    Get PDF
    Size reduction of low power electronic DC–DC converters is a topic of major interest for power electronics which requires the study and design of circuits and components working under redefined requirements. For this purpose, novel circuital topologies provide advantages in terms of power density increment, especially where a single chip design is feasible. These concepts have been applied to design and implement an integrated high step-down multiphase buck converter and to study the miniaturization of a stackable fiflyback architecture. Particular attention has been dedicated to power inductors, focusing on the modeling and measurement of magnetic materials’ hysteresis and core losses

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Methodology to Improve Switching Speed of SiC MOSFETs in Hard Switching Applications

    Get PDF
    To meet the higher efficiency and power density requirement for power converters, the switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes it possible to run converters at faster switching speed in hard switching applications. Nevertheless, the switching speed is not only dependent on the device’s characteristics, but also strongly related to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the impact factors limiting the switching speed are required to be understood. Specific solutions and methods need to be developed to mitigate the influence from these impact factors.The characterization of the switching speed for SiC MOSFETs with different current ratings is conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching speed are evaluated in detail.According to the evaluation, the switching speed of SiC discrete devices with low current rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge pump gate drive are proposed, which can provide higher current during the switching transient regardless of the low transconductance and large internal gate resistance of SiC discrete devices.For SiC power modules with high current rating, the switching speed is mainly determined by the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple modulation is developed to mitigate the effect of the non-linear device output capacitance, which helps reduce the overvoltage and enables higher switching speed operation of SiC power modules.Furthermore, the layout design methodology for three-level converters concerning the multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 3L-ANPC converter with SiC power modules is presented in detail.Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. The proposed control and busbar above are utilized to increase the switching speed of the SiC power module

    Investigation of a GaN-Based Power Supply Topology Utilizing Solid State Transformer for Low Power Applications

    Get PDF
    Gallium nitride (GaN) power devices exhibit a much lower gate capacitance for a similar on-resistance than its silicon counterparts, making it highly desirable for high-frequency operation in switching converters, which leads to their significant benefits on power density, cost, and system volume. High-density switching converters are being realized with GaN power devices due to their high switching speeds that reduce the size of energy-storage circuit components. The purpose of this dissertation research is to investigate a new isolated GaN AC/DC switching converter based on solid-state transformer configuration with a totem-pole power factor corrector (PFC) front-end, a half-bridge series-resonant converter (SRC) for power conversion, and a current-doubler rectifier (CDR) at its output. A new equivalent circuit model for the converter is constructed consisting of a loss-free resistor model for the PFC rectifier with first harmonic approximation model for the SRC and the CDR. Then, state-space analysis is performed to derive the converter transfer function in order to design the controllers to yield sufficient phase margins. The converter offers the advantages of voltage regulation feature of the solid-state transformer, low harmonics and close-to-unity power factor of the PFC rectifier, soft-switching of the half-bridge SRC, reduced size of the high-frequency transformer, and smaller leakage inductance of the CDR which is used for low-voltage high-current applications as the CDR draws half of the load current in the transformer secondary side yielding less copper losses. A high-frequency nanocrystalline toroid transformer, based on a modified equation to determine its leakage inductance, is designed and fabricated to satisfy the performance specifications of the converter. A meticulously planned gate driving strategy together with a Kelvin-source return circuitry is used to mitigate Miller effects, minimize gate ringing, and minimize the parasitics of the pull-down and pull-up loops of the converter. A new programming method that combines MATLAB Simulink embedded coder with code composer studio for the TMS320F28335 digital signal processor (DSP) controller is developed and demonstrated. Finally, the GaN-based AC/DC converter is experimentally verified for a 120Vac to 48Vdc/60Vdc conversion operating at 100 kHz for various loadings

    Two new families of high-gain DC-DC power electronic converters for DC-microgrids

    Get PDF
    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models. --Abstract, page iv

    Sliding mode control of reaction flywheel-based brushless DC motor with buck converter

    Get PDF
    AbstractReaction flywheel is a significant actuator for satellites’ attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC–DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities

    High Power, Medium Frequency, and Medium Voltage Transformer Design and Implementation

    Get PDF
    Many industrial applications that require high-power and high-voltage DC-DC conversion are emerging. Space-borne and off-shore wind farms, fleet fast electric vehicle charging stations, large data centers, and smart distribution systems are among the applications. Solid State Transformer (SST) is a promising concept for addressing these emerging applications. It replaces the traditional Low Frequency Transformer (LFT) while offering many advanced features such as VAR compensation, voltage regulation, fault isolation, and DC connectivity. Many technical challenges related to high voltage stress, efficiency, reliability, protection, and insulation must be addressed before the technology is ready for commercial deployment. Among the major challenges in the construction of SSTs are the strategies for connecting to Medium Voltage (MV) level. This issue has primarily been addressed by synthesizing multicellular SST concepts based on modules rated for a fraction of the total MV side voltage and connecting these modules in series at the input side. Silicon Carbide (SiC) semiconductor development enables the fabrication of power semiconductor devices with high blocking voltage capabilities while achieving superior switching and conduction performances. When compared to modular lower voltage converters, these higher voltage semiconductors enable the construction of single-cell SSTs by avoiding the series connection of several modules, resulting in simple, reliable, lighter mass, more power dense, higher efficiency, and cost effective converter structures. This dissertation proposes a solution to this major issue. The proposed work focuses on the development of a dual active bridge with high power, medium voltage, and medium frequency control. This architecture addresses the shortcomings of existing modular systems by providing a more power dense, cost-effective, and efficient solution. For the first time, this topology is investigated on a 700kW system connected to a 13kVdc input to generate 7.2kVdc at the output. The use of 10kV SiC modules and gate drivers in an active neutral point clamped to two level dual active bridge converter is investigated. A special emphasis will be placed on a comprehensive transformer design that employs a multi-physics approach that addresses all magnetic, electrical, insulation, and thermal aspects. The transformer is designed and tested to ensure the system’s viability

    Demonstration of High Power Density kW Converters utilizing Wide-Band Gap Devices

    Get PDF
    corecore