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Relative Importance of Radar Variables for 
Nowcasting Heavy Rainfall: A Machine Learning 

Approach 
 

Yi Victor Wang, Seung Hee Kim, Geunsu Lyu, Choeng-Lyong Lee, Gyuwon Lee, Ki-Hong Min, and Menas C. 
Kafatos 

Abstract—Highly short-term forecasting, or nowcasting, of 
heavy rainfall due to rapidly evolving mesoscale convective 
systems (MCSs) is particularly challenging for traditional 
numerical weather prediction models. To overcome such a 
challenge, a growing number of studies have shown significant 
advantages of using machine learning (ML) modeling techniques 
with remote sensing data, especially weather radar data, for high-
resolution rainfall nowcasting. To improve ML model 
performance, it is essential first and foremost to quantify the 
importance of radar variables and identify pertinent predictors of 
rainfall that can also be associated with domain knowledge. In this 
study, a set of MCS types consisting of convective cell, mesoscale 
convective cell, diagonal squall line, and parallel squall line, was 
adopted to categorize MCS storm cells, following the fuzzy logic 
algorithm for storm tracking, over the Korean Peninsula. The 
relationships between rain rates and over 15 variables derived 
from data products of dual-polarimetric weather radar were 
investigated and quantified via 5 ML regression methods and a 
permutation importance algorithm. As an applicational example, 
ML classification models were also developed to predict locations 
of storm cells. Recalibrated ML regression models with identified 
pertinent predictors were coupled with the ML classification 
models to provide early warnings of heavy rainfall. Results imply 
that future work needs to consider MCS type information to 
improve ML modeling for nowcasting and early warning of heavy 
rainfall. 
 

Index Terms—Artificial neural network, convolutional neural 
network, deep learning, early warning, flash flood, 
hydrometeorological hazard, Lasso, mesoscale convective system, 
permutation importance, random forest, remote sensing, storm, 
support vector regression, dual-polarimetric weather radar 
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I. INTRODUCTION 
OWCASTING is a highly short-term weather 
forecasting of up to a few hours [1]. It can provide 
useful information for short-term early warnings 

regarding hazardous meteorological conditions to support 
preparation for and rapid response to emergencies, as well as to 
mitigate the potential impacts, associated with a climate-related 
hazard event. For example, flash flooding is a common hazard 
that can cause severe adverse impacts to human communities 
[2]–[4]. Such phenomena usually occur within hours of 
mesoscale rainstorm events. An effective nowcasting system 
for mesoscale heavy rainfall can be used to issue warnings to 
reduce potential flood exposure of communities that may be 
caught off guard otherwise. 

For nowcasting heavy rainfall of a mesoscale convective 
system (MCS), the numerical weather prediction (NWP) 
models that are traditionally used for daily weather forecasting 
have their limitations [5]. NWPs produce simulations of 
meteorological conditions based on physical equations coupled 
with measurements of atmosphere. When adopted for 
applications with high spatial and temporal resolutions, 
traditional NWP models are usually hampered by the 
deficiencies in determination of initial and boundary conditions 
[6], long spin-up time [7], and challenges in physical 
parameterization [8]. As a result, it is difficult for traditional 
NWP models to provide useful nowcasting products on MCS 
rainfall for high-resolution applications such as 
hydrometeorological modeling and simulation for an urban area 
or a catchment. 

As an option to improve nowcasting of rainfall, machine 
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learning (ML) methods can be applied along with remote 
sensing data. As remote sensing data such as from weather 
radars and satellites can usually reach a spatial and temporal 
resolution as high as 1 km and 5 minutes, the nowcasting results 
can be produced with the same level of detail. To fully integrate 
the detailed information from remote sensors, ML models can 
be trained on empirical data to interpolate and extrapolate 
rainfall given new measured values of input variables. A 
growing number of ML methods, including convolutional 
neural network (CNN) [9]–[12], deep generative modeling [5], 
logistic regression [13], long short-term memory network [9]–
[11], multilayer perceptron (MLP) network [14], random forest 
classification [15]–[16], recurrent neural network [17], support 
vector machine classification [18], trajectory gated recurrent 
unit network [19], and U-net [20], have been demonstrated with 
potential to accurately nowcast rainfall. Given a set of identified 
input variables, a ML model functions as a surrogate model that 
can swiftly predict or classify rainfall. The ML models based 
on convolutional computations are particularly good at 
capturing spatial correlations [9]–[12]. The recurrent network-
based ML methods are especially capable of modeling the 
temporal trends [9]–[11]. Despite the proved utility of ML 
models in nowcasting rainfall, the input variables of the current 
models are usually selected without empirical quantification of 
the importance of variables based on evidence from data before 
model training. 

Among the recent efforts on ML modeling for nowcasting 
rainfall, weather radars are the most commonly used data 
sources for input variables. Radar data is historically one of the 
most popular sources of information for nowcasting rainfall of 
storm cells [21]–[24]. Traditional weather radar systems 
operate based on the emissions and receptions of horizontal 
pulses and corresponding Doppler effects [25]. They usually 
produce data products on variables associated with the 
reflectivity and velocity of objects in the atmosphere. In 
addition to the horizontal pulses, dual-polarimetric radar 
systems also operate with pulses in the vertical orientation. 
Unlike the case of the traditional weather radars, the 2 
orientations of pulses allow the dual-polarimetric radars to 
produce data on more variables than the traditional radar 
systems for improved accuracy of estimates of rainfall [26]–
[28]. 

The main objective of the study was to use ML regression 
methods to quantify the relative importance of radar variables 
for nowcasting heavy rainfall of a storm cell. For such a 
purpose, data products from a dual-polarimetric Doppler radar 
[29] for 17 variables for the Korean Peninsula were used for 
model calibration. Important input variables were then selected 
with a permutation importance algorithm to recalibrate ML 
regression models to compute the 30-minute and 60-minute 
predictions of rainfall for MCS storm cells. The recalibrated 
ML regression models were applied to show their utility in 
providing early warnings for areas that would potentially 
experience heavy rainfall events. To do so, the recalibrated ML 
regression models were coupled with ML classification models 
that predict locations of storm cells. The ML classification 

models for location prediction were trained with data on 
locations of storm cells at now moments and the same 17 radar 
variables plus 5 topographic variables. 

The rest of this article consists of 4 sections. The first section 
introduces the study area and data for assessing importance of 
radar variables and for ML modeling to nowcast, and to provide 
early warnings of, heavy rainfall. Then, the methods and 
algorithms to derive ML models and to apply these models for 
early warnings of heavy rainfall are delineated. Next, the results 
of implementing the ML methodology of the study are laid out 
and discussed. The final section concludes with summaries of 
the significance and limitations of the study and suggestions for 
future work. 

II. DATA 

A. Study Area 
The study area of this research covers most of the Korean 

Peninsula (Fig. 1). It spans 960 km from west to east and 1,200 
km from north to south. The study area corresponds to the 
geographic extent of the data for assessing the relative 
importance of radar variables. As shown in Fig. 1, the data for 
application in rainfall nowcasting and provision of early 
warnings has a geographic extent indicated by the brown 
dashed lines. The orange dotted lines demarcate the model area 
for application in rainfall nowcasting and provision of early 
warnings. Shapefiles of country boundaries for visualization 
and data processing were downloaded from the Database of 
Global Administrative Areas (GADM) [30]. During the 
processing of spatial data, the Lambert conformal conic 
projection [31] was adopted along with a uniform spatial 
resolution of 1 km. 

 

 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3231125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
Fig. 1. Study area. 

 

B. Data for Regression Modeling 
Data on input variables for assessing their importance in 

nowcasting rainfall were based on 3-dimensional composites 
from the Dual Polarimetric Doppler Radar operated by the 
Korea Meteorological Administration (KMA). Each record of 
the data on input variables corresponded to a storm cell at a 
timestamp at the temporal resolution of 10 minutes. Storm cells 
were identified with the application of the Fuzzy logic 
Algorithm for Storm Tracking (FAST) [32]. Data on output 
variables included images of hybrid surface rainfall (HSR) in 
terms of rain rate at the spatial resolution of 1 km and temporal 
resolution of 10 minutes. The HSR images were derived from 
the lowest observable data from individual radars and were then 
composited over their corresponding domains [33]. For each 
HSR image, two variables, i.e., mean rain rate and top 10% 
mean rain rate, were computed to be associated with the input 
variables at the storm cell level based on the areas of storm cells 
identified by the FAST algorithm. Mean rain rate referred to the 
average rain rate across the entire area of a storm cell. Top 10% 
mean rain rate was the average of rain rate among those 
pixelated areas with the highest 10% rain rate within the storm 
cell. Only data on MCS during the warm seasons from April to 
September were considered for model calibration. The time 
period of data was from April 2018 to September 2020. 

Subsequent to using the FAST algorithm, identified storm 
cells were further categorized into four types, i.e., convective 
cell (CC), mesoscale convective complex (MCC), diagonal 
squall line (SLD), and parallel squall line (SLP), similar to 
classification by Lee and Kim 2007 [34]. Regarding each storm 
cell, if its longest radius, Rmj, was less than 20 km, it was 
classified as a CC. Among the non-CC storm cells, those with 
an axis ratio less than 4 were considered MCCs and the rest 
were identified as squall lines, where axis ratio referred to the 
ratio of the longest radius to the shortest radius. Among the 
squall lines, those with an angle between the longest radius and 
its advection larger than 45° were categorized as SLDs and the 
rest as SLPs. 

For each storm cell across its lifespan, data points were 
created for training ML regression models for assessing relative 
importance of input variables. Each data point corresponded to 
the two output variables of mean rain rate (MeanRR) and top 
10% mean rain rate (Top10%) at a now timestamp and 17 input 
variables (Table I) at a previous timestamp. For the nowcasting 
purpose, the previous timestamp was set to be either 30 or 60 
minutes prior to the now timestamp. To facilitate storage and 
processing of data, each variable value was converted into an 
integer by multiplication with a factor to match the integer 
format of the time and identifier of the corresponding data point 
(Table I). To enhance the representativeness of highly 
positively skewed variables and to stabilize their variation, a 
base-10 logarithmic transformation was applied to these 
skewed variables (Table I). 

 

TABLE I 
INPUT VARIABLES FOR ASSESSMENT OF RELATIVE 

IMPORTANCE IN RAINFALL PREDICTION 

Variable Description 
Multipl
ication 
factor 

Logarithmic
ally 

transformed 
Rmj Longest radius in km 100 Yes 
Rmn Shortest radius in km 100 Yes 

Theta Direction of the shortest 
radius axis in degree 100 No 

MeanZ Storm area averaged 
reflectivity in dBZ 100 Yes 

Area Storm area in km2 10 Yes 
Volume Storm area volume in km3 10 Yes 

Top Echo top height in km 100 No 
Base Echo bottom height in km 100 No 

MaxZ Storm area maximum 
reflectivity in dBZ 100 Yes 

MaxZhgt 
Maximum reflectivity 

height in km 100 No 

AvgVIL 
Storm area averaged 

vertically integrated liquid 
water in km/m2 

100,000 Yes 

MaxVIL 
Storm area maximum 

vertically integrated liquid 
water in km/m2 

100,000 Yes 

U Zonal component of cell 
motion velocity in m/s 100,000 No 

V Meridional component of 
cell motion velocity in m/s 100,000 No 

Direction Storm propagation direction 
in degree 100,000 No 

MeanRR Mean rain rate in mm/h 100 Yes 

Top10% Mean rain rate of top 10% 
rain rate pixels in mm/h 100 Yes 

 
Eight datasets were created for assessing relative importance 

of radar variables. Each dataset corresponded to 1 of 4 storm 
types and 1 of 2 prior times. For each dataset, each of the input 
and output variables was standardized with 
 vS = vO – μO

σO
, (1) 

where vS  was the standardized variable, vO  was the variable 
after multiplication to integer and selective logarithmic 
transformation shown in Table I, and μO  and σO  were 
respectively the mean and standard deviation of vO . With 
consideration of the timestamp of KST 2020-07-19 00:00:00 as 
the cutoff, the standardized datasets were then separated into 
the training datasets (before the cutoff timestamp) and 
validation datasets (at or after the cutoff timestamp). For 
deriving the permutation importance of input variables, each 
training dataset was further randomly separated into a training-
training dataset (90% of training data points) and a training-
testing dataset (the rest of the training data points). Because of 
limited numbers of data points for storm cell types of MCC, 
SLD, and SLP for each prior time, data points of these three 
storm types were pooled to form datasets for the joint MCC-
SLD-SLP (MSL) storm type for importance assessment. 

C. Data for Classification Modeling 
For predicting locations of storm cells, data in the format of 

image patches were generated (Fig. 2) to train ML classification 
models to predict whether the central pixel of an image patch 
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belongs to a storm cell after a considered time period of either 
30 or 60 minutes. Such an image patch showed the geographic 
distribution of a storm cell around its central pixel. The output 
data for classification modeling was the binary variable of 
whether the central pixel of an image patch belonged to a storm 
cell of interest at a now timestamp. The input data included the 
image patches of the same binary variable at all pixels of each 
image patch plus 22 variables at the central pixel of the image 
patch at a previous timestamp. 

 

Fig. 2. Generation of image patches for training classification 
models for predicting storm cell locations. nIPR  and nIPC 
indicate the size of image patch. nSWR  and nSWC  indicate the 
size of stride window. Each red square is a randomly selected 
central pixel of image patch. 

 
As shown in Fig. 2, each image patch had the size of nIPR by 

nIPC , where nIPR  and nIPC  were respectively the numbers of 
rows and columns of the image patch. Stride windows of the 
size of nSWR by nSWC were created, where nSWR and nSWC were 
respectively the numbers of rows and columns of a stride 
window. Within each stride window, one pixel was randomly 
selected (highlighted in red color) as the targeted pixel. Around 
this targeted pixel, an image patch was then retrieved given nIPR 
and nIPC. Each pixel of an image patch was assigned a value of 
1 or 0 if it belonged to a storm cell of interest or not. Image 
patches with all pixels of 0s were discarded from model training 
and validation. In this study, nIPR = 81, nIPC = 81, nSWR = 10, 
and nSWC = 10. These parametric values were determined based 
on trials and errors to provide a good model performance within 
an acceptable computational time. 

Among the 22 input variables for classification modeling, 17 
were the same as the input variables for regression modeling 
(Table I). The other 5 were topographic variables derived with 
the open-source software QGIS 3.20.3-Odense [35] based on 
the spatial data used in the study. For computing the 
topographic variables, the digital elevation model (DEM) 
dataset of Global Multi-Resolution Terrain Elevation Data 2010 
at the spatial resolution of 7.5 arc-seconds was downloaded 
from the United States Geological Survey website [36]. The 
created topographic variables included distance to sea, 
elevation, aspect, roughness, and slope. 

The same cutoff timestamp, i.e., KST 2020-07-19 00:00:00, 

as of the data for assessing variable importance was used to 
separate the training and validation datasets for ML 
classification modeling. A total of 12 datasets were created for 
training classification models. Half were for the 30-minute 
modeling and the other half were for the 60-minute modeling. 
For either prior time, the 6 datasets included ones for CC, MCC, 
SLD, SLP, MSL, and all storm cell types pooled together (All), 
respectively. 

III. METHODOLOGY 
The presented study consists of two parts. The first part 

assessed the relative importance of radar variables in 
nowcasting heavy rainfall by adopting supervised ML 
regression techniques. The developed ML regression models 
could be used to predict the mean rain rate and top 10% mean 
rain rate of an MCS storm cell. The second part of the study 
developed supervised ML classification models based on a 
CNN modeling method to predict storm cell locations and 
applied the results of regression modeling of the first part to 
produce nowcasts of heavy rainfall conditions and provide early 
warnings. Quantitative models in this study were established 
with the open-source software language Python 3.8.11 [37]. 

A. Regression Modeling 
To assess the relative importance of radar variables in 

nowcasting heavy rainfall, 4 ML regression methods were 
adopted. The initial input of the ML regression models included 
17 variables listed in Table I. The output variables were the 
mean rain rate and top 10% mean rain rate. The adopted ML 
regression modeling methods included the least absolute 
shrinkage and selection operator (Lasso) [38]–[39], random 
forest regression (RFR) [40]–[41], support vector regression 
(SVR) [42], and artificial neural network (ANN) [43]. After 
each ML model was calibrated with its training-training dataset, 
a permutation importance metric was computed for each input 
variable on the corresponding training-testing dataset. Based on 
the derived metrics of permutation importance, pertinent input 
variables were selected. The ML regression model with the 
selected input variables was then recalibrated with its entire 
training dataset. The recalibrated ML regression model was 
finally tested on its validation dataset. 
a. Lasso 

The Lasso method is a linear regression approach that also 
selects variables and performs regularization simultaneously. 
Consider a linear regression model 
 yL = XLβL + σLεL, (2) 
where yL is the column vector of values of an output variable, 
XL is the data matrix of input variables, βL is a column vector 
of model coefficients, εL is a column vector of independent and 
identically distributed standard normal random variables, and 
σL is the dispersion parameter of the model. Lasso estimates 
 β̂L = argmin

βL

(‖yL – XLβL‖
2
 + λL ∑ |βLh|m

h = 1 ), (3) 

where β̂L is the Lasso estimator of βL = [βL0, βL1, ⋯, βLm]T, βL0 
is the intercept, βLh is the hth element of βL, m is the number of 
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input variables, λL  is a nonnegative regularization parameter, 
‖∙‖  is the L2 norm operator, and |∙|  is the absolute value 
operator [38]–[39]. The LassoCV function from the scikit-learn 
library was adopted for Lasso modeling [44]. 
b. Random forest regression 

RFR is a regression modeling approach that randomly 
establishes regression trees and uses the mean output of the 
regression trees as the estimate of target value of output given 
the values of input variables [40]–[41]. The RFR algorithm 
used in this study consisted of four steps. First, given a training-
training dataset with the sample size of n , n  samples were 
randomly selected from the training-training dataset with 
replacement to form a new dataset. Second, a regression tree 
was established with the new dataset. Third, the first and second 
steps were repeated for 800 times. Fourth, given the input 
values of a new data point, the outputs of the established 800 
regression trees were averaged to produce the estimate of the 
output of the RFR model. The RFR was achieved via the 
RandomForestRegressor function of the scikit-learn library 
[44]. 
c. Support vector regression 

SVR is a computational approach that produces a regression 
model in the form of a hyperplane in the original or transformed 
vector space of data points involving both the input and output 
variables. The hyperplane is at the center between two parallel 
margins that contain most of the data points and touched only 
by data points called support vectors. For a linear SVR model, 
its training-training dataset with sample size n can be denoted 
as 
 {(xS1, yS1), (xS2, yS2), ⋯, (xSn, ySn)} ⊂ 𝒳 × ℝ, (4) 
where 𝒳  is the vector space of input variables. The SVR 
hyperplane is 
 yS = fS(xS) = ⟨wS|xS⟩ + bS, (5) 
where wS ∈ 𝒳, bS ∈ ℝ, and ⟨∙|∙⟩ refers to the dot product in 𝒳. 
fS(xS) can be derived by minimizing 
 LS = 1

2
‖wS‖2 + CS ∑ (ξSi + ζSi)

n
i = 1 , (6) 

subject to 

 {

ySi – ⟨wS|xSi⟩ – bS ≤ εS + ξSi
⟨wS|xSi⟩ + bS – ySi ≤ εS + ζSi

ξSi, ζSi ≥ 0
, (7) 

where εS  is the precision parameter of the support vector 
margins, CS > 0  is a parameter determining the flatness of 
model hyperplane and the toleration of deviations of data points 
from the margins, and ξSi and ζSi are respectively the ith values 
of two slack variables [42]. A slack variable indicates the 
distance, from either side of the model hyperplane, between a 
data point and its closer support vector margin. The 
introduction of slack variables allows model calibration with 
data points beyond the support vector margins. In this study, 
parameters were set at the most commonly used values, as 
CS = 1 and εS = 0.01. 

The optimization problem of (6) and (7) can be solved via the 
method of Lagrange multipliers with a focus on the 
computation of ⟨xSi|xSj⟩ for all data points, where i and j are 
dummy variables referring to the i th and j th data points 

respectively. With a kernel trick 
 KS(xSi, xSj) = ⟨ϕ(xSi)|ϕ(xSj)⟩, (8) 
where ϕ(∙)  is a mathematical mapping, the original input 
variables of xS can be transformed into a new set of variables in 
a new vector space with higher dimensions than 𝒳 . Such a 
transformation of input variables can help solve a non-linear 
regression problem. In addition to the linear SVR approach, in 
this study, a radial basis function (RBF) kernel was adopted as 
 KSR(xSi, xSj) = exp (–γS‖xSi – xSj‖

2
), (9) 

where 
 γS = n

∑ ∑ (xSij – x̅S)
2m

j = 1
n
i = 1

 (10) 

was a common configuration. With a Taylor expansion, KSR(∙) 
can be shown to be the dot product of mappings, ϕ(∙), of input 
variables from the original vector space into a vector space with 
an infinite number of dimensions. The SVR function from the 
scikit-learn library was used to apply the linear and RBF SVR 
approaches [44]. 
d. Artificial neural network 

ANN is a computational model that mimics the biological 
neural network of an animal brain to produce output based on 
input values. The generic architecture of ANN, the MLP [43], 
was adopted for assessing importance of radar variables in this 
study. For each training-training dataset, two MLPs were 
established for the two output variables respectively. Each MLP 
consisted of one input layer with NI = m nodes corresponding 
to the m input variables, one hidden layer with NH = m nodes, 
and one output layer with NO = 1 node corresponding to the 
output variable (Fig. 3). Each node of the hidden and output 
layers performed 
 xAq, r = fq, r (βq, r, 0 + ∑ βq, r, sxAq – 1, s

Nq – 1
s = 1 ) (11) 

where xAq, r  referred to the output of the rth node of the qth 
layer, fq, r(∙)  was an activation function, βq, r, 0  was a bias 
parameter, βq, r, s  was a weight parameter, and Nq – 1  was the 
number of nodes of the layer previous to the qth layer. The 
rectified linear unit (ReLU) function [45]–[46] 
 fReLU(x) = max(0, x) (12) 
and the identical function were used respectively as the 
activation functions for the hidden and output layers. Each MLP 
was trained with 400 epochs with the adaptive moment 
estimation (Adam) algorithm [47] with the batch size of 16 and 
the initial learning rate at 2 × 10–4 . The mean squared error 
(MSE) was adopted as the loss function: 
  MSE = 1

ny
∑ (yi – ŷi)

2ny
i = 1  (13) 

where ny was the number of data points, yi was the observed 
output value of the i th data point, and ŷi  was its model 
prediction. The ANN modeling was achieved via the 
TensorFlow library [48]. 
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Fig. 3. Multilayer perceptron for assessing importance of input 
variables in nowcasting heavy rainfall. 

 
e. Variable selection 

To determine the relative importance of input variables of 
each ML regression model, an algorithm based on the 
permutation importance technique was applied [49]. The 
adopted algorithm also selected pertinent variables for each 
model given their computed permutation importance scores. 
The permutation importance score was associated with the 
change in a model performance when the values of a single 
input variable was randomly shuffled. The algorithm used in 
this study goes as follows. Step 1 calibrates an ML regression 
model on its corresponding training-training dataset. Step 2 
computes the root mean squared error (RMSE) of the model on 
its training-testing dataset as a reference score RS. Step 3 selects 
the first input variable or the next input variable if the first has 
already been selected. Step 4 randomly shuffles the values of 
the selected input variable to generate a corrupted version of the 
training-testing dataset. Step 5 computes the RMSE of the 
model on the corrupted training-testing dataset as the variable 
shuffle score VSS . Step 6 derives the importance score 
IS = VSS – RS and records it. Step 7 repeats steps 4–6 100 times 
to record 100 ISs. Step 8 continues steps 3–7 to cover all the 
input variables. Step 9 conducts one-tailed one-sample t-tests 
on ISs for the input variables with the null hypothesis that the 
actual IS of each of the input variables is no greater than 0. Step 
10 selects the input variables for which the null hypothesis is 
rejected at the significance level of 10–9. Step 11 recalibrates 
the ML regression model with the selected input variables on 
the entire training dataset including the training-training and 
training-testing datasets. 
f. Validation 

For each recalibrated ML regression model, a validation was 
conducted on its validation dataset. For validation, model 
performances on predictions of mean rain rate and top 10% 
mean rain rate were compared to the results by directly using 
the prior values (i.e., the input variables) to predict the current 
values of the 2 output variables. 4 loss functions were used to 

indicate model performance. They included the mean absolute 
error (MAE) (14), the mean absolute percentage error (MAPE) 
(15), MSE (13), and the coefficient of determination (R2) (16): 
  MAE = 1

ny
∑ |yi – ŷi|

ny
i = 1 , (14) 

  MAPE = 1
ny

∑ |
yi – ŷi

yi
|

ny
i = 1 , (15) 

  R2 = 1 – 
∑ (yi – ŷi)

2ny
i = 1

∑ (y̅ – ŷi)
2ny

i = 1

, (16) 

where y̅ was the mean of observed values of output variable. 

B. Application 
Subsequent to the assessment of relative importance of input 

variables including radar products in nowcasting heavy rainfall 
with ML regression models, the recalibrated ML regression 
models were further applied to map areas with potential of 
heavy rainfall in 30 and 60 minutes given values of input 
variables at current time. Such an application was achieved by 
integrating an ML regression modeling result with an ML 
classification model that predicted the location of a storm cell 
of interest. 
a. Classification modeling 

The ML classification models used in this study were to 
classify whether a pixel on an image, corresponding to a 
location, would belong to a storm cell of interest in 30 or 60 
minutes. The input of the ML classification models included 17 
variables listed in Table I plus 5 topographic variables, i.e., 
distance to sea, elevation, aspect, roughness, and slope, at a 
prior timestamp. The output was the binary variable indicating 
if a storm cell of interest was covering the central pixel of the 
image patch at a now timestamp. To establish such a model, a 
2-dimensional (2D) CNN-based method was used. CNN is an 
ANN that uses mathematical convolution, instead of matrix 
multiplication, in at least one of its layers [50]. The 
convolutional responses are known as feature maps. For this 
application, a total of 12 classification models were trained in 
accordance with the CC, MCC, SLD, SLP, MSL, and All 
datasets given two prior times of 30 and 60 minutes. 

The architecture of the ML classification models consisted of 
2 input layers, 4 pairs of 2D convolutional and max pooling 
layers, 3 fully connected dense layers, and 1 output layer (Fig. 
4). The input layers included 1 layer of image patch and another 
layer of 22 input nodes corresponding to 17 variables listed in 
Table I and 5 topographic variables. After computations at 4 
pairs of convolutional and max pooling layers on an input 
image patch, 4 feature maps of the size of 3 by 3 were flattened 
to form 36 nodes that were further concatenated with the 22 
input nodes. The output layer produced an expected probability 
that the central pixel of the input image patch belonged to the 
storm cell of interest. To derive such an expected probability, 
the logistic sigmoid activation function was used for the output 
layer: 
 fLS(x) = exp(x)

exp(x) + 1
. (17) 

Apart from the output layer, each node of a computational layer 
used the exponential linear unit (ELU) function as its activation 
function [51]: 
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 fELU(x) = {
x x > 0

exp(x) – 1 x ≤ 0. (18) 

The CNN-based classification model contained a total of 7,925 
trainable parameters for model calibration. 

 

Fig. 4. Architecture of the convolutional neural network-based 
machine learning classification model. 

 
To calibrate the ML classification models, a shallow training 

scheme was adopted. According to this scheme, an entire model 
training process for each ML classification model involved 80 
iterations. During each iteration, 20% of the 1 data points, i.e., 
data points with their output values equal to 1 indicating that 
the central pixel belonged to the storm cell of interest, were 
randomly selected from the training dataset without 
replacement. The same amount of 0 data points, i.e., data points 
with their output values equal to 0 indicating that the central 
pixel did not belong to the storm cell of interest, were randomly 
selected from the training dataset without replacement to match 
the number of selected 1 data points. The selected 1 and 0 data 
points were pooled to form a dataset. The pooled dataset was 
then used to train a same ML classification model with 5 epochs 
with the batch size of 64 before starting the next iteration. For 
training ML classification models, the Adam algorithm [47] 
was used for model calibration with the initial learning rate set 
at 5 × 10–4. To facilitate binary classification, the binary cross 
entropy (BCE) was used as the loss function: 
  BCE = – 1

ny
∑ [yiln(ŷi) + (1 – yi)ln(1 – ŷi)]

ny
i = 1 . (19) 

A probability threshold of 0.5 was adopted to convert the final 
output into a binary format. 

For validation, the trained ML classification models were 
applied to their corresponding validation datasets. 4 metrics, 
including the false positive rate (FPR) (20), precision (Prec) 
(21), recall (Reca) (22), and F1 score (F1) (23) were computed 
to indicate model performance: 
  FPR = FP

FP + TN
, (20) 

  Prec = TP
TP + FP

, (21) 

  Reca = TP
TP + FN

, (22) 

 F1 = 2 Prec Reca
Prec + Reca

, (23) 
where TP , FP , TN , and FN  referred to the numbers of true 
positives, false positives, true negatives, and false negatives, 
respectively. 

To predict the geographical distribution of a storm cell of 
interest, an image patch, of the same size of a training image 
patch, around each pixel of the image were created for a now 
moment. If an image patch only contained 0s, the state of its 
central pixel would be predicted to be 0 in the future. Otherwise, 
the image patch along with its associated values of 22 input 
variables was fed into the corresponding ML classification 
model to derive an expected probability of its central pixel 
being part of the storm cell of interest in the future. The 
probability threshold of 0.5 was then applied such that the 
central pixel was considered as part of the storm cell if its output 
value was greater than or equal to 0.5 and not part of the storm 
cell if otherwise. 
b. Nowcasting heavy rainfall 

The end products of the application of the trained ML models 
were maps showing the areas with potential heavy rainfall in 30 
or 60 minutes. To achieve this, the ML regression models for 
assessing variable importance were coupled with the ML 
classification models. Given values of input variables at a now 
moment, the ML classification model predicted the area of 
storm cell at a future timestamp. In the meantime, the ML 
regression models estimated the rain rate at the same future 
timestamp. A warning was then issued for the storm cell area, 
if the predicted top 10% mean rain rate was greater than or equal 
to 30 mm/h. 

IV. RESULTS AND DISCUSSION 
Subsequent to delineation of the methodology of this study, 

this section displays and discusses the results of implementation 
of the proposed methodology. These results include the 
quantification of importance of input variables of ML 
regression models for nowcasting heavy rainfall, the validation 
of ML regression modeling for variable importance, the 
validation of ML classification modeling for predicting 
locations of storm cells, and an example of application of ML 
regression and classification models to issue early warning for 
an area with potential of experiencing heavy rainfall. 

A. Variable Importance 
With the permutation importance algorithm, 100 results of 

the relative importance of each input variable of the ML 
regression models in nowcasting heavy rainfall can be derived 
and displayed through box plots. Fig. 5 shows an example of 
such a box plot for the ANN model for top 10% mean rain rate 
of CC dataset with the 60-minute forecasting time. The 
horizontal axis indicates the importance score IS . For 
comparison of variable importance, the mean values of variable 
importance were computed and ranked for each model (see, 
e.g., Table II for nowcasting mean rain rate with CC dataset and 
30-minute forecasting time). For each combination of output 
variable, storm cell type, and forecasting time, the sum of the 
mean importance of each input variable was derived across all 
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5 ML regression models. The sums of ranks of input variables 
across the ML regression models were then ranked to indicate 
the importance of input variables across the adopted ML 
regression models. These total rankings of the input variables 
were finally listed in Table III across different models. 

 
Fig. 5. Box plot of permutation importance of input variables 
of the ANN model for nowcasting top 10% mean rain rate with 
the CC dataset and the forecasting time of 60 minutes. 

 
TABLE II 

EXAMPLE OF RANKINGS OF PERMUTATION IMPORTANCE OF 
INPUT VARIABLES BY MODELS 

Variable Lasso RFR Linear 
SVR 

RBF 
SVR ANN Sum Total 

Rank 
MeanRR 1 1 1 1 1 5 1 
Volume 2 6 2 6 6 22 2 
MaxVIL 3 9 3 4 4 23 3 
MeanZ 5 11 4 3 3 26 4 
Base 7 5 6 5 7 30 5 
Rmj 6 3 5 11 8 33 6 

Top10% 12 2 16 2 5 37 7 
Area 4 13 15 12 2 46 8 
Rmn 14 7 7 10 9 47 9 

MaxZ 11 8 10 9 10 48 10 
AvgVIL 8 4 9 14 13 48 10 
MaxZhgt 15 10 8 8 15 56 12 

Top 13 15 14 7 11 60 13 
U 10 16 12 17 12 67 14 
V 9 12 17 13 16 67 14 

Theta 16 14 13 15 17 75 16 
Direction 17 17 11 16 14 75 16 
 

TABLE III 
TOTAL RANKINGS OF PERMUTATION IMPORTANCE OF INPUT 

VARIABLES FOR NOWCASTING RAINFALL 

Variable 

CC MSL 

Mean Rain 
Rate 

Top 10% 
Mean Rain 

Rate 

Mean Rain 
Rate 

Top 10% 
Mean Rain 

Rate 

30 
Min 

60 
Min 

30 
Min 

60 
Min 

30 
Min 

60 
Min 

30 
Min 

60 
Min 

Rmj 6 7 7 6 8 4 7 4 
Rmn 9 7 12 13 4 5 10 8 

Theta 16 16 14 16 16 16 16 11 
MeanZ 4 3 4 3 2 6 3 6 
Area 8 12 8 8 10 8 8 9 

Volume 2 3 5 5 6 3 6 3 
Top 13 10 10 7 13 10 5 10 
Base 5 6 5 4 7 11 11 13 
MaxZ 10 15 9 9 8 7 8 5 

MaxZhgt 12 13 13 11 15 12 14 15 
AvgVIL 10 9 11 12 11 15 12 14 
MaxVIL 3 3 3 2 5 9 4 7 

U 14 14 15 15 17 14 17 15 
V 14 11 15 10 12 17 13 17 

Direction 16 17 17 17 14 13 15 11 
MeanRR 1 1 2 13 1 1 2 2 
Top10% 7 2 1 1 3 2 1 1 
 
In Table III, the column of CC mean rain rate 30 min 

corresponded to the column of total rank in Table II. The other 
columns of Table III were the results of total ranks from other 
tables of rankings of permutation importance produced in the 
study. Here, as an example, the storm area averaged reflectivity 
(MeanZ) was shown to be more important in general than the 
direction of the shortest radius axis (Theta), as the total ranks of 
storm area averaged reflectivity were consistently much smaller 
than the ones of direction of the shortest radius axis in Table III. 

In addition to the mean importance score, whether input 
variables were selected as pertinent predictors can also be used 
to indicate the relative importance of the input variables (see, 
e.g., Table S1 for nowcasting mean rain rate with CC dataset 
and 30-minute forecasting time). In Table S1, a selection score, 
either 1 or 0, was assigned to a variable (a row) and a model 
(columns Lasso to ANN) if the variable was selected by the 
model or not, respectively. Then, the sums of selection scores 
were computed and ranked. Table IV lists the total rankings of 
the sum of selection scores of input variables across different 
models. 

 
TABLE IV 

TOTAL RANKINGS OF SELECTIONS OF INPUT VARIABLES FOR 
NOWCASTING RAINFALL 

Variable 

CC MSL 

Mean Rain 
Rate 

Top 10% 
Mean Rain 

Rate 

Mean Rain 
Rate 

Top 10% 
Mean Rain 

Rate 
30 

Min 
60 

Min 
30 

Min 
60 

Min 
30 

Min 
60 

Min 
30 

Min 
60 

Min 
Rmj 1 6 1 7 4 5 1 1 
Rmn 11 6 11 11 4 1 10 11 

Theta 17 17 13 16 16 13 14 6 
MeanZ 1 1 1 1 1 5 5 1 
Area 8 13 8 11 9 9 5 6 

Volume 1 1 1 1 9 1 10 1 
Top 11 6 8 7 13 9 5 14 
Base 1 6 1 1 1 13 5 11 
MaxZ 8 13 11 1 4 5 5 6 

MaxZhgt 8 6 13 7 13 13 14 17 
AvgVIL 1 6 8 11 9 9 10 6 
MaxVIL 1 1 1 1 9 5 1 6 

U 15 13 16 11 16 9 17 16 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3231125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

V 11 6 13 7 4 16 10 14 
Direction 15 16 17 16 13 16 14 11 
MeanRR 1 1 1 15 1 1 1 1 
Top10% 11 1 1 1 4 1 1 1 
 
In Table IV, for example, the column of CC mean rain rate 

30 min recorded the result of the column of total rank in Table 
S1. The other columns of Table IV corresponded to the columns 
of total rank of other tables of rankings of variable selection 
generated in the study. Here, similar to Table III, Table IV also 
indicated that the storm area averaged reflectivity was more 
important in general than the direction of the shortest radius 
axis, as the total ranks of variable selection of storm area 
averaged reflectivity were consistently much smaller than the 
ones of direction of the shortest radius axis. 

For nowcasting mean rain rate for CC cells with 30-minute 
input, radar variables of storm area volume, storm area 
maximum vertically integrated liquid water, storm area 
averaged reflectivity, echo bottom height, and the longest 
radius were identified as pertinent predictors (Tables III and 
IV). With input of 60 minutes prior, radar variables of storm 
area averaged reflectivity, storm area volume, and storm area 
maximum vertically integrated liquid water were determined to 
be important predictors of mean rain rate for CC cells (Tables 
III and IV). 

For nowcasting the output variable of top 10% mean rain 
rate, the list of the most important radar variables was similar 
to the one for mean rain rate for CC storm cells. The 30-minute 
models identified the storm area maximum vertically integrated 
liquid water, storm area averaged reflectivity, storm area 
volume, echo bottom height, and the longest radius as the 
pertinent predictors (Tables III and IV). The 60-minute models 
highlighted the storm area maximum vertically integrated liquid 
water, storm area averaged reflectivity, echo bottom height, and 
storm area volume as the most important radar variable 
predictors (Tables III and IV). 

With the MSL datasets, the calibration of ML regression 
models resulted in a different list of the most pertinent radar 
variable predictors of mean rain rate as with the CC datasets. In 
particular, the shortest radius was identified as a highly 
important predictor by the ML regression models calibrated 
with the MSL datasets (Tables III and IV). In addition to the 
shortest radius, the 30-minute models with MSL datasets 
identified the storm area averaged reflectivity, echo bottom 
height, the longest radius, and the storm area maximum 
reflectivity as the most pertinent radar variable predictors, 
despite that the rankings and selections of the input variables 
were not perfectly consistent with each other. On the other 
hand, the 60-minute models produced consistent results for both 
rankings and selections of input variables, as they identified the 
storm area volume, longest radius, shortest radius, storm area 
averaged reflectivity, and storm area maximum reflectivity as 
the most important radar variable predictors. 

For nowcasting the top 10% mean rain rate with the MSL 
datasets, the 30-minute models identified the storm area 
averaged reflectivity, storm area maximum vertically integrated 
liquid water, and echo top height as the important radar 

variables (Tables III and IV). Meanwhile, the 60-minute models 
highlighted storm area volume, longest radius, storm area 
maximum reflectivity, and storm area averaged reflectivity as 
the pertinent radar variable predictors of top 10% mean rain rate 
(Tables III and IV). 

According to the ranking aggregations, the most commonly 
identified pertinent radar input variables were storm area 
averaged reflectivity and storm area volume. Then, radar 
variables of storm area maximum vertically integrated 
liquid water, echo bottom height, and longest radius were 
also highlighted as highly important predictors. The 
identification of these radar variables as important predictors of 
mean rain rate and top 10% mean rain rate echoed the rationale 
for using products on these radar variables to model and 
indicate rainfall distributions. On the other hand, the radar 
variables examined to be of medium importance included 
shortest radius and storm area maximum reflectivity. The less 
important radar variables were echo top height, storm area 
and storm area averaged vertically integrated liquid water. 
Lastly, the radar variables ranked as the least important for 
nowcasting heavy rainfall included the maximum reflectivity 
height, zonal component of cell motion velocity, meridional 
component of cell motion velocity, direction of the shortest 
radius axis, and storm propagation direction. 

Here, interestingly, the directions and velocities of a storm 
cell were considered the least important predictors. Regarding 
the directions of storm cells, because the convective storms 
recorded in the data tended to have similar directions, these 
variables did not provide information with sufficient variation 
for the ML regression models to predict rainfall. Meanwhile, 
although velocities of storm cells were considered trivial in 
nowcasting rain rate in our study, they should still be treated as 
important factors in flood management, as slow-moving heavy 
storms tend to result in flood conditions. 

The rankings of highly important input variables based on 
aggregation across all ML regression models look similar to a 
large extent in general. Given the same storm cell type and prior 
time, the rankings of important radar variables for nowcasting 
mean rain rate and top 10% mean rain rate were similar. 
Likewise, for a same output variable with the same dataset, ML 
regression models of different prior times of input also 
produced similar rankings of input variables. Regarding 
different storm cell types, however, the rankings for CC and 
MSL datasets did differ from each other, given the same output 
variable and prior time. 

Despite the similar identifications of relative importance of 
radar variables and the other input variables in general, each 
individual ML regression model tended to rank the variable 
importance in a slightly different manner. For example, for 
nowcasting top 10% mean rain rate with CC dataset and 60-
minute input values, although the Lasso, linear SVR, and ANN 
models all identified the storm area volume as highly important, 
both the RFR and RBF SVR models ranked this input variable 
as the 12th important. Such a difference may be associated with 
the capabilities of the corresponding ML regression models to 
handle non-linearities of input variables. In this study, the Lasso 
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and linear SVR models were linear, while RFR and RBF SVR 
models were non-linear. Meanwhile, the MLP ANN model with 
only one hidden layer was close to a liner model. Nevertheless, 
the differences between the rankings of variable importance for 
individual ML regression models were small. 

In this study, although we used a dual-polarimetric radar to 
collect data on input variables of ML regression models, 
information on these variables can also be obtained via a 
conventional weather radar. We did not include data produced 
exclusively by a dual-polarimetric radar because our data 
should be consistent with the variables used for the FAST 
algorithm, while the FAST algorithm only required data that 
could be produced by a conventional weather radar. Future 
work needs to examine to what extent additional variables 
generated only by a dual-polarimetric radar, such as differential 
reflectivity and specific differential phase, may improve the 
predictive performance of ML regression models for 
nowcasting rainfall. 

B. Regression Modeling Validation 
For validation of ML regression models for nowcasting mean 

rain rate and top 10% mean rain rate, the model performance 
was compared to a benchmark, where the rain rate of storm cell 
was matched with the time delay of forecasting time of 30 or 60 
minutes (e.g., 30-minunte prior mean rain rate vs. current mean 
rain rate). The benchmark represented the accuracy of perfect 
advection forecasting without ML regression models. As an 
example, Fig. 6(a) shows the results of the benchmark for CC 
storm cells with input values of 30 minutes prior. For a perfect 
model, the data points would align along the one-to-one dashed 
lines. For CC storm cells, Figs. 6(b)–(f) display the validation 
results of the 30-minute forecasting with the ML regression 
models. For CC storm cells, the ML regression models adopted 
in the study resulted in better validation performance than the 
benchmark model for most of the cases (see, e.g., Tables V–
VI). In particular, the RBF SVR and ANN models provided the 
best prediction results with the 60-minute and 30-minute input 
values, respectively. 

 

 

 
Fig. 6. Performance of models with 30-minute data for CC 
storm cells. (a) Benchmark MeanRR (left) and Top10% (right). 
(b) Lasso MeanRR (left) and Top10% (right). (c) RFR MeanRR 
(left) and Top10% (right). (d) Linear SVR MeanRR (left) and 
Top10% (right). (e) RBF SVR MeanRR (left) and Top10% 
(right). (f) ANN MeanRR (left) and Top10% (right). 

 
TABLE V 

VALIDATION PERFORMANCE FOR MEAN RAIN RATE BY 
MODELS WITH 30-MINUTE CC DATASET 

Model MAE MAPE MSE R2 
Benchmark 3.14×102 5.35×10–1 2.62×105 4.91×10–1 

Lasso 2.88×102 4.35×10–𝟏 2.62×105 4.91×10–1 
RFR 2.90×102 4.39×10–1 2.38×105 5.36×10–1 

Linear SVR 2.86×102 4.57×10–1 2.37×105 5.39×10–1 
RBF SVR 2.89×102 4.49×10–1 2.53×105 5.07×10–1 

ANN 2.86×102 4.39×10–1 2.17×105 5.77×10–𝟏 
Note: Italic indicates better performance than benchmark 
model; bold indicates best performance regarding a metric. 

 
TABLE VI 

VALIDATION PERFORMANCE FOR TOP 10% MEAN RAIN 
RATE BY MODELS WITH 30-MINUTE CC DATASET 

Model MAE MAPE MSE R2 
Benchmark 9.62×102 8.42×10–1 2.37×106 3.50×10–1 

Lasso 8.45×102 6.40×10–𝟏 1.97×106 4.60×10–1 
RFR 8.48×102 6.42×10–1 1.90×106 4.78×10–1 

Linear SVR 8.46×102 6.93×10–1 1.91×106 4.76×10–1 
RBF SVR 8.40×102 6.72×10–1 1.86×106 4.90×10–1 

ANN 8.43×102 6.58×10–1 1.81×106 5.03×10–𝟏 
Note: Italic indicates better performance than benchmark 
model; bold indicates best performance regarding a metric. 

 
For MSL storm cells, as another example, Fig. 7(a) displays 

the performance results of benchmark, comparing the current 
values of output variables with the values of 30 minutes prior. 
The validation results of ML regression models for 30-minute 
nowcasting are presented in Figs. 7(b)–(f). For most of the cases 
for MSL storm cells, the adopted ML regression models 
produced better validation performance than the benchmark 
model (see, e.g., Tables VII–VIII). Apart from RFR, all the 
other ML regression models resulted in the best performance on 
some occasions. Regarding the coefficient of determination, for 
example, the RBF SVR, ANN, linear RBF, and Lasso models 
produced respectively the best results for 30-minute mean rain 
rate, 60-minute mean rain rate, 30-minute top 10% mean rain 
rate, and 60-minute top 10% mean rain rate. These validation 
results suggested that inclusion of radar variables in ML 
regression models was effective and significant in improvement 
of model performance for nowcasting mean rain rate and top 
10% mean rain rate, in comparison with merely using the output 
variable values at a prior time. 
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Fig. 7. Performance of models with 30-minute data for MSL 
storm cells. (a) Benchmark MeanRR (left) and Top10% (right). 
(b) Lasso MeanRR (left) and Top10% (right). (c) RFR MeanRR 
(left) and Top10% (right). (d) Linear SVR MeanRR (left) and 
Top10% (right). (e) RBF SVR MeanRR (left) and Top10% 
(right). (f) ANN MeanRR (left) and Top10% (right). 

 
TABLE VII 

VALIDATION PERFORMANCE FOR MEAN RAIN RATE BY 
MODELS WITH 30-MINUTE MSL DATASET 

Model MAE MAPE MSE R2 
Benchmark 2.50×102 1.98×10–1 2.06×105 5.78×10–1 

Lasso 2.40×102 1.86×10–1 1.64×105 6.63×10–1 
RFR 2.46×102 1.86×10–1 1.49×105 6.96×10–1 

Linear SVR 2.38×102 1.85×10–𝟏 1.73×105 6.45×10–1 
RBF SVR 2.46×102 1.86×10–1 1.46×105 7.00×10–𝟏 

ANN 2.44×102 1.86×10–1 1.49×105 6.95×10–1 
Note: Italic indicates better performance than benchmark 
model; bold indicates best performance regarding a metric. 

 
TABLE VIII 

VALIDATION PERFORMANCE FOR TOP 10% MEAN RAIN 
RATE BY MODELS WITH 30-MINUTE MSL DATASET 
Model MAE MAPE MSE R2 

Benchmark 9.66×102 2.72×10–1 2.49×106 7.04×10–1 
Lasso 9.05×102 2.49×10–𝟏 2.08×106 7.53×10–1 
RFR 9.72×102 2.51×10–1 2.69×106 6.81×10–1 

Linear SVR 8.97×102 2.50×10–1 2.06×106 7.55×10–𝟏 
RBF SVR 9.63×102 2.56×10–1 2.53×106 7.00×10–1 

ANN 9.54×102 2.57×10–1 2.25×106 7.32×10–1 
Note: Italic indicates better performance than benchmark 
model; bold indicates best performance regarding a metric. 

 
Regarding the predictive performances of ML regression 

models with different prediction time, our study showed that, 
consistently with intuition, the 30-minute models produced 
significantly better validation metric values than the 60-minute 
models. As per different ML regression modeling methods, 
they resulted in similar predictive performances in general. No 

single method was shown to be consistently superior to the 
others in terms of the validation metrics. However, RFR was 
less successful than the other methods in producing best metric 
values across all circumstances of model calibrations. This 
result implied that most of the ML regression methods were 
potentially capable of nowcasting rainfall. Whether one method 
led to a better predictive performance than another one was to 
a large extent stochastically determined by the specific dataset 
used for model calibration. 

C. Classification Modeling  
Validation of the ML classification models was achieved via 

derivation of the metrics of false positive rate (20), precision 
(21), recall (22), and F1 score (23) on the validation datasets. 
Tables IX and X display the model performance for input of 30 
minutes and 60 minutes prior, respectively. Each row 
corresponds to the result of an ML classification model 
calibrated with a specific storm cell type. 

 
TABLE IX 

PERFORMANCE OF 30-MINUTE CLASSIFICATION MODELS 
Model False Positive 

Rate Precision Recall F1 Score 

CC 0.12 0.13 0.91 0.23 
MCC 0.13 0.66 0.87 0.75 
SLD 0.09 0.57 0.59 0.58 
SLP 0.09 0.58 0.80 0.67 
MSL 0.14 0.63 0.88 0.73 
All 0.15 0.50 0.93 0.65 

 
TABLE X 

PERFORMANCE OF 60-MINUTE CLASSIFICATION MODELS 
Model False Positive 

Rate Precision Recall F1 Score 

CC 0.21 0.08 0.80 0.14 
MCC 0.22 0.55 0.79 0.65 
SLD 0.12 0.41 0.60 0.49 
SLP 0.13 0.45 0.67 0.54 
MSL 0.23 0.53 0.82 0.65 
All 0.22 0.46 0.86 0.60 

 
Among models for individual storm cell types of CC, MCC, 

SLD, and SLP, CC models resulted in the poorest performance, 
as manifested by the lowest F1 scores (Tables IX and X). 
Despite with the highest recalls, CC models yielded the lowest 
precisions. This was because CC storm cells were much smaller 
than the storm cells of other types. Although false positives of 
CC models were relatively small with respect to all pixels of an 
image, the true positives were also small such that the predicted 
area of a storm cell tended to be much larger relative to the 
observed area of the storm cell than in the cases of the other 
storm cell types. 

Unlike CC models, the MCC models produced the highest 
precisions as well as high recalls, resulting in the best F1 scores 
among the models for the 4 individual types of storm cells for 
both 30-minute (Table IX) and 60-minute predictions (Table 
X). This was not only because MCC storm cells were much 
larger than the CC storm cells but also because there were much 
more data points with a better representation of the time period 
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of data to train the MCC models than the data points for training 
the SLD and SLP models. Fig. 8 shows an example of the 
classification modeling to produce a 30-minute prediction for 
an MCC storm cell. 

 

 
Fig. 8. Example of classification modeling for predicting 
location of an MCC storm cell with the MCC model at 
timestamp of KST 2020-09-09 07:20:00 with input data of 30 
minutes prior. (a) Detected previous and current storm cell 
locations. (b) Predicted storm cell location. 

 
With fewer data points for training than for the MCC models, 

the SLD and SLP models yielded slightly lower precisions and 
recalls than the MCC models. In spite of this, the SLD and SLP 
models produced the lowest false positive rates (Tables IX and 
X). To form larger datasets to train ML classification models 
for SLD and SLP storm cells, the MCC, SLD, and SLP datasets 
were pooled to form the MSL datasets. The MSL datasets were 
used to train the MSL models that resulted in even higher recalls 
than the MCC models while maintaining high precisions. 

Meanwhile, the All datasets were created by pooling datasets 
of all storm cell types. With the All datasets for each prior time, 
only one ML classification model was trained for all individual 
types of storm cells. Interestingly, the All models for prior times 
of 30 and 60 minutes both yielded the highest recalls among all 
considered models (Tables IX and X). Although the precisions 
of All models were lower than the ones of MCC, SLD, SLP, 
and MSL models, they were much improved compared to the 
ones of CC models. As a result, the All models produced good 
F1 scores. 

D. Early Warning 
Based on the calibrated ML regression models for 

nowcasting heavy rainfall given a storm cell and ML 
classification models for predicting locations of storm cells, a 
30-minute or 60-minute early warning of heavy rainfall may be 
issued when information on the input variables becomes 
available for computation. Fig. 9 shows an example of early 
warning, based on 30-minute and 60-minute nowcasting, with 
mapping of an area predicted to be covered by an SLD storm 
cell with potential of heavy rainfall with the application of the 
ANN model for assessment of variable importance and the SLD 
model for classification. 

 

 

 
Fig. 9. Example of early warning for an SLD storm cell with 
the ANN model for regression modeling and SLD model for 
classification modeling. Detected rainfall distributions are 
shown for timestamps of (a) KST 2020-07-19 06:00:00, (b) 
KST 2020-07-19 06:30:00, and (c) KST 2020-07-19 07:00:00. 
(d) 30-minute warning for KST 2020-07-19 06:30:00 based on 
data at KST 2020-07-19 06:00:00. (e) 60-minute warning for 
KST 2020-07-19 07:00:00 based on data at KST 2020-07-19 
06:00:00. 

 

V. CONCLUSIONS 
In this study, 5 ML regression modeling methods were used 

to assess the relative importance of radar variables derived from 
dual-polarimetric radar data in nowcasting 30-minute and 60-
minute heavy rainfall for the Korean Peninsula. Consistently 
with intuition, the 30-minute models were found to provide 
better predictions than the 60-minute models. For 
demonstration of their utility, the ML regression models were 
also coupled with ML classification models, that were used to 
predict locations of storm cells, to provide early warnings of 
heavy rainfall. Regression results showed that although linear 
and non-linear ML regression models may quantify the variable 
importance slightly differently, the rankings of important input 
variables determined by the regression models tended to 
converge in general. Radar variables of storm area averaged 
reflectivity, storm area volume, storm area maximum vertically 
integrated liquid water, echo bottom height, and longest radius 
were identified as highly important predictors of rainfall. 
Despite the commonly identified radar variables as pertinent 
predictors, regression results also indicated that the rankings of 
relative importance of radar variables were distinctive by storm 
cell type. This result suggests that rainfall nowcasting based on 
weather radar data needs to include MCS type information. As 
the classification results also showed different model 
performances among storm cell types, future work needs to 
focus on modeling separately for each MCS type to improve 
model performance in rainfall nowcasting and provision of 
early warnings of heavy rainfall. 
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Although the presented ML regression and classification 
models can be applied to produce early warnings of heavy 
rainfall, there are several issues around this application that are 
worth highlighting for practical purposes. First, the warning is 
based on the threshold of top 10% mean rain rate at 30 mm/h. 
To what extent this threshold can be explained as corresponding 
to the spectrum of hazard strength of a rainfall event at a 
timestamp remains unclear. Second, because the regression 
models for variable importance only produce predictions for an 
entire storm cell, the early warning is associated with the entire 
predicted area of the storm cell. However, the actual locations 
that may need an early warning may be only a fraction of the 
entire area of the storm cell. Third, as the precisions of the ML 
classification models are less than 0.7, these models still lack 
capabilities of providing highly reliable predictions of locations 
of storm cells so that there can be a high rate of false alarms for 
locations regarding warnings of heavy rainfall. To improve 
early warning modeling for heavy rainfall, future work needs to 
focus on resolving these issues. 
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