20 research outputs found

    Blending using ODE swept surfaces with shape control and C1 continuity

    Get PDF
    Surface blending with tangential continuity is most widely applied in computer aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: 1). exact satisfaction of 1C continuous blending boundary constraints, 2). effective shape control of blending surfaces, 3). high computing efficiency due to explicit mathematical representation of blending surfaces, and 4). ability to blend multiple (more than two) primary surfaces

    Efficient ordinary differential equation-based modelling and skin deformations for character animation.

    Get PDF
    In the area of character animation, skin surface modelling, rigging and skin deforamtion are three essential aspects. Due to the different complexity of the characters, the time cost on creating corresponding skin surface model, animation skeleton in order to achieve diverse skin de- formations, fluctuates from several hours to several weeks. More importantly, the data size of skin deformations could sharply influence the efficiency of generating animation. Smaller data size can also speed up character animation and transmission over computer networks. Over years, researchers have developed a variety of skin deformation techniques. Geometric skin deformation approaches have high efficiency but low realism. Example-based skin deformation approaches interpolate a set of given example poses to improve realism and effects that cannot be easily produced by geometric approaches. Physics-based skin deformation methods can greatly improve the realism of character animation, but require non-trivial training, intensive manual intervention, and heavy numerical calculations. Due to these limitations, many recent activities have initiated the research of integrating geometric, example-based, and physics-based skin deformation approaches. The current research is to develop techniques based on Ordinary Differentical Equations (ODE) to efficiently create C2 continuous skin surfaces through two boundary curves, automatically generate skeleton to make the rigging process fast enough for highly efficient computer animation applications, and achieve physically realistic skin deformations for character animation by integrating geometric, physical and data-driven methods. Meanwhile, it is the first attempt to obtain an analytical solution to realistic physics-based skin deformations for highly efficient computation, to avoid the solving of a large set of linear equations, which largely reduces data size and computing time. The basic idea is to build ODE mechanics model, involve isoparametric curves and Fourier Series representation, develop accurate and efficient solutions to calculate physical skin deformations through interpolating input realistic reconstructed 3D models. The proposed techniques will greatly avoid tedious manual work, reduce data size, improve skin deformation realism, and raise efficiency of producing character animation

    A tree grammar-based visual password scheme

    Get PDF
    A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, August 31, 2015.Visual password schemes can be considered as an alternative to alphanumeric passwords. Studies have shown that alphanumeric passwords can, amongst others, be eavesdropped, shoulder surfed, or guessed, and are susceptible to brute force automated attacks. Visual password schemes use images, in place of alphanumeric characters, for authentication. For example, users of visual password schemes either select images (Cognometric) or points on an image (Locimetric) or attempt to redraw their password image (Drawmetric), in order to gain authentication. Visual passwords are limited by the so-called password space, i.e., by the size of the alphabet from which users can draw to create a password and by susceptibility to stealing of passimages by someone looking over your shoulders, referred to as shoulder surfing in the literature. The use of automatically generated highly similar abstract images defeats shoulder surfing and means that an almost unlimited pool of images is available for use in a visual password scheme, thus also overcoming the issue of limited potential password space. This research investigated visual password schemes. In particular, this study looked at the possibility of using tree picture grammars to generate abstract graphics for use in a visual password scheme. In this work, we also took a look at how humans determine similarity of abstract computer generated images, referred to as perceptual similarity in the literature. We drew on the psychological idea of similarity and matched that as closely as possible with a mathematical measure of image similarity, using Content Based Image Retrieval (CBIR) and tree edit distance measures. To this end, an online similarity survey was conducted with respondents ordering answer images in order of similarity to question images, involving 661 respondents and 50 images. The survey images were also compared with eight, state of the art, computer based similarity measures to determine how closely they model perceptual similarity. Since all the images were generated with tree grammars, the most popular measure of tree similarity, the tree edit distance, was also used to compare the images. Eight different types of tree edit distance measures were used in order to cover the broad range of tree edit distance and tree edit distance approximation methods. All the computer based similarity methods were then correlated with the online similarity survey results, to determine which ones more closely model perceptual similarity. The results were then analysed in the light of some modern psychological theories of perceptual similarity. This work represents a novel approach to the Passfaces type of visual password schemes using dynamically generated pass-images and their highly similar distractors, instead of static pictures stored in an online database. The results of the online survey were then accurately modelled using the most suitable tree edit distance measure, in order to automate the determination of similarity of our generated distractor images. The information gathered from our various experiments was then used in the design of a prototype visual password scheme. The generated images were similar, but not identical, in order to defeat shoulder surfing. This approach overcomes the following problems with this category of visual password schemes: shoulder surfing, bias in image selection, selection of easy to guess pictures and infrastructural limitations like large picture databases, network speed and database security issues. The resulting prototype developed is highly secure, resilient to shoulder surfing and easy for humans to use, and overcomes the aforementioned limitations in this category of visual password schemes

    Edge detection using neural network arbitration

    Get PDF
    A human observer is able to recognise and describe most parts of an object by its contour, if this is properly traced and reflects the shape of the object itself. With a machine vision system this recognition task has been approached using a similar technique. This prompted the development of many diverse edge detection algorithms. The work described in this thesis is based on the visual observation that edge maps produced by different algorithms, as the image degrades. Display different properties of the original image. Our proposed objective is to try and improve the edge map through the arbitration between edge maps produced by diverse (in nature, approach and performance) edge detection algorithms. As image processing tools are repetitively applied to similar images we believe the objective can be achieved by a learning process based on sample images. It is shown that such an approach is feasible, using an artificial neural network to perform the arbitration. This is taught from sets extracted from sample images. The arbitration system is implemented upon a parallel processing platform. The performance of the system is presented through examples of diverse types of image. Comparisons with a neural network edge detector (also developed within this thesis) and conventional edge detectors show that the proposed system presents significant advantages

    Edge detection using neural network arbitration

    Get PDF
    A human observer is able to recognise and describe most parts of an object by its contour, if this is properly traced and reflects the shape of the object itself. With a machine vision system this recognition task has been approached using a similar technique. This prompted the development of many diverse edge detection algorithms. The work described in this thesis is based on the visual observation that edge maps produced by different algorithms, as the image degrades. Display different properties of the original image. Our proposed objective is to try and improve the edge map through the arbitration between edge maps produced by diverse (in nature, approach and performance) edge detection algorithms. As image processing tools are repetitively applied to similar images we believe the objective can be achieved by a learning process based on sample images. It is shown that such an approach is feasible, using an artificial neural network to perform the arbitration. This is taught from sets extracted from sample images. The arbitration system is implemented upon a parallel processing platform. The performance of the system is presented through examples of diverse types of image. Comparisons with a neural network edge detector (also developed within this thesis) and conventional edge detectors show that the proposed system presents significant advantages

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Essentials of Business Analytics

    Get PDF

    Data systems elements technology assessment and system specifications, issue no. 2

    Get PDF
    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development
    corecore