1,363 research outputs found

    Parameterized Algorithms for Load Coloring Problem

    Full text link
    One way to state the Load Coloring Problem (LCP) is as follows. Let G=(V,E)G=(V,E) be graph and let f:V→{red,blue}f:V\rightarrow \{{\rm red}, {\rm blue}\} be a 2-coloring. An edge e∈Ee\in E is called red (blue) if both end-vertices of ee are red (blue). For a 2-coloring ff, let rfâ€Čr'_f and bfâ€Čb'_f be the number of red and blue edges and let ÎŒf(G)=min⁥{rfâ€Č,bfâ€Č}\mu_f(G)=\min\{r'_f,b'_f\}. Let ÎŒ(G)\mu(G) be the maximum of ÎŒf(G)\mu_f(G) over all 2-colorings. We introduce the parameterized problem kk-LCP of deciding whether ÎŒ(G)≄k\mu(G)\ge k, where kk is the parameter. We prove that this problem admits a kernel with at most 7k7k. Ahuja et al. (2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We generalize this by showing that an optimal 2-coloring on graphs with tree decomposition of width tt can be found in time O∗(2t)O^*(2^t). We also show that either GG is a Yes-instance of kk-LCP or the treewidth of GG is at most 2k2k. Thus, kk-LCP can be solved in time $O^*(4^k).

    Parameterized and Approximation Algorithms for the Load Coloring Problem

    Get PDF
    Let c,kc, k be two positive integers and let G=(V,E)G=(V,E) be a graph. The (c,k)(c,k)-Load Coloring Problem (denoted (c,k)(c,k)-LCP) asks whether there is a cc-coloring φ:V→[c]\varphi: V \rightarrow [c] such that for every i∈[c]i \in [c], there are at least kk edges with both endvertices colored ii. Gutin and Jones (IPL 2014) studied this problem with c=2c=2. They showed (2,k)(2,k)-LCP to be fixed parameter tractable (FPT) with parameter kk by obtaining a kernel with at most 7k7k vertices. In this paper, we extend the study to any fixed cc by giving both a linear-vertex and a linear-edge kernel. In the particular case of c=2c=2, we obtain a kernel with less than 4k4k vertices and less than 8k8k edges. These results imply that for any fixed c≄2c\ge 2, (c,k)(c,k)-LCP is FPT and that the optimization version of (c,k)(c,k)-LCP (where kk is to be maximized) has an approximation algorithm with a constant ratio for any fixed c≄2c\ge 2

    Expanding the expressive power of Monadic Second-Order logic on restricted graph classes

    Full text link
    We combine integer linear programming and recent advances in Monadic Second-Order model checking to obtain two new algorithmic meta-theorems for graphs of bounded vertex-cover. The first shows that cardMSO1, an extension of the well-known Monadic Second-Order logic by the addition of cardinality constraints, can be solved in FPT time parameterized by vertex cover. The second meta-theorem shows that the MSO partitioning problems introduced by Rao can also be solved in FPT time with the same parameter. The significance of our contribution stems from the fact that these formalisms can describe problems which are W[1]-hard and even NP-hard on graphs of bounded tree-width. Additionally, our algorithms have only an elementary dependence on the parameter and formula. We also show that both results are easily extended from vertex cover to neighborhood diversity.Comment: Accepted for IWOCA 201

    Balanced Judicious Bipartition is Fixed-Parameter Tractable

    Get PDF
    The family of judicious partitioning problems, introduced by Bollob\u27as and Scott to the field of extremal combinatorics, has been extensively studied from a structural point of view for over two decades. This rich realm of problems aims to counterbalance the objectives of classical partitioning problems such as Min Cut, Min Bisection and Max Cut. While these classical problems focus solely on the minimization/maximization of the number of edges crossing the cut, judicious (bi)partitioning problems ask the natural question of the minimization/maximization of the number of edges lying in the (two) sides of the cut. In particular, Judicious Bipartition (JB) seeks a bipartition that is "judicious" in the sense that neither side is burdened by too many edges, and Balanced JB also requires that the sizes of the sides themselves are "balanced" in the sense that neither of them is too large. Both of these problems were defined in the work by Bollob\u27as and Scott, and have received notable scientific attention since then. In this paper, we shed light on the study of judicious partitioning problems from the viewpoint of algorithm design. Specifically, we prove that BJB is FPT (which also proves that JB is FPT)

    The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs

    Get PDF
    AbstractIn this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bounded pathwidth. Each of these problems has as a characteristic a uniform upper bound on the tree or path width of the graphs in “yes”-instances. For all of these problems with the exceptions of Feasible Register Assignment and Module Allocation, a vertex or edge coloring is given as part of the input. Our main results are that the parameterized variant of each of the considered problems is hard for the complexity classes W[t] for all t∈N. We also show that Intervalizing Colored Graphs, Triangulating Colored Graphs, and Colored Cutwidth are NP-Complete

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n1−1/(d−1))2^{O(n^{1-1/(d-1)})} time for any fixed d≄3d\geq 3, while the same problems need 2O(n1−1/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(log⁥n)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(log⁥n)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂŒbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂ©, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn
    • 

    corecore