1,975 research outputs found

    Analysis of Hamiltonian boundary value problems and symplectic integration: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Manawatu, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesCopyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise in most scientific disciplines that make use of mathematical techniques. As exact solutions are in general not computable, numerical methods are used to obtain approximate solutions. In order to draw valid conclusions from numerical computations, it is crucial to understand which qualitative aspects numerical solutions have in common with the exact solution. Symplecticity is a subtle notion that is related to a rich family of geometric properties of Hamiltonian systems. While the effects of preserving symplecticity under discretisation on long-term behaviour of motions is classically well known, in this thesis (a) the role of symplecticity for the bifurcation behaviour of solutions to Hamiltonian boundary value problems is explained. In parameter dependent systems at a bifurcation point the solution set to a boundary value problem changes qualitatively. Bifurcation problems are systematically translated into the framework of classical catastrophe theory. It is proved that existing classification results in catastrophe theory apply to persistent bifurcations of Hamiltonian boundary value problems. Further results for symmetric settings are derived. (b) It is proved that to preserve generic bifurcations under discretisation it is necessary and sufficient to preserve the symplectic structure of the problem. (c) The catastrophe theory framework for Hamiltonian ODEs is extended to PDEs with variational structure. Recognition equations for AA-series singularities for functionals on Banach spaces are derived and used in a numerical example to locate high-codimensional bifurcations. (d) The potential of symplectic integration for infinite-dimensional Lie-Poisson systems (Burgers' equation, KdV, fluid equations,...) using Clebsch variables is analysed. It is shown that the advantages of symplectic integration can outweigh the disadvantages of integrating over a larger phase space introduced by a Clebsch representation. (e) Finally, the preservation of variational structure of symmetric solutions in multisymplectic PDEs by multisymplectic integrators on the example of (phase-rotating) travelling waves in the nonlinear wave equation is discussed

    Spatial Manifestations of Order Reduction in Runge-Kutta Methods for Initial Boundary Value Problems

    Full text link
    This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.Comment: 41 pages, 9 figure

    Aspherical gravitational monopoles

    Get PDF
    We show how to construct non-spherically-symmetric extended bodies of uniform density behaving exactly as pointlike masses. These ``gravitational monopoles'' have the following equivalent properties: (i) they generate, outside them, a spherically-symmetric gravitational potential M/∣x−xO∣M/|x - x_O|; (ii) their interaction energy with an external gravitational potential U(x)U(x) is −MU(xO)- M U(x_O); and (iii) all their multipole moments (of order l≥1l \geq 1) with respect to their center of mass OO vanish identically. The method applies for any number of space dimensions. The free parameters entering the construction are: (1) an arbitrary surface Σ\Sigma bounding a connected open subset Ω\Omega of R3R^3; (2) the arbitrary choice of the center of mass OO within Ω\Omega; and (3) the total volume of the body. An extension of the method allows one to construct homogeneous bodies which are gravitationally equivalent (in the sense of having exactly the same multipole moments) to any given body.Comment: 55 pages, Latex , submitted to Nucl.Phys.

    Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems

    Get PDF
    We prove that for compactly perturbed elliptic problems, where the corresponding bilinear form satisfies a Garding inequality, adaptive mesh-refinement is capable of overcoming the preasymptotic behavior and eventually leads to convergence with optimal algebraic rates. As an important consequence of our analysis, one does not have to deal with the a-priori assumption that the underlying meshes are sufficiently fine. Hence, the overall conclusion of our results is that adaptivity has stabilizing effects and can overcome possibly pessimistic restrictions on the meshes. In particular, our analysis covers adaptive mesh-refinement for the finite element discretization of the Helmholtz equation from where our interest originated
    • …
    corecore