338 research outputs found

    Biorobotics: Using robots to emulate and investigate agile animal locomotion

    Get PDF
    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 6, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory, edited by Gregory Long and Alok Gupta

    Autonomous navigation of a wheeled mobile robot in farm settings

    Get PDF
    This research is mainly about autonomously navigation of an agricultural wheeled mobile robot in an unstructured outdoor setting. This project has four distinct phases defined as: (i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) Navigation and control of a wheeled mobile robot in following a given path (path following problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity distance with the given paths or plant rows (proximity-following). (iv) Navigation of the mobile robot in rut following in farm fields. A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow. To develop reliable navigation approaches to fulfill each part of this project, three main steps are accomplished: literature review, modeling and computer simulation of wheeled mobile robots, and actual experimental tests in outdoor settings. First, point-to-point motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is proposed for real-time autonomous path planning of the robot in unstructured environment. Simulation and experimental evaluations shows that FLB approach is able to cope with different dynamic and unforeseen situations by tuning a safety margin. Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy (PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward the goal in almost all of the test cases examined. Then, a novel human-inspired method (HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a specified goal point. A human-like reasoning ability about the situations to reach a predefined goal point while avoiding any static, moving and unforeseen obstacles are given to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more efficient and effective than FLB. Afterward, navigation strategies are built up for path following, rut following, and proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-road terrains. The proposed system is composed of different modules which are: sensor data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The capabilities of the proposed navigation strategies are evaluated in variety of field experiments; the results show that the proposed approach is able to detect and follow rows of bushes robustly. This action is used for spraying plant rows in farm field. Finally, obstacle detection and obstacle avoidance modules are developed in navigation system. These modules enables the robot to detect holes or ground depressions (negative obstacles), that are inherent parts of farm settings, and also over ground level obstacles (positive obstacles) in real-time at a safe distance from the robot. Experimental tests are carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for obstacle detection. The experiments demonstrate the capability of the proposed technique in successfully detecting and avoiding different types of obstacles both positive and negative in variety of scenarios

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    Fast, Optimal, and Safe Motion Planning for Bipedal Robots

    Full text link
    Bipedal robots have the potential to traverse a wide range of unstructured environments, which are otherwise inaccessible to wheeled vehicles. Though roboticists have successfully constructed controllers for bipedal robots to walk over uneven terrain such as snow, sand, or even stairs, it has remained challenging to synthesize such controllers in an online fashion while guaranteeing their satisfactory performance. This is primarily due to the lack of numerical method that can accommodate the non-smooth dynamics, high degrees of freedom, and underactuation that characterize bipedal robots. This dissertation proposes and implements a family of numerical methods that begin to address these three challenges along three dimensions: optimality, safety, and computational speed. First, this dissertation develops a convex relaxation-based approach to solve optimal control for hybrid systems without a priori knowledge of the optimal sequence of transition. This is accomplished by formulating the problem in the space of relaxed controls, which gives rise to a linear program whose solution is proven to compute the globally optimal controller. This conceptual program is solved using a sequence of semidefinite programs whose solutions are proven to converge from below to the true optimal solution of the original optimal control problem. Moreover, a method to synthesize the optimal controller is developed. Using an array of examples, the performance of this method is validated on problems with known solutions and also compared to a commercial solver. Second, this dissertation constructs a method to generate safety-preserving controllers for a planar bipedal robot walking on flat ground by performing reachability analysis on simplified models under the assumption that the difference between the two models can be bounded. Subsequently, this dissertation describes how this reachable set can be incorporated into a Model Predictive Control framework to select controllers that result in safe walking on the biped in an online fashion. This method is validated on a 5-link planar model. Third, this dissertation proposes a novel parallel algorithm capable of finding guaranteed optimal solutions to polynomial optimization problems up to pre-specified tolerances. Formal proofs of bounds on the time and memory usage of such method are also given. Such algorithm is implemented in parallel on GPUs and compared against state-of-the-art solvers on a group of benchmark examples. An application of such method on a real-time trajectory-planning task of a mobile robot is also demonstrated. Fourth, this dissertation constructs an online Model Predictive Control framework that guarantees safety of a 3D bipedal robot walking in a forest of randomly-placed obstacles. Using numerical integration and interval arithmetic techniques, approximations to trajectories of the robot are constructed along with guaranteed bounds on the approximation error. Safety constraints are derived using these error bounds and incorporated in a Model Predictive Control framework whose feasible solutions keep the robot from falling over and from running into obstacles. To ensure that the bipedal robot is able to avoid falling for all time, a finite-time terminal constraint is added to the Model Predictive Control algorithm. The performance of this method is implemented and compared against a naive Model Predictive Control method on a biped model with 20 degrees of freedom. In summary, this dissertation presents four methods for control synthesis of bipedal robots with improvements in either optimality, safety guarantee, or computational speed. Furthermore, the performance of all proposed methods are compared with existing methods in the field.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162880/1/pczhao_1.pd

    The Twist Representation of Shape

    Get PDF
    We give a contribution to the representation problem of free-form curves and surfaces. Our proposal is an operational or kinematic approach based on the Lie group SE(3). While in Euclidean space the modelling of shape as orbit of a point under the action of SE(3) is limited, we are embedding our problem into the conformal geometric algebra R_4,1 of the Euclidean space R^3. This embedding results in a number of advantages which makes the proposed method a universal and flexible one with respect to applications. Especially advantagous is the equivalence of the proposed shape model to that of the Fourier representations

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC

    Perception and localization techniques for navigation in agricultural environment and experimental results

    Get PDF
    Notoriously, the agricultural work environment is very hard, where the operator manually carry out any job, often in extreme weather conditions or anyway heat, cold and rain, or simply where the working hours last from dawn to sunset. Recently, the application of automation in agriculture is leading to the development of increasingly autonomous robots, able to take care of different tasks and avoid obstacles, to collaborate and interact with human operators and collect data from the surrounding environment. The latter can then be shared with the user, informing him about the soil moisture rather than the critical health conditions of a single plant. Thus borns the concept of precision agriculture, in which the robot performs its tasks according to the environment conditions it detects, distributing fertilizers or water only where necessary and optimizing treatments and its energy resources. The proposed thesis project consists in the development of a tractor prototype able to automatically act in agricultural semi-structured environment, like orchards organized in rows, and navigating autonomously by means of a laser scanner. In particular, the work is divided into three steps. The first consists in design and construction of a tracked robot, which has been completely realized in the laboratory, from mechanical, electric and electronic subsystems up to the software structure. The second is the development of a navigation and control system, which makes a generic robot able to move autonomously in the orchard using a laser scanner as main sensor. To achieve this goal, a localization algorithm based on rows estimation has been developed. Moreover, a control law has been designed, which regulates the kinematics of the robot. Once the navigation algorithm has been defined, it is necessary to validate it. Indeed, third point consists of experimental tests, with the aim of testing both robot and developed navigation algorithm
    • …
    corecore