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Abstract: In recent years, smart phones with inbuilt sensors have become popular devices to facili-13 
tate activity recognition. The sensors capture a large amount of data, containing meaningful events, 14 
in a short period of time. The change points in this data are used to specify transitions to distinct 15 
events and can be used in various scenarios such as identifying change in a patient’s vital signs in 16 
the medical domain or requesting activity labels for generating real-world labeled activity datasets. 17 
Our work focuses on change-point detection to identify a transition from one activity to another. 18 
Within this paper, we extend our previous work on multivariate exponentially weighted moving 19 
average (MEWMA) algorithm by using a genetic algorithm (GA) to identify the optimal set of pa-20 
rameters for online change-point detection. The proposed technique finds the maximum accuracy 21 
and F_measure by optimizing the different parameters of the MEWMA, which subsequently identi-22 
fies the exact location of the change point from an existing activity to a new one. Optimal parameter 23 
selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results 24 
have been evaluated based on two real datasets of accelerometer data collected from a set of differ-25 
ent activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of 26 
up to 66.7%. 27 

Keywords: multivariate change detection; activity monitoring; multivariate exponentially weighted 28 
moving average; accelerometer; Genetic Algorithm; change-point detection 29 

 30 

1. Introduction 31 
The current enhancements in wireless communication and processor technologies have empow-32 

ered the deployment of low cost, power efficient, and small sensor nodes in different domains such 33 
as education, industries, and healthcare [1,2]. In these scenarios, one of the key considerations is how 34 
to highlight and monitor events of interest. Additionally, smart monitoring is an important applica-35 
tion of sensor networks and has received increased attention during the last few decades [3]. The 36 
complex and changing nature of human activities are often vague with regard to which information 37 
is more significant to identify activities. Activity recognition has a number of important applications 38 
in ambient assisted living. The interactive hospital (iHospital) [4] has been equipped with smart de-39 
vices to automatically recognize user activities and provide services to hospital staff. Contextual in-40 
formation is processed using a hidden Markov model to recognize user activities. Likewise, radio 41 
frequency identification (RFID) technology [5] has been used to localize elderly patients affected by 42 
dementia. RFID technology provides help to patients and medical professionals but may compromise 43 
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patient privacy. Moreover, activity monitoring is a fundamental aspect of context-aware systems for 44 
identifying users to solicit activity labeling after switching to a new activity [6] or to identify and 45 
detect changes in a patient’s vital signs [7]. The main objective of such systems within healthcare is 46 
to detect activities of daily living and to monitor these over time. The activities can be periodic actions 47 
such as “walk”, “stand”, “run”, “sit”, and so forth. Recently, wearable sensors like accelerometers or 48 
gyros have become smaller in weight and size and have been embedded into many types of wearable 49 
devices, smart phones, and smart watches. Moreover, these tiny, fast-processing, large-memory-stor-50 
age, and efficient (low power) communication sensors [6] can help in data collection. These wearable 51 
sensors are widely used to capture and identify different transitions of movement patterns for vari-52 
ous periodic activities [8]. Change-point detection is used to classify the transition from one underly-53 
ing time-series generation model to another. The abrupt variation in mean, variance, or both may 54 
represent change in time-series data. In time-series data, the best change-point detection methods 55 
have used probability distributions for comparison of past and current intervals. Additionally, nu-56 
merous methods have used an explicit strategy to prompt an alarm for a particular change point 57 
when two distributions become significantly different [7,9]. Moreover, the timely and precise pattern 58 
extraction and prediction from observed data is essential in numerous decision-making systems. 59 
However, the varying nature of data models presents immense challenges for learning algorithms 60 
and data-mining techniques [10]. Change-point detection can be classified as online or offline. In of-61 
fline detection, the data is collected first and then the change point algorithm is used to collectively 62 
process all the data at once. However, online change-point detection algorithms are used in real-time 63 
systems to observe, monitor, and evaluate data simultaneously as it becomes available. Such algo-64 
rithms need to be fast, sequential, and minimize false alarms. 65 

However, automatic change-point detection for the purpose of activity recognition is still a chal-66 
lenging research task. Also of importance is the choice of a lightweight algorithm to be implemented 67 
in an online detection scenario to automatically detect the change point in user activities. In various 68 
situations, the timely response must be expedient—for example monitoring a patient’s vital signs, 69 
such as observing heart rate during different activities—and also able to generate real world anno-70 
tated datasets by annotating the activities [6]. A manual activity-labeling task requires significant 71 
amounts of time and labor, and it remains an obstacle to formulate activity-recognition systems with 72 
ease.  73 

In this paper, we extend our previous work for change point detection using multivariate expo-74 
nentially weighted moving average (MEWMA) [11]. The MEWMA approach is used to measure more 75 
than one characteristic of a system and also to evaluate the relationships among these characteristics. 76 
The advantage of using MEWMA is to analyze all the covarying time-series at the same time thus 77 
taking into account interrelationship between the variables. MEWMA is used with standard and 78 
tuned parameters such as λ, which weights the current versus historical data, window size and sig-79 
nificance values with the aim of change-point detection. Also, the MEWMA approach tunes the dif-80 
ferent parameters to achieve better performance and accurate change-point detection. The limitation 81 
of the previous approach is that each parameter set needs to be evaluated manually to find the opti-82 
mal parameter set, which makes the approach computationally intense. In this paper, a genetic algo-83 
rithm is proposed to automatically identify an optimal parameter set, using a fitness function for 84 
MEWMA, using parameters such as the forgetting parameter λ, the window size, and significance 85 
value for each activity so as to maximize the F_measure. The F_measure is used as a measure to find 86 
the overall effectiveness of the activity recognition by combining the precision and recall. A genetic 87 
algorithm is used to mimic the process of evolution by taking a population of strings, which encodes 88 
possible solutions, and combining them based on the fitness function to produce solutions that are 89 
high performing [12]. The remainder of this paper is structured as follows. Section 2 presents an over-90 
view of background work specific to change-point detection. In Section 3 we provide an overview of 91 
MEWMA and genetic algorithms (GA). The experimental setup with results is presented in Section 92 
4. Finally, conclusions and future work are presented in Section 5. 93 
  94 
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2. Background 95 
Online change detection can be used in real-time scenarios that can be analyzed as soon as data 96 

becomes available. The varying nature of input data creates substantial challenges for numerous 97 
learning algorithms. The timely and precise pattern extraction and prediction from observed data is 98 
essential for decision-making systems. Thus, the most important issue that still needs to be addressed 99 
is the accurate and timely detection of change points in the input data. The authors in [13] present a 100 
comprehensive view of mobile sensing systems (MSSs). Modern smart phones are equipped with 101 
rich-sensors to sense objects which can be people-centered or environment-centered. The MSS uses a 102 
user-level application running on smart phones for reading internal sensor data and dispatches the 103 
sensed data for further processing. The application programming interface (API) is required for a 104 
phone operating system to read and dispatch the data. The MSS can be used in various domains such 105 
as personal health care sensing, vehicular sensing, smart home sensing, and smart city sensing. How-106 
ever, MSSs have some social and technical limitations. The social barriers include privacy concerns 107 
and the absence of economic incentives that might encourage people to participate in a sensing cam-108 
paign, while a technical barrier could be phone energy savings, limited battery life, and a variety of 109 
sensors and software for their management. In particular, the work presented in [13] is closely related 110 
to our own because MSS is used by the participants to record their activities. The API running on the 111 
phone uses the internal sensor reading for recording and reporting the user activities, and also asks 112 
the user to identify the start and end of each activity performed. However, in [13], users are required 113 
to manually review and label some or all of their performed activities offline. Our proposed approach 114 
focuses on the automatic identification of changes in user activities to facilitate the activity labeling 115 
by prompting/requesting input from users online, at the point of change. 116 

The self-adaptive behavior-aware recruitment (SBR) scheme [14] has been used in participatory 117 
sensing to identify activities according to the participants’ behavior using sensor-enabled smart de-118 
vices. The tempo-spatial behavior and data quality is evaluated by the SBR scheme for efficient data 119 
collection in participatory sensing. The SBR scheme has the advantage of stability, self-adaptiveness, 120 
and providing efficient sensing performance. The work in [14] focuses on the evaluation of recruit-121 
ment strategy on participants’ selection for participatory sensing, which is an important but different 122 
aspect of sensing from our own. The five-tier participatory sensing systems (PSSs) framework [15] 123 
has been proposed and achieved better sensing coverage with a minimum number data collection 124 
points (DC-points). The PSSs framework is comprised of five layers (namely, data collection points 125 
deployment layer, participant recruitment layer, data-sensing layer, data transmission layer, and 126 
data-processing layer) and each layer has its own functionality. The first layer determines data col-127 
lection points for an optimized deployment scheme in a given monitoring area. The second layer eval-128 
uates the static and dynamic deployment scheme using the Wise-Dynamic  129 
DC-points Deployment (WD3) algorithm in order to deploy the data collection points for high-quality 130 
sensing. The third layer is used to identify and sense the surrounding environment using various 131 
sensors embedded in smart devices such as smart phones, smart watches, and others. The fourth 132 
layer is used for reliable data transmission to the data center for further processing. The fifth layer is 133 
used to analyze and evaluate the transmitted data. The work in [15] focuses on better sensing cover-134 
age with a minimum number of data collection points, and again we focus on finding out the time to 135 
generate intervention to request timely labels for the most recent activities in order to generate high 136 
quality real world labeled datasets in a free living environment. Similarly, the authors in [16] have 137 
evaluated three approaches: participatory (PART), context-triggered in situ (SITU), and context-trig-138 
gered post (POST). These approaches are used to record and annotate user data in real world settings. 139 
In the first approach, the participants are asked to use an interface to manually label their activities; 140 
they can start, stop, and pause the recordings. Labeling is performed offline and after the recording 141 
of the activities. In the second approach, the participant’s activities are monitored and the user is 142 
prompted to annotate their activities. Moreover, in the third approach, when the participants per-143 
formed their activities, the detected activities were stored in a repository. However, a reminder is 144 
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sent later to annotate the performed activities. Again, labeling is performed offline and after the re-145 
cording of the activities. The study has shown that SITU and POST generate more activity recordings 146 
and PART produces a huge amount of activity recordings in terms of length. Moreover, the evalua-147 
tion results have shown that the recordings of PART have less noise, and are more precise and com-148 
plete than SITU and POST. However, users often are required to take control of what and when to 149 
record and annotate an activity. SITU has a similar concept as ours in terms of real time labeling 150 
followed by the completion of an activity, however, users are responsible for remembering the pro-151 
vision of activity labels. In contrast, in our approach, the change point detected from one activity to 152 
another can be utilized to automatically issue a prompt for users to provide the label for the activity 153 
last performed. The authors of the paper [16] discussed such limitations in their work and encouraged 154 
automated recording and reminders to ease their burden. Different approaches have been used in the 155 
literature for change-point detection in health sensor data. For example, an activity-recognition algo-156 
rithm was previously used to detect changes in daily life activities with the help of a Gaussian mixture 157 
classifier [6] based on mobile data. Some activities, such as stationary and nonstationary, were clas-158 
sified as standing-still and running, respectively. The authors used three consecutive windows of 159 
nine seconds each in the entire activity-detection process in their proposed solution. Moreover, some 160 
activities such as stand-still and walking could be detected and labeled simultaneously at changeover 161 
points. Some of the limitations of the approach were the short delay that caused incorrect detection 162 
of user activity and unsuitability of the aforementioned technique in real-time scenarios in such situ-163 
ations when the user transitions from nonstationary “walking” to stationary “standing-still”. Simi-164 
larly, cumulative sum control chart (CUSUM) is a technique that is effective in detecting small shifts, 165 
using the mean of the process in cardiovascular events [17]. These authors have used some core meth-166 
ods in order to evaluate physiological monitoring modules. The core methods are the hierarchal 167 
online activity-recognition method and the biometric extraction method. In the hierarchal online ac-168 
tivity-recognition method, first the preprocessing is performed using a finite impulse response filter. 169 
In the second step, the fast Fourier transform (FFT) has been used to convert the signal from the time 170 
domain to the frequency domain and extract the mean and energy feature from the preprocessed 171 
data. Finally, those features having direct impact on the performance of the activity-recognition al-172 
gorithm were selected. In the biometric extraction method, first the heart rate values are extracted 173 
using the echocardiogram (ECG) signal. The FFT was applied to attenuate low-frequency noise and 174 
eliminate waveform irregularities from the signal. Finally, the 2-pass filter was used to find the local 175 
maxima of the ECG signal and detect the significant R-peaks. However, CUSUM cannot detect sud-176 
den shifts in accelerometer data and is therefore ineffective for such changes. The kernel density es-177 
timator approach has been used in [18]. In this approach, the density estimation ratios have been 178 
calculated for populations of data. Furthermore, these estimation ratios were used to identify the 179 
change points in the data. This approach has the advantage of automatic model selection and the 180 
convergence property. However, the disadvantages include difficulty in calculating density estima-181 
tion for high-dimensional data, which can be slow and less robust. The authors in [19] have proposed 182 
a fuzzy Bayesian change-point detection technique using the posterior probability of the current run 183 
length in time-series data. The proposed technique works in two folds. First, the fuzzy set technique 184 
is applied to cluster and transform the initial time-series data into a new time-series with a beta dis-185 
tribution. Secondly, the new time-series data is further used by a Bayesian change-point model to 186 
detect the change points. Then, the change points’ positions were estimated using the Metropolis-187 
Hastings algorithm. The advantage of using this approach is that it does not require a priori 188 
knowledge of the distribution, but it is computationally expensive. Similarly, a one-class support 189 
vector machine has been used for change detection in human activities [20]. The authors used a high-190 
dimensional hypersphere in order to model data and to evaluate the change-point detection based 191 
on the distribution of radii of hyperspheres. The high and low values correspond to changes in dif-192 
ferent activities. Event detection in human-activity monitoring can significantly reduce transmissions 193 
[21]. The transition between postures is difficult to classify and therefore remains unlabeled. The data 194 
is captured through accelerometer sensors placed on different parts of the body. Moreover, a posture-195 
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activity monitoring system has been developed that can classify posture form the observed data. The 196 
time-based filtering, a naïve voting scheme, and an exponentially weighted voting scheme have been 197 
used to improve the posture classification accuracy. The exponentially weighted voting scheme out-198 
performs other schemes in event detection. Also, the transmission is reduced from original 10 Hz to 199 
about 600 event transmissions in 30 min. The  200 
Kullback-Leibler importance estimation procedure (KLIEP) approach has been proposed in [22] for 201 
change-point detection in time-series data. The Gaussian mean variance has been used in this ap-202 
proach [23] to extract features from the data and evaluate it. The approach has the advantages of 203 
convergence properties and automatic model selection. However, the limitations are that the density 204 
estimation for high-dimensional data is difficult to calculate and it is also computationally expensive.  205 

In summary, the analysis of the background literature reflects that the current change-point de-206 
tection methods tend to be quite sophisticated in nature. In addition, multivariate data involves ob-207 
servation and analysis of more than one variable at the same time. Therefore, accurate change-point 208 
detection in user activity requires tuning of various parameters. Optimization is the process of fine-209 
tuning input parameters to find the maximum or minimum output. The genetic algorithm has been 210 
used in the literature for a diverse range of optimization problems [12]. In our current work, we con-211 
sider multivariate change-point detection as an area which has been neglected in the literature, and 212 
develop approaches which take account of changes in covariances of time-series data as well as other 213 
features, which can improve change-point detection. 214 

3. The Proposed Model 215 
The MEWMA approach is a statistical method that averages the input data within a data stream 216 

and assigns lower weights to earlier data points. The primary aim of using the MEWMA is to detect 217 
small shifts quickly in time-series data. In the proposed solution, the MEWMA is used to analyze all 218 
the covarying time-series data at the same time thus taking into account the interrelationship among 219 
the variables. MEWMA is used with standard and tuned parameters such as λ, which weights the 220 
current data versus historical data, window size, and statistical significance values, with the aim of 221 
accurate change-point detection. In addition, we use the GA to automatically identify an optimal 222 
parameter set for the MEWMA including λ, window size, and significance value for each activity by 223 
evaluating the fitness function of F_measure. 224 

The Multivariate Exponentially Weighted Moving Average (MEWMA) Change-Point Detection Algorithm 225 
MEWMA averages the input data within a data stream and gives less weight to earlier data 226 

points. The primary aim of using MEWMA is to detect small shifts quickly in the data [24]. The results 227 
of the MEWMA technique rely on EWMA statistics, which is an exponentially weighted moving av-228 
erage of all prior data, including historical and current data. The multivariate EWMA is an extension 229 
of univariate EWMA to multivariate data [25] in order to monitor and analyze the multivariate pro-230 
cess. The MEWMA is defined as: 231 

( ) 11 , 1, 2, 3....i i i i n-= + -     =Z ΛX Λ Z  (1) 

where iZ  is the i-th MEWMA vector, Λ  is the diagonal matrix with elements iλ  for i = 1,…,p and 232 
where p is the number of dimensions, and 0 < 𝝀$	 ≤ 1, and 𝑿𝒊	 is the i-th input vector, 𝑖 = 1,2,3… . 𝑛. 233 
The out-of-control signal is defined in Equation (2)  234 

2 1
i i i i h¢ -= <T Z  Zå  (2) 

where 𝒁$ is the MEWMA vector and 𝒁$3 is its transpose. 𝜮$	 is the variance covariance matrix of 𝒁$ 235 
and h (>0), is chosen to achieve a specified in-control signal. Multivariate analysis is used to measure 236 
more than one characteristic of a system and also to evaluate the relationship among these character-237 
istics. In multivariate analysis, we consider the data stream of length q consisting of specific data 238 
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points 𝑿5, 𝑿6, 𝑿7 … . 𝑿𝒒  (e.g., for accelerometer value 𝑿$ = (−1.858, −9.649, 1.132)  where the ele-239 
ments represent the x, y, and z values of 3-dimensional accelerometer signal). In general, a sequence 240 
of data point 𝑿5  to 𝑿𝒒  may contain different distributions. In particular, the two subsequences 241 
𝑿𝟏, 𝑿6, 𝑿7 … . 𝑿$B5 and 𝑿$, 𝑿𝒊C5 … . 𝑿𝒒 may follow different distributions (say, for example, D1 and D2, 242 
where D1 and D2 can be equal or different). The aim of the algorithm is to determine and classify the 243 
position of change points 𝒙$ in the data stream. In each data stream, MEWMA is used to evaluate 244 
the position of change points and calculate the exponentially weighted moving average of multivar-245 
iate input vectors 𝑿$	 to provide accurate change-point detection. We consider a number of possible 246 
values for the window sizes (1 s, 1.5 s, 2 s, 2.5 s, 3 s), which are used to analyze the data using a sliding 247 
window with an increment of 1 data point to perform sequential analysis. The window sizes are used 248 
to evaluate the sequence from inside the window. These window sizes are chosen to combine some 249 
historical data with new data to balance the data and identify if the change happens. Also, these are 250 
reasonable sizes that are taken from experimentation. Likewise, the 𝒁$ represents the MEWMA vec-251 
tor and is calculated by using the multivariate input vectors as shown in Equation (1). In addition, 252 
the variance-covariance matrix of 𝒁$  is calculated recursively and represented by 𝜮$  to find T-253 
squared, as shown in Equation (2). 254 

Once the T-squared statistic is calculated as shown in Equation (2), we consider a number of 255 
possible values for the significance values h (0.05, 0.025, 0.01, 0.005), which are used to identify the 256 
confidence of the entire window. These values are used in literature and define regions where the 257 
test statistics are unlikely to lie [26]. If the T-squared value is greater than h, then 𝒙$ will be labeled 258 
as a change point within the data stream. The analysis of the accelerometer data identifies the actual 259 
values of the specific change points, which may represent an increase or decrease in the data. Thus 260 
when executing a sliding window version of the algorithm, change points are detected which are 261 
adjacent as the data points become increasingly indicative of a “significant” change. However, if the 262 
adjacent detected change points represent the same event of the real change point in the data stream, 263 
then the new parameter k is used to eliminate such adjacent change points. 264 

Arguably the most significant branch of computational intelligence is evolutionary algorithms 265 
(EAs), which have much potential to be used in many application areas. The basic concepts of EAs 266 
are inspired by observing the biological structure of nature; for instance, the selection and genetic 267 
changes could be used to find the optimal solution for a given optimization problem [27]. Moreover, 268 
the robust and adaptive characteristics of EAs are performing a global search instead of a local search 269 
to find the optimal solution in the search space. The GA is a machine learning method which is in-270 
spired by the genetic and selection structure of nature [28]. Also, the predefined fitness function is 271 
optimized by performing a randomized and parallel search to find the optimal solution [29]. The GA 272 
starts with a random sample of variable sets and repeatedly modifies a population of individual so-273 
lutions. Various criteria can be used for the selection process to obtain the desired solution through 274 
the evaluation of individual solutions. The best individual solution is selected as an input for the next 275 
generation. The GA is used for solving optimization problems based on natural selection, which is 276 
the process used in driving biological evolution [12]. The optimization modifies input characteristics 277 
of a system using a mathematical process to find the minimum or maximum output. The objective of 278 
the fitness function in the GA is used to find the optimal solution to a system. In our case, each distinct 279 
combination of the three variables provides a single solution in the population, namely 𝛌$, the win-280 
dow size, and the significance. Over a number of generations, these solutions “evolve” towards the 281 
optimal solution [30]. 282 

The fitness function is the core component of the GA. It evaluates each individual parameter set 283 
in the population to find the solution with an optimal fitness value. In our fitness function, we initial-284 
ize the population of vectors whose elements contain the 𝛌$	 values, the window sizes, and the sig-285 
nificance values. Our fitness function then tries to find the solution with the maximum F_measure 286 
value given a range of input values. The F_measure is used as the measure to find the overall effec-287 
tiveness of the activity recognition by combining the precision and recall. The fitness function can be 288 
defined as follows:  289 
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𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒NOP 	= 	𝑚𝑎𝑥(R,S$T_U$VW,U$X_YOZ[W) 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒\]^\_  (3) 

For simplicity, we assume 𝛌$ is equal to λ for 𝑖 = 1, … , 𝑝, where λi ranges from 0.1 to 1 for each 290 
activity with the corresponding significance values of 0.05, 0.01, 0.025, 0.005 and window sizes of 1 s, 291 
1.5 s, 2 s, 2.5 s and 3 s. Our proposed model uses Equation (3) as the fitness function by initializing 292 
upper and lower bounds of the three parameters to find the maximum F_measure with the optimal 293 
parameter set. After the exploration with different parameter settings, the optimal GA parameters, 294 
which maximize the fitness function of the F_measure, are shown in Table 1. 295 

Table 1. Genetic algorithm (GA) Parameters. 296 

Parameters GA 
Population Size 50 

Selection Stochastic uniform 
Reproduction 0.8 

Crossover Scattered 
Mutation Adaptive feasible 

Generations 100 

The selection function in the GA chooses the parents for the next generation based on their scale 297 
values by evaluating the fitness function. As we need to find the maximum value of the fitness func-298 
tion using Equation (3), the individual with the maximum value of the fitness function has greater 299 
chance for reproduction and also for generation of offspring. Here we used stochastic uniform to 300 
build in randomness. The reproduction function helps to determine how the GA creates children at 301 
each new generation. Elite count or the crossover fraction can be used to create new children at each 302 
generation. The first method specifies the number of individuals that are guaranteed to survive in 303 
next generation. However, the later method specifies the fraction of the next generation which cross-304 
over produces; we here use reproduction probability 0.8 and mutation with probability 0.2 so as to 305 
allow some new values to take part in the optimization process. 306 

The crossover combines two individuals or parents to form a new individual or child for the 307 
next generation. Different methods such as constraint dependent, scattered, heuristic, and arithmetic 308 
approaches can be used depending on the problem requirement. We choose the scatter method to 309 
make random selection. In the population, the mutation function makes small random changes in the 310 
individuals, which provide genetic diversity and enable the GA to search in a broader space. Different 311 
methods can be used for this, such as the Gaussian function, uniform function, and adaptive feasible 312 
function for random modification. We choose an adaptive feasible solution because it randomly gen-313 
erates directions that are adaptable with respect to the last successful generation. 314 

The GA process, illustrated in Figure 1 with respect to the GA parameters proposed in Table 1, 315 
is described as follows [30]: 316 
• The population size is initialized with the number 50, which specifies how many individuals 317 

there are in each of the iterations. Usually, the number 50 is used for a problem with five or 318 
fewer variables, and the number of 200 is used otherwise. 319 

• Check the termination condition of the algorithm on if the number of generations has exceeded 320 
the maximum value. If so, the GA algorithm is terminated, otherwise, continue with the follow-321 
ing steps. 322 

• Calculate the maximum value of the fitness function using Equation (3). 323 
• The individuals are selected from the current population applying a stochastic uniform function. 324 

Each parent corresponds to a section proportional to its expectation. The algorithm moves along 325 
in steps of equal size. At each step, a parent is allocated from the section uniformly. 326 
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• The individuals are then reproduced randomly with a fraction using the crossover operation. 327 
The scatter function is used to select the genes where the vector is 1 from the first parent and 0 328 
from the second parent before combining them to form a child. 329 

• Mutation is then applied with the adaptive feasible method to randomly generate individuals 330 
in the population. 331 

• Finally, a new generation is updated and the GA algorithm loops back to check the termination 332 
condition. The default value for the generations is 100 multiplied by the number of variables 333 
used, but we choose the best value for generation by experimentation with different values. 334 

 335 
Figure 1. Flow chart of various stages to perform genetic algorithm (GA) optimization. 336 

4. Evaluation 337 
In our experiments we used a real dataset for evaluation. AlgoSnap uses the CrowdSignals plat-338 

form to collect sample datasets to help and support researchers in the academia. CrowdSignals.io is 339 
a nonprofit research community. The CrowdSignals platform was created by AlgoSnap to build a 340 
large labeled mobile and sensor dataset for the research community. Our sample dataset is taken 341 
from the above platform and fed to the algorithm as a stream, to represent a real deployment. This 342 
sample dataset was collected from two participants who kept a smartphone inside the right-front 343 
pant pocket and wore a smartwatch on the dominant wrist [31]. The data from each participant was 344 
captured continuously for 2.5 h using 20 sensors with sample frequency of 74.4 Hz. Each participant 345 
performed eight different activities and also labeled these activities. The eight different activities per-346 
formed by each participant were eating, washing hands, smartphone kept on the table, sitting, stand-347 
ing, walking, running, and driving. The duration of an activity varied from 1 min to 5 min depending 348 
on the activity. A transition could be regarded as an activity itself, especially if takes a long time, 349 
however, here we focus on the core activities and primary change points. The time delay ranges from 350 
5 ms to 12 ms. The participant used the smart phone Android app online to explicitly label the start 351 
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and end times of each activity performed. Moreover, the labeled data is sent periodically to the server 352 
which runs the GA offline for optimization as shown in Figure 2. The start and the end time for each 353 
activity are denoted in the dataset as a truth table. In the sample dataset, various sensors were used 354 
to collect data, but only accelerometer data is used in our experiments. For illustrative purpose, only 355 
one accelerometer sensor was used, with three dimensions, but other authors have demonstrated 356 
how multimodal sensors can be used to increase activities recognition and enable the recognition of 357 
activities in various situations [32]. After the data collection, the activity execution of accelerometer 358 
data was wirelessly streamed to a receiving computer via the IEEE 802.15.1 Bluetooth communica-359 
tions protocol. 360 
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 361 
Figure 2. The system model. 362 

The study in [33] elaborates the high acceptance for telemedicine and usability of a telemedicine 363 
approach. The deployment of such an application is useful in emergency situations and achieves 364 
higher accuracy and quality of data for monitoring of patient vital parameters over time. A limitation 365 
could be the privacy issues, date security, and high probability of false alarms. In our work, we partly 366 
address the additional problem of low user acceptance due to excessive requirements to interact with 367 
the mobile phone. 368 

4.1. Experimental Results 369 
A real dataset, as described, has been used by the GA to identify the optimal set of parameters 370 

for the MEWMA approach in change-point detection. For the multivariate approach the x, y and z 371 
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acceleration magnitude is calculated from the captured data and used as the input to the MEWMA 372 
algorithm. The MEWMA algorithm is initially used to analyze different parameters including λ (0.1 373 
to 1), the window size (1 s, 1.5 s, 2 s, 2.5 s, 3 s) and the significance values (0.05, 0.025, 0.01, and 0.005) 374 
to find the accurate change point. We considered all the values of λ in the range varying from 0.1 to 375 
1 to allow for some contribution from both historical data and current data. Moreover, MEWMA also 376 
combines historical data and current data. Following this, the GA is used to identify the optimal set 377 
of parameters for the MEWMA algorithm. However, the GA implemented in Matlab 2014 typically 378 
takes a long time, where in our experiments it takes approximately between 10 min and 25 min to 379 
run on a system with processor 3.40 GHz and 8 GB RAM. The parameter values are not likely to 380 
change too frequently, so the GA could be run offline periodically. The F_measure metric was used to 381 
evaluate the optimal change point in the activity monitoring using the GA. A detected change point 382 
is considered to be true if in the data stream the index i, i є {z – (f/4),…, z + (f/4)} where z indicates the 383 
index of a manually labeled change in the data stream and f denotes the sampling frequency in Hz. 384 
In our experiment we formed a dataset containing activities such as walking to running, walking to 385 
driving, walking to washing hands, walking to standing, and walking to sitting. 386 

The objective of our proposed technique is to identify the optimal set of MEWMA parameters 387 
using the GA for detecting change points in high-level activities such as walking to running and 388 
walking to driving, examples of which are shown in Figures 3 and 4 respectively. The sliding window 389 
with optimal change-point detection parameters for the activity “walking to running” has window 390 
size of 3 s with significance value p = 0.05 and λ = 0.7. The optimal change-point detection parameters 391 
for the activity “walking to driving” are that window size is 2.5 s, significance value p = 0.05, and λ = 0.6. 392 

 

Figure 3. Real dataset example of sliding window change-detection result for the activity “walking to 393 
running”. 394 
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Figure 4. Real dataset example of sliding window change-detection results for the activity “walking 395 
to driving”. 396 

The experimental results on real datasets of five different activities are presented in Table 2. 397 
Moreover, the experimental results identify the changes between core activities as shown in Table 2. 398 
Here, the data points relating to the core activities are used to determine when the change points 399 
occur. 400 

In our experiments, we analyzed dynamic activities such as walking followed by another dy-401 
namic activity such as running or driving due to its complexity and varying characteristics. 402 

Table 2. Non optimized and optimized with GA parameter set for five different activities on a real 403 
dataset. 404 

Change Sig Value Non-Optimized Optimized with GA 
  λ Win Size F_Measure Accuracy λ Win Size F_Measure Accuracy 

Walk to Sit 

0.05 0.3 

2 s 50% 99.4% 0.4 1.5 s 66.7% 99.8% 
Walk to Stand 2 s 50% 99.4% 0.4 1.5 s 66.7% 99.8% 

Walk to wash hands 2.5 s 50% 99.4% 0.5 2 s 66.7% 99.8% 
Walk to Driving 3 s 40% 98.5% 0.6 2.5 s 50% 99.4% 
Walk to Running 3 s 40% 98.5% 0.7 3 s 50% 99.4% 

The proposed approach optimized the MEWMA parameters in order to find the best set of pa-405 
rameters for accurate change point detection for the different activities presented in the Table 2. 406 

Furthermore, accuracy and F_measure metrics have been used to find the optimal parameters 407 
selection of the MEWMA algorithm. The accuracy is the ratio of the number of correctly classified 408 
data points to the total number of data points. Accuracy can be calculated using Equation (4): 409 

TP+TN
Accuracy

TP+TN+FP+FN
=  (4) 

Precision is defined as the number of true positives (TP) over the number of true positives plus 410 
the number of false positives (FP), whereas, recall, also known as sensitivity, is defined as the number 411 
of TP over the number of TPs plus the number of false negatives (FN). The precision and recall can 412 
be calculated using Equations (5) and (6) respectively. 413 
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TP
Precision

TP+FP
=  (5) 

Recall =
TP

(TP + FN)
 

 
(6) 

 414 
The F_measure is used to find the overall effectiveness of the activity recognition by combining 415 

precision and recall. The F_measure is calculated using Equation (7). 416 

2 Recall Precision

(Recall
_

Precision)
F measure

´ ´

+
=  

(7) 

The non-optimized experimental results on the real dataset are presented in Table 2. The maxi-417 
mum F_measure and accuracy values are in the range of 40%–50% and 98.5%–99.4%, respectively 418 
among all the activities. The walking activity followed by a static activity achieved a maximum 419 
F_measure of about 50%, whereas subsequent dynamic activities have achieved 40%. 420 

However, the optimized experimental results on a real dataset that achieved the maximum ac-421 
curacy and F_measure were in the range of 99.4%–99.8% and 50%–66.7%, respectively. The walking 422 
activity followed by static activity achieved a maximum F_measure of circa 66.7%, whereas subse-423 
quent dynamic activities achieved 50%. 424 

The highest accuracy and F_measure values in the experimental results on real dataset are 425 
achieved using the GA optimal parameter set of λ (0.4–0.7), significance value p = 0.05 and window 426 
sizes (1.5 s, 2 s, 2.5 s and 3 s) as shown in Table 2. 427 

The highest F_measure values achieved are 50%–66.7% for all activities using the optimal param-428 
eter set with the real dataset. A dynamic activity such as walking followed by a static activity such as 429 
sitting, standing, and hand washing achieved the highest F_measure of 66.7% with an optimal param-430 
eter set of λ (0.4 and 0.5), significance value p = 0.05, and window size 1.5 s and 2 s. However, the 431 
subsequent dynamic activities such as driving and running achieved the highest F_measure of 50% 432 
with an optimal parameter set of λ (0.6 and 0.7), significance value p = 0.05, and window size 2.5 s and 433 
3 s. Moreover, the accuracies achieved with optimal parameter set by the GA ranged from 99.4% to 434 
99.8% as shown in Table 2. 435 

The experimental results show that the F_measure values are relatively higher using the optimal 436 
parameter set from the GA than the results with non-optimized parameters. Additionally, in Table 2, 437 
the accuracies are also improved from 98.5% to 99.4% with non-optimized parameters to 99.4% to 438 
99.8% with the optimized parameters. When we take out the inter-activity transition period and sim-439 
ulate data on this basis, the advantage of using the GA optimization is even more significant. The 440 
reason is that in the simulated data we ignored the transition data, which may be from a different 441 
distribution from the data relating to the core activities [34]. 442 

4.2. Walking in the Wild 443 
Generally, sensor data is collected in a laboratory setting and subjects perform the activities that 444 

are specified by experimenters. In the wild, however, behavior is not prescribed and the sensor data 445 
must be labeled during or after the sensor data is generated, as shown in Figure 5. This problem 446 
occurs in online change detection in real-time scenarios. In this scenario, we can alert the reminding 447 
software that we would like to sample data more frequently to increase the accuracy of activity de-448 
tection. Also, we would like to be able to identify and detect early on that a change seems to be hap-449 
pening and ask the user for some information on what activity is actually being performed in order 450 
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to improve our algorithm. An alert about the change could be issued to get a response from the user 451 
on what activity it is being performed. The alert and response thus provides more new labeled data 452 
for learning. Periodically we rerun the GA algorithm offline using new data. The data is typically 453 
processed locally on a mobile phone or smart watch but a summary of the data is transferred to the 454 
server periodically. 455 

 456 

Figure 5. Walk to wild. 457 

When the person is walking or sitting for long time, the storing or handling of the data could 458 
drain the battery as a mobile device typically has limited battery capability. The assumption of this 459 
work is that we need a lightweight and early warning indicator when a change is about to happen. 460 

We also performed experiments on walk-to-the-wild irrespective of the activity which is hap-461 
pening next, as presented in Table 3. The optimal parameter set is discovered for accurate change 462 
detection using the GA. The best F_measure and accuracy achieved was 66.7%and 99.8% respectively 463 
with the optimal parameter set of λ = 0.7, significance value p = 0.05, and window size 3 s. The exper-464 
imental results of walk to wild are presented in Table 3. 465 

Table 3. Optimized parameter set with GA for walk to wild on real dataset. 466 

Activity λ Win Size Sig Value F_Measure Accuracy 
Walk to Wild 0.7 3 s 0.05 66.7% 99.8% 

A class imbalance problem usually exists in datasets when the total number of instances of one 467 
class (the minority) is excessively low as compared with the number of instances of the other (major-468 
ity) class [35]. This highlights the skewed distribution of classes within the dataset, and often the 469 
minority class is the class of interest [36]. In our dataset, we have only one TP point (represents a 470 
correctly identified change point) and a high number of TN (the non-transitional points which are 471 
not labeled as change). We used the F_measure for evaluation because it is a combination of precision 472 
and recall, as presented in Equation (7). As the precision is the ratio of TP over the total number of 473 
TP and FP (the non-transition point which the algorithm highlighted as a change) therefore one or 474 
two FP detections reduced the F_measure to 66.7% and 50%, respectively, due to the imbalance class 475 
problem in our real dataset. 476 

5. Conclusions 477 
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This paper describes the use of a genetic algorithm to identify the optimal set of parameters for 478 
the MEWMA approach and automatically detect change points corresponding to different transitions 479 
in the user activities. The different parameters of the MEWMA are analyzed and evaluated to identify 480 
the optimal set of parameters for each activity using the GA. The optimal set of parameters selected 481 
using the GA outperformed on real world accelerometer data in terms of the accuracy and the F_meas-482 
ure. The results of the real dataset were evaluated with the optimal parameter set and improved the 483 
accuracy from 99.4% to 99.8% and F_measure up to 66.7%. Moreover, the MEWMA is a lightweight 484 
algorithm and can be incorporated into real world systems such as mobile-based applications for the 485 
collection and active sampling of labeled data. In the context of activity monitoring, the automatic 486 
optimization of the optimal parameter set was considered within this study. The change points in the 487 
data can be used to identify changes in activities and recognize and monitor good behavior such as 488 
healthy exercise patterns based on these activities. One limitation of this study is that a transition 489 
could be regarded as an activity in itself, especially if it takes a long time. The class imbalance problem 490 
has great impact on the classification and can be addressed using sampling-based algorithms to sta-491 
bilize the majority and minority classes. Online bagging and boosting algorithms will be used in fu-492 
ture work to tackle this imbalance class problem in the data streams. Moreover, other multivariate 493 
algorithms and optimization techniques will be explored from the state of the art literature for auto-494 
matic change detection using optimal parameter selection. Also, in the future different datasets will 495 
be used for evaluation with multiple change points for complex user activities. 496 
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performed the experiments and wrote the paper. S.McC., S.Z. and C.N. reviewed the paper. 498 
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