24 research outputs found

    Optimal Parameter Exploration for Online Change-Point Detection in Activity Monitoring Using Genetic Algorithms

    Get PDF
    In recent years, smart phones with inbuilt sensors have become popular devices to facilitate activity recognition. The sensors capture a large amount of data, containing meaningful events, in a short period of time. The change points in this data are used to specify transitions to distinct events and can be used in various scenarios such as identifying change in a patient’s vital signs in the medical domain or requesting activity labels for generating real-world labeled activity datasets. Our work focuses on change-point detection to identify a transition from one activity to another. Within this paper, we extend our previous work on multivariate exponentially weighted moving average (MEWMA) algorithm by using a genetic algorithm (GA) to identify the optimal set of parameters for online change-point detection. The proposed technique finds the maximum accuracy and F_measure by optimizing the different parameters of the MEWMA, which subsequently identifies the exact location of the change point from an existing activity to a new one. Optimal parameter selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results have been evaluated based on two real datasets of accelerometer data collected from a set of different activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of up to 66.7%

    Change Point Detection for Streaming Data Using Support Vector Methods

    Get PDF
    Sequential multiple change point detection concerns the identification of multiple points in time where the systematic behavior of a statistical process changes. A special case of this problem, called online anomaly detection, occurs when the goal is to detect the first change and then signal an alert to an analyst for further investigation. This dissertation concerns the use of methods based on kernel functions and support vectors to detect changes. A variety of support vector-based methods are considered, but the primary focus concerns Least Squares Support Vector Data Description (LS-SVDD). LS-SVDD constructs a hypersphere in a kernel space to bound a set of multivariate vectors using a closed-form solution. The mathematical tractability of the LS-SVDD facilitates closed-form updates for the LS-SVDD Lagrange multipliers. The update formulae concern either adding or removing a block of observations from an existing LS-SVDD description, respectively, and thus LS-SVDD can be constructed or updated sequentially which makes it attractive for online problems with sequential data streams. LS-SVDD is applied to a variety of scenarios including online anomaly detection and sequential multiple change point detection

    Contributions to statistical methods of process monitoring and adjustment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A study of new and advanced control charts for two categories of time related processes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection

    Get PDF
    The automatic collection and increasing availability of health data provides a new opportunity for techniques to monitor this information. By monitoring pre-diagnostic data sources, such as over-the-counter cough medicine sales or emergency room chief complaints of cough, there exists the potential to detect disease outbreaks earlier than traditional laboratory disease confirmation results. This research is particularly important for a modern, highly-connected society, where the onset of disease outbreak can be swift and deadly, whether caused by a naturally occurring global pandemic such as swine flu or a targeted act of bioterrorism. In this dissertation, we first describe the problem and current state of research in disease outbreak detection, then provide four main additions to the field. First, we formalize a framework for analyzing health series data and detecting anomalies: using forecasting methods to predict the next day's value, subtracting the forecast to create residuals, and finally using detection algorithms on the residuals. The formalized framework indicates the link between the forecast accuracy of the forecast method and the performance of the detector, and can be used to quantify and analyze the performance of a variety of heuristic methods. Second, we describe improvements for the forecasting of health data series. The application of weather as a predictor, cross-series covariates, and ensemble forecasting each provide improvements to forecasting health data. Third, we describe improvements for detection. This includes the use of multivariate statistics for anomaly detection and additional day-of-week preprocessing to aid detection. Most significantly, we also provide a new method, based on the CuScore, for optimizing detection when the impact of the disease outbreak is known. This method can provide an optimal detector for rapid detection, or for probability of detection within a certain timeframe. Finally, we describe a method for improved comparison of detection methods. We provide tools to evaluate how well a simulated data set captures the characteristics of the authentic series and time-lag heatmaps, a new way of visualizing daily detection rates or displaying the comparison between two methods in a more informative way

    Pertanika Journal of Science & Technology

    Get PDF
    corecore