Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2008-025 May 3, 2008

Random-World Semantics and Syntactic
Independence for Expressive Languages
David McAllester, Brian Milch, and Noah D. Goodman

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Random-World Semantics and Syntactic Independence for Expressive Languages

David McAllester
Toyota Technological Institute at Chicago
Chicago, IL 60637
mcallester @tti-c.org

Abstract

We consider three desiderata for a language combining logic
and probability: logical expressivity, random-world seman-
tics, and the existence of a useful syntactic condition for prob-
abilistic independence. Achieving these three desiderata si-
multaneously is nontrivial. Expressivity can be achieved by
using a formalism similar to a programming language, but
standard approaches to combining programming languages
with probabilities sacrifice random-world semantics. Naive
approaches to restoring random-world semantics undermine
syntactic independence criteria. Our main result is a syntactic
independence criterion that holds for a broad class of highly
expressive logics under random-world semantics. We explore
various examples including Bayesian networks, probabilistic
context-free grammars, and an example from Mendelian ge-
netics. Our independence criterion supports a case-factor in-
ference technique that reproduces both variable elimination
for BNs and the inside algorithm for PCFGs.

Introduction

We are interested in the combination of logic and probabil-
ity. In particular we consider the following three desiderata
for formal languages which simultaneously have both a log-
ical and a probabilistic semantics.

1. The logical formulas should be expressive. They should
support a rich ontology of types such as lists and graphs
and should support function composition and recursive
definitions.

2. The language should have a random-world semantics.
The semantics should be defined by a probability distri-
bution (or measure) on a set of worlds where each logical
formula is either true or false in each world, according to
the semantics of the underlying logic.

3. The language should have a useful syntactic criteria for
probabilistic independence.

Our main technical result is the validity of a set of inference
rules for a broad class of expressive probabilistic languages.
One of these rules, a consequence of random-world seman-
tics, guarantees that logically equivalent formulas have the
same probability. Another is a syntactic criteria for proba-
bilistic independence which allows the program structure to
be exploited for inference. Before presenting the main re-
sult, however, we elaborate on each of the above desiderata.

Brian Milch
MIT CSAIL
Cambridge, MA 02139
milch@csail.mit.edu

Noah D. Goodman
MIT Brain and Cognitive Sciences
Cambridge, MA 02139
ndg@mit.edu

First we consider expressivity. We are not satisfied with a
language merely as expressive as first order logic. We would
like to be able to express, for instance, the notion of reach-
ability — the notion that one given state is reachable from
another using given operations. A simple consequence of
the compactness theorem is that reachability is not definable
in first order logic. More generally, first order logic does
not support recursive definitions. Also, even in highly ex-
pressive first-order probabilistic languages such as Bayesian
logic (Milch et al. 2005), there is no straightforward way to
define new procedures and use them in several places in a
model, or to define distributions over structured data types
such as lists or graphs.

To gain sufficient expressivity we turn to functional pro-
gramming languages, which support recursive definitions as
well as a rich ontology of structured data types. We con-
sider languages where the logical formulas are taken to be
the Boolean expressions of a programming language, pos-
sibly extended with additional forms of quantification. The
use of programming languages as a foundation for logical
reasoning has a long tradition in the formal methods com-
munity (Kaufmann, Manolios, & Moore 2000; Gordon &
Melham 1993; Bertot & Castran 2004). The syntactic in-
dependence criterion developed here is independent of the
particular choice of programming language.

Next we consider various forms of probabilistic seman-
tics. A common way of combining probability with pro-
gramming is to introduce a random number generator. We
can introduce the expression rand () into the language,
and define the language’s semantics in terms of a random
(stochastic) evaluation process. This is analogous to the use
of the standard random number generator in C: each time
the evaluator evaluates the expression rand () it generates a
new random number. Random-evaluation semantics is used
in Avi Pfeffer’s modeling and inference system IBAL (Pf-
effer 2001), as well as a number of other probabilistic pro-
gramming languages (Koller, McAllester, & Pfeffer 1997;
Ramsey & Pfeffer 2002; Park, Pfenning, & Thrun 2005).

Random-evaluation semantics is not a random-world se-
mantics. Consider a logical formula of the form & A —®.
Under any random-world semantics this logical formula will
have probability zero, as we show below. But under random-
evaluation semantics, the two occurrences of the formula ®
can have different values in a single evaluation, since differ-

ent random choice can be made in a second evaluation of .
So the formula ® A =® can evaluate to true. A related conse-
quence of the lack of random-world semantics is that if one
wants to reason about a random function — say, a function
color mapping balls to colors — one cannot simply use a
function in the programming language. Calling color on
the same ball multiple times would yield different values. To
create a random mapping in a random-evaluation language,
one must explicitly construct a data structure, such as a list
of ball—color pairs.

Next we consider memoization semantics, in which one
passes a “name” argument (perhaps an integer or a character
string) to the random number generator; we write rand (n)
where n is a name for the random number. Later calls to
the random number generator with the same name return the
same number. Memoization guarantees that the same ex-
pression evaluates to the same value when it is evaluated a
second time. We then get that ® A —® must evaluate to
false. Under memoization semantics we can think of the
“world” as being a mapping from names to numbers — a
world picks a single random number for each name. This
is the approach taken in probabilistic Horn abduction (Poole
1993) and PRISM (Sato & Kameya 2001).

The difficulty with memoization semantics involves the
desire for syntactic criterion for independence. Under mem-
oization semantics each expression of the form rand (n)
can be viewed as an independent random variable — we
have one random variable for each name n. Two logical for-
mulas are independent if they involve disjoint sets of random
variables; the problem is that it can be difficult to syntacti-
cally determine what random variables influence the value
of a given formula. This follows because procedures can
create names for random variables in arbitrary ways.

Finally we consider a new form of semantics we call
number-tree semantics. As in memoization semantics, we
add an argument to the random number generator. We still
write rand (¢), but now ¢ is a conceptual data structure
called a number tree. A number tree is an infinitely deep,
infinitely branching tree in which every node is labeled with
areal number in the interval [0, 1]. A number tree is a source
of random numbers and rand (¢) simply denotes the num-
ber at the root of ¢. We will show that by working with vari-
ables ranging over number trees, it is possible to formulate
a syntactic independence criterion. Number-tree semantics
satisfies all three of the stated desiderata.

Number-Tree Semantics

We define a number tree to be a tree each node of which is
labeled with a real number in the interval [0, 1], and where
each node has a countably infinite number of children. The
children are indexed by character strings. If ¢ is a number
tree and s is a character string, we write £.s to denote the
subtree of ¢ reached by going down the branch named by
s. The tree t.s is recursively a number tree. The expression
rand (¢) denotes the number labeling the root of the num-
ber tree t. We will define a probabilistic semantics where
each number in a number tree is selected independently and
uniformly from the interval [0, 1].

define cloudy (t)
fe (t.cloudy)

define f. (t)
rand (t) < 0.5

define rain (t)
fr(cloudy (t),t.rain)

define f,. (c,t)
if ¢ then (rand(t) < 0.8)
else (rand (t) < 0.2)

define sprinkler (t)
fs(cloudy (t),t.sprinkler)

define fs(c,t)
if ¢ then (rand(t) < 0.1)
else (rand (t) < 0.5)

define wet (t)
fw(rain(t), sprinkler (t),t.wet)

define f, (r,s,t)
if r V s then (rand(t) < 0.9)
else (rand(t) < 0.1)

Figure 1: Program for the sprinkler example.

Given the basic notion of a number tree, other details of
a particular programming language are fairly arbitrary —
number-tree semantics can be used as an extension of any
functional programming language. We give a formal treat-
ment for a particular family of languages below. Here we
present the ideas of number tree semantics and the desider-
ata through examples, with programming language features
introduced as they are used.

We begin with a simple Bayesian network — the classic
“sprinkler” example. In this example, whether the grass is
wet (W) depends on whether it has rained recently (R) and
whether the sprinkler has been on recently (5). The proba-
bilities of R and S both depend on whether it is cloudy (C').
A program for this scenario is shown in Fig. 1. In the figure,
the parameter ¢ ranges over number trees and all procedures
return Boolean values. The procedures f., f., fs and f,, im-
plement conditional probability tables. Each such procedure
takes some number of parent values, plus a number tree con-
taining “random” numbers, and returns the value of a node.

In a typed programming language one typically has ex-
pressions of type Boolean which we will call logical formu-
las. Let @ be a logical formula in which the number tree vari-
able ¢ occurs as the only free variable. Given a value (a num-
ber tree) for the variable ¢, the formula ® has a well-defined
truth value. We let P, [®] be the probability that when ¢ is
assigned to a random tree (with every number selected uni-
formly in [0, 1]) we have that ® evaluates to true. Given the
function definitions in Fig. 1, we can write expressions such
as P.[wet (t)] for the probability that the grass is wet, or
P.[sprinkler (t) Awet (t)]/P:[wet (t)] for the con-
ditional probability that the sprinkler was on given that the
grass is wet.

Inference Rules

We now present a set of inference rules for a formalism com-
bining logic and probability under number-tree semantics.
We begin with an inference rule for case analysis. To for-
mulate this rule, it is convenient to define the set of feasible
values for an expression e. First, for any logical formula ®
we define the formula 3;[®] to be true if there exists a num-
ber tree such that ® is true when the variable ¢ is interpreted
as that tree. The feasible values for an expression e, denoted
Vile], can then be defined as follows (where v ranges over
values specified by the specific language):

Vile] = {v: File=l}

We can express the operation of case anaylsis with the fol-
lowing equation.

P[®] = Y P(®PAe=v) (1)

veEVy|e]

In case analysis one reduces a probability to a sum of simpler
probabilities. The choice of the expression e on which to do
the case analysis is heuristic.

Logical inference can be used to rewrite logical expres-
sions, replacing a logical formula by an equivalent simpler
one. In a random-world semantics these logical equivalen-
cies are respected by the probabilistic aspect of the language.
This principle can be expressed as follows:

Po] = P[U]ifV[® < U] 2

We now give a syntactic independence criterion that fol-
lows from the number-tree semantics. Define a subtree
expression to be an expression of the form t.cj.ca...cy,
where each c¢; is a character string constant: for example,
t.left.right . Now consider two subtree expressions ¢.«
and .3 where « and /3 are each sequences of character string
constants. We say that .« is syntactically independent of
t.8 provided that neither o nor 3 is a prefix of the other.
For example, t.1eft.right and t.1eft.left are syn-
tactically independent but t.1eft.right and t.1eft are
not. Syntactically independent subtree expressions denote
disjoint substrees. The number labels in disjoint subtrees
are independent. Now consider two logical formulas ® ad ¥
and a number tree variable ¢.

Definition 1. Two formulas ® and U are syntactically inde-
pendent with respect to number tree variable t if for every
pair of an occurrence of t in ® and an occurrence of t in ¥
we have that the occurrence of t in ® occurs inside a subtree
expression t.a and the occurrence of t in VU occurs inside a
subtree expression t.3 where t.a and t.3 are syntactically
independent.

The main technical contribution of this paper is number
tree semantics and the observation that under number tree
semantics, the following factorization rule holds:

P.[® A U] = P.[®]P.[¥] if ® and ¥ are synt. ind. (3)

Finally, we have the following contraction rule where
®[t.c] is a logical formula and ¢ is a number tree varaible
such that every occurrence of ¢ in ®[t.c] occurs inside the
subtree expression t.c.

P[@ft.c]] = P.[®[t] C

Inference in Bayesian Networks

Here we show that the inference rules of the previous section
are sufficient for the analysis of Bayesian networks. We will
analyze the sprinkler example, the generalization to arbitrary
Bayesian networks is straightforward. Consider evaluating
the probability P.[wet (t) = w|. By logical equivalence
(2) we can replace each random variable (each node of the
network) by the appropriate call to a conditional probability
table procedure yielding:

fe(fe(t.cloudy),t.rain),
X

fs(fe(t.cloudy), t.sprinkler),) = w]
t.wet

P

We can now do a case anlysis (1) on the unobserved nodes
(all nodes other than the observed node wet (t)) yielding:

fe(fo(t.cloudy),t.rain),
S (fs(fe(t.cloudy),t.sprinkler),) =w
Z P t.wet

S Afe(fo(t.cloudy),t.rain) =7
e Afs(fo(t.cloudy),t.sprinkler) =s
Afe(t.cloudy),t.sprinkler) =c

Now by logical equivalence (2) this is equivalent to:

fulr, s, t.wet) =w
Z P Afr(e,t.rain) =7
“ 1 Afs(e,t.sprinkler)=s
e Afe(t.cloudy) =s

Now by syntactic independence (3) we can factor this as:

P.[fu(r,s, t . .wet) = w)
P.[f.(c,t.rain) =

Z P, {fs (g, t. s;rinklgr) =]
P.[f.(t.cloudy) = (]

T,8,C

Finally, by contraction (4) this can be rewritten as:

P [fu(r,s,t) = w]
3 P(fe(c,t) =71]

— P.[fs(e,t) = 9]
' P.[f.(t

(t) =¢

This is the standard sum of product expression for the prob-
ability of evidence in a Bayesian network. Standard algo-
rithms can be used to evaluate this expression.

A Mendelian Genetics Model

Fig. 2 shows a program for Mendelian genetics. Each indi-
vidual has a genotype, represented as a mapping from loci
(places where genes are located) to pairs of alleles (versions
of a gene). The variable ¢ ranges over number trees. In this
example the programming language is taken to include data
structures build with data constructors where foo[x, y]
denotes the a data structure with top level tag foo and which
includes the data structures = and y as parts. the expression
match(v, p, by, ba) matches the value v against the pattern
p and, if the match is successful, evaluate b; under the vari-
able bindings generated by the match, and other wise returns
the value of by. In this code data structures are sometimes
used rather than character strings to select a child of a given

define genotype (x, t)
match (x, child[id, f, m],
mate (genotype (£, t), genotype(m, t),
t.conception([x]),
genotypePrior (t.origin[x]))

define mate (g1, g2, t)
hpair (meiosis(gl, t.left),
meiosis (g2, t.right))

define meiosis (g, t)
lambda loc
match (g (loc), pairla, b]
(if rand (t.loc) < 0.5 then a else b),
error([])

define hpair (f,qg)
lambda x
pair[f(x),g(x)]

Figure 2: Program for Mendelian genetics.

number tree. We assume that there is some standard in-
vertable way of coercing data structures to character strings
(such as a print method). Individuals with known parents are
represented as data structures of the form child[i, f,m],
where ¢ is a unique identifier, f is the individual’s father,
and m is the individual’s mother. Individuals with unknown
parents can be represented using any other data structures.
Thus, we might define a family tree as:

let steve = founder|[’steve’]

let jane = founder[’ jane’]

let alice = child[’alice’, steve, Jjane]
let phil = child[’phil’, steve, jane]
let Jjim = founder([’ jim’]

let bob = child[’bob’, jim, alice]

The definition of the genot ype function in Fig. 2 says
that if the individual x, has the form child[id, £, m],
then his genotype is generated by the mate procedure
on the parent genotypes, using the random numbers in
the subtree t.conception([x]. Otherwise, his geno-
type is generated by genotypePrior using the subtree
t.origin[x]. We omit the specification of any particu-
lar prior. The mate procedure performs meiosis—a process
that chooses one allele from the pair at each locus—on both
parent genotypes, using separate sets of random numbers.
The result of meiosis is a haplotype: a function mapping
each locus to a single allele. The paternal and maternal hap-
lotypes are combined into a genotype by the deterministic
function hpair.

The haplotype returned by meiosis is defined by a
lambda-expression that takes a locus loc, interprets the
genotype value g (loc) as a pair pair[a, b], and re-
turns a or b with equal probability. A separate random num-
ber t . 1oc is used for each locus. Note that becuse t . Loc
has a fixed value, the resulting haplotype function will re-
turn a fixed allele if it is invoked multiple times on the same
locus.

define CFTfrom(x, t)
case ProdFrom(x, t.center) of
pairly,zl
node[x, CFTfrom(y, t.left),
CFTfrom(z, t.right)]
terminal[a] terminal[a]

define CFT (t) CFTfrom(s[], t)

define yield(z)
case z of
node[x, zleft, zright]
append (yield(zleft), yield(zright))
terminal[a] list (a)

define CFstring(t) yield(CFT(t))

Figure 3: Program that uses a PCFG to define a distribution
over trees.

Probabilistic Context-Free Grammars

The program in Fig. 3 defines a procedure CETFrom that
takes a nonterminal symbol from the PCFG and a num-
ber tree, and returns a syntax tree generated by the PCFG
using the random numbers in the number tree. This is
done in such a way that when the number tree is gener-
ated at random in the standard way we get the probabil-
ity distribution on output trees appropriate for the given
PCFG. The procedure ProdFrom takes a nonterminal and
a number tree and returns the right hand side of a pro-
duction from the given nonterminal. We assume that the
probability distribution over the value of ProdFrom(z,t)
is determined by the parameters of a given PCFG. The ex-
pression case e of pj:b; po: by is an abbreviation for
match (e, p1, b1, match (e, po, by, error([])).

Given the procedure ProdFrom, we can define the pro-
cedure CF'T (for context-free tree) shown in Fig. 3. The pro-
cedure makes it clear that the left and right subtrees are in-
dependent with respect to the randomness introduced by the
tree t. This would be true even if the left and right subtrees
were computed by arbitrary procedures, provided that the
left and right subtrees were computed from the randomness
int.left and t.right respectively.

The procedure yield in Fig. 3 computes the string
yielded by a given syntax tree. Putting everything together,
the procedure CFString returns the yield of a randomly
generated tree.

The Inside Algorithm

We now show that our inference rules are sufficient to derive
the inside algorithm. Suppose that we want to compute a
probability of the following form where s is a given string
of terminal symbols.

P [yield (CFTfrom(X[],t))=s]

We can first apply case analysis (1) on
ProdFrom(X[],t.center[]). For length(s)>1
the resulting case probability is zero unless the production

yields a pair of the form pair [y, z], where y and z are
nonterminal symbols. For the pair cases we are left with
computing probabilities of the following form.

yield(CFTfrom (X[],t))=s
Pt Z]

AProdFrom(X[],t.center[])=pairly,

Next we case on the value of
length (yield (CFTFrom(y,t.left[]))). This
gives a probability of the following form.

P. | AProdFrom(X[],t.center[])=pairly,

ALength (CFTfrom (y,t.left[]))=k

Now by logical equivalence (2) this is equivalent to a prob-
ability of the following form.

P. | Ayield(CFTfrom(y,t.left[]))=81

Ayield (CFTfrom(z,t.right[]))=s9

ProdFrom(X[],t.center[])=pairly, =zl ‘|

Here s; consists of the first k£ symbols in s, and s9 is the
remainder of s. We can now use syntactic independence
(3) and contraction (4) to reduce this to a product of prob-
abilities two of which are recursively of the original form.
Dynamic programming on the probability problems of the
original form yields the inside algorithm.

Formal Treatment

We start our formal discussion by defining number trees, and
a uniform measure on number trees. Let C' be the set of all
finite character strings. A node s is an element of C'*, the
set of all finite sequences of finite character strings. Note
that C* can naturally be seen as a tree, where the empty
sequence @ is the root node, and the parent of each non-root
node (¢1, ..., Cn,Cny1) is the node (cq,. .., ¢yp).

A number tree T is a function from C* to [0, 1]. We use
T to denote the set of all number trees, [0,1] . For any
number tree 7 and character string ¢, the c-subtree of T,
denoted 7 .c, is that number tree 7’ such that for each node
s=(c1,-.yen), T'(s) =T ((c,c1,. .. ¢n)).

As an event space on number trees, we use the product
o-algebra B¢, where B is the Borel o-algebra on [0, 1]. We
define the measure P,,;; on number trees 7 such that for
each node s, the random variable 7 (s) has a uniform distri-
bution on [0, 1], and all these random variables are mutually
independent. The existence and uniqueness of this P,; fol-
low from Kolmogorov’s extension theorem.

We now consider a particular formal language. Formally
specifying a programming language can be tedious. For
expediency we consider the simply-typed lambda calculus
with constants. We have the following grammar for types
and terms respectively.

T ou= C|lmm—mn

e == clz|e(ea)| Aze
Here C denotes a type constant, ¢ denotes a term constant,
and x denotes a term variable. Here we use a somewhat non-

standard formulation where we assume that each term con-
stant and term variable is associated with a fixed type which

yield(CFTfrom(X[],t))=s]
]

is part of its syntax. We let 7. be the type associated with
the term constant ¢ and 7,, be the type associated with the
variable . We have the standard notion of free and bound
variable occurrence. A term with no free variables is called
closed. Each type expression 7 denotes a set [7]. We assume
each type constant C' is associated with a specified set [C].
We take [1; — 2] to be the set of all functions from [r1] to
[T2]. We are only interested in well-typed exressions. We
write - e : 7 to mean that e is well-typed with type 7. We
have - ¢ : 7. and - « : 7,. We also have - e;(eq) : o pro-
vided-e; : (r — o)andbes: 7,andF (A ze) i1, — 0o
provided e : 0.

We assume that each term constant c is associated with
a value [c] € [r.]. We define a type-respecting variable in-
terpretation to be a mapping « on variables with the prop-
erty that for any variable x we have a(x) € [7,]. We write
afz := v] for the variable interpretation that is identical to
« except that it maps x to v. The semantics has the prop-
erty that if - e : 7 then then for any type-respecting variable
interpretation o we have [e]® € [r]. This property follows
immediately by induction on expressions under the follow-
ing definition of the value of expressions.

[* = [d
(2] = a(z)
lex(e2)]” = [ea]"([e2])
Az e]® = the function v — [e]*[*="] for v € [r,]

Multi-argument functions can be represented by Currying
— we represent a function f : 7, X 75 — o by a Curried
function 1y — (12 — o). We can take let x be e; in ey
to be an abbreviation for (A x e3)(e;) and we can repre-
sent a nonrecursive procedure definition define f(x) e by
let f be (Aze) in u where u is a program using the de-
fined procedure f. For a closed term e we write [e] for [e]*
where « is arbitrary.

The expressive power of the simply-typed lambda calcu-
lus depends on the set of constants included in the language.
For concreteness we consider a particular language defined
by a particular set of constants. We take the type constants to
consist of string for the set of character stings, node for the
set of lists of character strings, real for the set of real num-
bers, and Bool for the set containing “true” and “false”. The
term constants include real number constants and character
string constants. The constants also include the comparison
predicates < and = on real numbers and the Boolean oper-
ations such as disjunction and negation. They also include
nil, cons, car, and cdr for making and manipulating
nodes (lists of character strings). Also, for each type 7 we
have the conditional operator 1 £, : Bool X 7 X T — T.
This allows us to write conditional expressions at any type.
A number tree is a function from nodes to reals — the type
tree is taken to be an abbreviation for node — real. We
can represent rand(¢) by t(nil) and the subtree operation,
as in t.c, can be defined in terms of node operations and
lambda abstraction. We take this particular set of constants
for the simply typed lambda calculus to define the languge
L. Of course we could consider other languages with more
constants and richer type systems.

Our first formal result is the following.

Theorem 1. If Q) is a closed expression of Ly of type tree —
Bool then [Q)] is a measurable predicate on trees, i.e., the set
of T € T such that [Q)“(T) is true is a measurable set of
trees under the measure defined above.

Proof Sketch: At an intuitive level, this theorem fol-
lows from the fact that the simply-typed lamdba calculus is
strongly normalizing. We can compute the value of Q(7)
using only a finite number of comparison operations on real
numbers. This implies that the set of 7 € T satistying @
can be written as a union of sets each of which is defined by
a finite number of interval restrictions at a finite number of
nodes. Without loss of generality we can assume that the in-
terval restrictions have rational endpoints — an interval can
be written as a union of intervals with rational endpoints.
There are only countably many sets definable by rational in-
terval restrictions at a finite number of nodes. Therefore the
set of 7 satisfying () can be written as a countable union of
measurable sets and is therefore measurable. O

Now let ¢ be a variable of type tree and let ® be a Boolean
expression of £y whose only free variable is ¢. Given the
above measurability theorem, we can define P;[®] to be the
probability that ® is true for a random tree ¢, which is by
definition the measure of the set of trees 7 satisfying the
predicate [At ®]. We can also define 3;[®] to be true if there
exists a tree 7 satisfying the predicate [At @] and we can use
V¢ [®] as an abbreviation for =3;[~®].

We now formally verify the rules of inference stated ear-
lier. For the case-analysis rule (1) we require that e also has
the property that its only free variable is t. Here we also
assume that e is Boolean, although this assumption is easily
relaxed in languages that support, say, integers and integer
arithmetic. For e Boolean the case-analysis rule becomes
the following:

More generally, the case-analysis rule (1) is meaningful for
F e : 7 where the language contains a constant denoting
each element of the set [7]. The other inference rules hold
as stated.

Theorem 2. Inference rules (2), (3) and (4) are valid for any
Boolean expressions ® and V of Ly whose only free variable
is the tree variable t.

A natural question is how expressive can one make the
language while preserving the validity of the above theo-
rems. There is no problem in adding standard data types
such as records or structures. If we allow recursion then
we need to be careful about termination. Of course recur-
sive functions need not terminate in general. However, if
we are careful to only write terminating recursions then it
seems that the measurability theorem still holds — we can
compute the value of a predicate on trees using only a fi-
nite number of comparisons. It also seems likely that the
measurability theorem remains true if we allow recursions
that need not terminate on all inputs but still terminate with
probability one. Another natural extension is to introduce
quantification into the langauge. For any type 7 we can add
aconstant 3, : (1 — Bool) — Bool where have that 3. (Q)

is true if there exists a value v in [7] such that @ is true of v.
We can also allow probabilities to be terms in the langauge.
We can add a constant P : (tree — Bool) — real where
P(Q) denotes the probability that @ is true of a random tree.
This would allow probability expressions to appear inside
the statements used in probability expressions. We do not
know whether the measurability theorem holds under (some
formulation of) these more extreme extensions. If the mea-
surability theorem fails we can, as a last resort, require that
the programmer be careful to only construct probability ex-
pressions for measurable properties.

Conclusion

We have developed a particular approach to the combina-
tion of logic and probability yielding certain desirable in-
ference rules. These inference rules exhibit both random-
world semantics (2) and a syntactic independence principle
(3). The rules apply to a formally defined set of highly ex-
pressive logical formulas — the expressions of type Boolean
in a rich typed lambda calculus. This approach to combin-
ing logic and probability, based on number-tree semantics,
holds over a wide variety of formal lambda calculi and pro-
gramming languages. We believe that our inference rules
provide a new and more tractable foundation for automated
reasoning about the rich class of stochastic models definable
by stochastic programs.

References

Bertot, Y., and Castran, P. 2004. Interactive Theorem Prov-
ing and Program Development; Coq’Art: The Calculus of
Inductive Constructions. Texts in Theoretical Computer
Science. Springer.

Gordon, M., and Melham, T. 1993. Introduction to HOL: A
theorem proving environment for higher order logic. Cam-
bridge University Press.

Kaufmann, M.; Manolios, P.; and Moore, J. S. 2000.
Computer-Aided Reasoning: An Approach. Springer.

Koller, D.; McAllester, D. A.; and Pfeffer, A. 1997. Ef-
fective Bayesian inference for stochastic programs. In
Proc. 14th AAAI, T40-747.

Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2005. BLOG: Probabilistic models with
unknown objects. In Proc. 19th IJCAI, 1352-1359.

Park, S.; Pfenning, F.; and Thrun, S. 2005. A probabilistic
language based upon sampling functions. In Proc. 32nd
POPL, 171-182.

Pfeffer, A. 2001. IBAL: A probabilistic rational program-
ming language. In Proc. 17th 1JCAI, 733-740.

Poole, D. 1993. Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence 64(1):81-129.

Ramsey, N., and Pfeffer, A. 2002. Stochastic lambda calcu-
lus and monads of probability distributions. In Proc. 29th
POPL, 154-165.

Sato, T., and Kameya, Y. 2001. Parameter learning of logic
programs for symbolic—statistical modeling. JAIR 15:391—
454.

