102 research outputs found

    Parameterization of a coarse-grained model of cholesterol with point-dipole electrostatics

    Get PDF
    © 2018, Springer Nature Switzerland AG. We present a new coarse-grained (CG) model of cholesterol (CHOL) for the electrostatic-based ELBA force field. A distinguishing feature of our CHOL model is that the electrostatics is modeled by an explicit point dipole which interacts through an ideal vacuum permittivity. The CHOL model parameters were optimized in a systematic fashion, reproducing the electrostatic and nonpolar partitioning free energies of CHOL in lipid/water mixtures predicted by full-detailed atomistic molecular dynamics simulations. The CHOL model has been validated by comparison to structural, dynamic and thermodynamic properties with experimental and atomistic simulation reference data. The simulation of binary DPPC/cholesterol mixtures covering the relevant biological content of CHOL in mammalian membranes is shown to correctly predict the main lipid behavior as observed experimentally

    The power of coarse graining in biomolecular simulations

    Get PDF
    Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling

    Membrane models for molecular simulations of peripheral membrane proteins

    Get PDF
    Peripheral membrane proteins (PMPs) bind temporarily to the surface of biological membranes. They also exist in a soluble form and their tertiary structure is often known. Yet, their membrane-bound form and their interfacial-binding site with membrane lipids remain difficult to observe directly. Their binding and unbinding mechanism, the conformational changes of the PMPs and their influence on the membrane structure are notoriously challenging to study experimentally. Molecular dynamics simulations are particularly useful to fill some knowledge-gaps and provide hypothesis that can be experimentally challenged to further our understanding of PMP-membrane recognition. Because of the time-scales of PMP-membrane binding events and the computational costs associated with molecular dynamics simulations, membrane models at different levels of resolution are used and often combined in multiscale simulation strategies. We here review membrane models belonging to three classes: atomistic, coarse-grained and implicit. Differences between models are rooted in the underlying theories and the reference data they are parameterized against. The choice of membrane model should therefore not only be guided by its computational efficiency. The range of applications of each model is discussed and illustrated using examples from the literature.publishedVersio

    Carbohydrate-derived amphiphilic macromolecules: a biophysical structural characterization and analysis of binding behaviors to model membranes.

    Get PDF
    The design and synthesis of enhanced membrane-intercalating biomaterials for drug delivery or vascular membrane targeting is currently challenged by the lack of screening and prediction tools. The present work demonstrates the generation of a Quantitative Structural Activity Relationship model (QSAR) to make a priori predictions. Amphiphilic macromolecules (AMs) "stealth lipids" built on aldaric and uronic acids frameworks attached to poly(ethylene glycol) (PEG) polymer tails were developed to form self-assembling micelles. In the present study, a defined set of novel AM structures were investigated in terms of their binding to lipid membrane bilayers using Quartz Crystal Microbalance with Dissipation (QCM-D) experiments coupled with computational coarse-grained molecular dynamics (CG MD) and all-atom MD (AA MD) simulations. The CG MD simulations capture the insertion dynamics of the AM lipophilic backbones into the lipid bilayer with the PEGylated tail directed into bulk water. QCM-D measurements with Voigt viscoelastic model analysis enabled the quantitation of the mass gain and rate of interaction between the AM and the lipid bilayer surface. Thus, this study yielded insights about variations in the functional activity of AM materials with minute compositional or stereochemical differences based on membrane binding, which has translational potential for transplanting these materials in vivo. More broadly, it demonstrates an integrated computational-experimental approach, which can offer a promising strategy for the in silico design and screening of therapeutic candidate materials

    Charge and hydrophobicity effects at nano-bio interfaces

    Get PDF
    Gold nanoparticles coated with bio-compatible ligands are promising tools for biomedical applications due their water solubility, bio-compatibility and efficient light-to-heat conversion. In in vivo applications, nanoparticles come in contact with many biological molecules before being delivered to cells. The understanding of the physical and chemical nature of these different nano-bio interfaces is crucial to the rational design of nanoparticles with biomedical applications. The aim of this thesis is to understand, by molecular dynamics, how the composition, hydrophobicity and charge of the ligand shell of a small gold nanoparticle can influence its interaction with i. the solvent, ii. model biological membranes and iii. serum proteins. For each of these relevant interfaces we address a specific case of study. In our first case study, we address the role of ligands during the transfer of heat from a hot irradiated gold nanoparticle to the surrounding solvent (water). Indeed, in photothermal therapies laser-irradiated resonant nanoparticles convert light into heat, which is then released to the surrounding biological tissues. Nevertheless, no clear physical interpretation is currently available to explain thermal transport at the nanoparticle surface, where a solid-liquid (metal--ligand) interface is coupled to a liquid-liquid (ligand--solvent) interface. We use computer simulations to show that thermal transport at the nanoparticle surface depends on solvent diffusivity at the ligand--solvent interface. Furthermore, using physical indicators of water confinement around hydrophobic and hydrophilic ligands, we develop a predictive model to allow engineering of nanoparticle coatings with the desired thermal conductivities at the nanoscale. The second case study is the interaction between an anionic, monolayer-protected gold nanoparticle and a model neutral lipid membrane. The cell membrane is the first barrier that gold nanoparticles meet in cell-targeted applications. Here we show how the nanoparticle surface functionalization, and in particular its charge state, can drive the mechanism of interaction with a zwitterionic lipid membrane. Our third case study is the interaction between a monolayer-protected gold nanoparticle and a serum protein, ubiquitin. Indeed, when nanoparticles circulate in the bloodstream, they come in contact with many serum proteins, which can irreversibly bind to nanoparticles, thus changing the surface they expose to the biological environment. We combine computer simulations and experimental results to study how the ligand charge and composition influence the interaction between nanoparticles and ubiquitin. We find that interfacial water molecules are more bound to the nanoparticles with the largest negative charge and this reflects in an increase of their hydrodynamic radius and in a slower kinetics of binding to the protein during unbiased simulations

    Molecular Simulations of Protein-Induced Membrane Remodeling

    Get PDF
    Membranes organize much of the cell and host a great deal of molecular machinery required to integrate signals from the outside, regulate the surrounding matrix, change shape, move, and grow. Understanding how a dense forest of proteins, sugars, and biomarkers modulates the shape of the cell is necessary to produce more detailed, accurate predictions of cell behavior, particularly in the studies of cell signaling processes that lead to oncogenesis. In this dissertation, I will present a series of molecular models which, when combined with continuum models and both in vitro and in vivo experiments, describe the molecular basis for membrane morphology changes. In particular, we investigate the mechanisms by which proteins assemble on a bilayer undergoing thermal fluctuations. This work serves to quantify and explain a series of biophysical experiments in molecular detail, and contributes to the development of multiscale models for predicting cell fate

    Bioinformatics for Membrane Lipid Simulations: Models, Computational Methods, and Web Server Tools

    Get PDF
    Biological membranes are complex environments consisting of different types of lipids and membrane proteins. The structure of a lipid bilayer is typically difficult to study because the membrane liquid crystalline state is made up of multiple disordered lipid molecules. This complicates the description of the lipid membrane properties by the conformation of any single lipid molecule. Molecular dynamics (MD) simulations have been used extensively to investigate properties of membrane lipids, lipid vesicles, and membrane protein systems. All-atom membrane models can elucidate detailed contacts between membrane proteins and its surrounding lipids, while united-atom and coarse-grained description have allowed larger models and longer timescales up to microsecond mark to be probed. Additionally, membrane models with mixed phospholipids and lipopolysaccharide content have made it possible to model improved views of biological membranes. Here, we present an overview of commonly used lipid force fields by the biosimulation community, useful tools for membrane MD simulations, and recent advances in membrane simulations

    Membrane bending is critical for assessing the thermodynamic stability of proteins in the membrane

    Get PDF
    The ability of biological membranes to bend is critical to understanding the interaction between proteins and the lipid bilayer. Experimental and computational studies have shown that the membrane can bend to expose charged and polar residues to the lipid headgroups and water, greatly reducing the cost of protein insertion. However, current computational approaches are poorly equipped to accurately model such deformation; atomistic simulations often do not reach the time-scale necessary to observe large-scale rearrangement, and continuum approaches assume a flat, rigid bilayer. In this thesis we present an efficient computational model of a deformable membrane for probing these interactions with elasticity theory and continuum electrostatics. To validate the model, we first investigate the insertion of three membrane proteins and three aqueous proteins. The model finds the membrane proteins and aqueous proteins stable and unstable in the membrane, respectively. We also investigate the sensitivity of these predictions to changes in several key parameters. The model is then applied to interactions between the membrane and the voltage sensor segments of voltage-gated potassium channels. Despite their high numbers of basic residues, experiments have shown that voltage sensors can be stably accommodated in the membrane. For simple continuum electrostatics approaches that assume a flat membrane, the penalty of inserting these charged residues would seem to prohibit voltage sensor insertion. However, in our method the membrane deforms to enable interaction between solvent and the charged residues. Our calculations predict that the highly charged S4 helices of several potassium channels are in fact stable in the membrane, in accord with experimental observations. Experimental and computational evidence has shown that the cost for inserting multiple charged amino acids into the membrane is not additive; it is not as costly to insert a second charge once a first has already been inserted. Our model reflects this phenomenon and provides a simple mechanical explanation linked to membrane deformation. We additionally consider the energetics of passive ion penetration into the membrane from bulk solvent. We use coarse-grained molecular dynamics to guide our input parameters and show that ion permeation energy profiles agree with atomistic simulations when membrane bending is included

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Molecular Dynamics Simulation of Biomembrane Systems

    Get PDF
    PhDThe fundamental structure of all biological membranes is the lipid bilayer. At- tributed to the multifaceted features of lipids and its dynamical interaction with other membrane-integrated molecules, the lipid bilayer is involved in a variety of physiological phenomena such as transmembrane transportation, cellular signalling transduction, energy storage, etc. Due to the nanoscale but high complexity of the lipid bilayer system, experimental investigation into many important processes at the molecular level is still challenging. Molecular dynamics (MD) simulation has been emerging as a powerful tool to study the lipid membrane at the nanoscale. Utilizing atomistic MD, we have quantitatively investigated the effect of lamellar and nonlamellar lipid composition changes on a series of important bilayer properties, and how membranes behave when exposed to a high-pressure environment. A series of membrane properties such as lateral pressure and dipole potential pro les are quanti ed. Results suggest the hypothesis that compositional changes, involving both lipid heads and tails, modulate crucial mechanical and electrical features of the lipid bilayer, so that a range of biological phenomena, such as the permeation through the membrane and conformational equilibria of membrane proteins, may be regulated. Furthermore, water also plays an essential role in the biomembrane system. To balance accuracy and efficiency in simulations, a coarse-grained ELBA water model was developed. Here, the ELBA water model is stress tested in terms of temperature- and pressure-related properties, as well as hydrating properties. Results show that the accuracy of the ELBA model is almost as good as conventional atomistic water models, while the computational efficiency is increased substantially
    corecore