45 research outputs found

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Introduction to the special issue on probability, logic and learning

    Get PDF
    Recently, the combination of probability, logic and learning has received considerable attention in the artificial intelligence and machine learning communities; see e.g. Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often plays a major role in these developments since it forms the theoretical backbone for much of the work in probabilistic programming and logical and relational learning. Contemporary work in this area is often application- and experiment-driven, but is also concerned with the theoretical foundations of formalisms and inference procedures and with advanced implementation technology that scales well

    DNF Sampling for ProbLog Inference

    Full text link
    Inference in probabilistic logic languages such as ProbLog, an extension of Prolog with probabilistic facts, is often based on a reduction to a propositional formula in DNF. Calculating the probability of such a formula involves the disjoint-sum-problem, which is computationally hard. In this work we introduce a new approximation method for ProbLog inference which exploits the DNF to focus sampling. While this DNF sampling technique has been applied to a variety of tasks before, to the best of our knowledge it has not been used for inference in probabilistic logic systems. The paper also presents an experimental comparison with another sampling based inference method previously introduced for ProbLog.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    Probabilistic Logic Programming with Beta-Distributed Random Variables

    Full text link
    We enable aProbLog---a probabilistic logical programming approach---to reason in presence of uncertain probabilities represented as Beta-distributed random variables. We achieve the same performance of state-of-the-art algorithms for highly specified and engineered domains, while simultaneously we maintain the flexibility offered by aProbLog in handling complex relational domains. Our motivation is that faithfully capturing the distribution of probabilities is necessary to compute an expected utility for effective decision making under uncertainty: unfortunately, these probability distributions can be highly uncertain due to sparse data. To understand and accurately manipulate such probability distributions we need a well-defined theoretical framework that is provided by the Beta distribution, which specifies a distribution of probabilities representing all the possible values of a probability when the exact value is unknown.Comment: Accepted for presentation at AAAI 201

    Random-World Semantics and Syntactic Independence for Expressive Languages

    Get PDF
    We consider three desiderata for a language combining logic and probability: logical expressivity, random-world semantics, and the existence of a useful syntactic condition for probabilistic independence. Achieving these three desiderata simultaneously is nontrivial. Expressivity can be achieved by using a formalism similar to a programming language, but standard approaches to combining programming languages with probabilities sacrifice random-world semantics. Naive approaches to restoring random-world semantics undermine syntactic independence criteria. Our main result is a syntactic independence criterion that holds for a broad class of highly expressive logics under random-world semantics. We explore various examples including Bayesian networks, probabilistic context-free grammars, and an example from Mendelian genetics. Our independence criterion supports a case-factor inference technique that reproduces both variable elimination for BNs and the inside algorithm for PCFGs

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    Nesting Probabilistic Inference

    Full text link
    When doing inference in ProbLog, a probabilistic extension of Prolog, we extend SLD resolution with some additional bookkeeping. This additional information is used to compute the probabilistic results for a probabilistic query. In Prolog's SLD, goals are nested very naturally. In ProbLog's SLD, nesting probabilistic queries interferes with the probabilistic bookkeeping. In order to support nested probabilistic inference we propose the notion of a parametrised ProbLog engine. Nesting becomes possible by suspending and resuming instances of ProbLog engines. With our approach we realise several extensions of ProbLog such as meta-calls, negation, and answers of probabilistic goals.Comment: Online Proceedings of the 11th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2011), Lexington, KY, U.S.A., July 10, 201
    corecore