1,937 research outputs found

    Optimization of Complex Thermal-Fluid Processes

    Get PDF
    abstract: First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Relative Importance of Radar Variables for Nowcasting Heavy Rainfall: A Machine Learning Approach

    Get PDF
    Highly short-term forecasting, or nowcasting, of heavy rainfall due to rapidly evolving mesoscale convective systems (MCSs) is particularly challenging for traditional numerical weather prediction models. To overcome such a challenge, a growing number of studies have shown significant advantages of using machine learning (ML) modeling techniques with remote sensing data, especially weather radar data, for high-resolution rainfall nowcasting. To improve ML model performance, it is essential first and foremost to quantify the importance of radar variables and identify pertinent predictors of rainfall that can also be associated with domain knowledge. In this study, a set of MCS types consisting of convective cell, mesoscale convective cell, diagonal squall line, and parallel squall line, was adopted to categorize MCS storm cells, following the fuzzy logic algorithm for storm tracking, over the Korean Peninsula. The relationships between rain rates and over 15 variables derived from data products of dual-polarimetric weather radar were investigated and quantified via 5 ML regression methods and a permutation importance algorithm. As an applicational example, ML classification models were also developed to predict locations of storm cells. Recalibrated ML regression models with identified pertinent predictors were coupled with the ML classification models to provide early warnings of heavy rainfall. Results imply that future work needs to consider MCS type information to improve ML modeling for nowcasting and early warning of heavy rainfall

    An object-based image analysis approach for detecting urban impervious surfaces

    Get PDF
    Impervious surfaces are manmade surfaces which are highly resistant to infiltration of water. Previous attempts to classify impervious surfaces from high spatial resolution imagery with pixel-based techniques have proven to be unsuitable for automated classification because of its high spectral variability and complex land covers in urban areas. Accurate and rapid classification of impervious surfaces would help in emergency management after extreme events like flooding, earthquakes, fires, tsunami, and hurricanes, by providing quick estimates and updated maps for emergency response. The objectives of this study were to: (1) compare classification accuracy between pixel-based and OBIA methods, (2) examine whether the object-based image analysis (OBIA) could better detect urban impervious surfaces, and (3) develop an automated, generalized OBIA classification method for impervious surfaces. This study analyzed urban impervious surfaces using a 1-meter spatial resolution, four band Digital Orthophoto Quarter Quad (DOQQ) aerial imagery of downtown New Orleans, Louisiana taken as part of post Hurricane Katrina and Rita dataset. The study compared the traditional pixel-based classification with four variations of the rule-based OBIA approach for classification accuracy. A four-class classification scheme was used for the analysis, including impervious surfaces, vegetation, shadow, and water. The results show that OBIA accuracy ranges from 85.33% through 91.41% compared with 80.67% classification accuracy from using the pixel-based approach. OBIA rule-based method 4 utilizing a multi-resolution segmentation approach and derived spectral indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the Spectral Shape Index (SSI) was the best method, yielding a 91.41% classification accuracy. OBIA rule-based method 4 can be automated and generalized for multiple study areas. A test of the segmentation parameters show that parameter values of scale ≤ 20, color/shape ranging from 0.1 - 0.3, and compactness/smoothness ranging from 0.4 - 0.6 yielded the highest classification accuracies. These results show that the developed OBIA method was accurate, generalizable, and capable of automation for the classification of urban impervious surfaces

    CIRA annual report 2007-2008

    Get PDF

    Learning-Based Modeling of Weather and Climate Events Related To El Niño Phenomenon via Differentiable Programming and Empirical Decompositions

    Get PDF
    This dissertation is the accumulation of the application of adaptive, empirical learning-based methods in the study and characterization of the El Niño Southern Oscillation. In specific, it focuses on ENSO’s effects on rainfall and drought conditions in two major regions shown to be linked through the strength of the dependence of their climate on ENSO: 1) the southern Pacific Coast of the United States and 2) the Nile River Basin. In these cases, drought and rainfall are tied to deep economic and social factors within the region. The principal aim of this dissertation is to establish, with scientific rigor, an epistemological and foundational justification of adaptive learning models and their utility in the both the modeling and understanding of a wide-reaching climate phenomenon such as ENSO. This dissertation explores a scientific justification for their proven accuracy in prediction and utility as an aide in deriving a deeper understanding of climate phenomenon. In the application of drought forecasting for Southern California, adaptive learning methods were able to forecast the drought severity of the 2015-2016 winter with greater accuracy than established models. Expanding this analysis yields novel ways to analyze and understand the underlying processes driving California drought. The pursuit of adaptive learning as a guiding tool would also lead to the discovery of a significant extractable components of ENSO strength variation, which are used with in the analysis of Nile River Basin precipitation and flow of the Nile River, and in the prediction of Nile River yield to p=0.038. In this dissertation, the duality of modeling and understanding is explored, as well as a discussion on why adaptive learning methods are uniquely suited to the study of climate phenomenon like ENSO in the way that traditional methods lack. The main methods explored are 1) differentiable Programming, as a means of construction of novel self-learning models through which the meaningfulness of parameters arises from emergent phenomenon and 2) empirical decompositions, which are driven by an adaptive rather than rigid component extraction principle, are explored further as both a predictive tool and as a tool for gaining insight and the construction of models

    Hydrology in Water Resources Management

    Get PDF
    This book is a collection of 12 papers describing the role of hydrology in water resources management. The papers can be divided s according to their area of focus as 1) modeling of hydrological processes, 2) use of modern techniques in hydrological analysis, 3) impact of human pressure and climate change on water resources, and 4) hydrometeorological extremes. Belonging to the first area is the presentation of a new Muskingum flood routing model, a new tool to perform frequency analysis of maximum precipitation of a specified duration via the so-named PMAXΤP model (Precipitation MAXimum Time (duration) Probability), modeling of interception processes, and using a rainfall-runoff GR2M model to calculate monthly runoff. For the second area, the groundwater potential was evaluated using a model of multi-influencing factors in which the parameters were optimized by using geoprocessing tools in geographical information system (GIS) in combination with satellite altimeter data and the reanalysis of hydrological data to simulate overflow transport using the Nordic Sea as an example. Presented for the third area are a water balance model for the comparison of water resources with the needs of water users, the idea of adaptive water management, impacts of climate change, and anthropogenic activities on the runoff in catchment located in the western Himalayas of Pakistan. The last area includes spatiotemporal analysis of rainfall variability with regard to drought hazard and use of the copula function to meteorologically analyze drought

    Remote Sensing and Modeling of Stressed Aquifer Systems and the Associated Hazards

    Get PDF
    abstract: Aquifers host the largest accessible freshwater resource in the world. However, groundwater reserves are declining in many places. Often coincident with drought, high extraction rates and inadequate replenishment result in groundwater overdraft and permanent land subsidence. Land subsidence is the cause of aquifer storage capacity reduction, altered topographic gradients which can exacerbate floods, and differential displacement that can lead to earth fissures and infrastructure damage. Improving understanding of the sources and mechanisms driving aquifer deformation is important for resource management planning and hazard mitigation. Poroelastic theory describes the coupling of differential stress, strain, and pore pressure, which are modulated by material properties. To model these relationships, displacement time series are estimated via satellite interferometry and hydraulic head levels from observation wells provide an in-situ dataset. In combination, the deconstruction and isolation of selected time-frequency components allow for estimating aquifer parameters, including the elastic and inelastic storage coefficients, compaction time constants, and vertical hydraulic conductivity. Together these parameters describe the storage response of an aquifer system to changes in hydraulic head and surface elevation. Understanding aquifer parameters is useful for the ongoing management of groundwater resources. Case studies in Phoenix and Tucson, Arizona, focus on land subsidence from groundwater withdrawal as well as distinct responses to artificial recharge efforts. In Christchurch, New Zealand, possible changes to aquifer properties due to earthquakes are investigated. In Houston, Texas, flood severity during Hurricane Harvey is linked to subsidence, which modifies base flood elevations and topographic gradients.Dissertation/ThesisDoctoral Dissertation Geological Sciences 201
    • …
    corecore