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morphology changes. In particular, we investigate the mechanisms by which proteins assemble on a bilayer
undergoing thermal fluctuations. This work serves to quantify and explain a series of biophysical experiments
in molecular detail, and contributes to the development of multiscale models for predicting cell fate.
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ABSTRACT

MOLECULAR SIMULATIONS OF PROTEIN-INDUCED
MEMBRANE REMODELING

Ryan Patrick Bradley

Ravi Radhakrishnan

KEYWORDS: membrane proteins, intracellular trafficking, curvature focusing,
coarse-grained molecular dynamics simulations, statistical mechanics,
protein mechanics

Membranes organize much of the cell and host a great deal of molecular machinery re-
quired to integrate signals from the outside, regulate the surrounding matrix, change
shape, move, and grow. Understanding how a dense forest of proteins, sugars, and
biomarkers modulates the shape of the cell is necessary to produce more detailed,
accurate predictions of cell behavior, particularly in the studies of cell signaling pro-
cesses that lead to oncogenesis. In this dissertation, I will present a series of molecular
models which, when combined with continuum models and both in vitro and in vivo
experiments, describe the molecular basis for membrane morphology changes. In
particular, we investigate the mechanisms by which proteins assemble on a bilayer
undergoing thermal fluctuations. This work serves to quantify and explain a series of
biophysical experiments in molecular detail, and contributes to the development of
multiscale models for predicting cell fate.
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Chapter 1

Introduction

This dissertation describes a multifaceted investigation of how proteins remodel cell
membranes. This question has a lengthy history, stretching back to the first obser-
vation of cells by Robert Hooke and Antonie van Leeuwenhoek in 1665 [111111]. One of
the key subjects of this work is the lipid bilayer, which possesses a remarkable combi-
nation of strength and elasticity, serving as a two-dimensional fluid encrusted with a
large amount of proteins, sugars, and other biomolecules [9191]. The peculiar size and
composition of the lipid bilayer itself was not identified until Meyer and Overton dis-
covered that anesthetic potency correlated very strongly with partition coefficients in
olive oil, proposing that such compounds work at a very specific lipophilic-hydrophilic
site in their “lipoid theory of narcosis” [135135] in the early 20th century.

Needless to say, our understanding of lipid bilayers and the proteins that organize
their function — and by extension cellular functions — has advanced signficantly
since then, even though many basic questions about its structure and function are
still unanswered. This dissertation seeks to modestly advance the history of the study
of cell membranes using modern tools and minimal models to explain a crucial set
of experiments and lend insight into our understanding of the rich set of biophysical
processes hosted by cell membranes.

1.1 Sequence of this thesis

This document is organized into seven chapters and one appendix. This chapter out-
lines the common themes that run throughout the work. Chapter 22 is an extensive
review of the coarse-grained simulation methodology used in the remainder of the
thesis. The following chapters address several biological systems, namely the forma-
tion of lamellaepodia in cells (chapter 33, based on [380380]), the generation of curvature
required for endocytosis (chapter 44, based on [4444]), and phosphoinositide-ion binding
which may influence cell signaling cascades (chapter 55). In chapter 66 I will reflect
on the process by which molecular measurements are extended via the mesoscale
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to comment on experiments and macroscopic observables drawing on both the “in-
vadopodia” and “endocytosis” stories. In the final chapter (77), I will outline the new
modes of inquiry that these models have opened up, and suggest further uses for these
modeling strategies.

1.2 Fundamental themes

While the dissertation is broadly organized around several questions about how cell
membranes work, there are several threads that run throughout the thesis.

Cellular transport. Intracellular trafficking events and cell membrane morphology
change are essential processes that determine how cells interact with their environ-
ments. A key hypothesis that informs most of the investigation in this thesis is the
claim that form precedes function, and that specific (read: non-flat) membrane mor-
phologies are necessary to facilitate the organization and trafficking of biolmolecules,
particularly the cargo and signals which ultimately determine cell fate. Several chap-
ters in this dissertation will consider a cartoon of these intracellular trafficking pro-
cesses, one of which is drawn in figure (1.11.1).

Figure 1.1: A cartoon depiction of clatrin-mediated endocytosis, including only three of the many
adaptor proteins.

Much of our understanding of these trafficking process requires that we assign
chemical identities and concentrations to the proteins which act in concert to generate
these structures.

Statistical mechanics. This thesis depends on the field of statistical mechanics, a
subset of theoretical physics which seeks to show how the thermodynamic properties
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of large systems emerge from uncertainty about its physical conditions. We employ
molecular dynamics as a metaphorical “microscope” for investigating the collective
action of protein-membrane systems, and the theoretical edifice provided by statistical
mechanics allows us to match our nano-scale observations to macroscopic observables.

Biological observations. If chemical physics married to statistical mechanics provides
the general framework for this work, then biological observations are responsible for
identifying the specific phenomena which we model. This is to say that even though
we perform “theory” in this work, its ultimate purpose is a practical one. We wish to
put accurate, sometimes precise numbers to observable phenomena, particularly those
found in in vitro experiments supplied by expert collaborators in the chemistry and
biology departments. The specificity conferred by matching biological experiments
to our simulations — which admittedly contain orders of magnitude less information,
measured at orders of magnitude higher precision — ensures that our investigation
can be useful to the scientific community at large.

Harmonic springs. One specific mathematical device appears with an uncanny regu-
larity throughout much of the methods used in this dissertation: harmonic springs, or
more generally, quadratic equations. The concept of an harmonic or Hookean spring
(in which energy goes as k(x − x0)2 for some constant k) is found in several places.
Each molecular simulation uses this approximation for covalent bonds. Several coarse-
grained protein simulations use this approximation to model the interactions between
tertiary structures in a protein. Measurements of protein motion in the spectrin ex-
periment in the final chapter rely on a quasi-harmonic assumption that is largely
true in equilibrium simulations. And finally, we precisely measure protein-induced
curvature fields in 44 using a correction to the equipartition theorem, which depends
on the assumption that we can write the energy as in a quadratic form. It’s difficult
to overstate the utility that we gain from modeling physical phenomena as harmonic
springs.

Entropy and fluctuations. The simulation methods used in this dissertation comple-
ment experiments because they provide a description of fluctuation systems below
the diffraction limit. For that reason, we can use simulations to test theories about
what happens in vitro with higher precision and more detail. However, at such small
length scales, entropy and fluctuations play an important role in determining the
overall behavior of the system. In particular, this dissertation will consider how to
distinguishing thermal fluctuations from protein-induced curvature. More broadly,
entropic effects are a common, and important theme. For example, coarse-grained
simulations trade enthalpy for entropy, and lipid bilayers self-assemble thanks to a
delicate balance of hydrophilic and hydrophobic forces which are strongly influenced
by entropy within the bilayer.
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Estimation. Finally, one of the themes that runs through each chapter is the idea
that we can reasonably estimate physical quantities from many different experiments,
with varying degrees of uncertainty. This sounds like an obvious claim, but as we
will see in chapter 66, combining various estimations at different time- and length-
scales is essential to building holistic models that can integrate many incomplete but
accurate views of the cell. A famous statistician, George E.P. Box once explained that
“Since all models are wrong the scientist cannot obtain a “correct” one by excessive
elaboration.” [4242]. We hope to keep this under advisement.

1.3 Novelty and extensibility of this work

The investigations described in this dissertation depend on a massive amount of sci-
entific infrastructure. All of the target systems are observed by combinations of in
vitro and in vivo experiments. The simulations are performed on supercomputing
platforms provided by the University of Pennsylvania and the extreme science and
engineering discovery environment (XSEDE). These platforms run software developed
over decades, designed to efficiently and accurately simulate molecular systems, par-
ticularly the GROMACS integrator [342342], the MARTINI coarse-grained force field [212212],
and the CHARMM atomistic force field [5050]. These simulations were analyzed and visu-
alized using a suite of open-source software also developed over years, with hundreds
of thousands of hours in collective development time.

In this thesis I have sought to apply many of these tools to add molecular detail
to our understanding of protein-membrane remodeling processes. The novelty of this
research originates in the particular blend of theory and simulation that I have used
to address open problems in biology. However, it is my sincere hope that this work
become less novel in the future, and specifically, that many of the computing tools
outlined this thesis be applied to more and more detailed molecular systems so that
computational biophysics investigators may improve their biophysical predictions in
service of answering questions about cell behavior.
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Chapter 2

Coarse-Grained Models for
Protein-Cell Membrane
Interactions

The following coarse-grained molecular dynamics review is adapted from
“Coarse-Grained Models for Protein-Cell Membrane Interactions” [4343] by
Ryan Bradley and Ravi Radhakrishnan

The physiological properties of biological soft matter are the product of collec-
tive interactions which span many time and length scales. Recent computational
modeling efforts have helped illuminate experiments which characterize the ways in
which proteins modulate membrane physics. Linking these models across time and
length scales in a multiscale model explains how atomistic information propagates to
larger scales. This paper reviews continuum modeling and coarse-grained molecular
dynamics methods which connect atomistic simulations and single-molecule experi-
ments with the observed microscopic or mesoscale properties of soft-matter systems
essential to our understanding of cells, particularly those involved in sculpting and
remodeling cell membranes.

2.1 Introduction

In more than three decades since the first molecular dynamics simulation of a pro-
tein [218218], molecular dynamics methods have emerged as an effective tool for sim-
ulating biological soft matter thanks to the careful development of force fields and
simulation methods. The synthesis of models for soft-matter physics and protein dy-
namics provides great insight into a wide range of biological processes important to
understanding human health.

Molecular dynamics simulations at both atomistic and coarser levels of detail allow

5



us to probe the properties of complex biomolecular systems with numerical methods.
While molecular dynamics simulations collapse many degrees of freedom into rela-
tively few, they are nevertheless capable of reproducing a host of important physical
phenomena that result from the collective action of complex particles. In addition
to separate applications in soft matter and protein systems, many simulation studies
have investigated the crucial interactions between lipid bilayers and the proteins that
remodel them. These interactions are crucial to a wide range of cellular processes
including membrane remodeling in endocytosis [1010], the action of protein-gated ion
channels [3939,201201,370370] the assembly of membrane proteins [163163,289289,299299,338338], media-
tion of membrane fusion [2424,108108,300300], and the activation of membrane-protein-based
signaling networks [2121, 256256]. The interactions of proteins with lipid bilayers are vi-
tal to our understanding of these phenomena; this necessesitates the use of models
that span several time- and length-scales (delineated in figure 2.12.1), as well as careful
matching to experimental results.

Simulations have become more powerful in recent years thanks to a combination of
increased computer power, advanced sampling methods, distributed computing, and
specialized hardware [104104,106106,167167]. However, it is the parameterization of force fields
which are capable of matching experimental data at multiple length scales, from X-
ray scattering data to protein crystal structures, that makes these models into useful
microscopes for studying cell systems.

Coarse-grained molecular dynamics simulations employ intermediate resolution in
order to balance chemical detail with system size. They offer sufficient size to study
membrane-remodeling events while retaining the ability to self-assemble. Because
they are capable of simulating mesoscopic length-scales, they make contact with a
wider variety of experiments, many of which lack the precision to easily inform small
atomistic models.

A complete coarse-grained model must include two components: a mapping from
atomistic structures to coarse-grained “beads” and a set of potentials which describe
the interactions between beads. The former defines the geometry or length-scale of
the resulting model, while the latter defines the “force field”. The parameterization
of the force field is essential to the performance of the model, which is only relevant
insofar as it can reproduce experimental observables. Recent improvements to widely-
disseminated force fields have strengthened both their transferability — the ability
to use a model on a novel biophysical system with straightforward parameterization
— as well as tunability, the ability to customize a model to match a desired quantity
[9292,149149,330330].

In this review, we will describe the characteristic methods for developing CGMD
models, namely the “bottom-up” force-matching, and “top-down” free energy-based
approaches. We will illustrate the myriad ways in which these models can reproduce
protein dynamics, bilayer physics, and experiments which probe protein-membrane
interactions. We will survey the applications of coarse-grained models to protein-
membrane interactions, and describe the ways in which CGMD simulations make
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Figure 2.1: Diagram of computational methods for studying biophysical systems across a range of
time- and length-scales. Representative snapshots depict an all-atom lipid bilayer, peptides embed-
ded in a coarse-grained bilayer, and proteins remodeling a continuum mechanics membrane model.
Bilayers were simulated with the CHARMM36 [166166] and MARTINI [212212] force fields, and rendered
with Visual Molecular Dynamics [142142].
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Figure 2.2: Representative snapshots of all-atom (upper right) and Martini coarse-grained (bottom)
molecular dynamics simulations of a 4:1 dioleoylphosphatidylcholine with dioleoylphospatidylserine
(DOPC/DOPS) bilayer. The upper left shows the coarse-grained mapping of a single DOPC lipid,
with beads colored by bead type (gray for hydrocarbons-, pink for glycerol-, brown for phosphate-
and blue for choline-type). The all-atom system contains 800 lipids, while the coarse-grained system
contains 3,200 lipids (water molecules are not pictured here). Bilayers were simulated with the
CHARMM36 [166166] and Martini [212212] force fields, and rendered with Visual Molecular Dynamics [142142].
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contact with experiments and simulations at larger and smaller length scales. While
the array of coarse-grained tools can be used to probe cell-biology problems in silico,
there is also much to be gained from studying these models as a whole, by studying the
communication of information between different length scales in biological processes.

2.2 Methods for parameterizing coarse-grained force fields

The defining feature of a coarse-grained biophysical model is the length-scale at which
chemical components are modeled; such a model necessarily lumps many atomic
degrees of freedom into a single coarse-grained bead. As with any classical MD
approach, a CGMD model treats molecules classically, integrating Newton’s laws of
motion according to potentials which define the forces between each bead in the
system.

mi
∂2ri
∂t2

= Fi, Fi = −∂V
∂ri

, i = 1 . . . N

These equations describe the motion of N particles, each with mass mi, experienc-
ing a force Fi due to a potential energy function V, itself a function of the configuration
of all atoms in the system which are close enough to exert a measurable force. Several
software packages are capable of integrating these equations, including the popular
GROMACS [342342], NAMD [251251], CHARMM [166166], and AMBER [356356] packages. Many
of the coarse-grained methods utilize one of these integrators to perform simulations.

Molecular dynamics simulations makes contact with observables like temperature
and pressure via statistical mechanics. Temperature is defined by kinetic energy of
the particles, while macroscopic pressure is defined by the average of the molecular
virial [3434] as follows.

1
2NdfkBT = Ekin, Ekin = 1

2

N∑
i

mivi · vi

P = 2
V

[Ekin −Ξ] , Ξ = −1
2
∑
i<j

rij · Fij

In this equation, V is the volume of the system, Ekin is the kinetic energy, rij is
the distance vector between particles i and j, Fij is the corresponding force, Ndf is the
number of degrees of freedom (3N− 3 for N particles, minus any constraints), and
Ξ is virial. The choice of these forces and the physical quantities they represent –
dispersion forces, electrostatics, and bonded forces – define the model and determine
its ability to reproduce observed physical phenomena. In this section we will first
summarize the early advances in coarse-graining and then review three representa-
tive coarse-grained models built from structure-based, force-based, and energy-based
force-fields, respectively. Because coarse-graining requires a simplification of many
degrees of freedom, it is impossible to build a model which simulateneously repro-
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duces all of the geometric, thermodynamic, and kinetics features of a physical system.
To build a coarse-grained model, it is therefore necessary to choose which physical
properties are essential to the behavior of the target system. We can classify the
most popular models by which property they aim to reproduce, namely the geome-
try of the system (structure-based), the distribution of forces between particles, or
thermodynamic properties (energy-based). The representative models described in
sections 2.2.22.2.2 through 2.2.42.2.4 each take these approaches, though there is significant
overlap and these are not the only suitable coarse-grained methods. In fact, much of
the power of coarse-graining method lies in its flexibility and the ease with which it
can be adapted to new applications.

2.2.1 Early Coarse-grained models and dissipative particle dynamics

The development of coarse-grained models for interfacial systems was made possible
by the need to bridge detailed atomistic simulations with continuum methods. The
seminal coarse-grained modeling approaches drew from many different methods, in-
cluding both Monte Carlo and molecular dynamics integration schemes, lattice and
off-lattice models, and either hard sphere or Lennard-Jones potentials. While a com-
prehensive summary of these modeling approaches is beyond the scope of this review,
early development of these models and connections to earlier work is summarized in
a pair of reviews [230230, 294294]. In general, early coarse-grained models can be classified
by the number of molecules that are mapped onto a single coarse-grained particle.

Early models mapped a single molecule onto one coarse-grained particle in order
to simulate spontaneous phase separation. Larson employed a Monte Carlo scheme
[176176] to simulate oil-water-amphiphile systems on two- and three-dimenaional cubic
lattices, while Smit and coworkers used molecular dynamics to simulate these systems
using Lennard-Jones particles [310310]. In 1998, Goetz and Lipowsky modeled surfactant
molecules by Lennard-Jones spheres connected by harmonic bonds in order to simulate
the self-assembly of bilayers and micelles and calculate the resulting stress and density
profiles [114114]. With a molecular representation they calculated the bending rigidity of
the bilayer from its fluctuation spectra, and demonstrate that these models are able
to reproduce both bending and protrusion modes [115115].

To reach larger time- and length-scales, the dissipative particle dynamics (DPD)
method uses a much coarser mapping, in which one site may represent many molecules
in a small fluid volume [9494, 138138]. There are three types of forces present in DPD
models: a conserved soft repulsion force, pairwise dissipation forces, and pairwise
random forces. The balance of dissipation and random forces provides the thermostat
for the DPD model, and since this thermostat preserves the momentum of individual
particles, these models provide correct hydrodynamic behavior. In addition to using
a coarser mapping, DPD simulations use a longer time-step due to the use of soft
repulsion forces. It is necessary to match the observed compressibility in a DPD
simulation to the target fluid in order to study the phase behavior and interfacial
tension of the model fluid [120120]. The DPD method has been applied to biological lipid
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bilayers [350350], membrane fusion processes [118118,300300], and bilayers with proteins [348348],
and its connections to the mesoscale have been reviewed extensively [116116,121121,349349].

It is clear that the full spectrum of coarse-grained modeling approaches contains
contributions from several different fields. Early coarse-grained simulations were made
possible by advances in computer hardware, which made it possible to simulate larger
interfacial systems at finer levels of detail. These simulations began to bridge the
gap between the atomistic simulation of lipids and protein systems with mesoscale,
statistical mechanics models for membranes. In this section we have cited some of
the milestones in coarse-grained model development. To review more recent coarse-
grained simulation methods, and to limit the scope of this review, we will now turn our
attention to three models which represent the structure, force, and energy-matching
approaches. This list is by no means comprehensive, and there are many other coarse-
grained models for simulating biological, interfacial systems available in the literature.

2.2.2 Structure and energy matching in the CMM-CG model

In the early 2000s, Klein and coworkers developed a coarse-grained model for phos-
pholipid bilayers by matching the structural and thermodynamic properties of water,
hydrocarbons and lipid amphiphile to experimental measurements and all-atom sim-
ulations. The resulting force field, titled CMM-CG, has been used to investigate a
range of polymer systems as well as those containing nonionic liquids and lipids.

The model was originally developed to reproduce structural properties of a dimyris-
toylphosphatidylcholine (DMPC) bilayer [295295]. This requires careful assembly of
water, hydrocarbon, and amphiphilic components. Given that water is the largest
constituent of many soft-matter systems, and indeed makes most condensed mat-
ter systems truly “soft”, it is necessary to reproduce both its structure and phase
transitions. The CMM-CG model maps three water molecules onto a single bead.

Non-bonded forces are modeled with general Lennard-Jones (LJ) potentials with
a potential well depth (εαβ) and zero-position (σαβ) which is tuned to reproduce the
desired structure and thermodynamic properties of the target system. The softer 12-4
potential was used to model dispersion forces in water by matching the melting tem-
perature, density, and vapor pressure observed in bulk and thin-film test simulations.

V (rij) = 3
√

3
2 εαβ


(
σαβ
rij

)9

−
(
σαβ
rij

)6
 (non-bonded) (2.1)

V (rij) = 27
4 εαβ


(
σαβ
rij

)12

−
(
σαβ
rij

)4
 (water) (2.2)

In the CMM-CG model, the well depth in water-water interactions was chosen
to simultaneously provide a melting temperature of 212.1K, a boiling temperature
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of 373.15K, and a minimum well-depth at 4.58Å, which is necessary to recover the
correct density of water at 303.15K in a three-water bead [295295]. To model soft-
matter systems, it is necessary to include hydrophobic chemical components; in this
case represented by a collection of n-alkanes. Simulations of alkanes in the CHARMM
force field [9797] provide target structural data for harmonic bond and angle potentials
given by equation 2.32.3. These harmonic bond and angle are standard among many
molecular dynamics force fields; a comprehensive summary of many common potential
functions can be found in the GROMACS manual [341341,342342].

Vbond(r) = kbond
2 (r − req)2 , Vbend(θ) = kbend

2 (θ − θeq)2 (2.3)

In equation 2.32.3, Vbond and Vbend represent the contribution of the bond stretching and
bending to the potential energy function, kbond and kbend are the corresponding length
and angle stiffnesses, and req and θeq are the equilibrium bond length and angle, re-
spectively. Tuning the equilibrium values and spring constants specifies the structure
and fluctuations of individual molecules. Likewise, the inter-molecular structure and
thermodynamics of the target fluid depends on non-bonded interactions, which are
modeled with a 9-6 LJ potential. Nonbonded parameters were chosen to reproduce
phase separation with water, as well as experimental bulk density and vapor pressure
measurements.

Finally, to assemble hydrophobic, hydrophillic, and water components into a vi-
able model for amphiphiles, non-bonded parameters must be chosen to reproduce
the physics of lipid bilayers. Classic coarse-grained methods propose pair potentials
between CG beads according to the Boltzmann inversion method. In this method,
a pair correlation function, or radial distribution function (RDF) g(r) defines the
probability of finding a particle at distance r from a reference particle such that the
conditional probability of finding the particle is ρ(r) = ρg(r), where ρ is the average
number density of the fluid. This pair correlation function may be calculated by
analyzing an atomistic trajectory mapped onto coarse-grained beads. A potential of
mean force (PMF) between CG beads is then estimated by equation 2.42.4 where gaa(r)
is the RDF measured from atomistic simulation, kB is the Boltzmann constant, T is
absolute temperature, and αn is a scaling factor (corresponding to the nth iteration
of the estimate) designed to include the effect of interactions with the (necessarily)
heterogeneous environment.

Vn(r) = αn {−kBT ln(gaa(r)} (2.4)

The Boltzmann inversion method may be iteratively corrected according to equation
2.52.5 to correct the tabulated potentials until the pair-correlation functions for the
atomistic and coarse-grained systems agree.

Vn+1(r) = Vn(r) + kBT ln gn(r)
gaa(r)

(2.5)
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In practice, since the pair correlation function computed in an homogeneous en-
vironment is not equivalent to the potential of mean force in an inhomogeneous en-
vironment, it is necessary to include the effects of correlated contributions from the
surrounding environment, as well as contributions from bonded intra-molecular forces.
To account for these contributions, a reverse Monte Carlo (MC) method proposed by
Lyubartsev and Laaksonen [203203] is used to construct an effective pair potential. In
the canonical ensemble, we may write the expectation for an observable RDF as:

〈gn(ri)〉 =
∫
gn(ri)e−βV dr∫
e−βV dr

where β is the inverse temperature (kBT)−1. In the following formulation, j indexes
atoms or sites, the ri refer to a set of inter-site distances which define the RDF, and
n indexes the iterated calculations of the RDF given by gn(ri). Taking the partial
derivative gives the following fluctuation formula.

∂ 〈gn(ri)〉
∂V (rj)

= −β [〈gn(ri)gn(rj)〉 − 〈gn(ri)〉 〈gn(rj)〉]

This relates changes in the coarse-grained RDF to changes in tabulated potentials
while considering cross-correlations between subject particles and their environment.
Linearizing this equation gives a solution according to equation 2.62.6, which will yield
self-consistent pair potentials in agreement with the atomistic data.

〈gn(ri)〉 − gtarget(ri) =
N∑
j=1

∂ 〈gn(ri)〉
∂Vn(rj)

4Vn(rj) (2.6)

It can be shown that iteratively solving for these potentials Vn with Monte Carlo
methods (known as reverse Monte Carlo) can generate effective pair potentials which
reproduce soft matter properties for a particular system. However, this method suf-
fers from reduced transferability because it depends on a particular thermodynamic
ensemble. That is, the target RDF includes information about temperature, density,
and most importantly, composition, which limits its applicability to novel systems.
For this reason it is necessary to test the model against thermodynamic data.

The relevant thermodynamic property in amphiphilic systems is the surface ten-
sion, which can be calculated from MD simulation by equation 2.72.7, where Lz is the
box-size normal to the interface and Pij is the ij component of the pressure tensor.
Its condensed phase analog is the interfacial tension, which can be estimated with a
combination of experiment and theory [7474], however these measurements are subject
to large errors.

γ = Lz
2

〈
Pzz −

Pxx + Pyy
2

〉
(2.7)
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Matching the area-per-lipid and bilayer density (or electron density profile if match-
ing to AAMD simulations or neutron diffraction) confirms that the CGMD has the
correct structure. Tuning non-bonded cross-terms between lipid headgroups and hy-
drophilic tails will influence the observed surface tension or its conjugate variable,
area-per-lipid, in simulations under zero tension. Capturing both condensed phase
structure and energies in this way is necessary for building an accurate model. Con-
tact with experiments will be discussed further in section 2.2.52.2.5.

2.2.3 Force matching with the MS-CG model

Gregory Voth and coworkers have proposed the concept of force-matching to develop
a rigorous coarse-grained force field directly from forces measured in all-atom simu-
lations. This is necessary, they argue, because other coarse-grained approaches suffer
from reduced transferability compared to all-atom counterparts, namely because the
coarse-grained simulation may not contain the correct thermodynamic ensemble. In-
sofar as the multi-body coarse-grained PMF is derived from structure factors which
depend on temperature, pressure, and composition, they cannot be transferred to
new systems.

To avoid this problem, they propose a variational method in which a coarse-grained
force field is systematically developed from all-atom simulations under the correct
thermodynamic ensemble [151151]. In the statistical framework developed by Izvekov
and Voth [150150,151151,291291], it is possible to develop the exact many-body coarse-grained
PMF from a trajectory of atomistic forces with a sufficiently detailed basis function.

In the original force-matching method developed by Ercolessi and Adams [9393],
a set of parameters defining classical forces of a pre-defined form are optimized by
minimizing their squared difference from reference forces provided by ab initio simu-
lation. This fitting procedure becomes intractable with the many components found
in biochemical systems. To circumvent this optimization problem, Voth et al. have
designed the force field to be linear in the fitting parameters by constraining their
choices of basic functions to those that have zero derivatives between mesh points.
This allows one to optimize the force field by finding the least-squares solution to an
overdetermined system of linear equations.

They start with a collection of sampled configurations from an atomistic simulation
of the target system and calculate the reference forces between atoms of a particular
type. After decomposing their target force into a short-ranged part approximated by
a cubic spline and a long-ranged Coulomb part they solve the overdetermined set of
linear equations given by equation 2.82.8.

K∑
β=1

Nβ∑
j=1

(
−f(rαil,βjl, {rαβ,κ}, {fαβ,κ}, {f ′′αβ,κ})−

qαβ
r2
αil,βjl

)
nαil,βjl = Fref

αil (2.8)
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In equation 2.82.8, the {rαβ,κ} correspond to the spline mesh at points κ for pairs of
atoms of type α and β, while {fαβ,κf ′′αβ,κ} are spline parameters that ensure continuous
derivatives f ′(r) at the mesh points and define the short-ranged part of the force. The
subscript αil labels the i-th atom of type α in the l-th sampled atomic configuration.
Solving these equations minimizes the Euclidean norm of vectors of residuals, and can
be solved on a minimal set of atomistic snapshots using a singular value decomposition
(SVD) algorithm [3131]. By adding the Coulomb term to the short-ranged potential
above, this technique allows for the inclusion of explicit electrostatics. The MS-CG
model reproduces site-to-site RDFs from atomistic MD simulations in the as well as
the density profile perpendicular to the bilayer normal in DMPC bilayers [151151].

The MS-CG method has been extended to access still larger time- and length-scales
using an approach called hybrid analytic-systematic (HAS) coarse-graining. In this
method, the MS-CG force field provides the in-plane center-of-mass lipid interaction
potentials while an analytic Gay-Berne (GB) liquid crystal model describes any inter-
monolayer and out-of-plane interactions. The GB liquid crystal model uses ellipsoidal
particles which interact with an anisotropic form of the Lennard-Jones 12-6 poten-
tial, and has been successfully applied to higher-resolution coarse-grained modeling
with explicit water [243243]. In the HAS approach, however, the GB interactions replace
those with explicit solvent, providing significant computational efficiency. This model
successfully self-assembles and reproduces the undulation spectrum, tensionless area
per lipid, and area compressibility modulus in agreement with experimental mea-
surements. It has been used to simulate a 200 nm liposome [1616] and N-BAR protein
remodeling of a liposome [1313].

2.2.4 The energy-based approach of the Martini force field

The Martini force field developed by Siewert-Jan Marrink and co-workers eschews sys-
tematic structure-matching in pursuit of a maximally transferable force field which
is parameterized in a “top-down” manner, designed to encode information about the
free energy of the chemical components, thereby increasing the range of thermody-
namic ensembles over which the model is valid. To date, it has been used to study
a broad range of biological soft-matter systems described in sections 2.2.52.2.5, 2.3.22.3.2, and
2.42.4.

The Martini model employs a four-to-one mapping of water and non-hydrogen
atoms onto a single a bead, except in ring-like structures, which preserve geometry
with a finer mapping. Molecules are built from relatively few bead types which
are categorized by polarity (polar, non-polar, apolar, and charged). Each type is
further distinguished by hydrogen bonding capabilities (donor, acceptor, both, or
none) as well as a score describing the level of polarity. Like the CMM-CG and
MS-CG models, Lennard-Jones parameters for non-bonded interactions are tuned for
each pair of particles. These potentials are shifted to mimic a distance-dependent
screening effect, and increase computational efficiency. Charged groups interact via
a Coulomb potential Uelec(r) = qiqj

4πε0εrr with a low relative dielectric of (εr = 15) for
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explicit screening. This allows the use of full charges while reproducing salt structure
factors seen in previous atomistic studies [212212] as well as the hydration shell identified
by neutron diffraction studies [6363]. Non-bonded interactions for all bead types are
tuned to semi-quantitatively match basic measurements of density and compressibility
[187187].

Bonded interactions are specified by potential energy functions which model bonds,
angles, dihedrals, and impropers with harmonic functions, with relatively weak force
constants to match flexibility of target molecules at the fine-grained resolutions.

Vb = 1
2Kb(dij − db)2 (bond)

Va = 1
2Ka(cos(φijk)− cos(φa))2 (angle)

Vd = Kd(1 + cos(θijkl − θd))2 (dihedral)
Vid = Kid(θijkl − θid)2 (improper dihedral)

Here V represents the component of the potential energy function arising from
bond, angle, dihedral, and improper dihedral contributions, the set {Kb,Ka,Kd,Kid}
represents the corresponding stiffness constants, and the set {db, φa, θd, θid} repre-
sents the equilibrium values for these interactions. Dihedral potentials are only im-
plemented for peptide backbones. Alkanes are constructed to reproduce dihedral,
bond, and angle parameters given by atomistic simulations in the GROMOS force
field [5959]. Simulations of small ice cubes surrounded by water show that Martini ice
is in equilibrium with liquid water at 290K and melts within 5K of this temperature.
Like many CG models, Martini water becomes supercooled as the temperature is
lowered, failing to freeze spontaneously until 240K [210210].

The defining feature of the Martini force field is the selection of non-bonded pa-
rameters which are optimized to reproduce thermodynamic measurements in the con-
densed phase. Specifically, the Martini model semi-quantitatively reproduces the free
energy of hydration, the free energy of vaporization, and the partitioning free ener-
gies between water and a collection of organic phases, obtained from the equilibrium
densities in both phases: ∆Goil/aqueous = kBT ln (ρoil/ρaqueous). These calculations re-
quire long MD simulations of two-phase systems with very dilute concentrations of
the target substance. Results agree to within 2kBT for many of these properties [212212].

Systematic tuning to experimental partitioning free energies was used to select
particle types for amino acids, represented with up to four beads which correspond
to the polar character of the amino acid. Additionally, the pre-determined secondary
structure modulates the character of the beads; backbone hydrogen bonds found
in helices have reduced polar character [212212]. While the building blocks for the
Martini model were chosen to match thermodynamic data in general, any application
of Martini model can be optimized by comparison to AA simulation, especially when
designing bonded interactions to reproduce the protein structure.
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In the Martini model, calculation of the partitioning free energy of water in hexade-
cane agrees with the measurement of 25 kJ−mol−1 observed in Fischer titration [282282].
More broadly, a combination of experiments and predictive modeling efforts have
quantified partitioning free energies for other molecules [8484, 352352] and contributed to
the parameter choices made by Marrink et al. [212212]. Spin-echo nuclear magnetic
resonance experiments provide self-diffusion data for water and alkanes [8181,169169].

The hydration free energy can be calculated by comparing the partitioning of
target molecules between liquid and vapor water phases, while the vaporization free
energy can be calculated from the simulation of liquid-vapor equilibrium. In these
simulations concentrations of 0.01 mole fraction provide a reasonable approximation
of infinitely dilute solutions. A comparison of thermodynamic properties by Baron
et al. [2525] showed that this CG model tends to overestimate the water-oil repulsion
with free energies of vaporization and hydration which are systematically high, but
still follow the correct trend.

The surface tension measures the free energy cost of adding area to the interface
between solvents. Simulations were compared to drop volume tensiometry measure-
ments with good agreement for water, vapor, and dodecane mixtures [88]. Electron
density profiles from X-ray diffraction data on multilamellar arrays of bilayers provide
a measure of the thickness. While neutron scattering is weaker, specific deuteration
of different lipid components gives a local contrast agent without chemical modifica-
tions [232232].

It is clear that the coarse-grained models described in this review often share the
same target data. In this section, we have summarized the most important experi-
ments which inform the Martini model in order to demonstrate the breadth of the
physics which these data capture. While the three CG models reviewed in this paper
produce extremely rich physics, they draw on data sets with orders of magnitude
greater detail and information. Some of the key differences between these models are
summarized in table 2.12.1. For this reason, there is no one “correct” method for incor-
porating these data into an accurate coarse-grained model. Indeed, it is impossible for
any coarse-grained model to simultaneously match thermodynamic, structural, and
kinetic features perfectly. Therefore, it is necessary for model developers to choose
specific experimental results which are relevant to the desired application. In the next
section we will take a deeper look at how these experiments can be used in a general
coarse-grained model.

2.2.5 Reproducing experiments in coarse grained models

The coarse-grained model-development process described in the preceding sections is
often iterative. Beginning with first-principles estimates for potential energy func-
tions, these functions are initially parameterized from fundamental structure and
thermodynamics measurements. Since the function between these parameters and
higher-order experimental observables is unknown by definition, the model is then
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Model Key Methods Key Target Data

CMM-
CG

[295295,301301]

structure matching, energy
matching, Boltzmann inversion,

reverse Monte Carlo

density distributions, interfacial
tension, area per lipid, bending
modulus, area compressibility

modulus, lipid order parameters

MS-CG
[1616,151151]

bottom-up force matching,
variational optimization, cubic
spline basis functions, hybrid

analytic-systematic
coarse-graining, screened

electrostatics

atomistic site-to-site radial
distribution functions, density
distributions, bending modulus,
area compressibility modulus,

lipid diffusion rates

Martini
[210210,212212]

top-down energy matching,
potential of mean force between
phases, bilayer stress profile, free
energy of lipid desorption or

flip-flop, short-range electrostatics

free energy of hydration, free
energy of vaporization,

partitioning free energies, surface
tension, interfacial tension,

density distributions, bending
modulus, area per lipid

Table 2.1: Summary of key modeling calculations and target data for representative coarse grained
models discussed in sections 2.2.22.2.2, 2.2.32.2.3, and 2.2.42.2.4. This list is not exhaustive, however, and these
models reproduce a wide range of experimental data.

iteratively tuned to match these experimental target data. In this section we will
summarize the range of experiments which can validate a coarse-grained model.

Titration. One of the guiding principles for energy-based coarse-graining is that
the model should show the correct partitioning free energies of its constituents, since
this property describes the attraction or repulsion between phases. This quantity can
be measured by titration methods which determine the density of one species in a
fluid of the other, at equilibrium. For example, Karl Fischer titration of water in
hydrocarbons [3333,282282] is the target data for alkane-water interactions in the Martini
model. Salt solution diffraction experiments show two hydration shells around these
ions, and this justifies the inclusion of hydration-shell waters in coarse-grained ion
models [6363]. These methods may be extended to more complex systems, namely
the partitioning of amphiphilic solutes onto membranes, using titration calorimetry
[272272,338338,339339].

Magnetic resonance spin echo. The self-diffusion coefficient is the diffusion rate of
a particle when its chemical potential gradient is zero, given by D∗i = Di(∂ ln ci/∂ ln ai)
where ci is concentration, ai is activity, and Di is the diffusion coefficient of the
species [148148]. Because the diffusion rate reflects the chemical potential, modeling it
correctly helps ensure the correct equilibrium density of the fluid. The self-diffusion
coefficient for a particle type i may be measured in simulations via Einstein’s diffusion
equation, which relates the diffusion constant to the mean-squared displacement of
the particle over time. It is given by the following equation, where N is the number
of particles, rj(t) is the position of particle j and time t and the brackets denote an
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ensemble average over all starting times.

D = lim
t→∞

1
6Nt

〈
N∑
j=1

(rj(t)− rj(0))2
〉

Self-diffusion coefficients can be measured with magnetic resonance spin echo [3333,
8181, 169169]. In a nuclear magnetic resonance (NMR) spin-echo experiment, the self-
diffusion is a proportionality constant which relates the logarithm of echo intensity
and strength of the magnetic field gradient. These experiments make direct contact
with CGMD simulations, which quantify diffusion rates by the slope of the mean-
squared displacement. For example, the Martini polarizable water molecule matches
experimental diffusion coefficients [371371].

Neutron and X-ray scattering. The behavior of salts in water has a strong effect
on the electrostatics of any coarse-grained system. Because neutrons are electrically
neutral and interact only with the nucleus of a particular atom, they are subject
to very short-ranged interactions and therefore penetrate the sample very efficiently.
In scattering experiments, incident particles impart and receive momentum energy
from the sample and scatter at a measurable angle. Measuring the number, angle,
and energy (the scattering intensity) of the diffracted neutron provides a time- and
space-dependent auto-correlation function via Fourier transform. In this way, neutron
scattering is capable of measuring the density and time-dependent correlations of a
fluid. This resulting dynamical structure factor can be directly compared with the
radius of gyration in order to tune non-bonded interactions in simulations. These
methods are reviewed by Fischer et al. [100100]. Neutron scattering can provide a density
profile of the bilayer, however only recent experimental methods have measured this
density in fully hydrated bilayers [170170].

X-rays may be used in place of neutrons in order to measure the electron density
profiles of lamellae in vesicles and stacks. Small-angle X-ray scattering (SAXS) is used
to quantify molecule size, low-angle X-ray scattering (LAXS) provides electron density
profiles, and wide-angle X-ray scattering (WAXS) can measure in-plane features of
the bilayer, including micro-domains [225225, 232232]. Both neutron and X-ray scattering
can provide density profiles which describe the thickness of a bilayer. Combined
with volume information, these can be used to estimate the area-per-lipid, which is a
crucial structural feature of a bilayer simulation. The range of scattering experiments
is often difficult to match to biologically relevant systems, and different methods
often produce conflicting results. Specific algorithms for fitting these data to CGMD
simulations are under development [250250].

Significant effort must be devoted to faithfully reproducing the area-per-lipid in
bilayer simulations not only to match experimental structure measurements, but be-
cause interfacial area and surface tension are conjugate thermodynamic variables.
Recent re-parameterization of the CHARMM force field for lipids [166166] optimizes the
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lipid partial charges and Lennard-Jones parameters using QM calculations and ex-
perimental data to optimize the area per lipid in the tensionless ensemble. A survey
of integrator parameters in GROMACS for a number of force fields [253253] also pro-
vides guidance for choosing correct short- and long-range cutoffs and water models
necessary to achieve the correct lipid areas and tensions in the correct phase.

Nuclear magnetic resonance. In order to characterize the order in lipid hydropho-
bic tails, one can measure the angle between a chemical bond and the bilayer normal.
This gives the second-rank order parameter P2 = 1

2(3 cos2 θ − 1). Deuterium mag-
netic resonance (DMR) experiments use selective deuteration of carbon atoms in the
hydrophobic tails. The order parameter is a function of the residual quadropole
coupling value. DMR does not require sonication, in contrast with spin-label NMR
measurements [287287]. Coarse-grained lipids models do not include all of the available
order-parameter data because they possess fewer degrees of freedom in their tails;
instead, angles measured in CGMD tails may be tested for agreement with atomistic
simulations, which must reproduce the order parameter.

2.2.6 Phase transition and tension measurements.

The area per lipid and surface tension are conjugate variables; all other things being
equal, fixing one should fix the other, for a particular thermodynamic ensemble.
Given that these properties depend strongly on the chemical composition (lipid type,
hydration level) of a particular system, reproducing the phase transition temperatures
is a useful indicator that the model is robust.

Most phase transition data is provided by measuring density via scattering or or-
der parameters via NMR at various temperatures. To observe the phases directly,
epifluorescence microscopy improves upon these measurements by making it possible
to resolve microdomains and phase coexistence in monolayers [219219]. Cryotransmis-
sion electron microscopy (cryo-TEM) and differential scanning calorimetry are also
used to characterize the phase behavior of bilayers [303303]. Densitometry, and acoustic
measurements have been used to study dipalmitoylphosphatidylcholine (DPPC) mul-
tilamellar vesicles, extracting the temperature-dependence of phase transitions and
plausible theories for the kinetics of these transitions [162162]. This topic is described
further in section 2.52.5.

In monolayer systems, the pressure-area isotherm can be measured via Langmuir
trough or captive bubble surfactometer. These measurements can be mimicked in
coarse-grained simulations in order to validate the model against experiments, quan-
tify finite size effects, and investigate the effects of composition on the isotherm [2222]
and the dynamics of monolayer buckling [2323, 301301]. Since bilayers are unstable when
lipids include fewer than 9 carbon atoms per tail, the observation of spontaneous
pore formation in the Martini model indicates that the balance of hydrophobic repul-
sion and entropic repulsion qualitatively matches experiments. This balance is also
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confirmed via calculation of the lateral stress profile, which is compared to atomistic
simulation [212212].

More generally, calculations of line tension in bilayers with mixed compositions
agree semi-quantitatively with those measured by fitting fluorescence microscopy of
mixed composition giant unilamellar vesicles (GUVs) to elastic theory, or micro-
pipette aspiration [2828, 332332]. Another measure of bilayer stability is the water per-
meation rate. Permeability coefficients from vesicles can be measured via microtur-
bimetry and differential scanning calorimetry. These rates also help set the time-scale
of the coarse-grained simulation [210210].

Simulations have the ability to measure local pressure from the first moment of the
stress profile [314314]. When averaged across the bilayer plane, this gives the stress pro-
file, which may be compared to atomistic simulations. The integral of the stress profile
along the bilayer normal z between z1 and z2 across the mid-plane z0 also quantifies
the intrinsic curvature C0 via κC0 =

∫ z2
z1

(z− z0)Σ(z)dz. In this formulation, the local
pressure tensor P(r) gives the lateral pressure profile by Σ(z) = 1

2(Pxx + Pyy)−Pzz.
These calculations have made it possible to tune the balance of forces in Martini
model bilayers in qualitative agreement with atomistic simulation [212212]. Given an
estimate for bending rigidity, the resulting spontaneous curvature values agree with
fluorescence spectroscopy of supported lipid bilayers experiments for several lipid
types [124124]. Calculation of the local stress tensor also makes it possible to study the
position-dependent stress profile generated by membrane-protein systems, such as the
mechano-sensitive protein channel MscL [242242,370370]. Applying a similar method to the
study of the stress profile in atomistic simulations makes it possible to quantify the
both the chemical and entropic contributions to the tension [190190].

The integral of the lateral stress profile itself gives the surface tension
(σ = −

∫ z2
z1

Σ(z)dz) of the bilayer. Because the tension and its conjugate variable
area-per-lipid determine the phase of the system, there has been much debate on
choosing the correct ensemble for biological simulations of lipid bilayers. In exper-
iments, bilayers adjust their area per lipid to minimize contact between water and
hydrophobic lipid tails. For bilayers with no spontaneous curvature, this gives free
energy minimum (∂G/∂A)A0 = γ which must be zero. Some have argued that cou-
pling between area and thickness may introduce another variable, changing the free
energy dependence to include non-zero tension. However, in practice, this coupling is
very weak, and simulation studies find good agreement with experiments when using
zero tension [9898,152152,209209,315315].

Measuring elastic properties. Lipid bilayers possess an incredible combination of
material properties which make them ideally suited to hosting biophysical processes
and compartmentalizing the cell. Several experimental methods are able to measure
the elastic properties of a bilayer. Many of these methods use the Helfrich model to
interpret their results [131131]. In this model, the membrane is treated as an infinites-
imally thin elastic sheet with energy terms from bending, Gaussian curvature, and
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surface tension. It is given by equation 2.92.9 where κ is the bending modulus, H is the
mean curvature, H0 is the intrinsic curvature (zero for a symmetric bilayer), G is the
Gaussian curvature, κ̄G is the Gaussian bending modulus, and γ is surface tension.

Hel =
∫ {

κ

2 (2H −H0)2 + κ̄GG+ γ
}
dA (2.9)

The Helfrich approximation forms the basis of many mesoscale models, briefly de-
scribed in section 2.122.12. The bending rigidity κ describes the energy required to bend
the membrane to a unit curvature, and is usually estimated at ∼ 20kBT for biological
lipid bilayers. Because the Gaussian curvature is invariant under deformations, it is
relevant only to topology changes in the membrane, i.e. vesicle fusion or phase transi-
tions, or when the Gaussian rigidity varies along the spatial coordinate. The bending
modulus (or bending rigidity) can be measured in a number of ways. The Fourier
transform of the Helfrich Hamiltonian given by equation 2.102.10 measures the height-
height auto-correlation function (otherwise known as the undulation spectrum). For
bilayers with nearly zero surface tension (∼0.1 N/m), it is possible to fit this function
in the low-q regime where κ may be extracted as a pre-factor.

〈
|uund(q)|2

〉
= kBT

A(κq4 + γq2) (2.10)

Here q is the transformed variable defining the Fourier transform, and u2
und(q)

is the height-height auto-correlation function. These fluctuations can be directly
calculated from video phase contrast microscopy which quantifies the bilayer shape
changes according to the fluctuation spectra given by equation 2.102.10 [239239]. Shear
flow experiments on giant vesicles can be used to measure the bending rigidity by
relating the deformation of the vesicle to the flow in a theory which includes thermal
membrane undulations [6868]. Micropipette aspiration experiments provide a measure
for bending rigidity as well as the area compressibility modulus which is given by
KA = A?

0(∂γ/∂A0)T where A0 is the area per lipid and A?
0 is the area per lipid at

the free energy minimum. This study indicates that bending rigidity increases with
the number of carbons [264264]. In addition to the bending modes, contributions to the
energy arise from peristaltic modes corresponding to fluctuations in the inter-leaflet
distances, and protrusion modes corresponding to lipid motion normal to the bilayer
plane (and therefore high wave-number modes in equation 2.102.10). In most cases,
these modes are decoupled from the bending modes. Due to the high resolution
provided by bilayer simulations, recent studies have characterized these undulations,
peristaltic motions, and area compressibilities for comparison with experiment and a
better understanding of membrane elasticity [4545,9898,127127,189189,209209].

Cholesterol molecules, present in biological membranes, induce changes in bilayer
elasticity and a reduction in the area per headgroup. This effect has been investigated
using a number of atomistic force fields, and can be reproduced in coarse-grained
models [212212]. Experiments which use fluorescent quenching methods can be used to
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Property Experimental
Method Simulation Measurement

partition coefficient titration calorimetry potential of mean force of a
particle pulled between phases

self-diffusion
coefficient

magnetic resonance spin
echo mean-squared displacement

electron density
profile X-ray scattering electron density

area per lipid neutron scattering area measurement
(bilayer mid-plane)

lipid order
parameter

nuclear magnetic
resonance (NMR)

lipid tail angles to the bilayer
normal

phase transition
temperature

cryotransmission
electron microscopy

(cryo-TEM)
structure factor

pressure-area
isotherm

Langmuir trough,
captive bubble
surfactometer

pressure tensor, area measurement

line tension
fluorescence microscopy
of GUVs, micropipette

aspiration
pressure tensor

bending rigidity
video phase contrast

microscopy, GUV shear
flow

height-height fluctuation spectrum

Table 2.2: Summary of corresponding experimental methods and simulation measurements which
may be used match key physical properties of soft matter systems.

investigate the phase coexistence in bilayers with cholesterol [6767,223223], providing useful
target data for cholesterol coarse-graining.

2.2.7 Summary

In this section we have reviewed many of the experiments which inform coarse-grained
models for soft-matter systems; these methods are briefly summarized in Table 2.22.2. It
is important to note that coarse-grained models can be designed to reproduce many
other experimental methods beyond the scope of this review. Soft-matter experiments
are rich in information about the structure and dynamics of the components of many
biological systems, however it is far from easy to design models which reproduce
these quantities. Even when the experimental data are clear, there is no guarantee
that a coarse-grained model will be able to capture the nuance and context of these
experiments without careful adjustment and attention to the limits of the model.
The limits of coarse-grained simulations of soft matter will be discussed in the next
section.
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2.2.8 Assessing CGMD model performance

In the preceding sections we have described the construction and verification of rep-
resentative coarse-grained models. Comparison to basic experiments verifies that the
model is capable of matching basic physical properties of soft matter systems. In the
remainder of this review we will discuss the validation of these models on more com-
plex biomolecular systems. Any coarse-grained model is only useful insofar as it can
reproduce the physics of a complex system. In this sense, the model must be carefully
designed to match experiments, and more importantly, answer a clear question about
a biophysical system. In this section we will note some of the limitations inherent to
the coarse-grained modeling approach.

The clearest limitations of a coarse-grained model are the result of discarded de-
grees of freedom. For example, the earliest iterations of the CMM-CG model lacked
explicit electrostatic interactions. The standard (non-polarizable) Martini model in-
cludes electrostatics, however they are highly screened, and thus imprecise compared
to all-atom methods. In the residue-based coarse-graining approach used to model
membrane remodeling by N-BAR (see section 2.5.12.5.1), an artificially low dielectric con-
stant was necessary to reproduce the electrostatic interactions between the protein
and bilayer [99,1010,373373].

It has been noted that the Martini method is a free energy method and therefore
includes significant entropy loss owing to the loss of degrees of freedom in the coarse
grained mapping. Enthalpy terms compensate for this, however the entropy/enthalpy
balance may be upset, affecting temperature dependence. Secondary structure is also
static in this model, however many applications can show the relative movement
of secondary structure elements. For example, the tension-driven activation of a
mechanosensitive channel can be resolved by CGMD [199199,370370]. Both the inability to
model protein conformational change and the challenge of reproducing bilayer physics
without an accurate entropy-enthalpy balance are both consequences of the loss of
detail in a CGMD model, and are therefore common to all of the methods discussed
in this review. Similarly, a coarse representation of amino acids often obscures the
chemical detail responsible for protein function. We will describe CGMD models for
a number of protein-mediated processes in section 2.42.4.

A major objective of coarse-grained modeling approaches is to design transferable
or universal force fields capable of modeling novel systems with minimal modification.
All-atom force fields do not require extensive tuning, partly because they already
contain explicit degrees of freedom for first principles-based interactions. However,
not all degrees of freedom are created equal, and a major challenge of coarse-graining
is deciding which degrees of freedom are essential to the system of interest. The force-
matching (MS-CG) approach addresses this limitation by computing a coarse-grained
force field directly from an atomistic trajectory of the target system. A recent survey
of MS-CG peptide models indicates that transferability between systems is strongest
in the low-energy regions of the free energy landscape [330330]. The contrasting bottom-
up and and top-down coarse-graining methods highlight the tension between including
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unnecessary detail, and designing universal models. As with any modeling strategy,
the choice of a highly-tuned yet non-transferable model versus a general, transferable
model will depend on the system of interest.

Coarse-grained molecular dynamics also often fail to reproduce both correct or
even self-consistent kinetics. Martini simulations use a timestep of 20-40 fs, which
is effectively three- or four-fold longer in real time due to the smoothed interactions
between CG beads. This speed-up factor may change with system composition. Since
CGMD force fields may independently reproduce either the potential energy or free
energy of different parts of the underlying system, they may produce incompatible ki-
netics within the same system. By collapsing many degrees of freedom into relatively
few, this model makes a number of compromises. Lack of atomistic detail prevents
strong hydrogen bond networks from forming, and this in turn generates lateral dif-
fusion rates which are much higher than normal. For that reason, the time-scale of
a CG simulation must be calibrated to the diffusion in an AAMD simulation to a
posteriori determine the duration of the simulation. As a result of model approxi-
mations, the relative kinetics for subsets of particles in the same CGMD simulations
may not be preserved. Loss of detail also prevents accurate conformational sampling
of proteins and accurate reproduction of lipid order factors. Many of these disadvan-
tages may be mitigated by comparison to atomistic systems, experiments, and even
mesoscale continuum models. And, despite these limitations, coarse-grained models
are able to predict and describe an amazing array of biomolecular systems. Before
we discuss these applications, we must first explain the ways in which protein detail
can be added to the system.

2.3 Modeling Proteins

The challenges in reproducing the physics of soft-matter systems with a coarse-grained
force-field are significantly larger when introducing proteins. In addition to introduc-
ing a multiplicity of additional chemical interactions with lipids, it is a significant
challenge to successfully model the internal structure and dynamics of membrane
proteins. All-atom molecular dynamics simulations provide the best means of cap-
turing these motions, and recent years have seem sophisticated methods for matching
these simulations to experiments, NMR in particular. Thanks in large part to the
study of all-atom MD simulations of proteins, coarse-grained force fields have incor-
porated parameters for amino acids. The resulting CGMD applications rely on the
wide body of atomistic protein simulation. However, comparing the results of simu-
lations at atomistic and coarse resolutions tells us precisely which kinds of chemistry
and nanoscale physics manifests itself at much larger length scales, and how this in-
formation is propagated. This information can often be used to guide the design of
more useful atomistic simulations.
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2.3.1 Atomistic simulations of proteins

The earliest simulations of proteins in atomistic detail employed first principles to
study proteins in vacuo and in solution. Since the first simulation of a protein in
1976 [218218], protein simulations have characterized the conformations of proteins, DNA
and other biomolecules. A comprehensive review of atomistic protein simulations is
beyond the scope of this review, however summaries of significant progress in the field
have been compiled in a series of recent reviews [11, 1919, 8383, 8686, 112112, 157157, 158158, 344344]. The
CHARMM, GROMOS, AMBER, and OPLS-AA protein force fields are each capable
of simulating biomolecules with similar, but not exact results. Recent studies have
systematically compared these force fields to each other and relevant experimental in
order to validate both the molecular dynamics method in general, and the force field
tools in specific [3030,123123,192192,252252,253253,311311]. The methods for designing coarse-grained
force fields described in section 2.22.2 rely heavily upon these force fields.

Atomistic simulations are more “literal” than CGMD simulations, in that they seek
to reproduce a particular thermodynamic ensemble with no ambiguity (beyond that of
the reference state) in the definitions of physical quantities such as length, time, force,
and energy. To this end, they employ first principles often gleaned from quantum
mechanical theory and experiment, namely electrostatic potentials, dipole moments,
and dimerization energies. Atomistic protein simulations also seek to reproduce a
host of target data, also used in CGMD parameterization, including spectroscopy
data, thermodynamic data such as solvation free energy, and heats of vaporization,
and X-ray, electron, and microwave diffraction structures. With meticulous matching
to experiment and quantum mechanical theory, and consequent application in pa-
rameterization of CGMD force fields, atomistic simulations provide a filter through
which these experimental data inform CGMD models.

Having matured in recent years, atomistic simulations are now capable of accu-
rately modeling protein folding [5555, 7878, 119119, 167167, 283283], predicting protein-ligand dock-
ing to guide drug design [5858,6565,8686,188188,198198,279279,317317,360360], and understanding protein
mechanical properties [178178, 186186]. Notably, simulations have recently been used to
study enzyme binding processes [5151], cooperative protein folding [185185], the molecular
motors [164164], solvent behavior in the ribosome exit tunnel [200200], and protein-DNA
binding [177177,197197].

Enhanced Sampling Methods

Despite these successes, atomistic molecular dynamics simulations are tempered by
the primary disadvantage of atomistic protein simulation: accessing physically rele-
vant time-scales. While much work has been devoted to parallelization algorithms,
use of graphical processing units (GPUs), and the development of larger, more spe-
cialized, and massively distributed supercomputers [167167], these efforts are unlikely to
provide access to large biomolecular systems for more than milliseconds of real time.
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The most straightforward way to improve the sampling of a molecular dynamics
simulation is to simulate multiple copies of the same system using slightly different
starting configurations. This provides a more robust sample, albeit at the same cost
as the original simulation. To efficiently extend the atomistic methodology to longer
time-scales, a collection of enhanced sampling methods have been developed. For ex-
ample, graph-based geometric methods, probabilistic road maps, and Markov models
may be used to better understand protein dynamics and kinematics by discarding un-
correlated, high-frequency atomic motions [112112]. Elastic network models and normal
mode analysis methods reveal collective motion and allosteric mechanisms in good
agreement with NMR and X-ray scattering data [1919], and often in conjunction with
standard coarse-graining [202202, 247247, 378378]. Methods such as transition path sampling,
transition interface sampling, forward flux sampling, and weighted ensembles provide
additional access to longer time-scales in atomistic systems [383383]. In replica exchange
molecular dynamics, multiple weakly-coupled simulations of the same system are
exchanged between temperatures to escape kinetic traps [325325]. Biasing potentials
may be used to generate non-Boltzmann-distributed ensembles from which equilib-
rium properties may be calculated in steered molecular dynamics [110110]. Metadynam-
ics [174174], temperature-accelerated molecular dynamics [208208], and other free energy
perturbation methods [5858,7373] and even Monte Carlo methods [155155,268268,376376]. Perhaps
the most thorough extension of atomistic molecular dynamics is realized by coupling
simulation with NMR measurements, which enhance the sampling of the simulation
at the longer time-scales possible in experiments [280280,377377].

While these methods seek to extend the range of a particular simulation method,
it is also possible to optimize existing coarse-grained approaches using a relative
entropy-based method [293293]. Many of these enhanced sampling methods discussed
in this section may also be used in combination to tackle specific biological modeling
problems. Common to each is a reduction in the number of degrees of freedom, making
it possible to simulate large atomistic systems in great detail. In that sense, coarse-
grained molecular dynamics simulations are another enhanced sampling method, in
this case ideally suited to extending the size and duration of protein simulations.

Atomistic simulations of membrane proteins

Atomistic simulations of membrane proteins provide a direct link between coarse-
grained descriptions of large soft-matter systems and the high levels of detail avail-
able from atomistic simulations. Reviews of membrane-protein simulations include
descriptions of both fine and coarse resolutions, often describing the ways in which
these simulations can be linked [1111,191191].

The study of G-protein-coupled receptors (GPCR) provides the prototype for
atomistic investigation because the action of these transmembrane proteins is mod-
ulated by membrane environment. A recent review of atomistic GPCR simula-
tions [277277] emphasizes the importance of developing accurate models for lipids and
protein oligomerization in order to produce models which can inform experiments
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and future drug design. In a similar application, circular dichroism experiments at
high temperature showed that some transmembrane peptides are thermostable, al-
lowing elevated temperature simulations which quantified the pathway by which these
proteins partition into membranes [339339].

Due to the added difficulty of accessing biologically relevant time-scales for both
proteins and bilayers in combined systems, atomistic membrane protein simulations
are often combined with other methods. Atomistic simulation augmented with Monte
Carlo methods was used to accelerate lipid equilibration to investigate hydrophobic
mismatch near helical peptides [372372]. Amphipathic polymers which stabilize mem-
brane proteins in solution employed combined all-atom and coarse-grained resolution
with a back-mapping scheme to probe particle assembly, in agreement with small-
angle neutron scattering [249249]. In a study of phospholipase, coarse-grained simulations
served as seeds for atomistic simulations which improved conformational sampling of
the peptide [359359]. Other studies used atomistic simulation to test lipoprotein com-
plexes against SAXS data [299299]. For bilayer systems in general, reverse coarse-graining
makes it possible to connect CGMD models to low angle X-ray scattering (LAXS)
measurements of bilayer geometry by confirming these geometries in atomistic simula-
tions [250250]. Likewise, the back-mapping from simulations of the antimicrobial peptide
alamethicin from the Martini model to the CHARMM27 all-atom force field helped
confirm that this peptide loses its helical character during aggregation, in agreement
with NMR measurements [329329].

The abundance of atomistic membrane-protein simulation reflects the usefulness
of high-resolution simulation of membrane-associated proteins. Coarse-grained sim-
ulations of proteins serve to extend these studies to larger systems and biologically
relevant time-scales.

2.3.2 Parameterization of coarse-grained proteins

Introducing protein detail to a coarse-grained force field requires an accurate model for
both the structure and dynamics of the protein itself, as well as the interactions with
surrounding lipids and solvent which remain faithful to experimental observations.
In this section we will summarize the development of coarse-grained protein models,
the experiments they match, and their integration into popular force-fields.

Structure-based coarse-grained protein modeling

While coarse-grained simulations have difficulty reproducing secondary structural
transformations, it is possible to recover accurate conformational sampling by a
reverse-transformation from the CGMD level to the atomistic one. Atomistic simu-
lations of back-mapped CGMD structures can recover the conformational properties
of the original atomistic system. In this procedure, back-mapped atoms are ran-
domly placed near their corresponding coarse-grained bead. The cener of mass of
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these atoms is then restrained to the position of the coarse-grained bead. The system
may be relaxed by a simulated annealing procedure to minimize large or unphysical
forces, stochastically sample the conformation space, and gradually introduce inter-
and intra-molecular potentials that are consistent with the all-atom model. This
method has been used to generate atomistic structures of simple peptides and trans-
membrane proteins from coarse-grained trajectories [3636,276276,351351]. The back-mapping
procedure also quantifies the information loss from coarse-graining, providing a useful
way to validate a CG model against a more robust atomistic force field or extend a
CG trajectory to include greater detail.

The earliest coarse-grained proteins were based on the Go model in which each
amino acid is represented by a single bead which attracts or repels the other beads
in the model according to interactions in the ground state. These models sought to
investigate protein folding mechanisms [184184]. Many of these models use non-standard
molecular dynamics techniques. For example, discontinuous molecular dynamics was
used to study the aggregation of peptides in implicit solvent [9090,236236], while Brownian
dynamics simulations have been used to study crowding effects in the GroEL-GroES
chaperonin system [8989]. Elastic network models have found wide application in flex-
ible fitting methods which add detail to low resolution cryo-EM measurements [2020].
Coarse-graining with empirical potentials is a common method for protein structure
prediction and protein design [6060,130130].

Many of these coarse-grained approaches lack the chemical specificity necessary
to study protein aggregation and association with lipid bilayers. The coarse-grained
models described in section 2.22.2 have been modified to include this detail in a number
of ways.

There are many ways to generate intermolecular interactions for CG proteins. A
common data set for generating non-bonded parameters in coarse-grained proteins
is surface tension and density data for side-chain analogues. The surface tension
characterizes the energetics of amino acid interactions at a vacuum interface; this
quantity is a useful proxy for the attractive forces that mediate the interactions with
water-lipid interfaces. The amino acid model developed by Klein and coworkers uses
surface tension as target data and showed that the solvent accessible surface area
(SASA) of the resulting protein models agreed with atomistic simulations [7575]. The
model was also able to recognize the native protein structures from a set of decoys. In
another approach, Han et al. fit dihedral potentials for a test set of small molecules,
and tuned the force field to match self-solvation free energies and hydration free
energies across a representative sample of organic molecules, finding good agreement
to atomistic simulation [126126]. In contrast, the model by Basdevant et al. [2626] used
a r−6 repulsive term with a Gaussian attractive term to represent non-bonded forces
between amino acids, parameterized from atomistic simulation.

In an early extension of the Martini model [210210] to proteins, Schulten and co-
workers used residue-based coarse-graining (RBCG) as an intermediate scale in a
multiscale model for membrane bending by BAR domains [99], described further in
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section 2.5.12.5.1. In this system, as well as applications to lipoprotein particles, the
authors selected bead types from the Martini building blocks according to polarity
and charge [298298,299299]. The authors also made minor modifications to protein bonded
parameters to match atomistic simulations of their target systems [299299]. Further
coarse-graining by the shape-based coarse-graining method (SBCG) extended the
model further but discarded electrostatics, modeling lipids with only three beads and
describing proteins with an elastic network model derived via iterative Boltzmann
inversion [99,105105,373373].

Coarse-grained simulations developed by Voth and co-workers employs a Hybrid
Analytical Systematic (HAS) model parameterized according to the MS-CG algorithm
described in section 2.2.32.2.3. The HAS model is based on the Gay-Berne ellipsoid particle
model which allows a single bead to represent a lipid. Lipid-protein interactions
are modeled with a single Lennard-Jones term, and electrostatics are modeled with
exponential screening according to Debye-Hückel theory, which is used to recover
the polarizability lost during coarse-graining. A recent application of this model
to N-BAR proteins tuned Lennard-Jones parameters for interactions between the
membrane and amphipathic helix to match the atomistic peptide folding free-energy
and empirical binding calculations [1313, 226226, 322322]. Other recent modeling efforts have
been extended to include DNA and RNA [117117].

Martini Proteins

In the Martini force field, amino acids are mapped onto as many as five beads, one of
which represents the polypeptide backbone. Residues with rings (His,Phe,Tyr,Trp)
use a finer mapping and improper dihedral terms to preserve the topology of these
rings. Intra-amino acid bonded potentials – that is, bonds, angles, and dihedrals –
have equilibrium values equal to the average of distributions measured from all bonded
amino acid pairs found in a representative sample of 2000 proteins from the protein
data bank (PDB). These were sorted by helix, coil, and extended secondary structure,
as measured by the DSSP (“define secondary structure of proteins”) prediction algo-
rithm [156156] so that the Martini model includes the effect of secondary structure on
the apparent hydrophobicity and polarity of its constituent particles. This secondary
structure remains fixed through the simulation, therefore the Martini model cannot
sample secondary structure changes. However, it is possible to reconstitute atomistic
details from a coarse-grained simulation using a “back-mapping” procedure similar
to simulated annealing. This method has been demonstrated on simulations of the
WALP transmembrane protein [276276].

Both protein-protein and protein-lipid interactions are modulated by the non-
bonded parameters, which are assigned via selection of sidechain bead types. This
procedure has several parts. First, the bead types must partition between oil and
water phases consistent with experiments in which the distribution coefficients of
amino-acid analogs were calculated with NMR [257257] and dynamic vapor pressure
measurements [363363]. These experiments are similar to those used to generate the
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Figure 2.3: Coarse-grained representation of the Martini model extension to amino acids [228228],
colored by bead type (where purple is apolar, blue and green are intermediate, gray and orange are
polar and red represents charged particles).

partitioning free energies of the Martini alkane building blocks. In this case, a free
energy perturbation method (FEP) called thermodynamic integration was used to
provide a more sophisticated measure of the 4Goil/aqueous for each side-chain analog.
In thermodynamic integration, a coupling parameter λ weights the addition of a single
particle to the Hamiltonian. The derivative of this Hamiltonian can be numerically
integrated to obtain the free energy difference for adding that particle. In this case,
the partitioning coefficient is calculated from thermodynamic integration of the ad-
dition of side chain analogs to water and decane boxes [7070]. A modification to the
Bennett acceptance ratio method was used to calculate the free energy difference and
associated errors [302302].

A second validation of the protein force field is given by the potential of mean force
(PMF) of the amino acid interactions with a lipid bilayer. The potential of mean force
quantifies the free energy landscape according to a fixed coordinate, in this case given
by the distance of the amino acid from the center of the bilayer. Umbrella sampling
and the weighted histogram analysis method (WHAM) [171171] were used to generate
the PMFs for comparison to atomistic PMFs calculated by MacCallum et al. using
the OPLS protein force field [204204].

It is generally difficult to compute a PMF analog from experiments, especially for
peptides. However, a recent study calculated the PMFs of penta-peptides of the form
Ac-WLXLL (where X is any one of the twenty natural amino acids). The free energies
of partitioning of the variable residue were calculated using a thermodynamic cycle
which included the free energy change of displacement from the membrane via um-
brella sampling and the alchemical introduction of the particle via thermodynamic
integration [305305]. These values were consistent with a measure of hydrophobicity
called the Wimley-White scale, which groups amino acids into five categories ac-
cording to their partition coefficients as measured by a combination of equilibrium
dialysis and quantitative reverse-phase HPLC for peptide hydrophobicity at palmi-
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toyloleoylphosphatidylcholine (POPC) bilayers [362362].
In addition to reproducing the correct association with lipid bilayers, proteins must

associate with themselves in a physical way. To that end, association constants given
by Kij = 1

C ×
Pbond
Pfree

where C is a concentration correction and the Pbond and Pfree are
the probabilities of finding a pair in a given bound or unbound state [7070]. These
were distinguished by a solvent accessible surface area (SASA) calculation, in which
areas below a particular threshold indicate that the residues are contacting. The
dimerization free energy was also computed directly from equation 2.112.11 according
to a radial distribution function given by the PMF over the distance between side
chains [7070].

4Gdim = −kBT ln 4πR3
max

∫ rc
0 r2g(r)dr

3vφ
∫ Rmax
rc

r2g(r)dr
(2.11)

In this equation, g(r) = e−PMF(r)/kBT, Rmax is the maximum distance between
monomers, rc is the dimer-monomer cutoff distance, and vφis the standard volume,
1 mol-L−1. The dimerization free energy agrees with that measured in atomistic
simulations in OPLS and GROMOS in test systems of amino acid pairs [6969]. The
dimerization free energy cannot be measured directly by experiment, however a host
of knowledge based potentials have been designed to quantify the 4Gdim by ranking
the co-occurrence between pairs of amino acids in known protein structures [227227].
While these results may be influenced by the presence of a hydrophobic environment
inside the body of the protein, it nevertheless provides a useful benchmark.

Recent improvements to the Martini model’s protein parameters [7070] have included
refinements to the free energy methods described above, as well as slight changes to
the bead types for non-charged polar residues. Additionally, the development of a
polarizable Martini force field has made it possible to improve the polar but neutral
Asn, Gln, Ser, and Thr residues. The polarizable extension to the Martini model
includes a fluctuating dipole resembling the Drude oscillator in which two partial
charges are tethered to a polarized bead, and interact via a Coulomb function only.
The dipole momentum is adjusted via harmonic angle and distance potentials. The
resulting model therefore includes orientational polarizability, which makes it possible
to more accurately model electrostatic interactions, particularly in transmembrane
pores and antimicrobial peptide applications [371371].

In this section, we have described the ways in which the individual Martini building
blocks were adapted to include the interactions between systems of proteins and lipids.
Careful parameterization of these building blocks ensures that the model is capable
of reproducing the complex behavior of many biomolecular systems. Applications to
richer biological problems validates the model while providing molecular insight into
experiments. For example, an extension of the Martini protein force field to model
the aggregation of amyloid-like peptides [290290].
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Figure 2.4: An example protein helix in all-atom (left) and Martini coarse-grained representations
(center, backbone beads in gray and side-chain beads in yellow) with both images merged (right)
to show how the fine-grained structure is mapped onto the coarse-grained beads. This image was
rendered with Visual Molecular Dynamics [142142].
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2.3.3 Improvements to protein models

While most of the efforts to incorporate proteins into coarse-grained simulations of
soft matter has rightly focused on parameterizing the interactions of amino acids with
water, lipids, and each other, cutting edge development of more advanced force fields
has explored the possibility of capturing conformational sampling in coarse-grained
models. If CGMD can accurately explain protein-bilayer interactions, peptide self-
assembly, and protein binding, then it is reasonable to see whether these methods
can also model internal structural changes that guide the biological functions of many
proteins. This is an extension of the previous challenge: to accurately capture peptide-
peptide interactions and their relationship to the intra-molecular (bonded) forces
which makes the complex conformational equilibria of polypeptides possible.

2.4 Membrane-Protein Applications

In sections 2.22.2 and 2.32.3 we have shown how coarse-grained molecular dynamics simula-
tions are constructed from chemical components which match molecular experiments.
We see that these models are capable of reproducing the fundamental properties of
the systems they mimic, including protein structure and dynamics, peptide-bilayer
interactions, and the geometry and elasticity of membranes. In this section we will
show how these models can reproduce the behavior of far more complicated biophysi-
cal systems, yielding insight to experiments and elucidating the molecular mechanism
by which proteins interact with cell membranes.

2.5 Simulations of biological membranes

While the parameterization of any soft matter CGMD force field includes validation
of membrane fluidity and geometry, these models must also capture the condensed
matter properties of biological membranes. Any simulation which seeks to quantify
protein-mediated membrane properties must be capable of mimicking the properties
of a bare membrane.

The earliest Martini model simulations sought to reproduce the complex phase
behavior of bio-mimetic membranes. Simulations of phosphatidylcholines of differ-
ing lengths separated into gel and liquid phases in a small temperature range and
semi-quantitatively matched experimental phase transitions, which were modulated
by their relative concentrations [9696]. Formation of non-lamellar phases is essential for
modeling the first steps of membrane fusion, and can be induced in Martini bilay-
ers by varying temperature and hydration levels. Simulations of mixed dioleylphos-
phatidylcholine with dioleylphosphatidylethanolamine (DOPC/DOPE) bilayers mim-
icked hexagonal, inverted hexagonal, and rhombohedral phases according to X-ray
diffraction experiments [263263, 367367] with precise control of hydration levels [214214]. Fur-
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ther tests have studied the temperature dependence of the the fluid-gel phase transi-
tion for DPPC bilayers, providing thermodynamic parameters, namely estimates for
the line tension and entropy difference of the fluid-gel interface [213213]. These measure-
ments connect simulations with non-equilibrium experiments using X-ray diffraction
with pressure-jump relaxation [286286], and temperature scanning calorimetric, densito-
metric, and acoustic measurements, providing insight into the kinetics of these phase
transitions [162162]. A study of the effects of lipid compositions identified lipids with
varying levels of saturation that lower the line tension at domain interfaces in the
bilayer [2828,281281,332332].

Having established that coarse-grained bilayers exhibit the phase behavior features
of bilayers observed in experiments, researchers began to study peptide-bilayer inter-
actions. Simulations of the influenza HA fusion peptide revealed a bi-continuous cubic
phase by stabilizing stalk/pore complexes in agreement with in vitro measurements
that show the peptide lowers the lamellar-to-inverted hexagonal phase transition tem-
perature [108108]. Simulations of antimicrobial peptides show that they adhere to bilay-
ers, assemble into amphipathic nanotubes, and extrude lipids from the bilayer [161161].
Antimicrobial peptide aggregates also induce long-range order in phosphatidylglycerol
domains, in agreement with atomic force and TIRF experiments [254254].

Having demonstrated that the Martini model accurately predicts these phase tran-
sitions, these models have been extended to systems which simulate vesicle fusion.
Initial studies of vesicle fusion events show a branched pathway for fusion in which
stalk-like structures may either form a fusion pore or slowly fuse via a hemi-fused
state [159159, 211211], and subsequent study estimates the free energy barrier to fusion
and show that kinetics of the early stages of fusion are determined by the energy
of solvent-exposed lipid tails [309309]. Simulations of lung surfactant protein show the
mechanism by which they facilitate the formation of a lipid bridge in vesicle fu-
sion [2323, 2424, 8585]. Likewise, monolayer simulations in the Martini model [2222, 2323] and
a recent coarse-grained force field by Shinoda et al. [301301] have been used to explore
monolayer buckling. In addition to coarse-grained MD, a mesoscale method called
dissipative particle dynamics can be used to study vesicle fusion [300300]. Mixtures of
double-stranded DNA and lipids called lipoplexes are potential transfection vectors
which have a lower toxicity than viral vectors. Martini simulations have matched
observations from SAXS and other experiments which observed a lamellar to inverse-
hexagonal phase transition [6464,8585].

Lipid rafts have been known to provide additional compartmentalization of the
cell membrane, serving to organize and direct the action of biomolecular complexes.
CGMD simulations have shown that thickness mismatches between phases are com-
municated to opposing leaflets and assist in guiding rafts together or stabilizing a
registered geometry [245245]. Martini simulations show broad agreement with NMR
measurements [269269] which show that cholesterol preference for saturated tails drives
phase separation.

Finally, simulations of biological membranes are not limited to models which in-

35



clude explicit solvent particles. For example, Deserno and co-workers have applied a
solvent-free coarse-grained model with three beads per lipid [6262] to study membrane
remodeling by generic viral capsids or colloids, finding that such particles attract due
to their induced membrane curvature [267267].

A generic implicit model by Brown and co-workers has been used to study the
effects of protein inclusions in lipid bilayers [4747, 361361]. Likewise, a solvent-free combi-
nation of the MS-CG method with short-ranged coarse-grained potentials has been
used to simulate liposomes [322322]. Recent efforts have tuned implicit coarse-grained
bilayer models to reproduce bilayer stress profiles [312312]. The range of coarse-grained
approaches for simulating lipid bilayers makes it possible for researchers to select the
desirable level of detail necessary to study a biological system of interest. In the
next section we will review one such example in which protein-protein and protein-
membrane interactions at different length scales act in concert to remodel the mem-
brane.

2.5.1 Modeling membrane bending

Membrane remodeling by Bin/Amphiphysin/Rvs (BAR) domains provides an
archetypical application of the combined soft-matter and protein coarse-graining
methods described above [99, 1010, 373373]. Highly conserved, ubiquitously expressed BAR
domains bend cellular membranes from the cytosol, participating in endocytosis, vesi-
cle fusion, cell-cell fusion, and also apoptosis. In vivo, members of the BAR domain,
such as N-BAR, form high-curvature tubes with a low radius of (∼50 nm), while in
vitro they form vesicles from liposomes. N-BAR includes an N-terminal amphipathic
helices (helix-0) which may either scaffold the charged lipids which contact it, or
induce an area asymmetry (or both) in service of bending the membrane.

All-atom molecular dynamics simulations of N-BAR bending a 7:3 dioleoylphos-
phatidylcholine with dioleoylphospatidylserine (DOPC/DOPS) membrane showed
that the protein stabilized local curvature [99,1010,373373]. These simulations were used to
quantify the flexibility and tertiary structure of a single domain. These results were
used to construct bonds between coarse-grained beads via Boltzmann inversion in
the so-called residue-based coarse-graining (RBCG) method, which uses non-bonded
forces adapted from the original Martini lipid force field [99,105105,299299]. A low dielectric
constant (ε = 1) was necessary to reproduce the strong electrostatic contacts respon-
sible for bending the membrane to adhere to the N-BAR surface.

The RBCG simulations tested staggered and ordered arrangements of six N-BAR
domains on a membrane patch, finding that only the former yielded a stable, global
bending mode. Further coarse-graining under the shape-based (SBCG) method, in
which lipids of ∼150 atoms are represented by two beads connected by a harmonic
spring, extended these simulations to still larger time scales (5 µs). Non-bonded LJ
parameters in this model were tuned to reproduce area-per-lipid and bilayer thickness
measurements. The SBCG simulations also provided an estimate of the membrane
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bending modulus by measuring the force exerted on the edges of a bilayer tube, con-
firming that the SBCG N-BAR domains have sufficient energy to bend the membrane.
To explore the dynamics of membrane bending, the measured curvature from SBCG
provided the intrinsic curvature parameter for a continuum elastic membrane model
which included membrane bending, stretching, and viscous drag forces [99]. Testing
the sensitivity of these parameters showed that drag forces determine the damping
of the remodeled membrane. This study matched the structure seen in cryo-TEM
images of the tubules which failed to locate the precise ordering and orientation of
the four inserted amphipathic helices but found that helix-0 interactions are degen-
erate, dynamic, and necessary for stabilizing the lattice [226226]. In the absence of
dimers of amphipathic helices, BAR domain oligomers show reduced orientational
order and cannot form a stable lattice. CGMD simulations of liposomes shows that
N-BAR forms a lattice with both higher order and higher density, suggesting that
this density is necessary to induce high, stable curvature in vivo [6666].

In a related system, the protein epsin is hypothesized to sense and induce curvature
while recruiting accessory proteins in the early stages of clathrin-mediated endocyto-
sis (CME). The highly-conserved epsin N-terminal homology domain (ENTH) binds
phosphatidylinositol 4,5-bisphosphate (PIP2) by inserting an N-terminal amphipathic
helix similar to that found in the BAR domains (helix-0). This helix becomes helical
upon membrane binding according to circular dichroism, and ENTH domains were
found to tubulate liposomes in vivo [101101].

According to spin-labeled electron paramagnetic resonance (EPR) spectroscopy
measurements, helix-0 becomes structured when binding the PIP2 headgroup [172172].
Further EPR studies and AAMD simulation provides a more detailed description of
helix-0 penetration and key distances between ENTH domains, and these parame-
ters were integrated into a CGMD model for ENTH-induced tubulation [173173]. This
model showed that heterogeneous lattice reduces the anisotropy of the spontaneous
curvature and tends to frustrate tubule formation, thus explaining experimental ob-
servations that high initial concentration of ENTH domains tends to form vesicles
(which have isotropic curvature by definition), while adding ENTH to preformed
membrane tubules crystallizes proteins in a more ordered, helical pattern [173173]. It is
important to note that the protein epsin and the family of BAR domains are only
two examples of a diverse set of membrane remodeling proteins. Other proteins have
been shown to induce curvature as well, likely via different mechanisms. For exam-
ple, the protein α-synuclein, the protein implicated in Parkinson’s disease, induces
negative Gaussian curvature according to coarse-grained molecular dynamics simu-
lations which were then matched to low-angle X-ray scattering data which highlight
the thinning effect on the bilayer [4848]. The mechanism of protein-induced curvature
sensing and generation has been recently reviewed by Baumgart et al. [2727].
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2.5.2 Lipid bilayers support protein assembly and function

While many proteins actively remodel bilayers during biological processes, in con-
trasting mechanisms the bilayer (or liquid-liquid interface) provides a substrate for
protein assembly. The CMM-CG model developed by Klein and coworkers found early
application in modeling the interaction of synthetic hydraphiles with bilayers [319319]
and the assembly of peptide nanotubes at oil-water interfaces [163163]. Transmembrane
peptides demonstrate the ability to sort lipids by chain length when they are smaller
than the bilayer thickness [237237,238238]. These simulations show that the peptide induces
a meniscus which depletes water from the peptide and encourages bilayer fusion, thus
explaining experiments which show that these peptides can induce a transition from
the lamellar to inverted phase. The protein force field extension by DeVane et al.
was used to simulate the behavior of hydrophobins, proteins which self-assemble at
air-water interfaces [5757] in agreement with experimental measurements of adsorption
and desorption free energies of comparable molecules. Tilt angles and helix-helix as-
sociation of transmembrane peptides modeled with the Martini force field agreed with
those measured from solid-state NMR [228228,289289]. Lateral diffusion rates measured by
fluorescence correlation spectroscopy (on confocal laser-scanning microscopy) quan-
tify the diffusion rate of transmembrane proteins in bilayers; this rate is modulated
by membrane thickness and composition, with little effect from lipid headgroup [259259].

The structure of the HIV-1 virion is another valuable candidate for coarse-grained
study because it shows a relatively complex morphology that is generated from the
components of a single polypeptide, about which much is known. In a recent mul-
tiscale simulation, Ayton and Voth used CGMD to reproduce structural features of
the virion as observed by electron microscopy and cryotomography. Noting that only
enhanced interactions the C-terminal capsid domain were sufficient to stabilize the
hexameric lattice on the immature virion, they performed AAMD simulations to vali-
date the CGMD model, showing that close-contact sites have a PMF well that is twice
as deep in the wild type compared to mutants which show reduced viral infectivity
in cells and particle defects under transmission EM [1818]. Coarse-grained simulations
and PMF calculations of lipid-mediated protein interactions have also been used to
study the hydrophilic shielding of proteins within a bilayer [7171,7272].

In an advanced application, CGMD has been applied to the study of protein-gated
ion channels. Simulations of the plug domain in SecY shows that the introduction of a
disulfide bond is sufficient to open the channel, explaining unrestricted translocation
seen in experiments using a disulfide-immobilized plug domain [201201]. Simulations of
the mechano-sensitive protein channel MscL characterize the decrease in liposome
stress as the channel activates [199199]. Simulations of voltage-gated potassium (Kv)
channels have characterized the closed structure while matching experimental con-
straints [336336], including pore radius measurements, electrophysiology observations,
and histidine scanning. Simulations have also investigated carbon nanotube-lipid
interactions [355355, 365365], confinement of copolymers [128128], and pore formation by den-
drimers [179179–181181].
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The class of G-protein coupled receptors (GPCRs) represents another relevant
protein-membrane mechanism. Martini simulations of a particular GPCR, rhodopsin,
show that it self-assembles via a hydrophobic mismatch mechanism by matching sim-
ulations to EPR and FRET experiments with bilayers of varying thickness [248248].
Free energy profiles calculated from Martini simulations of the glycophorin A (GpA)
show that mutations to this transmembrane alpha-helical protein disrupt its associ-
ation in bilayers, but do not abolish it, suggesting that non-specific aggregates are
possible [3838,4040,256256,289289]. These results agree with experiments which quantify the self-
assembly of GpA using sedimentation equilibrium analytical centrifugation, FRET,
and thiol disulfide interchange experiments [206206]. Studies of high-density lipoprotein
“nanodiscs” self-assembled on bilayers and matched temperature-dependent swelling
of the particle observed in SAXS measurements and hydrophobic mismatch at the
protein-lipid interface observed via solid state NMR [298298,299299,354354].

In addition to the multiscale model for membrane bending by BAR domain pro-
teins described in section 2.5.12.5.1, there has been considerable effort to connect atomistic,
coarse-grained, and mesoscale models to study other protein-membrane systems. For
example, a hybrid molecular mechanics/coarse-grained (MM/CG) model has been
used to simultaneously improve the resolution of corase grained systems and extend
atomistic ones to larger scales. In this approach, soft boundary potentials divide the
atomistic and coarse-grained representations with an overlapping interface region.
These simulations include stochastic and frictional forces due to the solvent along
with cross-potentials designed to distribute coarse-grained forces across their con-
stituent atoms in the interface region. The hybrid approach retains key microscopic
details including hydrogen bond networks and the root mean squared fluctuations
(RMSF) of the protein structure. It has found application in the study of enzyme
active sites [234234] and outer membrane proteases [233233]. The hybrid approach has also
made it possible to describe the ligand binding site for GPCRs in good agreement with
atomistic simulation, suggesting a future role for this method in drug design [182182].
Other hybrid approaches merge atomistic models with continuum methods in order to
study protein-nucleic acid complexes [168168] and membrane-peptide association [145145].
Finally, hybrid models which use virtual sites in the interface region have been devel-
oped to bridge the Martini model with atomistic force fields [275275]. The development
of these hybrid modeling strategies makes it possible to customize coarse-grained sim-
ulations to include atomistic detail when necessary, broadening the range of possible
applications to include specific protein-ligand binding. The hybrid approach further
improves the flow of information between coarse-grained and atomistic representa-
tions by explicitly merging both models in the same simulation.

2.5.3 Extending to the Mesoscale

In much the same way that atomistic simulations inform coarse-grained models (and
vice versa), coarse-grained models also make contact with mesoscale continuum me-
chanics models. Common to many of the membrane applications is the use of the
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Helfrich Hamiltonian [131131] given by equation 2.122.12, in which the membrane energy
Hel is modeled as an infinitesimally thin elastic sheet .

Hel =
∫ {

κ

2 (H −H0)2 + κ̄GG+ σ
}
dA (2.12)

Equation 2.122.12 is integrated over the surface area A and consists of terms which
account for surface tension σ as well as bending and Gaussian curvature, with ener-
gies given by their respective bending rigidities κ and κ̄G. In this formulation, the
mean curvature H = c1 + c2 and Gaussian curvature K = c1c2 where c1 and c2 are the
principal radii of curvature. Membrane remodeling enters the Helfrich in two places:
via the spontaneous (or intrinsic) curvature term H0, and also by modulating the
bending rigidity of the underlying membrane.

Theoretical study of the Helfrich model has been used to explain vesicle configura-
tions [288288] and the effects of undulations on membrane elasticity [102102,132132]. Protein-
induced deformations have been added to these models, which can then make contact
with CGMD simulations. For example, the theory predicts an elastic response to
cylindrical protein inclusions which can be matched to ion channel experiments and
further resolved with CGMD [4646, 4747, 327327, 361361]. The Helfrich model may also be cou-
pled to mesoscopic solvent models in order to include the effects of hydrodynamics
on membrane motion [1515].

While modeling protein assembly on lipid bilayers is a prime candidate for coarse-
grained simulation, continuum methods often augment CGMD simulations. For ex-
ample, multiscale study of the BAR domain proteins uses coarse-grained simulations
as a bridge to continuum methods to understand the time-scales required for mem-
brane bending by N-BAR [99]. A host of coupling algorithms may be used to bridge
the gap between atomistic simulation and continuum methods. High resolution sim-
ulations provide the chemical detail, while numerical methods make it possible to
apply them to realistic models [1414,5656].

Continuum mechanics simulations do not necessarily require coupling to atomistic
or coarse-grained simulation, however. There is much to be learned from minimal
mesoscale models which make contact with experiments. There are chemical and
mechanical similarities between many membrane remodeling proteins [2727]. Minimal
mesoscale models can resolve the partitioning behavior of curvature-inducing proteins
and the energetics of bud formation [22,33,196196]. By modifying the direction, strength,
and anisotropy of the spontaneous curvature induced by a particular membrane-
remodeling protein, these models can predict the geometry and energetics of the
resulting cellular morphologies. The wide range of continuum methods described in
this section suggest that mesoscale simulation and coarse-grained simulations may be
employed together or separately to characterize membrane-remodeling events.
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2.6 Conclusions and Future Directions

This review has surveyed the ways in which coarse-grained molecular dynamics sim-
ulations provide a crucial bridge between the chemical detail found in atomistic sim-
ulations of membrane proteins, and the biologically relevant time- and length-scales
accessible by continuum methods. Coarse-grained molecular dynamics simulations
are ideally suited to simulating soft-matter systems relevant to biology because they
are efficient enough to represent diverse cellular morphologies, but descriptive enough
to distinguish the energetics and geometry of systems with different lipid compositions
and, amazingly, differences in protein sequence and structure.

As is evidenced by the competing methods for designing and tuning coarse-grained
force fields, there is no single coarse-grained method which can produce the same de-
scription as an atomistic one. The choice between structure, thermodynamic, and
force-matching coarse-graining strategies depends strongly on the system of inter-
est, computational resources, target experimental data, and most importantly, the
question which the model must answer. Though many of these methods are able
to reproduce some combination of structural and thermodynamic data, there is no
guarantee that a naïve coarse-grained simulation will produce accurate results. Care-
ful matching to theory, simulation, and experiments ensures that a particular model
is physically accurate. More importantly, contact between these methods provides
perspective on the physics of biological processes. In particular, we see that lipid
bilayers mediate a host of cell processes, from the action of mechanically-sensitive
ion channels, to morphology-generating membrane-remodeling, to the activation of
complex cell-signaling networks by membrane-associated proteins. Future study of
protein-membrane systems with coarse-grained methods will depend on synthesizing
our understanding of soft matter systems with biology and biochemistry. This field of
study has the potential to improve human health by resolving cell biological process
at high resolution, and moreover, guiding the design of new treatment strategies.
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Chapter 3

The protein Exo70 drives cell
morphogenesis

The following chapter is adapted from “Exo70 Generates Membrane Cur-
vature for Morphogenesis and Cell Migration” [380380]

Dynamic changes in the shape of the plasma membrane are required for many
processes essential to cell function, particularly cell migration and morphogenesis. In
later chapters, we will explore endocytosis events in the interest of understanding how
cells internalize cargo and regulate cell surface receptors. In this chapter, however,
we will consider the topological inverse of this problem, namely: how do cells create
protrusions?

3.1 The function of the exocyst

Cell shapes are determined by a variety of mechanisms, commonly facilitated by the
self-assembly of proteins which sense, induce, and stabilize particular shapes [107107,222222,
381381]. The prominent Bin/Amphiphysin/Rvs (BAR) family of proteins provide a well-
characterized example. They grasp the membrane with concave, positively-charged
surfaces and induce tubular extensions from synthetic vesicles in vitro and create
invaginations towards ths the cytoplasm during e.g. endocytosis events [107107, 222222].
We typically consider curvature from the point of view of the proteins which are
either decoated outside of large vesicles or occupy the cytoplasm of the cell and bind
to the negatively-charged inner leaflet of the cell membrane.

The BAR domain proteins are complemented by the inverse BAR (I-BAR) pro-
teins which bind membranes with a convex surface and have the opposite effect
[216216, 285285, 379379]. That is, they induce lumen-directed tubules in vesicles and surface
protrusions in cells. We classify membrane bending by sign: “positive curvature”
bends lipid bilayers towards the protein (e.g. BAR domains), while “negative curva-
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ture” pushes away from the proteins (e.g. I-BAR) [222222, 381381]. The exocyst complex
consists of proteins Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84, mediates
the tethering of secretory vesicles at the membrane in endocytosis and cell-surface
expansion [129129,141141,231231]. The exocyst plays a role in epithelia formation, cytokinesis,
and neurite branching. Recent investigations show that the exocyst is also involved
in cell migration [193193,197197,265265,271271,318318,328328,382382]. A particular member of the exocyst,
Exo70, is known to directly interact with the Arpc1 subunit of the Arp2/3 complex
and kinetically stimulate actin polymerization and branching at the leading edges of
migrating cells [193193,197197,382382].

The protein, named for its molecular weight, has a long rod-like structure that
binds to PI(4, 5)P2 through positively charged residues on its surface [8080,125125,194194,229229].
Overexpression of Exo70 — but not any other subunit of the exocyst complex —
induces filopodia formation in cells independent of its function in exocytosis [382382].

Parallel experiments and models

In this chapter I will outline the results of a collaborative effort to join biochemi-
cal and cell biological analyses to a multiscale model for membrane deformations by
Exo70. This collaboration was initiated by Professor Wei Guo, who identified curva-
ture induction by Exo70 and asked us to model it without indicating the direction
of the induced curvature (positive versus negative). In the following sections we will
describe the molecular, biochemical, and biological measurements used to character-
ize this system in silico, in vitro, and in vivo. The mapping between the molecular
model and experiment is reserved for chapter 66, where we will discuss strategies for
integrating results from multiple scales. We locate the mechanism of Exo70 curvature
induction alongside the convex, negative curvature-inducers, and in so doing, detail
a new case of protein-membrane remodeling in morphogenesis and directional cell
migration.

3.2 Methods

Molecular dynamics simulations were previously used to study the BAR domain-
induced positive curvature and resolve at the molecular level the mechanisms by which
BAR domains sculpt the lipid bilayers [99,1717,373373]. Recently, coarse-grained molecular
dynamics (CGMD) simulations were employed to study the molecular interactions of
Epsin N-terminal homology domain oligomerization and association with membranes
leading to the stabilization of tubular membrane geometries [173173]. Here, we employed
similar approaches to investigate the interaction between Exo70 and the membrane.

We test whether the minimal oligomerized state (namely a dimer) shows enhanced
curvature induction in comparison to the monomer. If the enhancement is present
at the dimer level, this effect is expected to be accentuated further in the case of
higher-order oligomers. The crystal structure of mouse Exo70 (amino acids 85− 653)

43



features a 170× 35Å rod composed of an α-helical bundles slightly curved in the
middle [125125, 229229], and the N-terminal, noncrystallized region is predicted to be a
coiled-coil structure. A coarse-grained Exo70 model was constructed according to the
crystal structure in the protein data bank (pdb code 2PFT) [229229]. Structures for the
unresolved loops and alpha-helical N-terminus were constructed with MODELLER [353353].
The resulting structure was relaxed using a short, 10 ns all-atom simulation under
the CHARMM27 force field in the GROMACS molecular dynamics simulation package [3737].
A representative snapshot was then coarse-grained for use in the MARTINI force field
[228228]. To maintain secondary structure, elastic bonds were applied to all backbone
beads within 0.5− 0.9 nm with a force of 500 kJ /mol · nm2, except for the N-terminal
tail, for which we used a much weaker 5 kJ /mol · nm2 force constant for residues
1− 20 and 50 kJ /mol · nm2 for residues 21− 90.

Figure 3.1: Coarse-grained models for the antiparallel (top left) and parallel (top right) Exo70
dimers. These models were each added to the bilayer in order to produce configurations that resemble
the side-view of the parallel dimer pictured below. Atomistic simulations (not pictured) were used
to tune an elastic network model (ENM) used to retain the protein secondary structure in each
monomer.

Wild type Exo70 was modeled in a parallel or anti-parallel dimer conformation
while the Exo70(K571A/E572A) mutant was modeled in an anti-parallel conforma-
tion and compared to the corresponding wild type control. Exo70(∆1− 75) model was
effectively a monomer as the dimerization domain is considerably shortened. Each
modeled Exo70 variant was attached to an equilibrated bilayer containing 12,800
lipids with a 4:1 DOPC:DOPS ratio. The charge (−1) on DOPS partly serves as a
surrogate for the higher charge (−4) on PIP2 at a lower concentration. The systems
were minimized and simulated with a standard MARTINI time step of 40 fs for 100
ns. Due to the smoothed energy landscape in the MARTINI force field, this corre-
sponds to a real time of 3− 4 times longer. The Berendsen thermostat and barostat
maintained a temperature of 310K and semi-isotropic pressure coupling of 1.0 bar
both parallel and perpendicular to the bilayer plane with coupling time constants of
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1.0 and 0.2 ps, respectively. Simulations were solvated with 600,000 water beads, cor-
responding to 4 water molecules each, and counter-ions were added at a physiological
concentration of 150 mM. All other parameters were set per the MARTINI force field
specifications [228228]. All simulations were performed on supercomputing platforms at
the Texas Advanced Computing Center (TACC). The coarse-grained MD (CGMD)
simulations of the protein-membrane system were run on parallel architectures with
48− 46 processors.

Figure 3.2: Orthographic views of three simulations: the parallel dimer (top), the antiparallel dimer
(middle), and the monomer (bottom). Supplemental video SV3.1 provides a video snapshot of the
antiparallel dimer producing a negative curvature deformation.
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3.2.1 Characterizing curvature: the surface-fitting algorithm

To characterize the induced curvature from these CGMD simulations, we have mod-
eled the height of the mid-plane of the bilayer as a two-dimensional anisotropic Gaus-
sian function centered and oriented with respect to the location of the protein (see
below). This method provides a general description of the induced curvature by sep-
arately measuring the position, extent, degree of anisotropy, magnitude of curvature
of the associated lipids and fluctuations due to dynamics/membrane undulations.

Since Exo70 dynamically remodels the associated bilayer, it was necessary to an-
alyze the average as well as the fluctuations about the average in bilayer curvature
to deconvolute the curvature effect from the undulation modes of the bilayer. Specif-
ically, we must distinguish between negative curvature induction and the random
fluctuations in the height of the bilayer. To this end, we first constructed a surface
corresponding to the mid-plane of the bilayer and aligned the protein along its princi-
pal axis in each frame of the simulation. Then, for each frame, we divided the bilayer
mid-plane surface into 5× 5 nm patches and considered the patches that were within
10 nm of any atom of the protein. Analysis of a control membrane with no asso-
ciated protein indicates that this filter effectively removes local undulations, which
add noise to our estimate of curvature without changing the overall result. That is,
the measured curvature of our control simulation is effectively infinite. The heights
of these relevant mid-plane patches were then fit (frame-by-frame, see supplemental
video SV3.2) to a two-dimensional Gaussian function given by:

z(x, y) = A0 exp
{

(x− x0)2

2σ2
x

}
exp

{
(y − y0)2

2σ2
y

}
(3.1)

Here, x and y are orthogonal axes chosen with respect to the alignment of the
protein. The quantities σx and σy are the standard deviations in orthogonal directions,
each corresponding to the “width” or extent of curvature of the fitted Gaussian parallel
and perpendicular to the aligned axis of the protein. The maximum curvature is
induced at the position where the height is higher than the average. This position
is not necessarily at the center of the protein. The fits to equation 4.124.12 from the
frames are depicted in supplemental video SV3.2, clearly showing negative curvature
induced by the protein. Note that this fitting procedure is a conservative estimate of
the negative curvature because it always predicts a curvature smaller than the actual
curvature observed in the simulations. We calculate the strength of the induced
curvature according to the following expression for mean curvature,

H =
(1 + z2

x)zyy + (1 + z2
y)zxx − 2zxzyzxy

(1 + z2
x + z2

y)
3
2

(3.2)

Here zxy terms correspond to the partial derivatives of the height of the fitted
function. Thus, for each frame we have obtained a maximum mean curvature, i.e.

46



H(x0, y0) from equation 4.124.12, and values and which characterize the parallel and per-
pendicular extent of curvature. In order to esimate the average deformation induced
by the protein on the membrane, we compute the average deformation energy E (in
units of kBT) using the expression:

〈E〉 =
∫ σx

0
dx
∫ σy

0
dy

[
〈Hmax〉 exp

{
(x− x0)2

2σ2
x

}
exp

{
(y − y0)2

2σ2
y

}]2

(3.3)

Here 〈E〉 represents the ensemble average over all the frames of the CGMD simu-
lation.

3.3 Results

The measurements described in 3.2.13.2.1 are summarized in table 3.13.1.

system 〈Hmax〉(nm−1) 〈σx〉
(nm)

〈σy〉
(nm)

radius
(nm) 〈E〉

anti-parallel
dimer −9.4× 10−3 11.2 17.4 53 0.0537

parallel dimer −12.4× 10−3 8.6 16.1 40 0.0667
Exo70

(∆1− 75)
monomer

−6.2× 10−3 9.9 14.6 81 0.0174

Exo70
(K571A/E572A)

dimer
−5.9× 10−3 11.1 17.2 84 0.0208

control −4.4× 10−3 18.6 38.9 112 N/A

Table 3.1: Maximum mean curvatures, extents, corresponding tubule radii, and deformation energies
based on curvature measurements described in 3.2.13.2.1.

These values suggest that Exo70 dimers induce negative curvature, and that this
curvature is stronger than those observed for the free bilayer, mutant anti-parallel
dimer, and monomer simulations. We also find that he curvature induced by Exo70
dimers is anisotropic (that is, σx < σy). Analysis of the protein and lipid conforma-
tions in our simulations revealed that the induction of the curvature was mediated
by the positively charged residues throughout the surface of the Exo70 dimers that
interact with the negatively charged phospholipids, which suggests that curvature in-
duction requires a scaffold of at least two linked Exo70 monomers that act in concert
to remodel the associated lipid bilayer from its native planar state.

In chapter 66 we will describe the multiscale modeling procedure required to turn
these deformation measurements into clear predictions for morphology changes. For
the remainder of this chapter we will discuss the biological consequences of the result.
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3.3.1 Recapitulating experiments

Experiments performed by our collaborators and reported in Zhao et al [380380] jibes
neatly with our curvature estimates. These curvatures agree with both in vitro and
in vivo results from this work, briefly summarized below.

Exo70 induces inward-pointing membrane tubules. Our collaborators tested whether
Exo70 produces protrusions similar to I-BAR [217217, 366366, 382382] when incubated with
large unilamellar vesicles (LUVs) containing 30% PIP2. Transmission electron mi-
croscopy (EM) showed that LUVs incubated with wild-type Exo70 displayed tubular
invaginations which projected toward the lumen, with dimensions (average diameter
of 68.8± 13.8 nm) similar to those produced by an I-BAR domain. Interestingly an
Exo70 mutant (K571A/E572A) which is defective in PIP2 binding produced no such
tubules. This result agrees with our findings that the same mutant produced weaker
negative curvature than the wild-type.

Tubulation requires oligomers. Gel-filtration chromatography of recombinant wild-
type Exo70 identified a range of potential oligomers while deleting the coiled-coil
domain (∆1− 75) produced monomers. We mimicked this ologomerization-defective
mutant by simulating a single monomer. This simulation also showed reduced neg-
ative curvature. Our dimer model represent the minimal oligomer that we could
test using these simulations; in the event that Exo70 natively forms higher-order
oligomers, we would expect the curvature to be even stronger.

Exo70 induces actin-free membrane protrusions in cells. These in vitro measurements
are the primary point of contact with our models, however our colleagues also ex-
tended these to an in vivo system. Using time-lapse fluorescence microscopy, they
found that overexpressing GFP-Exo70 in B16F1 cells generated filopodia protrustions,
a substantial fraction of which (∼ 20%) lacked F-actin. This result is topologically
equivalent to the formation of inward-pointing tubules in LUVs (however in this case
the protein is found in the cytoplasm, and the filopodia project outward).

Exo70 mediates leading edge protrusion and directional cell migration. Knockdown
of endogenous Exo70 in human MDA-MB-231 cell lines hampered the cells’ ability
to form lamellipodial protrusions measured by Arp3 and F-actin staining. The two
Exo70 mutants which failed to deform the membrane in vitro (K571A/E572A and
∆1− 75) also failed to recover these protrusions, however the wild type reconstituted
them. The mutants experienced slower migration, suggesting that the protrusion
formation mediated by Exo70 plays a role in directional cell migration.
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3.4 Biological consequences

To summarize these results, our collaborators have found that Exo70 generates nega-
tive curvature in vivo, and that this curvature depends on its ability to form higher-
order oligomers and its competency to bind PIP2. In cells, overexpression leads to
increated filopodial protrusions, many of which lack actin at the tip. Similarly, cells
with Exo70 inhibition or mutations which weaken its curvature induction produce
fewer filapodia and fail to migrate directionally.

Given these findings in combination with the mechanisms suggested by the in silico
portion of the study, we conjecture that “oligomerization-mediated scaffolding” drives
membrane curvature induction. This claim is parsimonious with both our experimen-
tal findings and the wide body of literature that suggests that other proteins generate
curvature by creating similar scaffolds [4141, 107107, 222222, 226226]. With its rod-like structure,
propensity to bind PIP2, and oligomerization state, the role of Exo70 resembles the
well-characterized BAR domain proteins.

Despite its similar structure and function, however, Exo70 distinguishes itself from
the BAR domain proteins in a number of ways. More specifically, it is implicated in cy-
toskeletal activity [7979,285285]. It directly stimulates Arp2/3-mediated actin polymeriza-
tion and branching [197197,382382], the latter of which is widely believed to push against the
cell membrane in order to form protrusions. Recent experiments involving I-BAR and
F-BAR suggest that membrane curvature facilitates protrusions [122122, 216216, 217217, 366366].
Hence we hypothesize that Exo70 may perform a similar function, creating space at
the leading edge which accomodates actin polymerization and branching mediated by
the Arp2/3 complex.

Given its canny ability to independently remodel membranes, along with its regu-
lation by small GTPases and kinases [146146,265265] and interactions with actin branching
and polymerizing proteins, it is likely that Exo70 plays an important role in facili-
tating morphology change in a cellular context. For that reason, further study of the
molecular mechanism by which it bends membranes, as well as a full accounting of its
binding partners and effectors will be important to characterizing the morphogenesis
pathways that it influences.

3.5 Refining the model

Our molecular model for Exo70-membrane interactions gives us the opportunity to
ask more refined questions about its role in exocytosis and cell morphogenesis. Since
this work was published, we have refined our model by including explicit interactions
with a single PIP2 molecule hypothesized to be necessary to adhere the protein to
the bilayer. While the original simulations relied solely on electrostatic effects with
mildly-charged lipids like DOPS (−1e), simulations depicted in figure 3.33.3 include
explicit PIP2 at so-called “infinite-dilution”, that is, with a single PIP2 per monomer.
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Figure 3.3: Snapshot of a simulation containing the Exo70 anti-parallel dimer interacting with two
PIP2 molecules. We have removed lipids within 6 nm to highlight the associated PIP2, highlighted
in green.

These simulations use a model for PIP2 generated using instructions provided by
[212212] along with guidance from structure-matching between our hypothesized model
and simulations of PIP2 reported in chapter 55. Simulations of Exo70 in the absence
of PIP2 indicated that the protein would eventually detach. In these simulations, the
protein remains bound to the bilayer.

Proof of concept. In this study, we used a surface-fitting algorithm to estimate the
protein-induced deformation fields. This algorithm was also employed to estimate
the curvatures induced by simulations of ENTH domains in a related study [333333].
We have found that our original estimates agree with more precise values computed
in chapter 44 (due to the curvature-undulation coupling method). This work demon-
strates the usefulness of a “naïve” measurement of curvature, but more importantly,
it also demonstrates that it’s possible to link mutations in a single protein to more
profound changes in cell morphology. These findings substantiate the goal of this
work, namely, adding molecular detail to our understanding of protein-membrane
morphology changes. Mutations provide straightforward examples of how we can add
molecular detail to our calculations, however the protein identities, concentrations,
and association geometries also provide the kinds of specificity necessary to predict in
vivo experiments. We will explore the logic and purpose of this multiscale modeling
strategy further in chapter 66.
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Chapter 4

Curvature-undulation coupling as a
basis for curvature sensing and
generation in bilayer membranes

This chapter is adapted from a paper currently in press [4444].

In the following study, we present coarse-grained molecular dynamics simulations
of the epsin N-terminal homology (ENTH) domain interacting with a lipid bilayer
and demonstrate a rigorous theoretical formalism and analysis method for computing
the induced curvature field in varying concentrations of the protein in the dilute limit.
Our theory is based on the description of the height-height undulation spectrum in
the presence of a curvature field. We formulated an objective function to compare the
acquired undulation spectrum from the simulations to that of the theory. We recover
the curvature field parameters by minimizing the objective function even in the limit
where the protein-induced membrane curvature is of the same order as the amplitude
due to thermal undulations. The coupling between curvature and undulations leads
to significant predictions: (1) under dilute conditions, the proteins can sense a site of
spontaneous curvature at distances much larger than their size; (2) as the density of
proteins increase the coupling focuses and stabilizes the curvature field to the site of
the proteins; (3) the mapping of the protein localization and the induction of a stable
curvature is a cooperative process, which can be described through a Hill function.

4.1 Introduction

Cellular membranes host many processes essential to life, all of which depend on
the unique physical and chemical properties of the lipids and proteins that comprise,
adhere to, and remodel them. Membrane shapes provide unique microenvironments
across organelles, and distinctions between them confer high selectivity for trafficking
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and signaling processes along with more potent, local concentrations of important
signaling molecules [284284]. Understanding how proteins sculpt lipid bilayers is vital
to our understanding of how cell membranes modulate cell signaling pathways and
consequent cell fate.

In most curvature-driven or curvature associated cellular processes, three length
scales in the plane of the membrane, namely those corresponding to the lipids
(∼ 1 nm), small proteins (∼ 5− 50 nm), and cytoskeleton (∼ 1µm), are all instan-
tiated by a rich complex of partners. While in vitro experiments tend to isolate only
a few components of larger trafficking machinery [278278], and in vivo experiments can
test the role of individual components [136136], it is clear that common cellular traf-
ficking events involve the concerted action of many proteins. A typical example is
clathrin-mediated endocytosis (CME), which depends on a score of scaffolding pro-
teins, adapters, and signaling enzymes [220220]. In keeping with its diverse functionality,
it has been argued that physiological curvature generation can occur through many
mechanisms [221221], each of which may carry unique energy costs [323323].

The intrinsic shape of constituent lipids influences larger-scale bilayer shapes [6161].
By themselves, lipids are thought to generate curvature cooperatively, when orga-
nized into domains with distinct boundaries [331331]. In some cases protein mediated
processes, for example, the action of flipases, is necessary to create lipid composition
differences across the opposing leaflets of a bilayer which can generate differences in
membrane curvature [7676]. In other examples of cooperative lipid “domains” induced
curvature, lipid composition can vary across organelles, between membrane structures
like tubules and vesicles [345345] and even within small nanoscale lipid rafts created by
phase demixing in a single membrane region [215215]. There is evidence that lipid shape
may be coupled to the shape of the bilayer, but precisely quantifying this coupling
through experiments or simulations is challenging [6161, 139139, 274274]. Such experiments
delineate mechanisms by which lipids sense particular preferred curvatures.

Several mechanisms of protein-mediated curvature induction on bilayers have
been proposed. Curvature can be generated by enrichment of transmembrane pro-
teins [246246], steric pressure (i.e. “protein crowding”) at the bilayer surface [324324], and
hydrophobic insertion by peripheral proteins [6666]. Larger protein lattices can often
be directly imaged via electron microscopy or mapped using scattering or correlation
spectroscopy experiments. In some cases, tour-de-force simulations have been con-
ducted to match with experiments to identify Bin/Amphiphysin/Rvs (BAR) domain
lattices on membrane tubules [374374], aggregation of light harvesting proteins on highly
curved membranes [140140], and bilayer thinning caused by α-synuclein [4848].

The actin cytoskeleton influences endocytic pathways by interacting with a host
of adapter proteins and curvature-inducers, namely amphiphysin and dynamin [147147].
Actin dynamics are tightly linked to the recruitment of these proteins which are
thought to generate curvatures necessary to initiate trafficking events [369369]. Actin
dynamics may also influence membrane curvature by a physical mechanism: by mod-
ulating membrane tension, which is conjugate to its excess area [292292].
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Several experiments have focused on highly concentrated, homogeneous systems
which provide unambiguous evidence for membrane shape changes. Many proteins
can bend bilayers if they are enriched to a high concentration. For instance, above 20%
surface coverage, green fluorescent protein can bend bilayers, despite any evidence
that it plays a role in physiological membrane remodeling [324324]. While this evidence
indicates that protein surface coverage is relevant to bilayer shapes, tightly-regulated
membrane shapes may be generated more efficiently in vivo at protein surface cover-
ages well below this threshold, by proteins with a more specific membrane-bending
functionality [316316].

More specifically, curvature-inducing proteins enriched to a moderate concentra-
tion may initiate membrane bending events necessary for intracellular transport or
cell motility. For example, the protein FBP17 localizes to low-tension membrane
invaginations at the leading edge of migrating cells in order to activate actin assem-
bly [337337]. In vitro experiments show that both membrane tension and bound protein
density may work together to initiate the membrane shape changes that lead to traf-
ficking events [297297]. Each of these cases supports a tripartite relationship between
tension, protein density, and membrane shape change, yet each of these phenom-
ena operate at different length and energy scales on the bilayer. There is likewise
evidence that a member of the exocyst (Exo70) drives the formation of outward-
pointing membrane protrusions (negative curvature) and promotes actin branching
at the sites of lamellapodia formation which may be associated with cell migration
and tumor invasion [197197,380380].

Regardless of the specific protein composition, both simulations and experiments
yield important insights into protein-induced membrane bending. Simulations indi-
cate that the ordering of both BAR and ENTH domains influences the morphology
of the bilayer to which they are attached. For example, ordered helical lattices of
these proteins generate tubules while disordered proteins generate vesicles (albeit at
a higher concentration) [1212,226226]. Simulations can accurately match the lattice found
in cryoEM experiments in order to predict the optimal angle between protein con-
stituents [99]. On the other hand, free energy calculations show that BAR domain
self-associations are inhibited by tension [304304].

These studies help to explain the features ofmature curved morphologies or protein
lattices, however it is necessary to characterize the original protein-protein associa-
tions and membrane interactions which generate nascent morphologies. In order to
identify the smallest possible building blocks for curvature generation, one must test
whether particular molecular components can bend the bilayer at moderate, physio-
logical concentrations. Oftentimes, these concentrations give surface coverages which
are well below the diffraction limit and resist clear imaging. An additional com-
plication comes from thermal noise. The softness of lipid bilayers produces many
long-wavelength undulations which may appear indistinguishable from an induced
curvature-field at a given location at a given instant. Predictive models for mem-
brane curvature require a careful accounting of the properties which influence bilayer
tension, rigidity, and excess membrane area, because these influence the nature of the
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undulations.
In this study we offer a first step towards a minimal, predictive model for membrane

bending by studying the undulations in a planar bilayer with modest concentrations
of a commonly studied curvature-inducing protein domain. We focus on a single
exemplar of curvature generation at the intermediate scale: the epsin N-terminal
homology domain (ENTH), which induces curvature via an inserted amphipathic helix
(helix-0 or H0) [101101]. Amphipathic helices are the ideal candidates for distinguishing
curvature sensing and generation since it appears they can do both, they assemble
more quickly than larger complexes due to their size, and they presume to remodel the
bilayer with a mechanism that may be less sensitive to ordering parameters [8282,153153].

Through coarse-grained molecular dynamics simulations, we quantify curvature
fields induced by ENTH domains at three concentrations, and distinguish this cur-
vature from background undulations by applying a fluctuation theory based on a
continuum model to our simulations. We show that ENTH domains induce curvature
cooperatively and focus background undulations into coherent curvature fields over
distances which are much larger than the proteins themselves.

4.2 Methods

To quantify the dependence of bilayer curvature on protein density, we carried out
simulations with 1, 4, or 8 coarse-grained ENTH domains according to the methods
employed in previous simulations of ENTH [335335] and Exo70 [380380]. We adhere these
proteins to a bare bilayer containing a total of 12,800 lipids at a 4:1 composition of
DOPC and DOPS at a spacing of roughly 15 nm. Each protein is bound to a single
PI(4, 5)P2 molecule parameterized from atomistic simulations which remains bound
to H0 near the known binding pocket [101101]. Simulations lacking PI(4, 5)P2 failed to
show measurable curvature and in some cases the ENTH domains detached from the
bilayer (results not shown). This result is consistent with experiments that show that
ENTH domains require binding [137137] and motivates our use of a single PI(4, 5)P2
which is sufficient to retain ENTH at the bilayer in our model.

Bilayer simulations proceed for 500 ns in MARTINI time (∼ 2µs in real time)
with a timestep of 40 fs sampled every 160 ps. The Berendsen thermostat and baro-
stat maintained a temperature of 310 K and semi-isotropic pressure coupling of 1.0
bar both parallel and perpendicular to the bilayer plane with coupling time constants
of 1.0 and 0.2 ps, respectively [3434]. Simulations were solvated with ∼ 700, 000 water
beads which provide more than 20 nm between periodic images in the normal direc-
tion. Simulations data are read by the MDAnalysis toolkit [224224] and analyzed by
in-house analysis codes which use SciPy functions for optimization [343343]. A typi-
cal dynamics run required 48 hours of computing time on a 48−core (3 nodes, 16
processors each), therefore requiring 1,920 CPU hours. The aggregate time for the
project required 8,000 CPU hours of computing. Figure 4.14.1 provides snapshots of our
protein-membrane systems.
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Figure 4.1: Simulation snapshots showing a side profile, top view under periodic boundary conditions,
and average height profile (z) of a free bilayer along with either one, four, or eight ENTH domains
(red). We omit water and counterions for clarity. The top view shows the size of the periodic
simulation box (black square).
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These simulations have a spatial extent of roughly ∼ 65× 65 nm which is large
enough to accomodate a rich collection of proteins in a biological context, but which
is still too small to form even the smallest sub-cellular membrane shapes, e.g. a
small vesicle or complete tubule. However the length of our system is large enough
for us to capture the effect of membrane undulation modes that are 10 times longer
than the size of the proteins. In order to relate the coupling between protein-induced
curvature and the membrane undulations, we employ the Canham-Helfrich [131131] free
energy functional, which has been used to describe the plasma membrane in a variety
of biological contexts [261261]. We have not reported the results of a system-size scaling
analysis in this study, however, we describe this procedure in section 7.37.3. Through
this functional, we describe the bilayer height fluctuations according to its physical
properties — namely the bending modulus and surface tension — and the spontaneous
curvature field of adhered proteins as well as the temperature. In order to directly
apply the theoretical analysis on our molecular dynamics simulations, we interpolate
each leaflet of the bilayer at a length scale of 0.5 nm resulting in height profiles of
128× 128 for our square bilayers of 65× 65 nm2. The leaflet average gives the heights
of the bilayer midplane; the Fourier transform of these heights provides the values of
h0,q given in equation 4.84.8.

Inferring the coarse-grained time-scale

To compute the diffusion coefficients of our proteins, we must first establish the
correct timescale for our simulations. Due to a smoothed energy landscape, coarse-
grained simulations appear to be faster than their clock time. The true timescale
of the simulation can be found by matching a common physical parameter to an
experiment. To this end, we compute the diffusion rate of the most common lipid
in our simulated bilayers, DOPC, and compare it to its experimental value. The
diffusion rates in MARTINI time are pictured in figure 4.24.2.

Experiments which measure DOPC diffusion using NMR estimate a rate of
∼ 11.5µms−1 at 303K [9999]. We observe a DOPC diffusion rate of 39.1µms−1 in our
simulations. The ratio of these rates gives a time dilation of 3.61 so that the 500 ns
simulation represents 1.8µs in real time. This is similar to the fourfold conversion
factor recommended by the MARTINI force field authors [212212].

4.2.1 Curvature-undulation coupling

We treat the energetics of a biological membrane with the Canham-Helfrich Hamil-
tonian [5454,131131].

Hel =
∫ (

κ

2 (2H −H0)
2

+ κK + γ
)
dA. (4.1)

We parameterize the membrane in the Monge gauge (that is, the small-slope limit
where |∇h|2 � 1) where its position is given by positions r = {x, y, h(x, y)}. This
leads to the following linearized energy functional for a surface with zero spontaneous
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Figure 4.2: Observed lipid diffusion rates for each lipid in coarse-grained time. We compare the
average diffusion coefficient for DOPC, the most abundant lipid, to experiments to confirm the
expected fourfold speedup.

curvature:
〈Hel〉 =

∫ κ(r)
2
(
∇2h(r)

)2
dr + γ(r)

2

∫
(∇h(r))2dr. (4.2)

We define the Fourier transform of the bilayer midplane relative to the wavevec-
tor q = (qx, qy) = 2π(nx/Lx, ny/Ly) where A = Lx × Ly is the projected area and
nx, ny ∈ Z.

h(r) =
∑

q
hq exp(iq · r). (4.3)

Free bilayer

In the case of a free bilayer, the spontaneous curvature C0(r) is zero everywhere.
In the most general case, the bending rigidity may be inhomogeneous such that
κ (q) = κ (qx, qy). We will treat tension and bending rigidity as constants for the
calculations in this chapter. Under the Fourier transform, this constant becomes a
Dirac delta function such that κ (q + q′) = κδq+q′,0 which we will denote κq+q′ . We
also assume a constant tension denoted γq+q′ . Given that the wavevectors are sym-
metric (q = −q), assuming constant bending rigidity and tension allows us to write
the energy as a sum over the wavevector (q). The Fourier transform of equation 4.24.2
gives the energy in the frequency space as follows:
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〈Hel〉 =
∫
dA

∑
q,q′
〈hqhq′〉 exp(i(q + q′) · r)

{1
2κ(q + q′)q2q′2 + 1

2γ(q + q′)q · q′
}
,

= A

2
∑
q,q′

hqhq′δq+q′,0
{
κq+q′q2q′2 + γq+q′q · q′

}
,

= A

2
∑

q
〈|hq|〉2

{
κq4 + γq2

}
.

(4.4)

According to the equipartition theorem, each independent undulation mode pos-
seses an energy of 1

2kBT. Applying equipartition to our energy functional gives the
well-known height-height undulation spectrum:

〈
|hq|2

〉
= kBT

A [κq4 + γq2] . (4.5)

Bilayers with spontaneous curvature

In case the spontaneous curvature is nonzero, we define:

C0(r) = −∇2h0(r), and
C0,q =

∑
q
C0(r) exp(−iq · r). (4.6)

We transform equation 4.24.2 as follows.

〈Hel〉 = 1
2

∫
dA

∑
q,q′

{
κ(r)

(
∇2h(r)− C0(r)

)2
+ γ(r)(∇h(r))2

}
,

= 1
2

∫
dA

∑
q,q′

{
κq+q′

[
(∇2hq)2 − 2C0,q∇2hq + C0,q

2
]

+ γq+q′(∇hq)2
}
,

= A

2
∑
q,q′

{
κq+q′

[
q2q′2〈hqhq′〉+ q2〈hqC0,q′〉

+q′2〈hqC0,q〉+ 〈C0,qC0,q′〉
]

+ qq′〈hqhq′〉γq+q′

}
.

(4.7)

Assuming homogeneous bending rigidity and tension ensures that
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κq+q′ = κδq+q′,0. Choosing q′ = −q allows us to write the energy in terms of
a single wavevector, as follows:

〈Hel〉 = A

2
∑

q

{
κ
[
q4〈h2

q〉+ 2q2〈hqC0,q〉+ 〈C2
0,q〉

]
+ γq2〈h2

q〉
}

(4.8)

Note that some treatments include a higher order bending term ∼ κC0
2(∇h)2 in

equation 4.14.1 which couples spontaneous curvature to the height fluctuations. Con-
tinuum simulations show that the eigenmodes deviate no more than 1.1 degrees from
plane waves, therefore we neglect this term for the remainder of the analysis [44].

Equation 4.84.8 encodes the expected spectrum of height-height undulations of a
fluid bilayer. It has traditionally been used to interpret the fluctuations of a bare
(protein-free) bilayer at small and large length scales using continuum methods [261261]
as well as molecular models [4545] in the case where C0(x, y) = 0 and the spectrum
is given by equation 4.54.5; our simulations of the protein-free and tensionless bilayer
adhere closely to this behavior (see figure 4.34.3). Encouraged by this agreement between
the molecular simulations and the continuum model for the protein-free system, we
hypothesized that curvatures computed from molecular simulations in a bilayer with
curvature-inducing proteins will obey the relationship in equation 4.84.8, and that we
can therefore estimate protein-induced deformation fields (C0) from the bilayer height-
height undulation spectrum observed in the simulations.

We have previously estimated curvature-fields induced in protein-bilayer simula-
tions for ENTH domains [333333] and the protein Exo70 [380380] by directly analyzing the
statistics of deformations in the simulation trajectories. These studies also revealed
that the induced curvature is of the same scale as natural undulations making it
difficult to convolve the two effects. It is for the same reason that, we believe, sin-
gle molecule experiments on these proteins fail to reveal any direct evidence of their
curvature sensing or induction [139139].

Discrete undulatory energy levels

At moderate temperature, the system lacks the energy to explore all possible high-
frequency undulation modes evenly as the high-frequency vibrations become “frozen-
out”. To account for this effect, and thereby quantify the accessible frequencies of
vibration in our system, we define discrete energy levels En = n~ω. Our discretized
energy can be written with the following Hamiltonian where β = 1/kBT:

〈Hosc〉 = ~ω
exp(β~ω)− 1 . (4.9)

We treat the accessible frequencies according to the dispersion relation ω = cqkBT,
which assumes that frequencies are proportional to the wavevector via a proportion-
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ality constant (c) such that:

〈βHosc〉 = β~cq
exp(β~cq)− 1 (4.10)

The formalism in equation 4.84.8 accounts for the ways in which the imposed protein
curvature field is convolved with thermal noise to create a distinct undulation spec-
trum that satisfies our modified expression for thermal equipartition. These relations
yeild an intuitive method for determining the “best” C0(x, y) in equation 4.84.8 that is
also consistent with our corrected equipartition theorem. Such a field would ensure
that the ratio between Hel and Hosc is as close to unity as possible. If we penalize
deviations from unity on a logarithmic scale, across all wavevectors, this yields the
following objective function:

L =
∑

q<qcut

(log〈Hel〉 − log〈Hosc〉)2. (4.11)

4.2.2 Analysis

In order to quantify protein-induced bilayer curvatures, we extract two types of data
from our coarse-grained simulations. First, lipid centers of mass from both mono-
layers are interpolated and then averaged to generate a bilayer midplane surface at
regularly-spaced intervals in the XY-plane. Interpolations are computed using a lin-
ear interpolator provided by LinearNDInterpolator in scipy.interpolate. When
modeling the curvature field using a single “dimple”, its position is irrelevant under
the Fourier transform as long as the field remains smooth at the periodic boundaries.
However, we also wish to test trial functions under the hypothesis that each protein
may induce an individual (presumably smaller) dimple. In this case, the relative posi-
tions of these dimples may influence the quality of our fit, so we also save the protein
centers of mass. Under the dynamic protein-fields hypothesis, we center a dimple on
each protein. We find almost no difference between using the instantaneous versus
average protein positions — this is most likely because the proteins do not diffuse very
far — however the protein-fields hypothesis tends to perform somewhat better than
the single field hypotheses at higher concentrations. Both lipid and protein positions
are read directly from GROMACS trajectories via the MDAnalysis Python library [224224]
while all subsequent analysis is performed using SciPy [343343] and in-house Python
codes described in appendix AA.

Standard undulation spectra

The analysis presented in the above utilizes the spectra according to equation 4.84.8 and
equation 4.94.9, which are all provided as a dimensionless ratio between the oscillator and
elastic energies. This formalism mangifies the low-amplitude, high-energy wavevectors
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in order to compare their energy distributions with equipartition, however the strict
undulation spectra depicted in figure 4.34.3 may be more familiar to the reader. The q4-
scaling of the height-height autocorrelation is a hallmark of undulating lipid bilayers.
Figure 4.34.3 shows the scaling according to equation 4.54.5. In section 5.35.3 we will find
that small differences in height autocorrelation for intermediate wavevectors will be
essential for matching our bilayer fluctuations to equipartition.

Figure 4.3: Height-height undulation spectra for each simulation according to equation 4.54.5. Even
without a spontaneous curvature field, the undulations follow the standardard q−4 scaling with
apparent bending rigidities noted in the legend.

Trial functions

We treat the field as a two-dimensional Gaussian function with the follwing form:

C0(x, y) = C0,max exp
(
−(x− xi)2

2σx2

)
exp

(
−(y − yi)2

2σy2

)
. (4.12)

The midplane surface and protein positions, now discretized to a resolution of
0.5 nm in the XY-plane are then Fourier-transformed using numpy.fft.fft. We gen-
erate trial functions for our hypothetical curvature fields on the same grid as the
midplane surface. Our simulations are ∼ 65× 65 nm2 giving a grid with ∼ 130× 130
components. Our trial functions sample the following ranges:
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C0,max ∈ {0.0, 0.001, 0.002, 0.005, 0.01,
0.014, 0.018, 0.02, 0.024, 0.028, 0.032},

σ ∈ {1, 2, 4, 6, 8, 10, 12, 18, 24} (single field),

σ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (protein fields),

σ = σx = σy (isotropic).

(4.13)

These parameters define C0(x, y) in equation 4.124.12 where (xi, yi) denotes the in-
stantaneous center of mass for each protein i ∈ {1, . . . ,N} for the multiple dynamic
protein-fields hypothesis, otherwise it is set to the geometric center of the simulation
box in the single-field scenario.

Frequency filter

We select wavevectors above a cutoff of 1 nm−1 for two reasons. First, the data are
interpolated to a resolution of 0.5 nm and we expect that high-frequency wavevectors
near this resolution will be somewhat unreliable. More importantly, the interlipid
spacing on the bilayer lies between 0.5− 1 nm and we do not expect the functional
form of the bending energy provided in the continuum theory to be valid at this scale.
It is possible to analyze the fluctuations at arbitrarily high wavevectors, however
there is little reason to expect that such high-frequency vibrations are coupled to the
strengths of curvatures that we measure in this study [4545]. Therefore, in all subsequent
steps, we consider only wavevectors above 1 nm−1. We expect that higher wavevectors
are not relevant to the curvature-coupling problem, most notably because the bilayer
midplane is not precisely defined at length scales smaller than the inter-lipid spacing.

Optimizations

The trial functions, height values, and areas each represent variables present in equa-
tion 4.84.8. The remaining variables, namely κ, γ and c, are free parameters, with
respect to which we minimize the objective function L = defined in equation 4.114.11.
Minimization is performed using scipy.optimize.fmin. We judge the accuracy of
the hypothetical curvature field (our trial functions) by the mean squared residual
(which we call mean-squared error or MSE). These mean squared errors are visualized
in figure 4.74.7 for both the multiple dynamic protein-fields hypothesis and in figure 4.84.8
for the single-field hypothesis. We call such landscapes “fitness landscapes”.

All analyses were completed using Python 2.7. A copy of the source code is
available upon request from the authors.
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Implementation

To implement this curvature-undulation coupling method, we first extract the mid-
plane heights and then propose many different curvature fields as trial functions.
There are three parameters needed to describe our fields: the number of proteins per
field, the maximum curvature (hereafter curvature strength) (C0,max nm−1), and the
spatial extent of the isotropic curvature field(s) (σ nm2). We employ two protein-field
mappings. The first is a many-to-one mapping, one field for all of the proteins in the
simulation, called the single-field hypothesis. The second is a one-to-one mapping
in which each protein is represented by a single-field which tracks the instantaneous
position of the protein’s center of mass. The result is a collection of individual Gaus-
sian functions given by equation 4.124.12 centered at the locations of each protein, which
allows for anisotropy as well as higher order poles in the overall shape of the field. We
call this the multiple dynamic protein-fields hypothesis. In both the single-field and
multiple dynamic protein-fields scenarios we minimize L with respect to C0,max and
σ in equation 4.124.12. We rank these fields based on the value of the residual associated
with minimizing the objective function written in equation 4.114.11. Associated codes
are available in modules described in the appendix AA.

4.3 Results

Before applying the formal method described above, it is useful to inspect the height
profiles of protein-laden bilayers because they provide a qualitative picture of how the
proteins can influence the bilayer shape. The ensemble-averaged snapshots of bilayer
heights depicted in figure 4.14.1 show an interesting trend: membrane-attached ENTH
domains almost always occupy above-average bilayer heights. Bilayer undulations
have no preferred lateral position; their constituent waves have uniformly-distributed
phase angles. That the proteins occupy the peaks of the underlying deformation is no
coincidence. As the number of proteins (concentration) increases (from zero to eight
ENTH domains), these proteins appear to focus the undulations underneath them.
This process creates an average deflection of∼ 1nm in our trajectories, but the average
deformation obscures a significantly stronger dynamic focusing effect which is most
apparent when viewing the dynamics, see supplementary video SV4.1. This video
shows stronger deflections, centered on the proteins which wax and wane throughout
the trajectory. More importantly, these deformations are mobile, orbiting the pro-
teins over time. Based on the observed dynamics in the trajectories, we hypothesize
that increasing protein concentration increasingly focuses these background thermal
undulations to the vicinity of the proteins.

We depict the the bilayer height profiles for each simulation in supplemental video
SV4.1 with a snapshot given in figure 4.44.4. These movies show a single 65× 65 nm2

simulation box outlined in black, flanked by periodic images, which help to empha-
size the dynamics of the long-mode undulations which tend to orbit or focus on the
proteins (labeled in black). Red areas have above-average heights while blue areas
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are below the average. Compared to figure 4.14.1, the scale bar indicates that the spon-
taneous deflection is larger than the average deflection.

Figure 4.4: Snapshot of supplemental video SV4.1 which shows the bilayer fluctuations for our
simulations. This snapshot depicts the bilayer deflection either towards the protein (up, red) or
away from it (down, blue). Average protein positions are indicated with black marks. We include
images of the simulation under periodic boundary conditions (PBCs); the center box represents the
size of the simulation.

The results of the curvature-undulation coupling analysis in equation 4.84.8 is pre-
sented in figure 4.54.5, which depicts the energy distribution among undulation modes
indexed by the wavevector q. The data presented here corresponds to the case of the
optimal field which minimizes the objective function L in equation 4.114.11. The energy
distribution for different modes (q) show good agreement with equipartition, which
posits that these modes should have uniformly distributed energies of kBT. The bold
lines depict the average over multiple wavevectors with the same magnitude, but dif-
ferent directions on the tangent plane. We find that our predicted deformation fields
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are in good agreement with equipartition. We also see from figure 4.54.5 that proteins
soften the bilayer and may produce a slight increase in the apparent tension γ. Insofar
as proteins suppress undulations, this result is consistent with the observation that
inhomogeneities in the elastic modulus may lead to a softening of the bilayer [235235].
Having found agreement between the best-fit fields and equipartition, we now turn
to analyzing the features of these deformations.

The strength, extent and error are shown in figure 4.64.6. These parameters show
several striking conclusions. The results for the single-field hypotheses imply that
this scenario, namely describing the deformation field induced by the protein as a
single anisotropic Gaussian field, is not a good representation across all the systems.
While this model describes the one and four ENTH systems to the same degree of
MSE as the other systems, the MSEs for the free bilayer and that for the eight ENTH
systems are almost twice the other systems. This conclusion is not surprising, for in
visualizing the deformation modes, it is clear that the deformations are both dynamic
and possess modes higher than just a monopolar deformation. From a quantitative
standpoint, the single-field model is therefore useful only as an internal control in
order to assess and compare the MSEs of optimal fields to those that are less than
optimal.

Qualitatively however, the single-field model suggests that the influence of the
induced curvature field increases with increasing proteins, which is consistent with
the visualization of the deformation modes in video SV4.1.

The multiple dynamic protein-fields hypothesis provides a more mechanistic pic-
ture that is also quantitatively accurate (and robust). First, it is evident that as
the protein concentration increases, the curvature strength does so as well. The re-
lationship between the number of proteins and the curvature field strength (C0,max)
indicates positive cooperativity in curvature induction, suggesting a collective phe-
nomena in curvature induction, (see red bars BDFH in figure 4.64.6). The maximum
curvature approaches a plateau when four or more ENTH domains are present. With
the approach of the plateau in the curvature field strength, the spatial extents of
the individual fields also stabilize, while the overall spaial extent of the combined
field (due to all the proteins) increases. This scenario is evident from the spatial
maps of the curvature fields in the panels below. In order to establish the degree of
cooperativity, we analyze C0,max and σ versus the number of proteins in terms of a
cooperative Hill reaction nA1 
 An with an equilibirum association constant Kn [7777].
By coupling the stable induction of curvature exclusively with An, we can determine
the degree of cooperativity n by fitting the deformation strength (Ds) as a function of
the number of protein domains (or the dynamic protein-fields), np: that is, we com-
pute Ds(np) = ∑np

i=1
∫

C0
2dA ≈ npπ(C0,max)2σ2/2, where the index i runs over np and

dA = dxdy; the approximate equality evaluates the integral assuming each dynamic
protein-field i is an independent Gaussian function. The plot of Ds versus np in figure
4.64.6, see symbols, is fit to the Hill cooperativity expression (solid-red-line) [7777]:
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Figure 4.5: Energy distribution according to the wavevector (q) for each simulation (top). Relevant
modes lie to the left of 1 nm−1 and show good agreement with equipartition, which posits that these
modes should have uniformly distributed energies of kBT. Errors are somewhat higher for systems
containing more proteins. Also depicted in the bottom row are bilayer properties including κ and γ
found in equation 4.84.8, the harmonic oscillator constant (c) found in equation 4.104.10, and the resulting
mean-squared error (MSE) taken from the residual difference between the spectra and kBT; the
renormalized bending moduli and tension fall within experimental ranges (see section 4.3.24.3.2). Error
bars for κ, γ, and c (as well as the measurements shown in figure 4.64.6 below) are derived from fitted
values observed for hypotheses that lie within four percent of the minimum observed MSE (this four
percent range sets the error bars on the MSE).
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Figure 4.6: Curvature fields for bilayers with ENTH domains inferred from minimization of the
objective function in the curvature-undulation coupling analysis. The parameters that minimize the
objective function represent the closest fit to the adherence of equipartition. Curvature strength
and extent for both single-field and multiple dynamic protein-fields mappings are depicted alongside
their errors (top). In the plot titled “bending” (see bottom row), we show how our results for the
computed curvature field parameters as a function the number of proteins can be used to analyze
the degree of cooperativity between proteins in inducing a stable curvature field, see symbols. The
Hill analysis (described in the text) provides a Hill coefficient of ∼ 3 and the fit to the Hill equation
is depicted as the solid black line. The dashed lines are fits to the Hill equation for n ∈ {2, 3, 4, 5}
and are provided to show that n = 3 is a distinctly close fit to the computed results. We also show
spatial maps of these fields (middle) and the resulting average height profiles (bottom). Error bars
are computed by taking the variation in either curvature or extent which corresponds to a four
percent increase in the MSE.
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Ds(np)−Ds(0)
Ds(∞)−Ds(0) = nKn[A1]n

(1 + nKn[A1]n) ,

to yield the value of the “best fit” parameters: n ∼ 2.94, which clearly establishes
the degree of cooperativity (namely, n = 3) among the ENTH domains in inducing a
stable curvature; here, [A1] is the concentration of A1, which is simply taken as np.

The results that we have enumerated so far — bilayer properties and estimated
best-fit deformation fields — are sufficient to identify threshold concentrations, es-
timate the saturation level of curvature, and demonstrate that curvature induction
depends on concentration resembling that of a cooperatibe Hill process. These es-
timates reduce the size of our survey to a single, consensus hypothesis. Analyzing
the MSE (or fitness) landscape of less-precise hypotheses allows us to describe how
robust our atom-to-field mapping procedure for the determination of the curvature
fields can be. The robustness of our estimates is best assessed by the error landscapes
over the two parameters of our trial functions. The landscapes for the multiple dy-
namic protein-fields trial functions are shown in figure 4.74.7, which plots the fitness
landscape in terms of the MSE for all of the trial fields.

Figure 4.74.7 demonstrates that with the parameter sweeps we have carried out for
the trial functions for the curvature field, many curvature fields may be nearly equally
compatible with equipartition. This helps to put our consensus fields in the proper
context and also quantifies the robustness/sensitivity of our analysis in identifying the
curvature-field strengths from molecular dynamics simulations. Each landscape shows
an inverse relationship between curvature and extent, suggesting that higher curvature
looks like a lower extent through the lens of the undulation spectra. The finite
length scale of our simulations means that we cannot probe wavelengths above 92 nm.
This sets the floor on measurable curvature at ∼ 0.005 nm−1, which is the maximum
curvature of a sine wave with the maximum wavelength. This floor corresponds to the
consensus curvature observed in the error landscapes for free bilayers. We find that
this minimum-observable curvature has a large extent on the free bilayer, suggesting
that this is the background spontaneous curvature for our system.

4.3.1 Mappings between molecular- and meso-scales

The energy spectra in figure 4.54.5 along with the increase in errors with higher con-
centrations suggest that the single-field model performs performs slightly poorer in
comparison to the multiple dynamic protein-fields model. We believe that these er-
rors can be reduced by considering a wider variety of trial functions with dipole,
quadrupole contributions etc., and by testing spatially inhomogeneous κ fields. The
trial functions provide an important link between these molecular simulations and the
mesoscale data and make it possible to predict e.g. the formation of tubules in an in
vitro experiment [333333]. While both the precision and specificity of our molecular-scale
curvature estimates depend strongly on the trial functions, continuum methods use
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Figure 4.7: Error (fitness) landscapes show the mean-squared errors (MSE) for each trial function
with a one-to-one protein-field mapping (in the multiple dynamic protein-fields hypothesis). Each
point on the landscape corresponds to a unique spectrum. The black dots depict the best-fitting
fields, and correspond to the spectra given in figure 4.54.5. These landscapes are smooth, somewhat
flat, and monotone, which suggests that the strength and extent of curvature are partly fungible.
Error bars in figure 4.64.6 are computed by taking the variation in either curvature or extent which
corresponds to a two percent increase in the MSE.
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Figure 4.8: Fitness landscapes for the single-field hypotheses. This map describes the agreement
between observation and theory for a single trial curvature field per simulation (hence 0− 8 proteins
per field).
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larger length scales and typically model several proteins with the single-field hypoth-
esis. Since it lacks molecular detail, we must make sure that information gleaned
from the multiple dynamic protein fields hypothesis is applied to continuum scales.
We thereby ensure that single fields used in mesoscale models have the appropriate
curvature, strength, extent, and overall bending energy.

4.3.2 Renormalized tension

We consistently observe a bending rigidity of κ ' 20 kBT, in good agreement with
experiments described in chapter 22. Despite using a semi-isotropic pressure coupling
to create tensionless conditions on average, we nevertheless fit a negative tension as
low as γ = −8 kBTnm−2 in the fluctuation analysis. A small atomistic simulation
typically experiences an average tension as low as 10µNm−1, however due to its size,
it will experience fluctuations which are much larger, typically about 100 mNm−1.
Given that the large standard deviation, our estimates for tension are less reliable
than those for bending rigidity.

4.4 Discussion

Our estimates of protein-induced deformation fields have demonstrated three impor-
tant components of the molecular-to-mesoscale mapping. The mapping identifies the
relationship between concentration and curvature and the underlying degree of coop-
erativity involved in stable curvature-field induction. While we have identified coop-
erative curvature induction by ENTH domains, it is also possible that other protein
compositions create different transitions from weak to strong curvature, by primarily
interacting with membrane undulations. The level of maximum curvature strength
provides an upper limit on the strength of curvature that the protein domains can
create intrinsically due to their interactions with the bilayer. This ceiling may be used
to conclude that a particular protein cannot create more highly-curved morphologies
without help from extrinsic factors such as stabilizing scaffolds. This may also help
to distinguish the curvature induction at very high densities from protein coats that
initiate bending and trafficking events in vivo. In particular, we find that ENTH
domains have a relatively high ceiling of intrinsic curvature of ∼ 0.03 nm−1 which
suggests that they are capable of stabilizing membrane tubules with the minimum
diameter determined by the size of the lipids, a result which is consistent with in
vitro observations [101101]. In contrast to previous estimates that ENTH domains lack
the energy or cannot pack tightly enough to bend the membrane [323323], we estimate
that ENTH domains can reach curvature strength saturation at moderate densities
with more than enough space to accommodate the remainder of the protein epsin. In
order to extend our conclusions to the mesoscale, we must demonstrate that many
small protein-induced deformations can sum to one with a larger extent in order
to remodel the bilayer at physiologically relevant length scales. This is the third
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component of our mapping, and it has been ably demonstrated by several findings
at the mesoscale using continuum models, where we have employed spatially diffus-
ing curvature fields in fluid membranes to study the emergence and stabilization of
various membrane morphologies quantitatively consistent with in vitro and in vivo
observations [261261,333333,334334,380380].

Our methodology and predictions also identify an important biophysical mecha-
nism which is relevant to general membrane remodeling processes. That is, even a
small ∼ nm-sized domain is capable of coupling a deformation field to background
thermal undulations, and moreover, this coupling allows small proteins to affect bi-
layer fluctuations with a much larger wavelength (∼ 10s of nm). This provides a
possible mechanism for protein enrichment at the sites of membrane remodeling in
which the sensing mechanism occurs through the curvature undulation coupling at
distances much larger than the size of the protein. Consistent with our curvature sens-
ing hypothesis, we find that the diffusion coefficient of the individual ENTH domains
is a strong function of the background curvature of the membrane and of the presence
of other proteins in the neighborhood (see figures 4.94.9 and 4.104.10). We note that the
study of the diffusion coefficient also rationalizes the stability of the cooperatively
induced curvature field due to multiple proteins. Based on the computed values of D,
we estimate that in a typical trajectory of t =∼ 2µs that we harvest, each domain can
move a characteristic distance of

√
4Dt =∼ 10 nm, which is long enough for sufficient

conformational sampling in the region of the induced-field. Hence, the fact that the
induced-field is persistent in this timescale implies its stability within these timescales.
Alternatively, we can utilize the Hill analysis presented above to estimate the stabil-
ity of the induced-field using the relationship Kn = exp(−µn/kBT) [7777], where µn
is the chemical potential of An, which represents the stability of one assembled (or
cooperatively-induced) curvature field. Converting from number of proteins to mole
fraction, we estimate that µn = −35kBT (or ∼ −21kcal/mol at T = 310K).

Our models make contact with experiments in two ways: (1) they recapitulate
known features of protein-protein and protein-lipid association and (2) they predict
membrane geometries observed in experiments. We find that ENTH domains remain
bound to the bilayer for the duration of the simulation without any customization
or modification to the force field typically necessary to tailor simpler coarse-grained
models to specific experiments. This result comports with the slow measured off-rate
of 1 s−1 [273273] and its nanomolar membrane binding affinity [137137]. We attribute this
persistent binding to favorable interactions between the inserted helix-0 and a single
associated PI(4, 5)P2, which provides a binding enthalpy of −14 kBT according to
isothermal titration calorimetry [101101]. The PI(4, 5)P2-protein association is stable
throughout our simulation, and the associated ENTH domains have diffusion rates as
low as 1µm2s−1. This matches membrane-bound epsin diffusion measurements under
total internal reflection fluorescence (TIRF) microscopy [273273] which report 2D lateral
diffusion rates of 1.5µm2s−1. We also find that ENTH domains generate deformations
with a degree of cooperativity n = 3 (see figure 4.64.6) that suggests that tetramers are
required to bend the bilayer. This observation is parsimonious with physiological con-

72



Figure 4.9: Protein diffusion coefficients (colored symbols) and average protein diffusion (black
squares) for each protein-membrane system. We compute the absolute diffusion rate by first mea-
suring DOPC diffusion and comparing it to experiments (coarse-grained time is 3.6 faster than real
time in these simulations, see section 4.24.2). We find that proteins diffuse roughly half as fast as the
surrounding lipids, but that this diffusion rate is influenced by the protein’s position in the average
deformation field. Figure 4.104.10 depicts the mean-squared displacement curves used to compute these
diffusion coefficients. We have set the diffusion to zero for proteins which show anomalous diffusion
at intermediate timescales.
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Figure 4.10: Mean-squared displacement curves used to generate the diffusion coefficients summa-
rized in figure 4.94.9. We extract the two-dimensional diffusion coefficient D according to the relation
〈(r(t)− r0)2〉 ∝ 4Dt. The nearly-linear displacement curves suggests that the proteins undergo
Brownian diffusion, however some proteins in the 8× ENTH system move faster than the typical
diffusion of the phosphoinositide binding partner. This suggests that some of the protein motion
may be active, and is likely due to the underlying chemical potential gradient due to curvature
sensing. Linear fits are performed on protein motion which occurs between 100− 300 ns and are
depicted with black lines for those proteins with positive displacements. The colors on these plots
match those shown in figure 4.94.9.

straints on epsin concentrations at the sites of clathrin-coated pit formation. Epsins
must be enriched above its native intracellular concentration in order to bend the
bilayer, however ENTH concentrations far above the threshold coat might exceed
the CLAP-binding domains on the overarching protein coat, which are known to be
spaced at ∼ 18 nm [103103], or the availability of PI(4, 5)P2, which must also be enriched
at the sites of coat formation according to estimates from our previous work [333333];
this average separation is equivalent to that found in our four-ENTH simulation, and
our analysis shows that this system can generate the necessary deformation. The rel-
atively low accessibility of both PI(4, 5)P2 and binding sites on the coat suggest that
a higher degree of cooperativity would impose additional free energy costs on coat
formation. At lower concentrations exemplified by our single-ENTH domain system,
we observe far less curvature, in agreement with single-molecule tracking experiments
that indicate that single ENTH domains lack the ability to sense low curvatures [139139].
These features — stable binding, slow diffusion, and cooperative membrane bending
— demonstrate that our protein senses curvature collectively, a process which is nec-
essary to explain the self-assembly required to enrich local concentrations of ENTH
domains to sufficient concentrations to trigger trafficking events in the cell. In addi-
tion to matching these features of protein-lipid association, we find that our predicted
membrane maximum curvatures and additional bending energies agree with experi-
mental measurements of ENTH-decorated liposomes, which have radii of 10 nm [173173].
The predicted maximum mean curvature at saturation is ∼ 0.03 nm−1 which is above
the estimated threshold to vesiculate the membrane at higher densities [22,333333].
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While this study treats the bending rigidity of the protein-bilayer system as a
constant, we expect this curvature coupling effect to become even stronger when pro-
teins are enriched to higher concentrations and hence produce a material with a more
heterogeneous bending modulus; an extension of the curvature-undulation coupling
theory to include bilayers with spatially heterogeneous material properties such as
bending rigidity will be pursued in the future. By distinguishing deformations at the
single-molecule level on a large bilayer, we have demonstrated that this method is
sensitive to the molecular details of a particular protein-membrane system. For this
reason we expect it to provide a useful method for classifying proteins which sense or
induce curvature at physiological concentrations and interpreting in vitro studies of
membrane remodeling as well as in vivo studies of how such proteins localize to regions
of preferred curvature [337337]. In particular, our calculations explain how small proteins
can modulate bilayer fluctuations at long distances and how relatively small defor-
mation fields are capable of coupling to the background thermal undulations of the
bilayer. In this way, proteins focus membrane curvature in service of generating more
curvature and attracting protein adapters which sense this curvature, thereby creat-
ing a conducive entropy-dominated mechanism for the creation of large assemblies of
curvature-inducing protein domains. In concert with other more recognized mecha-
nisms (such as phosphoinositide clustering [357357], see chapter 55), we speculate that the
curvature-undulation coupling process could be responsible for protein recruitment.
Indeed we have shown in previous work that the chemical potential (or propensity)
for such proteins to be recruited to sites of curvature depends on the strength of
the protein-curvature field; this coupling quantifies the curvature sensing property
of the protein through the chemical potential [333333, 334334], through which intracellular
trafficking events may be orchestrated in order to influence cell phenotype. More
specifically, the ability of both curvature-inducing proteins and the applied tension to
impact undulating modes of large wavelengths implies that the curvature-undulation
coupling mechanism may explain why curvature-inducing/sensing proteins can also
sense membrane tension, thereby making them conducive to mechanosensing.
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Chapter 5

Phosphoinositides

Chapters 22 through 66 are restricted to length scales of tens of nanometers and above.
In this chaper, we will increase our spatial and temporal resolution to Angströms and
femtoseconds in order to explore the highly-charged phosphoinositides which play
crucial roles in cellular signaling, but which cannot be resolved with coarse-grained
simulations. The work described in this chaper was performed jointly with Dr. David
Slochower and in close collaboration with Professor Paul Janmey.

5.1 Phosphoinositides orchestrate many signals on cell mem-
branes

Biological membranes have a rich composition the spatial distribution, function, and
interactions of which have been the subject of much scientific inquiry and debate [346346].
Cell membranes are defined by their primary constituent, phospholipids, which act
as a substrate for a wide range of biomolecules that organize themselves along the
surfaces it creates. However, the building blocks of the membrane material itself is
also part of the biochemical foreground in part because it hosts phosphoinositides
(PPIs), a class of phospholipids with an inositol ring that provides binding sites for
up to three additional phosphate groups.

The multiplicity and relative positions of these groups confer an incredible bio-
chemical specificity [183183]. One molecule in particular, phosphatidylinositol 4,5-
bisphosphate (PIP2) is unique in that it acts as a beacon for hundreds of cytosolic
proteins and regulates a number of processes that require them [109109]. Defects in
PPI signaling are implicated in a number of melanoma, lung, breast, and ovarian
cancers [5252, 9595, 160160]. Since the 1960s, investigators have observed cation-mediated
domains in plasma membrane extracts [134134]. Recent study has located PIP2 in such
domains, finding that they host a manifold higher concentration compared to back-
ground [144144,308308,340340,357357].
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5.1.1 Characterizing lipid clusters

In the remainder of this chapter we will investigate the hypothesis that cation-lipid
binding affects the motion and binding partners of PIP2, and specifically that strong
bonds formed with calcium in particular can influence the structure and dynamics of
the bilayer. The overhead view of diffusing lipids shown in figure 5.25.2 suggests that
the PIP2 molecules move slower than the other lipids. We often turn to abstractions
of our simulated bilayers in order to understand the motion of the molecules inside
them. The resulting images can provide intuition about the molecular motions that
give rise to the altered material properties measured more precisely in subsequent
exposition.

5.1.2 Physiological bilayers

For this study, we have constructed twelve simulations. The focus of our analysis will
be so-called “asymmetric” bilayers designed to have a lipid composition that mimics
the inner leaflet of the plasma membrane, and is distinct from the outer leaflet. We
also include simulations which control for the effects of cholesterol, the identity and
charge of counterions, the charge state of PIP2, and the phosphate positions on the
inositol ring. By including a diverse set of compositions in this study, we hope to
underscore the chemical specificity of processes that depend on PIP2.

5.2 Atomistic simulations resolve PIP2-cation binding

We turn to atomistic molecular dynamics simulations in order to overcome the diffrac-
tion limit, which makes it impossible to resolve lipid-ion binding in atomic detail. We
select the CHARMM36 force field [9797,166166] and use GROMACS 4.6.3 to simulate our model
bilayers [342342]. We used updated force field parameters for PIP2 based on quantum cal-
culations [306306]. We have investigated twelve distinct compositions. Each bilayer has
400 lipids (including cholesterol in the physiological bilayers) in each leaflet, contains
positive and negative counterions to reach a charge neutrality at concentrations from
150− 225mM, and solvated with enough water to ensure at least 5 nm separation
between periodic images. Our “physiological” bilayers have an asymmetric composi-
tion with 75% POPC and 25% cholesterol in the outer leaflet. The inner leaflet was
composed of 50% DOPE, 25% cholesterol, 15% DOPS, and 10% PIP2. Symmetric
bilayers contained a 4:1 mixure of DOPC and DOPS along with 10% PIP2 in both
leaflets.

In this simulation protocol, a randomized grid of 400 lipid structures was assem-
bled for each leaflet and composition and arranged with a regular 1 nm spacing. The
lipids were fixed with mild position restraints of 500 kJ /mol · nm2 in the normal
direction and then “packed” into a bilayer using a vacuum equilibration procedure
in order to ensure that no lipids flipped to the opposite leaflet. A number of simi-
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lar bilayer-construction tools are available [313313], however our procedure is seamless
with the tools described in appendix AA. The resulting bilayer configurations were
then solvated with water and then one of four different cations (sodium, potassium,
magnesium, or calcium) and chloride ions. As per instructions provided by Klauda et
al [166166], we employed CHARMM “special” water ( TIPS3P) which includes Lennard-Jones
interactions on water hydrogen atoms in order to prevent artefacts in lipid motion.

Our systems were equilibrated for at least 20 ns followed by production runs lasting
80 ns. These systems were held at a temperature of 310K using the velocity-rescaling
thermostat due to Bussi et al [5353] with a coupling frequency of 0.5 ps−1 and at-
mospheric pressure via the Parrinello-Rahman barostat with a coupling constant of
2.0 ps−1. The LINCS algorithm contrained hydrogen bond distances allowing for a
2 fs timestep. Van der Waals forces were switched off smoothly from 0.8− 1.2 nm,
and electrostatics were computed according to the particle-mesh Ewald summation
(PME) with a Fourier spacing of 0.16 nm.

These simulations were performed over a timespan of three years on several super-
computing platforms provided by XSEDE, including LONESTAR, COMET, GORDON, and
TRESTLES. Simulations contained up to 360,000 atoms including water and counteri-
ons and achieved simulation speeds of up to 16 ns / day on 6× 16-processor platforms.
The simulations ran for an aggregate production time over 1µs.

5.2.1 Analysis

A typical simulation snapshot is provided in figure 5.15.1. All such snapshots, including
supplemental videos, have been rendered with Visual Molecular Dynamics (VMD)
[142142]. An example simulation is depicted in supplemental video SV5.1.

In 5.35.3 we will measure a number of bilayer properties using a set of analysis codes
written in Python which make use of several libraries, namely MDAnalysis [224224] for
reading and selecting molecules, NumPy [343343] and Scipy [154154] for creating Delaunay
triangulations and Vornoi tesselations of the lipids. We extract two kinds of data
from our simulations. First, lipid-ion binding measurements given in section 5.3.15.3.1 are
computed by counting the numbers of close ions using the pairwise distance calcula-
tor available in SciPy modified for use under periodic boundary conditions (PBCs).
Second, material properties are computed on a triangulated mesh of the lipid centers
of mass (also modified to obey PBCs). This mesh allows us to compute the individ-
ual lipid areas, while a regular interpolation of these points provides the undulation
spectra and bending rigidities. An example of our mesh is depicted in figure 5.35.3 for
a bilayer with a physiological composition.

Bilayer simulations were constructed using codes outlined in appendix AA.
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Figure 5.1: Simulation snapshot of a bilayer containing 800 lipids with PIP2 found in the innner
leaflet (top) along with DOPE (white), DOPS (red), and cholesterol (green). The outer leaflet
(bottom) contains POPC (gray) and cholesterol. PIP2 molecules are colored by atom (e.g. carbon is
cyan, oxygen is red, phosphorus is tan). Calcium cations are shown in blue while water and chloride
ions are hidden.
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Figure 5.2: A depiction of lipid diffusion in which PIP2 trajectories (over 50 ns) are highlighted in
red, while other lipids have distinct per-molecule colors. The periodic boundary is drawn in black
in the center of the box. In general, PIP2 molecules diffuse slower and form pairs and triplets with
each other, typically bridged by divalent cations.
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Figure 5.3: A representation of the Voronoi mesh for a physiological bilayer. We show the diester
phosphate group with a black dot. These positions are used to generate a Voronoi tiling of the
surface using the algorithm provided by SciPy with modifications for periodic boundary conditions.
The unit cell of the mesh is colored according to lipid identity, where DOPE is blue, DOPS is orange,
cholesterol is green, POPC is gray, and PIP2 molecules are red. These mesh structures were used
to generate the measurements described in 5.3.25.3.2.
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5.3 Results

In this section we will outline two kinds of results: (1)molecular measurements such as
ion-lipid binding distances and (2) bilayer properties computed from the triangulated
meshes of the membrane.

5.3.1 Molecular measurements

Counting close ions

In order to understand the effects of divalent cations on a PIP2-laden bilayer, we must
first classify the types of bonds they form with the phosphate groups attached to the
inositol ring (hereafter, the “headgroup”). We do this by counting ions found within
a cutoff distance spanning a range of 1.8− 5.0 Å from any atom in a PIP2 molecule.
An example of this measurement is pictured in figure 5.45.4.

Figure 5.4: Snapshots of separate simulations of PIP2 with magnesium (left, pink) and calcium
(right, blue) along with hydrated water. This image is a snapshot of from supplementary video
SV5.2 which shows that the dehydrated calcium bonds are more persistent. The hydophobic tails
are omitted here.

We classify bound ions by their distance from PIP2 molecules and the number of
lipids that can also be found in this distance. Figure 5.55.5 shows these counts for all
twelve simulations, distinguished by the number of neighboring lipids that fall within
the cutoff distance.

These counts capture a striking result: namely that calcium ions form a tight,
nearly ionic ≤ 2.2Å bond with PIP2 while other ions generally do not. If we expand
our cutoff distance to 4.6Å (see figure 5.65.6) we find far more ions in the zone. The

82



Figure 5.5: Counts of closely-bound ≤ 2.2Å ions distinguished by the number of lipids which are
also bound to these ions. Red bands indicate that the ion is bound to only a single lipid; blue bands
indicate that the ion is shared with exactly two lipids, and green bands count the ions bound to
three or more lipids. Within each colored band, the dark portion counts the number of ions that
are bound to at least one (or in the case of the red bands, exactly one) PIP2 molecule. We find that
divalent cations form far more close bonds with all of the lipids in the bilayer, and that these bonds
typically include PIP2.

83



high −4e charge on PIP2 ensures that most of the ions in the simulation are drawn
to the bilayer, also possibly forming an electric double layer [133133].

We also observe the differences in calcium and magnesium binding in figure 5.45.4
(see also supplementary video SV5.2), which shows that magnesium ions tend to
associate with PIP2 along with intervening waters while calcium ions bind directly
to the phoshate groups. This stronger bond effectively creates a larger effective mass
for diffusing lipids connected by ions. In the results below we will call this “lipid
bridging”. This bridging effect can also be seen in figure 5.65.6 and figure 5.55.5, where
the green bands, indicating ions bound to at least three lipids, grow slowly over
time. This demonstrates that the bilayer is “charging” on the relatively slow, 100 ns
timescale of the simulation. Observations of a dehydrated calcium-PIP2 bond agrees
with single-molecule free energy calculations which show that magnesium is more
difficult to dehydrate [307307].

Changes in headgroup conformations

The identity of the divalent cation also influences the conformation of the inositol ring
as measured by its two degrees of freedom: tilt and rotation. The tilt angle determines
how far the ring extends into the solvent, while the rotation angle determines which
inositol positions (particularly positions two versus four) are exposed to the solvent.
These angles are summarized in figure 5.75.7.

The distributions of both tilt and rotation angles have implications for protein
binding because they determine the relative accessibility of the phosphate groups to
binding sites on potential membrane-binding proteins. 5.85.8 shows these distributions
for the physiological simulations. It has several distinct features. First, the tilt angle
distributions show that the group is usually tilted “forward” (if the reader imagines the
5-phosphate on the left). However, simulations with calcium show more “backward”
tilts those containing magnesium or sodium.

In contrast, the rotation angle determines whether the 5-phosphate projects into
the solvent or becomes sequestered underneath the headgroup. We also find more
negative rotation angles, but in this case they indicate that the 5-phosphate position
is rotated down towards the bilayer, possibly engaged in ion-lipid bridging. Ion-lipid
bridging along with varying headgroup shapes can also be seen as a dynamic process
depicted in supplemental videos SV5.3 and SV5.4.

5.3.2 Bilayer measurements

In 5.3.15.3.1 we provided evidence that calcium-PIP2 bonds are qualitatively different than
bonds with other ions, even with the same charge (e.g. magnesium). Here we will
investigate these implications to a scale which includes many lipids acting in concert.
In particular, we hypothesize that these strong bonds make the effective diffusive unit
larger in proportion to the number of additional lipids that are associated with the
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Figure 5.6: This figure uses the same coloring scheme as figure 5.55.5, with a larger cutoff distance of
4.6Å. At this larger distance we find more similarities in the numbers of bound ions, however PIP2
still accrues more calcium than magnesium.
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Figure 5.7: A description of the headgroup rotation and tilt angles (left) alongside a depiction of
the PIP2 motion (right), which includes aligned PIP2 structures to demonstrate the wide range of
headgroup motion.

Figure 5.8: Distributions of tilte (θ) and rotation (φ) angles for 80 ns simulations of PIP2 in asym-
metric bilayers. See figure 5.75.7 for a definition of these angles. In this measurement, positive angles
indicate that the headgroup is titled back or that the 5-phosphate on the inositol ring is pointed
down.
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PIP2 molecule. We call the latter “ion-lipid bridging”.

Diffusion

In good agreement with experiments [357357], we find that calcium slows lipid diffusion.
Figure 5.95.9 shows the overall diffusion rates for the physiological bilayers, as well as
the individual lipid diffusion rates. We find that calcium slows diffusion, and PIP2
(except for the PI control) always diffuse slower than the other lipids. This result
supports our hypothesis that ion-lipid bridging forms strong bonds which give small
clusters of PIP2 molecules a larger effective mass, hence slowing their lateral motion.

Figure 5.9: Total lipid diffusion rates computed from mean-squared displacement curves over 80 ns
simulations. We find that calcium significantly slows diffusion compared to magnesium and control
simulations. We also find that PIP2 (purple dots) diffuses slower than the other species. Error bars
are generated from the standard deviation of the diffusion coefficient across all molecules in the
system.

Observing changes in lipid areas. The area per lipid is an important biophysical
quantity because it encodes crucial information about both the density and rigidity
of lipid bilayers. It is typically measured by experiments (see chaper 22) and is one
of the crucial points of contact between molecular models and experiments. We have
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computed the lipid areas in two ways: first in the projected plane, largely to control
for the effects of the size of the PIP2 headgroup, and secondly, in three dimensions,
in order to understand the areas in each monolayer/leaflet. The projected lipid areas
provide evidence that calcium condenses the bilayer area. We observe a reduction of
∼ 1.5 Å2 per lipid between simulations containing calcium and magnesium, however
this area change is distributed over all of the lipids in the bilayer. Since PIP2 is only
a minor (10%) constituent of the inner leaflet, this is a significant change, equivalent
to ∼ 15Å2 per PIP2, greater than the average difference between POPC and POPE,
attributable solely to the chemical identity of the cation.

Figure 5.10: Projected (i.e. two-dimensional) areas per lipid for physiological bilayers. We find that
calcium reduces the area per lipid. Even though the differences are small, they are distributed over
all lipids in the bilayer, and are typically modulated only by cation identity or phosphate position.
Error bars are computed from the standard deviation over 10 ns samples of the trajectory.

A novel feature of our simulations is the use of asymmetric lipid compositions.
That is, the inner leaflet contains charged lipids like PIP2 and DOPS while the outer
leaflet contains only POPC (and cholesterol, which is found in both leaflets). Using
the triangulated meshes described in 5.2.15.2.1 we have computed the three-dimensional
areas of each leaflet in order to quantify the communication between them. Figure
5.115.11 shows the difference in monolayer leaflet areas between the inner and outer
leaflets.

Having constructed these bilayers with equal numbers of lipids in both leaflets,
we typically find that the inner leaflet has a larger area. We nevertheless conclude
from these measurements that calcium shrinks the area of bilayers containing PIP2,
and that this condensing effect can be transmitted to the outer leaflet as well. This
provides a possible mechanism for cation-induced domain formation on GUVs and
supported lipid monolayers [357357]. If we estimate that highly charged lipids diffuse
slowly enough (see 5.3.25.3.2) or that PIP2 form clusters (see the evidence described in
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Figure 5.11: Monolayer leaflet areas computed from the Delaunay mesh between lipid centers of mass
under periodic boundary conditions. Activated PIP2 molecules show a larger difference in leaflet
areas than the control PtdIns (PI) simulation. This extra area has implications for lipid packing.
Error bars are computed from the standard deviation of 10 ns samples of the trajectory.

5.1.15.1.1) then we can infer that the sites of PIP2 enrichment may give rise to an excess
area that drives domain formation.

Bending rigidity We compute height-height autocorrelations as per methods de-
scribed in chapter 44. This provides the undulation spectra from which we can extract
the bending rigidities summarized in figure 5.125.12. We find that PI(3, 5)P2 tends to
stiffen the bilayer compared to PI(4, 5)P2. This calculation has a relatively high
uncertainty, hence this calculation and further exporation of the formation of nan-
odomains would be well-served by mapping the specific PIP2-cation interactions onto
a coarse-grained force field, particularly if the close association and screening effects
between PIP2 and divalent cations could be made explicit in those force fields.

5.4 Discussion

In this chapter we have outlined a number of findings that support experiments which
show calcium-induced lipid clustering. The most direct evidence in support of the
lipid clustering hypothesis comes from observations of the ion behavior. Not only do
calcium ions bind more tightly than magnesium, but these bonds also typically expel
water, in good agreement with attenuated total reflection Fourier transform infrared
(ATR-FTIR) experiments [357357] and single-molecule calcuations [307307]. These same
experiments show a slowed diffusion that we also observe in our simulation.

Observations of ion charging (see figure 5.55.5), cations which are shared between
lipids (i.e. “bridging”), and dehydration of tightly-bound calcium lend support to
the hypothesis that calcium induces domains by connecting PIP2 molecules together,
thereby slowing their diffusion, and changing their interactions with other lipids in
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Figure 5.12: Bending rigidity (κ) computed from the height-height undulation spectra for the
physical bilayers. We find that the bilayers containing PI(4, 5)P2 are softer than those contain-
ing PI(3, 5)P2. Error bars are computed from the standard deviation over 10 ns samples of the
trajectory.

the bilayer.
Our bilayer measurements support this theory by finding changes in both the two-

dimensional lipid area and the three-dimensional leaflet area, both of which have im-
plications for lipid packing. Modeling efforts to understand domain formation suggest
that the precise balance between total molecular volume and area may determine how
lipids sort into domains or stabilize the interface between membrane domains [4949].

5.4.1 Future directions

Observed differences in lipid packing have implications for PIP2 binding to proteins.
Background PIP2 concentration may be too low to recruit proteins for intracellular
trafficking events [183183], in which case any local enrichment may trigger these events
by recruiting the necessary protein components. Proteins, and amphipathic domains,
are known to sense packing defects and differences in lipid area [244244].

An accurate model for PIP2 is essential to many of the models discussed in this
dissertation. We expect that the unique features of PIP2 quantified in this study
— in particular the geometry of the headgroup, the lipid area, and the effects of
ion-lipid bridging — may determine its ability to separate into domains or select
particular protein binding partners. Our understanding of the biological function
of PIP2 would benefit from further studies of protein-PIP2 interactions, particularly
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with actin nucleating and branching proteins [270270].
Moreover, a well-characterized atomistic model for PIP2 could be more easily ex-

tended to coarse-grained modeling efforts to explicate the formation of these domains.
In the next chapter (66), we will review the multiscale modeling method. Our study
of PIP2 provides a useful, albeit challening, multiscale modeling target due to the
coupling between strong electrostatic bonds and much slower lipid and protein reor-
ganization on the bilayer.
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Chapter 6

Multiscale coupling

If we think of biological systems as communication systems, then the frequency of
this communication varies over twenty orders of magnitude in time and ten orders of
magnitude in space. In this chapter we will draw on the findings described in chapters
33 and 44 in order to characterize the multiscale mapping strategy necessary to apply
molecular models to in vitro and cell experiments.

6.1 Multiscale coupling strategies

The review of coarse-grained molecular dynamics simulations provided in chapter 22
describes the most limited kind of multiscale coupling: from atomistic simulations
to slightly-larger coarse-grained ones. While this coupling strategy has made all
of the research in this dissertation tractable, it represents a very modest type of
coupling. Recall that coarse-grained simulations of lipid bilayers aim to reproduce
many sensitive biophysical parameters such as area-per-lipid, the stress distribution
across the bilayer, and lipid phase behavior very precisely. For that reason, the
most rigorous parameterization methods require an enormous amount of “bandwidth”
between simulations, often, as is the case for the multiscale coupling algorithms [240240],
requiring independent atomistic simulations of target systems. The multiscale efforts
described in this thesis represent the opposite strategy in which we pass relatively
little information between scales. This strategy is far more common in the biological
literature, which often must contend with far greater measurement uncertainty while
spanning larger gaps in time and space to make useful models.

Typically, molecular dynamics barely extend beyond hundreds of nanometers and
millisecond simulation times for small proteins. Modeling biological systems at larger
length scales often requires a combination of several strategies, including solutions to
ordinary and partial differential equations, descriptions of cell signaling networks in
Boolean or agent-based models, and stochastic models [266266]. Larger target systems
often require multiple modeling strategies at once, and are typically tuned to study
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specific problems in, for instance, tumor metastasis [255255, 358358]. As a general rule,
larger target systems require investigators to compartmentalize many parts of their
theory in order to minimize the information that is passed between components in
the model. This serves two functions: it ensures that fine-grained measurements are
properly sampled before being used in a coarser model, and it usually indicates that
the models are computationally and experimentally tractable.

6.2 Contacting experiments

To explore the multiscale modeling method, we will treat the models described earlier
in this thesis as “case studies” in model-building that comment on opposite intracel-
lular transport fluxes but jointly rely on a similar modeling framework. Both projects
were inspired by questions raised by in vitro experiments performed by collaborators
working under Professors Wei Guo and Tobias Baumgart. The first study showed that
the N-terminal domain of an endocytic adapter protein epsin (ENTH) is sensitive to
the curvature of the supported lipid bilayers to which it adheres [139139]. The second
study was prompted by confocal microscopy images which indicated that the pro-
tein Exo70 could generate inward-pointing tubules on large unilamellar vesicles [380380].
The biological context of for these systems are provided in chapters 44 (ENTH) and 33
(Exo70). The biological details of both processes provide the target for our multiscale
modeling efforts.

That said, it is also important to note that efforts to link experiments and theory
across multiple scales often turns the experiments themselves into modeling “targets”.
Even though our ostensible goal is to describe a problem in biology, we often spend as
much effort verifying and validating our theory. In some limit, the question of theory
and experiment collapses into a single problem.

Dimensionality reduction. The number of “bits” of information (given by a 0 or
1) encoded by these experiments is fairly low, especially in comparison to the rich
chemistry experiments required to build the molecular models in the first place. In the
following exposition, we will find that matching theory and experiments almost always
requires a massive reduction in the dimensionality of our data set. This happens both
within experiments and between them. A single microscopy image might include
billions of molecules, even if the readout is as simple as answering the question: “do
the proteins generate protrusions?” The act of “compressing” these data into a single
claim is an essential part of most scientific inquiry, and attending to this process is
an important part of multiscale modeling.

Membrane bending at the mesoscale. So far, I have described the multiscale mod-
eling process as a highly general process by which we combine observations at many
scales in order to make sense of them. In practice, however, matching experiments
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at different scales typically requires a theory that can link them. The degree to
which this theory is made explicit often determines the success of the effort, and in
this regard, soft-matter biophysics researchers are lucky to have a nearly totalizing
theory for how membranes bend: the Helfrich Hamiltonian [131131]. Other modeling
investigations do not typically have this advantage, and must rely on a Boolean set
of (usually verbalized) logical propositions and careful definition of experiments to
guide their efforts (i.e. “when protein A activates protein B, then . . .”). In this work
we seek to mimic the holistic approach used by biologists to describe the cell, while
acknowledging the advantages conferred by the relatively elegant continuum theory.

6.3 Mapping between scales

In contrast to the high-bandwith multiscale modeling efforts described in section 6.16.1,
the two examples we consider here have remarkably low bandwidth. That is, we pass
only a single function from the molecular to mesoscale models: the concentration-
dependent curvature fields. This requires two important assumptions. First, we
assume that we have measured the curvature accurately in the molecular models.
Second, we assume that our mesoscale model is well-founded and well-sampled so that
the conclusions we draw are faithful to the underlying physics. If we imagine that
multiscale modeling is a metaphorical signal-processing problem, then we must ensure
that each model “trusts” the information coming from the other, and in particular,
that the information is stated in the same language.

In the two studies described here, we can be sure that both the continuum and
molecular models are speaking the same language because they have been extensively
validated. The molecular models obey the Helfrich Hamiltonian down to very small
scales (see section 4.2.24.2.2) and with physical constants (such as bending rigidity) which
agree with experiments (see chapter 22). In previous work from the Radhakrishnan
lab, Tourdot et al and Ramakrishnan et al have shown that continuum simulations
and free energy calculations can be effective tools for quantifying the physical forces
which constrain membrane shapes, in good agreement with experiments [261261,334334,335335].
These foundations ensure that the individual models are internally consistent, and
improve our confidence that combining them can provide useful predictions. In this
section we will compare the multiscale modeling methods in both projects, and in the
conclusion (section 6.46.4) we will generalize this process.

6.3.1 Predicting negative curvature in Invadopodia

The molecular model. In chapter 33, we recapitulated a method for estimating the
curvature fields generated by dimers of the protein Exo70, a key component of the
exocyst. As with many condensed matter, or more generally, entropically-mediated
phenomena, our concept of the protein-induced curvature is highly unintuitive. Cur-
vature generated by Exo70 is difficult to visualize in a dynamics video or average
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surface structure because of thermal undulations, and the overall bilayer deflection in
these simulations amounts to only several nanometers over an extent which is dozens
of nanometers long. We employ a surface-fitting procedure described in chapter 33
resulting in fields depicted in figures 6.16.1 and 6.26.2.

Figure 6.1: A depiction of a single frame of the curvature fitting algorithm in which a two-dimensional
Gaussian function is fit to the heights of lipids in the neighborhood (15 nm) of the protein. Downward
deflection (blue) corresponds to z < 0 and indicates negative curvature. These fits were used to
generate average membrane surface shapes shown in figure 6.26.2.

Figure 6.2: A depiction of the two-dimensional Gaussian “dimple” which represents the average
curvature and extent of the membrane surfaces measured using the surface fitting method. In this
case we find that the dimer systems create stronger, more focused negative curvature fields. The
parameters used to draw these fields are summarized in chapter 33.

This measurement lacks the finesse of the method described in 44, but nevertheless
provides an explanation for the differences we see in the membrane dynamics. It also
crucially recovers an anisotropic curvature field, which is common among rod-shaped
proteins that induce curvature [222222]. The strengths and extents, summarized earlier
in 3.13.1 are direct inputs to the mesoscale model.

Mesoscale membrane bending on spheres. To test the hypotheses that the curvature
fields measured above can generate changes in the shapes of LUVs observed in ex-
periments, we require a mesoscale simulation to bridge the gap delineated in section
6.26.2. We select a dynamically-triangulated Monte Carlo (DTMC) simulation of the
Helfrich Hamiltonian [131131] designed to match the size (∼ 500nm) and topology of the
spherical vesicles used in the in vitro experiments. This procedure was carried out
by N. Ramakrishnan with extensive details provided in the supplemental material of
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Zhao et al [380380]. The Hamiltonian is given by:

Hel =
(

κ

2 (2H −H0)
2

+ κK + γ
)
dA. (6.1)

Simulation methods based on the Helfrich are phenomenological, and depend on a
set of physical parameters. In this framework the membrane is approximated as a
two-dimensional fluid, elastic sheet that is large enough to neglect its thickness. We
estimate parameters such as bending rigidity (κ) from experiments. We neglect the
Gaussian rigidity κ, which is constant for systems with a fixed topology. Proteins are
represented in this model as a nematic field because they have an elongated shape and
induce an anisotropic deformation. This produces orientational order on the surface,
and is a necessary component of any model that predicts tubule morphologies [260260].

The mesoscale simulations produce a binary readout: the presence or absence
of inward-pointing tubules on a triangulated sphere. In the mesoscale simula-
tions presented in [380380], the authors found that deformation fields corresponding
to the wild type dimers created inward-pointing tubules on model LUVs, while the
oligomerization-deficient mutant and the PIP2-binding-deficient mutant failed to cre-
ate these tubules (see chapter 33).

We define the curvature field according to the anisotropic spontaneous curvature
parallel to the protein, given by H‖0 = αa−1

0 . In this expression, α represents the
strength of the curvature in units of a0, the smallest length scale in the simulation. For
a particular set of physical parameters, the model produces the constraint α < −0.6.
When this constraint is satisfied, the model produces tubules. Otherwise, the vesicles
remain unchanged.

Inferring the protein scaffold. The mesoscale simulations identify a clear threshold
for morphology change. To match this threshold to the experiments and molecular
simulations, we have to (1) apply the curvature estimate from the simulation and
(2) account for the spacing between proteins. According to the mesoscale model, the
mean curvature and energy per vertex are given by,

H = H
‖
0

2 = α

2a0
, Evertex = 1

2

H‖0
2

2

Av. (6.2)

Any measurement of membrane curvature must take place over a particular membrane
area. In the mesoscale model we account for the presence of multiple proteins with a
factor n such that the mean curvature energy 〈E〉 scales linearly with the number of
proteins. This gives a vertex energy of 〈Evertex〉 = n〈E〉 over an average vertex area
of Av =

√
3(1.3a0)2 / 2. This provides the following expression for n:

n =
√

3(1.3)2α2

16〈E〉 (6.3)
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From the molecular model, we estimate the molecular areas of the monomers, parallel
dimer, and anti-parallel dimer as 150 nm2, 200 nm2, and 240 nm2, respectively. Based
on the vertex areas, the theoretical maximum number of proteins in a particular area
is n? = (Av = 294 nm2) / molecular area.

This leads to two conclusions. First, the monomer area is too large to pack enough
mononomers into the vertex area required to cross the tubulation threshold given by
α < −0.6. Second, by noting that the anti-parallel dimer system barely satisfies the
constraint n < n?, we can rewrite the morphology threshold in terms of its radius
of curvature measured in the molecular simulations. This leaves a critical radius of
curvature R? = 〈2H?

max〉
−1 = 53.4 nm. These results are summarized in figure 6.36.3.

Figure 6.3: Curvature radii computed from membrane shapes under the action of Exo70 monomers,
mutants, and dimers. The threshold radius of curvature (53.4 nm−1) is noted in cyan. Simulations
which produce a radius of curvature below this threshold are predicted to generate inward pointing
tubules on LUVs.

6.3.2 Predicting phosphoinositide enrichment in endocytic initiation

There is an abundance of evidence that many proteins must assemble in a particular
way in order to “trigger” a clathrin-mediated endocytosis (CME) event [8888]. In this
section, I will summarize our work towards integrating experiments and theory, and in
particular, to mapping the free energy landscape of CME. Simulations of the protein
Exo70 in the previous section (section 6.3.16.3.1) showed that the minimal oligomer (a
dimer) could generate sufficient curvature. In the following study we have chosen
to compute the concentration-curvature relation with slightly more resolution. We
consider simulations containing either 1, 4, or 8 ENTH domains which are smaller
and more mobile than Exo70.
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Molecular models for ENTH domains. CME is characterized by the presence of a
clathrin coat, but the clathrin triskelion itself is unable to induce this curvature on
its own, and instead relies on several protein adapters [8787, 262262]. This provides a key
hypothesis for this work: accessory proteins such as ENTH domains — known from
in vitro experiments to sense and induce curvature on the membrane (see chapter 44)
— must facilitate the curvature require to generate a mature vesicle in vivo.

To shed light on this mechanism we performed coarse-grained molecular dynamics
simulations of either one or four ENTH domains on a lipid bilayer, along with a
free bilayer which acts as a control. These simulations were published in Tourdot et
al [333333] and were extended significantly in order to generate the subject of chapter
44. These simulations were analyzed with curvature-fitting methods nearly identical
to those used to characterize the bilayer bending under the action of Exo70 domains
described in chapter 33. The results are summarized in figure 6.46.4, which illustrates
the strength and extent of the fitted curvature fields.

Figure 6.4: Distributions of maximum curvature and extent measured from framewise fits of the
membrane surfaces in the neighborhood (15 nm) of ENTH domains. For the 4×ENTH system we
also show these distributions for each protein in the simulation. We find stronger positive curvature
when proteins are present, and a flatter distribution of curvature on the control (free) bilayer. The
right panels show the membrane surface area near the proteins which are either above (red) or below
(blue) the average membrane heights, indicating that ENTH domains are typically located on areas
with positive deflection (and hence positive curvature).

We summarize these distributions in 6.16.1, which provides the raw data for our
atom-to-field mapping.
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system 〈Hmax〉 (nm−1) 〈σa + σb〉 / 2 (nm)
(four) ENTH domains 0.024 10.8

lower left 0.031 9.4
lower right 0.030 9.8
upper left 0.024 11.1
upper right 0.018 9.6

(one) ENTH domain 0.028 9.8
control (no protein) -0.013 9.8

Table 6.1: A summary of curvature strength and extent measurements according to the curvature
fitting algorithm [333333].

Identifying the threshold for morphology change. The atom-to-field mapping de-
scribed above tells us how curvature induction depends on concentration. To predict
the formation of vesicles on a planar membrane patch, my colleague Dr. Richard
Tourdot computed the free energy landscapes of a membrane based on the Helfrich
Hamiltonian [131131] and simulated using dynamically-triangulated Monte Carlo meth-
ods. A full description of these simulations is provided by [333333].

As with the simulations of spherical vesicles, these free energy calculations identi-
fied a critical curvature strength required to generate vesicular buds with a constricted
neck, specifically C0 > 0.7 a−1

0 . Vesicles without necks form at C0 = 0.6 a−1
0 , which

found at the maximum in the free energy change (a barrier height). Interestingly, the
free energy landscapes depend somewhat on the size of the coat. Larger coats divide
into smaller coats, each of which forms a bud. This gives an optimal coat radius of
r0 = 4.55a0. If we rescale the mesoscale model to the size of a typical clathrin coated
vesicle in endothelial cells [165165], we set a0 = 28.9 nm. Therefore, mesoscale simu-
lations mimicking clathrin-coated vesicles must provide enough curvature such that
C0 > 0.7 a−1

0 = 0.024 nm−1. This is considerably less than the curvature observed in
molecular simulations, C0 = 2H = 0.05 nm−1, hence our model predicts that ENTH
domains at moderate densities can generate curvature required to induce vesicles.

Closing the loop: predicting endocytosis events. Having constructed a model that
matches both experimental measurements of clathrin-coated vesicles and free energy
calculations of membrane shape change, we can now use this model to make predic-
tions about the conditions necessary to trigger endocytosis.

Using a thermodynamic cycle, we decouple the energy functions for membrane-
remodelling from protein-membrane association [33] and find that the free energy of
membrane deformation is almost 400 kBT for a membrane with κ = 20 kBT. This
energy barrier must be overcome by attraction between the coat and the membrane.
The enthalpy of binding of ENTH domains with its lipid binding partner PIP2 (in this
case represented by its headgroup, Ins(1, 4, 5)P3) is −14 kBT according to isothermal
titration calorimetry [101101]. However, this experiment does not consider the availabil-
ity of PIP2 in a bilayer setting.
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Single-molecule kinetics studies show that ENTH dissociation from the bilayer has
an off-rate of koff = 1s−1 [273273]. We estimate the corresponding on-rate with a few
assumptions.

1. The translational on-rate is:

kdiff = 6.023× 1023DENTH (RENTH +RPIP2) = 6× 107M−1s−1,

based on the radii of ENTH domains and PIP2 (1 nm and 0.15 nm, respectively),
and the finding that domains diffuse at roughly DENTH = 100µm2s−1 [273273].

2. ENTH domain binding to PIP2 requires a coil-helix transition that costs
−3.5 kcal /mol = −6kBT [7777], contributing a factor of e−6 to kdiff .

3. ENTH domain binding to PIP2 is mediated by its embedded helix-0 domain,
which contributes to the on-rate in proportion to the ratio of its rotational de-
grees of freedom in bound versus unbound states (approximately
(RPIP2 / RENTH) / 4π = 0.01).

These estimates yield kon = 0.01kdiffe−6 and kd = koff / kon = 6× 10−4M which trans-
lates to a free energy of binding of ∆G = −7.3 kBT for ENTH binding to PIP2 in
a bilayer. Therefore, the minimum required number of ENTH domains to clear the
energy barrier for vesiculation is 400kBT / 7.3kBT = 55.

This quantity is lower than the number of available clathrin-associated protein-
binding (CLAP) domains (115). However, assembling at least 55 epsins at the site of
a budding vesicle with a radius of ∼ 131 nm would require a local enrichment of PIP2,
which typically exists in the plasma membrane at low concentrations (∼ 0.05%) [183183].
This leads us to conclude that PIP2 must be enriched at the sites of endocytosis.
This claim agrees with the emerging consensus that PIP2 is compartmentalized in
particular domains which are essential to its regulatory functions [357357].

In summation, our multiscale model reproduces a number of useful features of
protein-induced membrane remodeling. The mesoscale model identifies an optimal
coat size that agrees with measurements of clathrin-coated vesicles and tests the
curvature found in molecular simulations against the free energy costs of creating
vesicle buds on an otherwise flat bilayer. The combined multiscale model helps to
guide our understanding of exactly which protein adapters are required to trigger
endocytosis and make contact with the literature which describes the cell signaling
cascades that control cell fate.

While this multiscale model is detailed and predictive, it is almost surely incom-
plete in many ways. For example, electrostatic interactions between epsin and the
highly-charged PIP2 molecules are only approximations in the coarse-grained model.
As we have seen in chapter 55, these interactions depend on the specific chemistry
of the PtdIns molecule and its associated ions. Other factors, like membrane lipid
heterogeneity, pinning by the cytoskeleton and attachment of additional adapter pro-
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teins may influence the model predictions, and help to shed more light on the events
that initiate endocytosis.

6.4 Classifying multiscale models

This chapter has outlined two membrane-protein “case studies” in an effort to high-
light typical multiscale modeling strategies. Besides using similar biophysics princi-
ples, there are several features which are common to both studies.

First, it is important to acknolwedge that these represent relatively minimal cou-
pling between scales. Simpler mappings are easier to define and offer fewer opportuni-
ties for systematic errors. In our case, soft matter systems are particularly amenable
to these kinds of multiscale couplings because their motion can be easily renormal-
ized and because they have many soft degrees of freedom. Other systems, for example
problems in hydrodynamics, may require more careful coupling strategies to bridge
the gaps between small-and-large or fast-and-slow. In the final chapter (77) we will
find that the many stiff degrees of freedom and chemical heterogeneities inherent to
protein structures makes them particularly challenging multiscale modeling targets.

Second, because our models communicate with such “low bandwidth”, many of
their conclusions must be checked for internal consistency. Larger models might test
their conclusions for parameter sensitivity; our models tend to use parameters that
can be directly validated by experiments and follow statistical mechanics rules that
can also be verified. This feature has upsides and downsides. It typically means that
we cannot simply search a parameter space for the most parsimonious models, but
the upshot is that our theories tend to connect to more experiments.

Lastly, the multiscale coupling described here leaves out large amounts of infor-
mation in favor of using causal inference to comment on biology. We don’t need to
know the exact concentration of PIP2 to conclude from our calculations that it must
be enriched at the sites of endocytosis. Similarly, we don’t need to quantify the exact
oligomerization state of Exo70 to know that it must self-associate to create protru-
sions. These kinds of approximations are standard operating procedure in biology
experiments.

In the final chapter (77), I will present a series of open questions and modeling
opportunities, each of which will require multiscale modeling strategies in order to
solve. As with the examples presented here, the models that constitute any multiscale
strategy must be highly tuned to trust the information that they send and receive.
This can only happen when the models are scientifically rigorous.
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Chapter 7

Further perspectives on predictive
simulations

In the preceding chapters, I hope to have convinced the reader that biophysical sim-
ulations provide unique contributions to our study of the molecular basis for cellular
mechanics. In addition to the fundamental themes (see section 1.21.2) present in each
chapter, a common, distinguishing feature of this work is that it is tightly woven into
a large network of research groups, experiments, and scientific disciplines, each of
which plays an important role in ensuring that the consequent research is accurate
and comprehensive. In the spirit of these collaborations, I would like to review some
of the future possibilities of these methods toward answering more questions in the
biological sciences. In this chapter, I will outline onging modeling efforts in two main
areas: membrane-protein interactions, and protein dynamics.

7.1 Tuneable nanocarriers for drug delivery

Functionalized nanocarriers (NCs) are a promising strategy for therapeutic and di-
agnostic applications [296296]. In this section, I will briefly summarize contributions to
Liu et al [195195] which incorporate a molecular description of receptor bending and use
these estimates in a continuum model for nanocarrier adhesion to endothelial cells.
Ongoing study of receptor flexibility is relevant to more detailed models for nanocar-
rier binding which include the effects of hydrodynamics, summarized briefly below
(see section 7.1.47.1.4).

7.1.1 Continuum modeling of nanocarrier binding

This study [195195] produced free energy calculations of nanocarrier binding using a
Metropolis Monte Carlo (MC) model sampled with the weighted histogram analy-
sis method (WHAM). This calculation generates a potential of mean force (PMF)
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for nanocarrier binding which depends on a number of biological parameters. These
include the density, mobility, and flexure of antigens on the surface, the density of
antibodies coated on the surface of the nanocarrier, the size and resistance of the gly-
cocalyx layer, the flow rate over the endothelium, and also the size of the nanocarrier.
Careful estimation of these parameters in the manner described in chapter 66 allows for
a model which can predict these binding events without fitted parameters. However,
some parameters are difficult to measure with experiments and benefit from addi-
tional validation. For this reason, we estimate the flexural rigidity of the 20 nm-long
ICAM-1 receptor using coarse-grained molecular dynamics.

7.1.2 Molecular measurement of antigen flexure

The protein ICAM-1 is expressed in low levels in vascular endothelial cells and is up-
regulated during inflammation [326326] and, along with other adhesion molecules linked
to disease states [66], making it a good candidate for selective drug delivery.

We constructed atomistic models of ICAM-1 according to PDB structures 1IC1 and
1ZXQ [368368]. Since its dimerization state is unknown, we tested both the monomer and a
dimer [241241]. Coarse-grained molecular dynamics simulations of an ICAM-1 monomer
and dimer were prepared using methods similar to those described in chapters 33
and 44. As per recommendations in Montocelli et al [228228], an elastic network model
with a force constant of 500 kJ /mol · nm2 was applied to all coarse-grained beads
within 0.5− 0.9 nm in order to stabilize the higher-order structure of the protein.
The simulation trajectories are visualized in figures 7.17.1 and 7.27.2, which indicate that
the dimer undergoes more constrained motion during our ∼ 400 ns trajectories (100 ns
in MARTINI time).

The MC model for nanocarrier binding treates antigen-antibody interactions ac-
cording to a Bell model [3232], however the bending of the receptor contributes signifi-
cantly to the free energy of the system, and hence the multivalency of the nanocarrier
bonds. To quantify this bending term, we model the receptor as an elastic rod. For
small fluctuations, the flexure is given by Hooke’s law such that the total bending
energy can be written as:

U = 1
2EI

∫ L

0

(
dθ

ds
− dθ0

ds

)2

ds, (7.1)

where s is the contour length, EI is the flexural rigidity, and the rod is parameterized
by an angle θ(s) which fluctuates about the mean structure given by θ0(s). Accord-
ing to the analysis of actin filament flexure described by Gittes et al [113113], we can
decompose these shapes into Fourier modes with corresponding coefficients an and a0

n
in order to rewrite the bending energy term as:

U = 1
2EI

∞∑
n=1

(
nπ

L

) (
an − a0

n

)2
(7.2)
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Figure 7.1: Backbone representation of the ICAM-1 monomer from the beginning (red) to the end
(blue) of a ∼ 400 ns dynamics trajectory.

Figure 7.2: Backbone representation of the ICAM-1 dimer over the course of a ∼ 400 ns trajectory.
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The equipartition theorem tells us that each mode contributes kBT / 2 to the energy,
hence we can compute EI from the variance of the Fourier modes expressed in equation
7.27.2:

Var[an] = 〈
(
an − a0

n

)2
〉 = kBT

EI

(
L

nπ

)2
. (7.3)

Equation 7.47.4 relates the flexure to the persistence length (Lp), the distance at which
tangent-tangent angles become uncorrelated. Both flexure and persistence length
describe the same property: the receptor’s resistance to bending, given by:

Lp = EI

kBT
, cos (θ(s)− θ0(s)) = exp

[
− s

Lp

]
. (7.4)

We parameterize the ICAM-1 filaments by selecting residues at the interstices
between its five domains and compute the flexure. According to the first Fourier mode,
we compute a flexure of 800 pNnm2 for the monomer and 12000− 24000 pNnm2 for
the dimer. These correspond to persistence lengths that range from 200 nm− 3µm,
meaning that the receptor is softer than actin and microtubules, but stiffer than
collagen and P-selectin.

7.1.3 Continuum findings

Having validated the antigen flexure, among many other parameters, the continuum
model produced PMFs which matched results from in vitro cell culture, endothelial
targeting in mice, and atomic force microscopy experiments. The model predicts
a threshold of 45% antibody coverage above which nanocarrier binding is stronger
than that of a single-antibody. That this threshold was observed in mouse experi-
ments suggests that the model is accurate and may be a useful reference for designing
nanocarrier therapies.

7.1.4 Adding hydrodynamics

Work is currently underway to characterize the vibrational spectra of ICAM-1 bind-
ing in order to improve our understanding of nanocarrier binding under confinement.
In previous work from the Radhakrishnan lab, Yu et al. have shown that a com-
posite generalized Langevin equation (GLE) can be used to describe the motion of
a nanocarrier across hydrodynamic regimes, from the bulk to a wall [375375]. In order
to add molecular specificity to this model, one must characterize the motion of the
protein receptor along with the surrounding fluid by computing the velocity autocor-
relation function (VACF) and the corresponding memory kernel. This method can
yield important insights into the collective conformational motions in proteins [175175];
these collective motions contribute one of many forces that appear in the model. This
work employs constant number, constant volume, and constant energy (i.e. micro-
canonical ensemble, or NVE) simulations of ICAM-1 to compute the VACF in order
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to refine the nanocarrier model for the particular case of ICAM-mediated binding.

7.2 Disentangling biomolecule conformational changes

A key future-oriented theme for much of the modeling work in this dissertation is
the need to understand the organization and dynamics of the cytoskeleton because it
plays a key role in cell function. In 2013, I produced models for Dr. Sira Sriswasdi,
who was then a student working with David Spicher at the Wistar institute. The
goal of this project was to generate a molecular model of minispectrin in order to
provide detail to crosslinking experiments. Spectrin is large, flexible molecule that
exists primarily as a heterotetramer of various isoforms, and forms a large part of the
“membrane skeleton”, a two-dimensional network on the inner leaflet of the plasma
membrane [205205].

Cross-linking experiments coupled with mass spectrometry can resolve the motion
of spectrin, which is otherwise too large for crystallography or NMR experiments [320320].
Our simulations sought to test the accuracy of homology models for the protein by
comparing their motions to that observed by crosslinking. Specifically, we sought to
predict whether particular residues would move close enough to crosslink in hour-long
duration of a typical experiment.

Molecular simulations Molecular dynamics simulations were used to investigate the
flexibility of mini-spectrin subunits in order to provide additional insight into the
dynamics mini-spectrin flexibility. The α2 subunit was simulated for 100 ns using the
CHARMM27 all-atom molecular dynamics force field [207207] in GROMACS (version 4.5.5)
[342342]. The starting structure, derived from homology models provided by the Spicher
lab, was minimized, solvated with water, neutralized with counter-ions, and relaxed
under constant volume (NVT) simulation for 100 ps before switching to a constant-
pressure (NPT) for a production run lasting 100 ns. All simulation parameters were
set as per the standard method [3737] with a temperature of 300K and at least 20 Å of
water between the protein and the periodic boundary condition.

This simulation procedure was also used to refine the structures of the wild-type
mini-spectrin dimer, the L207P mutant dimer, and mini-spectrin tetramer. These
simulations contained up to 1.8 million atoms. These simulations showed a root
mean-squared deviation (RMSD) of up to 11 Å from the homology models.

Principal component analysis To connect these simulations to cross-linking experi-
ments, principal component analysis (PCA) was used to estimate the energy barrier
necessary to bring key residues within the 12 Å cross-linking distance in a simulation of
a single subunit. In this method, the motion of backbone α-carbon atoms is measured
by a covariance matrix of atomic positions. For a system of N particles, diagonal-
ization of the covariance matrix gives a set of eigenvalues and eigenvectors which
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Figure 7.3: Structure of the minispectrin tetramer used in atomistic simulations described in this
section. Spectrin is made from similar, heterogeneous repeating units of these filaments.

provide the amplitudes and directions of independent motions in the 3N-dimensional
configuration space. The largest eigenvalues correspond to delocalized, low-frequency
motions and are often sufficient to describe much of the protein fluctuations. Similar
methods have been used to characterize protein structure and function in a variety
of systems [77,1919,3535].

Invoking the quasiharmonic approximation to estimate the minimum energy re-
quired to bring key residues within the 12 Å cross-linking distance, we project a
set of eigenvectors onto the average protein structure, each of which is scaled by a
chosen amplitude δi requiring an energy equal to Ui(δi) = 1

2kiδ
2
i where ki is an effec-

tive spring constant for the ith mode. The spring constants are estimated using the
equipartition theorem, according to which, each harmonic mode has a stiffness given
by ki = kBT / λi where λi is the eigenvalue corresponding to the ith mode and kB is
Boltzmann’s constant. By projecting a linear combination of these scaled eigenvec-
tors onto the protein’s average structure, we calculate the corresponding inter-residue
distance.

The total energy to bring the residues to this distance is then the sum of the
corresponding Ui(δi). The Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization
algorithm implemented in NumPy (version 1.6.2) [343343] was used to search for the
lowest-energy combination of eigenvectors subject to a harmonic restraint which set
a preferred intra-residue gap distance.

Assuming a molecular vibrational frequency of kBT / h = 6× 1012 s−1 we estimate
(using transition state theory) that it would be possible to cross an energy barrier of
roughly 36 kBT during an hour-long cross-linking experiment. This suggests that the
first link requires a trivial amount of time to crosslink (< 0.5kBT) while the second
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and third links will reach 18.8 Å and 22.4 Å within one hour. The average inter-residue
distances for these links were observed to be 15.3 Å, 28.2 Å and 31.3 Å, respectively
during the 100 ns simulation.

While estimates of the time-to-crosslink were reasonable when analyzed one-at-a-
time, they failed to produce a consistent description of the crosslinking. For example,
comparing the projection of the simulation trajectories onto the long-mode fluctu-
ations suggested that the structure was not well-equilibrated. Moreover, the PCA
calculation showed high uncertainty across segments of the trajectory. This is likely
a consequence of the rugged energy landscape that proteins explore.

There is much to be learned by extrapolating molecular simulations to timescales
accessible by modern experiments. In the future it may be possible to more closely
link atomistic simulations with the results of crosslinking experiment, particularly
since zero-length crosslinks are now available [321321].

7.3 Predicting endocytosis events

In chapter 44 I have outlined the method by which we may calculate the deformation
field by proteins at various concentrations using a theory for curvature-undulation
coupling. This method should be extended in several ways in order to improve the
predictions and make better contacts with the continuum models.

Anisotropic curvature-inducing proteins First, measuring the curvature fields in-
duced by epsins demonstrates that the method is sensitive. It is able to resolve
differences between even one and four ENTH domains which insert helices of∼ 30 nm2

at a low concentration (on a bilayer that is over 4000 nm2). For this reason we expect
that it is appropriate for studying curvature induction by protein coats with many
compositions that might be observed in vivo.

However, the ENTH-domain systems used in that study created curvature fields
that were mostly isotropic. Given that many proteins must generate anisotropic
deformation fields in order to create tubules and lamellipodia, it would be useful to
extend this work to elongated curvature fields typical of e.g. BAR domains. We expect
that studying these systems would require a richer set of hypothesized curvature
fields. Proteins which soften the bilayer may also contribute a negative Gaussian
curvature necessary to generate pores, and these curvatures may also be induced by
more elaborate multipoles induced by heterogeneous protein coats.

Secondly, it may also be the case that proteins induce curvature more strongly or
weakly depending on their arrangement. In a proof-of-principle calculation depicted in
figure 7.47.4, we show the results of an unconstrained search through curvature strengths
for a fixed extent of either 2 or 4 nm. The optimization routine is provided by NumPy
(version 1.7) [343343] and SciPy (version 0.17) [154154] and included in the codes described
in the appendix AA.
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Figure 7.4: Curvature estimates generated by optimizing each dynamic protein field independently,
for two different extents. The top panel shows fits for σ = 2 nm while the bottom panel shows fits for a
larger σ = 4 nm extent. Both curvature and average membrane hights are indicated with colorbars.
A similar optimization procedure can be used to add more precision to the results described in
chapter 44.
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This calculation suggests that the collection of proteins may induce different
amounts of cuvature based on their relative positions and distances, as well as their
proximity to the locus of the nascent membrane dimple. In chapter 44 we claimed that
undulations allow proteins to communicate over distances large enough to explain
their self-assembly at the sites of endocytosis. Computing the distance-dependent
curvature strengths may make it possible to learn more about how proteins self-
assemble in vivo. This problem is relevant to many membrane-facilitated recruitment
events, which often requires local enrichment of species which are otherwise found in
low concentrations.

System-size scaling

Deformation fields measured from molecular simulations can only be used to predict
endocytic events with the help of the mesoscale simulations described in chapter 66.
In that chapter and other similar studies [335335] we employ a one-to-several modeling
strategy. It would be useful to match the molecular and mesoscale calculations more
explicitly by matching their fluctuations. A proof-of-principle is provided in figure
7.57.5.

In the above test case, fluctuations from several small, 22× 22 mesoscale simu-
lations (codes courtesy of Dr. Richard Tourdot [335335]) were matched to the height
fluctuations in molecular simulations containing four ENTH domains. To match the
size and bending rigidity of the molecular simulations, we rescaled the mesoscale
simulations according to a length parameter a0 = 2.26 nm−1 and inferred a curvature
field of 0.05 a0 = 0.022 nm−1, which generally agrees with the findings in chapter 44.
We expect that this type of fluctuation matching can also answer questions about the
finite size of our simulations.

Simulations which use periodic boundary conditions preclude access to waves with
a length that is longer than the simulated box. This means that smaller simulations
may frustrate the curvature sorting or induction behavior of adhered proteins. Test-
ing the size-dependent fluctuations is tractable by carefully matching fluctuations to
larger bilayers simulated the continuum methods employed by Tourdot et al [334334,335335].

Inhomogeneous bending rigidity Much of exposition in chapter 44 relies on the rea-
sonable assumption that bilayers have a relatively homogeneous bending rigidity (κ).
While this is largely true for low and moderate protein concentrations, we hypothesize
that the insertion of larger numbers of proteins might stiffen the bilayer. The effects
of higher-concentration protein inclusions may be evaluated by proposing an inhomo-
geneous κ-field. This problem was explored in [44] for one-dimensional systems and
could be applied to our systems. Such a field would cause “mode mixing” whereby the
Fourier modes are not exactly the eigenmodes of the system. This means that inde-
pendent undulation modes may be composed of fluctuations across many wavevectors.
While these modes would be non-trivial to compute and interpret, studying the ways
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Figure 7.5: A snapshot of the dynamically triangulated Monte Carlo (DTMC) membrane surface
designed for comparison to ENTH domain simulations reported in chapter 66. In this proof-of-
principle, we search through parameters — specifically the strength and extent of a two-dimensional
Gaussian in curvature — in order to identify the mesoscale simulation with the fluctuations that
most closely match the 4×ENTH simulations. In this case we estimate a curvature strength of
0.022 nm−1 in general agreement with other estimates.
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in which the undulations couple when they are organized by proteins is important
to understanding biological membranes which may be laden with a dense coat of
biomolecules.

7.4 Conclusions

In this chapter, I have outlined a number of useful modes of inquiry that might extend
the methods described in this dissertation to address open challenges in biology and
continue the important work of marrying theory to simulation and experiment.
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Appendix A

Scalable simulation protocols

Biomolecular modeling efforts require both a robust model and a practical method
for generating, organizing, and matching the model to experiments. This chapter will
describe the practical matter of managing the data created in the course of making and
testing our models. This is not strictly a scientfic question — it’s also an engineering
challenge.

Collaborative development. The work in this chapter was highly collaborative, and
required close cooperation with two colleagues. David Slochower and I jointly devel-
oped all of the codes used to analyze lipid bilyers in chapter 55. These codes formed
the basis for the membrane portions of the “calculator” codes described below (see
section A.5A.5). David and I also cooperatively designed the bilayer construction algo-
rithms used to generate the atomistic bilayer simulations in chapter 55.

The “factory” codes described below (see section A.6A.6) were jointly developed by
Joe Jordan and me with the explicit goal of connecting many disparate codes into a
single simulation/calculation pipeline. The codes produced in our collaboration were
useful training tools for Bachelor’s and Master’s degree students who collaborated
with our lab, and assisted in generating data sets for their research projects. Both
David and Joe are contributors to shared codes which I have posted on githubgithub at
http://github.com/bradleyrphttp://github.com/bradleyrp.

A.1 Scaling and reproducibility

The scientific inquiry described in the body of this dissertation would be feasible
— but hardly economical — without writing standardized codes. In addition to
conserving time and effort, we have developed codes for simulating and analyzing
molecular dynamics simulations with twin purposes:

1. Design simulations protocols that are scalable so that they can be produced at
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little to no cost beyond the requisite computer time.

2. Create reproducible simulations so that other researchers, students, and trainees
can use the codes without an extensive computer programming background.

I have helped to develop these codes in order to make this work more accessible to my
peers, but there are also two knock-on effects from writing computer programs in this
way. First, highly modular and reproducible codes make it easier to perform more
elaborate analyses. While the utility of a calculation does not necessarily increase
with its complexity, the ability to ask nuanced questions about our modeled systems
makes it easier to answer more difficult scientific questions more confidently.

A.2 Open-source codes

The work in this thesis along with the codes described in this appendix depend on a
wide-range of open-source codes.

A.2.1 GROMACS.

The Groningen machine for molecular dynamics [342342] is one of a handful of
widely-adopted molecular dynamics packages which is designed to integrate New-
ton’s equations of motion efficiently on millions of atoms. Despite being designed for
biomolecular systems, a large investment in developing the GROMACS codes have led
to its widespread use in non-biological problems as well. The GROMACS website
( http://www.gromacs.org/http://www.gromacs.org/) notes that the collected codebase required roughly 500
person-years of labor to produce.

For this reason, it’s difficult to overstate the importance of the community effort
required to develop such a useful, well-documented, and fully-featured code. The same
is true for the small ecosystem of analysis libraries described in the next section. All
of the simulation data in this thesis were generated with GROMACS, and it serves as a
model for all of our efforts in developing scalable codes, not least of all because it is
simple and easy to use.

A.2.2 Scientific computing.

The analyses in this dissertation similarly relied on an elaborate library of computing
resources, namely the Python programming language [347347] and the widely-adopted
NumPy [154154] and SciPy [343343] mathematical libraries. These libraries in particular
are capable of running fast analyses, specifically those that require pairwise distance
searching, generating triangulated surfaces, and numerical optimization methods. We
used the MDAnalysis [224224] library for parsing simulation trajectories. Lastly, the
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calculations described in chapter 44 used SQLalchemy [2929] to manage the large database
of hypotheses.

A.2.3 Visualization.

Biomolecules such as proteins, lipids, and membranes all have intricate geometries.
We have used VMD [142142] in particular to render proteins and membranes, while MayaVi
[258258] and ParaView [55] were useful for visualizing triangulated meshes in some cases.
Plots, and figures were typically rendered and laid out by using Mathematica [364364]
or MatPlotLib [143143].

A.3 Cooperative codes

The data generated for this thesis were managed using three codes:

1. A simulator code manages each GROMACS simulation.

2. A calculator code analyzes, interprets, and visualizes the data.

3. A “factory” code creates a pipeline between simulations and calculations

The simulator and calculator codes can be used independently. The simulator only
requires a computer running linux, Python version 2.7 or higher, and a stock copy of
GROMACS. The calculator requires scientific libraries described in section A.2.2A.2.2. The
third component, the “factory” serves both the simulator and calculator with a simple
web interface, and was created to make it easier for new students to generate larger
data sets. It additionally requires the Django (the “web framework for perfectionists
with deadlines”). The factory has been used to generate dozens of simulations for both
graduate students and undergraduate trainees, and has been running continuously for
almost a year.

In contrast to many software packages, these codes are meant to be downloaded
once per simulation instead of “installed” on a new machine. This has two advantages:
extremely rapid deployment on machines with scientific software already installed and
parallel development of new simulation procedures. The calculator codes are designed
to run on a workstation, while the simulator codes are designed to start simulations
on a small workstation and send them to a larger computing platform to perform
“production” runs.

A.4 Automatic GROMACS

Automatic procotols for GROMACS (which we have named AUTOMACS) is a small set of
Python [347347] codes which which we have uploaded to github at
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http://github.com/bradleyrp/automacshttp://github.com/bradleyrp/automacs. The codes are packaged with a few pro-
tocols from running common simulations. These include:

1. Atomistic proteins in water.

2. Coarse-grained proteins in water using the MARTINI [212212] force field.

3. Coarse-grained lipid bilayers.

4. Coarse-grained proteins adhered to lipid bilayers.

5. Homology modeling using MODELLER [353353].

The codes are also designed to be easy to modify and connect to the factory described
in A.6A.6. All of the procedures used in other parts of this thesis are available as code
modules (we call them “bundles” to distinguish them from typical libraries) which
are easy to distribute with separate git repositories, and may contain more than
one distinct simulation protocol. These codes make it easy to extend the automacs
functions to more complicated simulations, and were essential for developing the
protein-bilayer simulations described in chapters 33 and 44. An example protocol,
designed to produce a coarse-grained lipid bilayer with an arbitrary composition, is
reproduced below.
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1 #!/usr/bin/python
2
3 settings = """
4 system name: CGMD BILAYER
5 lipid structures: inputs/cgmd-inputs/
6 step: cgmd-bilayer
7 requires: cgmd,bilayer
8 shape: flat
9 height: 6

10 binsize: 1.0
11 monolayer offset: 1.5
12 monolayer top: 400
13 monolayer bottom: None
14 composition top: {"DOPC":0.8,"DOPS":0.2}
15 composition bottom: None
16 aspect: 1.0
17 solvent thickness: 20
18 lipid ready: lipid-ready.gro
19 force field: martini
20 cation: NA+
21 anion: CL-
22 ionic strength: 0.150
23 sol: W
24 ff includes: ["martini-v2.2","martini-v2.0-lipids",
25 "martini-v2.2-aminoacids","martini-v2.0-ions"]
26 files: ["cgmd-inputs/martini-water.gro"]
27 sources: ["martini.ff"]
28 equilibration: npt-bilayer
29 """
30
31 from amx import *
32 init(settings)
33 try:
34 #---development options save your progress
35 if not wordspace["under_development"]:
36 start(wordspace["step"])
37 write_mdp()
38 #---create the bilayer
39 build_bilayer(name="vacuum-bilayer")
40 filecopy(wordspace["step"]+"vacuum-bilayer.gro",wordspace["step"]+"vacuum.gro")
41 write_top("vacuum.top")
42 minimize("vacuum")
43 remove_jump(structure="vacuum-minimized",tpr="em-vacuum-steep",gro="vacuum-nojump")
44 #---pack the lipids without flips
45 vacuum_pack(structure="vacuum-nojump",name="vacuum-pack",gro="vacuum-packed")
46 #---add water
47 solvate_bilayer("vacuum-packed")
48 write_top("solvate.top")
49 minimize("solvate")
50 remove_jump(structure="solvate-minimized",tpr="em-solvate-steep",gro="solvate-nojump")
51 #---add ions
52 counterions("solvate-nojump","solvate",resname="W")
53 counterion_renamer("counterions")
54 write_top("counterions.top")
55 #---final minimization
56 minimize("counterions")
57 remove_jump(structure="counterions-minimized",
58 tpr="em-counterions-steep",gro="counterions-nojump")
59 #---center the bilayer in the box
60 bilayer_middle(structure="counterions-nojump",gro="system")
61 write_mdp()
62 #---create groups
63 bilayer_sorter(structure="system",ndx="system-groups")
64 write_top("system.top")
65 #---equilibration
66 equilibrate(groups="system-groups")
67 #---write steps for continuation
68 write_continue_script()
69 #---if interrupted save the state
70 except KeyboardInterrupt as e: exception_handler(e,wordspace,all=True)
71 except Exception as e: exception_handler(e,wordspace,all=True)

Automacs also generates fully-documented simulations by using a standard logging
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procedure. This means that each simulation comes with a list of GROMACS and
terminal commands which can exactly reproduce the simulation from stratch, even
without using the original code. Both the simulator and calculator codes use the
same machine configuration files, which means that it is easy to deploy systems on
supercomputing platforms (e.g. XSEDE) as long as you have an allocation on these
machines. The benchmarks shown in figure A.1A.1 were generated automatically on
XSEDE resources using a built-in benchmarking procedure.

Lastly, the automacs code includes upload, download, and token features that
make it easy to send new simulations to computation clusters, and later retrive them.
Automacs simulations are indexed so that they can be easily incorporated into the
calculator, described in the next section.

A.5 Calculations

Making reproducible simulations is useful for extending this work to new biomolecules,
while developing robust analysis codes is essential even when studying a single bio-
logical system. For that reason, the calculator codes are designed to streamline the
requisite bookkeeping and distill a particular calculation down into small, readable
components that are independent of the storage operations. The codes can be down-
loaded from githubgithub at http://github.com/bradleyrphttp://github.com/bradleyrp.

Under our framework, the calculation codes must be written so that they take a
standard input, typically a structure and trajectory from a simulation, and return a
dictionary of parameters or NumPy arrays which are saved in a transportable, binary
format using the Hdf5 library. By way of example, a simple protein root-mean squared
deviation (RMSD) calculation is quoted below.
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Figure A.1: (Top) Performance benchmarks for a simulation containing eight ENTH domains in-
cluding 915,691 beads (four heavy atoms each) under the MARTINI coarse-grained force field using
GROMACS 5. The simulation consists of a square patch roughly 65× 65 nm in extent. (Middle) Per-
formance for an atomistic lipid bilayer containing 800 lipids for the Phosphoinositide project. These
simulations use the CHARMM36 [166166] force field, include 361,894 atoms, and use TIP3PS or CHARMM
“special water” hence the slightly lower performance compared to the smaller protein kinase sim-
ulation below. (Bottom) Performance for a simulation of a protein kinase (BRAF, active form)
containing 73,507 atoms using CHARMM27 [5050] in GROMACS 5 [342342].
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1 #!/usr/bin/python
2
3 import time
4 import numpy as np
5 import MDAnalysis
6 from base.tools import status
7
8 def protein_rmsd(grofile,trajfile,**kwargs):
9

10 """
11 Compute the RMSD of a protein.
12 """
13
14 #---unpack
15 sn = kwargs["sn"]
16 work = kwargs["workspace"]
17
18 #---prepare universe
19 slice_name = kwargs["calc"]["slice_name"]
20 group = kwargs["calc"]["group"]
21 grofile,trajfile = [work.slice(sn)[slice_name][group][i] for i in ["gro","xtc"]]
22 uni = MDAnalysis.Universe(work.postdir+grofile,work.postdir+trajfile)
23 nframes = len(uni.trajectory)
24 protein = uni.select_atoms("protein and name CA")
25
26 #---reference frame
27 uni.trajectory[0]
28 r0 = protein.coordinates()
29 r0 -= np.mean(r0,axis=0)
30
31 #---collect coordinates
32 nframes = len(uni.trajectory)
33 coords = []
34 for fr in range(0,nframes):
35 uni.trajectory[fr]
36 r1 = protein.coordinates()
37 coords.append(r1)
38
39 #---simple RMSD code
40 rmsds = []
41 for fr in range(nframes):
42 status("RMSD",i=fr,looplen=nframes)
43 r1 = coords[fr]
44 r1 -= mean(r1,axis=0)
45 U,s,Vt = np.linalg.svd(np.dot(r0.T,r1))
46 signer = np.identity(3)
47 signer[2,2] = np.sign(np.linalg.det(np.dot(Vt.T,U)))
48 RM = np.dot(dot(U,signer),Vt)
49 rmsds.append(np.sqrt(np.mean(np.sum((r0.T-np.dot(RM,r1.T))**2,axis=0))))
50
51 #---save an hdf5 binary
52 attrs,result = {},{}
53 result["rmsds"] = np.array(rmsds)
54 return result,attrs

While our framework requires that each calculation is written in a particular for-
mat, by using standardized variables, intuitive lookup tables, and a YAML dictionary
for defining parameter sweeps, the user can focus on writing (and debugging) the
calculation instead of searching for files.

Replicating results. The calculations described in this thesis are available in separate
modules that can be easily copied between resources or distributed on github. This
is an essential feature of our framework: calculations should be transparent, easy to
read, and more importantly, easy to apply to new (or even old) data. The calculator
codes are designed with this goal in mind: all calculations should be almost effortlessly
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replicable.

A.6 Generating data with the “factory”

The factory joins the simulator and calculator codes into a single web-based interface
which the user can deploy privately on a workstation or laptop. It makes it easy for
relative novices to generate simulation data, and it also makes it easy to organize the
production and analysis of new simulations. The codes can be cloned from githubgithub at
http://github.com/bradleyrphttp://github.com/bradleyrp. The user starts with a basic project displayed in
figure A.2A.2.

Figure A.2: Start a simulation from a “bundle” — a pre-packaged protocol. In this demonstration,
the user is creating a new simulation of the villin headpiece.

The factory detects all of the parameters — even if the user has customized their
own simulation protocols — and serves them in a form that can be easily tweaked
to e.g. induce a mutation in a protein, make a larger bilayer, or use a different lipid
composition. After running the simulation, the codes can produce some basic visual-
izations automatically. See figure A.3A.3 for an example of a short protein simulation of
the villin headpiece.

The factory codes are designed to automatically detect the settings for new “bun-
dles”, which means that any protocol written in automacs can be used in the factory.
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Figure A.3: Some simulation protocols can automatically create images of the data using VMD [142142].
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Batch calculations. Calculations can be deployed en masse using the factory de-
scribed in the next section. The web interface for the calculations is shown in figure
A.4A.4, but it can be deployed entirely from the terminal as well.

Figure A.4: The calculator web page can be used to apply calculations to many new simulations at
once. For example, you can see the results from the protein RMSD calculation in the bottom left.

A.7 Ongoing Development

The three codes described in this chapter are under active development. To date they
have been used to train several new students from high school interns to post-docs
in order to answer increasingly technical modeling questions. Codes are shared on
github and it is our sincere hope that even if these codes are not widely adopted,
that they make it easy to extend the work described in this dissertation to more
biomolecular systems.
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