
Theoretical Computer Science 244 (2000) 167–188
www.elsevier.com/locate/tcs

The hardness of perfect phylogeny, feasible register
assignment and other problems on thin colored graphs(

Hans L. Bodlaender a;∗;1, Michael R. Fellows b;2, Michael T. Hallett c;3,
H. Todd Wareham d;3, Tandy J. Warnow e;4

a Utrecht University, Department of Computer Science, P.O. Box 80.089, 3508 TB Utrecht,
The Netherlands

bUniversity of Victoria, Department of Computer Science, P.O. Box 3055, Victoria, B.C.,
Canada, V8W 3P6

cDepartment of Computer Science, ETH Zurich, Switzerland
d Department of Computer Science, McMaster University, Hamilton, ON Canada, L8S 4L7

eUniversity of Pennsylvania, Moore School of Electrical Engineering D2, Department of Computer &
Information Science, 200 South 33rd Street, Philadelphia, PA 19104-6389, USA

Received September 1996; received in revised form June 1998
Communicated by A. Apostolico

Abstract

In this paper, we consider the complexity of a number of combinatorial problems; namely,
INTERVALIZING COLORED GRAPHS (DNA PHYSICAL MAPPING), TRIANGULATING COLORED GRAPHS
(PERFECT PHYLOGENY), (DIRECTED) (MODIFIED) COLORED CUTWIDTH, FEASIBLE REGISTER
ASSIGNMENT and MODULE ALLOCATION FOR GRAPHS OF BOUNDED PATHWIDTH. Each of these prob-
lems has as a characteristic a uniform upper bound on the tree or path width of the graphs in
“yes”-instances. For all of these problems with the exceptions of FEASIBLE REGISTER ASSIGNMENT
and MODULE ALLOCATION, a vertex or edge coloring is given as part of the input. Our main
results are that the parameterized variant of each of the considered problems is hard for the
complexity classes W [t] for all t ∈ N. We also show that INTERVALIZING COLORED GRAPHS,

(Some of the results contained in this paper were �rst reported in H.L. Bodlaender, M.R. Fellows, M.T.
Hallett, Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy, in: Proc.
26th Annu. ACM Symp. on the Theory of Computing, 1994, pp. 449–458; H.L. Bodlaender, M.R. Fellows,
T.J. Warnow, Two strikes against perfect phylogeny, in: Proc. 19th Internat. Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science, vol. 623, Springer, Berlin, 1992, pp.
373–383; M.R. Fellows, M.T. Hallett, H.T. Wareham, DNA physical mapping: 3 ways di�cult, in: Tom
Lengauer (Ed.), Proc. 1st Annu. European Symp. on Algorithms (ESA’93), Lecture Notes in Computer
Science, vol. 726, Springer, Berlin, pp. 157–168.

∗ Corresponding author.
E-mail address: hansb@cs.uu.nl (H.L. Bodlaender).
1 Supported by the ESPRIT Basic Research Actions of the EC under contract 7141 (project ALCOM II).
2 Supported by the National Science and Engineering Research Council of Canada.
3 This research was done while these authors were at the University of Victoria, Canada.
4 Supported in part by a NYI award from the National Science Foundation, CCR-9457800.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00342 -9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82353811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

TRIANGULATING COLORED GRAPHS, and COLORED CUTWIDTH are NP-Complete. c© 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Fixed parameter intractability; Triangulation of colored graphs; Graph problems;
Complexity

1. Introduction

This paper focuses on a number of graph decision problems which share the charac-
teristic that all have a uniform upper bound on their path or tree width in the following
sense. Each of these problems takes as input a graph G (it may be colored or directed)
and a positive integer k and asks a particular question regarding G. If, in fact, the an-
swer is “yes” for this instance, then one can prove that there exists an upper bound
b(k) on the path or tree width of the graph.
This bound opens up the following possibility: using the algorithm of Bodlaender [7]

we can �nd a decomposition of width b(k) for G or determine that no such decom-
position exists. In either case, the running time for this procedure is linear in the size
of G but exponential only in k. By means of one of several general algorithmic de-
sign methodologies (see [1, 5, 6, 15, 19, 51]) we may then answer the original question
in time linear in the size of G. Hence, for small values of k, this procedure may
lead to algorithms that are practical even for very large instances. Examples where
these methods have been successful include TREEWIDTH, PATHWIDTH, MIN CUT LINEAR
ARRANGEMENT, FEEDBACK VERTEX SET, FEEDBACK ARC SET and SEARCH NUMBER.
Unfortunately, we show several parameterized variants of the problems INTERVALIZING

COLORED GRAPHS, TRIANGULATING COLORED GRAPHS, (MODIFIED) (DIRECTED) COLORED
CUTWIDTH, FEASIBLE REGISTER ASSIGNMENT, and MODULE ALLOCATION ON GRAPHS OF

BOUNDED PATHWIDTH hard for W [t] for all t ∈N. This excludes the possibly of applying
these techniques and, in fact, goes further to exclude the possibility of an O(|G|�)
algorithm (where � is independent of both the size of G and k) under the assumption
(very similar to the more familiar P 6=NP hypothesis) that the tth level, for any t, of
the parameterized hierarchy does not collapse to the lowest level.
The reductions that we describe also demonstrate that the problems INTERVALIZING

COLORED GRAPHS, TRIANGULATING COLORED GRAPHS and COLORED CUTWIDTH (WITH ONE

COLOR) are NP-Complete.
The plan of the paper is as follows. In Section 2, we introduce basic notions from

Parameterized Complexity theory. In Section 3, de�nitions and some basic properties
of the problems considered in this paper are given. Section 4, shows �xed parameter
intractability for these problems and NP-completeness proofs are given for unparam-
eterized variants where appropriate. Section 5 provides a short discussion of open
problems.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 169

Fig. 1. The order of the parameterized reductions in this paper.

2. Parameterized computational complexity

2.1. Parameterized problems, �xed-parameter tractability and reductions

A parameterized problem is a set L⊆�∗ ×�∗ where � is a �xed alphabet. For con-
venience, we consider that a parameterized problem L is a subset of �∗ ×N . For a pa-
rameterized problem L and k ∈N we write Lk to denote the associated �xed-parameter
problem Lk = {x | (x; k)∈L}. We say that a parameterized problem L is (uniformly)
�xed-parameter tractable if there is a constant � and an algorithm � such that �
decides if (x; k)∈L in time f(k)|x|� where f :N→N is an arbitrary function. Let
A; B be parameterized problems. We say that A is (uniformly many: 1) reducible to
B if there is an algorithm � which transforms (x; k) into (x′; g(k)) in time f(k)|x|�,
where f; g :N→N are arbitrary functions and � is a constant independent of k, so
that (x; k)∈A if and only if (x′; g(k))∈B. Fig. 1 shows the order of the parameterized
reductions in this paper.

2.2. Complexity classes

A Boolean circuit is of mixed type if it consists of circuits having gates of the two
kinds:
1. Small gates: not gates, and gates and or gates with bounded fan-in.
2. Large gates: and gates and or gates with unrestricted fan-in.
The depth of a circuit C is de�ned to be the maximum number of gates (small or

large) on an input–output path in C. The weft of a circuit C is the maximum number of
large gates on an input–output path in C. A family of decision circuits F has bounded
depth if there is a constant h such that every circuit in the family F has depth at most
h, and F has bounded weft if there is constant t such that every circuit in the family
F has weft at most t. The weight of a boolean vector x is the number of 1’s in the
vector.

De�nition 1. Let F be a family of decision circuits (possibly having many di�erent
circuits with a given number of inputs). We associate with F the parameterized problem
LF = {(C; k): C accepts an input vector of weight k}. A parameterized problem L
belongs to W [t] if L reduces to the parameterized circuit problem LF(t; h) for the family
F(t; h) of mixed type decision circuits of weft at most t, and depth at most h, for some

170 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

constant h. A parameterized problem L belongs to W [P] if L reduces to the circuit
problem LF , where F is the set of all circuits (no restrictions). We designate the class
of �xed-parameter tractable problems FPT .

These de�nitions give us the hierarchy of parameterized complexity classes

FPT ⊆W [1]⊆W [2]⊆ · · ·W [t] · · · ⊆W [P]

for which there are many natural hard or complete problems [23–25, 35]. For example,
all of the following problems are now known to be complete for W [1]: SQUARE TILING,
INDEPENDENT SET, CLIQUE, and BOUNDED POST CORRESPONDENCE PROBLEM, k-STEP DERIVATION
FOR CONTEXT-SENSITIVE GRAMMARS, VAPNIK-CHERVONENKIS DIMENSION, and the k-STEP HALT-
ING PROBLEM FOR NONDETERMINISTIC TURING MACHINES [17, 21, 26]. Thus, any one of these
problems is �xed-parameter tractable if and only if all of the others are. DOMINATING SET,
WEIGHTED {0; 1} INTEGER PROGRAMMING, and TOURNAMENT DOMINATING SET are shown
complete for W [2] in [22].
In this paper, we will use as a starting point for our reductions the following

problem:

LONGEST COMMON SUBSEQUENCE (LCS-1)
Instance: Alphabet �, strings s1; : : : ; sK ∈�∗, integer M ∈N.
Parameter: K .
Question: Does there exist a string in �∗ of length at least M , that is a subsequence

of each string s1; : : : ; sK?

Theorem 1 (Bodlaender et al. [8, 10]). For all t ∈N; LCS-1 is hard for W [t].

Other problems hard (or complete) for W [t] for all t include WEIGHTED t-NORMALIZED
SATISFIABILITY, BANDWIDTH, DOMINO TREEWIDTH, and UNIFORM EMULATION ON A PATH
(see [35]). If any one of these problems is FPT , then all problems in W [t] for any t
are also FPT. We will describe all problems in this paper in the same format as above.
We will not describe the unparameterized variants as these can be obtained by simply
ignoring the parameter �eld of the description.

3. Problem de�nitions

Common to all of the problems we consider, a uniform upper bound exists for
the width of the graphs. For INTERVALIZING COLORED GRAPHS, TRIANGULATING COLORED
GRAPHS, FEASIBLE REGISTER ASSIGNMENT and COLORED CUTWIDTH this upper bound holds
only in “yes” instances. We state the appropriate de�nitions relating to treewidth and
pathwidth below and provide several lemmas which will be used in our hardness proofs.
The following subsections provide a brief overview, relevant references and, where
appropriate, the said upper bound on the width of the graphs in “yes” instances.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 171

De�nition 2. A tree-decomposition of a graph G=(V; E) is a pair ({Xi | i∈ I};
T =(I; F)) with {Xi | i∈ I} a collection of subsets of V , and T =(I; F) a tree, such
that
• ⋃

i∈I Xi=V .
• For all (v; w)∈E, there exists an i∈ I with v; w∈Xi.
• For all v∈V; {i∈ I | v∈Xi} forms a connected subtree of T .
The width of a tree-decomposition ({Xi | i∈ I}; T =(I; F)) is maxi∈I |Xi| − 1. The
treewidth of a graph is the minimum width over all possible tree-decompositions of
that graph.

De�nition 3. A tree-decomposition ({Xi | i∈ I}; T =(I; F)) is a path-decomposition, if
T is a path. The pathwidth of a graph is the minimum width over all possible path-
decompositions of that graph.

Path-decompositions are also often denoted by the sequence of the successive subsets
Xi: (X1; X2; : : : ; Xr). The following well known result can easily be proved.

Lemma 2. Let ({Xi | i∈ I}; T =(I; F)) be a tree-decomposition of G=(V; E). Let
v0; v1; : : : ; vr be a path in G. Suppose v0 ∈Xi; vr ∈Xj; and suppose that k is on the
path between i and j in T . Then {v0; : : : ; vr}∩Xk 6= ∅.

Lemma 3 (Bodlaender and Mohring [13]). Let ({Xi | i∈ I}; T =(I; F)) be a tree-
decomposition of G=(V; E). Let W1; W2⊆V; such that for all v∈W1; w∈W2;
(v; w)∈E. Either for all v∈W1; there exists an i∈ I with {v}∪W2⊆Xi; or for all
v∈W2; there exists an i∈ I with {v}∪W1⊆Xi.

3.1. Intervalizing colored graphs (or DNA physical mapping)

A graph G=(V; E) with a coloring c :V →C is properly colored, if there is no edge
between vertices with the same color. An undirected graph G=(V; E) is an interval
graph, if one can associate with each vertex v∈V , an interval [Lv; Rv]⊂R, such that
for all v; w∈V; v 6=w: (v; w)∈E⇔ [Lv; Rv]∩ [Lw; Rw] 6= ∅.
The following problem introduced in [28] models in a straightforward but limited

way the determination of contig assemblies in DNA physical mapping.

INTERVALIZING COLORED GRAPHS (ICG)
Instance: A graph G=(V; E) and a coloring c :V →C.
Parameter: |C | = k.
Question: Does there exist a supergraph G′=(V; E′) of G which is properly colored

by c and which is an interval graph?

In practice, the size of the coloring (the number of distinct colors) is usually a
small �xed constant which is independent of the size of the graph. For instance, in the
sequencing of the yeast genome, a typical working parameter value of k =8 is reported
in [18]. Hence, the complexity of ICG when parameterized by k is of importance. More
on intervalizing graphs and its application to physical mapping can be found in [32, 41].

172 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

A related problem, where G′ is requested to be a proper interval graph was shown to
be W [1]-hard by Kaplan and Shamir [40].

Lemma 4. Let G=(V; E) be a graph with a vertex coloring c :V →{1; 2; : : : ; k}; that
is a subgraph of a properly colored interval graph G′. Then the pathwidth of G is
at most k − 1.

Proof. It is easy to see that the pathwidth of an interval graph is one less than its
maximum clique size, which equals its chromatic number (since interval graphs are
perfect, see [31]). Hence the pathwidth of G′ is at most k − 1 implying the pathwidth
of G is at most k − 1.

3.2. Triangulating colored graphs (or perfect phylogeny)

A phylogeny for the set S of species, is a rooted tree in which the leaves represent
the species in S and the internal nodes of the tree represent the ancestral species.
One of the standard models uses characters to describe species. Here, a character

is an equivalence relation on the species set, partitioning the set into the di�erent
character states (see [27, 42] for a more complete treatment of this subject).
The Character Compatibility problem (also known as the Perfect Phylogeny

problem [34]) was shown to be polynomially equivalent to the following problem
in [16, 38]:

TRIANGULATING COLORED GRAPHS (TCG)
Instance: Graph G=(V; E), coloring c :V →C.
Parameter: |C|= k.
Question: Does there exist a supergraph G′=(V; E′) of G which is properly colored

by c and which is triangulated?

(A graph is said to be triangulated (or chordal) if it does not contain an induced
cycle of length at least four.)
The number of colors, k, of TCG corresponds to the number of characters in the

Perfect Phylogeny problem. Since perfect phylogenies rarely occur in practice, it is
often of more interest to �nd the maximally-true phylogenies produced by the Perfect
Phylogeny problem. However, this problem is NP-complete even for binary
characters [20]. One approach to approximating such phylogenies is to look for per-
fect phylogenies on small subsets of characters. Hence, the complexity of the perfect
phylogeny problem for �xed k is still of some importance to computational biologists.
See [2, 3, 12, 34, 36, 37, 39, 43, 44, 47, 50] for previous NP-completeness and �xed

parameter algorithm results.

Lemma 5. Let G=(V; E) be a triangulated graph with a proper vertex coloring
c :V →C. Then G does not contain a simple cycle with only two colors used for
the vertices on the cycle.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 173

Lemma 6. Let G=(V; E) be a graph with a vertex coloring c :V →{1; 2; : : : ; k}; that
is a subgraph of a properly colored; triangulated graph G′. Then the treewidth of G
is at most k−1.

Proof. The same proof as of that for Lemma 4 replacing “triangulated” for “interval”
and “treewidth” for “pathwidth”.

3.3. Colored cutwidth

Interesting variations on a number of “classical” graph-theoretic decision problems
can be de�ned by considering an input consisting of k distinct graphs on the same set
of vertices, and asking whether there is a solution (described in terms of the vertex set)
that simultaneously solves the problem for all of the k graphs. We may equivalently
view k graphs on one vertex set V as a k-edge colored multi-graph. The following
problem asks whether there is a permutation of V that simultaneously has cutwidth k
for each induced monochromatic subgraph.
A linear ordering of a graph G=(V; E) is a bijective function f :V →{1; : : : ; |V |}.

The colored cutwidth of a linear ordering f of an edge colored graph G=(V; E), with
edge coloring c :E→C is

max
r∈C

max
16i6|V |

|{(v; w)∈E | (c((v; w))= r) ∧ f(v)6i¡f(w)}|

Note that a linear ordering f has colored cutwidth 1 if and only if for every two edges
(v; w) and (x; y) of the same color, the open intervals (min(f(v); f(w));
max(f(v); f(w))) and (min(f(x); f(y));max(f(x); f(y))) have an empty intersec-
tion. If we have two edges of the same color for which these two open intervals
intersect, then we call this a color con
ict. The colored cutwidth of G with edge col-
oring c is the minimum over the colored cutwidths of all possible linear orderings of
G. The following is the decision version of this problem:

COLORED CUTWIDTH ONE (CC-1)
Instance: a graph G=(V; E), an edge coloring c : E→C.
Parameter: |C|= k.
Question: Does G have colored cutwidth 1?

We also consider the directed colored cutwidth problem where the input is a
directed acyclic graph with a coloring of its edges. We require that if (v; w)∈E, then
f(v)¡f(w), i.e. we look for a topological ordering f of G with minimum colored
cutwidth. Denote this problem DIRECTEDCC-1.
De�ne the modi�ed colored cutwidth (MODIFIEDCC-1) of a graph as follows: the

modi�ed colored cutwidth of a linear ordering f of an edge colored graph G=(V; E),
with edge coloring c : E→C, is

max
r∈C

max
16i6|V |

|{(v; w)∈E | c((v; w))= r ∧ f(v)¡i¡f(w)}|

174 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

The modi�ed colored cutwidth of G with edge coloring c is the minimum over the
modi�ed colored cutwidths of all possible linear orderings of G.
It is easy to show that a yes-instance of CC-1 has pathwidth at most k − 1.
We remark that the method of Gurari and Sudborough from [33] can be generalized

to solve colored cutwidth (or its directed variant) with a �xed number k of colors, and
a �xed cutwidth r per color, in time O(|V |kr).

3.4. Feasible register assignment

One of the most fundamental problems encountered in computer system design is
to e�ciently allocate registers during execution of a program. Consider the following
restricted system consisting of a single processor and an arbitrarily high number of
general purpose registers. Programs consist of a sequence of assignment instructions
which take one of two possible forms: (1) load a register with the contents from a
speci�ed memory location and (2) apply an operator to the contents of two registers
placing the result in a third register. See [4].
The order of execution of a program is represented by G, a directed acyclic graph.

We may view the act of placing a value into a register as placing a “pebble” on a
vertex of the graph. Pebbles are originally placed on vertices of in-degree 0 and moved
according to the arcs of the graph. At any point during execution there are at most k
pebbles on the graph.

FEASIBLE REGISTER ASSIGNMENT (FRA)
Instance: Directed acyclic graph G=(V; E), positive integer k, and a register

assignment r : V →{R1; : : : ; Rk}.
Parameter: k.
Question: Is there a linear ordering f of G and a sequence S0; S1; : : : ; S|V | of subsets

of V such that S0 = ∅, S|V | contains all vertices of in-degree 0 in G, and for all
i; 16i6|V |; f−1(i)∈ Si; Si−{f−1(i)}⊆ Si−1; Si−1 contains all vertices u for which
(f−1(i); u)∈E and for all j, 16j6k, there is at most one vertex u∈ Si with r(u)=Rj?

The FEASIBLE REGISTER ASSIGNMENT problem has been well studied and it is known
that the decision version which asks whether there exists a feasible register assignment
with k registers is NP-Hard (see [45]). Several restricted versions of this problem have
been considered and linear time algorithms have been found if, for example, the pro-
grams compute solutions to expressions which have no common subexpressions (see
[46]).
In our case, we consider a parameterized variant of FEASIBLE REGISTER ASSIGNMENT

where the maximum number of registers allowed during the execution of a program is
small relative to the size of the program (i.e. the number of registers k is independent
of the size of the graph G).
Denote by GR the directed graph obtained from the directed graph G by reversing

the direction of all arcs.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 175

Lemma 7. Let f be a linear ordering of directed acyclic graph G=(V; E). Let
r : V →{R1; : : : ; Rk} be given. Write n= |V |. Then there exists a sequence of subsets
S0; S1; : : : ; Sn⊆V such that this sequence and f satisfy together the conditions of the
FRA problem if and only if
1. f is a topological order of GR.
2. For the sequence of subsets S ′0; S

′
1; : : : ; S

′
n; de�ned by S

′
0 = ∅ and for all i; 16i6n;

S ′i = {v |f(v)6i and the indegree of v in G is 0}∪ {v |f(v)6i∧∃w∈V : (w; v)∈E ∧
f(w)¿i}, it holds that no set contains vertices assigned to the same register; i.e:; for
all i; 16i6n; for all j; 16j6k; there is at most one vertex u∈ S ′i with r(u)=Rj.

Proof. (If) One can directly verify that f and the sequence S ′0; : : : ; S
′
n ful�l the re-

quirements of the FRA problem.
(Only if) First note that it must be the case that for all v∈V; f(v)= min{i | 16i6n;

v∈ Si}. For every edge (u; v)∈E, note that v∈ Sf(i)−1, hence f(v)6f(i) − 1. So f
is a topological order of GR. Next observe that we can remove a vertex w that has
indegree at least 1 simultaneously from all sets Si with i¿maxw|(w; v)∈E f(w), without
violating the conditions of the FEASIBLE REGISTER ASSIGNMENT problem.

It is not hard to show that a yes-instance for FRA has pathwidth at most k.

3.5. Module allocation on graphs of bounded pathwidth

The MODULE ALLOCATION problem seeks to minimize the overall cost of executing a
set of modules on a set of processors in a distributed system. The cost of executing
a module is a function of (1) which processor it is executed on, (2) interference
with other modules (ie. two modules require the same processor), and (3) the need to
communicate with other modules.
We assume tables are given describing (1) and (2) above. The information for (3) is

encoded as a graph and supplied as part of the input. In our case, we seek to minimize
overall cost when this graph has a bound on its pathwidth independent of its size.
More formally,

MODULE ALLOCATION ON GRAPHS OF BOUNDED PATHWIDTH (MA)
Instance: A set of modules V = {V1; V2; : : : ; Vm},
a set of processors P= {P1; P2; : : : ; Pp},
a cost function e : (V ×P)→R : (x; y) 7→ t where t is the cost of executing module
x∈V on processor y∈P,
a communication cost function C : (V ×P×V ×P)→R : (x; y; x′; y′) 7→ t where t
is the communication cost when module x is assigned to processor y and module
x′ is assigned to processor y′,
a communication graph G=(V; E),
and a positive real number l.
Parameter: pathwidth(G)= k.

176 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

Question: Does there exist an assignment of modules to processors such that the
total cost of execution is less than or equal to l?

For C(x; y; x′; y)= � then we interpret � as the amount of interference caused by
assigning both x and x′ to execute on processor y.
The MA problem is known to be NP-Hard in general (see [14, 29, 48, 49]) but

polynomial for several restricted families of graphs. When G is restricted to be a series–
parallel graph, the best known algorithm is O(mp3) (see [14]) and when G is a tree, MA
can be solved in time O(mp2) (see [49]). Fern�andez-Baca [29] generalizes this result to
graphs of bounded treewidth k giving an O(mpk+1) assignment algorithm. Furthermore,
Fern�andez-Baca and Medepalli [30] consider a restricted version of MA (PARAMETRIC
MA) where the cost functions e and C are linear functions of a new parameter �; that
is, C(·; ·)= �a + b, and give an O(m1+(k+1)log2pm) assignment algorithm. Of course,
the question remains whether there exist algorithms for MA and PARAMETRIC MA with
running times O(|V |�) where � is independent of the input parameters and the pathwidth
of G (equal to k in this discussion). The later sections of this paper address this
directly.

4. Hardness for the W-hierarchy

4.1. Hardness of CC-1, ICG, and TCG

In this section, we show that CC-1, ICG, and TCG are W [t]-hard for all t ∈N.
First, hardness for CC-1 is shown with a reduction from LCS-1. The basic idea of
this reduction is the following. We have two anchor components that are meant to be
mapped to the beginning and the end of the ordering. ‘Between’ the anchors, we add
‘choice’ components: this is a sequence of vertices with between them a number of
parallel edges (see Fig. 2(b).) By the edges of color c0, the order of these vertices
in the linear ordering is �xed (except that the entire ordering may be reversed). To
this, we add a string component as shown in Fig. 2(c) for each string in the instance
of ICG-1. (The diagram shows the part of one character of the string.) Fig. 2(a)
shows how all parts are put together. The edges with color ck �x the ordering of
the vertices in the kth string component. Now, the edges with color dk in the string
components cannot be overlap areas where choice components are mapped. The edges
with colors ei; k force a precise way how a character part is interleaved with a choice
component: only one vertex of a speci�c character part can be in the linear ordering
between two successive vertices of the choice component. This forces that exactly
one character part of each string component interleaves with a choice component. The
edges with colors fk′ ; k force that all character parts interleaving a speci�c choice
component correspond to the same character of �. A detailed proof follows below.

Hardness of ICG is shown by an (easy) reduction from CC-1. It then is shown that
composing the transformations LCS-1→CC-1 and CC-1→ ICG actually also gives a
reduction from LCS-1 to TCG.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 177

Fig. 2. The construction for the reduction from LCS-1 to COLORED CUTWIDTH-1. (a) The general design
of the reduction. (b) A choice component. (c) A character part of a string component. Note that the �rst
symbol in the kth string is the second element of � (sk1 = �1).

Theorem 8. (i) CC-1 is W [t]-Hard for all t ∈N.
(ii) ICG is W [t]-Hard for all t ∈N.
(iii) TCG is W [t]-Hard for all t ∈N.

Proof. (i) We reduce from LCS-1 (see de�nition in Section 2.2).
Let strings s1; : : : ; sK∈�∗ and an integer M be an instance of LCS-1. We denote the

length of a string sk as lk . We write R= |�|, and �= {�0; : : : ; �R−1}. We now construct
an edge colored graph G=(V; E). We allow that G has parallel edges. (To remove
the parallel edges without changing the colored cutwidth of G, we can subdivide every
edge and give a subdivided edge the color of the corresponding original edge. The
hardness of CC-1 for simple graphs follows from hardness of CC-1 for graphs with
parallel edges.)
The set of colors C is de�ned as follows:

C = {ci | 06i6K}∪
{di | 16i6K}∪

178 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

{ei; j | i∈{0; 1; 2}; 16j6K}∪
{fi; j | 16i6K; 16j6K; i 6= j}:

We now describe G and the coloring of its edges. G consists of the following
components:
1. Two anchors. We create four vertices v11; v

1
2; v

2
1; v

2
2. For every color c∈C, we create

an edge (v11; v
1
2) with color c and an edge (v

2
1; v

2
2) with color c. Write A= {v11; v12; v21; v22}.

2. Choice components. Create vertices {wmi | 16m6M; 06i63R}. Create the fol-
lowing edges:
• An edge (v12; w10) with color c0.
• An edge (wM3R; v21) with color c0.
• For all m, 16m¡M , an edge (wm3R; wm+10) with color c0.
• For all m, 16m6M; i; 06i63R− 1, edges (wmi ; wmi+1) with color c0, and for all k,
16k6K , an edge (wmi ; w

m
i+1) with color dk .

• For all m; 16m6M; i; 06i6R − 1, and for all k; 16k6K , an edge (wm3i ; w
m
3i+1)

with color e0; k , an edge (wm3i+1; w
m
3i+2) with color e1; k , and an edge (w

m
3i+2; w

m
3i+3)

with color e2; k .
3. String components. Create vertices {xkl; i | 16k6K; 16l6lk ; 06i63R+ 1}. For

all k; 16k6K , create the following edges:
• Two edges (v12; xk1;0), one with color ck , and one with color dk .
• Two edges (xklk ;3R+1; v21), one with color ck and one with color dk .
For all k; 16k6K , and all l, 16l¡Lk , create the following edges:
• Two edges (xkl;3R+1; xkl+1;0), one with color ck and one with color dk .
• For all i; 06i63R, an edge (xkl; i ; xkl; i+1) with color ck .
• For all r, 06r6R − 1, an edge (xkl;3r ; x

k
l;3r+1) with color e1; k , an edge (x

k
l;3r+1;

xkl;3r+2) with color e2; k , and an edge (x
k
l;3r+2; x

k
l;3r+3) with color e0; k .

• An edge (xkl;3R; xkl;3R+1) with color e1; k .
• Suppose �i is the l’th character of string sk , i.e., skl = �i. Then, for all r 6= i, and for
all k ′ 6= k, create an edge (xkl;3r+1; xkl;3r+2) with color fk′ ; k . For all k ′ 6= k, create an
edge (xkl;3i+1; x

k
l;3i+2) with color fk; k′ .

Let G=(V; E) be the resulting graph, and let cG : E→C be the resulting coloring
of the edges of G. See Fig. 2 for an illustration of this construction.

Claim 8.1. G with coloring cG has colored cutwidth 1 if and only if s1; : : : ; sK have a
common subsequence of length M .

Proof. (Only if) Suppose f is a linear ordering of G with colored cutwidth 1. Note
that no vertex u can be placed by f between v11 and v

1
2, as any edge adjacent to u

would cause a color con
ict with one of the edges between v11 and v
1
2. Furthermore,

for no edge (s; t)∈E, can it be the case that s is placed to the left of v11 and t is
placed right of v11, as this also causes a color con
ict. A similar argument is valid for
v12, and for the other ‘anchor’ vertices v

2
1 and v

2
2. It follows that all vertices not in A

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 179

must be placed between f(v12) and f(v
2
1). So, w.l.o.g., we may assume that for all

x 6∈A, f(v11)¡f(v12)¡f(u)¡f(v21)¡f(v22).
Note that every vertex x∈V−A lies on a path from v12 to v

2
1 with all edges of this

path of the same color c∈{c0; c1; : : : ; cK}. If v12; y1; y2; : : : ; yp; v21 is such a path, we must
have that f(v12)¡f(y1)¡f(y2)¡ · · ·¡f(yp)¡f(v21), otherwise we have a color con-

ict. It follows that we have for all m, 16m6M , i; i′, 06i¡i′63R, f(wmi)¡f(w

m
i′),

and that for all m;m′, 16m¡m′6M , i; i′, 06i; i′63R, f(wmi)¡f(w
m′
i′). Also, for

all k, 16k6K , l, 16l6lk , i; i′, 06i¡i′63R + 1, f(x kl; i)¡f(x
k
l; i′), and for all k,

16k6K , l; l′, 16l¡l′6lk , i; i′, 06i; i′63R+ 1, f(x kl; i)¡ f(x kl′ ; i′).
Now, look at vertices of the form x kl;0 and x

k
l;3R+1. As these are adjacent to an edge

with color dk , they cannot be placed between two vertices of the form wmi , w
m
i+1, so

they must be placed in one of the following open intervals:
• (f(v12); f(w10))
• (f(wm3R); f(wm+10)) for some m, 16m6M .
• (f(wM3R); f(v21)).
Moreover, all vertices x k1;0 must be placed in the �rst of these intervals, and all

vertices x klk ;3R+1 must be placed in the last of these intervals. Also, for all l, 16l¡lk ,
the two vertices x kl;3R+1 and x

k
l+1;0 must belong to the same interval.

Write, for all k, 16k6K , and all m, 16m6M ,

g(k; m)= max{l | 16l6M; f(x kl;0)¡f(wm0)}:

Consider a �xed k, 16k6K . As f(x k1;0)¡f(w
1
0), we have that all g(k; m)¿1. Note

that for each i, 16i63R − 2, and for each m, 16m6M , there must be at least one
vertex of the form x kl; j with f(w

m
i)¡f(x

k
l; j)¡f(w

m
i+1). If not, then there is an edge

(between two vertices in the kth string component) with color dk , e0; k , e1; k , or e2; k ,
that crosses both wmi and w

m
i+1. But this gives a color con
ict at either w

m
i or w

m
i+1 (or

both) since at least one of these two vertices is incident to an edge of one of these
four colors. Also, for any such vertex xkl; j, we have that j 6=0 and j 6=3R+ 1. So, we
now have that g(k; 1)¡g(k; 2)¡ · · ·¡g(k;M).
Consider some �xed k, 16k6K , and m, 16m6M . For each of the pairs wm3i+1,

wm3i+2, (06i6R − 1) there must be at least one vertex x kg(k;m); j with f(wm3i+1)
¡f(x kg(k;m); j)¡f(w

m
3i+2). Since between w

m
3i+1 and w

m
3i+2 there is an edge with color

e1; k , x kg(k;m); j may not be adjacent to an edge with color e1; k , so j must be of the form
j=3j′ + 2. As we have R intervals (f(wm3i+1); f(w

m
3i+2)), and R vertices of the form

x kg(k;m);3j′+2, it follows that for all i, 06i6R− 1, f(wm3i+1)¡f(x kg(k;m);3i+2)¡f(wm3i+2).
With a similar argument it follows that f(wm3i+2)¡f(x

k
g(k;m);3i+3).

So, now for all k; k ′, 16k; k ′6K , m, 16m6M , we have that the open intervals
(f(x kg(k;m);3i+1); f(x

k
g(k;m);3i+2)) and (f(x

k′
g(k′ ; m);3i+1); f(x

k′
g(k′ ; m);3i+2)) overlap. Suppose

that s kg(k;m) = �i 6= sk
′
g(k′ ; m) = �i′ . Now, edges (x

k
g(k;m);3i+1; x

k
g(m);3i+2) and (x k

′
g(k′ ; m);3i+1;

x k
′
g(k′ ; m);3i+2) exist with color fk; k′ . This gives a color con
ict, and the contradiction
follows. It follows that, for all k, character sequences skg(k;1)s

k
g(k;2) · · · skg(k;m) are subse-

quences of s k of length m, and that all these sequences are equivalent.

180 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

(If) Now suppose s1; : : : ; sK have a common subsequence of length M . Let g : {1; : : : ;
K}×{1; : : : ; M}→N be a function, such that for all k, 16k6K , m;m′, 16m¡m′6M :
16g(k; m)¡g(k; m′)6lk , and that all subsequences skg(k;1)s

k
g(k;2) · · · skg(k;m) are equivalent.

We denote, for all k, 16k6K , g(k; 0)=0. The following procedure produces a linear
ordering f of G with colored cutwidth 1.

f(v11) := 1;
f(v12) := 2;
p := 3;
for m := 1 to M do (Number the vertices of the form x kl; i for

g(k; m− 1)¡l6g(k; m), and the vertices of the
form wmi).
(First; number the vertices of the form x kl; i for
g(k; m− 1)¡l¡g(k; m))
for k := 1 to K
do for l := g(k; m− 1) + 1 to g(k; m)− 1
do (If g(k; m)= g(k; m− 1) + 1, then nothing

happens in this step.)
for i := 0 to 3R+ 1
do f(x kl; i) :=p; p :=p+ 1;
enddo;

enddo;
enddo;
(Number the vertices of the form x kg(k;m); i or w

m
i .)

for i := 0 to 3R
do for k := 1 to K
do f(x kg(k;m); i) :=p; p :=p+ 1;
enddo;
f(wmi) :=p; p :=p+ 1;

enddo;
for k := 1 to K
do f(x kg(k;m);3R+1) :=p; p :=p+ 1;
enddo;

enddo;
(Number the vertices of the form x kl; i for l¿g(k;M).)
for k := 1 to K do for l := g(k;M) + 1 to lk

do for i := 0 to 3R+ 1
do f(x kl; i) :=p; p :=p+ 1;
enddo;

enddo;
enddo;
f(v21) :=p; p :=p+ 1;
f(v22) :=p;

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 181

It is an easy, but tedious veri�cation that the function f, yielded by this procedure,
indeed is a linear ordering of G with colored cutwidth 1. We only will discuss one
case here, and omit the other cases.
Suppose there is a color con
ict between a pair of edges (x kl;3r+1; xl;3r+2)

k and
(x k

′
l′ ;3r′+1; x

k′
l′ ;3r′+2) with color fk; k′ . By construction of the function f, l must be of

the form l= g(k; m) for some m, 16m6M , and l′= g(k ′; m). Also, it must be the
case that r= r′. Existence of the edge (x kg(k;m);3r+1; x

k
g(k;m);3r+2) with color fk; k′ shows

that s kg(k;m) = �r . Existence of the edge (x
k′
g(k′ ; m);3r+1; x

k′
g(k′ ; m);3r+2) with color fk; k′ shows

that s k
′
g(k′ ; m) 6= �r . This is a contradiction with the assumption that we have chosen equal

subsequences. This ends the proof of Claim 8.1.

From Claim 8.1 and the W [t]-Hardness, for all t ∈N, of the LCS-1 problem, part
(i) of the theorem follows.
(i)⇔ (ii) Let G=(V; E) be a graph, with an edge coloring cG :E→C. We de�ne a

bipartite graph H =(V ∪E; F) with F = {(v; (v; w)) | v∈V; (v; w)∈E}. (H is obtained
from G by subdividing every edge.) Furthermore, using a new color a 6∈C, we de-
�ne a vertex coloring cH :V ∪E→C ∪{a} of H as follows: for all v∈V , color v
with a (cH (v)= a) and for all ‘edge-vertices’ e∈E, color e with its old color in G
(cH (e)= cG(e)).
The following claim shows that this transformation from (G; cG) to (H; cH) is in fact

a reduction from CC − 1 to ICG, hence proving part (ii) of the theorem.

Claim 8.2. Let G and H be constructed as above. G has colored cutwidth 1 if and
only if H is a subgraph of a properly colored interval graph.

Proof. (Only if) Let f :V →{1; : : : ; |V |} be a linear ordering of G with colored
cutwidth 1. Assign to each v∈V the interval [f(v) − 1

3 ; f(v) +
1
3]. To every edge

(v; w)∈E, assign the interval [min(f(v); f(w)) + 1
6 ;max(f(v); f(w)) − 1

6]. One can
easily verify that these intervals form an interval model of a properly colored interval
graph that contains H as a subgraph; that is, intervals of adjacent vertices intersect and
no two intervals of vertices with the same color intersect. The latter condition follows
from the condition that the colored cutwidth of f is 1.
(If) Suppose that we have for every vertex z ∈V ∪E an interval Iz = [Lz; Rz] such

that intervals of adjacent vertices intersect and intervals of vertices with the same
color do not intersect. As all vertices v∈V have the same color, all intervals Iv
are disjoint. Number the vertices v∈V in the following manner: take a bijective
function f :V →{1; : : : ; |V |} such that, for all v; w∈V , Lv¡Lw⇔f(v)¡f(w). Now
f(v)¡f(w)⇒Lv6Rv¡Lw6Rw. We claim that f is a linear ordering of G with col-
ored cutwidth 1. Consider edges (v; w)∈E and (x; y)∈E, f(v)¡f(w), f(x)¡f(y).
Note that [Rv; Lw]⊆ I(v;w) and [Rx; Ly]⊆ I(x; y). So, [Rv; Lw]∩ [Rx; Ly] = ∅. When analyz-
ing the di�erent cases with respect to the order and possible equalness of f(v); f(w);
f(x); f(y), one easily can verify that no color con
ict between (v; w) and (x; y) is
possible.

182 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

(i)⇔ (ii)⇔ (iii) Let s1; : : : ; sK ;M be an instance of LCS-1, let G=(V; E) with coloring
cG :E→C be the edge colored graph constructed as in part (i) of this proof, and let
H =(V ∪E; F) with vertex coloring cH :V ∪E→C ∪{a} be the vertex colored graph
constructed from G as in part (ii). The following now holds:

Claim 8.3. Let H be constructed as above. H is a subgraph of a properly colored
(by cH) interval graph if and only if H is a subgraph of a properly colored (by cH)
triangulated graph.

Proof. (Only if) Trivial.
(If) Suppose H is a subgraph of a properly colored triangulated graph H ′. There

exists a tree-decomposition ({Xi | i∈ I}; T =(I;F)) of H ′, such that for all i∈ I , Xi is
a clique in H ′ and hence no two vertices in Xi have the same color.
Note that vertices v11 and v

1
2 and the edges between them in G form a complete

bipartite subgraph in H . By Lemma 3, we know that either there exists an i0 ∈ I with
v11; v

1
2 ∈Xi0 or there exists an i0 ∈ I such that v11 ∈Xi0 and all edges (v11; v12) belong to

Xi0 . The former cannot be the case as v
1
1 and v

1
2 have the same color hence we may

assume the latter. There cannot be any other vertices included in Xi0 since v
1
1 and its

adjacent edges together have all possible colors. Similarly, there exists a node i1 such
that Xi1 contains precisely v

2
2 and all edges (v

2
1; v

2
2). We may suppose that i0 and i1 are

leaves of T , as neither set Xi0 or Xi1 is a separator of H .
Let I ′ be the set of all nodes i∈ I that are on the path from i0 to i1 in T (i0, i1

inclusive).
We claim that for all v∈V there exists an i∈ I ′ with v∈Xi. Suppose the contrary.

Note that v is on a path in G from v11 to v
2
2 with all edges of the same color, say c�.

This path corresponds to a path Y in H from v11 to v
2
2 containing v where vertices are

alternately colored c� and a. Let Y =y0; y1; : : : ; yq where y0 = v11, yq= v
2
2 and suppose

v=yj. Let v∈Xi2 and let i3 be the �rst node on the path from i2 to i0. Xi3 must contain
a vertex yj1 with j1¡j and a vertex yj2 with j2¿j (by Lemma 2). Now the subpath
of Y between yj1 and yj2 forms a cycle with the edge (yj1 ; yj2) in H

′. Therefore,
H ′ contains a cycle with only two colors used for the vertices on the cycle; and this
contradicts Lemma 5. Hence, for all v∈V , there exists an i∈ I with v∈Xi.
We now claim that, for all (v; w)∈E, there exists an i∈ I ′ with v; (v; w)∈Xi. For all

z ∈V ∪E, let Iz = {i∈ I | z ∈Xi}. There exist nodes i4 ∈ Iv ∩ I(v;w), i5 ∈ Iw ∩ I(v;w). Let
i6 be the �rst node in I ′ on the path from i4 to i5. Since T is a tree, Iv ∩ Iw = ∅,
Iv ∩ I ′ 6= ∅, and Iw ∩ I ′ 6= ∅, i6 must exist. We must have that (v; w)∈Xi6 , (by de�nition
of a tree-decomposition) and v∈Xi6 as otherwise, for all i∈ I ′, v 6∈Xi.
We now can conclude that ({Xi | i∈ I ′}; T [I ′]) is a path-decomposition of H , for

which for all i∈ I ′ it is true that all vertices in Xi have di�erent colors. So H is a
subgraph of a properly colored interval graph.

The preceding claim gives us a transformation from LCS-1 to TCG and part (iii) of
the theorem follows.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 183

Corollary 9. The following problems are NP-Complete: CC-1; ICG; TCG.

Proof. Membership in NP is trivial. Note that the reduction used in Theorem 8 is
many:1.

Corollary 10. For every class of graphs G such that every graph in G is chordal and
every interval graph belongs to G; the following problem is W [t]-Hard for all t ∈N
and its unparameterized version is NP-Hard:
Instance: Graph G=(V; E); coloring c :V →C.
Parameter: |C|= k.
Question: Does there exist a graph H ∈G; that contains G as a subgraph and is

properly colored by c?

Proof. Note that in Claim 8.3 the statements are also equivalent to the following
statement:
H is a subgraph of a properly colored graph H ′ ∈G.

Therefore the same reduction from LCS-1 can be used.

Corollary 11. The following are W [t]-Hard for all t ∈N and NP-Complete:
(i) DIRECTEDCC-1; (ii) DIRECTEDCC-1 FOR GRAPHS WITH ONLY ONE VERTEX WITH OUTDEGREE

0 and (iii) MODIFIEDCC-1.

The proofs of these consist of easy modi�cations of the above arguments and are
omitted.
The version of DIRECTEDCC-1 with only one vertex with outdegree 0 will be used

in a subsequent proof for the parameterized hardness of FRA.

4.2. Hardness for Feasible Register Assignment (FRA)

Theorem 12. FEASIBLE REGISTER ASSIGNMENT is W [t]-Complete for all t ∈N.

Proof. We reduce from DIRECTEDCC-1 WITH ONLY ONE VERTEX OF OUTDEGREE 0. By
Corollary 11, the W [t]-Hardness for all t ∈N of FRA follows.
Let G=(V; E) be a directed acyclic graph with z the unique node in G with out-

degree 0 and let cG :E→C be an edge coloring of G where C = {1; 2; : : : ; k}. Our
argument is similar to that used for ICG.
Let H =(V ∪E; F) be the directed, acyclic graph de�ned by F = {(v; (v; w)) | v∈V;

(v; w)∈E}∪ {((v; w); w) |w∈V; (v; w)∈E}; that is, H is obtained by subdividing every
edge of G whilst retaining the same directions for edges. Note that H is a directed
acyclic graph. We de�ne a register assignment r (or, equivalently, a coloring) of the
vertices of H as follows: ∀v∈V : r(v)=R0; ∀e∈E: r(e)=RcG(e).

Claim 12.1. H R with register assignment r is a “yes”-instance to the FRA problem
if and only if the directed colored cutwidth of G with coloring cG is 1.

184 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

Proof. (Only if) Let f, S0; : : : ; S|V |+|E| be a solution to the FRA problem for HR and
r. Note that z is the unique node in H with indegree 0, and hence f(z)= |V |+ |E|. Let
g be the linear ordering of G, such that for all v; w∈V :f(v)¡f(w)⇔ g(v)¡g(w).
As f is a topological order of H =(HR)R, we have that g is a topological order
of G. We claim the directed colored cutwidth of g is 1. Suppose there is a color con
ict
between edges (v; w), (x; y) in E. Let u= g−1(g(v)+1), i.e., u is the next vertex in V
after v, in both orderings f and g. v cannot belong to Sf(u), as u and v have the same
color. So, if f((w; v))¿f(u), we get a contradiction. So, f(v)¡f((w; v))¡f(u), and
(w; v) belongs to all sets Si, with f(u) − 16i6f(w) − 1. A similar analysis holds
for the edge (x; y) (or vertex (y; x)). Case analysis now shows there is a set Si with
(w; v); (y; x)∈ Si. This is a contradiction as both of these two vertices are assigned to
the same register.
(If) Let g be a topological sort of G with directed colored cutwidth 1. Take a linear

ordering f of HR that ful�ls: ∀v; w∈V :f(v)¡f(w)⇔ g(v)¡g(w), and ∀v∈V; (v; w)∈
E :f(v)¡f((w; v))¡f(g−1(g(v) + 1)), i.e., all vertices (w; v) representing a reversed
edge (v; w), are placed after v in the ordering f, but before the next vertex from G.
f is a topological order of HR.
Let S ′0; : : : ; S

′
|V |+|E| be de�ned as in Lemma 7. We must verify that for all S

′
i all

vertices have a di�erent register assigned to them. We cannot have two vertices with
register R0 in the same set S ′i , as these are vertices in V , and all successor of a
vertex in V are placed in the ordering f before the next vertex in V , i.e., before the
next vertex that is assigned to R0. Also, the only vertex with indegree 0 in HR is
z, and z belongs only to S ′|V |+|E| and no other Si. Suppose now there exist vertices
(w; v); (y; x)∈ Si, with R(w; v) =R(y; x). There is a color con
ict (w.r.t. g) between the
edges (v; w), and (x; y): f(v)¡f((w; v))6i¡f(w), and f(x)¡f((y; x))6i¡f(y),
hence the open intervals (g(v); g(w)) and (g(x); g(y)) intersect. This is a contradiction.
Therefore f must satisfy the conditions of Lemma 7.

This completes the theorem.

4.3. Hardness for module allocation on graphs with bounded pathwidth

Theorem 13. MODULE ALLOCATION ON GRAPHS OF BOUNDED PATHWIDTH is W [t]-Hard; for
all t; even when all communication costs are restricted to 0 or 1.

Proof. We reduce from LCS-1. Let s1; : : : ; sK ∈�∗ and integer M be our instance of
LCS-1. Denote by Li the length of string si. Denote by sij the jth character of string i.
We create a graph G=(V; E) with K ·M vertices, as follows:

V = {vi; j | 16i6M; 16j6K};

E= {(vk; l; vk′ ; l′) | (k = k ′ ∧ l 6= l′) ∨ (k ′= k + 1 ∧ l= l′)}:

It is easy to see that the pathwidth of G is at most K + 1.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 185

We create
∑K

i=1 Li processors where each processor corresponds to one character in
one of the strings. We write processor pi; j for the processor that corresponds to the
ith character in string s j.
We assign costs as follows:
The execution cost for all modules vk; l and processors pi; j is de�ned to be:

e(vk; l; pi; j)= 0:

The communication cost between module vk; l and module vk; l′ when assigned to
processors pi; j and pi′ ; j′ respectively where i 6= i′ and l 6= l′ is de�ned to be:

C((vk; l; pi; j); (vk; l′ ; pi′ j′))=

{
0 if s ji = s

j′

i′ ;
1 otherwise:

The communication cost between module vk; l and module vk+1; l when assigned to
processors pi; j and pi′ ; j′ respectively is de�ned to be:

C((vk; l; pi; j); (vk+1; l; pi′ ; j′))=
{
0 if l= j= j′ and i′¿i;
1 otherwise:

Let C((x; y); (x′; y′))= 0, for all y and y′ when (x; x′) =∈E.

Claim 13.1. Let A be the instance of the MODULE ALLOCATION problem constructed
above. There exists a module assignment of total cost 0 if and only if the strings
s1; : : : ; sK have a common subsequence of length M .

Proof. (If) Suppose the common subsequence is of the form s ifi(1) · · · s ifi(M), fi(1)¡
fi(2)¡ · · ·¡fi(M), for all i, 16i6K . Now assign each module vk; l to processor
pfl(k);l. One can verify that this gives cost 0. For instance, for modules vk; l and vk; l′
the communication cost is 0, as s lfl(k) and s

l′
fl(k′) (the kth character in the common

substring) are equal.
(Only if) Suppose we have a module allocation with cost 0. To get a communication

cost of 0 between modules vk; l and vk+1; l, we must assign each module vk; l to a
processor pfl(k); l, for some fl(k), 16fl(k)6Ll. Moreover, it must be the case that
fl(k)¡fl(k+1). So, each sequence s lfl(1) · · · s lfl(M) forms a subsequence of the string sl.
These subsequences must be equal. The kth character of the ith subsequence is sifi(k).

Take i 6= i′. As the communication cost between vk; i and vk; i′ must be 0, it follows that
sifi(k) = s

i′
fi′ (k)

.

From the above claim and the W [t]-Hardness, for all t ∈N of the LCS-1, the result
follows.

Corollary 14. PARAMETRIC MA is W [t]-Hard for all t ∈N.

Proof. Note that all costs are either 0 or 1 and therefore trivially linear functions of
the parameter �.

186 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

5. Conclusions

In this paper, we have shown hardness for several graph problems on bounded width
graphs. All of the problems considered are NP-Complete and W [t]-Hard for all t ∈N.
Recently in [9] it has been shown that ICG is in fact NP-Complete for any �xed

k¿4. For the case of k =3, they give an O(|VG|2) algorithm. This provides an in-
teresting contrast with TRIANGULATING COLORED GRAPHS, which can be solved in time
O(|VG|k+1) for any �xed k [43], see also [3].
For MODULE ALLOCATION and PARAMETRIC MODULE ALLOCATION, our results suggest

that the algorithms found in [29, 30] respectively are in some sense optimal. The al-
gorithm for MODULE ALLOCATION has running time O(mpk+1) and it appears unlikely
that the factor of k can be removed from the exponent. Likewise, the same conclusion
can be drawn for PARAMETRIC MODULE ALLOCATION although it remains open whether
algorithms without the factor of p in the exponent exist.
Membership in the W hierarchy remains open for all of these problems although it

is noted that the result of [9] implies that ICG is not in any level of the W -hierarchy
unless P=NP.

References

[1] K. Abrahamson, M.R. Fellows, Finite automata, bounded treewidth and well-quasiordering, Contemp.
Math. 147 (1993) 539–563.

[2] R. Agarwala, D. Fern�andez-Baca, A polynomial-time algorithm for the perfect phylogeny problem when
the number of character-states is �xed, SIAM J. Comput. 23 (6) (1994) 1216–1224.

[3] R. Agarwala, D. Fern�andez-Baca, Fast and simple algorithms for perfect phylogeny and triangulating
colored graphs, Internat. J. Found. Comput. Sci. 7 (1) (1996) 11–22.

[4] A.V. Aho, J.D. Ullman, Optimization of straight line programs, SIAM J. Comput. 1 (1972) 1–19.
[5] S. Arnborg, E�cient algorithms for combinatorial problems on graphs with bounded decomposability:

a survey, BIT 25 (1985) 2–23.
[6] H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded tree-width, in: Proc. 15th

Internat. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science,
vol. 317, Springer, Berlin, 1998, pp. 105–119.

[7] H.L. Bodlaender, A linear time algorithm for �nding tree-decompositions of small treewidth, SIAM J.
Comput. 25 (1996) 1305–1317.

[8] H.L. Bodlaender, R.G. Downey, M.R. Fellows, H.T. Wareham, The parameterized complexity of
sequence alignment and consensus, Theoret. Comput. Sci. 147 (1995) 31–54.

[9] H.L. Bodlaender, B. de Fluiter, Intervalizing k-colored graphs, in: Proc. 22nd Internat. Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 944, Springer, Berlin,
1995, pp. 87–98.

[10] H.L. Bodlaender, M.R. Fellows, M.T. Hallett, Beyond NP-completeness for problems of bounded width:
hardness for the W hierarchy, in: Proc. 26th Annu. ACM Symp. on the Theory of Computing, 1994,
pp. 449–458.

[11] H.L. Bodlaender, M.R. Fellows, T.J. Warnow, Two strikes against perfect phylogeny, in: Proc. 19th
Internat. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science,
vol. 623, Springer, Berlin, 1992, pp. 373–383.

[12] H.L. Bodlaender, T. Kloks, E�cient and constructive algorithms for the pathwidth and treewidth of
graphs, J. Algorithms, 21 (1996) 358–402.

[13] H.L. Bodlaender, R.H. M�ohring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math.
6 (1993) 181–188.

H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188 187

[14] S.H. Bokhari, A shortest tree algorithm for optimal assignments across space and time in distributed
processor systems, IEEE Trans. Software Eng. SE-7 (6) (1981) 583–589.

[15] R.B. Borie, R.G. Parker, C.A. Tovey, Automatic generation of linear-time algorithms from predicate
calculus and descriptions of problems on recursively constructed graph families, Algorithmica 7 (1992)
555–582.

[16] P. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205–212.
[17] L. Cai, J. Chen, R.G. Downey, M.R. Fellows, The parameterized complexity of short computations and

factorizations, Technical report, Department of Computer Science, University of Victoria, July 1993.
[18] N.G. Cooper (Ed.), The human genome project, Los Alamos Sci. 20 (1992) 119.
[19] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of �nite graphs, Inform.

and Comput. 85 (1990) 12–75.
[20] W.H. Day, D. Sanko�, Computational complexity of inferring phylogenies by compatibility, Systematic

Zoology 35 (2) (1986) 224–229.
[21] R.G. Downey, P.A. Evans, M.R. Fellows, Parameterized learning complexity, in: Proc. 6th ACM

Workshop on Computational Learning Theory (COLT), 1993, pp. 51–57.
[22] R.G. Downey, M.R. Fellows, Fixed-parameter intractability (extended abstract), Proc. 7th Annual Conf.

on Structure in Complexity Theory (Structures’92), 1992, pp. 36–49.
[23] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness III: some structural aspects

of the W -hierarchy, in: K. Ambos-Spies, S. Homer, U. Schoning (Eds.), Complexity Theory, Cambridge
University Press, Cambridge, 1993, pp. 166–191.

[24] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness I: basic results, SIAM
J. Comput. 24 (1995) 873–921.

[25] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness II: on completeness for
W [1], Theoret. Comput. Sci. 141 (1995) 109–131.

[26] R.G. Downey, M.R. Fellows, B.M. Kapron, M.T. Hallett, H.T. Wareham, The parameterized complexity
of some problems in logic and linguistics, in: Proc. Symp. on Logical Foundations of Computer Science
(LFCS ’94), Lecture notes in Computer Science, vol. 813, Springer, Berlin, 1994, pp. 89–100.

[27] G.F. Estabrook, Some concepts for the estimation of evolutionary relationships in systematic botany,
Systematic Botany 3 (2) (1978) 146–158.

[28] M.R. Fellows, M.T. Hallett, H.T. Wareham, DNA physical mapping: 3 ways di�cult, in: Tom Lengauer
(Ed.), Proc. 1st Annu. European Symp. on Algorithms (ESA’93), Lecture Notes in Computer Science,
vol. 726, Springer, Berlin, pp. 157–168.

[29] D. Fern�andez-Baca, Allocating modules to processors in a distributed system, IEEE Trans. Software
Eng. 15 (11) (1989) 1427–1436.

[30] D. Fern�andez-Baca, A. Medipalli, Parametric module allocation on partial k-trees, IEEE Trans.
Computers 42 (1993) 738–742.

[31] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[32] M.C. Golumbic, H. Kaplan, R. Shamir, On the complexity of physical mapping, Adv. Appl. Math.

15 (1994) 251–261.
[33] E.M. Gurari, I.H. Sudborough, Improved dynamic programming algorithms for bandwidth minimization

and the mincut linear arrangement problem, J. Algorithms 5 (1984) 531–546.
[34] D. Gus�eld, E�cient algorithms for inferring evolutionary trees, Networks 21 (1981) 19–28.
[35] M.T. Hallett, H.T. Wareham, A compendium of parameterized results, SIGACT News 25 (3) (1994)

122–123.
[36] R. Idury, A. Scha�er, Triangulating three-colored graphs in linear time and linear space, SIAM

J. Discrete Math. 2 (1993) 289–293.
[37] S. Kannan, T.J. Warnow, Inferring evolutionary history from DNA sequences, in: Proc. 31rd Annu.

Symp. on Foundations of Computer Science, 1990, pp. 362–371.
[38] S.K. Kannan, T.K. Warnow, Triangulating 3-colored graphs, SIAM J. Discrete Math. 5 (1992) 249–258.
[39] S.K. Kannan, T.J. Warnow, Inferring evolutionary history from DNA sequences, SIAM J. Comput.

23 (4) (1994) 713–737.
[40] H. Kaplan, R. Shamir, Pathwidth, bandwidth and completion problems to proper interval graphs with

small cliques, SIAM J. Comput. 25 (1996) 540–561.
[41] H. Kaplan, R. Shamir, R.E. Tarjan, Tractability of parameterized completion problems on chordal and

interval graphs, Found Comput. Ser. (1994) 780–791.

188 H.L. Bodlaender et al. / Theoretical Computer Science 244 (2000) 167–188

[42] C.A. Meacham, G.F. Estabrook, Compatibility methods in systematics, Annu. Rev. Ecol. Systematics
16 (1985) 431–446.

[43] F.R. McMorris, T.J. Warnow, T. Wimer, Triangulating vertex-colored graphs, SIAM J. Discrete Math.
7 (2) (1994) 296–306.

[44] S.-I. Nakano, T. Oguma, T. Nishizeki, A linear time algorithm for c-triangulating three-colored graphs,
Trans. Inst. Electron. Inform. Commun. Eng. A 377-A (3) (1994) 543–546 (in Japanese).

[45] R. Sethi, Complete register allocation problems, SIAM J. Comput. 4 (1975) 226–248.
[46] R. Sethi, J.D. Ullman, The generation of optimal code for arithmetic expressions, J. Assoc. Comput.

Mach. 17 (1970) 715–728.
[47] M.A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,

J. Classi�cation 9 (1992) 91–116.
[48] H. Stone, Critical load factors in two-processor distributed systems, IEEE Trans. Software Eng. SE-4

(1978) 254–258.
[49] D. Towsley, Allocating programs containing branches and loops within a multiple processor system,

IEEE Trans. Software Eng. SE-12 (10) (1986) 1018–1024.
[50] T. Warnow, Combinatorial algorithms for constructing phylogenetic trees, Ph.D. Thesis, University of

California, Berkeley, 1991.
[51] T.V. Wimer, Linear algorithms on k-terminal graphs, Ph.D. Thesis, Dept. Computer Science, Clemson

University, 1987.

