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Supervisor: Lauren Ancel Meyers 

 

Infectious diseases are emerging at an unprecedent rate in recent years, such as 

the flu pandemic initialized from Mexico in 2009, the 2014 Ebola epidemic in West 

Africa, and the 2016-2017 expansion of Zika across Americas. They rarely happened 

previously and thus lack resources and data to detect and predict their spread. This 

highlights the challenges in emerging an re-emerging infectious disease surveillance. In 

the dissertation, I mainly put efforts in developing methods for early detection of such 

diseases, and assessing predictive power of various models in early phase of an epidemic. 

In Chapter 2, I developed a two-layer early detection framework which provides early 

warning of emerging epidemics based on the idea of anomaly detection. The framework 

could evaluate and identify data sources to achieve the best performance automatically 

from available data, such as data from the Internet and public health surveillance systems. 

I demonstrated the framework using historical influenza data in the US, and found that 

the optimal combination of predictors includes data sources from Google search query 

and Wikipedia page view. The optimized system is able to detect the onset of seasonal 



 
 

xi 

influenza outbreaks an average of 16.4 weeks in advance, and the second wave of the 

2009 flu pandemic 5 weeks ahead. In Chapter 3, I extended the framework in Chapter 2 

to identify large dengue outbreaks from small ones. The results show that the framework 

could personalize optimal combinations of predictors for different locations, and an 

optimal combination for one location might not perform well for other locations. In 

Chapter 4, I investigated the contribution of different population structures to total 

epidemic incidence, peak intensity and timing, and also explored the ability of various 

models with different population structures in predicting epidemic dynamics. The results 

suggest that heterogeneous contact pattern and direct contacts dominate the evolution of 

epidemics, and a homogeneous model is not able to provide reliable prediction for an 

epidemic. In summary, my dissertation not only provides method frameworks for 

building early detection systems for emerging and re-emerging infectious diseases, but 

also gives insight to the effects of various models in predicting epidemics. 
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Chapter 1: Introduction 

The development of machine learning and big data makes infectious disease 

forecasting in real time possible. Center for Disease Control and Prevention (CDC) 

started to host ‘Predict the Influenza Season Challenge’ in 2013 to solicit prospective, 

real-time weekly forecasts of regional weighted influenza-like illness (wILI) measures 

from teams across the world [1,2]. In collaboration with some US federal government 

agencies and state public health officials, CDC also organizes a platform Epidemic 

Prediction Initiative [3] to host infectious diseases forecasting challenges regularly. The 

purpose of the platform is to (1) share epidemiological data with research communities; 

(2) develop metrics relevant to decision-maker for evaluating forecasting models; (3) 

move forecasting from research to public health decision-making. It has drawn a lot of 

attention of research communities, and many forecasting methods have been developed. 

For example, Shaman et al. developed a humidity-forced susceptible-infectious-

recovered-susceptible (SIRS) ensemble adjustment Kalman filter (EAKF) forecasting 

framework by adapting ideas from weather forecasting [4,5]. Brooks et al. developed an 

empirical Bayes framework by constructing prior distributions based on historical data 

[6]. Hickmann et al. combined data assimilation methods with Wikipedia page view data 

relevance to influenza and CDC wILI reports to create weekly forecast for seasonal 

influenza [7]. However, forecasts made by these models rely heavily on historical data 

from which to learn historical patterns. This is not possible to be obtained for emerging or 
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re-emerging infectious diseases. For example, the pandemic flu originating from Mexico 

in 2009 started in April which is not consistent with seasonal influenza (usually in winter) 

[8,9], and thus forecasting models for seasonal influenza are not able to capture it. 

Consequently, when training forecasting models for seasonal influenza, the pandemic flu-

affected influenza season is usually discarded [5–7]. The 2014-2015 Ebola epidemic 

occurred in West Africa was the largest one since it appeared [10]. It is impossible to 

build forecasting model for the Ebola epidemic. These threads highlight the critical 

shortcomings in infectious diseases surveillance and the urgent needs for building models 

to detect and predict emerging and re-emerging infectious diseases. With reliable 

surveillance systems, public health officials are able to allocate resources, plan hospital 

bed capacity, and distribute antivirals and vaccines in advance. 

My dissertation focuses on two aspects in building surveillance systems for 

emerging and reemerging infectious diseases: (1) develop method for detecting emerging 

and re-emerging outbreaks as early and accurately as possible. (2) assess the tradeoff 

between model complexity and prediction reliability. 

In Chapter 2, I developed a hierarchical framework to build early detection 

systems for infectious diseases. The framework couples a Multivariate Exponentially 

Weighted Moving Average (MEWMA) model with a forward feature selection (FFS) 

algorithm. The MEWMA model is adapted from an anomaly detection method, which 

assumes that observations below an event threshold follow a multivariate Gaussian 
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distribution (null distribution). If an incoming observation is away from the null 

distribution, an alarm will be triggered. The FFS algorithm in the framework is used to 

evaluate thousands of candidate data sources sequentially and identify small 

combinations maximizing the performance of the MEWMA model. The framework is 

demonstrated using historical influenza data in the US from 2009-2017. We found that 

the optimal combination of data sources for early detection of influenza outbreaks in the 

US includes six Google search time series and two Wikipedia page view time series. 

With the optimal combination of data sources, the system is able to sound alarms for the 

onset of seasonal influenza an average of 16.4 weeks prior to the CDC-defined 2% 

threshold. Moreover, the system also triggers an alarm for the second wave of the 2009 

flu pandemic five weeks in advance, which outperforms baseline models. The MEWMA-

FFS framework, which can be applied to any infectious diseases with any number of 

candidate data sources, has been implemented as a user-friendly app in the 

Biosurveillance Ecosystem (BSVE) build by the US Defense Threat Reduction Agency 

(DTRA). 

Dengue has been endemic in populations across many tropical and sub-tropical 

countries. By plotting historical dengue incidence data, I found that dengue virus usually 

causes large outbreaks in those countries during some but not all years, and no explicit 

seasonal pattern is observed between large outbreaks. This indicates a scenario where our 

MEWMA-FFS framework can be useful. Therefore, in Chapter 3, I adapted the 

MEWMA-FFS framework for detecting large dengue waves by making three 
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modifications: (1) introduce a parameter baseline threshold to the MEWMA model so 

that it has the power to identify large outbreaks from small ones; (2) integrate a penalty 

term to false alarms into the objective function. Consequently, the number of false alarms 

can be controlled by adjusting the penalty term. It is faster and more intuitive than the 

Average Time between False Signals (ATFS)-based method in Chapter 2; (3) the 

simulation-based parameter optimization method is replaced by a Bayesian-based 

algorithm. It decreases the required computing time from 144 hours to 48 hours when 

over 100 candidate data source are being optimized on the cluster Olympus [11]. I 

applied the modified framework to optimize predictor data sources for detecting large 

dengue outbreaks in three study areas: the Country of Mexico, San Juan metropolitan 

area in Puerto Rico, and Iquitos metropolitan area in Peru. The results show that the 

framework is sensitive to locations—different data sources are selected as optimal 

predictors for different locations, and optimized predictor data sources for one location 

are not informative for other locations. 

As an epidemic is emerging, epidemiologists usually use mathematical models to 

predict future trajectory of an epidemic. The prediction can help public health officials 

with resources allocation, and intervention implementation. A critical question in this 

field is how complex a model should be for making reliable predictions. During the 2014 

Ebola epidemic in West Africa, predictive models without considering population 

structures overestimated the total incidence significantly. Even though the overestimation 

might stem from effective intervention strategies, population structures are also potential 



 
 

5 

factors causing the bias. In Chapter 4, I derived ordinary differential equations to model 

infectious disease transmission on contact networks with various population structures, 

including heterogeneous contact pattern, directed contacts and clustering. In an ideal 

scenario where the contact network and disease transmission parameters are known, I 

explored the contributions of different structures to total incidence, peak intensity and 

timing. I found that heterogeneous and directed contacts are dominate factors in driving 

epidemic dynamics, while the effect of clustering is minor. Using data collected in early 

phase of an simulated epidemic, we further investigated the ability of various models to 

infer transmission rates and make predictions based on estimated transmission rates. This 

is similar to the workflow of epidemic prediction in practice. I found that a model 

ignoring all three population structures always overestimate the total incidence, peak 

timing and intensity by more than 10%, 20%, and about 6 days, while a model 

considering only heterogeneous contact pattern is able to improve the prediction by 5%, 

20% and 3 days. 
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Chapter 2: Early detection of influenza outbreaks in the United States1 

2.1 ABSTRACT 

Public health surveillance systems often fail to detect emerging infectious 

diseases, particularly in resource limited settings. By integrating relevant clinical and 

internet-source data, we can close critical gaps in coverage and accelerate outbreak 

detection. Here, we present a multivariate algorithm that uses freely available online data 

to provide early warning of emerging influenza epidemics in the US. We evaluated 240 

candidate predictors and found that the most predictive combination does not include 

surveillance or electronic health records data, but instead consists of eight Google search 

and Wikipedia pageview time series reflecting changing levels of interest in influenza-

related topics. In cross validation on 2010-2016 data, this model sounds alarms an 

average of 16.4 weeks prior to influenza activity reaching the Center for Disease Control 

and Prevention (CDC) threshold for declaring the start of the season. In an out-of-sample 

test on data from the rapidly-emerging fall wave of the 2009 H1N1 pandemic, it 

recognized the threat five weeks in advance of this surveillance threshold. Simpler 

models, including fixed week-of-the-year triggers, lag the optimized alarms by only a few 

weeks when detecting seasonal influenza, but fail to provide early warning in the 2009 

                                                
1 Considerable portions of this chapter were preprinted on arXiv as Liu, K, Srinivasan, R, and Meyers, LA. 
2019. Early detection of influenza outbreaks in the United States. arXiv:1903.01048v1. Contributions: 
KL, RS, LAM designed research; KL and RS performed research; KL and LAM analyzed data; KL, RS, 
and LAM wrote the paper. 
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pandemic scenario. This demonstrates a robust method for designing next generation 

outbreak detection systems. By combining scan statistics with machine learning, it 

identifies tractable combinations of data sources (from among thousands of candidates) 

that can provide early warning of emerging infectious disease threats worldwide. 

2.2 INTRODUCTION 

Emerging and re-emerging human viruses threaten global health and security. 

Early warning is vital to preventing and containing outbreaks. However, viruses often 

emerge unexpectedly in populations that lack resources to detect and control their spread. 

The silent Mexican origin of the 2009 pandemic [8,9], unprecedented 2014-2015 

expansion of Ebola out of Guinea [10], and the rapid spread of Zika throughout the 

Americas in 2016-2017 [12] highlighted critical shortcomings and the potential for life-

saving improvements in global disease surveillance. 

Traditionally, public health agencies have relied on slow, sparse and biased data 

extracted during local outbreak responses or collected via voluntarily reporting by 

healthcare providers. The 21st century explosion of health-related internet data--for 

example, disease-related Google searches, Tweets, and Wikipedia term visits--and the 

proliferation of pathogen molecular data and electronic health records have introduced a 

diversity of real-time, high-dimensional, and inexpensive data sources that may 

ultimately be integrated into or even replace traditional surveillance systems. In building 

'nextgen' surveillance systems, we face the interdependent challenges of identifying 
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combinations of data sources that can improve early warning and developing powerful 

statistical methods to fully exploit them.  

Engineers have designed anomaly detection methods for statistical process control 

(SPC)---including the Shewhart [13], cumulative sum (CUSUM) [14,15], and exponential 

weighted moving average (EWMA) methods [16]---to achieve real-time detection of 

small but meaningful deviations in manufacturing processes from single or multiple input 

data streams. When the focal process is in-control, these methods assume that the inputs 

are independent and identically distributed random variables with distributions that can 

be estimated from historical data. Anomalous events can thus be detected by scanning 

real-time data for gross deviations from these baseline distributions.  

Biosurveillance systems similarly seek to detect changes in the incidence of an 

event (e.g., infections) as early and accurately as possible, often based on case count data. 

By adjusting SPC methods to account for autocorrelations, researchers have developed 

algorithms that can detect the emergence or re-emergence of infectious diseases [17]. 

Such methods have been applied to influenza [18–22], Ross River disease [23,24], hand-

foot-and-mouth disease [25–27], respiratory tract infections [19,28,29], meningitis [30], 

and tuberculosis outbreaks [31]. These models exploit a variety of public health data 

sources, including syndromic surveillance, case count and laboratory test data. While 

they achieve high sensitivity and precision, alarms typically sound once an outbreak has 

begun to grow exponentially and thus do not provide ample early warning. For annual 
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influenza, CUSUM-derived detection methods applied to Google Flu Trends data sound 

alarms an average of two weeks prior to the official start of the influenza season [32]. 

The Early Aberration Reporting System (EARS) [33] was launched by the CDC 

in 2000s to provide national, state, and local health departments with several CUSUM-

derived methods to facilitate the syndromic surveillance. The BioSense surveillance 

system [34] implements methods derived from EARS to achieve early detection of 

possible biologic terrorism attacks and other events of public health concern on a national 

level. Two other surveillance systems, ESSENCE and NYCDOHMH [35,36], maintained 

by United States Department of Defense and the New York City Department of Health 

and Mental Hygiene, respectively, implement EWMA-based methods for outbreaks 

monitoring. Most of these systems are univariate (i.e., analyze a single input data source) 

and consider only public health surveillance data collected during local outbreak 

responses or via voluntarily reporting by healthcare providers. The time lag between 

infection and reporting can be days to weeks. Thus, the earliest warning possible for an 

emerging outbreak may be well after cases begin rising. 

Over the last decade, public health agencies and researchers have begun to 

explore a variety of 'nextgen' disease-related data sources that might improve the 

spatiotemporal resolution of surveillance. Electronic health records (EHR) systems like 

athenahealth can provide near real-time access to millions of patient records, nationally, 

and have been shown to correlate strongly with influenza activity [37]. Participatory 
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surveillance systems like Flu Near You, which asks volunteers to submit brief weekly 

health reports, also provide a near real-time view of ILI activity [38]. However, such data 

sources may be geographically, demographically or socioeconomically biased, depending 

on the profiles of participating healthcare facilities or volunteers [39]. Internet-source 

data such as Google Trends [40], Wikipedia page views [7,41], and Twitter feeds [42]  

exhibit correlations with disease prevalence, and have been harnessed for seasonal 

influenza nowcasting and forecasting. However, they have not yet been fully evaluated 

for early outbreak detection, and may be sensitive to sociological perturbations, including 

media events and behavioral contagion [43,44].  

Here, we introduce a hierarchical method for building early and accurate outbreak 

warning systems that couples a multivariate version of EWMA model with a forward 

feature selection algorithm (MEWMA-FFS). The method can evaluate thousands of data 

sources and identify small combinations that maximize the timeliness and sensitivity of 

alarms while achieving a given level of precision. It can be applied to any infectious 

disease threat provided sufficient data for the candidate predictors. For novel threats, the 

candidates may include a wide variety of proxies that are expected to produce dynamics 

resembling the focal threat (e.g., data on closely related pathogens, other geographic 

regions, or even social responses to non-disease events). 

To demonstrate the approach, we design a multivariate early warning system for 

influenza outbreaks using eight years of historical data (2009-2017) and hundreds of 
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predictors, including traditional surveillance, internet-source, and EHR data. The optimal 

combination of input data includes six Google and two Wikipedia time series reflecting 

online searches for information relating to the symptoms, biology and treatment of 

influenza. By monitoring these data, the model is expected to detect the emergence of 

seasonal influenza an average of 16.4 weeks (and standard deviation of 3.3 weeks) in 

advance of the Center for Disease Control and Prevention (CDC) threshold for the onset 

of the season. In out-of-sample validation, the model detected the fall wave of the 2009 

H1N1 pandemic and the 2016-2017 influenza season five and fourteen weeks prior to this 

threshold, respectively. 

2.3 MATERIALS AND METHODS 

2.3.1 Early detection model 

The MEWMA model is derived from a method described in [45]. We define one 

time series as gold standard, and one value in the range of the gold standard as the event 

threshold. Events (outbreaks) correspond to periods when observations in the gold 

standard cross and remain above the event threshold. We project the timing of events in 

the gold standard time series onto the candidate time series (predictors). We assume that 

the data falling outside the event periods follow a multivariate normal distribution 𝑭 

(null distribution) with a mean vector 𝝁 and covariance matrix 𝚺 that can be estimated 

from baseline (non-outbreak) data with Equations (2.1) and (2.2): 



 
 

12 

 𝝁 = 𝔼(𝑿𝑻|𝑦𝑻 < 𝜀) (2.1) 

 𝚺 = 𝔼(𝑿𝑻|𝑦𝑻 < 𝜀) (2.2) 

Here, 𝜀 is the value of the threshold defining outbreak events. 𝑻 are all time 

points at which observations in gold standard 𝑦 are below event threshold 𝜀. 𝑿𝑻 is a 

matrix of observations from candidate time series at time points 𝑻. 

At each time 𝑡, MEWMA calculates 

 𝑺9 = :max[𝟎, 𝜆(𝑿9 − 𝝁) + (1 − 𝜆)𝑺9EF], for	𝑡 > 0
𝟎, for	𝑡 = 0 (2.3) 

where 𝑿9  is a vector of current observation from candidate time series; 𝜆  is the 

smoothing parameter (0 < 𝜆 < 1); 𝑺9 is a weighted average of the current observation 

standardized around 𝝁 and the previous 𝑺 statistic. Then the multivariate EWMA test 

statistic 𝐸9 is calculated as 

 𝐸9 = 𝑺9N𝚺𝑺O
EF𝑺9 (2.4) 

 
𝚺𝑺O =

𝜆
2 − 𝜆 𝚺 (2.5) 

The MEWMA signals whenever 𝐸9 exceeds a predetermined threshold ℎ. That 

is, the observation at time 𝑡  deviates significantly from the baseline distribution. 
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2.3.2 Performance measurement 

Given that our objective is to detect emerging outbreaks early and accurately, we 

evaluate data based on the timing of alarms relative to the start of events. Only alarms 

within detection windows are considered as true positive alarms. Specifically, we 

calculate performance of a candidate system (combination of predictors) as given by 

 
𝑃(𝑿, 𝜆, ℎ; 𝑦) =

1
𝑁U(1 −

∆𝑇X
𝑇Y

)
Z

X[F

 (2.6) 

where 𝑁 is the total number of events in gold standard, 𝑇Y is the length of the detection 

window (e.g., sixteen weeks surrounding the start of an event) and ∆𝑇X is the time 

between the start of the detection window and the first alarm for event 𝑛. If no alarm 

sounds during the detection window for event 𝑛, then ∆𝑇X = 𝑇Y. Performance values 

range from zero to one. A perfect score of one indicates that alarms consistently sound 

during the first week of the detection window; 0.5 indicates that alarms occur, on 

average, right at the start of events; lower values indicate delayed alarms, triggered weeks 

after the event has begun. 

Since we do not reset 𝑺9 to zero following alarms, the model tends to signal 

repeatedly until the observations return to baseline. Therefore, we track only the timing 

of the first alarm  during continuous clusters of alarms. MEWMA without resetting 

saves on computation during data optimization (see Forward feature selection section), as 

it allows us to reference a single set of stored null distribution calculations when testing 
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for alarms. That is, if 𝑭 is the null distribution for all candidate time series, we can 

compute and save the mean vector 𝝁, covariance matrix 𝚺, and 𝑺9 statistic with 𝑿9, the 

vector of observations from all candidate time series at time 𝑡. Given a subset 𝑼 of 

candidate time series, the test statistic 𝐸9 can be computed by using the pre-computed 

𝑺9 and 𝚺 directly. 

2.3.3 Parameter optimization 

When implementing MEWMA-FFS, we must estimate the smoothing parameter 

𝜆 and the threshold ℎ. The parameter pair (𝜆, ℎ) should maximize the performance of 

the model while minimizing the number of false positive alarms triggered outside 

detection windows for actual events. 

To constrain the number of false positive alarms, we specify the Average Time 

between False Signals (ATFS) during the training process. This parameter is the expected 

number of time steps between signals during non-outbreak periods and is given by 

 𝐴𝑇𝐹𝑆 ≜ 𝔼(𝑡∗∗ − 𝑡∗|𝜏𝒔 = ∞) (2.7) 

where 𝑡∗ denotes the time an initial alarm is triggered; 𝑡∗∗ is the next time an alarm 

sounds; 𝜏𝒔 is the first day of an event, with 𝜏𝒔 = ∞ indicating that an event never 

occurs. The value of ATFS can be estimated using simulations. We first generate samples 

from the null distribution (data outside event periods), then use the MEWMA procedure 
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described in Equations (2.1) - (2.5) to trigger alarms, and finally use the spacing between 

these false alarms to estimate ATFS [17]. 

To calculate the optimal parameter pair, we begin with fixing a value of ATFS 

(𝜑). Given a set of time series 𝑿, this constrains the possible choices for parameter pairs 

(𝜆, ℎ) to a curve Γ(𝜑, 𝑿). The overarching optimization goal is given by 

 𝑿∗, 𝜆∗, ℎ∗ = arg	 max
{𝑿⊂𝛀:|𝑿|[m,(n,o)∈q(r,𝑿)}

𝑃(𝑿, 𝜆	, ℎ; 𝑦) (2.8) 

where 𝑿∗ is the optimal combination of time series; 𝛀 is a set of all candidate time 

series; 𝑘 is the pre-determined number of time series in the optimization; 𝜆∗ and ℎ∗ 

are the optimal parameter pair. 

To evaluate parameter pairs (𝜆, ℎ) on the curve Γ(𝜑,𝑿), we consider values of 

𝜆 between zero and one with a step size 0.1. Since ATFS is monotonically increasing in 

ℎ, this allows us to efficiently find the corresponding approximate value of ℎ using the 

secant method [46] with the tolerance value of 0.5 and the maximum number of iterations 

of 100. We plug each resulting parameter pair into the MEWMA model and measure in-

sample performance. The parameter pair maximizing the in-sample performance is 

chosen for out-of-sample prediction. 
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2.3.4 Forward feature selection 

To choose the optimal combinations of time series for early warning, we 

implement stepwise forward feature selection algorithm in combination with MEWMA. 

We begin with no predictors and test the model performance (in terms of the average 

timing of early detection) when we add each of the possible candidate predictors on their 

own. We select the time series that most improves model performance as the first 

predictor. We then repeat the following until we reach a target number of predictors or 

the model performance levels off: (1) evaluate each remaining candidate predictor in 

combination with predictors already selected for the system and (2) select the candidate 

that most improves model performance for inclusion in the system. Formally, 

 𝑿u ≔ ∅	and	𝑿yzF ≔ 𝑿y ∪ :arg	 max|∈𝛀\𝑿~
𝑃(𝑿y ∪ {𝑥}, 𝜆	, ℎ; 𝑦)� (2.9) 

where 𝑿y is a set of selected candidate time series at step 𝑖; 𝛀 is a set of all candidate 

time series; 𝑃(𝑿y ∪ {𝑥}, 𝜆	, ℎ; 𝑦) is the performance metric; 𝑦 is the gold standard; 𝜆 is 

the smoothing parameter, and ℎ is the threshold for test statistic. 

2.3.5 Optimizing early detection of influenza outbreaks in the US 

We demonstrate the MEWMA-FFS framework by designing an early detection 

system for influenza in the US, based on 2010-2016 data. Using national scale ILINet 

data as the gold standard (described under Data below), outbreak events (influenza 

outbreaks) are defined as ILINet surpassing a specified threshold for at least three weeks. 
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Candidate predictors are selected to detect the onset of influenza outbreaks as early as 

possible in a specific number of weeks leading up and following the start of each event. 

When selecting candidate predictors, all time series are evaluated using six-fold 

cross-validation. For each fold, one of the six influenza seasons is held out for testing and 

the other five are used for training. The candidate model is evaluated by the timing of the 

alarm relative to the actual start of the event, averaged across the six out-of-sample 

predictions. To minimize false positives, we set the Average Time between False Signals 

(ATFS) to 20 weeks and use simulation to find optimization parameter pairs (𝜆, ℎ) that 

satisfy this constraint. To reduce the stochasticity of simulation further, we repeat each 

optimization experiment 40 times, score each predictor by its median rank across the 40 

replicates, and select the top scoring predictors for inclusion in the final model. 

After selecting optimal combinations of predictors via MEWMA-FFS, we 

perform two additional rounds of model evaluation. Since the gold standard and predictor 

data overlap for only six influenza seasons (2010-2016), we used this data twice: first we 

use six-fold cross validation to select predictors, as described above; second, we use 

three-fold cross-validation (two seasons held out) to compare the performance of 

different optimized models. We report the timing of alarms relative to the official start of 

each event, the proportion of events detected (recall), and the percentage of true alarms 

over all alarms (precision) across the three folds. In preliminary analysis, we found that 

the length of training data does significantly impact model performance (Figure 2.5). 
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Finally, following model construction and comparison on 2010-2016 data, we further 

evaluate the performance of the best models in comparison to simpler alternative models 

using true test data from the 2016-2017 influenza season and the fall wave of the 2009 

H1N1 influenza pandemic. 

2.3.6 Choosing an event threshold and detection window 

To speed up the optimization experiments, we tune the event threshold 𝜀 and 

length of detection window 𝑇Y. We run optimization experiments using eleven ILINet 

time series across a range of values for 𝜀 and 𝑇Y (Figure 2.6). We constrain the 𝑇Y so 

that the start of the window did not precede the lowest observation in the onset of a given 

outbreak. As in our primary analysis, predictors are selected using 6-fold cross validation 

and compared via a secondary round of 3-fold cross-validation. We considered ILINet 

event thresholds ranging from 1% to 2% and detection windows ranging from 4 to 20 

weeks surrounding the onset of an event and found that a combination of 𝜀 = 1.25% 

and 𝑇Y = 16 maximizes the timeliness, precision and recall (Figure 2.6).  

2.3.7 Assessing the trade-off between run-time and performance 

To evaluate the impact of the ATFS on model performance, we run optimization 

experiments across ATFS values ranging from 5 to 150. In each experiment, predictors 

are selected and evaluated through cross-validation as described above. For each ATFS 
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value, we run 40 replicates and record their compute time on the Olympus High 

Performance Compute Cluster [11].  

2.3.8 Sensitivity analysis 

To evaluate the impact of the training period duration, we run five optimization 

experiments following the procedures described above, while varying the length of the 

training time series from 12 years to 4 years: 2004-2016, 2006-2016, 2008-2016, 2010-

2016, 2012-2016. To evaluate the importance of including recent data, we run a series of 

optimization experiments with variable time gaps between the end of a four-year training 

period and the beginning of a one-year testing period (Figure 2.9). 

2.3.9 Alternative models 

We compare our optimized early detection systems to three simpler models. All 

three models were fit via 3-fold cross-validation on 2010-2016 ILINet data, with two 

seasons held out in each round. When computing performance, we follow the methods 

described above for the MEWMA-FFS model: We consider only the first alarm in each 

cluster and assume the same objective function, event threshold, detection window, and 

ATFS. 

Week-based trigger: The model triggers alarms in the same week of every year. 

Week 34 maximizes the cross-validated performance. 
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 Rise-based trigger: The model triggers alarms as soon as ILINet reports increase 

for 𝑛 consecutive weeks. We considered 𝑛 ranging from 2 to 20 weeks and determined 

that 𝑛 = 4 maximizes the cross-validated performance.  

 Univariate-ILINet US: We fit a univariate EWMA model using national level 

ILINet data as the sole predictor. 

2.3.10 Data 

The method evaluates candidate data sources based on ability to detect events in a 

designated gold standard data source. Throughout this study, we use CDC national-scale 

ILINet data as gold standard and consider the following five categories of candidate data: 

(a) ILINet; (b) NREVSS; (c) Google Trends; (d) Wikipedia access log; (e) athenahealth 

EHR. 

ILINet: The CDC complies information on the weekly number of patient visits to 

healthcare providers for influenza-like illness through the US Outpatient Influenza-like 

Illness Surveillance Network (ILINet). Current and historical ILINet data are freely 

available on FLUVIEW [47]. We use weekly percentage of ILI patient visits to 

healthcare providers on both national and Health and Human Services (HHS) scales 

(which are weighted by state population). The national scale time series serve as our gold 

standard data, and both national and HHS data are considered as candidate data sources 

during optimization from 07/03/2009 through 02/06/2017. 
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NREVSS: Approximately 100 public health and over 300 clinical laboratories in 

the US participate in virologic surveillance for influenza through either US World Health 

Organization (WHO) Collaborating Laboratories System or the National Respiratory and 

Enteric Virus Surveillance System (NREVSS). All participating labs issue weekly reports 

providing the total number of respiratory specimens tested and the percent positive for 

influenza. These data are publicly available on FLUVIEW [47]. Our optimization 

considers both national and HHS scale time series of weekly percentage of specimens 

positive for influenza from 07/03/2009 through 02/06/2017. 

GT: Google Correlate [48] and Google Trends [49] are freely-available tools 

developed by Google that enable users to (1) find search terms correlated with user-

provided time series and (2) obtain search frequency time series corresponding to user-

provided search terms, respectively. We first applied Google Correlate to national scale 

ILINet data between 01/04/2004 and 5/16/2009 and retrieved the top 100 matches (Table 

2.3). We then applied Google Trends to each of the top 100 search terms to obtain search 

frequency time series for 07/03/2009 through 02/06/2017. These serve as candidate data 

sources in our optimization. 

Wikipedia: Wikipedia is widely used as a online reference (nearly 506 million 

visitors per month) [41]. Researchers have demonstrated a correlation between US ILINet 

and time series of access frequencies for English-language Wikipedia articles relating to 

influenza [7,41]. Using the Delphi Epidata API [50], we obtained the normalized weekly 
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number of hits for each of 53 influenza-related Wikipedia pages listed in [7] from 

07/03/2009 through 02/06/2017 (Table 2.4). 

Athena: athenahealth provides cloud-based services for healthcare providers and 

manages large volumes of electronic health records data. In collaboration with 

athenahealth, we obtained the following daily data for approximately 71939 healthcare 

providers across the US from 07/03/2010 to 02/06/2016: the total number of patient 

visits, the number of influenza vaccine visits, the number of visits billed with a influenza 

diagnosis code on the claim, the number of ILI visits, the number of visits ordered a 

influenza test, the number of visits with an influenza test result, the number of visits with 

a positive influenza test, and the number of visits with a flu-related prescription. We 

generated 77 time series total for the following seven variables, each aggregated by week 

and compiled at the national and HHS scale: (1) ILIVisit---the weekly count of ILI visits; 

(2) ILI%---the ratio of the number of ILI visits and the total number of visits; (3) 

FluVaccine---the weekly count of visits with an influenza vaccine; (4) FluVisit---the 

weekly count of visits billed with an influenza diagnosis code on the claim; (5) 

Positive%---the ratio of the number of visits with a positive influenza test result to the 

number of visits with a influenza test; (6) FluResult---the number of patient visits with a 

influenza test result; (7) FluRX---the number of patient visits with a flu-related 

prescription. 
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2.4 RESULTS 

2.4.1 Early detection from single data sources 

We first fit the early detection model to each of the 240 candidate time series 

individually and assess their ability to anticipate when ILINet will cross a threshold of 

1.25%. Performance indicates the average timing of alarms based on six out-of-sample 

tests, with the range of zero to one corresponding to eight weeks after to eight weeks 

before the event reaching the threshold 1.25%. The expected performance is highly 

variable across data sources (Figure 2.1), with ILINet and Google source data generally 

providing earlier warning than laboratory, EHR and Wikipedia data. The Google Trends 

time series for 'human temperature' provides the best balance of timeliness, precision and 

recall (Figures 2.3(A), and 2.7), with an average advanced warning of 14 weeks prior to 

the CDC's 2% threshold for the onset of the influenza season [51]. National scale ILINet 

data triggers alarms an average of 11.7 weeks prior to the 2% threshold (Figure 2.3). 

Several data sources failed to detect any of the seasons, including Wikipedia page views 

relating to non-seasonal influenza viruses and athenahealth counts of positive influenza 

tests in HHS regions 8 and 9. 
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Figure 2.1: Early detection by single data sources, summarized by category. For each of 
the 240 candidate predictors, we fit a univariate detection model and measured 
performance by averaging early warning across six-fold cross validation (2010-2016). 
Emergence events for optimization are defined by an ILINet threshold of 1.25%. The 
expected performance is highly variable, ranging from 0 to 0.77. A value of one means 
that the system consistently sounded alarms a full eight weeks prior to the event threshold 
1.25%; a value of 0.5 indicates that, on average, the alarms sound at the time reaching the 
threshold 1.25%; lower values indicate delayed alarms. 

2.4.2 Early detection from multiple data sources 

We selected optimal combinations of predictors from within each class of data. 

For CDC ILINet, we considered 11 candidate predictors and found that the optimized 

system included three time series: ILINet HHS region 7 (Iowa, Kansas, Missouri and 

Nebraska), ILINet HHS region 5 (Illinois, Indiana, Ohio, Michigan, Minnesota and 

Wisconsin), and ILINet US (Figure 2.2). Across all replicates, HHS region 7 was selected 

as the most informative predictor, which alone outperforms the optimized system using 

multiple NREVSS data sources (Figure 2.2). HHS region 9 and US were not selected in 

all replicates, and just marginally elevate the performance of HHS region 7. Comparing 

the optimized internet-source systems (Google Trends and Wikipedia) to optimized EHR 

(athenahealth) system, we find that the best combination of Google Trends time series---
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human temperature, normal body temperature, break a fever, fever cough, flu treatments, 

thermoscan, ear thermometer---outperforms the others (Figures 2.2, and 2.3(A)). 

Across the three-fold out-of-sample tests, the ILINet system detected all six 

influenza outbreaks with an average advanced warning of 12.7 weeks prior to the CDC's 

season onset threshold, while the Google Trends system detected 83.3% of outbreaks 

(five out of six), with an average advanced warning of 16.4 weeks (excluding missing 

outbreaks) prior to the official threshold (Figures 2.3(A) and 2.7). The other systems each 

detected four to six of six test seasons (not always the same seasons), with average 

advanced warning ranging from 9.5 to 14.2 weeks (Figures 2.3(A) and 2.7). Individual 

ILINet time series generally provide earlier warning than individual EHR and Wikipedia 

time series. However, performance reverses for optimized multivariate models, with the 

best ILINet model underperforming both the EHR and Wikipedia models (Figures 2.3(A) 

and 2.7). 

To build multi-category early detection systems, we applied the optimization 

method to the 'winners' of the previous experiments. That is, we considered the 26 

predictors shown on the first five plots of Figure 2.2. The best model includes eight 

predictors. The top six are all Google Trends: human temperature, normal body 

temperature, break a fever, fever cough, flu treatments, thermoscan; the remaining two 

are Wikipedia: orthomyxoviridae and shivering, which only improve the performance of 

the system marginally (Figure 2.2). None of the ILINet, NREVSS, or EHR time series 
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made the cut. The combined system achieves comparable early warning to the optimized 

Google Trends system while detecting higher proportion of events with lower number of 

false alarms (Figure 2.3). Furthermore, it sounds alarms earlier than all three alternative 

(non-MEWMA) models in four out of six seasons. In 2012-2013 all models provide 

similar early warning; in 2015-2016, the week-trigger and rise-trigger algorithms signal 

two and three weeks ahead of our optimized algorithm, respectively (Figure 2.3(B)). The 

optimized model also produces fewer false alarms than the rise-trigger model and detects 

a higher proportion of influenza seasons than week-trigger model (Figure 2.3(B)). The 

MEWMA model using only ILINet data typically lags all other models in signaling 

events. 

When we exclude Google Trends candidates from optimization, the method 

selects Wikipedia pageviews of flu season as the most informative predictor followed by 

a combination of EHR, Wikipedia and ILINet time series (Figure 2.2). Expected 

performance declines slightly without Google Trends data. In three-fold out-of-sample 

evaluation, the six influenza seasons are detected at an average of 14.8 weeks prior to the 

CDC's 2% threshold without missing any events (Figure 2.3). 
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Figure 2.2: Performance curves for early detection systems. Systems were optimized 
within each data category (ILINet, NREVSS, Google Trends, Wikipedia, and 
athenahealth) and across all data categories, including and excluding Google Trends. 
Performance is the average advanced warning within the 16 week detection window 
surrounding the week when ILINet reaches the event threshold of 1.25%. Performance 
equal to one indicates that a model consistently signals eight weeks ahead of the event 
threshold and zero indicating failure to signal within the detection window. Early 
detection improves as forward selection sequentially adds the most informative remaining 
data source until reaching a maximum performance. For the optimal system, the first six 
predictors are Google Trends sources and the remaining two are Wikipedia sources; for 
the optimal system excluding Google Trends, the top sources are from Wikipedia, 
athenahealth, Wikipedia and ILINet, in that order. 
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Figure 2.3: Performance of optimized US influenza detection algorithms in three-fold 
cross validation (2010-2016). (A) Distribution of system performance over six influenza 
outbreaks across 40 replicates, in terms of the timing of true alarms relative to the official 
onset of influenza seasons (excluding missed seasons), proportion of alarms indicating 
actual events (precision), and proportion of events detected (recall). (B) Timing of alarms 
relative to the official onset of each influenza season. Using US ILINet time series (blue 
curves) as a historical gold standard, the detection models were trained to sound alarms 
as early as possible in the sixteen weeks surrounding the week when ILINet reaches 
1.25%. Bar plot (panel 1) shows the advanced warning provided by out-of-sample alarms 
in terms of weeks in advance of the CDC's 2% ILINet threshold for declaring the onset 
the influenza season. Bars not shown indicate missed events. In the lower time series 
plots, dashed green lines indicate the CDC's seasonal influenza threshold of 2%; numbers 
indicate the corresponding week of the year; short red lines indicate the timing of the 
alarms given by the optimized model. 
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2.4.3 Out-of-sample detection of the 2009 H1N1 pandemic and 2016-2017 

influenza season 

We further validated our systems using held out ILINet data from two different 

epidemics. For the 2016-2017 influenza season, the optimized algorithm signaled the 

start of 2016-2017 season 14 weeks prior to ILINet reaching the CDC's 2% threshold, 

which outperforms the univariate ILINet model. However, the week-trigger and rise-

trigger baselines beat the optimized algorithm by two weeks. For the atypical fall wave of 

transmission during the 2009 H1N1 pandemic, these two models failed to signal the 

emerging threat. It emerged much earlier in the year than seasonal influenza (thus 

tripping up the week-trigger baseline) and at a higher epidemic growth rate (thus 

outpacing the rise-trigger algorithm) [52]. The optimal system was able to detect the fall 

wave five weeks prior to ILINet reaching the 2% threshold (Figure 2.4). The univariate 

ILINet model again lags the best model by several weeks in out-of-sample test. This 

suggests that our optimized multivariate models are more robust for detecting anomalous 

influenza threats than the simpler alternatives. 
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Figure 2.4: Early detection of the 2009 H1N1 pandemic (out-of-sample). The optimized 
model was trained on 2010-2016 ILINet data, and then tested on US ILINet reports (blue 
curve) during fall wave of the 2009 H1N1 pandemic. It triggered an alarm (triangle) five 
weeks prior to ILINet reaching the official epidemic threshold of 2% (dashed lines). Red 
markers indicate timing of alarms triggered by the optimized and baseline models. 

2.4.4 Sensitivity to training period 

When we varied the length of the training period from four to twelve years, we 

selected overlapping sets of optimal predictors, with all five systems including ILINet 

data for HHS regions 6 and 7 (Table 2.2). The systems detected similar proportions of 

events. However, the precision (the proportion of true alarms to all alarms) appears to 

increase with the length of the training period while, surprisingly, the alarms tend to 

sound later (Figure 2.5). We also found system performance to be fairly insensitive to the 

gap between the training and testing periods (Figure 2.10), suggesting robust 

performance with only periodic system updates. 
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Figure 2.5: Duration of training period impacts early detection. Graphs compare the 
performance of five systems optimized using continuous training data ranging in length 
from four to twelve years (each ending in 2016), evaluated via cross-validation on 2012-
2016 data. Alarm timeliness (top) unexpectedly declines as the training period increases 
(maximum likelihood linear regression, P=0.019), while the proportion of true alarms 
(middle) improves (maximum likelihood linear regression, P=0.000256). Training period 
does not significantly impact recall (not shown). 

2.5 DISCUSSION 

This MEWMA-FFS framework is designed to build robust early outbreak 

detection systems that harness a variety of traditional and next generation data sources. 

For influenza outbreaks in the US, we identified a combination of freely available 

internet-source data that robustly detects the start of the season an average of 16.4 (SD 

3.3) weeks in advance of the national surveillance threshold (ILINet reaching 2%). This 

is five weeks earlier than previously published early detection algorithms based on 

ILINet and Google Flu Trends data [20,21]. In a retrospective out-of-sample attempt to 

detect the fall wave of the 2009 H1N1 influenza pandemic, the optimized multivariate 

algorithm provided the earliest warning among the competing models. However, it 
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sounded an alarm only five weeks prior to ILINet reaching the national 2% threshold. 

The shorter lead time may stem from the anomalously rapid growth of the 2009 

pandemic. Across the six influenza seasons between 2010 and 2017, ILINet took an 

average of 9.4 weeks to increase from 1.25% to 2%, with a minimum of six weeks in 

seasons 2012-2013 and 2014-2015; in the fall of 2009, this transpired in a single week 

(week 34). 

Public health surveillance data (e.g., ILINet and NREVSS) can detect emerging 

influenza seasons on their own, but a combination of eight Google query and Wikipedia 

pageview time series provided earlier warning across all eight epidemics tested. Although 

we cannot definitively explain the performance of internet data, we note that 59% of flu-

related Wikipedia English pageviews come from countries outside the US, including the 

United Kingdom, Canada, and India [41]. Perhaps earlier influenza seasons elsewhere 

provide advanced warning of imminent transmission in the US. The utility of Google and 

Wikipedia data may also stem from their large and diverse user bases and their immediate 

use following symptoms relative to seeking clinical care [53]. NRVESS is among the 

mostly costly and time lagged data sources; it performs poorest when considered 

individually and is never selected for inclusion in combined early detection systems. 

However, NRVESS provides critical spatiotemporal data for detecting and tracking novel 

viruses, including pandemic and antiviral resistant influenza, and informing annual 

vaccine strain selections. Thus, we speculate that NRVESS might rank among the most 
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important sources when designing systems for virus-specific influenza nowcasting and 

forecasting objectives. 

We emphasize that these models are not designed to forecast epidemics, but rather 

to detect unexpected increases in disease-related activity that may signal an emerging 

outbreak [17]. Early warning provides public health agencies valuable lead time for 

investigating and responding to a new threat. For seasonal and pandemic influenza, such 

models can expedite targeted public health messaging, surge preparations, school 

closures, vaccine development, and antiviral campaigns. Influenza forecasting models 

potentially provide more information about impending epidemics, including the week of 

onset, the duration of the season, the overall burden, and the timing and magnitude of the 

epidemic peak [54–56]. However, they are typically not optimized for early warning or 

for detecting outbreaks that are anomalous in either the timing or pace of expansion.  

Our conclusions may not be readily applied to influenza detection outside the US 

or to other infectious diseases. However, the general framework could be similarly 

deployed to address such challenges. Even for influenza outbreaks in the US, our results 

pertain to only early detection of influenza outbreak activity as estimated from ILINet, 

and stem from only six seasons of historical data. If we changed the optimization target 

(i.e., gold standard data) to an EHR or regional ILINet source, the resulting data systems 

and corresponding performances may differ considerably. Furthermore, as alternative 

data and longer time series become available, the optimal systems could potentially 
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improve. Early detection systems should therefore be regularly reevaluated and tailored 

to the specific objectives and geopolitical jurisdictions of public health stakeholders, and 

our optimization framework can facilitate easy and comprehensive updates.  

This approach requires domain-knowledge in the selection of candidate data 

sources. Next generation proxy data should be relevant to the focal disease and 

population, such as symptom or drug related search data. Climate and environmental 

factors may prove predictive for directly transmitted and vector borne diseases, and may 

be a promising direction for enhancing the early detection systems developed here. This 

black box approach can select data sources with spurious or misleading relationships to 

the gold standard data. Thus, it may be prudent to screen data sources before and after 

optimization that are unlikely to correlate reliably with the target of early detection.  

We implemented this MEWMA-FFS framework as a user-friendly app in the 

Biosurveillance Ecosystem (BSVE) built by the US Defense Threat Reduction Agency 

(DTRA) [57]. Military bioanalysts can now use it to evaluate and integrate diverse data 

sources into targeted early detection systems for a wide range of infectious diseases 

worldwide. The versatility of this plug-and-play method stems from two assumptions: (1) 

it simply scans for deviations from underlying distributions rather than modeling a 

complex epidemiological process, and (2) it does not require seasonality, just historical 

precedents with which to train the model. We can now more easily harness the growing 
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volumes of health-related data to improve the timeliness and accuracy of outbreak 

surveillance and thereby improve global health. 

2.6 SUPPLEMENTAL INFORMATION 

Figure 2.6: Comparison of system performances with different pairs of event threshold 𝜀 
and detection window 𝑇Y in three-fold cross validation (2010-2016). Distribution of 
average system performance over six influenza seasons across 40 replicates, in terms of 
the timing of true alarms(excluding missed seasons), proportion of alarms indicating 
actual events (precision), and proportion of events detected (recall). 
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Figure 2.7: Out-of-sample detection of US influenza seasons by single source and single 
category early warning systems. Using US ILINet time series (blue curves) as a historical 
gold standard, the detection models were optimized to sound alarms as early as possible 
in the sixteen weeks surrounding the threshold 1.25% for optimization. The bar plot 
(panel 1) shows the alarm timing for each influenza season from 2010-2016 relative to 
the official ILINet threshold of 2%. Bars not shown indicate missed events in early 
detection, while positive values show alarms are triggered prior to the official start of 
each influenza season. In panel 2, horizontal green dashed lines represent the threshold of 
2%, while vertical green dashed lines indicate the onset of influenza seasons according to 
the threshold of 2%; numbers indicate the corresponding week of the year; red short lines 
show alarm timings for flu seasons from the optimized model. 
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Figure 2.8: The trade-off between timeliness, and precision, recall, running time. Each 
system was optimized using different values of ATFS. The three plots show the trade-off 
between alarms timings and the proportion of alarms indicating actual events (precision), 
proportion of events detected (recall), and running time of each optimization with 40 
repeats running in parallel, respectively. Each run selected different combinations of 
predictors (Table 2.1) and detected influenza emergence an average of 11-14 weeks prior 
to the official onset of influenza seasons. There is a weak trade-off between timeliness 
and precision and minimal trade-off between timeliness and recall. The precision is 
always below 0.9 while recall is equal to one for most of values of ATFS. This is because 
we consider the timing of only the first alarm in a cluster; the ATFS is expected to impact 
the total number of alarms but not necessarily the number of alarm clusters [17]. 
Meanwhile, a larger value of ATFS requires longer running time for optimization. An 
optimization experiment with ATFS set to 50 (the value that maximizes timeliness and 
precision) requires twice the run time of an experiment using ATFS 20; however, the 
gain is only one additional week of early warning. Thus, it is valuable to balance 
performance and compute time when setting ATFS for optimization. 
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Figure 2.9: Diagram of training and testing periods used in sensitivity analysis. 

 

Figure 2.10: Sensitivity to the training period. Each of five systems was optimized using 
training and testing periods diagrammed in Figure 2.9. The three graphs show 
performance in terms alarm timing (top), proportion of alarms that correspond to actual 
events (middle), and proportion of events detected (bottom). Gap between testing and 
training periods does not appear to significantly impact performance. 
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Table 2.1: Time series selected for early detection systems across different values of 
ATFS. Time series are listed in order of selection, assuming an ILINet threshold of 
1.25% for optimization. 

Value of ATFS 
5 10 20 30 40 50 80 100 120 150 
HHS 
7 

HHS 
7 

HHS 
7 

HHS 
7 HHS 7 US HHS 

7 US US US 

 HHS 
6 

HHS 
5 US US HHS 4 HHS 

6 
HHS 
4 

HHS 
9 

HHS 
4 

 HHS 
2 US HHS 

6 
HHS 
10 

HHS 
10 

HHS 
4 

HHS 
6 

HHS 
6 

HHS 
6 

    HHS 4 HHS 6 US HHS 
7 

HHS 
5 

HHS 
7 

    HHS 6    HHS 
1  

    HHS 8      

 

Table 2.2: Data sources selected for early detection systems across variable length 
training periods. Time series are listed in order of selection, assuming an ILINet event 
threshold of 1.25%. 

Model training period 
2004-2006 2006-2016 2008-2016 2010-2016 2012-2016 
HHS 5 US HHS 7 HHS 7 HHS 3 
HHS 7 HHS 6 HHS 1 HHS 9 HHS 7 
HHS 9 HHS 7 HHS 6 HHS 6 HHS 10 
HHS 6 HHS 9   HHS 2 
HHS 8 HHS 8   HHS 6 
 HHS 2   US 
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Table 2.3: Candidate Google Trends data sources for early detection of seasonal 
influenza. Optimization experiments evaluated 100 time series based on each of these 
search terms. 

Google search terms 
pneumonia flu headache signs of flu how long does flu last 
treating flu low body early flu symptoms normal body temperature 

flu report get over the flu influenza type a how long is the flu 
contagious 

flu duration how long flu symptoms of flu incubation period for flu 
after the flu flu how long get rid of the flu how to treat the flu 
flu cough flu coughing break a fever flu contagious period 
flu fever having the flu type a influenza ear thermometer 
treat the flu i have the flu treatment for flu how to get rid of the flu 
flu last flu contagious human temperature influenza incubation period 

flu vs. cold dangerous fever when you have the 
flu symptoms of bronchitis 

the flu cold versus flu signs of the flu what to do if you have the 
flu 

cold and flu flu in children taking temperature over the counter flu 

flu type remedies for flu if you have the flu over the counter flu 
medicine 

flu germs contagious flu do i have the flu how long is the flu 
flu 
recovery exposed to flu symptoms of the flu incubation period for the flu 

cold vs. flu is flu contagious treating the flu how long does the flu last 
thermoscan have the flu flu and fever how long does the flu 
flu or cold oscillococcinum flu and cold how long contagious 
flu lasts flu medicine fight the flu how long is flu contagious 
flu care flu treatments reduce a fever how to reduce a fever 
flu length flu complications upper respiratory fever dangerous 

treat flu influenza 
symptoms high fever flu treatment 

cure flu cold vs flu flu children medicine for flu 
cure the flu braun thermoscan the flu virus cold symptoms 
flu vs cold fever cough how to treat flu is the flu contagious 
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Table 2.4: Candidate Wikipedia data sources for early detection of seasonal influenza. 
Optimization experiments evaluated 53 time series based on access frequency for each of 
these Wikipedia articles. 

Wikipedia articles 

Influenza A virus subtype H5N1 Nausea Antiviral drugs  Influenza-like 
illness 

Influenza A virus subtype H7N2 Headache Rhinorrhea Influenzavirus A 
Influenza A virus subtype H7N3 Malaise Rimantadine Canine influenza 
Influenza A virus subtype H7N7 Chills Equine influenza Swine influenza 
Influenza A virus subtype H9N2 Influenza Paracetamol Influenzavirus C 
Influenza A virus subtype H7N9 Myalgia Common cold Orthomyxoviridae 
Influenza A virus subtype H1N1 Cough Nasal congestion Influenza vaccine 
Influenza A virus subtype 
H10N7 Fever Sore throat Viral pneumonia 

Influenza A virus subtype H1N2 Vomiting Fatigue 
(medical) Influenza B virus 

Influenza A virus subtype H2N2 Shivering Gastroenteritis Viral neuraminidase 
Influenza A virus subtype H3N8 Flu season Avian influenza Influenza pandemic 

Influenza A virus subtype H3N2 Oseltamivir Cat flu Influenza 
prevention 

Hemagglutinin (influenza) Zanamivir Influenza A 
virus Human flu 

Neuraminidase inhibitor    
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Chapter 3: Optimizing data sources for early detection of large dengue 

outbreaks 

3.1 ABSTRACT 

Dengue has been endemic in populations throughout Latin American, the Pacific 

islands, and Southeast Asia over decades, causing large outbreaks during some but not all 

years. Early and accurate detection of emerging epidemics can be critical to effective 

public health intervention. Here, we extend a multivariate early detection framework for 

detection of emerging waves of dengue transmission as early as possible that leverages a 

combination of historic incidence, climate, and search query data. We apply signal 

processing methods to detect anomalous dengue-related activity and feature selection 

algorithms to evaluate hundreds of candidate data sources for inclusion in the detection 

model. Optimal models for each study area contain fewer than eight of more than one 

hundreds possible candidate predictor time series, and outperform baseline models 

including only dengue incidence data from public health surveillance systems. We found 

that the framework is very sensitive to locations, and an optimal set of predictor time 

series derived from one location may not be applied to other locations directly. This study 

not only contributes a framework to select small subsets of data sources from among 

hundreds of candidates to improve the early detection of large emerging and re-emerging 

epidemics, but also proves flexibility of the framework on different locations. 
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3.2 INTRODUCTION 

Dengue, a mosquito-borne infectious disease, has emerged as a public health 

problem since the 1960s, and remains endemic in many tropical and subtropical 

countries, with about four billion people at the risk of dengue infection [58]. Between 

1990 and 2013, the number of symptomatic dengue infections doubled every 10 years, 

and approximate 60 million people are infected symptomatically by dengue virus per year 

on average with nearly 10,000 deaths from the infection [59]. Not only dengue incidence 

keeps increasing over years, but explosive outbreaks are occurring in some years. For 

example, Puerto Rico has experienced four large outbreaks since 1990 with about 20,000 

suspected cases on average, while in other years, the number of suspected cases were 

3,000 to 9,000 [60]. In Mexico and Peru, the number of dengue cases was various 

significantly between years as well ranging from several thousand to over 200,000 

infections [61], and from 6,000 to more than 60,000 cases [62], respectively. The 

variation and non-seasonality of dengue outbreaks make the detection of large dengue 

outbreaks challenging. 

Public health agencies need reliable surveillance systems to prevent or slow down 

the spread of dengue outbreaks in a timely manner. For instance, with sufficient early 

warnings, public health officials are able to be well-prepared -- determining when and 

where to distribute vaccines and antivirals, and implementing effective interventions, 

such as spraying insecticides. Traditional passive surveillance systems for dengue usually 

depend on voluntary reports from healthcare facilities [63,64], and an outbreak is 
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announced if the number of dengue cases surpasses the 75th percentile of the distribution 

of weekly number of dengue cases based on historical data [60]. However, many past 

outbreaks have shown that there was always a delay of days to weeks between symptoms 

onset and case reporting. It also takes extra days for public health agencies to collect and 

publish the reports. Moreover, passive surveillance systems tend to underreport the total 

number of cases since many dengue infections have no or mild symptoms, and thus do 

not seek medical treatment [65–68]. Consequently, early warnings received from 

traditional systems are not actually early, and usually in the exponential growth phase of 

an outbreak. Therefore, it is urgent to develop effective active surveillance systems which 

are able to detect large dengue outbreaks early and accurately. 

Lots of statistical models have been developed to forecast dengue outbreaks based 

on either historical incidence data or climate data. Some of them focused on short-term 

forecast (<= 3 months) and predicted dengue incidence directly in monthly or weekly 

level [69–75]. Early warning systems were also built to identify large dengue outbreak 

years starting from March based on only incidence and climate data in the preceding 

months from October to December, which were not able to detect if the outbreak has 

been started or not [76,77]. In addition, Bowman et al. applied logistic regression to 

identify large dengue outbreaks from small ones in real-time using only climate data and 

epidemiological data without feature optimization [78]. During the dengue forecasting 

competition hosted by several departments in the US Federal Government in 2015 [79], 

some teams developed non-statistical or statistical models to forecast the peak height and 
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week based on historical incidence data which outperformed baseline models [80–82]. To 

predict peaks of outbreaks, the forecasting usually initializes after the start of an 

outbreak, and thus is not able to predict the start of an outbreak in advance. 

Considering in the big data era, there are plenty of data sources available from not 

only public health surveillance systems and climate stations, but also the Internet, such as 

Google, Twitter, Wikipedia. Previous research has shown that Internet data is informative 

for infectious diseases surveillance. For example, Google search query data has been used 

to monitor or forecast infectious disease dynamics in real time, such as dengue [44,83–

88], and influenza [40,89–104]; influenza forecasting and situational awareness using 

Wikipedia data also achieved good performance [7,41,95,96,105]; HealthMap integrates 

various freely available electronic media sources to obtain the status of infectious 

diseases globally [106–109]. However, Internet data relevance to infectious diseases are 

sensitive to human behaviors, such as panic-induced searching caused by disease-

relevance media news [43,44]. Therefore, to include Internet-sourced data in disease 

surveillance models, it is essential to optimize and evaluate those data throughout 

multiple years to ensure a robust performance. 

In a recent study, we developed a hierarchical early detection framework that can 

be applied to detect not only re-emerging but also emerging outbreaks in real time [110]. 

The framework includes an anomaly detection model and a forward feature selection 

(FFS) algorithm. The anomaly detection model is a Multivariate Exponentially Weighted 

Moving Average (MEWMA) method, which detects anomalies in a target time series by 
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monitoring multiple predictor time series. The model assumes that observations within 

non-outbreak periods follow a multivariate normal distribution (null distribution). The 

model sounds an alarm if an observation is away from the multivariate normal 

distribution (See Methods for details). The feature selection algorithm determines which 

time series should be included as predictors in the MEWMA model. False alarms are 

constrained by a predefined parameter Average Time between False signals (ATFS). The 

framework performed better than baseline models in detecting the second wave of the 

2009 flu pandemic, with alarms being triggered five weeks in advance of the official start 

of flu seasons [110]. 

Parameter optimization is a problem of choosing a set of optimal parameters for a 

statistical or machine learning model. There are five types of parameter optimization 

methods in general: grid search, random search, gradient-based optimization, 

evolutionary optimization and Bayesian-based optimization. Grid search is an exhaustive 

searching through predefined parameter spaces and evaluate all combinations of 

parameters values via an objective function [111], and random search is to select 

combinations of parameter values randomly, instead of exhaustively, for evaluation 

[112]. However, both searching methods are time-consuming because of the large size of 

potential combinations. Consequently, other optimization methods are developed. 

Gradient-based optimization is the most popular method for parameter optimization in 

machine learning, which is a first-order iterative optimization algorithm [113]. To apply 

this method, an objective function must be differentiable. Evolutionary optimization is a 
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group of methods based on the biological concept of evolution, such as mutation, 

recombination, reproduction and selection [114,115]. Each combination of parameter 

values is considered an individual in a population of combinations, and the quality of 

each individual is defined by an objective function. Evolution of parameters occurs 

among individual combinations with high quality. Bayesian-based optimization is a set of 

algorithms for noisy black-box objective functions [116]. The optimization starts with 

predefined prior distributions for each parameter, and the prior distributions are updated 

to form posterior distributions over an objective function. The posterior distributions are 

used to sample new combinations of parameter values, and get updated over the objective 

function until no improvement is observed in model performance. Both evolutionary and 

Bayesian-based algorithms do not require derivatives of an objective function. 

Here, we modified the MEWMA-FFS framework to detect large dengue 

outbreaks: (1) To make the anomaly detection model have more power to distinguish 

large outbreaks from small ones, we introduce a parameter baseline threshold to the 

model, and only observations between baseline threshold and event threshold are counted 

in the null distribution; (2) To decrease computational time complexity, we use a penalty 

term in the objective function, instead of the predefined ATFS, to constrain false positive 

alarms in order to get rid of the simulation-based parameter optimization. Instead, the 

Tree-structured Parzen Estimators (TPE) [117], a Bayesian-based optimization algorithm, 

is applied to estimate model parameters, including baseline threshold, smoothing 

parameter and statistical threshold. We applied the upgraded framework to detect large 
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dengue outbreaks in Mexico, San Juan metropolitan area in Puerto Rico, and Iquitos 

metropolitan area in Peru from 2004-2017, 2004-2013, and 2004-2013, respectively, with 

candidate time series from Google Trends, climate stations and public health surveillance 

systems. Our study shows that the early detection framework is very sensitive to 

locations, and different optimal combinations of predictor time series are selected for 

each study area. With limited data in out-of-sample evaluation, optimized early detection 

systems outperform three baseline models which only use an incidence time series from 

public health surveillance systems. We also show that combinations of time series 

optimized for one specific location is not informative for other locations. 

3.3 MATERIALS AND METHODS 

3.3.1 Early detection framework 

The early detection framework includes two layers: (i) anomaly detection layer 

that is responsible to detect outbreaks, (ii) data optimization layer to select which 

candidate time series should be included in the anomaly detection layer as predictors. 

3.3.1.1 Anomaly detection layer 

The model implemented in anomaly detection layer is a Multivariate 

Exponentially Weighted Moving Average (MEWMA) method. In the model, we define 

one data source as target time series 𝑦, and all others as predictor time series 𝑿, where 

𝑿 = [𝑋F, 𝑋�, …𝑋�]N, and 𝑀 is the number of predictor time series. 
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Event threshold 𝜖 is a predefined value within the range of 𝑦 that is used to 

label time periods belonging to anomalies. All observations above 𝜖  on 𝑦  are 

considered as outbreaks, and the corresponding time periods are outbreak periods. To 

make the model identify large outbreaks from small ones, we introduce a parameter 

baseline threshold 𝜖u  to the model, and only time periods 𝑻  with corresponding 

observations on 𝑦 falling between 𝜖 and 𝜖u	 are defined as non-outbreak periods. That 

is, 𝑻 = {𝑡: 𝜖u < 𝑦9 ≤ 𝜖} . We project 𝑻  to predictor time series 𝑿  to obtain 

observations within non-outbreak periods. The model assumes all observations within 

non-outbreak periods follow a multivariate normal distribution: 

𝑿𝑻~𝒩(𝝁u, 𝚺u), (3.10) 

where 𝝁u is the mean vector and 𝚺u is the covariance matrix. 

Next we compute the exponentially weighted moving average 𝑺9 corresponding 

to each time point on predictor time series 𝑿 using Equation (3.11) [45]. 

𝑺9 = :𝑿9, if	𝑡 = 1
max[𝟎, 𝜆(𝑿9 − 𝝁u) + (1 − 𝜆)𝑺9EF], if	𝑡 > 1 (3.11) 

where 𝜆 is the smoothing parameter determining the degree of weighting decrease (0 <

𝜆 < 1). With a higher 𝜆, the data prior to 𝑡 decays faster. 𝑿9 is a column data vector at 

time point 𝑡 in predictor time series 𝑿. 

The covariance matrix of 𝑺9 equals to 
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𝚺𝑺� = �
𝜆[1 − (1 − 𝜆)�9

2 − 𝜆 �𝚺u (3.12) 

When computing the MEWMA statistic, we use the asymptotic covariance matrix 

as 𝑡 → ∞ [118], that is, 

𝚺𝑺O = �
𝜆

2 − 𝜆�𝚺u (3.13) 

Based on Hotelling's multivariate control-chart procedure [119], MEWMA model 

sounds an alarm as soon as 

𝐸9 = 𝑺9N𝚺𝑺O
EF𝑺9 > ℎ (3.14) 

where ℎ is a specified statistic threshold. In this model, only three parameters need to be 

estimated, including baseline threshold 𝜖u	 , smoothing parameter 𝜆 , and statistic 

threshold ℎ, no matter how many predictor time series are included. 

3.3.1.2 Data optimization layer 

To evaluate and select which predictor time series should be included in the 

MEWMA model, we implement Forward Feature Selection (FFS) algorithm in the 

framework. The procedure starts with no predictor time series in the model, and evaluates 

the one-component subsets {𝑋F}, {𝑋�}, … , {𝑋�}. Then the best individual predictor time 

series {𝑋�} will be included in the model. Next, the algorithm evaluate each two-

component subset consisting of {𝑋�} and one other time series from the remaining 
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𝑀 − 1 input predictors. And the model is updated to include the two-component subset 

with the best performance. The procedure is repeated until the model reaches a 

predefined number of predictor time series (Table 3.1). 

Table 3.1: Forward feature selection procedure 

Algorithm 
Require: A set of all candidate time series 𝛀 
Require: Pre-define a size of predictor time series in the model 𝐾 

Create an empty set: 𝑋(m) = {∅}, 𝑘 = 0 
while 𝑘 < 𝐾 do 
𝑋� = arg	max�∈𝛀\𝑿(�)𝐽(𝑿

(m) ∪ {𝑋})  
Update 𝑿(m) ← 𝑿(m) ∪ {𝑋�} 
𝑘+= 1  

end while 

3.3.2 Objective function 

To measure the performance of each predictor time series in feature selection, we 

define a detection window prior to each outbreak to quantify how early an alarm is 

triggered, and alarms outside detection windows are considered as false alarms. The 

performance of each predictor is computed as: 

𝐽(𝑿, 𝜖u, 𝜆, ℎ; 𝑦) =
1
𝑁U

Δ𝑊X
𝑊X

Z

X[F

�
1

𝜃 + 1�
 

 (3.15) 

Here, 𝑁 is the total number of events labeled in target time series 𝑦; 𝑊X is the 

length of detection window for outbreak 𝑛 which is prior to the start of an outbreak, and 

Δ	𝑊X is the time difference between the first true alarm for outbreak 𝑛 and the onset of 
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the corresponding outbreak. We define Δ	𝑊X 	= 	0 if no true alarm is triggered for 

outbreak 𝑛. In addition, if there is no outbreak during a time period, we make Δ	𝑊X 	=

	𝑊X and 𝑁 = 1. To constrain false alarms, we add a penalty parameter 𝜔 ∈ [0,∞) to 

the total number of false alarms 𝜃. A penalty of 0 indicates no penalty to false alarms. 

The value of the objective function ranges from 0 to 1, with a score of 1 indicating alarms 

are always triggered at the start of detection windows without false alarms. 

3.3.3 Parameter estimation 

Given that the objective function is not differentiable, we apply the Tree-

structured Parzen Estimators (TPE) algorithm to estimate parameters of the framework, 

including baseline threshold 𝜖u, smoothing parameter 𝜆, and statistic threshold ℎ. TPE 

is a Bayesian-based optimization algorithm, which does not require to specify initial 

guesses for parameters. We use the TPE algorithm implemented in a Python library 

'hyperopt' [120] to run the optimization. We define a uniform distribution as the initial 

distribution for each parameter: 

𝜖u~𝒰(0, 𝜖); 			𝜆~𝒰(0, 1); 			ℎ~𝒰(0, 800) (3.16) 

During the first 20 iterations, we apply random search to get initial combinations 

of parameter values. Each combination is evaluated according to the objective function. 

All combinations are divided into two groups using the default fraction in the package: 

the first group contains the ones with higher objective values and the second group 

includes all others. The density function of each group is estimated using a nonparametric 
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method -- parzen-window density estimation. The next step is to sample new 

combinations of parameter values that are more likely to be in the first group and less 

likely to be in the second group. The new combination with the highest improvement is 

then used to update the density function. The process is repeated until achieving 1000 

iterations. 

3.3.4 Building early detection systems 

We apply the MEWMA-FFS framework to build early detection systems for three 

study areas: San Juan metropolitan area in Puerto Rico, Iquitos metropolitan area in Peru, 

and the country of Mexico. Data from each area is split into training and testing periods 

(Table 3.7). 

We use dengue weekly incidence data collected from public health surveillance 

systems as target time series to label large dengue outbreaks, and determine the length of 

their detection windows. To remove noises and reveal the trend of dengue infection, we 

smooth each time series using Exponentially Weighted Moving Average (Equation 

(3.17)) prior to labeling large dengue outbreaks (Figure 3.3). A smoothing parameter of 

0.2 is applied to the target time series for San Juan and Iquitos, and a value of 0.4 is 

applied to that of Mexico. A large outbreak is defined as weekly incidence surpassing the 

75th percentile of the distribution of historical weekly number of dengue cases based on 

training data (event threshold 𝜖) in four consecutive weeks, and the peak height of the 

outbreak is 1.4 times of the threshold (Figure 3.3). The start of a detection window is 
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defined as the first week when weekly incidence increases for three consecutive weeks 

during the onset of a given outbreak. 

𝐴9 = 𝜆𝐶 + (1 − 𝜆)𝐴9EF (3.17) 

To select optimal combinations of predictor time series, we evaluate all time 

series using cross-validation on training data. Each fold includes one year of data from 

the spring of current year to that of next year. In each round, one fold is held for testing 

and all others are held for model training, and the performance of each predictor time 

series is averaged across all testing folds in one single experiment. In addition, to ensure 

the robustness of early detection systems, we repeat each experiment 20 times and the 

final performance of each predictor time series is determined by the median, and the one 

with the best median performance is included in the system.  

To choose the best penalty parameter 𝜔 to constrain false alarms, we vary the 

value of 𝜔 from 0 to 5 while optimizing predictor time series (Figure 3.4). The best 

value of 𝜔 is determined based on three metrics – alarm timing (the ratio of the distance 

between the first true alarm and the onset of an outbreak to the length of the detection 

window for the corresponding outbreak), precision (the proportion of true alarms over all 

alarms) and recall (the proportion of large outbreaks detected). A timing of 1 indicates 

that an alarm is triggered at the start of a detection window, and 0.5 shows that a model 

sound an alarm at the middle of a detection window. Next, we validate optimal 

combinations of predictor time series and penalty parameter 𝜔 using data from testing 
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period, and the performance of each system is compared according to the three metrics 

described above across 20 replicates, in which only alarms triggered in over 50% of all 

20 replicates are kept in calculating model performance. 

3.3.5 Baselines 

We compare early detection systems constructed for each study area with three 

simple baselines: two pure data-driven baselines (week-based trigger and rise-based 

trigger) and one model-driven baselines (univariate version of the MEWMA model). 

Each baseline only use target data (weekly dengue incidence data from public health 

surveillance systems), and is trained and tested using the same time periods as the early 

detection systems described in Table 3.7. We consider only the first alarm in each cluster. 

The same objective function, event threshold, detection window as described above are 

used in three baselines. Week-based trigger sounds alarms the same week 𝑤 each year, 

and the week number 𝑤 maximizing alarm timing and the number of true alarms in 

training data is selected for each region as the week-based trigger (Table 3.2). Rise-based 

trigger triggers alarms when weekly dengue incidence keeps increasing in 𝑛 consecutive 

weeks. We considered 𝑛 ranging from 2 to 20 weeks and the value of 𝑛 that maximizes 

the alarm timing and the number of true alarms in training period is chosen as the rise-

based trigger (Table 3.2). Univariate version of the MEWMA model only uses weekly 

dengue incidence from surveillance systems as a predictor to detect large dengue waves. 
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Table 3.2: Parameter values in each baseline for corresponding locations 

Baseline Mexico San Juan Iquitos 
week-based trigger 𝑤 = 16  𝑤 = 25  𝑤 = 39  
rise-based trigger 𝑛 = 6  𝑛 = 7  𝑛 = 4  

3.3.6 Data 

We collect time series data from the following four sources, and convert each 

time series into three candidate predictors: (i) the level (value of the time series in the 

trailing week); (ii) the slope (first difference over trailing two weeks); (iii) the 

acceleration (second difference over trailing three weeks). 

(1) Reported weekly dengue incidence from passive surveillance systems (Table 

3.8). We collect number of reported dengue cases for San Juan metropolitan area, Puerto 

Rico and Iquitos metropolitan area, Peru from the website of Epidemic Prediction 

Initiative [79], and for the country of Mexico from the website of Ministry of Health of 

Mexico [121]. 

(2) Daily climate data from the website of National Oceanic and Atmospheric 

Administration (NOAA) [122]. NOAA integrates climate data from land-based climate 

stations across the world that have been subjected to a common suite of quality assurance 

reviews. It includes numerous climate factors, such as temperature, rainfall etc. We 

determine to choose three climate factors as candidate predictors, including temperature 

[123,124], precipitation [125,126], and relative humidity [127–129], which can affect 

dengue infection by influencing biology of mosquitoes. We retrieve daily max 
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temperature, min temperature, average temperature and precipitation from GHCN 

(Global Historical Climatology Network) database [130], and daily relative humidity 

from ISD (Integrated Surface Database) database [131] across climate stations around 

corresponding regions. We aggregate daily data into weekly scale by taking medium of 

each week (Table 3.8). 

(3) Weekly sea surface temperature data from the website of National Centers for 

Environmental Prediction (NCEP) [132]. Many studies have shown that El Niño and its 

effect on local meteorological conditions influence inter-annual variability in dengue 

transmission [133–141], and sea surface temperature is a key indicator of El Niño. 

Therefore, we include weekly sea surface temperature (SST) and SST anomalies (SSTA) 

from four Nino regions on Pacific Ocean--Nino 1+2, Nino 3, Nino 3.4, and Nino 4--as 

candidate predictors (Table 3.8). 

(4) Monthly search query data from Google Trends [142]. Google trends data is 

an unbiased sample of Google search data, and only monthly-scale data is provided for 

time beyond five years. Each data point is normalized by the highest search volume of the 

term within the geography and time range. We define 41 search terms in Spanish 

relevance to the symptoms, biology and treatment of dengue (Table 3.9). For each term, 

we retrieve its monthly search popularity from 2004 to present on Google Trends. Next 

we apply a cubic spline method to disaggregate the monthly popularity to weekly scale, 

and negative values are set to 0 and values larger than 100 are set to 100 [83]. For each 
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study area, if a search term was searched by very few people (no time series is returned), 

we exclude the term as predictors. 

3.4 RESULTS 

3.4.1 Performance of early detection systems in each study area 

We first selected optimal combinations of predictor time series within each data 

category and also across all data categories using cross-validation on training period. 

Regardless of locations, the MEWMA-FFS framework selects different sequential 

combinations of time series within the same data category for a range of values of penalty 

parameter 𝜔 (Figure 3.4), which indicates that 𝜔 does affect the selection of time 

series by adding penalty to false alarms. When optimizing time series across all data 

categories (mix system), the framework trends to select a mixture of time series from 

different data categories as optimal combinations. The top one time series selected within 

each early detection system is not usually influenced by different penalty values, and 

optimal combinations are chosen from a small subset of time series in corresponding data 

categories. 

In Mexico, the optimal combination of predictors within incidence system (public 

health surveillance data) includes weekly incidence and weekly incidence (slope) with a 

penalty parameter of 1 (Figure 3.4). In out-of-sample evaluation, the system sounds 

alarms for large dengue waves around the middle within the detection window of a 

corresponding outbreak (Table 3.3, Figure 3.4). The system also sound false alarms 



 59 

during 2015-2016 and 2016-2017 periods when the number of dengue cases did not meet 

the criteria of large outbreaks. The ‘winner’ climate system is the one with penalty 

parameter 2 and selects only one predictor time series -- average temperature (Table 3.3, 

Table 3.4, Figure 3.1). It detects the 2013-2014 and 2014-2015 outbreaks earlier than the 

incidence system with no false alarms triggered. The Google Trends (GT) system and mix 

system produce similar alarms with climate system in terms of alarm timing on average 

(Table 3.3, Figure 3.5). However, both systems trigger one false alarm and GT system 

also misses one large outbreak. The winner early detection system climate system also 

outperform all three baseline models in terms of alarm timing, precision and recall (Table 

3.3, Figures 3.1 and 3.5). Even though week-based trigger sounds alarms for large 

outbreaks earlier than the winner climate system, it sounds alarms even for small 

outbreaks. We also compare performances of all early detection systems between cross-

validation on training period (feature selection procedure) and out-of-sample evaluation 

on testing period to ensure consistent performance (Table 3.3, Figures 3.1 and 3.5). 

Across all models for Mexico, the performance are similar between training and testing 

period, which indicates the feature selection procedure has no potential overfitting issue. 

The result for Mexico shows that a subset of climate-relevance time series is the best 

option for early detection of large dengue outbreaks in Mexico. 
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Table 3.3: Performance of different early detection systems across cross validation and 
out-of-sample evaluation in Mexico 

System 𝜔 
Cross validation Out-of-sample evaluation 
Timing Precision Recall Timing Precision Recall 

Week-based 
trigger - 0.94 

(0.8-1.0) 
0.67 1.0 0.92 

(0.85-1.0) 
0.5 1.0 

Rise-based 
trigger 0.2 0.62 

(0.47-0.8) 
0.67 1.0 0.53 

(0.46-0.6) 
0.4 1.0 

Univariate-
incidence 0.6 0.42 

(0.15-0.68) 
0.4 0.67 0.52 

(0.50-0.54) 
0.67 1.0 

Incidence  1 0.66 
(0.45-0.93) 

0.31 0.67 0.57 
(0.54-0.60) 

0.5 1.0 

Climate 2 0.90 
(0.8-0.95) 

0.86 1.0 0.86 
(0.77-0.95) 

1.0 1.0 

Google 
Trends 0.6 0.84 

(0.46-1.0) 
0.75 1.0 1.0 

(1.0-1.0) 
0.5 0.5 

Mix 2 0.92 
(0.84-0.95) 

0.83 0.83 0.86 
(0.77-0.95) 

0.67 1.0 

 

Table 3.4: Predictor time series included in ‘winner’ systems for each location 

Location 
Mexico San Juan Iquitos 
Average temperature Average temperature 

Nino2 SSTA 
Nino3 SST (acceleration) 

Cases 
Cases (acceleration) 
Cases (slope) 
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Figure 3.1: Performance of early detection systems for detecting large dengue waves for 
three study areas in cross validation and out-of-sample evaluation periods. Using weekly 
dengue incidence data as target time series (blue curves are cross validation periods, and 
blue dot curves are out-of-sample evaluation period), early detection systems were 
optimized to sound alarms as early as possible within pre-defined detection windows 
(shaded green area). Systems are selected to detect events defined by a threshold of 75% 
percentile of historical reported dengue cases (green horizontal and vertical dashed lines). 
Red bars indicate alarms triggered by the ‘winner’ system for each study area: climate 
system with 𝜔 = 2 for Mexico; climate system with 𝜔 = 0.6 for San Juan; incidence 
system with 𝜔 = 0.6 for Iquitos, where 𝜔 is a penalty parameter to false alarms). 

In San Juan, the incidence system with a penalty parameter of 1.0, including 

dengue incidence and dengue incidence (slope), detects all large outbreaks within cross 

validation period, with an average of alarm timing of 0.28 and a precision of 0.75 (Table 

3.5, Figure 3.4). In out-of-sample testing, it sounds an alarm for the only 2012-2013 

outbreak earlier than any alarms for outbreaks within cross validation period, and 

produces one false alarm (Table 3.5, Figure 3.6). The climate system, including three 

time series -- average temperature, Nino3 SSTA and Nino SST (acceleration), performs 

the best across all models (both baseline models and other early detection systems) in 

terms of alarm timing, precision and recall (Figures 3.1 and 3.4, Tables 3.4 and 3.5). 

 

M
exico

San Juan
Iquitos
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Performance of the mix system is slightly lower than that of the climate system, and also 

sounds no false alarms. In out-of-sample evaluation, the performance of climate and mix 

system are also similar with each other on the single outbreak, both of which fall within 

the range of alarm timing in cross validation, respectively (Table 3.5, Figures 3.1 and 

3.6). Surprisingly, even though GT system triggers false alarms and also misses one large 

outbreak in cross validation, it sounds an alarm for the single outbreak in out-of-sample 

testing periods as early as the mix system, and produces no false alarms (Table 3.4, Figure 

3.6). Overall, performance of the climate system is more robust than any other systems 

for San Juan area across cross validation and out-of-sample testing period. 

Table 3.5: Performance of different early detection systems across cross validation and 
out-of-sample evaluation in San Juan 

System 𝜔 
Cross validation Out-of-sample evaluation 
Timing Precision Recall Timing Precision Recall 

Week-based 
trigger - 0.71 

(0.53-1.0) 
0.5 1.0 0.5 

(0.5-0.5) 
0.5 1.0 

Rise-based 
trigger 0.2 0.56 

(0.4-0.74) 
0.6 1.0 0.64 

(0.64-0.64) 
0.5 1.0 

Univariate-
incidence 1.4 0.32 

(0.07-0.58) 
0.6 1.0 0.79 

(0.79-0.79) 
0.5 1.0 

Incidence  1.0 0.28 
(0.07-0.58) 

0.75 1.0 0.64 
(0.64-0.64) 

0.5 1.0 

Climate 0.6 0.84 
(0.60-0.95) 

1.0 1.0 0.64 
(0.64-0.64) 

1.0 1.0 

Google 
Trends 4 0.78 

(0.63-0.93) 
0.67 0.67 0.86 

(0.86-0.86) 
1.0 1.0 

Mix 4 0.55 
(0.1-0.93) 

1.0 1.0 0.86 
(0.86-0.86) 

1.0 1.0 
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When detecting large dengue outbreaks for Iquitos metropolitan area in Peru, the 

incidence system, including dengue incidence, dengue incidence (acceleration) and 

dengue incidence (slope), triggers alarms for large outbreaks around the middle of the 

detection windows on average, with a precision of 0.44, which is slightly better than the 

univariant version of MEWMA baseline with only dengue incidence time series (Table 

3.6, Figures 3.1, 3.4 and 3.7). It indicates that slope and acceleration of dengue incidence 

time series increase the performance marginally. In out-of-sample evaluation, the system 

does not trigger any false alarms and sounds alarms for large waves with an average 

alarm timing of 0.64 (Table 3.6, Figure 3.1). We found that during the 2006-2007 period, 

the incidence time series is more noisy than that within the 2012-2013 period, which 

might explain the multiple false alarms triggered in cross validation. All other three early 

detection systems (climate, GT, and mix systems) are able to detect all large outbreaks 

within cross validation period, and outperform the incidence system in terms of alarm 

timing and precision (Table 3.6, Figure 3.7). In out-of-sample evaluation, the alarm 

timing of climate system is consistent with that in cross validation, while the mix system 

sounds alarms for large outbreaks later than the lower boundary of alarm timing in cross 

validation and the GT system fails to detect any large outbreaks (Table 3.6, Figure 3.7). 

This phenomenon reveals potential overfitting of the models. Optimal combinations of 

predictor time series in both mix and GT system include search query data where we 

suspect the issue stems from. Crowd-source data, such as search popularity of Google 

terms, are affected easily by social media and sentiment of human communities. Similar 

issues have been found in previous studies [143,144]. 
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Table 3.6: Performance of different early detection systems across cross validation and 
out-of-sample evaluation for Iquitos 

System 𝜔 
Cross validation Out-of-sample evaluation 
Timing Precision Recall Timing Precision Recall 

Week-based 
trigger - 0.48 

(0-1.0) 
0.67 1.0 0.80 

(0.75-0.84) 
0.67 1.0 

Rise-based 
trigger 0.4 0.74 

(0.33-0.89) 
0.4 1.0 0.79 

(0.63-0.95) 
0.5 1.0 

Univariate-
incidence 1 0.49 

(0.17-0.89) 
0.4 1.0 0.40 

(0.38-0.42) 
1.0 1.0 

Incidence  0.6 0.57 
(0.25-0.89) 

0.44 1.0 0.63 
(0.38-0.89) 

1.0 1.0 

Climate 0.6 0.89 
(0.58-1.0) 

0.57 1.0 0.88 
(0.88-0.88) 

0.5 0.5 

Google 
Trends 0.6 0.92 

(0.83-1.0) 
0.44 1.0 - - - 

Mix 1 0.67 
(0.54-0.75) 

0.8 1.0 0.23 
(0.19-0.26) 

1.0 1.0 

3.4.2 Performance of area-specific early detection systems on other areas 

To study if an optimal early detection system for one specific location has 

predictive power for other locations, we use predictor time series selected by the ‘winner’ 

early detection system for each of the three study areas (Table 3.4) to detect large dengue 

waves in the other two locations. When detecting large dengue outbreaks for Mexico, the 

San Juan-based early detection system sound alarms for large dengue outbreaks as early 

as that of the Mexico ‘winner’ system, however, it produces more false alarms and misses 

more than 75% of all large outbreaks (Figure 3.2). The Iquitos-based system does not 

outperform the Mexico ‘winner’ system in terms of all three metrics. For San Juan, the 

three early detection systems detect all large outbreaks occurred, however, the Mexico- 
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and Iquitos- based systems sound alarms later and the Iquitos-based system produces 

more false alarms than the San Juan ‘winner’ system (Figure 3.2). Interestingly, in 

Iquitos, San Juan-based system triggers alarms for large dengue outbreaks earlier than the 

Iquitos ‘winner’ system, while sounds more false alarms. Mexico-based early detection 

system has similar alarm timing with the Iquitos ‘winner’ system and produces less false 

alarms, but it fails to detect more than half of the large outbreaks for Iquitos (Figure 3.2). 

It indicates that early detection systems optimized for one location can only provide 

limited information for early detection of dengue outbreaks in other locations and is 

prone to sound more false alarms. 
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Figure 3.2: Performance of each local ’winner’ early detection system on detecting large 
dengue waves in other study areas, in terms of alarm timing relative to the size of 
corresponding detection window, proportion of alarms indicating actual large outbreaks 
(precision) and proportion of outbreaks detected (recall). Evaluations are performed using 
leave-1-year-out cross validation on entire time periods available for each study area. 
Alarm timing is computed by averaging alarm timing across all large outbreaks in each 
area. 
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3.5 DISCUSSION 

Over the past years, we have developed a hierarchical framework MEWMA-FFS 

to detect emerging and re-emerging infectious disease outbreaks. By applying this two-

layer framework, we are able to not only build models for early detection of infectious 

disease outbreaks but also choose an optimized subset of predictors for the model from 

thousands of candidate predictor data sources. In this study, we use the MEWMA-FFS 

framework in detecting large dengue outbreaks to three dengue-endemic areas -- Mexico, 

San Juan in Puerto Rico and Iquitos in Peru. To identify large outbreaks from small ones, 

We introduce a parameter baseline threshold to label only observations between baseline 

threshold and event threshold as non-outbreak. Based on thirteen years of data, the 

framework identifies optimal combinations of predictor time series for each location, and 

the combinations vary between locations – both Mexico and San Juan system are driven 

by time series from climate stations, and Iquitos model is dominated by time series from 

public health surveillance systems. With optimized predictor time series, early detection 

systems are able to detect large dengue outbreaks earlier and produce less false alarms 

than baseline models including only one time series dengue incidence. We also found that 

predictor time series optimized for one specific location may not be applied to other 

locations directly for the purpose of early detection of large dengue outbreaks. 

Results in the study are consistent with previous research. Dengue forecasting 

models including climate data, such as temperature, precipitation, relative humidity, and 

sea surface temperature, usually achieve good performance in regions along coasts 
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[133,134]. We speculate this is because areas along coasts are influenced by El Niño–

Southern Oscillation (ENSO) the most and ENSO has a directed effect on climate change 

and disrupts normal weather patterns [145]. The differences between the optimal 

combinations for San Juan and Mexico may result from geographical heterogeneity 

which causes various dynamics of dengue transmission [146]. On the other hand, Iquitos 

is far away from the Pacific Ocean border and located along the Amazon River. It 

experiences a tropical rainforest climate. That is, there is constant rainfall throughout the 

year without a distinct dry season, and the temperature usually ranges from 21 to 33 

degree Celsius [147]. It indicates the climate does not vary much throughout the year and 

thus are not good predictors for large dengue outbreaks. In addition, dengue incidence in 

Iquitos is very low, even during the peak of a large outbreak (~50 cases), compared to 

that in Mexico and San Juan, which may be another reason that makes the climate-related 

predictors do not stand out over public health surveillance data. Google search terms 

relevance to dengue, which have been applied to dengue nowcasting in multiple areas 

[44,83,84], never beat other predictor time series in early detection of large dengue 

outbreaks in any of the three locations. There are two potential reasons: (1) Google 

Trends reflects the search popularity of terms relevance to dengue infection, and the 

suddenly increase in search popularity may indicate already increased dengue incidence 

in a population. This is usually later than the effect of climate factors, which influence the 

biology of mosquitoes--the vector transmitting dengue virus between humans. (2) Search 

popularity data retrieved from Google Trends is only available in monthly scale, and thus 
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is disaggregated into weekly scale in the study. Applying any methods to disaggregate 

data may smooth or change the actual trends in time series.  

We emphasize that the conclusion in this study should not be applied to other 

dengue forecasting models with different purpose directly. The results here are based on 

the MEWMA model and forward feature selection algorithm to detect large dengue 

outbreaks that is defined by 75th percentile of the distribution of weekly dengue 

incidence in historical data. Studies have shown that climate related predictors did not 

improve dengue short-term forecasting significantly using a SARIMA framework for 

Mexico [65], and that a Gaussian process (GP) regression, ignoring environmental 

factors, outperformed other models in the Dengue Forecasting Project [148]. In addition, 

even for the same location with the same MEWMA-FFS framework, choosing an 

alternative target time series, such as the number of laboratory-confirmed dengue cases or 

dengue hemorrhagic fever, may result in different optimal combinations of predictor time 

series. 

Our study is also limited to no more than thirteen years of historical data for each 

location as Google Trends is only available since 2004. Even though we designed our 

study carefully by selecting predictor time series using cross validation on training period 

and evaluating optimal combinations of predictors on testing period, we cannot guarantee 

the conclusion would be the same when more data is available in the near future. Our 

previous study has shown that the length of time series does affect feature selection and 

the performance of systems [110]. Therefore, we recommend to evaluate constructed 
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early detection systems periodically. In addition, a common issue for research in 

emerging and re-emerging outbreaks is that there is no sufficient historical data available 

since such outbreaks are very sparse. In our study, the out-of-sample evaluation is only 

based on no more than four years of data, which may limit the reliability of the optimal 

combinations of predictor time series. In future studies, we need to develop algorithms 

for simulating plausible emerging or re-emerging outbreaks [55], and use the 

bootstrapping method [149] to sample outbreaks with replacement for generating time 

series containing more outbreaks. With more data available, we can improve the model 

validation process. 

While we have already included more than one hundred candidate predictor time 

series in the study, considering other predictors may provide more information to benefit 

the early detection of large dengue outbreaks. Electronic Health Records data, which is 

useful in influenza forecasting and nowcasting [37,56,93,102,150], may be informative 

for dengue early detection as well. Numerous Internet-sourced data has been validated 

and applied to infectious diseases surveillance besides Google Trends, such as Twitter, 

Wikipedia, HealthMap etc. Such data should be considered if available in target areas. 

However, we should take extra caution when applying those Internet-sourced data, since 

they are susceptible to public events such as media news, public sensibility and fear to 

infectious diseases. In addition, some other environmental factors are proved to be 

correlated with dengue infection, such as absolute humidity and vegetation [151]. 
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Building models to detect emerging and re-emerging infectious disease outbreaks 

is always an important task for the public health community. It can help public health 

agencies to detect potential outbreaks in advance, and thus have enough lead time to 

implement effective intervention strategies and distribute vaccines and antiviral drugs. 

Currently, researchers mainly focus on building models for specific locations, which may 

not be applied to other locations directly as shown in this study. It is still a big challenge 

for building early detection systems for locations lacking of established surveillance 

systems or experiencing political unrest. Moreover, for a single region, data relevance to 

emerging and re-emerging outbreaks is often very limited considering the relative low 

frequency of those events. Therefore, it is vital to build universal early detection models 

to cover multiple regions. Multiple ways can be applied to achieve this goal, such as 

grouping locations based on their similarity in population, climate and geography etc., 

and one model can be built for each cluster of locations by combining their candidate 

time series. With this, it not only benefits regions without high-quality public health data 

but also increases statistical power of early detection models. 
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3.6 SUPPLEMENTAL INFORMATION 

Figure 3.3: Historical dengue incidence in the country of Mexico (panel 1), San Juan 
metropolitan area of Puerto Rico (panel 2), and Iquitos metropolitan area of Peru (panel 
3). (A) Time series of raw and smoothed number of dengue cases. The light blue curve is 
the actual weekly number of cases, and the dark blue curve is the smoothed time series. 
The horizontal green dash line represents the event threshold, and vertical green dash line 
indicates the start of each event. Dark green shadow areas are detection windows prior to 
the start of events, and alarms triggered within these areas are true alarms. Light green 
shadow areas are periods experiencing large dengue outbreaks, and alarms falling in 
these periods are neutral alarms. Alarms outside of the two areas are false alarms. Data 
before the vertical red line are used for model training and others are for out-of-sample 
evaluation. (B) Distribution of dengue incidence across training period. The vertical 
green line shows 75th percentile of the distribution. 
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Figure 3.4: Predictor time series selected by early detection systems with different 
penalty weight 𝜔 to false alarms. Systems were optimized within each data category 
(incidence, climate, Google Trends(GT)) and across all data categories. Darkness of the 
color indicates the sequence of time series selected. The lighter the color is, the later the 
corresponding time series is selected in a system. The time series corresponding to white 
color represents it is never selected in systems. 
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Figure 3.5: Alarms triggered across various early detection systems for Mexico in 
detecting large dengue outbreaks. Using weekly dengue incidence data as target time 
series (blue curves are cross validation periods, and blue dot curves are out-of-sample 
evaluation period), early detection systems were optimized to sound alarms as early as 
possible within pre-defined detection windows (shaded green area). Predictor time series 
were selected to detect events defined by a threshold of 75% percentile of the distribution 
of historical dengue cases (green horizontal and vertical dashed lines). Red bars indicate 
alarms triggered by the corresponding baseline or early detection system. 
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Figure 3.6: Alarms triggered across various early detection systems for San Juan in 
detecting large dengue outbreaks. Using weekly dengue incidence data as target time 
series (blue curves are cross validation periods, and blue dot curves are out-of-sample 
evaluation period), early detection systems were optimized to sound alarms as early as 
possible within pre-defined detection windows (shaded green area). Predictor time series 
were selected to detect events defined by a threshold of 75% percentile of the distribution 
of historical dengue cases (green horizontal and vertical dashed lines). Red bars indicate 
alarms triggered by the corresponding baseline or early detection system. 
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Figure 3.7: Alarms triggered across various early detection systems for Iquitos in 
detecting large dengue outbreaks. Using weekly dengue incidence data as target time 
series (blue curves are cross validation periods, and blue dot curves are out-of-sample 
evaluation period), early detection systems were optimized to sound alarms as early as 
possible within pre-defined detection windows (shaded green area). Predictor time series 
were selected to detect events defined by a threshold of 75% percentile of the distribution 
of historical dengue cases (green horizontal and vertical dashed lines). Red bars indicate 
alarms triggered by the corresponding baseline or early detection system. 

 

Table 3.7: Training and testing periods for each study area 

Region Training period Testing period 

Mexico 01/11/2004 – 02/20/2013 02/21/2013 – 01/01/2017 

San Juan 01/25/2004 – 04/29/2011 04/30/2011 – 04/29/2013 

Iquitos 01/25/2004 – 07/01/2010 07/02/2010 – 06/30/2013 
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Table 3.8: Target and candidate predictor time series from each study area 

Region Date range Data category Predictors c 

Mexico 2004 - 2017, weekly Incidence a 1 ´ 3 
Climate 7 ´ 3 
Sea surface temperature 8 ´ 3 

Google Trends b 40 ´ 3 

San Juan 2004 - 2013, weekly Incidence a 1 ´ 3 
Climate 7 ´ 3 
Sea surface temperature 8 ´ 3 

Google Trends b 27 ´ 3 

Iquitos 2004 - 2013, weekly Incidence a 1 ´ 3 
Climate 7 ´ 3 
Sea surface temperature 8 ´ 3 

Google Trends b 37 ´ 3 
Table notes: a. Target time series; b. Search terms included are shown in Table 3.9; c. 
The first number in each row indicates the total number of predictor time series, and the 
second number shows the three levels per time series. 
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Table 3.9: Candidate Google search terms. ‘´’ indicates that the search term is not 
included as a candidate predictor in the corresponding area. 

Search term Mexico San Juan Iquitos 
dengue    
el dengue    
Que es el dengue    
Dengue clasico  ´  
El dengue clasico  ´ ´ 
Tipos de dengue    
Casos de dengue ´ ´  
Enfermedad del dengue  ´  
hemorragico    
el dengue hemorragico  ´ ´ 
dengue hemorragico    
sintomas del dengue    
sintomas de dengue    
sintomas dengue    
sintomas del dengue hemorragico   ´  
los sintomas del dengue  ´  
mosco del dengue  ´ ´ 
mosquito del dengue    
tratamiento para el dengue   ´  
contra el dengue  ´ ´ 
tratamiento del dengue   ´  
tratamiento dengue  ´  
dengue fever    
virus del dengue  ´  
Mosquito    
Aedes    
aedes aegypti    
Fiebre    
Dolor    
dolor de Cabeza    
Erupcion    
Sangria    
dolor abdominal    
dolor en las articulaciones   ´  
Vomitos    
Hematomas    
Somnolencia    
Irritabilidad    
Paracetamol    
Hydrocodone / Paracetamol     
Oxycodone / Paracetamol     
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Chapter 4: The effects of population structures on infectious disease 

dynamics and prediction 

4.1 ABSTRACT 

Infectious diseases are transmitted via contacts between individuals which form a 

contact network. Network structure can be complex, including heterogeneity in the 

number of contacts, clustering of contacts within coherent subpopulations, and 

asymmetric contacts in which one individual is likely to infect another, but the reverse is 

not true. For example, health care workers (HCWs) in a hospital setting may frequently 

contact infectious patients. Ignoring such population structures can bias epidemic 

predictions, as occurred during the 2014 Ebola epidemic in West Africa. Here, we 

explore the interactive effects of heterogeneous, clustered, and directed contacts on the 

unfolding of an epidemic. Using a low-dimension system of ordinary differential 

equations, we find that heterogeneous and directed contacts significantly impact the 

timing and magnitude of spread, while clustering has a relatively minor effect. Using 

simulated data collected in early phase of an epidemic, we further assess the ability of 

various models to infer transmission rates and make predictions based on data from an 

emerging outbreak. If we ignore all three network structures, our models overestimate 

total incidence and the timing and magnitude of highest incidence (i.e., the epidemic 

peak) by more than 10%, 6 days, and 20% respectively. By incorporating heterogeneity, 
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we reduce these errors to 5%, 3 days and 0% respectively; by incorporating 

heterogeneity, clustering and directed contacts, the error nearly disappears.  

4.2 INTRODUCTION 

Ebola virus, a lethal human pathogen, caused the largest known Ebola epidemic in 

West Africa during 2014-2015 since it first appeared. The epidemic originated from 

Guinea in December 2013, and rapidly expanded to three other countries, including 

Libera, Sierra Leona, and Nigeria. Imported cases were also reported in countries outside 

West Africa. As of February 2016, the total number of probable, suspected and confirmed 

Ebola cases in the epidemic was 28,639 with 11,316 deaths globally which exceeded the 

total number of cases and deaths from all previous outbreaks [152]. To support public 

health agencies for disease-control efforts, epidemiologists developed and parameterized 

mathematical models to predict the epidemic trajectory. By September 2015, 15 

publications (including 22 models) provided numerical forecasts of cumulative Ebola 

incidence [153]. However, 18 of the 22 models, which assumed exponential growth in the 

initial phase of the epidemic, overestimated the future number of cases. For example, 

using the EbolaResponse modeling tool developed by Center for Disease Control and 

Prevention (CDC), the estimated total number of cases in Liberia and Sierra Leone would 

be 550,000 by January 20, 2015 [154]. 

The discrepancy between prediction and actual cumulative incidence might be 

caused by early and effective intervention. However, even during the early phase of the 
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epidemic when public health intervention has not been implemented broadly, the 

epidemic dynamic in district level was largely characterized by sub-exponential, instead 

of exponential, growth patterns [155]. The departure from the exponential assumption of 

the mass action compartmental model could affect the estimation of final epidemic size, 

since the effective reproduction number (𝑅u) declines rapidly for sub-exponential growth 

within the first three to five disease generations while does not change in exponential 

growth [156]. This phenomena might stem from clustering in the population, 

heterogeneous mixing, spatial effects and reactive behavior changes et al. A study shows 

that predictive models including decay terms, heterogeneous contact patterns or other 

methods to constrain incidence growth tend to have lower forecast error [153]. An agent-

based simulation model with various population structures (Ebola treatment units, 

households et al.), was also able to replicate the sub-exponential growth patterns [157]. 

Scarpino et al. has confirmed that clustered transmission did exist in the population by 

analyzing Ebola virus genomic and epidemiological data from Sierra Leone [158]. In 

addition, during the Ebola epidemic, at least 10 clusters of Ebola cases among health care 

workers (HCWs) at non-Ebola treatment units have been reported [159,160], which were 

initialized by patients who infected HCWs by seeking medical attentions. Unlike the 

transmission within households, the transmission between patients and HCWs is 

asymmetric, with patients more likely to infected HCWs than to be infected by HCWs 

[161]. HCWs have accounted for up to 25% of Ebola cases during previous Ebola 

outbreaks [162], which indicates the importance of including health care settings in 

modeling Ebola epidemics. 
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The impact of various population structures on epidemics has attracted attentions 

of mathematical epidemiologists. Researchers usually use network models to study the 

diverse interactions underlying the spread of infectious diseases via either analytical 

methods or simulations [163–166]. In a network model, nodes represent individuals in a 

population and edges indicates the interaction between two individuals. Degree 

distribution describes the distribution of the number of contacts per individual. A 

previous theoretical study shows that for the same 𝑅u, the total incidence of the epidemic 

could be different on networks with different degree distributions [163]. Bansal et al 

suggests that human contact patterns are more heterogeneous than assumed by 

homogeneous-mixing models, and that mass action model is not appropriate for 

populations with heterogeneous contact patterns [164]. In another study, Meyers et al 

investigated the impact of hospital-based transmission on the fate of an epidemic [161]. 

They used directed edges starting from average people to HCWs to reveal the disease 

transmission between patients and HCWs within a network (meaning an average person 

is more likely to infect HCWs by seeking medical attention than to be infected by 

HCWs), and undirected edges to represent the transmission between two average 

individuals. They find that the probability of an epidemic and the expected fraction of a 

population infected during an epidemic can be different when considering the hospital-

based transmission. Volz et al studied the joint impact of clustering and heterogeneity in 

contact patterns on epidemics [167]. It shows the interaction between clustering and 

heterogeneity is complex, and clustering always slows down an epidemic while 

increasing clustering and heterogeneity simultaneously can decrease final epidemic size. 
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With different population structures being studied, epidemiological models 

become more and more complex, however, there is little study on the contributions of 

those structures to epidemic dynamics, and the trade-off between model complexity and 

model performance on prediction. For example, researchers usually fit a mathematical 

model to the data collected from an epidemic to estimate transmission parameters, and 

then project the total incidence to future. In some cases, models without considering all 

population structures might achieve reasonable performance by adjusting transmission 

parameters, even though the estimated parameters are not consistent with ground truth. 

In light of the Ebola epidemic in 2014, we developed deterministic Susceptible-

Exposed-Infected-Recovered (SEIR) Ordinary Differential Equations (ODEs) to model 

the spread of infectious diseases on static networks, where heterogeneous contact pattern, 

clustering and directed contacts are considered, based on the edge-based compartmental 

modelling approach [167–170]. Using the network-based SEIR model, we first 

investigated contributions of different population structures on epidemic dynamics with 

various combinations of network parameters. We find that both heterogeneous and 

directed contacts contribute to the epidemic dynamics significantly, and the effect of 

clustering is relatively small. Next, we explore the ability of different models to make 

predictions using data from a simulated epidemic. The result suggests that a model 

without any population structures always overestimate total incidence, magnitude and 

timing of the epidemic peak by more than 10%, 20% and 6 days respectively, while a 

network model with only heterogeneity can make better predictions that lowers the errors 
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by 5%, 20% and 3 days. Our study provides not only theoretical understanding of 

contributions of different population structures on disease dynamics, but also insight into 

practical modeling and data collection suggestions to achieve better surveillance for 

future epidemics. 

4.3 MATERIALS AND METHODS 

4.3.1  SEIR network model derivation 

Variables and parameters involved in the model are described in Table 4.1. We 

consider a susceptible-exposed-infected-recovered (SEIR) model on a static network, in 

which there are three different population structures—heterogeneous, directed and 

clustered contacts. Heterogeneous contacts are described by undirected edges between 

two individuals, meaning that transmission can occur in either direction. Each individual 

in the network has a different number of undirected edges. Clustered contacts are 

represented by triangles, each of which includes three individuals and edges. A triangle is 

explained as two friends of one individual are also friends. The disease transmission 

between two individuals within a triangle is bidirectional. Directed contacts are defined 

as directed edges, which point from average people to HCWs. In-degree and out-degree 

represent the number of directed edges incoming from and outgoing to other individuals, 

respectively. In a network, each individual is a member of a random number of in-degree, 

out-degree, undirected edges, and triangles. The degree distribution shows the probability 

that a randomly chosen individual will have a particular combination of in-degree, out-
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degree, undirected edges and triangles. The network structure is captured by a probability 

generating function (PGF): 

𝜓(𝑥, 𝑦, 𝑧, 𝑣) = U 𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)𝑥m~𝑦m±𝑧m²𝑣m³
m~,m±,m²,m³

 (4.1) 

Initially, each individual in the network is susceptible until infected individuals 

are introduced. Individuals infected by others in infected state at a constant transmission 

rate 𝛽 transit to exposed state. Individuals in exposed state are moved to infected state at 

a constant rate 𝜎, and those in infected state are transmitted to recovered state at a 

constant rate 𝛾. Once recovered, an individual cannot be infected anymore. We derive 

the SEIR model based on the approach of edge-based compartmental modelling. We 

define a test individual 𝑢, which is sampled randomly from a network. The probability 

that the individual 𝑢 is in a given state is equal to the proportion of individuals in that 

state. We assume that the individual 𝑢 does not transmit infection to its neighbors [168]. 

By this assumption, we can eliminate the dependence of the states between two neighbors 

of 𝑢 since a neighbor of 𝑢 can infect another neighbor of 𝑢 by infection traveling 

through 𝑢  otherwise. Based on the assumption, each neighbor of 𝑢  can infect 𝑢 

independently. This does not affect the probability that 𝑢 is in a given state, and thus has 

no impact on calculating the proportion of individuals in that state. 

 

 



 87 

Table 4.1 Definitions of variables and parameters in the model 

Parameter Definition 

𝜎  Exposure rate 

𝛽¯  Transmission rate per contact via undirected edges 

𝛽¸  Transmission rate per contact via directed edges 

𝛽°  Transmission rate per contact on triangles 

𝛾  Recovery rate 

𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)  The probability that an individual is a member of 𝑘¯ undirected 
edges, 𝑘y  in-degree edges, 𝑘®  out-degree edges, and 𝑘° 
triangles	

𝑆(0)  The proportion of individuals that are susceptible at time 0 

𝑆, 𝐸, 𝐼, 𝑅  The proportion of individuals in susceptible, exposed, infected or 
recovered states 

𝜙»,¯, 𝜙¼,¯, 𝜙½,¯, 𝜙¾,¯  The probability that a neighbor of 𝑢 along an undirected edge is 
susceptible, exposed, infected or recovered, and has not 
transmitted infection to 𝑢 given that it had not at time 0 

𝜙»,¸, 𝜙¼,¸, 𝜙½,¸, 𝜙¾,¸  The probability that a neighbor of 𝑢 along a directed edge is 
susceptible, exposed, infected or recovered, and has not 
transmitted infection to 𝑢 given that it had not at time 0 

𝜙�¿   The probability that two neighbors of 𝑢 in a same triangle are in 
states X and Y, and have not transmitted infection to 𝑢 given that 
they had not at time 0 (𝑋, 𝑌 ∈ {𝑆, 𝐸, 𝐼, 𝑅}) 

𝜃¯  The probability that a neighbor of 𝑢 along an undirected edge has 
not transmitted infection to 𝑢 given that it had not at time 0 

𝜃¸  The probability that a neighbor of 𝑢 along a directed edge has not 
transmitted infection to 𝑢 given that it had not at time 0 

𝜃°  The probability that two neighbors of 𝑢 in a same triangle have 
not transmitted infection to u given that they had not at time 0 

𝜓(𝑥, 𝑦, 𝑧, 𝑣)  The probability generating function for generating the probability 
that an individual is a member of 𝑘¯ undirected edges, 𝑘y in-
degree edges, 𝑘® out-degree edges and 𝑘_𝑐 triangles 

𝐴  The rate that a neighbor of 𝑢  in a triangle is infected by 
individuals outside the triangle 
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We start with calculating the proportion of individuals in susceptible state at time 

𝑡 (𝑆(𝑡)), which is equivalent to the probability that the individual 𝑢 is in susceptible 

state. At time 0, infection is introduced into the network, and the proportion of 

susceptible individuals is 𝑆(0). We assume that the individual 𝑢 has 𝑘¯ undirected 

edges, 𝑘y in-degree edges, 𝑘® out-degree edges and 𝑘° triangles, and is susceptible at 

time 0. Then at time 𝑡, the probability that it is still susceptible is 𝑆(0)𝜃¸
m~𝜃¯

m²𝜃°
m³ 	, 

where 𝜃¸ and 𝜃¯ are the probability that a neighbor of 𝑢 has not transmitted to 𝑢 via 

in-degree edges and undirected edges respectively, given that it had not prior to time 0; 

𝜃° is the probability that neither of the two neighbors of 𝑢 in the same triangle has 

transmitted to 𝑢. Since we do not know 𝑘¯, 𝑘y, 𝑘® and 𝑘°, then the probability that 𝑢 

is susceptible at time 𝑡 can be written as 

𝑆(𝑡) = 𝑆(0) U 𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)
m~,m±,m²,m³

𝜃¸
m~𝜃¯

m²𝜃°
m³ 	

= 𝑆(0)𝜓(𝜃¸, 1, 𝜃¯, 𝜃°) 

(4.2) 

Given 𝑆(𝑡), we are able to write equations for calculating 𝐸, 𝐼, and 𝑅 based on 

the flow diagram in Figure 4.1. 

𝐸 = 1 − 𝑆 − 𝐼 − 𝑅 

𝐼̇ = 𝜎𝐸 − 𝛾𝐼 

�̇� = 𝛾𝐼 

(4.3) 
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Figure 4.1: Flow diagram for the flux of individuals between different compartments. 𝑆, 
𝐸, 𝐼, 𝑅 represent the proportion of individuals in susceptible, exposed, infected, and 
recovered states. We have an explicit expression for 𝑆 as shown in Equation (4.2), and 
the expressions for 𝐸, 𝐼, 𝑅 are the same as in the mass action compartmental model.	

Next, we need to calculate 𝜃¯, 𝜃¸ and 𝜃° separately. 

4.3.1.1 Considering 𝜽𝒖 

𝜃¯  is the probability that a neighbor of 𝑢  via an undirected edge has not 

transmitted infection to 𝑢 at time 𝑡 given that it has not at time 0. That is, 𝜃¯(0) = 1. 

It is divided into four parts (Figure 4.2): 𝜙»,¯, 𝜙¼,¯, 𝜙½,¯, and 𝜙¾,¯, which represent the 

probabilities that a neighbor of 𝑢 is in susceptible, exposed, infected and recovered 

states respectively and has not transmitted infection to 𝑢. Thus, 

𝜃¯ = 𝜙»,¯ + 𝜙¼,¯ + 𝜙½,¯ + 𝜙¾,¯ (4.4) 

1 − 𝜃¯ is the probability that a neighbor of 𝑢 has transmitted infection to 𝑢. 

From the diagram in Figure 4.2, we have 

�̇�¯ = −𝛽¯𝜙½,¯ 

�̇�½,¯ = 𝜎𝜙¼,¯ − 𝛾𝜙½,¯ − 𝛽¯𝜙½,¯ 

�̇�¼,¯ = −�̇�»,¯ − 𝜎𝜙¼,¯ 

(4.5) 
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Next, we need to find an expression for 𝜙»,¯ in terms of 𝜃s. Let’s consider a 

neighbor of 𝑢 with an undirected edge to 𝑢. The probability that the neighbor is 

susceptible at time 0 equals to the proportion of susceptible individuals in the population 

which is 𝑆(0). The probability that the neighbor is attached to 𝑢 by an undirected edge 

and has 𝑘¯  undirected edges, 𝑘y  in-degree edges, 𝑘®  out-degree edges and 𝑘° 

triangles is 𝑘¯𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)/〈𝑘¯〉 , where 〈𝑘¯〉 = ∑ 𝑘¯𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)m~,m±,m²,m³ , so 

the probability that an initially susceptible neighbor is still susceptible at time 𝑡 is 

𝑆(0)𝑘¯𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)𝜃¸
m~𝜃¯

m²EF𝜃°
m³/〈𝑘¯〉 (𝑢 is prevented from infecting its neighbors, 

thus only 𝑘¯ − 1 individual can infect the neighbor via undirected edges). Since we do 

not know 𝑘¯ for the neighbor, the probability that a neighbor is susceptible at time 𝑡 is 

written as 

𝜙»,¯ =
∑ 𝑆(0)𝑘¯𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)𝜃¸

m~𝜃¯
m²EF𝜃°

m³
m~,m±,m²,m³

∑ 𝑘¯𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)m²,m~,m±,m³
	

= 𝑆(0)	
𝜕
𝜕𝑧𝜓(𝜃¸, 1, 𝜃¯, 𝜃°)
𝜕
𝜕𝑧𝜓(1,1,1,1)

 

(4.6) 

By combining Equations (4.5) and (4.6), we finish the system for 𝜃¯. 
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Figure 4.2: Flow diagram for the flux of neighbors of 𝑢 connected by undirected edges 
through different states. 𝜙»,¯, 𝜙¼,¯, 𝜙½,¯, 𝜙¾,¯ and 𝜃¯ represent the probabilities that 
a neighbor of 𝑢 connected by an undirected edge to 𝑢 is susceptible, exposed, infected, 
recovered and has not transmitted infection to 𝑢. The sum of 𝜙»,¯, 𝜙¼,¯, 𝜙½,¯ and 𝜙¾,¯ 
equals to 𝜃¯. 1 − 𝜃¯ is the probability that a neighbor of 𝑢 has transmitted infection to 
𝑢.	

4.3.1.2 Considering 𝜽𝒅 

𝜃¸ is the probability that a neighbor of 𝑢 connected by directed edges has not 

transmitted infection to 𝑢 at time 𝑡 given that it had not at time 0. That is, 𝜃¸(0) = 1. 

It is divided into four parts as shown in Figure 4.3. The derivation of expressions for 𝜃¸, 

𝜙»,¸, 𝜙½,¸, 𝜙¼,¸ are similar to the infection transmission via undirected edges except 

that we need to consider the direction of directed edges explicitly. From the flux diagram 

in Figure 4.3, we have 

𝜃¸ = 	𝜙»,¸ + 𝜙¼,¸ + 𝜙½,¸ + 𝜙¾,¸ 

�̇�¸ = −𝛽¸𝜙½,¸ 

�̇�½,¸ = 𝜎𝜙¼,¸ − 𝛾𝜙½,¸ − 𝛽¸𝜙½,¸ 

�̇�¼,¸ = −�̇�»,¸ − 𝜎𝜙¼,¸ 

(4.7) 
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When deriving the equation for 𝜙»,¸, we consider a neighbor of 𝑢 with a directed edge 

pointing to 𝑢. The probability that the neighbor is susceptible at time 0 is 𝑆(0). The 

probability that the neighbor has 𝑘y  in-degree edges, 𝑘®  out-degree edges, 𝑘¯ 

undirected edges and 𝑘°  triangles and reaches to 𝑢  by an out-going edge is 

𝑘®𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)/〈𝑘®〉, where 〈𝑘®〉 = ∑ 𝑘®𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)m~,m±,m²,m³ . Given this, we 

have the probability that a neighbor of 𝑢 is still susceptible at time 𝑡 

𝜙»,¸ =
∑ 𝑆(0)𝑘®𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)𝜃¸

m~𝜃¯
m²𝜃°

m³
m~,m±,m²,m³

∑ 𝑘®𝑝(𝑘y, 𝑘®, 𝑘¯, 𝑘°)m²,m~,m±,m³
	

= 𝑆(0)	

𝜕
𝜕𝑦𝜓(𝜃¸, 1, 𝜃¯, 𝜃°)

𝜕
𝜕𝑦𝜓(1,1,1,1)

 

(4.8) 

By combining Equations (4.7) and (4.8), we finish the system for 𝜃¸. 

Figure 4.3: Flow diagram for the flux of neighbors of 𝑢 connected by directed edges 
through different states. 𝜙»,¸, 𝜙¼,¸, 𝜙½,¸, 𝜙¾,¸, 𝜃¸ show probabilities that a neighbor 
of 𝑢 through an directed edge is susceptible, exposed, infected, recovered and has not 
transmitted infection to 𝑢. The sum of 𝜙»,¸, 𝜙¼,¸, 𝜙½,¸ and 𝜙¾,¸ equals to 𝜃¸. 1 −
𝜃¸ is the probability that a neighbor of 𝑢 has transmitted infection to 𝑢. 

 

 

σϕE,d
ϕE,dϕS,d ϕI,d ϕR,d

γϕI,d

1 − θd

βdϕI,d



 93 

4.3.1.3 Considering 𝜽𝒄 

𝜃° represents the probability that the two neighbors within the same triangle as 𝑢 

has not transmitted infection to 𝑢, given that they had not at time 0 (𝜃°(0) = 1). To 

calculate 𝜃°, we break it into 10 parts as shown in Figure 4.4. Each part donates to a 

combination of the states of the two neighbors within the same triangle. For example, 

𝜙»»  is defined as the probability that both neighbors are susceptible and has not 

transmitted infection to 𝑢; 𝜙¼½  indicates the probability that one neighbor is in exposed 

state and the other is in infected state, and neither has transmitted infection to 𝑢. 

From the flux between different parts, we have 

�̇�° = −𝛽°𝜙»½ − 𝛽°𝜙¼½ − 2𝛽°𝜙½½ − 𝛽°𝜙½¾  

�̇�»¼ = 2𝐴𝜙»» − 𝜎𝜙»¼ − 𝐴𝜙»¼  

�̇�»½ = 𝜎𝜙»¼ − 𝛾𝜙»½ − (𝛽° + 𝐴)𝜙»½ − 𝛽°𝜙»½  

�̇�¼¼ = 𝐴𝜙»¼ − 2𝜎𝜙¼¼  

�̇�»¾ = 𝛾𝜙»½ − 𝐴𝜙»¾  

�̇�¼½ = (𝛽° + 𝐴)𝜙»½ + 2𝜎𝜙¼¼ − 𝛽°𝜙¼½ − 𝜎𝜙¼½ − 𝛾𝜙¼½  

�̇�¼¾ = 𝐴𝜙»¾ + 𝛾𝜙¼½ − 𝜎𝜙¼¾  

�̇�½½ = 𝜎𝜙¼½ − 2𝛾𝜙½½ − 2𝛽°𝜙½½ 

�̇�½¾ = 𝜎𝜙¼¾ + 2𝛾𝜙½½ − 𝛾𝜙½¾ − 𝛽°𝜙½¾  

(4.9) 
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where 𝐴 is the rate that a neighbor in a triangle is infected by individuals outside the 

triangle. To close the system for 𝜃°, we need to find expressions for 𝐴 and 𝜙»». When 

we consider each of the two neighbors in a triangle separately, the expression for the  

probability that one neighbor is still susceptible and has not transmitted infection to 𝑢 is 

similar to that in the system for 𝜃¯. Since we require both be susceptible, then 

𝜙»» = Í𝑆(0)
𝜕
𝜕𝑣 𝜓(𝜃¸, 1, 𝜃¯, 𝜃°)
𝜕
𝜕𝑣 𝜓(1,1,1,1)

Î

�

 (4.10) 

From the diagram in Figure 4.4, we know �̇�»» = −2𝐴𝜙»» , which can be 

rewritten as 

𝐴 = −
�̇�»»
2𝜙»»

 (4.11) 

By combination Equations from (4.2) to (4.11), we complete the network-based 

SEIR model. 
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Figure 4.4: Flow diagram for the flux of two neighbors of 𝑢 connected by the same 
triangle through different states. The flux shows the change between the probabilities that 
two neighbors of 𝑢  within the same triangle are in different states, and have not 
transmitted infection to 𝑢. The sum of different	states equals to 𝜃° . 1 − 𝜃°  is the 
probability that one neighbor of 𝑢 in the triangle has transmitted infection to 𝑢. 

4.3.2 Model implementation and analysis 

To explore the contribution of different population structures on infectious disease 

dynamics, we constructed a negative binomial distribution which allows us to keep the 

mean degree constant while change the variance of the distribution from the mean degree 

to infinity. The probability generating function (PGF) for a negative binomial distribution 

with parameters 𝑝 and 𝑟 is 

𝑔XÔ(𝑥; 𝑟, 𝑝) = U𝑃(𝑘)𝑥mzF
Õ

m[u

	

= UÖ𝑟 + 𝑘 − 1𝑘 × 𝑝Ø(1 − 𝑝)m𝑥mzF
Õ

m[u

	

(4.12) 
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= �
𝑝

1 − (1 − 𝑝)𝑥�
Ø
𝑥 

Note the negative binomial distribution generated by Equation (4.12) starts from 

1, instead of 0, to make sure no individual is isolated from the contact network. The 

distribution governs the distribution of edges from all population structures. 

Following the approach described in [167], we modify the PGF so that all edges 

occur in pairs, and the degree will always be an even integer. That is, the number of pairs 

of edges follows a negative binomial distribution. We introduce two other parameters to 

assign each pair of edges to different population structures: with probability 𝑝®, a pair of 

edges forms two out-degree edges with individuals that are not themselves connected; 

with probability 𝑝°, a pair of edges is part of a triangle, and with probability (1 − 𝑝® −

𝑝°), a pair of edges forms two undirected edges with individuals who are not themselves 

connected. When 𝑝® = 0, the network converges to a network without directed edges; 

when 𝑝° = 0, the network has no clusters; when 𝑝® = 𝑝° = 0, the network only has 

undirected edges. We also assume that the proportion of HCWs in the population is 𝛼, 

and only HCWs have a constant number of in-degree edges. To keep the balance of in-

degree edges and out-degree edges, we have 

𝑘y =
𝑝®𝑘
𝛼  (4.13) 

where 𝑘 is the mean degree (pair of edges) of the network. Given these conditions, we 

have the PGF for the degree distribution of the network 
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𝜓(𝑥, 𝑦, 𝑧, 𝑣) = (𝛼𝑥�m~ + 1 − 𝛼)	

																												�
𝑝

1 − (1 − 𝑝)[𝑝®𝑦� + (1 − 𝑝® − 𝑝°)𝑧� + 𝑝°𝑣]
�
Ø
	

																													[𝑝®𝑦� + (1 − 𝑝® − 𝑝°)𝑧� + 𝑝°𝑣] 

(4.14) 

By integrating Equations (4.14) with (4.2)--(4.11), we are able to model diseases 

transmission on a network with negative binomial distributed pairs of edges. In addition, 

we also generate a homogeneous network model where all individuals have equal number 

of edges and no triangles and directed edges exist in the network. The mean degree of the 

homogeneous network is equal to that of the negative binomial distributed network. 

We assume there are 1,000 individuals in the network. The mean degree (𝑘) of the 

network is 3, which is roughly equal to the average number of contacts per individual in 

Liberia estimated from contact tracing data during the 2014 Ebola epidemic [158]. We 

assume the proportion of out-degree edges per individual (𝑝®) is 0.2 if there are HCWs in 

the network; otherwise, 𝑝® = 0. We consider 𝑝° ranging from 0 to 1, and 𝛼 ranging 

from 0.0 to 0.1. 

In analyzing disease dynamics on the network, we fix the exposure rate 𝜎 =

0.105 and the recovery rate 𝛾 = 0.122, which roughly equal to the exposure rate and 

recovery rate of the Ebola virus disease estimated from the 2014 Ebola epidemic in 

Liberia [171]. We assume the transmission rates via undirected, directed and clustered 

edges are the same (𝛽¯ = 𝛽¸ = 𝛽° = 0.2), and 1 randomly selected individual is infected 

at time 0. 
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We solved the model using a Real-valued Variable-coefficient Ordinary 

Differential Equation solver implemented in a Python library Scipy1.2.1 [172]. 

4.3.3 Data simulation and model fitting 

To assess the ability of various models to infer transmission rates and make 

predictions based on data from an emerging outbreaks, we perform a simulation study in 

which we fit SEIR models with different combinations of population structures to 

simulated epidemiological data. Simulated incidence data is generated from the network-

based SEIR model with three population structures (heterogeneous contact pattern, 

clustering, and directed contact) and Poisson distributed noise. We assume the degree 

distribution of the network follows a negative binomial distribution as described in 4.3.2. 

The distribution has a mean (pairs of edges) of 3, which roughly equals to the number of 

contacts per individual in Libera, and a variance of 4. The distribution is approximate to 

an exponential distribution which is common in empirical contact networks [164]. The 

network contains 10,000 individuals, and has a cluster coefficient of 0.7, which is taken 

from [158]. That is, the proportion of edges being part of triangles is 0.7. The proportion 

of HCWs in the population is 0.00048, which is close to the proportion of HCWs in 

Liberia [173], and the proportion of out-degree edges per individual is 0.2. Initially, 10 

randomly selected individual are infected. The exposure rate 𝜎 and recovery rate 𝛾 

equal to 0.105 and 0.122, respectively. The transmission rate through undirected edges 

(𝛽¯) is 0.1, and the transmission rate via directed edges and triangles (𝛽¸, 𝛽°) is 0.5. 
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We fit five different models to the first 𝑛-days cumulative incidence of simulated 

epidemic, where 𝑛 = 20, 30: (1) a heterogeneous network model including undirected, 

directed and clustered edges; (2) a heterogeneous network model only having undirected 

and directed edges; (3) a heterogeneous network model only including undirected and 

clustered edges; (4) a heterogeneous network model only having undirected edges; (5) a 

homogeneous network model in which each individual has the same number of contacts. 

We first fit each model to available data to estimate the transmission rate, and 

assume the transmission rates via different edges are consistent. All other model 

parameters are fixed at their true values, unless certain parameters do not exist in 

corresponding models. Parameter estimation is accomplished by minimizing the sum of 

squared errors between simulated and predicted cumulative incidence using the minimize 

function in the Python library lmfit [174]. Then we use each model with estimated 

transmission rate to project epidemic dynamic. We assess the performance of each model 

in terms of three different surveillance targets: (1) Relative total incidence (the ratio of 

predicted total incidence over ground truth); (2) Relative peak intensity (the ratio of 

predicted peak intensity over ground truth); (3) Relative timing of the epidemic peak (the 

lag between the predicted timing and ground truth). 
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4.4 RESULTS 

4.4.1 The contribution of different population structures on infectious disease 

dynamics. 

In general, heterogeneity in contact pattern (controlled by variance of a degree 

distribution) decreases the total incidence, and the time reaching the peak of an epidemic 

(Figure 4.5(A)). However, the heterogeneity of a network has little effect on the peak 

intensity. When a proportion of undirected edges is turned into clusters (triangles), there 

is minor effect on total incidence, while the peak intensity of an epidemic decreases and 

the peaking timing becomes later (Figure 4.5(B)). If HCWs are included in a network and 

each individual has out-degree edges directed to HCWs, it decreases the total incidence 

and peak intensity, while does not affect the peak timing (Figure 4.5(C)). 

A systematic evaluation of the three population structures (heterogeneous contact 

pattern, directed contacts, and clustering) shows that heterogeneous contact pattern 

reduces the total incidence and epidemic peak timing monotonically (Figures 4.6(A)(C), 

4.S1, 4.S3). A larger variance leads to a smaller total incidence, and a short time reaching 

the peak of an epidemic further. When comparing to a homogeneous model (without any 

population structures), the total incidence generated by an undirected network model 

(with heterogeneous contacts) is always smaller while the peak is always reached earlier 

(Figure 4.6(A)(C)). The divergence becomes larger with the variance increasing. In 

contrast, the effect of heterogeneity on peak intensity is complex, which depends on the 
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variance of the degree distribution. The peak intensity increases when the variance ranges 

from 2 to 6, and starts to decrease after the variance is over 6 (Figures 4.6(B) and 4.9). 

The peak intensity generated by an undirected network model is slightly higher than that 

generated by a homogeneous model when the variance is small, while it becomes lower 

when the variance is around 22 (approximate to a scale-free network). However, the 

difference of peak intensity between an undirected network model and a homogeneous 

model is not significant.  

When directed contacts are integrated into the network model, it is able to 

decrease the total incidence further (Figure 4.6(A)). It might stem from the direction of 

those directed edges, as directed contacts only point to HCWs that makes HCWs become 

a sink of the disease. However, when changing the proportion of HCWs in a population 

from 0.00048 to 0.1, it does not change the total incidence significantly (Figure 4.8). It 

suggests that a better prediction might be achieved, even if the true proportion of HCWs 

in a certain location is unknown, by using a value of 𝛼 from other locations instead of 

ignoring it. Meanwhile, directed edges also lower the peak intensity significantly (Figure 

4.6(B)). The peak intensity keeps increasing continuously if there are more HCWs in a 

population (Figure 4.9). Unlike the effect of heterogeneous contacts on peak timing, 

directed edges deaccelerate the speed reaching to the epidemic peak (Figure 4.6(C)). 

When we explore the effect of clustering on total incidence, we found that it does 

decrease the total incidence slightly when clustered contacts are included in a network 

model (Figure 4.6(A)). However, the effect does not change significantly as the 
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clustering increases (Figure 4.8), especially when the variance ranges from 2 to 5. This is 

consistent with a previous study [167]. In terms of peak intensity and timing, the effect of 

clustering is similar to that of directed edges – it decreases the peak intensity and timing 

when being introduced into a network model (Figure 4.6(B)(C)). However, the peak 

intensity decreases with clustering increasing, which is opposite to the effect of directed 

contacts (Figure 4.9). 

We also examine the contribution of the three population structures on total 

incidence, peak intensity and timing. We quantify the contributions of heterogeneous, 

directed and clustered edges by comparing the difference of prediction between the 

homogeneous model and the undirected network mode, the undirected network model 

and semi-directed network model, the semi-directed network model and the full model 

(with all three population structures), respectively. We found that total incidence is 

mainly driven by heterogeneity and directed contacts (Figure 4.6(A)). When variance of 

the degree distribution is less than 10, the contribution of directed contacts is over that of 

heterogeneous contact pattern; otherwise, they are similar to each other. In terms of peak 

intensity, heterogeneous contact pattern has minimum contribution, while directed 

contacts has the largest contribution (Figure 4.6(B)). The contribution of clustering to 

both total incidence and peak intensity is minor. In contrast, heterogeneous contact 

pattern dominates and contributes positively to peak time (accelerate the speed reaching 

epidemic peak), whereas directed and clustered contacts have a negative contribution to 

the peak time (deaccelerate the pace reaching epidemic peak slightly). The positive 
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contribution of heterogeneous contact pattern is much larger than the negative 

contribution of both directed and clustered edges. Overall, the result suggests that in 

modeling an epidemic, we should at least include heterogeneous and directed contacts in 

a network-based SEIR model. 

Figure 4.5: Epidemic curves generated by SEIR models with different network structures. 
The mean degree (pairs of edges) of each network is 3. (A) The effect of heterogeneous 
contact pattern on epidemic dynamics. ‘Homogeneous’ represents that each individual in 
a network has equal number of contacts; ‘Power law’ represents a scale-free network, 
which has very large variance; ‘Exponential’ means the degree distribution of a network 
follows an exponential distribution and its variance is between a homogeneous network 
and a scale-free one. (B) The effect of clustering on epidemic dynamics. ‘Unclustered’ 
represents a network without clustered edges; ‘Empirical’ indicates a network with 70% 
of all edges being part of clusters (triangles) which is roughly equal to the one estimated 
from Ebola epidemic [158]; ‘Full clustered’ is a network in which all edges are clustered. 
(C) The effect of directed contacts on epidemic dynamics. ‘None’ indicates there is no 
HCWs in a network and thus has no directed edges; ‘Empirical’ is a network that the 
proportion of HCWs in the population is 0.00048, which is equivalent to the ratio of 
HCWs to the total population in Liberia; ‘10%’ means that 10% of the individuals is 
HCWs. 

 

 

Overall impact – main text

(A) (B) (C)
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Figure 4.6: Contributions of different network structures to (A) total incidence, (B) peak 
intensity, and (C) peak timing. ‘Full network’ is a network model including all three 
population structures (heterogeneous, clustered and directed contacts); ‘semi-directed 
network’ is a network model including heterogeneous and directed contacts; ‘Simple 
undirected network’ is a network model including only heterogeneous contacts; ‘No 
network’ is a homogeneous network model in which each individual has the equal 
number of contacts; ‘Clustered undirected network’ is a network model including both 
clustered and heterogeneous contacts. Pairs of edges in each network follow a negative 
binomial distribution with a mean degree of 3 and a variance ranging from 2.1 to 22.1. 
The ratios of clustered edges to all edges per individual is 0.7 if exists in a network 
model; the proportion of HCWs in the population is 0.00048 if directed contacts exists in 
a network model. 

 

 

Final size, peak height, peak time, prob – main text

(A)

(B) (C)



 105 

4.4.2 Epidemic prediction using network models with various population 

structures 

When an epidemic occurs, public health agencies usually plan resource allocation, 

hospital bed capacity and the distribution of antiviral drugs in the initial phase of an 

epidemic based on model predicted epidemic trajectory. However, we usually do not 

know actual values of transmission parameters, which have to be estimated from data 

collected in an epidemic prior to making predictions. 

To investigate how complex a SEIR model should be to make accurate 

predictions for an epidemic, we fit five different models with various population 

structures to simulated data as described in Section 4.3.3 and then make future prediction 

for the epidemic. We consider a scenario where the transmission rate via undirected 

edges is 0.1, while it is 0.5 via directed and clustered edges. This assumption appropriates 

for diseases transmitted via directed human-to-human contact via body fluids or bloods, 

such as Ebola, in which transmission rates within hospital and household are usually 

higher.  

We find that the total incidence and peak intensity predicted by a homogeneous 

model (without population structures), which is the most popular model used in practice, 

always has the largest bias no matter how much data is available (Figure 4.7, Table 4.2). 

The largest differences of the total incidence and peak intensity between prediction and 

ground truth reach 11% and 22%, respectively. The homogeneous model also predict the 
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peak timing 6 days earlier when only data prior to the exponential growth phase is 

available, while the prediction on peak timing is close to ground truth when it is made at 

the end of the exponential growth phase (Figure 4.7, Table 4.2). Similarly, when making 

predictions using an undirected network model (with heterogeneity), it predicts 6% more 

cases for the epidemic (Table 4.2). In terms of peak intensity, the prediction made by a 

clustered network model (with heterogeneous and clustered contacts) is slightly higher 

than ground truth regardless of the data availability. Otherwise, the prediction on peak 

intensity and timing by the undirected network model and the clustered network model  

do not diverge from ground truth significantly (Figure 4.7, Table 4.2). In contrast, a full 

network model (with all three population structures) and a semi-directed network (with 

undirected and directed contacts) model make the most accurate prediction on total 

incidence, peak intensity and timing, except that the predicted peak intensity by the semi-

directed network model is 8% lower than ground truth when 20-days incidence data is 

available. Our results suggest that for an epidemic in real world, a homogeneous model 

should not be used for predicting the epidemic trajectory, and the effects of population 

structures cannot be cancelled completely by adjusting transmission rates during the 

parameter estimation process. We should at least incorporate heterogeneous contacts in 

an epidemiological model for making reliable predictions. 
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Table 4.2: Performance of SEIR models with different population structures on predicting 
the total incidence, peak intensity and timing 

Model 
20-days data available 30-days data available 

𝛽ÚÛ9 𝑆ØÚÜ 𝐻ØÚÜ 𝑇ØÚÜ 𝛽ÚÛ9 𝑆ØÚÜ 𝐻ØÚÜ 𝑇ØÚÜ 

Homogeneous 
network 0.298 1.11 1.22 6 0.343 1.11 1.29 3 

Undirected network 0.188 1.05 1.00 3 0.2 1.06 1.04 2 

Clustered & 
undirected network 0.247 1.07 1.09 1 0.249 1.07 1.09 1 

Semi-directed 
network 0.243 0.99 0.92 3 0.269 1.00 0.97 1 

Full network 0.362 1.00 0.99 2 0.383 1.00 1.01 1 

Note: 𝛽ÚÛ9 donates to the estimated per contact transmission rate through edges; 𝑆ØÚÜ, 
𝐻ØÚÜ, 𝑇ØÚÜ represent the relative total incidence, peak intensity and peak timing of the 
corresponding model to ground truth, respectively. 
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Figure 4.7: The effect of network structures on epidemic predictions. The per contact 
transmission rate via undirected edges is 0.1; both transmission rates through directed and 
clustered edges equal to 0.5. Circles indicate simulated data of an epidemic using the 
network-based SEIR model (Equations (4.2)--(4.11) and (4.13)--(4.14)) with Poisson 
distributed noise. Each network model is fitted to data from day 0 to (A) day 20 and (B) 
day 30 (circles in red), respectively to estimate the transmission rate. We assume the 
transmission rates through different edges are equal in model fitting process. Each curve 
represents the predicted epidemic by the corresponding model with the estimated value of 
the transmission rate. Each bar shows the predicted total incidence by the corresponding 
mode. Grey horizontal line is the true total incidence of simulated epidemic. 

 

Data fitting– main text

(A)

(B)
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4.5 DISCUSSION 

In the study, we have derived a network-based SEIR model using an edge-based 

compartmental modeling approach. The model includes three different population 

structures – heterogeneous contact pattern, directed contacts and clustering, in which 

transmission rates can be various through different edges. Using this model, we 

investigated the contribution of different structures on infectious disease dynamics. In an 

ideal scenario where the contact network and parameters in an epidemic are known in 

advance, we find that total incidence, peak intensity and timing are driven by different 

factors. For example, the results suggest that total incidence is dominated by both 

heterogeneous and directed contacts. Without these two structures, the model 

overestimates the total incidence significantly, and the contribution of heterogeneous 

contact pattern keep increasing as variance of the degree distribution increases. In 

contrast, directed contacts is the only main factor impacting the peak intensity of an 

epidemic. In terms of the peak timing, heterogeneous contact pattern accelerates the 

speed of reaching the epidemic peak, while the other two structures slow down the pace 

slightly. Even though clustering has no significant effect on dynamics, it does reduce 

epidemic risk. 

However, parameters relevance to infectious diseases, especially transmission 

rates, are not available in real world. To predict epidemic dynamics, a common practice 

is to first estimate those parameters from epidemiological data using mathematical 

models and then make predictions. A challenging problem is what network structures 
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should be incorporated in a model. There is always a tradeoff between model complexity 

and model accuracy. Theoretically, a more complex model should make more accurate 

predictions, whereas it possesses more parameters, including those defining population 

structures. It takes extra time to obtain values of the parameters from other sources or 

estimate them with transmission parameters simultaneously, making the model fitting 

challenging. In the study, we explore how accurate a prediction could be by models in 

different levels of complexity. We consider a simple scenario where we have already 

known everything about network structures and only need to estimate transmission rates. 

Our results show that a homogeneous model always overestimates total incidence, peak 

intensity and timing significantly. This indicates that the overestimation of the total 

incidence in 2014 Ebola epidemic might stem from not only the effective public health 

interventions but also the inappropriate model usage in prediction. Our study suggests 

that heterogeneous contact patterns should be at least included in a model to make 

reliable predictions. 

The study provides insights for public health agencies about contributions of 

different population structures on epidemics, and also proves that predictions made by a 

homogeneous is not reliable in practice. The extension of a SEIR model to a network 

with multiple structures will allow us to build and rapidly analyze infectious disease 

transmission on more realistic models. The model can also be used to analyze the 

effectiveness of different intervention strategies, and where these strategies should be 

implemented in an emerging epidemic to maximize the effect of interventions. In the 
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future, population structures in other dimensions can be introduced on top of this model, 

such as heterogeneity between and within different age groups, and serosorting [169] etc.. 

This study has a couple limitations. First, our model assumes all clusters in a 

population are triangles and they have no shared edges. However, clusters are more than 

triangles in real world. For example, in a household with 5 individuals, interactions might 

occur between any two of them. Even though triangles are the smallest clique describing 

the cluster, there could be shared edges between any two triangles which decreases the 

total number of edges within a network. To relax the assumption, we can follow a motif-

based generalization of the configuration model that allows triangles and other cliques to 

share edges [167,175]. Second, when fitting models to epidemiological data, we assume 

that parameters relevance to network structures are already known, which is hardly 

possible in practice. To overcome this drawback, we suggest public health agencies to 

collect and make contract tracing data freely available to epidemiologists as early as 

possible during an epidemic, so that epidemiologists are able to estimate network 

parameters and apply them to model predictions. In case there is no contact tracing data 

available, we suggest to use exponential distribution as the degree distribution in a 

population, as a previous study showed [164], and estimate the single parameter of the 

distribution from epidemiological data. Since parameters in a degree distribution might 

be correlated with the transmission rates, the approach described in [158] could be a good 

option for estimating correlated parameters from epidemiological data. 
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4.6 SUPPLEMENTAL INFORMATION 

Figure 4.8: Joint effects of heterogeneous contact pattern (variance of degree distribution) 
and (A) directed contacts (proportion of HCWs in a population) (B) clustering 
(proportion of edges being part of triangles), respectively, on total incidence. 
Transmission rates via undirected, directed and clustered edges equal to 0.1. Both results 
are generated using the network-based SEIR model (Equations (4.2)--(4.11) and (4.13)--
(4.14)). (A) Parameters in the model: 𝛼 = 0.00048, 𝑝® = 0.2, 𝑝° = 0. (B) Parameters 
in the model: 𝛼 = 0, 𝑝® = 0, 𝑝° = 0.7. 

 

 

 

 

Final size – supplement

(B)(A)
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Figure 4.9: Joint effects of heterogeneous contact pattern (variance of degree distribution) 
and (A) directed contacts (proportion of HCWs in a population) (B) clustering 
(proportion of edges being part of triangles), respectively, on peak intensity of an 
epidemic. Transmission rates via undirected, directed and clustered edges equal to 0.1. 
Both results are generated using the network-based SEIR model (Equations (4.2)--(4.11) 
and (4.13)--(4.14)). (A) Parameters in the model: 𝛼 = 0.00048, 𝑝® = 0.2, 𝑝° = 0. (B) 
Parameters in the mode: 𝛼 = 0, 𝑝® = 0, 𝑝° = 0.7. 

 

 

 

 

 

Peak height – supplement
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Figure 4.10: Joint effects of heterogeneous contact pattern (variance of degree 
distribution) and (A) directed contacts (proportion of HCWs in the population) (B) 
clustering (proportion of edges being part of triangles), respectively, on peak timing of an 
epidemic. Transmission rates via undirected, directed and clustered edges equal to 0.1. 
Both results are generated using the network-based SEIR model (Equations (4.2)--(4.11) 
and (4.13)--(4.14)). (A) Parameters in the model: 𝛼 = 0.00048, 𝑝® = 0.2, 𝑝° = 0. (B) 
Parameters in the model: 𝛼 = 0, 𝑝® = 0, 𝑝° = 0.7. 

 

 

 

Peak time – supplement

(A) (B)
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