24,504 research outputs found

    H 2 And H ∞ Filtering Design Subject To Implementation Uncertainty

    Get PDF
    This paper presents new filtering design procedures for discrete-time linear systems. It provides a solution to the problem of linear filtering design, assuming that the filter is subject to parametric uncertainty. The problem is relevant, since the proposed filter design incorporates real world implementation constraints that are always present in practice. The transfer function and the state space realization of the filter are simultaneously computed. The design procedure can also handle plant parametric uncertainty. In this case, the plant parameters are assumed not to be exactly known but belonging to a given convex and closed polyhedron. Robust performance is measured by the H 2 and H ∞ norms of the transfer function from the noisy input to the filtering error. The results are based on the determination of an upper bound on the performance objectives. All optimization problems are linear with constraint sets given in the form of LMI (linear matrix inequalities). Global optimal solutions to these problems can be readily computed. Numerical examples illustrate the theory. © 2005 Society for Industrial and Applied Mathematics.442515530Gevers, M., Li, G., (1993) Parametrizations in Control, Estimation and Filtering Problems, , Springer-Verlag, LondonWilliamson, D., Finite wordlength design of digital Kalman filters for state estimation (1985) IEEE Trans. Automat. Control, 30, pp. 930-939Williamson, D., Kadiman, K., Optimal finite wordlength linear quadratic regulators (1989) IEEE Trans. Automat. Control, 34, pp. 1218-1228Liu, K., Skelton, R.E., Grigoriadis, K., Optimal controllers for finite wordlength implementation (1992) IEEE Trans. Automat. Control, 37, pp. 1294-1304Hwang, S.Y., Minimum uncorrelated unit noise in state-space digital filtering (1977) IEEE Trans. Acoustics Speech Signal Process, 25, pp. 273-281Amit, G., Shaked, U., Minimization of roundoff errors in digital realizations of Kalman filters (1989) IEEE Trans. Acoustics Speech Signal Process, 37, pp. 1980-1982De Oliveira, M.C., Skelton, R.E., Synthesis of controllers with finite precision considerations (2001) Digital Controller Implementation and Fragility: A Modern Perspective, pp. 229-251. , R. S. H. Istepanian and J. F. Whidborne eds., Springer-Verlag, New YorkKeel, L.H., Bhattacharyya, S.P., Robust, fragile or optimal (1997) IEEE Trans. Automat. Control, 42, pp. 1098-1105Keel, L.H., Bhattacharyya, S.P., Authors' reply to: "Comments on 'Robust, fragile or optimal' " by P. M. Mäkilä (1998) IEEE Trans. Automat. Control, 43, p. 1268Dorato, P., Non-fragile controller design: An overview (1998) Proceedings of the 1998 American Control Conference, 5, pp. 2829-2831. , Philadelphia, IEEE, Piscataway, NJFamularo, D., Dorato, P., Abdallah, C.T., Haddad, W.H., Jadbabaie, A., Robust non-fragile LQ controllers: The static state feedback case (2000) Internat. J. Control, 73, pp. 159-165Yang, G.H., Wang, J.L., Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty (2001) IEEE Trans. Automat. Control, 46, pp. 343-348Haddad, W.M., Corrado, J.R., Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations (2000) Internat. J. Control, 73, pp. 1405-1423Keel, L.H., Bhattacharyya, S.P., Stability margins and digital implementation of controllers (1998) Proceedings of the 1998 American Control Conference, 5, pp. 2852-2856. , (Philadelphia), IEEE, Piscataway, NJGeromel, J.C., Optimal linear filtering under parameter uncertainty (1999) IEEE Trans. Signal Process, 47, pp. 168-175Nesterov, Y., Nemirovskii, A., (1994) Interior-Point Polynomial Algorithms in Convex Programming, , SIAM, PhiladelphiaGeromel, J.C., Bernussou, J., Garcia, G., De Oliveira, M.C., H 2 and H ∞ robust filtering for discrete-time linear systems (2000) SIAM J. Control Optim., 38, pp. 1353-1368Geromel, J.C., De Oliveira, M.C., Bernussou, J., Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions (2002) SIAM J. Control Optim., 41, pp. 700-711De Oliveira, M.C., Bernussou, J., Geromel, J.C., A new discrete-time robust stability condition (1999) Systems Control Lett., 37, pp. 261-265Sayed, A.H., A framework for state-space estimation with uncertain models (2001) IEEE Trans. Automat. Control, 46, pp. 998-1013Balakrishnan, V., Huang, Y., Packard, A., Doyle, J.C., Linear matrix inequalities in analysis with multipliers (1994) Proceedings of the 1994 American Control Conference, 2, pp. 1228-1232. , Baltimore, MD, IEEE, Piscataway, NJGeromel, J.C., Peres, P.L.D., Bernussou, J., On a convex parameter space method for linear control design of uncertain systems (1991) SIAM J. Control Optim., 29, pp. 381-40

    Robust H

    Get PDF
    The robust filtering problem for a class of uncertain discrete-time fuzzy stochastic systems with sensor nonlinearities and time-varying delay is investigated. The parameter uncertainties are assumed to be time varying norm bounded in both the state and measurement equations. By using the Lyapunov stability theory and some new relaxed techniques, sufficient conditions are proposed to guarantee the robustly stochastic stability with a prescribed H∞ performance level of the filtering error system for all admissible uncertainties, sensor nonlinearities, and time-varying delays. These conditions are dependent on the lower and upper bounds of the time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two simulation examples are provided to illustrate the effectiveness of the proposed methods

    Robust filtering with randomly varying sensor delay: The finite-horizon case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method

    Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60834003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63

    Robust filtering for bilinear uncertain stochastic discrete-time systems

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the robust filtering problem for uncertain bilinear stochastic discrete-time systems with estimation error variance constraints. The uncertainties are allowed to be norm-bounded and enter into both the state and measurement matrices. We focus on the design of linear filters, such that for all admissible parameter uncertainties, the error state of the bilinear stochastic system is mean square bounded, and the steady-state variance of the estimation error of each state is not more than the individual prespecified value. It is shown that the design of the robust filters can be carried out by solving some algebraic quadratic matrix inequalities. In particular, we establish both the existence conditions and the explicit expression of desired robust filters. A numerical example is included to show the applicability of the present method

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Robust H∞ filtering for markovian jump systems with randomly occurring nonlinearities and sensor saturation: The finite-horizon case

    Get PDF
    This article is posted with the permission of IEEE - Copyright @ 2011 IEEEThis paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303, and 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Variance-constrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: The finite-horizon case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H ∞ finite-horizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval . The stochastic nonlinearities under consideration here are described by statistical means which can cover several classes of well-studied nonlinearities. Sufficient conditions are derived for a finite-horizon filter to satisfy both the estimation error variance constraints and the prescribed H ∞ performance requirement. These conditions are expressed in terms of the feasibility of a series of recursive linear matrix inequalities (RLMIs). Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., National Natural Science Foundation of China by Grants 60825303 and 60834003, National 973 Project of China by Grant 2009CB320600, Fok Ying Tung Education Foundation by Grant 111064, the Youth Science Fund of Heilongjiang Province of China by Grant QC2009C63, and by the Alexander von Humboldt Foundation of Germany
    corecore