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Abstract—This paper addresses the robust filtering
problem for a class of discrete time-varying Markovian jump
systems with randomly occurring nonlinearities and sensor sat-
uration. Two kinds of transition probability matrices for the
Markovian process are considered, namely, the one with polytopic
uncertainties and the one with partially unknown entries. The
nonlinear disturbances are assumed to occur randomly according
to stochastic variables satisfying the Bernoulli distributions. The
main purpose of this paper is to design a robust filter, over a given
finite-horizon, such that the disturbance attenuation level
is guaranteed for the time-varying Markovian jump systems in
the presence of both the randomly occurring nonlinearities and
the sensor saturation. Sufficient conditions are established for
the existence of the desired filter satisfying the performance
constraint in terms of a set of recursive linear matrix inequalities.
Simulation results demonstrate the effectiveness of the developed
filter design scheme.

Index Terms—Discrete time-varying systems, Markovian
jumping parameters, randomly occurring nonlinearities, robust

filtering, sensor saturation.

I. INTRODUCTION

A S a class of hybrid system, Markovian jump systems
(MJSs) have been attracting extensive research attention

in the past years since MJSs are very appropriate to model the
dynamic systems whose structure is subject to random abrupt
variation mainly due to, for example, component failures or
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repairs, changing subsystem interconnections, sudden envi-
ronmental disturbance and abrupt variations of the operating
points of a nonlinear system; see, e.g., [12]–[14], [18] and the
references therein. In most existing literature, the transition
probabilities in the jumping process, which determine the
system behavior to a great extent, have been assumed to be
completely accessible. However, such an ideal assumption
would inevitably limit the application of established results
because of the difficulty and cost in obtaining precisely all
the transition probabilities. Very recently, some initial results
have been obtained in [22], [23], [29], and [30] for Markovian
jumping systems with partially unknown transition probabili-
ties.

For decades, filtering technique has been playing an im-
portant role in a variety of application areas including target
tracking, image processing, signal processing and control
engineering [14], [25], [28]. Among other existing filtering
methods, the filtering approach is closely related to
many robustness problems such as stabilization and sensitivity
minimization of uncertain systems, and has therefore gained
persistent attention. Recently, much progress has been made
in the study of the filtering problem for Markovian jump
systems; see, e.g., [1], [6], [7], [18], [20], and [21]. In particular,
the filters have been designed in [1] for Markovian jump
linear systems and in [2] and [31] for nonlinear systems. When
both the Markovian jump parameters and time-delays appear in
the systems, the filtering problems have been studied in [6],
[12], and [13]. In [18], a delay-dependent approach has been
developed to deal with the stochastic filtering problem for
a class of stochastic time-delay jumping systems subject to both
sensor nonlinearities and exogenous nonlinear disturbances.
It is noted that a common feature of the aforementioned
filtering results is that the complete knowledge is required for
the transition probabilities of the jump process. Very recently,
the problem of filtering has been investigated in [30] for
a class of discrete-time Markovian jump linear systems with
partly unknown transition probabilities.

On another research front, networked control systems (NCSs)
have become more and more popular for their successful in-
dustrial applications in aircrafts, manufacturing plants, automo-
biles, etc. The issues of random data packet dropouts [3], [8],
[15], [20], random transmission delay [4], [9], [27], and signal
quantization [11], which typically emerge in NCSs, have been
well studied in the literature. Nevertheless, the randomly oc-
curring nonlinearities (RONs), which also constitute an impor-
tant class of network-induced phenomena, have been largely
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overlooked. As is well known, nonlinearities are widespread in
practice, most of which can be described as the additive non-
linear disturbances caused by environmental circumstances. In
the case of NCSs with communication constraints, such non-
linear disturbances may occur in a probabilistic way, that is, they
may be randomly changeable in terms of their types and/or in-
tensity. This gives rise to the so-called RONs that have started to
receive some initial research interests in, for instance, [17] for
complex networks.

It has been a well-recognized fact that, virtually, almost all
models for real-time systems behave in a time-varying way, es-
pecially those after digital discretization. As such, time-varying
stochastic systems have recently been paid much research
attention; see, e.g., [5], [26], [28], [32] and the references
therein. Unfortunately, in most existing literature, it is implic-
itly assumed that the measurements are always working under
the linear condition such that the possible effect of amplitude
saturation is ignored [10], [16], [19], [24]. Such an assumption
is obviously unrealistic as sensors are all subject to physical
saturations. Therefore, sensor saturation issue should have
taken into account when designing filters. It should be pointed
out that the robust filtering problem for time-varying
stochastic systems with sensor saturation is still an open and
challenging issue, not to mention the case where the inacces-
sible Markovian jump parameter and RONs are also involved
over a finite horizon. It is, therefore, the purpose of this paper
to shorten such a gap.

The main contributions of this paper are listed as follows.
1) A distinguishing feature of the research problem addressed
is that the time-varying system is considered and, accordingly,
the finite-horizon filtering problem is investigated by developing
an effective recursive linear matrix inequalities (RLMIs) ap-
proach. 2) In the plant under consideration, Markovian jumping
parameters, time-varying parameters, randomly occurring non-
linearities, sensor saturation as well as parameter uncertainties
exist simultaneously, which render more practical significance
of our current research. Note that the sensor saturation issue has
seldom been taken into account in filter design. 3) Randomly oc-
curring nonlinearities are introduced to describe the phenomena
of nonlinear disturbances appearing in a random way. 4) Two
cases are considered for the transition probability matrix of the
Markovian process with either polytopic uncertainties or par-
tially unknown entries. 5) The proposed robust filtering
technique is dependent not only on the current available state
estimate but also on the previous measurement, which serves as
a recursive algorithm suitable for online application.

Notation: The notation used in the paper is fairly standard.
The notation stands for a block-diagonal matrix.

and will, respectively, mean expectation of
and expectation of conditional on . represents the
occurrence probability of the event “ ”.

II. PROBLEM FORMULATION

Let be a Markov chain taking values in a
finite state space with transition probability
matrix given by

where is the transition probability from to
and .
In this paper, we consider the following two cases where the

transition probability matrix is imperfectly known.
Case 1: The transition probability matrix belongs to a

given polytope, namely, , where is a given convex
bounded polyhedral domain described by vertices as follows:

(1)

and are given
transition probability matrices. It is easy to see that the convex
combination of these transition probability matrices is also a
possible transition probability matrix.

Case 2: Some elements in matrix are unknown, for ex-
ample, the transition probability matrix may be

where “?” represents the unknown entries. For notation clarity,
for any we denote that

is known

is unknown

In this paper, we consider the following class of uncertain
discrete stochastic nonlinear time-varying Markovian jump sys-
tems in the presence of sensor saturation defined on :

(2)

where represents the state vector;
is the measurement output; is a linear combi-
nation of the state variables to be estimated;
is the disturbance input which belongs to
is a given real initial value. For the fixed system mode,

,
are known, real, time-varying matrices with appropriate dimen-
sions. and are unknown matrices
representing the time-varying parameter uncertainties of the
form

where, for fixed system mode, , and
are known, real, constant matrices of appropriate

dimensions which characterize how the uncertain parameter
in enters the nominal matrices and
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, and is an unknown time-varying matrix
satisfying

(3)

The nonlinear functions and satisfy the
following conditions:

(4)

for all , where and are known
positive scalars, and and are known constant ma-
trices.

The stochastic variables and are two independent
Bernoulli sequences which account for the phenomena of ran-
domly occurred nonlinearities. A natural assumption on the se-
quences and can be made as follows:

where and are known constants. We also
assume that the and are mutually independent.

Remark 1: As described in (2), the nonlinear functions
and could occur independently and

randomly according to individual probability distributions
specified a prior through statistical tests.

The saturation function is defined as

(5)

with , where is the
th element of the vector , the saturation level.

Definition 1: [24] A nonlinearity is said to
satisfy a sector condition if

(6)

for some real matrices , where
is a positive-definite symmetric matrix. In this case, we say that

belongs to the sector .
If we assume that there exist two diagonal matrices and

such that , then the saturation function
in (2) can be decomposed into a linear and a

nonlinear part as

(7)

where is a nonlinear vector-valued function sat-
isfying a sector condition with , and can be
described as follows:

(8)

where .

In this paper, the linear time-varying filter under considera-
tion is of the following structure:

(9)

where represents the state estimate and
is the estimated output. For fixed system mode, the time-varying
matrices and are the filter
parameters to be designed.

For presentation convenience, for each possible
, a matrix will be denoted by .
Let us now work on the system mode .

Setting and , we
obtain an augmented system from (2) and (9) as follows:

(10)
where

(11)

Our aim in this paper is to design a finite-horizon filter in
the form of (9) such that, for the given disturbance attenuation
level , positive definite matrices and
the initial state , the performance index satisfies the
following inequality:

(12)

where .

III. PERFORMANCE ANALYSIS OF ROBUST FILTER

Lemma 1 [24]: Let be quadratic
functions of ,
with . Then, the implication

holds if there exist
such that

(13)
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For presentation convenience, we denote

(14)

Theorem 1: Consider system (2) subject to randomly oc-
curring nonlinearities (4) and sensor saturation (5). Let the
disturbance attenuation level , sets of positive scalars

,
positive definite matrices and the filter param-
eters and

be given. The performance index defined in (12)
is achieved for all nonzero if, with the initial condition

, there exists a family of
positive definite matrices satisfying
the following recursive matrix inequalities:

(15)

(16)

for all , where
are de-

fined in (14).
Proof: For , define the following Lyapunov func-

tion

(17)

where are the solutions to
(15) and (16). Then, for and , one has
from (10) that

(18)

where

(19)

Hence, the performance index defined in (12) is given by

(20)

Noting that and the initial condition
, we can get (12) when the following in-

equality holds:

(21)

In terms of the sensor saturation constraint in (8), we have

(22)

which can be written in as

(23)

where

(24)

Now, it suffices to find a condition such that (21) holds subject
to the sensor saturation constraints (23). By using Lemma 1, the
sufficient condition such that the inequalities (23) imply (21) is
that there exist positive scalars such that

(25)

and then the rest of the proof follows from the statement of The-
orem 1 immediately. The proof is complete.

IV. DESIGN OF ROBUST FILTERS

In this section, given the imperfect transition probability ma-
trix described in Case 1 and Case 2, we shall discuss the robust
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filter design problem for the discrete time-varying Mar-
kovian jump systems with randomly occurring nonlinearities
and sensor saturation. Before presenting the theorem, let us de-
note

Theorem 2: Consider system (2) with unknown transi-
tion probability matrix described in Case 1. Let be a
given disturbance attenuation level. For given positive definite
matrices , if there exist families of posi-
tive definite matrices

, families of positive scalars
and , and families

of real-valued matrices
and satisfying the following RLMIs:

(26)

(27)

with the initial condition

(28)

where

and
are defined previously, then there exists an th-order filter

of the form (9) which ensures the performance constraint
in (12), where is given as part of the RLMI solution and
the other two filter parameters are given by

Proof: Since the transition probability matrix
belongs to the convex polyhedral set , there always exist
scalars such that

, where are
vertexes of the polytope. Hence, considering (15) and (16) in
Theorem 1, we have

(29)

(30)
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where

Note that where
and . Noticing (29)–(30), by using Schur com-
plement, -procedure and some algebraic manipulations, we
can obtain (26)–(27) and this completes the proof of the the-
orem.

Remark 2: Now, let us consider the uncertain discrete-time
Markovian system (2) with known transition probability matrix

. In this case, the inequalities (26) and (27) reduce to

(31)

(32)

Theorem 2 provides a design scheme for a time-varying filter
in the presence of unknown transition probability matrix in Case
1. Now we are going to consider the similar problem with un-
known transition probability matrix in Case 2, and the following
theorem is established along a similar line. Before stating the
following theorem, let us denote

Theorem 3: Consider system (2) with unknown transition
probability matrix described in Case 2. Let be a given dis-
turbance attenuation level. For given positive definite matrices

, assume that there exist families of positive
definite matrices

, families of positive scalars
and families

of real-valued matrices and
satisfying the following RLMIs:

(33)

(34)

with the initial condition

(35)

where
and are defined previously, and

and are the same as defined in Theorem 2, and if
, we take

otherwise

Then, there exists an th order filter of the form (9) which en-
sures the performance constraint in (12), where is
given as part of the RLMI solution and the other two filter pa-
rameters are given by
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Proof: Denote

(36)

It is clear that, for any , (31) and (32) can be rewritten as
shown in the equation at the bottom of the page. Therefore, if

we have and for any . This com-
pletes the proof.

Remark 3: Theorem 3 provides feasible solutions to the filter
design problem for time-varying Markovian jump system (2)
under partially unknown transition probabilities. Note that if

holds for any , i.e., all the transition probabilities
are accessible, the corresponding results in (33)–(34) reduce to
(31) and (32). Similarly, when holds for any ,
i.e., all the transition probabilities are inaccessible, Theorem 3
is still valid at the cost of the incremental conservatism. More
specifically, the more known entries in the transition probability
matrix, the less conservatism of the results we would have.

Based on the Theorem 2 and Theorem 3, we suggest the fol-
lowing Robust Filter Design (RHFD) algorithm involving
recursive LMIs conditions.

Algorithm RHFD:
Step 1. Given the performance index , positive definite

matrices and the state initial
conditions and . Select the initial values
for matrices and which satisfy the
condition (28) and set .

Step 2. Obtain the positive matrices and
, and matrices

for the sampling instant by solving the RLMIs
(26)–(27) or (33)–(34), respectively, with known
parameters and .

Step 3. Derive the other two filter parameter matrices
and by solving (29), and set .

Step 4. If , then go to Step 2, otherwise exit.

V. ILLUSTRATIVE EXAMPLES

In this section, we present two simulation examples to illus-
trate the usefulness and flexibility of the time-varying filter de-
sign method developed in this paper. Consider a class of uncer-
tain discrete stochastic nonlinear time-varying Markovian jump
systems with sensor saturation in the form (2).

Example 1: Consider Case 1 where the transition probability
matrix of the Markov process is unknown but it resides in a
polytope with the following two vertices:

Suppose that the system involves two modes, and the system
data are given as follows:

Mode 1:

is a saturation function described as follows:

Mode 2:
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Fig. 1. Random mode r(k).

and the nonlinear functions and are se-
lected as

It is easy to see that the constraint (4) can be met with
and . In this ex-

ample, the saturation values are taken as
and . The state initial value

. The exogenous distur-
bance input is supposed to be a random noise uniformly
distributed over and the probabilities are assumed to
be . Set and let .
Choose the parameters’ initial values to satisfy (28).

Consider the real transition probability matrix as

which means that and in (1). According
to the robust filter design algorithm (RHFD), the RLMIs
in Theorem 2 can be solved recursively subject to given initial
conditions and prespecified performance indices.

The simulation results are shown in Figs. 1–3, where Fig. 1
plots one of the possible realizations of the Markovian jumping
mode . Under this mode sequence, the estimation error
is depicted in Fig. 2. Fig. 3 shows the sensor output. Note that

Fig. 2. Estimation error.

Fig. 3. Sensor output.

the sensor outputs is saturated. The simulation has confirmed
that the designed filter performs very well.

Example 2: Consider Case 2 where some elements in the
transition probability matrix of the Markov process are un-
known and the possible three cases for are given as follows:

where (respectively, ) shows that the elements in tran-
sition probabilities matrix are completely known (respectively,
partially known or completely unknown), and the other param-
eters of the discrete stochastic nonlinear time-varying system
(2) are the same as in Example 1. Similarly, according to the
robust filter design algorithm (RHFD), the RLMIs in The-
orem 3 can be solved recursively subject to given initial condi-
tions and prespecified performance indices. The corresponding
simulation results for the estimation error in these three cases
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Fig. 4. Estimation error of �� case.

Fig. 5. Estimation error of �� case.

are given in Figs. 4–6, respectively. Again, it can be seen that
the more known entries in the transition probability matrix we
have, the less conservatism of the condition there would be.

VI. CONCLUSION

In this paper, the robust filtering problem has been
investigated for time-varying Markovian jump systems with
randomly occurring nonlinearities and sensor saturation. The
considered transition probability matrix includes the case with
polytopic uncertainties and the case with partially unknown
transition probabilities, respectively. Also, the case with com-
pletely known or completely unknown transition probabilities
have been studied as two special cases. The randomly occurring
nonlinearities have been modeled by the Bernoulli distributed
white sequences with known conditional probabilities. Suffi-
cient conditions have been derived for the filtering augmented
system under consideration to satisfy the performance
constraint. The corresponding robust filters have been
designed by solving sets of RLMIs. Two numerical simulation

Fig. 6. Estimation error of �� case.

examples have been used to demonstrate the effectiveness of
the filtering technology presented in this paper.
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