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ABSTRACT 

Learning-Based Modeling of Weather and Climate Events Related To El Niño Phenomenon via 

Differentiable Programming and Empirical Decompositions 

by Justin A. Le 

 

This dissertation is the accumulation of the application of adaptive, empirical learning-based 

methods in the study and characterization of the El Niño Southern Oscillation. In specific, it 

focuses on ENSO’s effects on rainfall and drought conditions in two major regions shown to be 

linked through the strength of the dependence of their climate on ENSO: 1) the southern Pacific 

Coast of the United States and 2) the Nile River Basin.  In these cases, drought and rainfall are 

tied to deep economic and social factors within the region.  The principal aim of this dissertation 

is to establish, with scientific rigor, an epistemological and foundational justification of adaptive 

learning models and their utility in the both the modeling and understanding of a wide-reaching 

climate phenomenon such as ENSO.  This dissertation explores a scientific justification for their 

proven accuracy in prediction and utility as an aide in deriving a deeper understanding of climate 

phenomenon.  In the application of drought forecasting for Southern California, adaptive 
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learning methods were able to forecast the drought severity of the 2015-2016 winter with greater 

accuracy than established models.  Expanding this analysis yields novel ways to analyze and 

understand the underlying processes driving California drought.  The pursuit of adaptive learning 

as a guiding tool would also lead to the discovery of a significant extractable components of 

ENSO strength variation, which are used with in the analysis of Nile River Basin precipitation 

and flow of the Nile River, and in the prediction of Nile River yield to p=0.038.  In this 

dissertation, the duality of modeling and understanding is explored, as well as a discussion on 

why adaptive learning methods are uniquely suited to the study of climate phenomenon like 

ENSO in the way that traditional methods lack.  The main methods explored are 1) differentiable 

Programming, as a means of construction of novel self-learning models through which the 

meaningfulness of parameters arises from emergent phenomenon and 2) empirical 

decompositions, which are driven by an adaptive rather than rigid component extraction 

principle, are explored further as both a predictive tool and as a tool for gaining insight and the 

construction of models. 
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 1 Introduction 

1.1 Goals of this Research 

In the time of changing climatological processes, it is more important than ever to augment 

traditional scientific models with what assistance computer-aided modeling can bring.  Sustainable 

development in the face of changing climate is critical on a humanitarian level, and even our 

limitations in our understanding of climatological processes like El Niño and our inability to 

properly model, study, and predict event outcomes poses critical problems to economic and 

agricultural agriculture. 

Amid this change, other fields have seen a surge in the success of learning-based models such as 

Artificial Neural Networks and empirical decomposition.  These adaptive methods are just now 

beginning to be used to great effect in climate modeling applications.  Born out of research in the 

1970’s, these methods were, at the time, limited by the computational power available and 

accessible at that time. However, as accessible computational power began to grow to a level to 

support advanced empirical methods, their usage in the sciences has grown.  Their success is not 

without controversy.  In climate modeling, especially, the role that machine learning and related 

models play alongside traditional scientific models is still being debated, discovered, and refined.  

Several characteristic limitations of adaptive models – such as their “black-bock” nature, their 

apparent inability to explain their results, and their probabilistic nature – are often barriers in their 

acceptance as legitimate or useful tools.  In this dissertation, we discuss what exactly the role of 

adaptive models – if any – must play in the landscape of climate science in the future, considering 

true cost in either case. 
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This dissertation first the application of such techniques to studying El Niño Southern Oscillation 

phenomenon as it relates to drivers of drought, runoff, and precipitation.  These issues are of very 

critical social, environmental, and geopolitical importance, often costing millions in damage, 

displaying many populations, and driving famines and other humanitarian crises.  Therefore, the 

application of learning-based models to not only modeling, but also helping to understand these 

phenomena are of high scientific and humanitarian priority.  
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 2 Background 

2.1 Drought 

Beginning with late 2011, California has been facing its most intense and severe drought since 

historical recordings began in 1895 (Richman et al., 2015). This drought is often compared to 

other significant droughts in California history, including the particularly long-lasting Dust Bowl 

drought of the late 1920s to early 1930s and the droughts in 1976 - 1977 and the late 1980s to 

early 1990s (Robeson, 2015). 

Short-term drought on its own is has pervasive negative impact on local ecosystems and 

economy, and also has impacts on issues of public health and recreation. However, long-term 

drought poses unique problems with regards to the loss of groundwater (which is effectively a 

non-renewable resource) and sinking of ground elevation due to depleted groundwater reservoirs. 

Griffin et al. (2014) found that although the recent drought is not the longest drought in recorded 

history, it is the singular most extreme one when comparing rainfall deficits. Recently, over 70% 

of the state suffered extreme and exceptional drought where normally wet seasons of the yearly 

climate cycle have been underwhelming (Richman et al., 2015; Robeson, 2015). The uniqueness 

of this drought season was confirmed by analyzing other drought predictors such as abnormal 

temperatures (Jeong et al., 2014; Shukla et al., 2015). Howitt et al. (2015) estimated the 

economic damage to the 2015 agriculture caused by the drought to be $1.8 billion, with a total 

statewide economic cost for the same period of $2.7 billion. This is a 23% increase compared to 

the $2.2 billion in losses incurred in 2014 due to similar drought conditions (Howitt et al., 2014). 
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Furthermore, it is also estimated that as many as 21,000 agricultural and related jobs were lost in 

2015, up 23% from 17,000 jobs lost in 2014. According to the Center for Watershed Sciences at 

Davis, an additional $2.8 billion and 21,400 jobs are projected to be lost due to drought in 2016 

if conditions persist. Apart from socioeconomic losses, environmental losses are also anticipated. 

For example, as many as 58 million trees are in severe risk of dying in 2016 causing disastrous 

impacts on California ecology (Asner et al., 2015). Cook et al. (2015) suggests that the current 

drought trends could be the beginning of a larger drought taking place over the first half of the 

entire 21st century. 

 

2.2 El Niño 

On the other hand, the winter leading into 2016 was expected to bring heavy rain resulting from 

another powerful weather phenomenon, namely the El Niño Southern Oscillation (ENSO). 

ENSO affects tropical meteorological fields yet its influence is exerted by changing the 

largescale Walker circulation and associated convection and precipitation patterns (Slemr et al., 

2016). ENSO is a periodic fluctuation in global climate with of a period between 2 to 7 years, 

and is strongest throughout the boreal winter season of peak years (Capotondi et al., 2014). 

The ENSO effect on different regions of the globe is highly varied, but in California, strong El 

Niño seasons often manifest as periods of extreme and anomalous precipitation (El-Askary et al., 

2004; El-Askary et al., 2013). A recent past El Niño event, during the winter of 1997 – 1998, led 

to extreme flooding in Los Angeles and caused multiple deaths and billions of dollars in flooding 

and related damages (Changnon, 1999). The (2015 – 2016) El Niño season has been projected by 

many to be abnormally strong (Hoell et al., 2016; Zhenya et al., 2015; Climate.gov, 2015). 
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However, the exact strength of that season is still investigated in the context of the previous 

strong (1997-1998) El Niño season. It is noteworthy that El Niño drives on average only about 

6% of the precipitation variability in California (Savtchenko et al., 2015). It is not guaranteed 

that El Niño has the potential to resolve the accumulated deficit of precipitation, which is 

presently equivalent to an entire year of precipitation. However, chances may improve in a 

strong El Niño that also coincides with the peak of the wet season in California (December-

February). Moreover, there is a large geographical difference in the anticipated impact of El 

Niño on California (Piechota and Dracup 1996; Piechota et al., 1997). Being able to accurately 

gauge the El Niño intensity is important for agricultural, development, and public safety 

planning applications. Despite several record examples of strong El Niño seasons, we believe 

that there are complex interactions of ENSO effects with a drought as intense as the current one 

affecting California. 

It is known that California prolonged drought resulted from a multi-year precipitation decline 

and anomalous warm temperatures, that in turn resulted from anomalously persisting high 

pressure in the East Pacific, which significantly changed the normally observed atmospheric 

circulation patterns. In this light, this research attempts to forecast the affect that the upcoming 

El Niño season will have on the continuing drought. 
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 3 Differentiable Programming 

3.1 General Overview 

Differentiable Programming is a powerful class of adaptive learning models based on the 

principle of training by gradient descent (LeCunn, 2018).  It is the automation of model 

trainability, allowing for an algorithmic process (through automatic differentiation) for the 

training of any arbitrary model.  It is analogous to the method of Maximum Likelihood 

Estimation for statistical modeling – the model is expressed as a function, and a mechanical and 

automatable process is derivable for transforming that function into a trainable model through 

gradient descent and sample-based optimization. 

  The Fundamental Model 

At its core, a model can be described as a parameterized function from input to output. 

𝑓𝑓𝑝𝑝(𝑥𝑥) = 𝑦𝑦 

The important feature of the model is that, for every choice of parameterization 𝑝𝑝, a different 

function 𝑓𝑓𝑝𝑝(𝑥𝑥) is produced.  In this light, the training (or estimation) of a model is the process of 

picking a 𝑝𝑝 that provides the most suitable 𝑓𝑓𝑝𝑝(𝑥𝑥) function. 

A classic example of this is linear regression: linear regression consists of the function 𝑓𝑓(𝑥𝑥) =

𝛽𝛽 + 𝛼𝛼𝑥𝑥, parameterized on 𝛼𝛼 and 𝛽𝛽.  The parameters are 𝛼𝛼 and 𝛽𝛽, the input is 𝑥𝑥, and the output is 

𝑦𝑦. 
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We can reframe 𝑓𝑓𝑝𝑝(𝑥𝑥) is as a partially applied 𝑓𝑓(𝑝𝑝, 𝑥𝑥).  To show this, we start with the final type: 

𝑓𝑓: (𝑃𝑃 × 𝐴𝐴) → 𝐵𝐵 

And curry the function, to recover the original formulation: 

𝑓𝑓:𝑃𝑃 → (𝐴𝐴 → 𝐵𝐵) 

The fundamental goal of model training, therefore, is to identify the correct 𝑝𝑝 to use, based on 

pairs of observables (𝑥𝑥,𝑦𝑦). It is the art of picking the best p to explain observation.  This 

quantification of the “best” can be described using a loss function.  One common example is the 

squared error:  

(𝑓𝑓𝑥𝑥(𝑝𝑝) − 𝑦𝑦𝑥𝑥)2 

In general, picking the best parameter for the model involves picking the 𝑝𝑝 that minimizes the 

relationship: 

loss�𝑦𝑦𝑥𝑥,𝑓𝑓𝑥𝑥(𝑝𝑝)� 

  Fundamental Advantage 

The major revelation we gain from using this formulation is that 𝑓𝑓 itself (and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) may 

automatically differentiable (using automatic differentiation techniques available in many 

programming languages and frameworks).  Furthermore, function composition (and higher-

ordered curried function composition) is closed with respect to differentiability.  And in the 

specification of 𝑓𝑓 as a function within a computational context, we arrive at its gradient without 
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extra work – and with a computable gradient, one may apply a method such as Stochastic 

Gradient Descent. 

If we get the gradient of the loss with respect to 𝑝𝑝 (∇𝑝𝑝loss(𝑓𝑓𝑥𝑥(𝑝𝑝),𝑦𝑦𝑥𝑥)), there is now a principled 

method of stochastic gradient descent: 

1. Start with an initial guess at the parameter 

2. Look at a random (𝑥𝑥,𝑦𝑦𝑥𝑥) observation pair. 

3. Compute the gradient ∇𝑝𝑝loss(𝑓𝑓𝑥𝑥(𝑝𝑝),𝑦𝑦𝑥𝑥) of our current 𝑝𝑝, which tells us a direction 

we can “nudge” 𝑝𝑝 in to make the loss smaller. 

4. Nudge 𝑝𝑝 in that direction 

5. Repeat from #2 until satisfied 

As normal parameterized functions, such functions compose. 

𝑓𝑓𝑃𝑃 :𝐵𝐵 → 𝐶𝐶
𝑔𝑔𝑄𝑄 :𝐴𝐴 → 𝐵𝐵

(𝑓𝑓 ∘ 𝑔𝑔)𝑃𝑃×𝑄𝑄 :𝐴𝐴 → 𝐶𝐶
 

And this is closed with respect to differentiability. 

A curious case is observable in multivariate linear regression: 

𝑓𝑓𝐴𝐴𝐴𝐴(𝐱𝐱) = 𝐵𝐵𝐱𝐱 + 𝐴𝐴 

We can note that this is exactly the internal part of a fully-connected Feed Forward Artificial 

Neural Network layer, from literature.  If this is post-composed with a non-linear 

(unparameterized) activation function, this is exactly an FF ANN Layer.  When multiple such 
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functions are composed together, this is a feed-forward artificial neural network.  And through 

principles of automatic differentiation, the gradient is derivable for free, and access to SGD is 

instantly available as well. 

  Time-Series Models 

A logical step from here (that is relevant to the topic of this dissertation) would be the adaptation 

of this framework to time-series data.  One straightforward attempt may be to directly 

parameterize on time: 

𝑓𝑓𝑝𝑝(𝑥𝑥, 𝑡𝑡) = 𝑦𝑦 

However, this data model is not quite desirable for expressing an empirical time series data set, 

because it does not encode the notation of causality.  For a causal structure, 𝑓𝑓(𝑡𝑡1) cannot 

explicitly depend on any 𝑡𝑡2 > 𝑡𝑡1.  One method of embedding causality into the structure of  a 

model is to instead thread explicit state: 

𝑓𝑓𝑝𝑝(𝑥𝑥, 𝑙𝑙old) = (𝑦𝑦, 𝑙𝑙new) 

𝑓𝑓: (𝑃𝑃 × 𝐴𝐴 × 𝑆𝑆) → (𝐵𝐵 × 𝑆𝑆) 

By careful selection of state and input, we can construct any causality-preserving time series 

model explicitly.  For example, an autoregressive model with degree 2 can be expressed as: 

𝑙𝑙𝑡𝑡 = 𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1𝑙𝑙𝑡𝑡 + 𝜙𝜙2𝑙𝑙𝑡𝑡−1 

with parameters 𝜙𝜙1,𝜙𝜙_2.  In the explicit functional form, this is written as: 
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𝑓𝑓𝑐𝑐,𝜙𝜙1,𝜙𝜙2(𝑥𝑥, 𝑙𝑙) = (𝑐𝑐 + 𝜙𝜙1𝑥𝑥 + 𝜙𝜙2𝑙𝑙, 𝑥𝑥) 

A slightly more complex example is the fully-connected Recurrent Neural Network layer from 

literature, which has state dependence: 

𝑙𝑙𝑡𝑡 = 𝜎𝜎(𝑦𝑦𝑡𝑡)
𝑦𝑦𝑡𝑡 = 𝑊𝑊𝑥𝑥𝐱𝐱𝑡𝑡 + 𝑊𝑊𝑠𝑠𝐬𝐬𝑡𝑡−1 + 𝐛𝐛 

Parameterized on 𝑊𝑊𝑥𝑥 and 𝑊𝑊𝑠𝑠 matrices and vector 𝐛𝐛. When expressed in explicit functional form, 

this is: 

𝑓𝑓𝑊𝑊𝑥𝑥,𝑊𝑊𝑠𝑠,𝐛𝐛(𝐱𝐱, 𝐬𝐬) = �𝑊𝑊𝑥𝑥𝐱𝐱 + 𝑊𝑊𝑠𝑠𝐬𝐬 + 𝐛𝐛,𝜎𝜎(𝑊𝑊𝑥𝑥𝐱𝐱 + 𝑊𝑊𝑠𝑠𝐬𝐬 + 𝐛𝐛)� 

While this stateful encoding is useful on its own right, it is unsatisfactory in its unification with 

the previous formulation of stateless models.  While automatic differentiation can be applied, the 

application of stochastic gradient descent or related training algorithms are not directly possible.  

We would like a way to unit both stateful and stateless models under the same framework. 

A breakthrough can emerge when we begin treating these functions as simply differentiable 

functions, where we are able to perform manipulations on them in any way closed to 

differentiability. 

For example, consider a method 𝑅𝑅[_] of promoting a stateless function into a stateful function by 

closing off a component of its input as state: 

𝑓𝑓𝑃𝑃 : (𝐴𝐴 × 𝐵𝐵) → 𝐵𝐵
𝑅𝑅[𝑓𝑓𝑃𝑃]𝐴𝐴 :𝐴𝐴 → 𝐵𝐵  
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𝑅𝑅[_] here transforms a parameterized model on a tuple into a parameterized stateful model, with 

its state as the previous output. This previous output is fed to the original function, and its input 

becomes only the component of the tuple that is not pre-determined by previous state. 

At the initial onset, this shows promise as a useful tool, because applying it to linear regression 

yields auto-regressive models directly.  It can be therefore said that an auto-regressive model is 

simply the application of 𝑅𝑅[_] to linear regression. 

Another method of promoting a stateless model to a stateful model is to feed back a history of its 

recent outputs: 

𝑓𝑓𝑃𝑃 :ℝ𝑛𝑛+1 → 𝐵𝐵
𝐿𝐿[𝑓𝑓𝑃𝑃]ℝ𝑛𝑛 :ℝ → 𝐵𝐵  

The input then becomes only a single component of the original vector; the other components are 

fixed to be the history of the function’s previous input.  A testament of this method’s 

significance is the fact that applying 𝐿𝐿[_] to multivariate linear regression yields moving-average 

models.  It can therefore be said that a moving average model is simply the application of 𝐿𝐿 to a 

multivariate linear regression.  Furthermore, the application of 𝐿𝐿 and 𝑅𝑅 together (sequentially) on 

a multivariate linear regression yields Autoregressive Moving-Average models. 

  Model Unification 

At this point we have provided a method of conversion from stateless models to stateful models, 

in a way that we can construct a wide class of stateful models as simply mathematical 

transformation of stateless models.  However, our original application (training via stochastic 

gradient descent) is not applicable to stateful models.  We must therefore now present a method 

of conversion in the other direction, in order to fulfil the original promise of this formulation. 
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First, consider two ways of transforming a stateful model 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 over a sequence of 𝐴𝐴𝑛𝑛, 

presented as a time series.  One would sequence the output of the state from the first 𝐴𝐴 as the 

input state for the second, etc.  One variation in choice would be to transform it into either 

𝑆𝑆[𝑓𝑓]:𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 and collect each resulting 𝐵𝐵, or as 𝑆𝑆[𝑓𝑓]:𝐴𝐴𝑛𝑛 → 𝐵𝐵 and only keep the final output.  

In this sense, we have converted a stateful function on a single input into a stateful function on a 

time-series slice of input. 

The result of this is the explicit statefulness of the resulting function is now embedded directly 

into the function itself, and no longer in the explicit input and output state.  At this point, we may 

convert our final stateful (𝐴𝐴𝑛𝑛 × 𝑆𝑆) → (𝐵𝐵𝑛𝑛 × 𝑆𝑆) into a stateless function by either: 

• Simply dropping the state, yielding 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 

• Treating the state as a trainable parameter, yielding (𝐴𝐴𝑛𝑛 × 𝑆𝑆) → 𝐵𝐵.  This is possible 

because differentiability is preserved over tuples. 

The successive application of extending the function over a time series and then removing the 

state through one of the two methods above effectively turns a stateful model 𝐴𝐴 → 𝐵𝐵 on single 

points of input into a stateless model 𝐴𝐴𝑛𝑛 → 𝐵𝐵𝑛𝑛 on a time series slice of inputs.  This final form is 

completely differentiable and trainable using stochastic gradient descent.  This transformation in 

literature was independently formulated as “backpropagation over time”.  In this formulation, it 

requires no explicit extra derivation, since it is an automatic result of simple manipulations of 

differentiable functions through operations closed with respect to differentiability. 

Now, let us go over the class of models – artificial neural networks – that this method subsumes, 

as useful tools in their own rights. 
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3.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are a class of models roughly said to be inspired by 

“biological neural networks” – that is, the mechanisms and structure of neurons in an animal 

brain. In its modern interpretation, the definition of an artificial neural network has come to 

encompass a wide family of parameterized functions that are composed of several internal 

composed parameterized functions sequenced after each other (or in parallel with each other), 

where each layer of processing typically is interpreted as transformations of interconnected 

nodes, which output signals based on a weighted sum (or linear combination) of input signals 

from the previous input layer. 

The process of training an ANN involves selecting the proper set of weights to parameterize each 

layer such that the inputs and outputs of the network properly model the function or phenomenon 

in question. A neural network designed for facial recognition would subject an input image to 

several linear and non-linear transformations parameterized in such a way that the output 

produces a vector identifying the face in the input image. 

The strength of the ANN approach comes from the mathematical simplicity of the internal 

functions that compose a network; their analytic structure allows one to easily differentiate the 

error of a network’s output with respect to each internal parameter, allowing for several forms of 

gradient descent and hill-climbing to be effective in optimizing a network for an ideal set of 

weights and parameters. Given a source of inputs and their expected outputs, one may compute 

the optimal parameterization for a network to model the relationship exactly by iterating a greedy 

hill-climbing strategy between different inputs and network errors. 
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The wide variety of different approaches to the implementation of artificial neural networks in 

practice comes from the wide array of possible configurations and properties of such internal 

layers and functions. By selecting different types of internal layers, one may adapt an ANN for a 

wide variety of problems. 

Common applications of ANNs involve feed-forward networks trained with backpropagation 

(Cigizoglou et al., 2004). ANNs have been applied several times to rainfall and precipitation 

forecasting (Nastos et al., 2014; Bodri et al., 2000; Luck et al., 2000; Silverman et al., 2000; 

Sakellariou et al., 2004; Cigizoglou et al., 2004; Moustris et al., 2011). Badjate et al. (2009) 

explored RNNs for predicting precipitation and chaotic time series like sun spot occurrences. 

Different ANN topologies has been used to forecast extreme precipitation events and total 

precipitation levels, including recurrent Elman Networks (Maqsood et al., 2004) and Long-Term 

Short-Term Recurrent models (Nastos et al., 2014). 

Artificial Neural Networks — both their feed-forward and recurrent varieties — have been used 

extensively in literature, to much success. This research attempts to show yet another important 

application for a pivotal winter season, to add to the body of research proving their success. In 

addition to this, however, this research also aims to show that the application of artificial neural 

networks (especially recurrent ones) can also have profound impacts on our understanding of 

these systems, and can be used as an aid to drive scientific development and research and help 

the discovery the of new indices and phenomenon. 

3.3 Feed-Forward Neural Networks 

The traditional feed forward neural network can be thought of as a universal function 

approximator, and is shown to be able to approximate any function 𝑓𝑓:ℝ𝑛𝑛 → ℝ𝑚𝑚 to arbitrary 
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precision with respect to 𝐿𝐿𝑝𝑝(𝜇𝜇) performance criteria (Hornik, 1990). Feed-forward ANNs consist 

of layers of neurons which receive weighted inputs from the outputs of preceding layers. Feed-

forward ANNs have seen great success in fields like pattern recognition and classification. 

The ANN approach to modeling functions involves successive processing steps (known as 

“layers”) structured as parameterized linear and non-linear functions. Parameterized linear 

functions 𝑓𝑓:ℝℎ → ℝ𝑗𝑗 and simple vectorized analytic functions are common choices for each 

layer. In the simplest case, with layer ℎ𝑖𝑖(𝑤𝑤𝑖𝑖):ℝℎ → ℝ𝑗𝑗 (a layer parameterized by 𝑤𝑤𝑖𝑖), a feed-

forward artificial neural network with 𝑛𝑛 layers is the composition of functions ℎ(𝑤𝑤𝑖𝑖): 

𝑁𝑁(𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) = ℎ1(𝑤𝑤1) ∘ ℎ2(𝑤𝑤2) ∘ ℎ3(𝑤𝑤3) ∘ … ∘ ℎ𝑛𝑛(𝑤𝑤𝑛𝑛):ℝ𝑁𝑁 → ℝ𝑀𝑀 

In the most common application, each internal layer can be chosen to be a perceptron: A 

parameterized affine transformation of its input, with outputs mapped by a (non-parameterized) 

differentiable function. In the perceptron model, a layer taking ℎ inputs to 𝑗𝑗 outputs would be 

parameterized by a ℝℎ×(𝑗𝑗+1) affine transformation matrix and would compute its output as: 

𝑙𝑙ℎ = 𝑓𝑓(𝑊𝑊ℎ,0 + �𝑊𝑊ℎ,𝑗𝑗
𝑗𝑗

𝑖𝑖𝑗𝑗) 

With input vector 𝑖𝑖, parameterizing weight matrix 𝑊𝑊, and differentiable function 𝑓𝑓:ℝ → ℝ. 

It can be seen that the partial derivative of each matrix element in 𝑊𝑊 with respect to some 

function on is easily computable in a straightforward way. 

 The activation function 𝑓𝑓 is chosen to provide for a way for the model to express a wide range 

of non-linear functions. In practice, 𝑓𝑓 is chosen to be a sigmoidal function in order to model the 
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biological inspiration of a neural network – under a given cut-off, the output is low, but after a 

cut-off the output is high. This is said to be modeled after the behavior of neural connections in 

biological neural networks, which only output after a given input threshold is received. 

In practice, one should chose an 𝑓𝑓 whose derivative has a non-zero magnitude in significant 

regions. This allows the partial derivative of each input weight with respect to the error of to be 

computable and non-zero, which provides more optimal behavior for the optimization methods 

commonly used. In the following subsections we will discuss the network optimization and other 

related issues. 

  Network Optimization 

The advantage of structuring a computation in this manner is that such a chain of functions is 

easily differentiable using a simple multivariate generalization of the chain rule. Furthermore, 

this process can be done in a mechanical way through techniques collectively known as 

automatic differentiation. 

Simple differentiation by hand (through propagation of a multivariate generalization of the chain 

rule) is possible in most situations for artificial neural networks, and in practice, most 

implementations of feed-forward neural networks compute gradients in this manner. However, 

every major software framework providing implementations of general artificial neural network 

provides mechanisms through automatic differentiation for computing general ANNs of general 

internal structure and parameterization. 

Because of the layered structure of artificial neural networks, the Jacobian matrix of the results 

of the error of the neural network’s output with respect to its parameters is computationally 
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simple, and, in most cases, extremely fast. Computing the Jacobian matrix with respect to an 

error function has the same time complexity as applying the function that the ANN encodes, 

itself. In fact, these two processes (computing the result of the encoded function, alongside its 

gradient) can be computed in tandem, at the same time, in order to reduce computation time. 

The process of parameter selection then becomes a stochastic optimization problem on a 

differentiable function ℝ𝑛𝑛 → ℝ𝑚𝑚, which is a well-explored problem in the field of optimization. 

Somewhat surprisingly, general optimization algorithms have been shown to be unexpectedly 

effective. The efficacy of general optimization algorithms for the selection of optimal parameters 

for artificial neural networks plays a large role in the rising popularity of their application in 

various fields. 

The canonical naïve approach involves a stochastic gradient descent, in which network 

parameters are shifted slightly in the direction that produces the lowest error over a given 

training set. The algorithm samples different known input-output pairs, and computes the error of 

each network output with respect to the known output. 

This error is often computed as a sum-of-squared differences: 

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 

This is a common error function, because it has a relatively simple partial derivative: 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = 2(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝑓𝑓(𝑥𝑥𝑖𝑖) 
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 The gradient of each parameter with respect to this error is computed efficiently, and each 

parameter is shifted slightly in the direction to minimize the error. This process is repeated for 

every known input-output pair (and this process itself repeated again multiple times), and the 

parameter space is traversed stochastically, with the long-term result of moving towards a local 

minimum in the parameter space that minimizes the error term for all known input-output pairs, 

collectively. 

A large body of research has been conducted on effective stochastic optimization algorithms for 

finding optimal weights for a given Artificial Neural Network given a training set and layer 

structure. 

Most variants involve a stateful gradient descent, with scheduled or tuned step sizes. Such 

variants include Momentum, Adagrad, Adam, and Nesterov accelerated gradient descent. 

Optimizers such as Adam vary their step sizes based on the current rate of convergence 

Many approaches involve dynamic parameterizations that adjust convergence rates and account 

for previous motion and velocities, and also for the total time trained up to each step. However, 

in practice, the naïve approach is often sufficient in the case of feed-forward neural networks. 

  Computation of Gradients 

Here we will illustrate, in detail, the case of computing parameter gradients in the simple case of 

linear feed-forward layer-based networks. 

Finding the partial derivative using reverse-mode differentiation involves reasoning about the 

derivative of some function of the final result. 
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For a given layer 𝑙𝑙, we wish to step in the direction of 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖). We can call the layer input 

𝑎𝑎𝑖𝑖, and layer output 𝑙𝑙𝜕𝜕(𝑎𝑎𝑖𝑖). Our goal is to compute 

𝜕𝜕
𝜕𝜕𝑤𝑤

𝐸𝐸 

Knowing that 𝐸𝐸 is a function of 𝑙𝑙𝜕𝜕, we can reframe it as: 

𝜕𝜕
𝜕𝜕𝑤𝑤

𝑓𝑓(𝑙𝑙𝜕𝜕(𝑥𝑥𝑖𝑖)) 

Where 𝑓𝑓 is “what happens after the layer”, before we get to our result. 

Using the chain rule, we see: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤

=
𝜕𝜕𝑙𝑙
𝜕𝜕𝑤𝑤

𝜕𝜕𝑓𝑓
𝜕𝜕𝑙𝑙

 

We can compute 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (the partial derivative of the result of the layer with respect to a given 

weight) based on the structure of our layer. 

We compute 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 based in the derivatives of the following layers, after the current layer. 

The algorithm to back-propagate in a layer-based method is: 

If we are at the end of the chain, the derivative of the last layer with respect to the result is 

straightforward based on the structure of the final layer and the error function. This is the base 

case. 
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To compute the layer before the last year, find 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 for that layer, and multiply it by the derivative 

of the following layer. This can be found from the derivative we compute for the final layer. 

Repeat, each time taking the derivative of a given layer as the “rest of the network” partial for 

the layer before. 

In this sense, we have an iterative process, and we can build the derivative for a given weight by 

building backwards from the final layer. This can be performed efficiently by using proper 

memoization and cacheing. 

  Limitations of Feed-Forward Networks 

However, because feed-forward ANNs are inherently structured to approximate functions, they 

struggle in modeling dynamical systems and systems with an inherent temporal component; 

attempts to do so typically entail a large explosion of parameters. The straightforward approach 

is to concatenate time series terms as a long input vector; for example, if training a network on a 

time series of 𝑛𝑛-vectors that is ℎ terms long, the one would utilize a feed-forward ANN 

representing a function ℝℎ×𝑛𝑛 → ℝ𝑚𝑚, which takes the full unstructured concatenation of the past 

history terms. This approach is highly unsatisfying for several reasons. 

Firstly, in concatenating a time series into a single input vector, this vector loses all temporal 

structure that the network may wish to take advantage of. Time series data possesses temporal 

structure that encodes notions of recency, causality, and a partial ordering (or well-ordering, in 

some situations) of data points. One may potentially exploit this structure for several gains: 
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1. The ability to distinguish between short-term and long-term relationships, categorically: 

short-term and long-term links create unique relationships, and with temporal structure, 

one can distinguish between the two. 

2. The ability to distinguish between forward-causality and backwards-causality 

relationships and correlations: whether two data points come before or after each other 

may influence the relationship those data points might have, with inherent asymmetry. 

3. The ability to create universal generalizations over translation-symmetric intervals. 

Closely linked to the distinction between short-term and long-term relationships, if one is 

aware of temporal structure, one can exploit inherent time translation symmetry to a large 

extent. This is similar to the principle used by convolutional neural networks, which look 

for structures and features in a translation-symmetric manner. 

In concatenating a time series into a single input vector, all of this structure is lost. Ideally, a 

neural network would be able to exploit features of this structure to make decisions and 

predictions and to aid in its interpretation and projections. However, with a concatenated time 

series, neural networks instead would be left alone to infer this structure by observing several 

data points. 

This process introduces several independent parameters that are, by nature, interdependent. With 

such a high parameter space, overfitting becomes likely, and the value of the model decreases. 

The dimensionality of the true parameter space is most likely not full-rank, and models can 

easily overfit or become overdetermined. Overfitting is discussed in greater detail near the end of 

this chapter. 
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3.4 Recurrent Neural Networks 

To obviate these issues, the notion of RNN families was introduced (Hopfield, 1982; Elman, 

1993). While traditional feed-forward ANNs can be fully described as universal approximators 

of functions, RNN families can be described as universal approximators of dynamical processes, 

and it has been shown that RNN architectures can approximate arbitrary Turing machines in the 

same way feed-forward ANNs approximate functions (Hammer, 1998). RNNs add dynamics to 

traditional ANNs; specifically, they introduce an aspect of statefulness to a neural network: 

outputs from a given input can be influenced not only by the current input, but also by the 

residual state left behind from previous computations. This makes RNNs suitable for modeling 

time series and other such dynamical processes that explicitly depend on history. 

In precise language, in contrast to traditional feed-forward neural networks that may represent 

functions ℝ𝑛𝑛 → ℝ𝑚𝑚, predicting outputs from inputs, recurrent neural networks internally encode: 

ℝ𝑛𝑛 × ℝ𝑠𝑠 → ℝ𝑚𝑚 × ℝ𝑠𝑠 

Given both a vector of 𝑛𝑛 inputs and “state” of 𝑙𝑙 components, the network produces a vector of 𝑚𝑚 

outputs alongside an updated vector of 𝑙𝑙 state components. To apply such a network to a time 

series of 𝑛𝑛-vectors, one would provide the network with subsequent points in the series 

sequentially, updating the state parameter along the way. An initial state vector must be 

provided, and this initial state parameter is often treated as something that can be optimized in 

the same process as the weights are optimized. 

This solves issues with the feed-forward approaches in several ways. Because each time series 

point itself is taken as an input to the neural network, this context and structure is directly 



 

23 

accessible to the neural network. Values from the same attribute simply are received in the same 

component at every step, instead of over several different set. 

The idea of temporal relevancy is also preserved in this approach, because only the most recent 

state vector is accessible to the neural network during the process of its computation. This, any 

recently observed events will have a greater effect on the output of the network than past 

observed events, which corresponds to the expected structure of a time series. However, without 

proper care, temporal proximity can potentially have too much of an effect. This can become 

problematic for time series with substantial lag. 

Finally, parameters remain minimal. There is no redundant duplication of parameters from the 

duplication of input vectors, and the parameter space of the neural network is kept small enough 

to even be analyzed by hand. 

RNNs of different forms have been used in developing powerful language models (Sutskever et 

al., 2011) (Graves, 2013) (Mikolov, 2012), video classification (Donahue et al., 2014), image 

captioning (Vinyals et al., 2014), video captioning (Venugopalan et al., 2015), visual question 

answering (Ren et al., 2015), image generation (Gregor et al., 2015), and meteorological 

circulation modeling (Toggweilier et al., 2015). 

  Optimization of Recurrent Neural Networks 

Recurrent neural networks are typically optimized in the same manner as feed-forward neural 

networks: through some variation of stochastic gradient descent. To do this, such networks are 

“unwound” (that is, the functions composed in the appropriate way) to simulate single functions 

taking many input vectors and returning many (or a single final) output vector. It is this final 
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function that is then differentiated using applications of a multivariate chain rule. The Jacobian 

matrix is again found for the parameter space, and each parameter is nudged towards the 

direction that produces the least error. 

Back-Propagation Through Time 

The process of “unwinding” a recurrent neural network is a mechanical one. All cyclical 

dependences are treated as dependencies on separate, previous inputs. Instead of treating 

multiple inputs over time as updating a mutable state, one treats them as the sequential update of 

a chain of immutable states. 

That is, instead of an in-place modification of a state vector 𝑙𝑙 over 𝑡𝑡 = 0,1,2 …, one would 

instead treat 𝑙𝑙 as a series of distinct vectors, 𝑙𝑙0, 𝑙𝑙1, 𝑙𝑙2 …. If the activation of internal node h 

depends on the state at a given time, one would now treat ℎ as a series of distinct vectors, 

ℎ0,ℎ1,ℎ2 …, each depending on both the input at time 𝑡𝑡 = 0,1,2 … and the input vector 𝑥𝑥 at time 

𝑡𝑡. 

Explicitly, suppose a specific Recurrent Neural Network has the following update rule: 

• 𝑙𝑙 ← initialize state 

• For every time step 𝑡𝑡: 

– 𝑥𝑥 ← input at time t 

– 𝑖𝑖 ← 𝑓𝑓(𝑥𝑥, 𝑙𝑙) — update internal node activations according to input and state 

– 𝑙𝑙 ← 𝑔𝑔(𝑥𝑥) — update states according to input 

– 𝑙𝑙 ← ℎ(𝑖𝑖) — output computed according to internal ndoe activations 

• Collect all intermediate 𝑙𝑙’s for final result, or only take final 𝑙𝑙. 
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Here, 𝑙𝑙, 𝑥𝑥, 𝑖𝑖, and 𝑙𝑙 are all treated as mutable variables that are updated for every input vector 

𝑥𝑥(𝑡𝑡). 

In order to unroll a network for the purpose of backpropagation through time, the above update 

rule would then be translated into an inductive definition on several different immutable vectors 

indexed by time: 

• 𝑥𝑥𝑡𝑡 = input at time 𝑡𝑡 

• 𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡, 𝑙𝑙𝑡𝑡−1) 

• 𝑙𝑙𝑡𝑡 = 𝑔𝑔(𝑖𝑖𝑡𝑡) 

• 𝑙𝑙𝑡𝑡 = ℎ(𝑖𝑖_𝑡𝑡) 

• 𝑙𝑙0 = initial state 

For training purposes, one would then feed ⟨𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 … 𝑥𝑥𝑛𝑛⟩ with ⟨𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4 … 𝑦𝑦𝑛𝑛⟩, , a 

finite list of 𝑛𝑛 input and output pairs in the process being simulated. This would then generate the 

distinct vectors ⟨𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 … 𝑙𝑙𝑛𝑛⟩, ⟨𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, 𝑖𝑖4 … 𝑖𝑖𝑛𝑛⟩, and ⟨𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 … 𝑙𝑙𝑛𝑛⟩. Instead of 𝑥𝑥, 𝑙𝑙, 

and 𝑖𝑖 being treated as mutable vectors, they are instead treated each as a series of vectors indexed 

by time. 

While 𝑙𝑙1, 𝑙𝑙2 … do not correspond to observable features of our system, 𝑙𝑙1, 𝑙𝑙2 … are meant to 

predict 𝑦𝑦1,𝑦𝑦2 …. 

Therefore, for optimization, one would create an error function on ⟨𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 … 𝑙𝑙𝑛𝑛⟩. Typical 

error functions are: 

• The sum of squared errors of the final 𝑦𝑦𝑛𝑛 and 𝑙𝑙𝑛𝑛: 
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𝐸𝐸 = SSE(𝑦𝑦𝑛𝑛, 𝑙𝑙𝑛𝑛) 

  This optimizes for the property that, after seeing 𝑛𝑛 inputs, the vector is able to accurately 

predict 𝑦𝑦𝑛𝑛. 

• The sum of the sum of squared errors between every 𝑦𝑦𝑡𝑡 and 𝑙𝑙𝑡𝑡 pair: 

𝐸𝐸 = � SSE
𝑛𝑛

𝑡𝑡

(𝑦𝑦𝑡𝑡, 𝑙𝑙𝑡𝑡) 

  This ensures that, in the process of seeing 𝑛𝑛 inputs, the vector is accurately able to predict 

every 𝑦𝑦𝑡𝑡 for the entire series of inputs, with equal emphasis on every 𝑦𝑦𝑡𝑡. 

  However, it is sometimes impractical to ask a network to predict 𝑦𝑦1 which is molded as only 

a direct function on 𝑥𝑥1 and 𝑙𝑙0, without taking into account any previous inputs. Giving this 

item equal importance to the other items in the series may cause the network to emphasize 

short-term accuracy based on recent events at the expense of long-term accuracy based on 

events in the distant past. 

• The sum of squared errors between every 𝑦𝑦𝑡𝑡 and 𝑙𝑙𝑡𝑡 pair, with more emphasis given on pairs 

near the end of the time series: 

𝐸𝐸 = �𝛽𝛽𝑡𝑡−𝑛𝑛
𝑛𝑛

𝑡𝑡

SSE(𝑦𝑦𝑡𝑡,𝑙𝑙𝑡𝑡) 

  This is often taken as a halfway point between the first and second methods. The network 

must optimize for long-term predictions, but also be aware of short-term predictions as well. 
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Typically, in practice, the first method is taken. However, the first method optimizes for a 

network with no care for outputs before time 𝑛𝑛. Because of this, these networks must be 

“primed” and warmed up with 𝑛𝑛 − 1 throwaway input vectors before being able to predict 

outputs at time 𝑛𝑛, 𝑛𝑛 + 1, 𝑛𝑛 + 2, in practice. The initial 𝑛𝑛 − 1 outputs will be produced without 

any sort of optimization or control for accuracy, and the network will be able to only reasonably 

be expected to predict after a 𝑛𝑛 − 1-length warm-up. 

At this point we have a suitable single output to optimize on. This output is a function of all of 

the intermediate states, all of the intermediate internal activations, and all of the input vectors for 

all times 𝑡𝑡. Because of the construction of our network, we can apply a multivariate chain rule on 

this function. The Jacobian matrix is again found for the parameter space, and, at every 

observation, we may generate a gradient from every intermediate state and internal activation 

and weight. Each weight is then nudged towards the direction of steepest descent in error. 

 Note that this method produces a separate gradient for every single time 𝑡𝑡. Typically, the 

approach taken is to sum together these gradients and apply them all at once to the actual single 

weight parameterization of the neural network. 

 At this point, we have reduced the optimization of RNN’s to the optimization of a larger Feed-

Forward Neural Network, where multiple aspects of the unrolled weights are coupled. 

 Because of the mechanical nature and simplicity of this method, all research applied to the 

optimization of feed-forward neural networks can be directly applied to the optimization of 

recurrent neural networks.  
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The stochastic gradient descent methods, as well as the momentum-based gradient descent 

methods used for training feed-forward neural networks, work with similar efficacy, and, 

additionally, automatic differentiation methods make training neural networks implicitly a 

simple task. Many neural network framework support automatic differentiation and automatic 

optimization of both feed-forward and recurrent neural networks, making these tools extremely 

useful in practical application. 

  RNN and Data Shape 

Fully Connected Data Structure 

We chose, as model for this study to be a recurrent neural network comprised of two fully-

connected recurrent layers with forty nodes per layer. Each internal layer is fully connected, with 

all outputs redirected to internal inputs. The output of each node is the result of the Rectified 

Linear Unit (ReLU) activation function applied to a weighted sum of both inputs from the 

previous layer and the previous outputs of the layer; these weights are the parameters to be 

trained for. Figure 1 shows only a 3 input node architecture as an example for illustration 

purposes. However, in this work we have used 14 input nodes, where all hidden layers receive 

input from not only their current input, but also the previous outputs of every other node in the 

input layer (including itself). Every node receives input from every node in the previous layer 

and the most recent outputs of the same layer. The network is trained by picking the relative 

strengths and contributions of each connection (arrow), and also the initial output of the hidden 

layers. 
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Figure 1: Internal structure of the recurrent neural network topology with multiple 

hidden layers 

For a layer with 𝑛𝑛 inputs and 𝑚𝑚 outputs, the output of node 𝑗𝑗 ∈ 1 …𝑚𝑚 at time 𝑡𝑡 + 1, from an input 

vector 𝑥𝑥, is: 

𝑦𝑦𝑗𝑗(𝑡𝑡 + 1) = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑗𝑗

𝑛𝑛

𝑖𝑖

𝑥𝑥𝑗𝑗 + �𝑣𝑣𝑠𝑠𝑗𝑗

𝑚𝑚

𝑠𝑠

𝑦𝑦𝑠𝑠(𝑡𝑡)� 

where 𝑓𝑓(𝑥𝑥), the Rectified Linear Unit activation function, is 

𝑓𝑓(𝑥𝑥) = �0  𝑥𝑥 < 0
𝑥𝑥  𝑥𝑥 ≥ 0 

𝑤𝑤𝑖𝑖𝑗𝑗 is the matrix of weights of influences from the previous layer, and 𝑣𝑣𝑠𝑠𝑗𝑗  is the matrix of 

weights of influences from the previous activations of other nodes in that layer. By providing a 

non-linear activation function, we allow our network to exhibit non-linear behavior. Both weight 

matrices are trained parameters of the model, and 𝑦𝑦(𝑡𝑡 = 0), the initial state of the network, is 
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also a trained parameter; it is trained to create an adaptable initial condition from which 

prediction begins. For this network, the final output layer is a traditional feed-forward layer (that 

is, ∀𝑙𝑙𝑗𝑗. 𝑣𝑣𝑠𝑠𝑗𝑗 = 0) with the linear activation function 𝑔𝑔(𝑥𝑥) = 𝑥𝑥. 

Long-term Short-term Memory Structure 

The network structure described above describes fully connected short-term memory networks. 

This structure is a direct generalization of the traditional linear-transformation feed-forward 

neural networks to a recurrent context. However, it has some significant issues. Because the 

entire state term is re-updated at every step, its memory is extremely short-term. Long-term 

effects naturally decay at an exponential rate. This can be ideal in many situations (such as for 

systems displaying low lag and high dependency on immediate past states); however, it is not 

ideal for systems high lag or non-trivial dependency on events in the distant past that aren’t 

reflected in the immediate past. 

 In theory (and as shown by Hammer, 1998), a fully-connected short-term memory network can 

be constructed to model high-lag systems to arbitrary precision by varying the size of its internal 

state vectors. However, in practice, these configurations are very unstable to stochastic gradient 

descent, and exist in very small and isolated regions in the parameter space of a fully-connected 

short-term recurrent neural network. Such configurations exist in theory, yet are in practice 

unable to be found by stochastic gradient descent or other typical optimization techniques. At 

best, stochastic gradient descent will tend to converge on local minima that ignore long-term 

effects, and the chance configurations that consider long-term effects are often unstable in the 

face of typical optimization stochastic methods and are quickly lost. Essentially, because the 
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entire state is completely erased and re-computed at every step, any deviations from a previous 

state will amplified exponentially over the progression of the time series. 

To overcome this, Long-Term Short-Term Memory Networks were independently developed by 

many sources. Instead of a complete re-write of the state vector at every step, the LSTM network 

introduces a second state vector that is typically passed virtually unchanged. The network, in 

sparse occasions, may make small and limited changes to given nodes of the long-term state 

vector. In this sense, the long-term state vector is long-term by default, and only changes under 

extreme circumstances which the network can be optimized to recognize. These networks couple 

a long-term state vector with the short-term state vector from the fully-connected recurrent 

neural networks described above. With the two working alongside each other, LSTM networks 

have proven to be more effective in problems with non-trivial long-term dependencies, 

overcoming the short-term issues of fully connected recurrent neural networks. LSTM networks 

are the chosen architecture of several of the applications cited above. 

One example LSTM network separates out state for a layer into two component vectors: the 

layer’s previous output, and a separately maintained memory vector. This is contrasted to the 

typical fully-connected network, which only has (transformed) previous layer output as its state. 

 

If we define the “time-varying” vectors 𝑥𝑥:ℝ𝑛𝑛, ℎ:ℝ𝑚𝑚, and 𝑐𝑐:ℝ𝑠𝑠, corresponding to layer input, 

layer output, and long-term memory vector, we can model an LSTM layer as encoding a 

function: 

ℝ𝑛𝑛 × ℝ𝑠𝑠 → ℝ𝑚𝑚 × ℝ𝑠𝑠 
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The output ℎ, again, is a simple matrix multiplication and activation function application from 𝑥𝑥 

and 𝑐𝑐. However, the update of 𝑐𝑐 receives extra care. Previously, 𝑐𝑐 was nothing more than a 

simple transformation of ℎ: 

𝑐𝑐𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡) 

However, with LSTM networks, 𝑐𝑐𝑡𝑡 is an altogether separate pool of numbers that is, for the most 

part, preserved over long periods of time. The network can then decide, selectively, to forget 

components given a certain input, and also to remember components of input and output vectors. 

The key feature of LSTM layers is the sparsity of the forgetting and remembering actions. 

Instead of the state layer being completely reset on every iteration, it is preserved over time, and 

its components are forgotten and modified on a sparse basis. 

Conceptually, the first modification to 𝑐𝑐𝑡𝑡 is a “forget” action (made sparse by the sigmoidal 

activation function), and the second modification is a “remember” action (again made sparse by 

the sigmoidal activation function). Finally, 𝑐𝑐𝑡𝑡 and 𝑥𝑥𝑡𝑡 are combined together in the end to produce 

ℎ𝑡𝑡. 

3.5 Comparisons between Feed-Forward and Recurrent Networks 

At an immediate level, deciding which kind of network is more effective and more efficient for a 

given domain is straightforward. As discussed, the appropriation of a feed-forward neural 

network to model time series data and dynamical systems is often contrived, creating ill-

conditioned situations for training and yielding a large parameter-space with much redundancy in 

structure of the input vectors. 
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In the past, it has been shown that one can mitigate some of these drawbacks by attempting to 

reduce the redundancy in input vectors (using dimensionality-reducing techniques such as 

principal component analysis, or singular value decomposition) and to pre-train networks for 

given specific tasks. However, fundamentally, feed-forward neural networks are inherently an 

unnatural fit for time series data and dynamical systems. 

RNNs, in contrast, are themselves an inherent model of a dynamical system, and the analysis of 

time series data is an immediate natural fit. While recurrent neural networks have been 

repurposed in the past as fixed-point machines and error-correcting models, their most natural 

mode of usage is in modeling dynamical systems. Their greatest success has been in these fields. 

However, it is interesting to note that, while feed-forward networks can be contrived to model 

dynamical systems, recurrent neural networks can also be contrived to model static decision 

problems, as well. The typical construction is to model the decision problem with an input of 

small sliding (or stochastically changing) window over neighborhoods in the static input vector. 

In a sense, this mimics the human behavior of interpreting visual data by rapidly inspecting 

narrow points of focus throughout an image. This method is surprisingly effective for data with 

large amounts of internal structure – for instance, images. 

 

This alternative technique of repurposing RNNs to domains which Feed-forward neural networks 

are typically used has promise in the domain of weather and climate projections, as well, in the 

situation where one is interested in decisions or climate index projections based on snapshots of 

spatial geological or meteorological data. 
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  Internal Node Activation Analysis with Recurrent Neural Networks 

Trained RNNs provide an interesting insight to the time series that they attempt to model. 

Because RNNs typically contain fewer parameters than their feed-forward counterparts when 

applied to the same problem, it is possible to dynamically track and analyze the progress of the 

outputs of internal layers (known as “nodes”) over the process of the modeling of the time series. 

The outputs of internal layers themselves create a time series that moves alongside the input time 

series. Through stochastic gradient descent, networks choose outputs and activations that 

represent important high-level characteristics of the problem domain. For example, in neural 

networks purposed for facial recognition, high-level features such as position and shape of facial 

body parts are reflected in internal layer activations. The optimization problem itself converges 

on important or significant high-level features the determination of its output decision. 

During applications of recurrent neural networks (Karpathy, 2015), the analysis of internal 

activations has found interesting and significant high-level features expressed as time series of 

data. Radford et. al., 2017, used recurrent neural networks as a generative text model. Formally, 

the network was used to generate a new character after being given the previous characters seen 

in a text. The model treated its inputs and outputs as large sparse vectors which are zero 

everywhere, except for at a given index corresponding to the character the vector encodes 

(known in literature as a “one-hot” encoding). The Radford et. al. model, once trained on a large 

corpus of natural language training data, was then used to generate new strings of text by 

generating characters and using new characters to generate further new characters. When used as 

a generative text model, for instance, Radford et. al., 2017 optimized a model and discovered that 

a single activation node modeled sentiment, or positive and negative emotion, as a time series. 

By extracting the activation of the node in question, researchers can generate a time series of 
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positive and negative sentiment alongside analyzed text. Because these activation nodes are 

typically assigned high-level features without human interventions, network optimization can be 

used to find, isolate, and identify high-level features in time series data. While some of these 

features have immediate human interpretations (such as sentiment), inevitably, some of these 

features have no apparent interpretation. 

There is promise in the prospect of using such processes to identify important high-level features 

in time series data that has gone undetected by scientists in this domain. It is a hope of this team 

to be able to analyze the trained network from this research to be able to identify new and 

interesting time-series climate indices that can be used to further scientific study. 

Such a case-by-case analysis can be done by carefully inspecting nodes of a trained recurrent 

neural network. In itself, this is a testament to the power of the recurrent neural network — a 

similar analysis on a feed-forward neural network would be impossible, for three principle 

reasons: 

1. Feed-forward neural networks analyzing time series would involve many times more 

input nodes, and therefore many times more internal nodes, making analyzing each one 

impractical. 

In addition, the number of input nodes and internal nodes scales with the size of the 

“window” used to predict on slices of the time series. If one wishes to give the network 

more or less of a window on which to make a prediction, one also scales quadratically (or 

exponentially, depending on choice of scaling method) the number of nodes and internal 

activations to inspect. 
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With recurrent neural networks, the number of internal nodes and therefore activations to 

inspect remains constant with the size of window used for predictions. 

2. The structure of feed-forward neural networks cannot be re-used for different temporal 

windows. With a network trained for specific window sizes, it is not possible to directly 

apply the network to different window sizes without a major topological restructuring, 

which may completely change the activation structure of the network. 

For recurrent neural networks, one may use the same trained network for different 

window sizes. This is because activations already assume previous state, and state is 

processed the same way for every iteration of the network. 

Because of this, conclusions derived on the node activations for a network for one 

window size is immediately applicable to all window sizes. However, for feed-forward 

neural networks, conclusions derived on the node activations for a network for one 

window size is inapplicable to a different the activations of a network with a different 

window size. 

In essence, window-size is a parameter of the network structure itself for feed-forward 

networks, whereas it is an external parameter of the way one runs a network, for 

recurrent neural networks, and plays no role in its own internal structure. 

3. Feed-forward neural networks analyzing time series lose all temporal structure; it is 

impossible to associate activations of specific nodes with specific points in time, or 

correlate activations with each other as a time series. 

With a recurrent neural network, the activation of each individual node, on its own, is 

itself a time series, and may be studied as such. There is no such time series activation 

analogy for feed-forward neural networks. 
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3.6 Network Training Methodology 

To train the neural network, we use the well-known backpropagation through time (BPTT) 

algorithm, training over contiguous samples of history (Mozer, 1995; Werbos, 1999). This 

approach gives the network the ability to be trained to act on influences of up to 4 years into the 

past (though short-term influences will be much stronger). 

BPTT is a gradient descent algorithm that optimizes the weight space by calculating the gradient 

of the error between model output and training data with respect to variations in weights and 

moving in the direction of negative gradient. By adjusting the step size, it is possible to tune our 

training process to be either quickly converging or potentially step past important local minima. 

For the model described in this research, we chose a step size of 2×10^(-3). 

To train on a contiguous sample of history, we ran the network over the entire length of the 

sample and we took the error value as the sum of the squared differences between outputs of the 

final network and known data for the next month into the future. From an initial network with 

randomly generated weights and , the network is trained over a shuffled collection of contiguous 

samples. Each full pass over the training set is known as an epoch. Accuracy of the model is run 

against the 150-point validation set of the most recent 150 months of weather data. 

  Overfitting 

Upon training these models on data sets in this scale, one usually sees extremely quick 

convergence (within a matter of dozens of epochs, typically). 

 As the network is allowed to train further and gradients allowed to be descended further, 

convergence to a high correlation is typically fast, if it happens at all. Convergence speed 
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depends heavily on the number of parameters (hidden layers and their sizes) of the network. This 

signifies that the model is able to correctly identify features and signals inside the data set, and 

adjust the parameters in the network to account for each variation in the training set. 

However, when tested with validation data (a section of our data set hidden during training), 

scores were less than satisfactory. 

 Indeed, there is an inherent issue in this analysis – overfitting. Overfitting occurs parameters over-

constrain your model to the extent that, with an arbitrary choice of number of parameters, one can 

completely exactly model the input data. 

 However, exactly modeling the input data is nothing more than interpolation, since one also learns 

to exactly model the noise in the input. In the end, an over-fitted model can perfectly recreate the 

noise inherent in a training set, but potentially not the actual feature in question. It is often 

described as the phenomenon where models learn the noise, instead of the actual phenomenon. 

 It is not surprising, then, that with artificial neural networks having such a high number of 

parameters, overfitting is a constant problem that neural network users must actively combat. 

 

  Fundamental Problems 

 

For mathematical models and learned models in general, an increase in model parameters 

produces greater risk of overfitting.  In traditional modeling, an increases in parameter count are 

typically very visible, usually discouraged, and limits the generality and appeal of the model.  In 

Neural Networks, this is something that is often overlooked, due to the very nature of neural 
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networks, and, and parameters can potentially explode exponentially without even realizing 

it.  Even simple networks can involve tens of thousands of internal parameters, and deep learning 

models often have millions or more. 

Intuitively, one can imagine modeling a simple one-dimensional function as a 

polynomial.  Fitting 100 data points with a quadratic polynomial (which has three independent 

parameters) is only meaningful or possible (within an acceptable error) if the data has an 

underlying quadratic nature. The model polynomial can then be used to extrapolate or 

interpolate. However, fitting 100 data points with a 99-degree polynomial (exactly) is an 

extremely straightforward process, and the construction of an exactly fitting polynomial has been 

known since the time of Isaac Newton. Other techniques were pioneered by Edward Waring, 

Leonhard Euler, and Joseph Louis Lagrange. However, a 99-degree polynomial is unlikely to be 

useful for interpolation or extrapolation. Such techniques are susceptible to Runge’s 

Phenomenon, which induces extremely high and unstable oscillations in between known data 

points. And, in fact, one typically does not want to match each point exactly – in doing so, one 

undoubtedly expends parameters matching noisy points in the data, which is almost certainly not 

desired. These issues are not unique to neural networks, but the large parameter count of most 

ANN networks makes this issue especially important. 

 

  Mitigating Overfitting 
 

From this description, the “obvious” way to combat overfitting is increasing the size of your 

training set.  The ratio between the number of parameters and number of training data points is a 

good measure of overfitting risk; this ratio is at the heart of model fitness indices like the Akaike 
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information criterion (Burnham, K. P.; Anderson, D. R., 2002). Therefore, adding more 

parameters should always be accompanied, if possible, by increasing your training set size. 

Of course, this isn’t always practical (or possible), especially for historical time-series data. In 

many practical situations, number of data points in the training set is limited by real-world 

constraints. 

Because of this, many overfitting techniques in practice boil down to a couple of major 

categories: 

• “Emulating” a larger training set, from a smaller training set, using clever resampling 

techniques. 

• Preventing parameters from arriving at exact values during the training process. 

• Constraining parameters in way that limits full variation. 

• “Ensemble”-related techniques, which aggregate multiple potential fittings of parameters 

Emulation of larger training sets 

The fundamental cause of  overfitting is the balance between the number of parameters of the 

model and the size of the training set. One approach to attack this fundamental problem is by 

increasing the size of the training set. 

Of course, in practice, this isn’t always an option. We are often limited by physical, monetary, 

political, or historical constraints. In many cases, we must settle for -mitigation techniques to 

simulate or emulate larger training sets. If done effectively, this tips the training set-parameter 

scale in the correct direction. 
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Done properly, this can force parameters out of overfitting due to the need to account for more 

data. Done improperly, however, this can inadvertently justify and solidify the model’s biases and 

cause stronger overfitting as input and training data drift from real-world plausibilities to data 

conforming to the internal biases and structure of the model. 

Prevention of parameters from exact values 

Overfitting occurs when parameters reach a configuration that can exactly account for all 

variation within an input data set. This is possible in some situations where you have more free 

parameters than items in your training set. If possible,in order to improve fitness for our models 

will tend to exactly predict input training set, because that is what training systems are designed 

to do. 

One way to prevent overfitting, then, is to prevent “fitting”, itself. If the model is artificially 

restricted from fining its ideal minimum, it will need to found a way to account for this 

limitation. Often, this process moves the system out of its ideal maximum and overfitted state. 

When done properly, this technique can push models out of a global overfitted minima and 

induce new local minima that mightfor data not in our training set as follows: 

Constraining parameters to limit full variation 

Because the fundamental cause of overfitting is the balance between the number of model 

parameters and the training size set, one other approach is to effectively reduce the number of 

model parameters by reducing their dimensions of variation. Certain restrictions on parameters 

(imposed as a regularization or loss function) can restrict the dimensions of freedom for the 
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model as a whole. There may be millions of parameters, but their variation is restricted to only 

be allowed under thousands of degrees of freedom. 

In this sense, the “true” parameter space is embedded into a higher-dimensional space, and we 

only observe a higher-dimensional embedding of a lower-dimensional parameter space. This is 

one way to reduce the dimensionality of the parameter space (and the effective number of 

parameters) while keeping the dimensionality of the target space, which may be a fixed 

requirement of the model. 

Ensemble Techniques 

One of the root causes of overfitting is that any model can be contrived to fit the data in a given 

meaningless way if given enough parameters. However, it is much less likely for two separate 

models to fit the same data in the same contrived way. While two models together may 

individually overfit, the error in the predicted portion may average out to account for this. 

In the best-case scenario, the two models overfit the data in a different way, and their non-

sensical results can be averaged into useful information and predictive results. 

In a bad-case scenario, two models may overfit the data in a different way, but their non-sensical 

results cannot be reconciled into useful information. 

In the worst-case scenario, two models overfit the data in the same way, and produce the same 

nonsensical results. However, this is an unlikely situation for two unrelated models. 
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Noise Injection 

 

Noise injection involves training while adding uniform or Gaussian noise (Zurr, et. al., 2009) to a 

training set that is different every epoch.  In this way, one can make a 1000-point training set 

look like a 10000-point one – each time one samples any given point, one gets something 

slightly different.  The theoretical justification is that most actual data points are most likely not 

exact or precise truths, and all are merely approximations of an underlying random 

variable/distribution.  In adding noise to your data, one is really generating, through inference, 

equally valid samples of that underlying distribution. In the process, the model can witness the 

distribution, itself, and not any single point of that distribution. This prevents the network from 

overfitting on noise characteristics of the training set. It also practically prevents a neural 

network from ever exactly converging, because every epoch brings unique, never-before-seen 

input. In many cases, some applications may add noise within networks, between layers, as 

well.  For example, instead of feeding the output of layer 3 directly into layer 4, some might 

inject Gaussian noise into the output of layer 3 before feeding it in, to prevent network 

parameters from converging too quickly and to force the network to train on a distribution 

instead of an exact point. 

Randomization of Input Order 

 

Typically, in one performs stochastic gradient descent by randomizing points from which a 

network is trained on, or randomizing the order of points. This may be performed in constant 

time (and constant space) using techniques such as reservoir sampling for large datasets that 

cannot fit in memory, or may also be done using in-memory shuffling and slicing of data sets. 
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Related to this technique is that of mini-batching, which involves computing model changes 

independently for several random training data points and then applying their changes 

simultaneously to update a neural network. This ensures that noisy points and outliers do not 

have any outsized effect on the training of the model. 

Variations of batching, mini-batching, and reservoir sampling are common in literature and 

application, and the size of batches and mini-batches are often considered to be hyper-parameters 

of neural network training: parameters that defined the network structure, model and the logistics 

of the training process. This is in contrast to the model parameters that are meant to be train and 

inferred. 

Choice of Activation Function 

 

While not directly related to overfitting, the vanishing gradient problem has often been cited as a 

common cause of stagnation of neural networks on local minima. This problem comes from the 

fact that, at extreme regions, gradients in the error function on a per-node basis tend to shrink to 

zero. 

 However, by changing internal activation from sigmoidal (which has asymptotically zero 

gradients on both ends) to Rectified Linear Units (ReLu) (Glorot et al., 2011; LeCun et al., 

2015), vanishing gradients become a far smaller issue, and the network has stronger impetus to 

move away from local minima. 
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This plays a role in reducing overfitting by providing stronger gradients and less stability for 

local minima, which forces networks to find more generalized responses, instead of extreme 

reactionary cases that adapt to noise more than signal. 

Regularization 

If models have the free choice to pick any parameters, it is possible that they may be driven to 

pick extreme, contrived parameters to match a given input set. This often happens when, for 

example, matching a high-degree polynomial to a small data set. The result often is a very exact 

fit, but with polynomial coefficients that are extremely large in magnitude that pay for exact fits 

with large swings in between points. 

One common technique in model training in general that has proven to be very effective in 

ANNs and RNNs is regularization. It enforces an explicit cost to the magnitude of model 

parameters. 

In loss-based training like stochastic gradient descent, networks are trained by minimizing a total 

loss or cost of a given configuration. Normally, this loss is defined by the difference between 

predicted and actual known values. However, we can impose an extra cost: magnitude of 

parameters. In a sense, this is imposing a cost in the complexity of a model. 

Regularization in practice takes on many forms: 

• 𝐿𝐿2 regularization is imposing a cost based on the squared sum of all model parameters. 

Essentially, the cost is the 𝐿𝐿2 norm of the components of the model parameters. 
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• 𝐿𝐿1 regularization is imposing a cost based on the sum of the magnitude of all model 

parameters. It imposes a cost based on the 𝐿𝐿1 norm of the components of the model 

parameters. 

• 𝐿𝐿∞ regularization imposes a cost based on the maximum magnitude of any model 

parameter. 

• 𝐿𝐿0 regularization imposes a cost based on the sparsity of the model: essentially, any non-

zero parameter is given a fixed cost, independent of magnitude. 

So, while an unregularized error function might look like: 

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 

A regularized one will look like: 

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 − 𝑘𝑘Reg(𝑤𝑤) 

The 𝑘𝑘 parameter is adjusted based on how strong regularization is, or the effective cost of model 

complexity. 

What this imposes is a cost for parameter magnitude: Each parameter feels a pressure to both 

minimize error and minimize its own magnitude. The final optimal result is the balance between 

these two pressures. Overfitted models are the result of striving for ultimate correctness. 

Regularized models balance correctness with norm: “too correct” is discouraged if it increases 

the norm. The model ultimately settles for an “adequately correct” model that minimizes the 

norm at the same time. 
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It remains to be discussed why a low-norm parameter is less likely to overfit than a high-norm 

parameter. The main motivation in the end is that parameter magnitude is used as a proxy for 

model complexity. It stands to reason, through principles like Occam’s Razor, that given two 

models that can explain the same input data, the simpler model is preferred over the more 

complex one. While Occam’s Razor is not an empirical basis for truth, it does philosophically 

motivate us to look for simpler models over more complex ones. 

Regularization also serves to lower the effective degrees of freedom of parameter variation. It 

also serves as an extra cost that the model must overcome. If, in the end, if the model can still 

arrive at correct results in the face of regularization, it has proven itself more than a model that 

can arrive at correct results without any regularization pressure. 

Effects of Regularization 

To explain the effects of regularization, we can look at the effective gradient of each of the above 

common norms. In the case of 𝐿𝐿2, we have: 

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 − 𝑘𝑘�𝑤𝑤𝑗𝑗2

𝑗𝑗

 

If we differentiate with respect to 𝑤𝑤𝑗𝑗, we get: 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = 2(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

𝑓𝑓(𝑥𝑥𝑖𝑖) − 2𝑘𝑘𝑤𝑤𝑗𝑗 

This acts as a pressure along each training step that adjusts the parameter towards zero, with a 

force that acts in proportional to the current magnitude of the parameter. This force profile is 

found in nature as the profile of the spring force. It would not be too far from the truth to say that 
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the 𝐿𝐿2 norm acts like a spring pulling the weight back to zero at each step, and that error 

magnitude is the pressure that keeps the weight from fully reaching zero. In the case of 𝐿𝐿1, we 

have: 

𝐸𝐸(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 − 𝑘𝑘� |
𝑗𝑗

𝑤𝑤𝑗𝑗| 

If we differentiate this, we get: 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝐸𝐸(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 2(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑘𝑘sgn(𝑤𝑤𝑗𝑗) 

Effectively, this is a fixed pressure towards zero for a parameter that is independent of the 

current magnitude of the parameter. If 𝐿𝐿2 acts like a spring, 𝐿𝐿1 acts like a fixed force, such as 

gravity, that pulls with the same intensity no matter how far the parameter is from zero. This 

essentially acts to “cancel out” motion from error minimization by a fixed amount if it leads 

away from zero and increase motion from error minimization by a fixed amount if it leads 

towards zero. 

The other two profiles are slightly more complex to analyze mathematically, but both essentially 

act as pressures to move towards zero that are selectively applied based on whether the weight is 

non-zero (in the case of 𝐿𝐿0) or the current maximum (in the case of 𝐿𝐿∞). 

Dropout 

Dropout is probably one of the more powerful modern techniques for preventing 

overfitting.  Pioneered by Srivastava et al. (2004), dropout involves randomly ignoring nodes in 

a network during each training step. 
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For example, for a dropout rate of 50%, half of all internal neural network nodes are ignored 

(their outputs set to zero, and their gradients ignored) when training. Which nodes are turned off 

is determined randomly at every step. 

Dropout is inspired by sexual selection in nature – it is based on the idea that by providing 

situations for self-diversification, an artificial neural network can speed up the rate of evolution 

by moving through different strategies and potential models faster by training different ones in 

parallel and re-combining the best of each attempt. 

Dropout is significant because it emulates an ensemble “within” a single network: If a network 

has 10 hidden nodes, then, with a dropout rate of 50%, it has, essentially, �105 � = 252 

configurations of networks which are all almost separately training. A single network can encode 

252 different networks, all within itself. A 100 node network with 50% dropout has 1029 

configurations of on/off states of its nodes. Though each of these internal configurations are 

linked, the variety of configurations helps the network learn to adjust for extreme situations and 

ignore noise. 

From a practical standpoint, it also teaches the network to build in redundancy to its model. It 

cannot rely on every node in every situation, so it must build in ways to account for randomly 

missing nodes in its own process. This forces the network to be more robust, and requires the 

network to dedicate systems of parameters to account for such uncertainties, which reduces the 

effective dimensionality of the parameter space. 

It also, in effect, literally reduces parameters during each step, which reduces the likelihood of a 

single group of parameters overfitting to noise. 
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 In the end, when making actual predictions, models are run with the full network enabled, taking 

advantage of all of the miniature ensembles developed during training. 

One important aspect of dropout that gives it such utility is its versatility: one may now increase 

network size with a smaller fear of an overdetermined system. Traditionally, with more 

parameters, the probability of overfitting increases. However, with dropout, one may double 

network size while also doubling dropout rate. This can effectively negate a large part of the aspect 

of large parameter spaces contributing to overfitting. 
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 4 Recurrent Neural Networks and 
California Drought Forecasting 

4.1 Introduction 

We will now discuss the application of artificial neural networks (in specific, fully-connected 

recurrent neural networks described previously) to study a particularly interesting case in 

contemporary climatology and meteorology: the 2015 – 2016 winter season in California, United 

States of America. In specific, we will examine the climate and weather of the season for the 

souther California region, climate divisions six (6) and seven (7). 

The 2015 – 2016 winter season in question in California witnesses the intersection of two high-

intensity regional and global phenomena — namely, the 2011 extreme drought in California and 

a historically powerful El Niño season. 

Alone, both of these phenomenon rank among the highest in intensity in their class of 

manifestations. Alone, both of these phenomenon give strong predictive power on the 

climatology of the 2015 – 2016 winter season. However, the usual manifestation of these 

phenomenon make strong but contradictory predictions on the outcome of the 2015 – 2016 

winter season. 

Historically, strong droughts carry strong momentum in terms of precipitation and moisture that 

rarely break suddenly and in short amounts of time. And, historically, strong El Niño seasons 

bring large amounts of precipitation to the United States Southwest Coast. 
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At the time, many attempted to reconcile these two opposing pictures. Using artificial neural 

networks, we aimed to provide a supplementary voice, and perhaps shed some new insight. 

Many models and forecasts at the time predicted that the El Niño trends would be able to create a 

meaningful impact on the ongoing drought and bring historically high levels of precipitation and 

moisture to California (specifically, Southern California). However, as will be discussed, our 

own models using recurrent neural networks show that such predictions over-estimated the 

strength of the El Niño season, and under-estimated the sustained momentum of the California 

drought and its influence in determining the overall climatology of the 2015 – 2016 winter 

season. 

This chapter will discuss the application of Recurrent Neural Networks as a supplementary tool 

to current models, including questions on its accuracy and applicability to situations such as 

these. Furthermore, it will discuss potentials of such neural networks in driving scientific 

discovery and insight in this field as a way to augment current indices and understanding of 

Southern California climatology in a way that can be generalized to other regions, or even other 

climate indices. 

4.2 Methods and Materials 
  Artificial Neural Network 

We utilize a Fully-Connected Recurrent Neural Network as described in previously in chapter 7. 

Through trial, for our research, we found that a dropout rate of 10% produced results with the 

best validation scores. 

Our internal node counts were 40 and 30, respectively, for two internal hidden layers, although 

we found similar results with other variations of internal layer sizes and counts. 
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Our usage of a Fully-Connected Recurrent Neural Network was arrived at after iterating through 

several different machine learning and artificial neural network structures – including fully-

connected feed-forward networks, convolutional feed-forward networks, and long-term short-

term memory recurrent neural networks. The fully-connected recurrent neural network was 

sufficient for prediction, without needing the extra power of long-term short-term recurrent 

networks. 

A theoretical justification for the choice of a Fully-Connected Recurrent Neural Network is 

given in the previous chapter. For time series data, recurrent networks are the natural choice. It 

allows for temporal structure to be preserved in the input data, which may be exploited by the 

neural network. Because of the high sensitivity of our domain to temporal structure and 

causality, this this preservation of structure is critical for effective training. And, as discussed 

later, preserving temporal structure opens up a large world of possibilities for analysis of internal 

node activations. This in itself is one of the end-goals of our original research, and so the usage 

of a recurrent neural network over a feed-forward one was dictated both by our high-level goals 

and by the fundamental nature of our system. 

  Long-Term Projections 

PZI data for each month is represented as a 14-element vector. The first twelve elements are 

indicator elements, representing the month of the data point where each component is either 0 or 

1. The final two elements are the normalized, scaled PZIs from that month for both climate 

divisions. For training, data vectors are grouped together in contiguous samples of 48 months. 

Each 48-month group is paired with a single two element vector representing the two divisions’ 

PZI data for the month right after the month of the final data vector in the group. 
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Thus, the network used has 14 input nodes and 2 output nodes. In order to project several months 

into the future, the projection for the next month is joined together with a 12-element prefix 

indicating the next month and used to predict the month after. This allows the network to step 

forward several months into the future, despite its ability in providing projections for only the 

immediate following month. This technique uses the RNN as a directed continuous state non-

Markov feedback generator resembling a continuous space sequence memorizer (Wood et al. 

2009), in a similar manner as strategy explored extensively by Graves, et al. (2014) to generate 

curves and paths from training data. Hopfield (1982) explored the convergence of steady-states 

of this process. 

This type of structure is very pervasive in literature, both in academic and industrial usage of 

neural networks. It is commonly used in textual analysis and generation, in order to generate 

continuations in bodies of text or to imitate the style of a particular author. It is also used in 

physics simulations to model physics in specific situations where analytical analysis is 

impractical. It is very similar in nature to both hidden- and visible-variable Markov chain 

models, and can, itself, be a generalization of Markov models to infinite and continuous state 

spaces. Whereas, traditionally, the state of Markov models is constrained to be a finite set (like 

the state sets of finite automata such as Mealy and Moore machines), the state space of a 

recurrent neural network is described in the following equation. It is an uncountably infinite state 

that is the product of all of the state sizes of each hidden layer, for 𝑛𝑛 hidden layers, where 𝑙𝑙𝑖𝑖 

represents the size of the state vector for layer 𝑖𝑖. 

𝒮𝒮 = ℝ∑ 𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖 = �ℝ𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖
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In treating this as a generalization of hidden- and visible-variable Markov chain models, many of 

the stability and accuracy analysis conducted for such models is also applicable to the domain 

here. We explore this later in and take advantage of the link to make stronger conclusions about 

the strength and mathematical characteristics of our model. 

Naturally, such a system has a strong tendency to evolve fixed-point steady-state behavior, when 

given no driving input and instead asked to predict only on its previous outputs. This 

susceptibility is especially strong for fully-connected recurrent neural networks (and is somewhat 

less of an issue for alternative topologies such as Long-Term Short-Term Memory Networks). 

The twelve input nodes dedicated to month number here somewhat mitigate this, by providing a 

constant driving input. This serves to extend the period of recurrence for steady-state behavior to 

a minimum of twelve months. 

Due to the nature of our situation, because we only wish to predict up to three or four months in 

the future, steady-state and fixed-point behavior do not impact the predictive utility of our model 

in practice, and are only notable as theoretical concerns for long-term predictions and modeling. 

Note that this issue is no different than fixed-point and steady-state issues for hidden- and 

visible-variable Markov models (and other related finite automata analogies); however, being a 

continuous-space generalization, the problem is significantly less pronounced. 

However, in the future, analysis of this fixed-point steady-state oscillation may prove to yield 

some insight into the fundamental nature of the annual oscillations of the PZI anomaly and the 

domain in question. There is some promise shown in hidden markov model analysis and 

Hopfield network analysis to show that fixed-points of such models contain potential insight, and 
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can be studied for a better understanding not only of the model, but of the physical situation 

being examined. 

4.3 Results 
  Training 

We train using the well-established backpropagation-through-time algorithm, discussed in the 

previous chapter, using straightforward batching and stochastic gradient descent. We use the 

final-result error function, out of the three options discussed in the previous chapter. 

As expected, convergence with these models happen very quickly. Due to the relatively high 

number of parameters of the network in comparison with the amount of data types available, 

local minima are found within a matter of dozens of epochs, typically, depending on the size of 

internal layers. This convergence rate aligns with what is expected in similar literature. 

After several dozen iterations of stochastic gradient descent, one sees correlation between 

observed data and network outputs ranging between 0.7 and 0.8. These high correlations are 

expected for training sets; it signifies that the model is able to correctly identify the important 

features in our PZI training set, and the network parameters are properly adjusted to account for 

all or most of the features in the training data set in order to provide such high correlations 

against the expected results. 

  Validation 

As can be expected, without action taken to prevent overfitting, these models tend to validate 

poorly. Initial validations were unsatisfactory, and trained networks fared little better than 

random guessing in predicting on PZI, despite their fast convergence. 
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However, with the overfitting reduction techniques described in the previous chapter, the 

networks converge slightly slower, but consistently to similar trained states. We also reduced the 

difference between the training and validation data correlations and achieved a consistent results 

regardless of initial starting state. 

Despite underestimation in rare extreme cases, the networks output agrees strongly with 

observed data. Longer historical datasets are necessary for a better training, as the 1895 – 2005 

historical record includes only a few El Niño events to analyze. Although we acknowledge the 

limitations of our effort, we consider the extracted results of the performed methodology quite 

satisfactory in forecasting such extreme values for the next year, based only on historical PZI 

time series. 

Figure 1 shows the one, two, and three-month forward projections for the 2006 – 2015 validation 

set alongside observed values and the corresponding correlation plots. The black dashed lines 

correspond to perfect fit (𝑦𝑦 = 𝑥𝑥), while the red solid lines to the least-square fit. The total 

variation in 𝑦𝑦 during the examined period for the 1 month ahead step is explained by the linear 

relationship between 𝑥𝑥 and 𝑦𝑦 represented by 𝑦𝑦 = 0.697𝑥𝑥 − 0.510, 𝑥𝑥 represents the observed PZI 

values and 𝑦𝑦 represents the forecasted values. 

Examining the decline in predictive power as the network projects further into the future, we find 

that the model has statistically significant predictive power with correlation coefficients ranging 

from 0.610 to 0.434 for between one to three months ahead, validating it for confident 

predictions. It is noteworthy that for longer-term predictions, the developed RNN tends to 

overestimate, though in the correct direction of variance. Moreover, it is notable that the network 
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validates better as it progresses down the timeline, using the first yew years to develop its 

internal state to gauge the current context. 

For our trained networks we found that, after a period of time on the order of one year, the state 

from previous months are forgotten and the network settles into a periodic steady-state feedback 

cycle. However, the projected data can still be analyzed for results until the time when the 

residual influences of the past fade away. Furthermore, analysis of activation profiles of internal 

nodes for RNNs can be shown to yield physically insightful results which will be discussed in a 

future work. 

  Medium-Term Projections 

Running the forward prediction method from the PZI records leading to January 2016, we found 

that PZI of the following month represents a drier than average record, despite the anticipated the 

wet late fall and early winter season (Hoell et al., 2016; Zhenya et al., 2015; Climate.gov, 2015), 

hence we expect a return to drought conditions. Figure 2a shows a solid comparison between the 

powerful 1997–1998 El Niño season used here as a baseline when comparing with the 2015-

2016 El Niño season. Figure 2b shows the actual observed precipitation levels for the current 

season compared to precipitation for the 1997-1998 El Niño season which confirms the validity 

of our model’s projections of a drier season associated with the 2015-2016 El Niño as compared 

to the 1997-1998 one. 

The thick lines represent the model’s direct output while the light lines show a measure of the 

model’s uncertainty, calculated via a Monte Carlo process simulating stochastic noise in 

subsequent prediction steps to account for potential errors in the model (Figure 2c). The grey 

dashed line is the baseline 1997-1998 El Niño season, superimposed over their respective months 
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in the 2015-2016 season presented by the dark dashed lines. The PZI anomaly peaks at 0.242 

standard deviations below the monthly average in May of 2016, and quickly sinks back to 0.924 

standard deviations below monthly average by August of the same year. In total, 2016 will be a 

drier year than average with a -0.715 PZI anomaly for the California South Coast Drainage 

climate division. 

 
Figure 2:  (a) Comparing observed and forecasted PZI data for the two El Niño 

season in question (b) Observed PZI anomalies for California Climate Division 6 for 

the two El Niño seasons in question, confirming the low-precipitation season that the 

model predicts (c) Detailed look at model output projections for PZI for the year 

2016 compared to observed values and predictions for 1998, with model 

uncertainties 

The projected PZI for 2015-2016, indicates a much weaker season as compared to the 1997-

1998. The data points themselves are contrasted with that several baseline El Niño seasons in 
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Table 1. This season can be contrasted with the baseline 1997 – 1998 El Niño season, which saw 

a February 1998 that was 4.13 standard deviations above the average PZI for the month, and a 

1998 that was 1.1 standard deviations higher than that of the average year. It can also be 

contrasted with the 1982 – 1983 El Niño season, which saw a peak anomaly of 2.22 standard 

deviations above the monthly average in April of 1983, and saw a 1983 that was 1.15 standard 

deviations above the annual average. 

With confidence, it can be concluded that the 2015 – 2016 season proves to be underwhelming in 

precipitation, and that drought conditions will persist past this winter season. The worst of the 

drought has apparently passed since 2013 with an annual anomaly of -1.30 and 2014 with -1.17 

as compared to 2015 with -0.85, with a projected -0.715 annual anomaly for 2016, continuing a 

general trend of slow but steady emergence from the current drought season. While immediate 

predictions towards values one month into the future have strong predictive power, it cannot be 

assumed that longer term forward projections maintain the same predictive power. 

Table 1. Historical El Niño Palmer Z Index Levels (Anomalies in Standard 

Deviations) 

Season Peak anomaly Peak anomaly month Annual anomaly 

1957 – 1958 3.03 April 0.5 

1982 – 1983 2.22 April 1.15 

1997 – 1998 4.13 February 1.1 

2009 – 2010 1.1 January 0.45 

2015 – 2016 −0.242 May −0.715 

To clearly show the skill of our proposed method, the correlation between the observed and 

forecasted PZI anomaly, for past known weak to severe El Niño responses according to NOAA, 

is computed and presented in Table 2. P-values are also provided corresponding to the likelihood 
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of the null hypothesis that the observed and the forecasted PZI are uncorrelated for the entire 

period under investigation. In other words very low P-values show that the correlation between 

forecasted and observed PZI is statistically significant. The model was intentionally trained on 

the entire history (all years), rather than, on known El Niño years for the purposes of drought 

projection. 

The main motivation of doing so is to be able to provide the model with more information on the 

behavior of the system in all situations. Having the model trained only on El Niño years, it would 

not be able to observe and learn from recurring phenomenon that do not normally occur on El 

Niño years. Training only on El Niño years would arbitrarily deny the model the chance to learn 

from these phenomenon, which might become significant in the specific season we are 

attempting to study. Moreover, by training on non- El Niño seasons, the model has the 

opportunity to distinguish between El Niño and Non-El Niño seasons and learn the degree of 

adjustment required in the context of the years leading into each season.  

Table 2: Observed (obs.) versus projected (proj.) PZI correlation coefficients with 

corresponding P-value for past El Niño events categorized as weak, moderate, 

strong and very strong showing the RNN model skill 

Weak 
CC (obs. 
vs. proj.)/Pvalue Moderate 

CC (obs. 
vs. proj.)/Pvalue Strong 

CC (obs. 
vs. proj.)/Pvalue 

Very 
Strong 

CC (obs. 
vs. proj.)/Pvalue 

1953-
54 

0.608/0.0179 1951-52 0.822/0.0005 1957-
58 

0.837/0.0003 1982-
83 

0.623/0.0156 

1958-
59 

0.837/0.0003 1963-64 0.892/0.0000 1965-
66 

0.869/0.0001 1997-
98 

0.870/0.0001 

1968-
69 

0.556/0.0302 1986-87 0.873/0.0001 1972-
73 

0.694/0.0061   

1969-
70 

0.575/0.0253 1991-92 0.332/0.1459     

1976-
77 

0.483/0.0559 2002-03 0.892/0.0000     
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1979-
80 

0.688/0.0067       

1994-
95 

0.584/0.0232       

2004-
05 

0.937/0.0000       

2006-
07 

0.880/0.0000       

From the above table the model showed some skill towards the majority of El Niño years regardless 

of their strength. The correlation coefficients varied around 0.7 which is quite similar and slightly 

higher than our validation data that was presented in Figure 2. We did not include 2009-2010, 

2015-2016 in this analysis as they are part of the validation dataset used in our forecast model. 



 

63 

 
Figure 3: Time series correlation plot between observed and forecasted PZI using 

RNN for climate divisions 6 & 7 wit lead times of 1 month (top), 2 months (middle), 

3 months (bottom), starting January 2006 

4.4 Internal Activation Analysis 

Internal node activation analysis for our trained network will be an important topic of future 

study. Shown Figure 4 is a sample of select internal activation time series of our model, shown 

alongside PZI. 

Future analysis can be applied by comparing PZI with precipitation data and other climate 

indices. We may find that some internal node activations may closely align with other known 

climate indices, such as regional NDVI, SOI and MEI El Niño indices, surface temperature, 
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precipitation, cloud coverage, soil moisture, and other climate time series. A high and significant 

of correlation of an internal node activation with any of these indices would be a significant find, 

and would show that the network arrives at important high-level features used by climatologists 

to perform its calculations. 

As a second stage of analysis, one may identify node activations which have no apparent 

physical interpretation, and attempt to apply these nodes to other climate situations to gauge if 

they have any predictive power or useful physical insight. 
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Figure 4: Activation analysis of a trained neural network; horizontal axis represents 

time, and vertical axis represents each discrete node’s activation history 

As discussed in the previous chapter, this line of research has shown much promise in other 

fields, leading to discoveries and innovations in sentiment analysis, textual, and audio 

generation. The transfer of these innovations to domains such as weather and climatology can 
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drive the discovery of new important weather indices, validate current ones, and give a greater 

understanding to how different weather indices and environmental variables interact and are 

related to one another. 

4.5 Contrasts to Feed-Forward Results 

Such a case-by-case analysis can be done by carefully inspecting nodes of a trained recurrent 

neural network. In itself, this is a testament to the power of the recurrent neural network — a 

similar analysis on a feed-forward neural network would be impossible, for three principle 

reasons: 

1. Feed-forward neural networks analyzing time series would involve many times more input 

nodes, and therefore many times more internal nodes, making analyzing each one 

impractical. 

In addition, the number of input nodes and internal nodes scales with the size of the 

“window” used to predict on slices of the time series. If one wishes to give the network 

more or less of a window on which to make a prediction, one also scales quadratically (or 

exponentially, depending on choice of scaling method) the number of nodes and internal 

activations to inspect. 

With recurrent neural networks, the number of internal nodes and therefore activations to 

inspect remains constant with the size of window used for predictions. 

2. The structure of feed-forward neural networks cannot be re-used for different temporal 

windows. With a network trained for specific window sizes, it is not possible to directly 

apply the network to different window sizes without a major topological restructuring, 

which may completely change the activation structure of the network. 
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For recurrent neural networks, one may use the same trained network for different window 

sizes. This is because activations already assume previous state, and state is processed the 

same way for every iteration of the network. 

Because of this, conclusions derived on the node activations for a network for one window 

size is immediately applicable to all window sizes. However, for feed-forward neural 

networks, conclusions derived on the node activations for a network for one window size is 

inapplicable to a different the activations of a network with a different window size. 

In essence, window-size is a parameter of the network structure itself for feed-forward 

networks, whereas it is an external parameter of the way one runs a network, for recurrent 

neural networks, and plays no role in its own internal structure. 

3. Feed-forward neural networks analyzing time series lose all temporal structure; it is 

impossible to associate activations of specific nodes with specific points in time, or 

correlate activations with each other as a time series. 

With a recurrent neural network, the activation of each individual node, on its own, is itself 

a time series, and may be studied as such. There is no such time series activation analogy 

for feed-forward neural networks. 

4.6 Conclusions 

This research addressed the rationale of using PZI as a significant precipitation indicator to 

address the anticipated heavy rain over Southern California driven by the strong 2015-2016 El 

Niño season. 

By investigating many ANN models, utilizing proven effective RNN configurations and 

applying them to analyze over a century of monthly PZI data, it is shown with strong confidence 
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that precipitation associated with the 2015-2016 El Niño season is currently and will continue to 

be weaker than that of the historic 1997-1998 El Niño season. 

From this, we anticipated that drought conditions will continue to persist (albeit at an alleviated 

level) beyond this winter. These forecasts are made with a model that is well tested with 

significant high correlations on a ten-year validation set, with p-values p<10^(-6) for predictions 

up to three months into the future. Such projections are confirmed through current observed 

precipitation levels and PZI values for 2016 as compared to those of the 1997-1998 season. 

These results are consistent with the observed data that we now possess, and as our models 

continually are run on this data set, we observe now the unfolding of our model’s predictions, 

which were more accurate than other prevailing models and published predictions at the time. 

Our team is currently in the process of applying these models to new climate divisions in hopes 

of achieving similar validation scores and demonstrating the general applicability of our model. 

Already, promising results are shown when applying these models to other climate regions in 

California and the United States, and also to different climate indices. The general applicability 

of the model consistently verified when attempting to apply it to different climate situations and 

data sets. 

In addition, a visual look at internal node activation shows promise in the usage of these 

techniques for confirming and identifying climate indices and high-level features that can find 

applications in situations outside of drought projections, and in the greater field of climatology in 

general. Simple correlation analyses and manual sifting through nodes (which is made possible 
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and easier using recurrent neural networks) is a road that shows promise in yielding valuable 

insight, as shown by successes in using the same process in other fields and domains.  



 

70 

 5 Recurrent Neural Networks for 
Understanding Climate 

5.1 Introduction 

We will now expand on the promise in the past chapter – of using internal node activations to 

help us discover insight about the actual physical system being modeled.  We again project on 

regional PZI, which tracks moisture conditions and changes in moisture conditions for a given 

month.  PZI was chosen over direct precipitation measurements due to its nature as a more 

meaningful proxy of drought conditions, which can be distinctly useful in economic planning 

decisions over raw precipitation measurements and projections.  The utility of PZI as a model 

predictand was demonstrated and expanded on in the previous work.  PZI is used here as a 

broader hydrologic measure that integrates soil moisture, run-off, and other ecologically 

significant factors to create a physically meaningful metric for the prediction of future drought 

conditions.  PZI itself has a high correlation with precipitation, which shows its usefulness as a 

proxy for precipitation predictions. 

For the purpose of this study, the Palmer Z-Index can be considered a memoryless index 

indicating current drought level, based on empirically measured and calculated numbers.  It is 

computed based on factors such as soil moisture capacity, total precipitation and potential 

evapotranspiration, moisture recharge, run-off, and moisture loss.  Precipitation and PZI are 

correlated with a coefficient of about 0.77, making PZI a useful proxy for precipitation, while 

also including more meaningful measurements of drought intensity.  An important property for 

its usage as a predictand is also its lack of explicit reference to any previous values; unlike 
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Palmer Z-Index, PZI is re-computed from direct measurements every month, and so does not 

have any explicit autoregressive factors. 

The historical Z-indices for all California Climate Divisions were gathered from the Global 

Historical Climatology Network (GHCN) nClimDiv data set (ftp://ftp.ncdc.noaa.gov/pub/ 

data/cirs/climdiv/), which gives per-climate division aggregates for raw and processed surface data 

measurements. Values in the nClimDiv data set are calculated using area-weighted averages of 

points on a 5 km-resolution grid overlaid across each division. This resolution is high enough to 

ensure sufficient spatial sampling, especially for the climate divisions being analyzed in this paper 

(Vose et al. 2014). Points are assigned climate data based on spatial interpolation of nearby 

stations, with topographic and network variability taken into account in the interpolation process. 

GHCN subjects the data to regular quality assurance reviews to ensure correctness. For California 

South Coast Drainage and South East Desert Basin climate divisions, data from a total of 526 and 

184 stations respectively, are taken into account and aggregated. Aggregated station data are 

available from January 1895 to January 2016, on a month to month basis, giving 1452 total data 

points. The most recent 120 months of data are set aside for validation, and the remaining 1332 

points are used for training purposes. 

From the nClimDiv data set, the gathered historical Z-indices were shifted to historical monthly 

averages and re-scaled to have standard deviation equal to unity. This is done to remove yearly 

periodic components in mean and variance that might arise in the process of the Z-indices 

computation. 

That is, an aggregate 𝜇𝜇𝑀𝑀 average or each month and  𝜎𝜎𝑀𝑀 standard deviation for each month was 

computed, and the normalized PZI for year 𝑌𝑌 and month 𝑀𝑀 is computed as: 
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�̂�𝑍𝑌𝑌,𝑀𝑀 =
𝑍𝑍𝑌𝑌,𝑀𝑀 − 𝜇𝜇𝑀𝑀

𝜎𝜎𝑀𝑀
  

This process also removes a large deal of autocorrelation from the time series, making the 

prediction much more meaningful. 

5.2 Network Structure 

For this work, we elaborate on our previous paper by moving from fully-connected recurrent layers 

to Long-Term Short-Term Memory (LSTM) recurrent layers.  LSTM layers maintain an isolated 

and curated “memory” as its state, which is highly persistent and left mostly unchanged from time 

step to time step.  The network is made to treat changes to memory with strong discretion.  This 

allows networks to maintain long-term memory in ways that fully-connected recurrent layers could 

not. 

The final structure of our network is two LSTM layers with 16 and 12 nodes each, followed by a 

fully-connected feed-forward output layer with no activation function.  We apply 50% dropout 

after each LSTM layer and apply 𝐿𝐿2 regularization with regularization coefficient 0.1. 

The network is trained (“unrolled”) with a lookback of 24 months.  That is, its mode of 

operation is, once provided a 24-month history, to output the PZI of the next month.  The 24-month 

history is used to prime the state in order to make the final prediction.  The initial state is used as 

a trained parameter, as well. 
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Training involves picking the parametrization of each LSTM layer, the parametrization of the 

final output layer, and the values in the initial state of the network, that would, if shown 24 months, 

output properly the next month’s PZI. 

The LSTM layer with an input ℝ𝑛𝑛 and output ℝ𝑚𝑚 consists of two state components: its memory 

cells ℝ𝑚𝑚 and the previous output, ℝ𝑚𝑚.  It is parametrized by four (𝑛𝑛 + 𝑚𝑚) × 𝑚𝑚 real-valued 

matrices (and four ℝ𝑚𝑚 bias vectors), which control the behavior of four “gates”. Roughly speaking, 

each gate controls how input and previous output affect the components of the cell state. 

1. Forget Gate: Provides the logic of the network to the ability erase components in the cell 

state, depending on the previous output and the current input.  Its output is essentially 

binary. 

2. Input Gate: Provides the logic of the network the ability to write components in the cell 

state, depending on the previous output and the current input. 

3. Update Gate: Provides the new values to write into the components of each cell, based on 

the previous output and the current input.  While the input gate determines whether to 

write, the update gate computes what is written. 

4. Output Gate: Provides the output of the RNN layer, which is provided as the input to the 

next layer. 

Assuming previous cell state 𝐶𝐶𝑡𝑡−1, previous output ℎ𝑡𝑡−1, and input 𝑥𝑥𝑡𝑡, we can compute the output 

ℎ𝑡𝑡 and next cell state 𝐶𝐶𝑡𝑡 via the following equations: 

 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝜕𝜕 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝜕𝜕� 
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𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

�̃�𝐶𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡 

𝑙𝑙𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

ℎ𝑡𝑡 = 𝑙𝑙𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

Where: 

• 𝑊𝑊𝜕𝜕 and  𝑏𝑏𝜕𝜕 are the weights and biases parametrizing the forget gate. 
• 𝑊𝑊𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the weights and biases parametrizing the input gate. 
• 𝑊𝑊𝐶𝐶 and 𝑏𝑏𝐶𝐶 are the weights and biases parametrizing the update gate. 
• 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 are the weights and biases parametrizing the output gate. 
• [𝑥𝑥,𝑦𝑦] ∶  ℝ𝑛𝑛+𝑚𝑚 represents an element in the direct product of two vectors 𝑥𝑥 ∶  ℝ𝑛𝑛 and 𝑦𝑦 ∶

 ℝ𝑚𝑚 
• ⋅ represents matrix-vector multiplication. 
• ∗ represents the component-wise product of two vectors 
• 𝜎𝜎(𝑥𝑥) represents the sigmoid function, 𝜎𝜎(𝑥𝑥) =  1

1+ 𝑒𝑒−𝑥𝑥
  

• tanh(𝑥𝑥) represents the hyperbolic tangent, tanh(𝑥𝑥) = 𝑒𝑒2𝑥𝑥−1
𝑒𝑒2𝑥𝑥+1

 

The four weight matrices and four bias vectors represent the parameters that must be trained for 

the LSTM network to make accurate predictions.  The initial cell state 𝐶𝐶0 and initial previous 

output ℎ0 are also treated as trained parameters. 

The final layer is a fully-connected feed-forward layer, which is essentially a linear combination 

(plus a bias) of the input.  It is represented by: 

𝑙𝑙𝑡𝑡 = 𝑊𝑊 ⋅ ℎ𝑡𝑡 + 𝑏𝑏 

Where 𝑊𝑊 and 𝑏𝑏 are a weight matrix and bias vector that are also to be trained for. 
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5.3 Methodology 

PZI data for each month are represented as 13-element vectors. The first twelve elements are 

indicator elements, encoding in a “one-hot” form the month of the data point.  If the index of the 

vector matches the current month of the data point, the component is 1; otherwise, 0. The final 

element is the normalized and scaled PZI for that month.  PZI is normalized to have mean 0 and 

standard deviation 1 when considering historical PZI for that specific month. 

For training, data vectors are grouped together in contiguous samples of 24 months. Each 24-

month group is paired with a single one-element vector representing the PZI data for the month 

right after the month of the final data vector in the group. Thus, the network used has 13 input 

nodes and 1 output node. 

For predicting many months into the future, the projection for each next month is joined together 

with the appropriate 12-element one-hot vector.  Then, the network is run again, treating the 

output as a part of the known input.  This allows the network to step forward several months in 

the future.  This technique utilizes the RNN as a directed continuous-space sequence memorizer 

(Wood et al. 2009), a technique explored extensively by Graves, et al. (2014) for the generation 

of curves and paths from training data. The steady-state convergence of this method was 

explored in-depth by Hopfield (1982). 

To train the neural network to find the correct parameters on a per-division basis, we use the 

backpropagation through time (BPPT) algorithm, taken over contiguous samples of history 

(Mozer, 1995; Werbos, 1999).  The process involves turning a 𝑓𝑓𝑝𝑝: 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆 × 𝐵𝐵 model into a 

𝑔𝑔𝑝𝑝:𝑆𝑆 × 𝐴𝐴𝑁𝑁 → 𝑆𝑆 × 𝐵𝐵 model by repeatedly composing the function with itself, threading in 

updating states and successive input values. 
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The final unrolled result 𝑆𝑆 × 𝐵𝐵 is defined as, given initial 𝑙𝑙0 and 𝑎𝑎𝑡𝑡 inputs: 

(𝑙𝑙𝑡𝑡, 𝑏𝑏𝑡𝑡) = 𝑓𝑓𝑝𝑝(𝑙𝑙𝑡𝑡−1,𝑎𝑎𝑡𝑡) 

taking (𝑙𝑙𝑁𝑁, 𝑏𝑏𝑁𝑁) as the final unrolled result. 

Furthermore, we train on the input state by turning 𝑙𝑙0 into a trained parameter and dropping the 

final state, giving us a final unrolled function ℎ(𝑝𝑝,𝑠𝑠0):𝐴𝐴𝑁𝑁 → 𝐵𝐵.  For our purposes, we set 𝑁𝑁 = 12, 

𝐴𝐴 ~ ℝ13, and 𝐵𝐵 ~ ℝ1. 

This final 𝐴𝐴𝑁𝑁 → 𝐵𝐵 function is fully differentiable, so we can use it via normal gradient descent 

through backpropagation.  For our purposes, we use an Adam optimizer for more efficient 

convergence, which dynamically adjusts step size based on momentum and train time. 

The network is initialized with randomly generated weights and initial state, based on a gaussian 

distribution centered around zero with variance 0.2.  The network is trained against a 90/10 split 

of the previous 1492 months of weather data, where inputs are 24-month vectors, and outputs are 

1-month predictand. 

In the end, we train seven distinct models – one model for each climate division.  However, each 

model has identical structure, as the goal is to find a universally adaptable structure. 

It is possible also to initially train a model on a single division, and then proceed to train on a 

different division.  This pre-training method is used in many mainstream ANN applications. 
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The LSTM network converges extremely quickly, within the span of several passes over the 

training data (commonly known as “epochs”), to extremely low RMSE values and high 

correlation (between 0.9 and 1.0).  However, this model is highly overfitted, and validates 

poorly, providing RMSE as high as 1.5 and correlations as low as 0.1. 

In over-fitting the data, the model fits its parameters to specific noise of the training data, 

essentially acting as a k-nearest-neighbors approximator.  In order to mitigate overfitting, we 

apply three separate techniques: 

First, we inject gaussian noise into the training data (Zur et al., 2009), which serves to expand the 

effective size of the training data set. 

Second, we apply the dropout technique (Srivastava et al., 2014). Dropout is a regularization tool 

designed to mitigate overfitting; the network is essentially taken as the average of several semi-

dependent networks.  The model is forced to only be able to operate with a small subset of its 

nodes at any given iteration, forcing itself to build in redundancies and multiple ways to compute 

an answer. 

Thirdly, we apply 𝐿𝐿2 regularization, constraining the model parameters to be as “simple” as 

possible by encouraging smaller, more compact parameter choices.  This prevents the model 

from overfitting by picking extreme parameters that match more on noise than on actual signal 

and is a common component of neural network training. 

All these methods sacrifice convergence on the training data for validation on the test data, 

increasing test data correlation. 
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5.4 Results 

We see that these networks converge consistently within around two hundred epochs to 

consistently similar trained states and validation results.  Network output agrees strongly with 

observed data, based on a baseline linear autoregressive model.  Also included is the baseline 

autocorrelation between successive items in the list. 

 

Table 3: Statistics for trained models per division on RNN 

Division Val. 

RMSE 

Val. 

Corr. 

Corr. p-

val 

Baseline 

RMSE 

Auto 

Corr. 

Accuracy 

Gain 

Corr. 

Gain 

Cal-1 0.9719 0.3070 < 10-3 1.274 0.1875 31.1% 63.7% 

Cal-2 0.9555 0.3190 < 10-4 1.244 0.2258 30.2% 41.3% 

Cal-3 0.9088 0.3002 < 10-3 1.177 0.3066 29.5% -2.09% 

Cal-4 0.9690 0.4434 < 10-7 1.133 0.3583 16.9% 23.8% 

Cal-5 0.8989 0.5415 < 10-11 1.142 0.3479 27.0% 55.6% 

Cal-6 0.8062 0.6003 < 10-14 1.120 0.3722 38.9% 61.2% 

Cal-7 0.8772 0.3320 < 10-4 1.151 0.3368 31.2% -1.43% 

Ave 0.9125 0.4060 - 1.177 0.3050 29.3% 34.6% 

 

The alternative method – pre-training first on one division, and then training the resulting model 

on different divisions – provides comparable results, but with faster training times after the initial 

pre-training period is finished. 
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In the following plots, we include the observed and forecasted PZI for all regions.  For each 

region, we include a sample of the network running on training input to show convergence.  The 

same time period is chosen for all regions. 

 

Also included are sparkline representation of internal network activations for the training data 

set, which is explained in the upcoming section. 
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Result Convergence and Predictions 

 

 

 

Figure 5: Convergence and validation results per-division on RNN 
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Division 1 

 

Division 2 

 

Division 3 

 

Division 4 

 

Division 5 

 

Division 6 

 

Division 7 

 

 

Figure 6: Convergence correlations for trained RNN networks per division 
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Division 1 

 

Division 2 

 

Division 3 

 

Division 4 

 

Division 5 

 

Division 6 

 

Division 7 

 

 

Figure 7: Validation correlations for trained RNN networks per division 

  Geographical Variation 

From the table of model accuracies, we can observe that there exists some variation in the 

learnability for different regions.  In particular, the model has the capability to learn California 

Climate Divisions 6 and 7 to a higher degree of accuracy than it can learn the other five 

divisions. 

This variation in learnability is also apparent in the baseline autoregressive models, however; it 

performs stronger than statistical methods with the same input data set. 

It is not clear why both RNN models and statistical models underperform in divisions 1-5, as 

opposed to 6 and 7.  Initially, one would presume that coastal regions have smaller month-to-
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month variability, and so have a higher in-system autoregressive memory.  However, Division 1, 

the worst performing model of all seven, is a coastal region. 

One similarity that Divisions 6 and 7 have that are not shared with the other divisions is the fact 

that they both completely cover the southern regions of California, located nearby the Gulf of 

California and equatorial Atlantic currents.  This regulation might create more predictability 

within these regions, imposing limitations on month-to-month variations. 

  Sparkline Monitoring 

By analyzing the activations of internal neurons outputted by each LSTM layer, we generate 

“sparkline” plots of each activation as a time series.  Here are examples of sparkline outputs 

from the network trained on Division 6.  First, its activation as it trains, looking at the window 

around the significant El Niño event in 1997: 
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Figure 8: Labeled cell state time series sparkline of network being run over training 

data, Climate Division 6, 1990-2000. 

The first row represents the input time series (PZI, where high is wet and low is dry), repeated 

four times for ease of vertical comparison.  The final row represents the output time series 

predicted by the model, again repeated four times for ease of vertical comparison 

Rows two through four represent the time-varying value of each of the 12 state cells of the first 

LSTM layer as a time series.  Identify these as 1A, 1B, through 1L.  Rows five through seven 

represent the cell states of the second LSTM layer. Id entify these as 2A, 2B, through 2L. 

In this sense, cell states act as “random-access memory” of a computer, or as current chemical 

balances in the brain according to the biological analogy. 
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From this, we may identify high-level features that the network detects as useful from the input 

data.  We can point out specific characteristics from cells 1G, 1J, 1H, 2C, and 2H:

 

Figure 9: Highlighted features in the time series for specific cell activations for 

California Climate Division 6, 1990-2000.  In each box, the top row is the input PZI, 

and the bottom row is the activation of a given cell state as a time series in response 

to the input data. 

• Cell 1G characteristically spikes on the leading edges of large rainy seasons but drops out 

immediately during the body of the rainy season.  This suggests that this cell has been 

selected to forecast the beginning of significant rainy seasons, but not to remain activated 

during the season itself 

• Cell 1J appears to spike (negatively) according to sudden storm surges, and then decay in 

linear time.  This suggests that Cell 1J keeps track of the “time since previous storm” for 

the network, providing the network with much needed temporal context. 
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• Cell 1H appears to simply keep track of the previous seen PZI.  This suggests that the 

neural network incorporates an autoregressive model within its larger model and takes the 

previous seen PZI as an important part of predicting the next PZI. 

• Cell 2C appears to grow linearly throughout the course of a large storm season.  This 

suggests that 2C represents some sort of internal timer for the duration of a storm season, 

providing the network with context on how long a current storm season is lasting. 

• Cell 2H is nearly always zero, except for during large storm seasons.  This suggests that 

2H is keeping track of whether we are currently within a large storm season, acting like a 

binary gating mechanism. 

5.5 Conclusions 

This paper has shown that the prediction of PZI using autoregressive methods based on LSTM 

recurrent neural networks has promise.  Though the model’s accuracy varies between divisions, 

it is consistently higher than baseline statistical methods by an average of 30%, and can prove to 

be an important tool that can be generalized over different climate divisions.  The parallel 

training of different networks over different divisions is proven effective, and rapid training via 

pre-training also shows promise for generalization to many different division types. The role of 

machine learning and data science within climate and weather projection is still under discussion.  

However, we believe that, due to the strong predictive power shown by this method, it can be a 

useful tool guiding the process of climate science-based projections, as well as a tool in guiding 

types of indices and significant features within weather time series data. In addition, we have 

shown that interesting features may be easily found using the sparkline-based visualization 

method of internal activations.  Future research will be dedicated to the evaluation of these 

sparkline activations methods and their comparison with known physical indices.  
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 6 Empirical Mode Decomposition 

6.1 Introduction 

Empirical Mode Decomposition and the Hilbert-Huang Transform, developed at NASA in the 

1990’s by Norden E. Huang et al., are methods of time series decomposition and domain 

transformation, respectively.  Their development was made to address shortcomings of 

competing and contrasting methods such as the Fourier and Wavelet decomposition and 

transform when applied to data from non-stationary and non-linear systems 

The analysis of “empirical” time-series data (data corresponding to observations of physical 

systems) is a topic of great importance in scientific analysis within the domain of the physical 

system.  For example, analyzing time series data of climate indices by identifying important 

features and characterizing and summarizing different aspects of the time series are all important 

intermediate steps for deciding a course of action, and to gain a deeper understanding of the 

system in question. 

From a high-level perspective, Empirical Mode Decomposition aims to decompose a time series 

into non-stationary components that may be understood and analyzed within their own terms.  

The Hilbert-Huang transform reframes the series into a frequency-over-time domain (much like a 

sparse wavelet decomposition), by following the relative movement of each of these non-

stationary components.  Empirical Mode Decomposition aims to provide an “empirical” 

(numerical and physically rooted, in contrast to mathematically formal) method of 

decomposition of data into a series of modes in order of higher frequency variances, where each 
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mode is meant to represent physically meaningful aspects of the process at different time scales 

within the length of the time period.  The Hilbert-Huang transform builds on this to recombine 

the relative contributions of each mode into frequency-time domain representation that tracks 

how each mode contributes to the total variation of the series. 

  Contrasting Comparable Models 

Common comparable methods, such as Fourier and Wavelet transforms, operate under critical 

assumptions on the underlying data set.  Namely, they assume that the data comes from a 

physical system that is exhibits some combination of linearity and stationarity.  For example, the 

core assumption of both the Wavelet and Fourier Transform is that observations of the system in 

question can be understood as the sum of contributions from many independent systems, and that 

each independent system contributes to the final phenomenon in a linear way.  The Fourier 

Transform also a further assumption of stationarity, and that the behavior of each of these 

subsystems is consistent and stable over the time period being analyzed. 

The popularity of these transforms derives from the fact that the mathematical principles that 

underly the Fourier and Wavelet transform are strong mathematical ideals that allow for 

powerful tools for reasoning, drawing from the vast fields of linear algebra and real analysis and 

the conclusions they allow one to draw.  In addition, many idealized physical systems are linear 

(due the linearity of many fundamental physical laws), and many empirically studied physical 

systems are close enough to linear to ignore effects of nonlinearity.  Much time series data 

studied for physical systems is also taken at a scale where effects of stationarity is assumed or is 

at least achievable through formal normalization techniques. 
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However, the apparent ubiquitous status of these transforms gives much undeserved comfort to 

those seeking to apply them to many systems where they are not suitable.  In much current 

literature and instructive material, Fourier and Wavelet transforms are recommended as first 

tools without first assessing their validity within the physical system being analyzed, whether 

informal or formal. 

Because these tools are purely numerical processes detached from their mathematical premises, 

it is possible to use them in a variety of situations without giving thought to the physical sources 

of the time series processes in question.  These methods give numerical answers that appear to be 

interpretable, without needing to give thought to the underlying mathematical principles 

underneath the analysis. 

However, the physical reality of the time series being studied and analyzed is often not as 

mathematically clear.  Many physical systems of note are not linear and do not obey general 

principles of linear superposition; many physical systems also do not exhibit stationarity in any 

meaningful extent, nor can be renormalized or reinterpreted to be stationary.  When time series 

data from observations corresponding to these systems are subjected to Fourier and Wavelet 

decomposition, it is possible that the resulting components of decomposition are no longer 

physically meaningful if the effects of nonlinearity or non-stationarity are large enough.  This 

leads to the inability to make conclusions from analysis, or potentially worse, errors in analysis 

or potential over-confidence in the results of analysis. 

  Effects in Nonlinearity 

Linearity in a physical system can be described as the validity of the superposition principle: the 

principle that observed quantities can be understood in terms of independent systems whose 
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contributions to the observable quantity add together in an independent way.  For example, if we 

consider the state of the system in phase space 𝑝𝑝𝑡𝑡 ∈ 𝑃𝑃 and the progression of 𝑝𝑝𝑡𝑡 to be governed 

by a time-progression operator ℋ:𝑃𝑃 → 𝑃𝑃 representing the laws of physics of the system, we 

notate the time-progression of 𝑝𝑝𝑡𝑡 as ℋ𝑝𝑝𝑡𝑡.  If ℋ is a linear operator, we may instead divide our 

system as the linear combination of two arbitrary separate components 

𝑝𝑝𝑡𝑡 = 𝑐𝑐𝑣𝑣𝑢𝑢𝑡𝑡 + 𝑐𝑐𝑣𝑣𝑣𝑣𝑡𝑡 

𝑝𝑝𝑡𝑡,𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡 ∈ 𝑃𝑃 

in which 𝑢𝑢𝑡𝑡 and 𝑣𝑣𝑡𝑡 are themselves both valid positions in phase space 𝑃𝑃. 

If ℋ, the operator representing the laws of progression of our physical system, is linear, this 

would mean that: 

ℋ𝑝𝑝𝑡𝑡 = ℋ(𝑐𝑐𝑢𝑢𝑢𝑢𝑡𝑡 + 𝑐𝑐𝑣𝑣𝑣𝑣𝑡𝑡) 

ℋ𝑝𝑝𝑡𝑡 = ℋ(𝑐𝑐𝑢𝑢𝑢𝑢𝑡𝑡) + ℋ(𝑐𝑐𝑣𝑣𝑣𝑣𝑡𝑡) 

ℋ𝑝𝑝𝑡𝑡 = 𝑐𝑐𝑢𝑢(ℋ𝑢𝑢𝑡𝑡) + 𝑐𝑐𝑣𝑣(ℋ𝑣𝑣𝑡𝑡) 

In other words, we can fully understand the progression of 𝑝𝑝𝑡𝑡 through 𝑃𝑃 without considering how 

ℋ acts on 𝑝𝑝𝑡𝑡  as a unit, and instead understand the progression of 𝑝𝑝𝑡𝑡 simply in terms of how ℋ 

acts independently on 𝑢𝑢𝑡𝑡 and 𝑣𝑣𝑡𝑡, which may be much simpler for analysis. 

If we know that our system is linear, we may take advantage of linear decompositions like the 

Fourier transform.  We can decompose our point in phase space 𝑝𝑝𝑡𝑡 into a linear combination of 

its Fourier components: 
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𝑝𝑝𝑡𝑡 = �𝑐𝑐𝜔𝜔𝑢𝑢𝑡𝑡𝜔𝜔

𝜔𝜔

 

(where 𝑢𝑢𝑡𝑡𝜔𝜔 ∈ 𝑃𝑃 represents a single basis of the Fourier decomposition corresponding to 

frequency 𝜔𝜔 and 𝑐𝑐𝜔𝜔 corresponds to the Fourier component at that frequency 𝜔𝜔) 

Then, we can understand the progression of system 𝑝𝑝𝑡𝑡 through time ℋ𝑝𝑝𝑡𝑡 as: 

ℋ𝑝𝑝𝑡𝑡 = ℋ��𝑐𝑐𝜔𝜔𝑢𝑢𝑡𝑡𝜔𝜔

𝜔𝜔

� 

ℋ𝑝𝑝𝑡𝑡 = �ℋ(𝑐𝑐𝜔𝜔𝑢𝑢𝑡𝑡𝜔𝜔)
𝜔𝜔

 

ℋ𝑝𝑝𝑡𝑡 =  �𝑐𝑐𝜔𝜔(ℋ𝑢𝑢𝑡𝑡𝜔𝜔)
𝜔𝜔

 

In other words, it is valid to understand the progression of system 𝑝𝑝𝑡𝑡 through time ℋ𝑝𝑝𝑡𝑡 in terms 

of how ℋ acts individually and independently on each component, 𝑢𝑢𝑡𝑡𝜔𝜔.  And, ideally, the 

analysis of of ℋ𝑢𝑢𝑡𝑡𝜔𝜔 is much simpler than the analysis of the whole part. 

However, an attempt at similar analysis of ℋ is non-linear will either provide meaningless 

results or forget all results.  For example, it may be the case that 

ℋ𝑝𝑝𝑡𝑡 = ℋ(𝑢𝑢𝑡𝑡 + 𝑣𝑣𝑡𝑡) 

ℋ𝑝𝑝𝑡𝑡 = ℋ𝑢𝑢𝑡𝑡 + ℋ𝑣𝑣𝑡𝑡 + ℋ𝑢𝑢𝑡𝑡ℋ𝑣𝑣𝑡𝑡 

In this case, any sort of decomposition analysis must take so-called “cross terms” into 

consideration, and we cannot meaningfully analyze ℋ𝑝𝑝𝑡𝑡 in terms of only ℋ𝑢𝑢𝑡𝑡 and ℋ𝑣𝑣𝑡𝑡 unless 

nonlinear terms cross-terms can be shown to be insignificant. 



 

92 

While it may be possible to perform the numerical transformations corresponding to a Fourier 

transform on a time series, the results are not meaningful, and do not represent any actual real 

physical aspect of the system at hand if the system is not linear.  Either we end up ignoring 

important extra terms like cross-terms or look at an aspect that is altogether unrelated to the 

underlying physical processes. 

Non-linear physical systems and time-progression operators are commonplace in the study of 

physical systems, including wave dynamics. 

Fourier and wavelet analysis both require a linear system in order to produce physically 

meaningful results from their numerical decompositions.  Clearly, there is a need for a method of 

decomposition that does not depend on mathematical linearity. 

  Effects in Non-stationarity 

Stationarity in a physical system describes, informally, a general property of time-symmetry in 

observed results.  If observable 𝑋𝑋 is considered as a stochastic variable under an unconditional 

joint probability distribution, stationarity is formalized as the claim that that probability 

distribution is time-symmetric, with no explicit dependency in time.  The properties of this 

probability distribution – including mean and variance – are not dependent on time. 

In practice, it is the constraint that certain statistical properties of this observable are unchanged 

under time-shift; such statistical properties must be identical at any point over the course of the 

time series.  Usually, this is formalized by specifying exactly which statistical properties are 

taken to hold constant over time. 
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The Fourier Transform is fundamentally a method of the decomposition of stationary processes.  

The fundamental assumption of the Fourier Transform is that, given a time series, it can be 

characterized as the sum of pure sinusoidal terms, combined as a superposition based on 

magnitude and phase, together known as Fourier coefficients.  The entirety of the time series is 

given a global Fourier coefficient for each frequency term.  Locality and variations in the time 

domain are represented as global fixed quantities in the frequency domain – the magnitude and 

phase of each sinusoidal contribution is stated as fixed for the entire duration of the time series. 

This, the Fourier Transform is ill-suited for situations where the statistical characteristics of the 

time series data change in a non-periodic way over the duration of the time series.  A numerical 

fourier decomposition can be performed which assigns a complex number 𝑐𝑐𝜔𝜔 for each frequency, 

but this number is detached from any physical meaning or interpretation: there may be no such 

constant frequency component operating at that associated magnitude or phase throughout the 

duration of the time series.  A number may be computed, but it is without any physical meaning, 

and is instead an artifact of the numerical quantification of the observable.  Any interpretation 

based on it is unfounded within the actual mathematics of the Fourier transform or the physics of 

the system.  The coefficient has no relation to any aspect of the physical system in situation with 

nonstationarity. 

Wavelet transforms, in contrast, are designed to allow for the analysis of non-stationary data.  

Instead of yielding a fixed, unchanging coefficient, it describes each coefficient as itself a time 

series, and so the effects of each decomposed component’s contribution preserve their time-

locality.   But, at least for Fourier transforms, non-stationarity renders any potential interpretation 

physically meaningless. 
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6.2 Methods 

We will show that Empirical Mode Decomposition and the Hilbert-Huang Transform are suitable 

methods for the decomposition and analysis of a time series that is does not require linearity nor 

stationarity.  First, we outline the process of Empirical Mode Decomposition and the Hilbert-

Huang transform, in enough detail for implementation.  In contrast to mathematical a-priori models 

such as the Fourier and Wavelet Transforms which are based on projections to a pre-selected 

choice of basis components, EMD and HHT derive the meaningful decomposed components based 

on the shape of the data directly. 

6.3 Empirical Mode Decomposition 

Empirical Mode Decomposition is an iterative process for extracting Intrinsic Mode Functions 

from a time series, all of which are mutually orthogonal contributions to the original time series of 

different scale frequency variations.  The Hilbert-Huang transform then operates on these Intrinsic 

Mode Functions.  However, IMFs on their own are a useful decomposition of a time series into 

constituent components. 

Denote the original time series as 𝑋𝑋(𝑡𝑡), and each IMF 𝑐𝑐𝑗𝑗(𝑡𝑡) as a time series on the same domain.  

Empirical Mode Decomposition decomposes a time series into: 

𝑋𝑋(𝑡𝑡) = 𝑟𝑟𝑛𝑛(𝑡𝑡) + �𝑐𝑐𝑗𝑗(𝑡𝑡)
𝑛𝑛

𝑗𝑗

 

That is, a point-wise sum of each of the 𝑛𝑛 mutually orthogonal IMFs, plus some residual term 

𝑟𝑟𝑛𝑛(𝑡𝑡). 
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The iterative process of selecting each IMF is known as sifting, and it selects out a high-frequency 

component of the time series at each stage. 

  IMFs and Orthogonality 

The utility of intrinsic mode functions arises out of their mutual orthogonality.  They are a way to 

view individual aspects of the system as independent contributions to the full system, without 

bringing any a priori expectations of fixed frequency to play. 

If we define the inner product between two time series as 

〈𝑎𝑎, 𝑏𝑏〉 = �𝑎𝑎(𝑡𝑡)𝑏𝑏(𝑡𝑡)
𝑡𝑡

 

Then this orthogonality condition can be stated as 

∀𝑗𝑗.∀𝑘𝑘 ≠ 𝑗𝑗. 〈𝑐𝑐𝑗𝑗, 𝑐𝑐𝑗𝑗〉 = 0 

In practice, with these numerical and empirical processes, the a weaker, more acceptable 

orthogonality condition is satisfied:  

∀𝑗𝑗.∀𝑘𝑘 ≠ 𝑗𝑗. �
〈𝑐𝑐𝑗𝑗, 𝑐𝑐𝑗𝑗〉

�〈𝑐𝑐𝑗𝑗 , 𝑐𝑐𝑗𝑗〉 ∙ 〈𝑐𝑐𝑗𝑗, 𝑐𝑐𝑗𝑗〉
� < 𝜖𝜖 

𝜖𝜖 is the acceptable threshold of non-orthogonality. 

The process of sifting is the process of separating out successive IMFs, under the condition of their 

mutual orthogonality, in order to understand the time series as a whole in terms of these empirically 

extracted components.  
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  Sifting 

The process proceeds in the following way: 

1. Begin with 𝑟𝑟0 representing the time series to be decomposed 𝑋𝑋.  𝑟𝑟𝑗𝑗 will represent the 

residual term at step 𝑗𝑗 = 0.  As the algorithm proceeds and 𝑗𝑗 increases, IMF terms of 

increasing frequency variation will be subtracted from the residual term at each step until 

no more IMF terms may be extracted. 

2. At each step 𝑗𝑗 ∈ 1 . .𝑛𝑛, perform the process of extracting an IMF term.  This process is 

known as the sifting process and will proceed until no IMF term can be extracted. 

1. Begin with ℎ𝑗𝑗,0 = 𝑟𝑟𝑗𝑗−1.  ℎ𝑗𝑗,𝑖𝑖 will represent empirical refinements of the 𝑗𝑗th IMF 

term to be extracted.  As the algorithm proceeds and 𝑖𝑖 increases, ℎ𝑗𝑗,𝑖𝑖 will represent 

further refinements of the IMF term. 

2. At each step 𝑖𝑖 ∈ 1. .𝑘𝑘: 

1. Create a cubic spline 𝑒𝑒max connecting all local maxima on ℎ𝑗𝑗,𝑖𝑖−1, denoted 

as the maximal envelope. 

2. Create a cubic spline 𝑒𝑒min  connecting all local minima on ℎ𝑗𝑗,𝑖𝑖−1, denoted 

as the minimal envelope. 

3. Define 𝑚𝑚𝑗𝑗,𝑖𝑖 = (𝑒𝑒max + 𝑒𝑒min) 2⁄  as the point-wise average of the envelopes 

from (i) and (ii):  𝑚𝑚𝑗𝑗,𝑖𝑖 denotes a slow-moving “center of mass” for ℎ𝑗𝑗,𝑖𝑖−1 

4. Compute ℎ𝑗𝑗,𝑖𝑖 = ℎ𝑗𝑗,𝑖𝑖−1 − 𝑚𝑚𝑗𝑗,𝑖𝑖.  Because 𝑚𝑚𝑗𝑗,𝑖𝑖 corresponds to a center of 

mass on ℎ𝑗𝑗,𝑖𝑖−1 ,  ℎ𝑗𝑗,𝑖𝑖 is essentially ℎ𝑗𝑗,𝑖𝑖−1  re-centered about zero. 

5. Repeat (b) until some stoppage criteria has been reached.  This will be 

discussed later.  Denote the final 𝑖𝑖 as 𝑘𝑘. 

3. Define 𝑗𝑗th IMF term 𝑐𝑐𝑗𝑗 = ℎ𝑗𝑗,𝑗𝑗. 

4. Compute 𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗−1 − 𝑐𝑐𝑗𝑗, subtracting out the new IMF 𝑐𝑐𝑗𝑗. 

3. Repeat (2) until residual term 𝑟𝑟𝑗𝑗 is a monotonic function, and so (2.b.i) and (2.b.ii) cannot 

be computed.  Denote the final 𝑗𝑗 as 𝑛𝑛. 

After this process, we arrive at our set of IMFs, 𝑐𝑐𝑗𝑗 , 𝑗𝑗 ∈ 1. .𝑛𝑛, and a final residual term 𝑟𝑟𝑛𝑛, in a 

fashion such that 𝑋𝑋 = 𝑟𝑟𝑛𝑛 + ∑ 𝑐𝑐𝑗𝑗𝑛𝑛
𝑗𝑗 , as previously claimed.  
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This process should also produce each 𝑐𝑐𝑗𝑗 in a way such that they are mutually orthogonal, or nearly 

orthogonal.  If perfect orthogonality is desired, promise has been shown by methods refining IMFs 

via Gram-Schmidt orthonormalization. 

  Stopping Condition 

The process of extracting IMFs has a natural stopping point, since steps (2.b.i) and (2.b.ii) both 

will not be computable if the residual 𝑟𝑟𝑗𝑗−1 (and thus ℎ𝑗𝑗,0) is monotonic.  For a monotonic function, 

no local minima or local maxima will exist, making both the maximal and minimal envelopes 

undefinable.  This gives us a natural stopping point for the extraction of IMFs, and thus for 𝑛𝑛, the 

index of the final IMF term and the final residual. 

However, the sifting process, used for finding each IMF empirically, does not have a well-defined 

stopping process.  Conceptually, each IMF seeks to remove low-frequency shifts in the center of 

mass of the current residual series, re-centering the series to have a center of mass about 0.  This 

quality is enough to sustain the weaker orthogonality condition mentioned above, between each 

successive IMF.  However, because this notion of “center of mass” 𝑚𝑚𝑖𝑖 is not so well-defined, this 

process involves repeatedly subtracting out further refinements of 𝑚𝑚 until a suitable one is found. 

The stopping condition for this refinement (sifting) is left up the choice of the implementation or 

those running the decomposition.  Four commonly used ones include Standard-Deviation Based 

Method, S Number Criterion, Threshold Method, and Energy Different Tracking.  All of these are 

premised on the assumption that ℎ𝑗𝑗,𝑗𝑗 converges on 𝑘𝑘, and we quit with a satisfactory IMF once we 

achieve an arbitrarily close approximation to this point of convergence. 
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Standard Deviation 

The original proposed stopping condition, based on standard deviation, is inspired by the Cauchy 

Convergence Test.  In it, we compute a measure of standard deviations of differences between 

each improvement of ℎ𝑗𝑗.𝑗𝑗: 

𝑆𝑆𝐷𝐷𝑗𝑗,𝑗𝑗 = �
�ℎ𝑗𝑗,𝑗𝑗−1(𝑡𝑡) − ℎ𝑗𝑗,𝑗𝑗(𝑡𝑡)�

2

ℎ𝑗𝑗,𝑗𝑗−1
2 (𝑡𝑡)

𝑡𝑡

 

This indicates, approximately, a measure of global convergence for ℎ𝑗𝑗,𝑗𝑗 by computing how much 

each successive k changes ℎ.  We then stop with a final IMF candidate when this measure decreases 

past a pre-determined lower threshold. 

The intent behind this method is to claim that ℎ𝑗𝑗,𝑗𝑗 converges on 𝑘𝑘, and we define a numerical 

measurement of deviation from this point of convergence.  We then quit once this numerical 

measurement is arbitrarily small enough. 

S-Number Criterion 

The S-Number criterion provides another way of defining convergence.  Define 𝑙𝑙𝑗𝑗,𝑖𝑖 as the number 

of extrema and zero-crossings of IMF candidate ℎ𝑗𝑗,𝑖𝑖.  The S-Number 𝑆𝑆𝑗𝑗,𝑖𝑖 of ℎ𝑗𝑗,𝑖𝑖 is then defined as 

𝑆𝑆𝑗𝑗,𝑖𝑖 = max
𝑛𝑛

∀𝑤𝑤 ∈ {1. .𝑛𝑛}. � 𝑙𝑙𝑗𝑗,𝑖𝑖−𝜕𝜕 − 𝑙𝑙𝑗𝑗,𝑖𝑖� ≤ 𝐷𝐷  

Where 𝐷𝐷 is a pre-chosen integer threshold, typically 0 or 1.  That is, it is the length 𝑛𝑛  of the longest 

possible run backwards from ℎ𝑗𝑗,𝑖𝑖 where  𝑙𝑙𝑗𝑗,𝑖𝑖−𝜕𝜕 for all 𝑤𝑤 ≤ 𝑛𝑛 is within a range of 𝐷𝐷 from 𝑙𝑙𝑗𝑗,𝑖𝑖.  If 
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𝐷𝐷 = 0, it is the current streak of IMF candidates where 𝑙𝑙𝑗𝑗,𝑖𝑖 does not change.  If 𝐷𝐷 = 1, it is the 

current stream of IMF candidates where 𝑙𝑙𝑗𝑗,𝑖𝑖 values differ at most by one. 

In this criterion, convergence is defined as a stability of 𝑙𝑙𝑗𝑗,𝑖𝑖, or a stability of the number of extrema 

and zero-crossings of successive IMF candidates. 

A pre-chosen limit for 𝑆𝑆𝑗𝑗,𝑖𝑖 is chosen, and an IMF candidate ℎ𝑗𝑗,𝑖𝑖 is deemed as suitable if 𝑆𝑆𝑗𝑗,𝑖𝑖 exceeds 

this pre-chosen limit.  In other words, it is deemed suitable as soon as a consecutive run of suitable 

length is discovered. 

Rilling-Flandrin-Goncalves Threshold Method 

One method, proposed by Rilling, Flandrin and Gonçalvés, involves inspecting only the current 

ℎ𝑗𝑗,𝑖𝑖−1 and 𝑚𝑚𝑗𝑗,𝑖𝑖.  This method defines convergence as the point where 𝑚𝑚𝑗𝑗,𝑖𝑖 is small enough that the 

IMF candidate is sufficiently zero-centered.  Alongside defining 𝑚𝑚𝑗𝑗,𝑖𝑖 = (𝑒𝑒max + 𝑒𝑒min) 2⁄  as the 

point-wise average of the maximal and minimal envelops, also define amplitude term 𝑎𝑎𝑗𝑗,𝑖𝑖 =

(𝑒𝑒max − 𝑒𝑒min) 2⁄ , corresponding half the range of between the envelopes.  From these, we can 

define an evaluation function 𝜎𝜎𝑗𝑗,𝑖𝑖 = �𝑚𝑚𝑗𝑗,𝑖𝑖 𝑎𝑎𝑗𝑗,𝑖𝑖⁄ �, the result of point-wise division between the 

absolute values of terms in 𝑚𝑚𝑗𝑗,𝑖𝑖 and 𝑎𝑎𝑗𝑗,𝑖𝑖. 

This method is parameterized by three chosen terms: 𝛼𝛼, 𝜃𝜃1, and 𝜃𝜃2.  Use 𝛼𝛼 to partition the total 

time series of length 𝑇𝑇  into two intervals, the first running from 𝑡𝑡 = 0 to 𝑡𝑡 = 𝑡𝑡𝛼𝛼 = (1 − 𝛼𝛼)𝑇𝑇, and 

the second running from 𝑡𝑡 = 𝑡𝑡𝑎𝑎 to 𝑡𝑡 = 𝑇𝑇 .   The stopping criteria is for 𝜎𝜎𝑗𝑗,𝑖𝑖 is met when both: 

∀ 0 < 𝑡𝑡 <  𝑡𝑡𝛼𝛼.  𝜎𝜎𝑗𝑗,𝑖𝑖(𝑡𝑡) <  𝜃𝜃1 
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∀ 𝑡𝑡𝛼𝛼 < 𝑡𝑡 < 𝑇𝑇.  𝜎𝜎𝑗𝑗,𝑖𝑖(𝑡𝑡) <  𝜃𝜃2 

Rilling et. Al. propose sensible values for 𝛼𝛼,𝜃𝜃1,𝜃𝜃2 as 0.05, 0.05, and 0.5. 

The intent is to specify a global condition of smallness for 𝑚𝑚𝑗𝑗,𝑖𝑖 in comparison to vertical range of 

the time series itself. 

 

  Interpreting IMFs 

The fundamental properties used when interpreting both a single IMF and a collection of IMFs 

are: 

 Mutual orthogonality 

 Summation to the original time series 𝑋𝑋, i.e. 𝑋𝑋 = 𝑟𝑟𝑛𝑛 + ∑ 𝑐𝑐𝑗𝑗𝑛𝑛
𝑗𝑗  

 Decreasing frequency of oscillations 

Each IMF can, to an extent, be interpreted as a self-contained and independently progressing 

system, and the total observed behavior of the system can be taken to be the sum behavior of each 

IMF. 

Due to the orthogonality of each IMF, it can be said that IMF terms each describe a different aspect 

of the system at play.  The internal aspects of the system manifesting in the first IMF, for instance, 

represent different internal aspects of the system manifesting in the second IMF.  Orthogonality 

expresses the intent that each IMF models a different, independent internal process. 

The property of summation to the original time series ensures that looking at each IMF gets close 

to the totality of all internal aspects of the system.  By analyzing each of the finite number of IMFs, 

one can be assured that each potential internal aspect is covered in typically at most one IMF. 
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The property of decreasing frequency of oscillations from one IMF to the next orders the IMFs 

under some arbitrary structure.  While the collection of IMFs is essentially unordered, the natural 

structuring from high-frequency oscillations describing high-frequency processes to low-

frequency oscillations describing low-frequency processes is useful for the organization of 

conclusions and thoughts, and helps place specific types of processes somewhere along an ordered 

structure in the space of IMFs. 

6.4 Hilbert-Huang Transform 

One mutually orthogonal IMFs have been extracted, it is possible to perform a Hilbert Spectral 

analysis on the results, by examining the instantaneous frequency for each IMF.  The result is what 

is commonly referred to as “skeleton lines”, illustrating the motion of each IMF over the 

instantaneous frequency space as a function of time. 

This can be contrasted to the wavelent transform, which provides a dense function on the space of 

frequency against time.  Instead of a fully defined and dense mapping, instead EMD and HHT 

produce a sparse picture of 𝑘𝑘 lines moving through frequency space, over time – it is sparse in 

frequency, but not in time. For a wavelet transform, information can be gleamed from the relative 

magnitudes of different locations in frequency-time space.  For the HHT, information can be 

gleamed more naturally as a progression of relative frequency densities as a function of time.  The 

story naturally highlights the most significant frequency contributions at each point in time, 

preserving the flow in time domain. 

The eventual picture painted by a Hilbert-Huang transform is that of each IMF tracing out a 

continuous path along frequency space over time.  By analyzing the motion of the collective cluster 
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of IMFs over time, a picture of an evolving system moving through different frequency 

characteristics over time emerges. 

  Instantaneous Frequency 

The concept of instantaneous frequency of an IMF looks at local varions in the magnitude of time 

series IMF and interprets it as oscillatory motion with some instantaneous frequency.  It is different 

from the concept of a global frequency of an IMF – rather, it is a property about any local 

continuous neighborhood in an IMF. 

Instantaneous frequency can be computed as a time series, with a frequency value corresponding 

to the local neighborhood around each point in time in the original time series. 

For time series ℎ, we can denote its Discrete Hilbert Transform ℎ�  𝑎𝑎𝑙𝑙: 

ℎ�(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧ 

2
𝜋𝜋

 �
ℎ(𝑡𝑡)
𝑘𝑘 − 𝑡𝑡

𝑡𝑡 odd

;  𝑘𝑘 even

2
𝜋𝜋

 �
ℎ(𝑡𝑡)
𝑘𝑘 − 𝑡𝑡

𝑡𝑡 even

; 𝑘𝑘 odd
 

We can then construct a complex series 𝑑𝑑𝑗𝑗 from IMF 𝑐𝑐𝑗𝑗, defined as: 

𝑑𝑑𝑗𝑗 = 𝑐𝑐𝑗𝑗 + 𝑐𝑐𝚥𝚥�  

𝑑𝑑𝑗𝑗(t), as a time series, is known as the analytic signal, and corresponds to a helix moving along 

time through the complex plane.  If we re-write 𝑑𝑑𝑗𝑗 in its polar form, in terms of instantaneous 

magnitude 𝑎𝑎𝑗𝑗 and phase 𝜙𝜙𝑗𝑗: 

𝑎𝑎𝑗𝑗2 = 𝑐𝑐𝑗𝑗2 + 𝑐𝑐𝚥𝚥�
2 
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tan𝜙𝜙𝑗𝑗 =
𝑐𝑐𝚥𝚥�
𝑐𝑐𝑗𝑗

 

𝑑𝑑𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑒𝑒𝑖𝑖 𝜙𝜙𝑗𝑗  

There is more than one potential solution for 𝜙𝜙𝑗𝑗.  Under the physical interpretation, we choose a 

version of 𝜙𝜙𝑗𝑗 such that 𝜙𝜙𝑗𝑗(𝑡𝑡) is monotonically increasing, interpreting the progression of the phase 

of the signal as marching forward through time.  Furthermore, 𝜙𝜙𝑗𝑗(𝑡𝑡 + 1) must be the unique 

minimal solution to tan�𝜙𝜙𝑗𝑗(𝑡𝑡 + 1)� = 𝑐𝑐𝚥𝚥� (𝑡𝑡)
𝑐𝑐𝑗𝑗(𝑡𝑡)

  such that 𝜙𝜙𝑗𝑗(𝑡𝑡 + 1) ≥  𝜙𝜙𝑗𝑗(𝑡𝑡).  This ensures that 

0 ≤ �𝜙𝜙𝑗𝑗(𝑡𝑡 + 1) − 𝜙𝜙𝑗𝑗(𝑡𝑡)� < 2𝜋𝜋 

We may then define instantaneous frequency 𝜔𝜔𝑗𝑗 of IMF 𝑐𝑐𝑗𝑗 as the rate of change in 𝜙𝜙𝑗𝑗: 

𝜔𝜔𝑗𝑗(𝑡𝑡) =
1

2𝜋𝜋
𝛿𝛿𝜙𝜙𝑗𝑗(𝑡𝑡)
𝛿𝛿𝑡𝑡

 

This can be estimated using finite difference methods; the simplest method would be a single 

backwards difference method: 

𝜔𝜔𝑗𝑗(𝑡𝑡) =
1

2𝜋𝜋
𝜙𝜙𝑗𝑗(𝑡𝑡) −𝜙𝜙𝑗𝑗(𝑡𝑡 − 1)

Δ𝑡𝑡
 

Alternatively, a centered difference method may be used, at the cost of losing one potential known 

value in 𝜔𝜔𝑗𝑗. 

The above constraints on the progression of 𝜙𝜙𝑗𝑗 ensure that 𝜔𝜔𝑗𝑗 is always within the range: 

0 ≤ 𝜔𝜔𝑗𝑗 <
1
Δ𝑡𝑡
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This effectively restricts the instantaneous frequency to be non-negative (always moving forwards) 

and within a given measurable range.  The minimal resolution of our discrete time series is not 

able to meaningfully detect a frequency greater than 1
Δ𝑡𝑡

.  A smaller timestep of discretization would 

allow for the resolution of a greater instantaneous frequency.  Under this discretization, all 

frequencies 𝑓𝑓 + 𝑛𝑛 
Δ𝑡𝑡

, for positive integer n, are fundamentally indistinguishable. 

  Limitations of Resolution of Discretization 

In theory, the restriction on 𝜙𝜙𝑗𝑗(𝑡𝑡 + 1) being the minimal solution of  tan�𝜙𝜙𝑗𝑗(𝑡𝑡 + 1)� = 𝑐𝑐𝚥𝚥� (𝑡𝑡)
𝑐𝑐𝑗𝑗(𝑡𝑡)

 is not 

a priori justified.  However, this is chosen because the minimal resolution of the time series cannot 

resolve or distinguish any frequency faster than 𝑓𝑓max = 𝑓𝑓sample = 1
Δ𝑡𝑡

, and so frequencies 𝑓𝑓 + 𝑛𝑛 
Δ𝑡𝑡

, for 

positive integer n, are indistinguishable.  The restriction on the progression of 𝜙𝜙𝑗𝑗(𝑡𝑡 + 1) ensures 

that of this family of indistinguishable frequencies, the smallest is chosen (arbitrarily). 

Ontologically, this means for a time series with Δ𝑡𝑡 = 0.1𝑙𝑙, the highest possible distinguishable 

instantaneous frequency is 𝑓𝑓max = 1
Δt

= 10 Hz. This means that a “true” physical instantaneous 

frequency of 15 Hz will be interpreted as an instantaneous frequency of 5 Hz.  This is an 

unavoidable epistemological issue arising from the limitations of discretization, as the two 

numerical values of instantaneous frequency are indistinguishable in the discretized time series.  

This is an artifact of the discretization. 

However, if this same time series is resampled at Δ𝑡𝑡 = 0.05𝑙𝑙, the highest possible distinguishable 

instantaneous frequency becomes 𝑓𝑓max = 1
Δt

= 20 Hz.  At this range, a “true” physical 

instantaneous frequency of 15 Hz can be distinguished from a 5 Hz frequency. 
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Conceptually, this limitation implies that we cannot observe frequencies higher than the frequency 

of sampling itself.  For example, for a time series sampling one observation per day, any 

frequencies higher than day−1 cannot be resolved.  An instantaneous frequency of 5 day−1 (five 

times per day) cannot be meaningfully distinguished from 4 day−1 (four times per day). 

  Skeleton Lines 

From an original time series 𝑋𝑋, we identify 𝑘𝑘 mutually orthogonal IMFs 𝑐𝑐𝑗𝑗, 𝑗𝑗 ∈ {1. . 𝑘𝑘} such that 

𝑋𝑋 − ∑ 𝑐𝑐𝑗𝑗𝑗𝑗
𝑗𝑗  is monotonic and negligible. 

From each IMF 𝑐𝑐𝑗𝑗, we perform a discrete Hilbert transform and interpret 𝑎𝑎𝑗𝑗 and 𝜔𝜔𝑗𝑗 as its 

instantaneous magnitude and frequency, respectively.  𝜔𝜔𝑗𝑗(𝑡𝑡) represents the instantaneous 

frequency of 𝑐𝑐𝑗𝑗 at time 𝑡𝑡, and 𝑎𝑎𝑗𝑗(𝑡𝑡) represents its magnitude as a contribution to the overall power 

of the series at the associated 𝜔𝜔𝑗𝑗(𝑡𝑡). 

𝜔𝜔𝑗𝑗 and 𝑎𝑎𝑗𝑗 together specify what is called a Skeleton Line that traces a path along frequency-time 

space, each point on that path having a location along the frequency aspect associated with 𝜔𝜔𝑗𝑗 and 

a magnitude and intensity associated with 𝑎𝑎𝑗𝑗. 

The full collection of 𝑘𝑘 skeleton lines resulting from the IMFs yielded by Empirical Mode 

Decomposition form the Hilbert-Huang Transform of the time series. 

  Interpretation of the Hilbert Huang Transform 

The Hilbert-Huang transform takes a series from a single-valued scalar-codomain function dense 

on the time domain into, essentially, a multi-valued pair-codomain function dense on the time 

domain, where each 2-vector represents frequency and magnitude 

𝑋𝑋:time → value 
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HHT(𝑋𝑋):time → (freq × value)𝑗𝑗 

Because of this, the most immediately natural way to represent a plot of the result of HHT 

according to this structure is as a plot in frequency against time, with multiple lines stacked upon 

each other.  Each line represents a different IMF, and each one traces a path according to 𝜔𝜔𝑗𝑗(𝑡𝑡).  

Each point in the line is then associated an amplitude, intensity, or energy term according to with 

𝑎𝑎𝑗𝑗(𝑡𝑡). 

In the structure of this transformation, it is tempting to view frequency and amplitude as 

interchangeable.  Under this viewpoint, one may decide to plot amplitude over time, and associate 

each point in each line with the frequency at that point. 

However, due to the construction of IMFs, looking at frequency against time provides one 

interesting benefit: because IMFs tend to decrease in instantaneous frequencies as more are 

constructed, this provides a natural structure to the Hilbert-Huang Transform.  In practice, each 

skeleton line carves out its own “band” in frequency, and lines are stacked upon each other in a 

way where they rarely intersect.  Viewing a Hilbert-Huang Transform structured in this way 

provides a natural stratification to the structure of the transformation, in a way that plotting 

amplitude against time cannot. 

In addition, while amplitudes may vary strongly between IMFs, with no natural limit or bound, 

frequency is well-behaved: always, 0 ≤ 𝜔𝜔𝑗𝑗 < 1
Δt

  .  Even plotting period (𝑇𝑇 = 1
𝜔𝜔

), which ranges 

from Δ𝑡𝑡 < 𝑇𝑇 < ∞, having the notion of banded frequencies provided by the increasing-frequency 

(or decreasing-period) structure of the IMFs keeps the skeleton lines organized in a clean way 

when presented this way. 
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Physically, skeleton lines can be interpreted as the progression of different aspects of the original 

time series through frequency space; the relative intensity at each point indicates which lines were 

dominant at which periods in time. 

  Different Projections of HHT 

This skeleton line representation is unusual with respect to other common decompositions and 

transforms, and at times it may be difficult to extract useful summary terms based on this 

transformation. 

Because of this, there are numerous ways to project this fundamental structure into alternative 

structures and presentations that may be more illuminating and present more natural ways to 

extract summary terms. 

HHT Sparse Spectrum 

The Hilbert-Huang Transform Spectrum takes each time step as a separate slice and provides a 

sparse spectrum at each point in time.  The frequency spectrum at time 𝑡𝑡 consists of  𝑘𝑘 mass points: 

the point at each 𝜔𝜔𝑗𝑗, with intensity 𝑎𝑎𝑗𝑗.  Taken in this way, each time 𝑡𝑡 can be visualized in a way 

like that of a Fourier Transform, with different intensities corresponding to different frequencies.  

However, the main qualitative difference is that, while a Fourier Transform is dense on frequency 

space, this spectrum is sparse on frequency space, with only 𝑘𝑘 mass points. 

HHT Dense Spectrum 

However, it can be useful to densify this frequency space by discretizing it into a fixed number of 

divisions between 0 and  1
Δ𝑡𝑡

.  It can also be natural to discretize the period space (or its logarithm), 
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between Δ𝑡𝑡 and ∞.  We may denote this discretization schema with [−], where [𝑓𝑓] represents the 

equivalence class that frequency 𝑓𝑓 falls under. 

Under such a discretization, we may define the HHT Dense Spectrum by associating each 

frequency discretization band with the sum of all IMF amplitudes at the point where they enter the 

band of discretization. 

HHT(𝑋𝑋)(𝑡𝑡, [𝑓𝑓]) = � 𝑎𝑎𝑗𝑗(𝑡𝑡)
𝑗𝑗

𝑗𝑗,�𝜔𝜔𝑗𝑗(𝑡𝑡)�=[𝜕𝜕]

 

Under this formation he spectrum at each point begins to look qualitatively like that of a discrete 

Fourier Transform, and what is produced is essentially a separate frequency spectrum for each 

point in time 𝑡𝑡. 

In the end, this behaves like a windowed Fourier Transform, where each time slice provides a 

separate frequency spectrum breakdown. 

This dense spectrum representation also is very similar to the result of a Discrete Wavelet 

Transform, as well: it associates each point in frequency and time space with an intensity, in the 

same way that a Discrete Wavelet Transform behaves. 

Marginal Spectrum 

If frequencies are discretized according to some scheme [−], a marginal spectrum may be 

generated: 

ℎ𝑋𝑋([𝑓𝑓]) = �HHT(𝑋𝑋)(𝑡𝑡, [𝑓𝑓])
𝑡𝑡
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[𝑓𝑓] represents the equivalence class of some frequency 𝑓𝑓 according to the chosen discretization 

scheme.  To compute ℎ([𝑓𝑓]), sum over the magnitudes 𝑎𝑎𝑗𝑗(𝑡𝑡) of each IMF component over time 

where the frequency discretization class �𝜔𝜔𝑗𝑗(𝑡𝑡)� matches the marginal frequency you are 

computing.  We may also define the mean marginal spectrum, normalized over time period length: 

𝑛𝑛𝑋𝑋([𝑓𝑓]) =
ℎ𝑋𝑋([𝑓𝑓])

𝑇𝑇
 

The Marginal Spectrum associates each frequency discretization class to a total power.  This 

assigns a total power for any given frequency over the entire course of the time series, and 

qualitatively behaves like a Discrete Fourier Transform, which also associates frequencies to total 

power over the course of a time series. 

Unlike a Fourier Transform, which relies on principles of stationarity and linearity, the marginal 

spectrum via a Hilbert-Huang transform is empirically derived and therefore has a more physically 

meaningful interpretation. 

This marginal spectrum sums over time, and so loses any sort of temporal resolution.  It also sums 

over each IMF, so loses the distinction of separation of processes that IMFs confer.  In return, a 

total summary over the course of the time series can be analyzed. 

Instantaneous Energy 

The instantaneous energy of the time series at any given point can be computed as 

𝐸𝐸[𝑋𝑋](𝑡𝑡) = �𝑎𝑎𝑗𝑗2(𝑡𝑡)
𝑗𝑗

𝑗𝑗
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This measure sums the total squared amplitude contributions of each IMF, providing a measure of 

the instantaneous energy of the system at any given point in time. 

This can be thought of as a marginalization along the time axis.  It sums over all frequency 

contributions, so loses the notion of travel through frequency space, and sums over each IMF, 

which loses the separation of processes that IMFs confer.  In return, a single quantity as a function 

of time can be analyzed. 

Degree of Stationarity 

One may also compute the Degree of Stationarity at each (discretized) frequency, defined by 

Huang et al., 1998 

DS𝑋𝑋([𝑓𝑓]) =
1
𝑇𝑇
��1 −

HHT(𝑋𝑋)(𝑡𝑡, [𝑓𝑓])
𝑛𝑛𝑋𝑋([𝑓𝑓]) �

2𝑇𝑇

𝑡𝑡

 

This computes a measure of stationarity along each frequency band indicated by the discretization 

[−], and ranges between 0 and 1, where 0 indicates perfect stationarity and 1 indicates perfect non-

stationarity.  For a purely stational frequency band with DS𝑋𝑋([𝑓𝑓]) = 0, original signal 𝑋𝑋 may be 

treated as stationary along frequency band [𝑓𝑓].  Under this circumstance, a Fourier Transform of 

𝑋𝑋 would yield physically meaningful results along that any frequency band DS𝑋𝑋([𝑓𝑓]) = 0,  

because that frequency band satisfies the stationarity constraint for Fourier Analysis. 

We may also look at a modified version of the Degree of Stationarity, the Degree of Statistical 

Stationarity, which averages the Hilbert-Huang Transform over a time window 
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DSS𝑋𝑋([𝑓𝑓],Δ𝑇𝑇) =
1
𝑇𝑇
��1 −

𝐻𝐻𝐻𝐻𝑇𝑇(𝑋𝑋)(Δ𝑇𝑇 about 𝑡𝑡, [𝑓𝑓])��������������������������������

𝑛𝑛([𝑓𝑓]) �
2𝑇𝑇

𝑡𝑡

 

The overbar indicates an average of HHT results with a window of Δ𝑇𝑇 about 𝑡𝑡.  The Degree of 

Statistical Stationarity may be useful when characterizing the time series as random value. 

Typically, DS𝑋𝑋([𝑓𝑓]) has a higher value than DSS𝑋𝑋([𝑓𝑓],Δ𝑇𝑇).  In the limiting case, DSS approaches 

DS as Δ𝑇𝑇 approaches zero, or becomes small compared to period 1
[𝜕𝜕]

.  This shows that even though 

a signal may be overall non-stationarity at a given frequency band, there can often be windows 

bands Δ𝑇𝑇 wide that exhibit local stationarity, especially at high frequency, or low 1
[𝜕𝜕]

. 

Dominant and Expected Frequencies 

Other summary statistics may be computed for each time step based on 𝜔𝜔𝑗𝑗 and 𝑎𝑎𝑗𝑗.  For instance, 

one may compute the dominant frequency at each time point 

𝑓𝑓dom(𝑡𝑡) = 𝜔𝜔arg max
𝑗𝑗

 𝑎𝑎𝑗𝑗(𝑡𝑡) 

Or, alternatively, a dominant frequency according to some discretization schema [−]: 

𝑓𝑓dom(𝑡𝑡) = arg max
[𝜕𝜕]

 HHT𝑋𝑋(𝑡𝑡, [𝑓𝑓])  

And the center of mass of frequency for each point: 

𝑓𝑓com(𝑡𝑡) =
∑ 𝑎𝑎𝑗𝑗(𝑡𝑡) 𝜔𝜔𝑗𝑗(𝑡𝑡)𝑗𝑗
𝑗𝑗

∑ 𝑎𝑎𝑗𝑗(𝑡𝑡)𝑗𝑗
𝑗𝑗
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These give a measurement of the most significant frequency contribution at each point in time and 

may indicate the dominance of certain frequency bands within the signal as a function of time. 

6.5 Analysis of Simulated Data 

Here we apply Empirical Mode Decomposition and Hilbert-Huang Transform to simulated data.  

We construct data in a way to show non-stationarity and present it as a non-linear combination of 

internal systems. 

 

Figure 10: Simulated time series for EMD/HTT demonstration 

This series is constructed as a sum of five components, each with varying frequency and amplitude 

in contribution: 
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Figure 11: Underlying components for the simulated series 
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If we plot out the amplitudes of each component as a function of time, we get a skeleton plot: 

 

Figure 12: Components of simulated series in frequency-time space 

For a more accurate illustration, we may also plot the variation in amplitude over time by varying 

the relative thickness of each line as a function of time: 
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Figure 13: Components of simulated series in frequency-time space, scaled by 

magnitude 

On these, we may perform Empirical Mode Decomposition, which aims to separate out each 

original component contribution. 
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Figure 14: Result of EMD decomposition on simulated series 

We see that the EMD does appear to recover many of the original components.  IMF 1 corresponds 

to original component 5, IMF 2 corresponds to component 4, IMF 3 responds to component 3, 

IMF 4 responds to component 2, and IMF 6 corresponds to component 1.  The only caveat appears 

to be that IMF 5 does not seem to correspond to any original component and is instead an artifact 

of the decomposition. 
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To illustrate this, we may compute a grid of mutual alignments <𝑢𝑢,𝑣𝑣>

√<𝑢𝑢,𝑢𝑢><𝑣𝑣,𝑣𝑣>
 based on each pair of 

inner products, scaled: 

 

Figure 15: Inner products between IMFs and expected components for simulated 

series. 

This shows us that IMFs 1, 2, and 3 almost perfectly recover original components 5, 4, and 3, 

respectively.  IMFs 4 and 6 appear to recover components 2 and 1, respectively, to a large degree, 

but not to as perfect an extent as 1, 2, and 3.  IMF 5 here seems to share some part with Component 

2, but otherwise seems to be purely an artifact of the decomposition.  Numerically, the alignment 

appears to trend slightly weaker as frequency decreases. 

Each IMF is mutually orthogonal: 
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Figure 16: Inner products between different IMFs for simulated series. 

 

Of these, IMF 3 and 4 are the most non-orthogonal, but at an alignment factor of 0.05 (within a 

range from 0 to 1), these are effectively orthogonal. 

From inspection there appears to be no way to a priori exclude IMF 5 from our analysis, despite it 

being a superfluous frequency. 

When we apply the full Hilbert-Huang transform, we start to be able to see how these IMFs interact 

together in more detail.  Looking at the skeleton lines plot: 
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Figure 17: Hilbert-Huang transform applied to simulated series, displayed in 

skeleton line form 

Aside from apparent boundary artifacts, this corresponds well to the skeleton line plot of the 

original components.  If we overlay the two together, we see the similarities: 
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Figure 18: Comparing expected simulated components with those derived from 

EMD/HHT. 

 

Here we observe directly the alignments of IMFs 1, 2, and 3 with components 4 and 5.  We also 

observe the slightly weaker alignment of IMF 4 and Component 2, and the noticeably weaker 

alignment of IMF 6 and Component 1.  We also see that IMF 5, although having a clearly defined 

skeleton line, does not correspond to any original component. 

To shed light on how these IMFs contribute to the overall system, we may look at the scaled 

skeleton plot, where each line is scaled according to its magnitude in the HHT: 
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Figure 19: Skeleton lines for the HHT of the simulated series, scaled by magnitude. 

The thickness of each line corresponds to their associated component’s magnitudes. 

IMFs 1, 2, and 3 appear to carve out their own frequency band.  However, in this plot, IMFs 4, 5, 

and 6 give the appearance of fighting over the 1Hz-3Hz frequency band.  From this plot, we can 

directly see that IMF 5 is quantitatively smaller than its surrounding members. 

Quantitatively, we can find the average energy (magnitude squared) of each IMF 



 

122 

 

Figure 20: Average power for each IMF of the simulated series. 

And we note that IMF 5 is lesser in contribution than its neighbors in its competing frequency 

bands, IMFs 4 and 6. 

We can also examine the relative contribution of each IMF to the total power of the system as a 

function of time using a stream plot: 
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Figure 21: Instantaneous power for simulated series IMFs. 

We see here that IMF 5 contributes a relatively small amount of power over the course of the time 

series, compared to its immediate neighbors 4 and 6.  From this we can conclude a priori that it is 

of not much significance within its own frequency band. 

The first few IMFs, IMFs 1, 2, and 3, all contribute equal or less power than IMF 5.  However, 

each dominate in their respective frequency bands.  Within this crowded frequency band of 1Hz-

4Hz, where IMFs 4, 5, and 6 all vie for attention, IMF 5 is clearly less important.  This gives us 

justification to a priori dismiss IMF 5 as having significance in the underlying system, even 

without knowing the original components. 

We can compute the Dense Hilbert-Huang Transform under a discretization dividing the log of 

period space into thirty even spaces: 
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Figure 22: Dense spectrum derived from HHT of simulated series. 

This gives a clear picture of a time-localized frequency plot, where we can track a given 

frequency’s contribution to the signal at a given time.  In addition, we can trace clearly the 

contributions of components 2, 3, 4, and 5. 

This can be compared, in format, to the Wavelet Decomposition.  Compare the above plot to the 

wavelet decomposition against the Morlet Wavelet with 𝜎𝜎 = 10: 
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Figure 23: Wavelet decomposition of simulated series, contrasted with the dense 

spectrum derived from HHT. 

Within its cone of influence, the wavelet does identify components 3, 4, and 5.  Qualitatively, its 

identification of these components is less precise: it they are spread out over a wider range of 

frequencies than their true underlying components are.  In this respect, the HHT provides a sharper 

resolution for frequency-space localization. 

Note also that due to the effects of the Cone of Influence, the wavelet decomposition cannot 

identify any components acting above a period of 0.44s, or a frequency of about 2.3Hz.  This 

means that Components 1 and 2, acting at periods 0.8s and higher (or at frequencies 1.25Hz or 

lower) are completely out of the reach for a wavelet transform within its Cone of Influence. 
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We can compute the Instantaneous Power: 

 

Figure 24: Total instantaneous power for infinite series HHT as a function of time. 

 

 

Which demonstrates that our power was constant throughout the course of the series, with some 

gradual fluctuations that correspond to the power fluctuations of the underlying components due 

to changes in amplitude.  We can observe that the power spectrum matches the outline of the 

stream plot above of relative IMF power over time. 

The marginal frequencies provide us a time-averaged power spectrum on frequency 
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Figure 25: Mean marginal spectrum of simulated series, derived from HHT 

Under the marginal spectrum we can clearly identify the frequency bands of Components 3, 4, and 

5, as well as a bimodal frequency band associated with Components 1 and 2. 

This is directly comparable to the Fourier Decomposition: 
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Figure 26: Fourier decomposition of simulated series, in contrast with mean 

marginal spectrum. 

We get a similar display of information with the Fourier Decomposition at high frequencies.  

However, at low frequencies (and high periods), the resolution of the Fourier Decomposition 

becomes extremely poor.  It has a hard time defining the shape of the frequency bands at 

frequencies smaller than 1Hz.  And, while our Marginal Spectrum from the HHT shows the full 

shape of the frequency band up to 0.23Hz (period of 4.4s), the Fourier Decomposition cannot 

resolve any information at all below 0.5Hz (period of 2s).  We reach the minimum frequency 

boundary of the Fourier Decomposition (or maximum period), but the minimum boundary of the 

HHT extends much lower.  Its maximum period extends much higher.  Component 1 is more or 

less completely out of the reach of the Fourier Decomposition, just like how Components 1 and 2 

are out of reach for the Wavelet Decomposition. 

This comes with a trade-off in accuracy – our resolutions of Components 1 and 2 are significantly 

less accurate than our resolutions of Components 3, 4, and 5.  However, even being able to see 
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some clear picture of Components 1 and 2 with the HHT is already something that the Wavelet 

Decomposition and the Fourier Decomposition cannot match. 

Computing the Degree of Stationarity: 

 

Figure 27: Degree of stationarity for simulated series, derived from HHT. 

We can see that the degree of stationarity varies largely, with some edge effects.  The low points 

in DS correspond to highly stationary frequency bands, where a DS of 0 corresponds to a perfectly 

stationary band.  We observe that no band is perfectly stationary, although each of the underlying 

components carve out small valleys of stationarity around their frequency bands.  This plot allows 

us to analyze the validify of each portion of our Fourier Decomposition: around each component’s 

band, the Fourier Decomposition becomes more valid, albeit never perfectly valid. 

6.6 Analysis of Climate Data 

Here we apply the same analysis to climate data.  First, we will look at a time series with a clear 

dominating frequency contribution, where the results should match what we expect.  Then, we will 
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look at one where the underlying frequency components are less clear and more ambiguous and 

compare the conclusions of the HHT against those of the Wavelet and Fourier Transforms. 

  Sunspot Record 

Let us look at monthly sunspot data, which counts the number of sunspots observed on the sun for 

each month.  This time series is widely accepted to be dominated by the Solar Cycle, a periodic 

behavior of the sun in which it switches polarity of its magnetic field every eleven years. 

 

Figure 28: Sunspot time series 

This periodicity is clearly visible in the series.  Under Empirical Mode decomposition, we see the 

isolated IMFs: 
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Figure 29: Results of EMD applied to sunspot time series. 
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The clearly dominant IMF is IMF 6, which has an apparent periodicity of about eleven years.  This 

IMF clearly gives us the trend in Solar Cycle.  Even more interestingly, it appears to have a “dip” 

in intensity around the 1820’s, which corresponds to a period known as the Dalton Minimum.  The 

overall effect is that we isolate the Solar Cycle trend, and its intensity as a function of time. 

We can compute each IMF’s mutual alignments: 

 

Figure 30: Mutual inner products for sunspot series, showing mutual orthogonality. 

We see that all IMFs are orthogonal, except for IMFs 10, 11, and 12, which have some noticeable 

degree (> 0.3) of alignment.  However, most pairings are completely orthogonal with respect to 

the other. 

To investigate what is happening during the Dalton Minimum, we can perform a Hilbert-Huang 

transform and plot the skeleton lines: 
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Figure 31: Skeleton lines for sunspot series, derived from HHT 

This skeleton line plot is a bit less clean than our simulated time series, showing multiple 

underlying components each vying for similar frequency bands.  We may also observe some 

interesting artifacts of the sifting process: in some situations, IMFs might swap aspects of the 

underlying components they are attempting to track.   Note the large discontinuity for IMF 1 during 

the 1770’s – it jumps suddenly to period 2yr before resuming its normal behavior at period 4mo.  

IMF 1 appears to track the progression of a 4mo periodicity within the variation of sunspot count; 

however, IMF 1 mis-tracks to instead track IMF 4’s 2yr periodicity temporarily. 
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Such jumps appear to be artifacts of tracking.  Essentially, if one sees IMF isolation as the attempt 

to track a single underlying component of shifting frequency over time, some issues may arise as 

components intersect in frequency. 

This skeleton plot is somewhat visually cluttered. To clear out the noise, we may look instead at 

the scaled HHT skeleton plot, where line thickness corresponds to magnitude: 

 

Figure 32: Scaled skeleton lines plot for sunspot time series, derived from HHT. 

 

In this figure, we see the clearly dominant component is IMF 6, which we had previously identified 

as tracking the 11yr periodicity of the solar cycle. 
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Looking directly at the evolution of IMF 6 through frequency space, we can identify some 

interesting variability.  Most notably is the fact that it almost disappears in magnitude during the 

Dalton Minimum.  Secondly, we can see that the periodicity is not always exactly at 11yr.  At 

times, it moves up and down, taking on periods generally between 8yr and 15yr.  This reflects the 

fact that solar cycles do not always last exactly 11 years: their duration varies within a range around 

this central point.  Using the HHT, we can track the evolution of this variation between solar cycles 

as a function of time. 

Note that, during the Dalton Minimum, the tracking process has problems with exactly identifying 

the Solar Cycle: at times, it appears that IMF 7 temporarily “takes over” the tracking of the solar 

cycle during the Dalton Minimum, until the solar cycle trend becomes strong enough for IMF 6 to 

resume tracking. 

All other components pale in comparison to IMF 6; however, we can notice some components that 

appear to stand out.   For example, IMF 9 appears to carry a strong signal within its frequency 

band at 50-60yr periodicity.  This predicts some meaningful periodicity occurring every 5 solar 

cycles.  This periodicity can be visually observed in the plot of the original time series.  IMF 5 also 

appears to have non-trivial contribution at the 4yr-7yr period range.  The HHT also gives us a hint 

at finding the elusive predicted ultra-low-frequency trends and long-term variability, identifying 

one at around 250yr in IMF 12. 

We can collect the total observed energy for each IMF: 
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Figure 33: Average energies for each component of the sunspot time series. 

The stream plot of power over time gives us a picture of the relative contributions of each IMF 

over time: 
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Figure 34: Instantaneous power plot of sunspot series frequencies. 

It is clear, again that IMF 6 is the dominating force throughout the entire time series: however, 

during the Dalton Minimum, the Solar Cycle periodicity loses tower, and the overall spectrum 

becomes dominated by IMFs 1, 7, 8, 9, and 10. 

Outside of the Dalton Minimum, we see that IMFs 8 and 10 remain persistent strong contributions, 

which we know happen around the 50yr periodicity band. 

This decomposition sheds a lot of insight into the underlying dynamics of the system. 

Looking at the dense spectrum, we merge the contributions of each IMF together into a map of 

frequency and time: 
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Figure 35: Dense spectrum plot for sunspot series, derived from HHT. 

In this dense HHT spectrum plot, we clearly identify the 11yr Solar Cycle trend.  This dense 

spectrum plot also shows us clearly the continuity of the Solar Cycle Trend during the Dalton 

Minimum: it appears continuous (but growing smaller in magnitude) throughout the period, even 

though we have seen that this continuity is the result of IMF 7 taking over the job temporarily.  

This paints a unified picture of how the two work together. 

In addition, we also can notice more clearly IMFs 10 and 11 coming together to form a strong 

~150yr-periodic cycle throughout the 1900’s.  This indicates a strong signal of 150yr periodicity 

throughout the 1900’s that is visible from the alignment IMFs 10 and 11.  This signal is often 

identified as the Gleissberg cycle. 
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Compare the dense plot to the Wavelet Decomposition of the same time series: 

 

Figure 36: Wavelet decomposition for sunspot time series, to contrast with dense 

spectrum plot. 

As expected, the wavelet decomposition identifies the same 11yr dominant trend, as well as 

apparent localized peaks in the sub-year periods.  However, the Cone of Influence of the Wavelet 

Decomposition does not allow for any analysis at periods higher than 60 years, rendering the 

longer-term 100yr and 200yr trends out of reach.  The Gleissberg cycle is then not visible in the 

wavelet decomposition.  In addition, the 11yr Solar Cycle is not as clearly defined in frequency 

space, rather being spread out over a large bandwidth.  Because of this, the temporal variability of 

periodicity is not as clear. 
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Flattening down time-locality, we can construct the marginal spectrum: 

 

Figure 37: Mean marginal spectrum for sunspot series 

In the marginal spectrum, we see clearly again the peak in periodicity at 11yr, but also the trends 

noticed earlier at 50yr, 100yr, and 150yr (including the Gleissberg Cycle).  This indicates a strong 

11yr periodicity, with some higher-period effects that can be observed. 

This is a clearer picture than the associated Fourier Decomposition: 
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Figure 38: Fourier decomposition for sunspot series, to contrast with mean marginal 

spectrum 

Again, we see many of the same peaks: One at 11yr, and one at 50yr.  However, higher-frequency 

variations are not as clearly resolved, and low-frequency variations occur at such low resolution 

that it is impossible to meaningfully determine the location of high-period frequency peaks; the 

Gleissberg cycle is not visible. 

Finally, we may look at the Degree of Stationarity: 
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Figure 39: Degree of stationarity for sunspot series. 

We see that our series is in general very non-stationarity.  However, we do have valleys of 

stationarity at the 11yr and 60yr periodicities.  This can be taken to indicate that the 11yr Solar 

Cycle is stationary throughout the duration of our time series and is a factor of high stability – 

something we can visually observe and confirm. 

  Atlantic Multidecadal Oscillation 

Now, let us look at a data set that has less clearly established periodic trends, where energy is 

shared evenly between many competing periodic cycles.  The Atlantic Multidecadal Oscillation 

(AMO) is derived from sea surface temperature variations in the North Atlantic Ocean. 
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Figure 40: Atlantic multidecadal oscillation (AMO) time series 

From visual inspection, we see that there is some recent dominant periodicity with a cycle length 

of about 70 years (“Multidecadal” oscillation), but it is clearly not as dominant as what was 

observed in the Sunspot record.  In addition, this periodicity seems to not be as apparent in the 

1800’s.  We can visually observe other elements of periodicity: during the mid-1900’s, a 5-year 

periodicity is clearly visible.  In the 1800’s, a 10-year periodicity seems to dominate 

This non-stationarity is a clear sign of the utility of EMD and HHT.  For a Fourier Transform, we 

have no indication of the time dependency of the strength of these signals. While the Wavelet 

transform may plausibly give us the shifts between 5-year and 10-year periodic trends over the 

time series, the dominant 70-year cycle is out of the cone of influence. 

Let us begin with an EMD to identify the IMFs: 



 

144 

 

Figure 41: Empirical Mode Decomposition of AMO time series 
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Immediately, we can identify which IMFs correspond to our visual analysis earlier: 

 IMF 6 represents the 5yr cycles observed to be dominant in the mid-1900’s: its strength 

surges during this time period, and later loses clarity outside of it. 

 IMF 7 represents the 10yr cycles observed to dominate the trend of the 1800’s.  It peaks in 

strength at the turn of the century and dies out by the 1930’s 

 IMFs 9, 10 and 11, together, appear to represent the 70yr multidecadal oscillation visible in 

the latter half of the time series. 

In addition, we see the powerful IMF 12, which suggests a periodicity over which the entire time 

series completes one cycle.  IMF 12 was not immediately visible, but its isolation through EMD 

makes it clear.  With the large IMF 12 cycle, we may see the whole time series as the completion 

of one period of the cycle, where the 1920’s-1970’s is an anomalous deviation. 

The EMD is a powerful tool in its ability to immediately isolate each of the visual cycles we 

observed from the time series. 

In terms of mutual orthogonality, the IMFs appear to be satisfactory. 
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Figure 42: Mutual inner products of each IMF of AMO time series, to show mutual 

orthogonality. 

Only IMFs 10 and 11 together appear to have some alignment (factor 0.5).  Investigating further, 

we can see the relative energy contributions of each IMF: 
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Figure 43: Average energies for each IMF of the AMO time series 

From this, we can conclude that IMF 11, being very highly aligned with IMF 10 and having very 

little total energy, is most likely an artifact of the decomposition process, and has little physical 

meaning.  Its effects are duplicated in the effects of IMF 10.  This parallels our situation with IMF 

5 with our simulated series. 

A look at the skeleton plot confirms our association of IMFs with periodicities: 
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Figure 44: Skeleton lines plot for AMO time series, derived from HHT. 

Again, we observe some similar phenomenon of “tracking error”, this time mostly with IMF 1 

sometimes taking on the behavior tracked by IMF 2.  In addition, we see IMF 3 sometimes 

apparently tracking the behavior of IMF 5.  Other than that, there appears to be no other sharp 

discontinuities arising from tracking errors. 

Our previous analysis is confirmed: IMF 7 hovers around the 10yr periodicity until the 1940’s, 

then becomes unstable.  IMF 6 clearly tracks a strong five-year cycle up until the 1970’s, after 

which it appears to take over the role of IMF 7.  IMFs 9, 10, and 11 show an interesting journey: 

they begin apart, but slowly converge in 1960 to together all represent the Multidecadal Oscillation 
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in the latter half of the time series.  IMF 12 also clearly corresponds to the 150-year periodicity we 

identified.  

Of note also is IMF 3, which tracks a yearly oscillation.  IMF 3 tracks the seasonal 1-year cycle 

for most of its course. 

This analysis is further strengthened by the scaled skeleton lines plot: 

 

Figure 45: Scaled skeleton line plot for AMO time series, derived from HHT 

Here, it is apparent that no single IMF ever dominates the entire time series.  Instead, IMFs trade 

dominance.  In the early part of the time series, IMF 7’s 10yr cycle (and to an extent, IMF 5) 

dominates.  In the middle part of the time series, IMF 6’s 5yr cycle dominates.  Then towards the 
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end of the time series, IMF 9 and 10 together dominate with their Multidecadal Oscillation.  And, 

under the whole time series, IMF 12 remains strong and stable. In this view, the role of IMF 6 

“displacing” IMF 7 in the 1930’s is clear. 

We can also see that while the 1yr seasonal cycle exists, it is never strongly dominating. 

If we collapse the frequency story, we can see the stream plot: 

 

Figure 46: Instantaneous power for each IMF of AMO time series 

This clearly represents the trade-off in power between each IMF.  As anticipated, IMF 7 dominates 

in the first half of the time series, before trading off its share to IMF 6.  IMF 6 is briefly the 

dominating factor around the 1940’s and 1950’s, before IMFs 9 and 10 together become the largely 

dominating contribution. 

This plot also shows the stability of IMF 12 as an underlying force driving the larger-scale and 

longer-period oscillation.  IMF 3, the seasonal cycle, also is constant, but much smaller. 
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In order to properly assess the dominance of IMF 9 and 10 together, we may look at the dense 

spectrum: 

 

Figure 47: Dense spectrum plot for AMO time series, derived from HHT 

Again, the trends noticed before can be seen in the patches around 10yr in the 1800’s and 5yr in 

the mid-1900’s.  However, in this visualization, the convergence of IMFs 9 and 10 forms a very 

intense patch in the 70yr-80yr periodicity in the latter third of the time series.  Together, they create 

an island of intense periodicity during their alignment. 

The wavelet transform shows some similar conclusions, in a limited way: 
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Figure 48: Wavelet decomposition for AMO time series, in contrast with its dense 

spectrum plot 

The wavelet transform properly identifies the 10yr periodicity in the early 1800’s, as well as a shift 

to the 5-year periodicity in the 1920’s.  A similar picture of the 5-year periodicity “displacing” the 

10-year periodicity is also apparent.  However, the wavelet transform is unable to resolve the 

multidecadal component in the latter third of the time series, and the 150yr cycle associated with 

IMF 12. 

It can be noted that peaks in the Dense HHT spectrum appear as fuzzy islands in the wavelet 

transform, suggesting that they both are identifying the same (temporally) hyper-local 

phenomenon.  One difference, qualitatively, is that with the HHT, we have a story stringing these 
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local phenomena together: we identify when one evolves into the next.  For the wavelet transform, 

they can be nothing more than isolated islands. 

Of course, computing the marginal spectrum destroys the nuance in the time dependence: 

 

Figure 49: Mean marginal spectrum for AMO plot, derived from HHT. 

But is still useful, nevertheless.  The Multidecadal component is clearly visible, as well as the 

stable 150yr cycle corresponding to IMF 12.  However, the 5yr and 10yr cycles appear lost under 

the general power sub-12yr cycles.  This lends itself to the fact that the interesting aspects of the 

5yr and 10yr cycle derive not from their existence in the data set, but rather from how they evolve 

over the duration of the time series.  This is lost in marginal views like the MMS and the Fourier 

Decomposition: 
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Figure 50: Fourier decomposition for AMO time series, in contrast with its mean 

marginal spectrum. 

The Fourier Decomposition, at least, can resolve the 10yr and a 3.5yr cycle, due to its greater 

resolution at higher frequencies.  It is even able to resolve a low bandwidth 1yr seasonal 

periodicity, which the mean marginal spectrum could not.  However, at higher frequencies, its low 

resolution makes it barely able to resolve the multidecadal component, and completely unable to 

resolve the long-term 150yr cycle. 

The plot of Degree of Stationarity aligns with our expectations: 
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Figure 51: Degree of stationarity plots for AMO time series 

 

This time series is extremely non-stationary at low periods and high frequencies, which we see 

from the dense spectrum and wavelet transform.  However, there is a strong degree of stationarity 

at the Multidecadal aspect, which dominates for a large portion of the time series.  Additionally, 

the most stationary aspect of the time series is its long-term 150yr variation, associated with IMF 

12.  From our analysis, we know it is constant-power and constant-frequency, and this stationarity 

is reflected in our Degree of Stationarity plot. 

6.7 Conclusion 

In conclusion, the Hilbert-Huang Transform is a powerful tool when used in conjunction with tools 

like Fourier Analysis and Wavelet Analysis.  Not only is it more suited for analyzing non-linear 

and non-stationary data, it may also serve as a measure of discussing the validity of specific 

stationary analysis. 
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For the simulated data, it was able to more meaningfully pick out the components that we were 

interested in, and the components corresponding to the underlying system we were constructing.  

For the actual climate data, we observe that effects in non-stationarity and non-linearity were 

properly observed in the result of the transformation.  It provided us the unique ability to “track” 

developments of contributions to the total time signal as entities that varied over time. 
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 7 ENSO Effects on NRB Rainfall 
analyzed via EMD  

7.1 Introduction 

The El Niño Southern Oscillation (ENSO) is a major global contributor to interannual climate 

variability due to its influence towards disrupting normal large-scale Walker circulation in the 

South Pacific (Rasmusson and Arkin 1985; Slemr et al. 2016). The source of its disruption stems 

from the variability in the strength of the easterly trade winds (L’Heureux 2014). ENSO’s impact 

on a global scale is often reflected in local events such as extreme flooding to extreme drought 

conditions (Fer et al. 2017). Le et al. (2017) modeled the interaction between large ENSO seasons 

and drought in North America, confirming the relationships established by Ropelewski et al. 

(1986), Dai and Wigley (2000), and Holmgren et al. (2006).    

In East Africa, the Empirical Orthogonal Teleconnection (EOT) technique is utilized to isolate 

specific ENSO-driven patterns showing the direct connection with vegetation and agriculture 

yields (Van Den Dool et al. 2000; Fer et al. 2017). As a driver of interannual climate variability, 

with great impact on food security, ENSO is known to strongly contribute to Nile River Basin 

(NRB) precipitation patterns (Abtew et al. 2009). The Nile River in East and Northeast Africa 

drains an area of 2.9 × 106km2, and has strongly shaped the economic development of all countries 

in its drainage basin. Nile river flow plays an important role in all countries within its basin, and 

is mostly influenced by East and Northeast Africa’s climate. Precipitation in these regions 

contributes to the overall flow of the River Nile from Tanzania, in the south, to Egypt, in the north. 

Therefore, an understanding of the driving forces affecting its flow is crucial for the purpose of 
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characterizing its impact on local economies, which in turns, requires the investigation of 

geographical variability of precipitation within the NRB. The river has two main tributaries, 

namely, the White Nile, which flows from Lake Victoria along the Kenya/Tanzania Border, and 

the Blue Nile that flows from Lake Tana in Ethiopia. We will focus our attention on the Blue Nile, 

since it is known that its flow is affected by the strength in the ENSO cycle (Amarasekera et al. 

1997) and it contributes up to 60% of the River Nile yield.  Significant negative and positive 

correlations between Pacific Ocean Sea Surface Temperature (SST) and the Nile River discharge 

were found (Amarasekera et al. 1997) Specific portions of discharge and precipitation, influenced 

by Pacific SST variations, were characterized to describe the regional variability for these 

contributing proportions. Millions of people in the semi-arid to arid regions of Kenya, Ethiopia 

and other NRB countries are facing water scarcity and frequent drought issues that might be linked 

to ENSO (Zaroug et al. 2014; Thomas et al. 2019). They found, using a discrete event-based 

approach that ENSO affects the region around the Blue Nile source in Lake Tana, which 

contributes around 60-69% of the main Nile discharge. The Pacific Ocean Sea Surface 

Temperature in the Niño 3.4 region and the meteorological and hydrological drought 

measurements in the upper catchment of the Blue Nile were used in that analysis. The El Niño and 

La Niña occurrences and associated intervals matched significantly with the patterns of flooding 

and drought events. The principal component of precipitation variance is an annual cycle (seasonal 

variation) – characterized by rainy seasons typically between July to September (Salih et. al., 

2018).  However, for the purposes of long-term planning, effort has been dedicated into identifying 

longer-scale variations and the signal driving variation between different years and decades. 

In an effort to develop flooding and drought models, Siam and Eltahir (2015) analyzed historical 

data sets and defined four distinct modes of natural variability in NRB flow. They identified a 
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region in the Southern Indian Ocean that characterizes up to 28% of the interannual variability in 

Nile River flow. Together with historical ENSO readings, Pacific Ocean SST and SOI variation 

explain 44% of Nile River flow variability. In addition, they link anomalous events and show that 

global models incorporating ENSO can be used to characterize the NRB hydrology. To predict 

river flow at specific locations, Wang and Eltahir (1999) aggregated several historical data sets 

and other sources of historical information regarding ENSO indices, Ethiopia precipitation, and 

Nile flow readings, to establish predictive indices for Aswan flow. They applied Bayesian analysis 

using conditional categorical probabilities to create a discriminant forecasting algorithm. A 

synoptic index is constructed to characterize the forecast skill. They conclude that ENSO readings 

are by far the most valuable predictor on large (2-3 months) time scales, but that precipitation and 

river flow information can be useful in predicting on medium-range (monthly) time scales.  

In this study, we further quantify the link between El Niño and decadal-scale variation in NRB 

precipitation by applying Empirical Mode Decomposition (EMD) and the Hilbert-Huang 

Transform (HHT) with the purpose of decomposing the signal in terms of a small number of 

Intrinsic Mode Functions (IMFs) characterizing their non-stationary oscillatory variations. In the 

process, we find that a specific NRB IMF and a specific Southern Oscillation Index IMF (namely, 

the IMF characterizing approximately duodecadal variations) are strongly correlated. This seems 

to imply the existence of a single global physical process driving both NRB precipitation and the 

interannual variation present in the SOI. In this paper we quantify the nature of this shared 

causality, and we show that such causality exists at different lagged responses. This link provides 

us a powerful statistical insight on NRB precipitation on a per-region basis, an important tool for 

characterizing its long-term variability, and also a viable predictive index for important 

hydrological measurements such as the Blue Nile yield.  It is important to note that the goal is not 
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to establish a causal link between SOI and NRB and Blue Nile Yield, but rather that all three share 

mutual driving process that influences them, more clearly identifiable using Empirical Mode 

Decomposition than simple correlation or direct analysis. 

The high social importance of these indices in the face of global climate change is a global crisis, 

as argued at the Davos world economic forum. Transnational water management is a critical issue 

in the upcoming years as the world moves to address the 2030 Sustainable Development Goals 

(SDGs), as both a goal contributing to water security in the face of climate change and also as an 

important indicator (Indicator 6.5.2) of the progress of the global motion towards a sustainable 

world.  

7.2 Study Area 

The primary area of study for this paper involves the atmospheric study of the primarily East-

Africa Nile River Basin region (depicted in Figure 52) as it relates to global ENSO effects, and 

impacts the fields of atmospheric science as well as the mathematical and signal-processing fields 

of empirical signal decomposition. 
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Figure 52: Nile River Drainage basin, the area of study. (This figure is taken from 

Li et. al., 2020, and used with permission) 

  

7.3 Material and Methods  
  Materials  

EMD and HHT analysis is performed on precipitation records from the CHIRPS Pentad Dataset 

(Funk et al. 2014), and also the Southern Oscillation Index, a climatology index associated with 

ENSO (Chen 1982). SOI data is gathered from the work in Ropelewski and Jones (1987), which 

contains records starting from January 1866. Historical precipitation (measured as monthly 
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anomalies of the Pentad temporal scale) for the NRB countries of Egypt, Ethiopia, Kenya, South 

Sudan, Sudan, Tanzania, and Uganda, starting from January 1981 is analyzed. Blue Nile flow data 

at Grand Ethiopian Renaissance Dam (GERD) measurement station from 1990 to 2014 was 

available from official GERD communications and resources. Software implementation of EMD 

is written in Haskell (Le 2018).  

  Methods  

Empirical Mode Decomposition  

EMD has successfully been used to study nonstationary physical systems, in fields ranging from 

neuroscience (Pachori 2008; Pigorini et al. 2011) to solar surface dynamics (Nakariakov et al. 

2010; Bellini et al. 2014). IMFs proved to be powerful tool for predictive analysis, where using 

statistical models to predict IMFs, one can predict the progression of the time series as a whole 

(Abadan and Shabri 2014). In this research we applied the EMD and HHT, as a powerful predictive 

tool, on the NRB precipitation by isolating different physical processes amongst which is the one 

driven by ENSO as represented by SOI data (Huang et al. 1996, 1998). The power of EMD in 

isolating physically meaningful signals, driven by El Niño and quasi biennial oscillation, from 

precipitation and temperature data was proven over South Africa (Zvarevashe et al. 2019) and 

central and eastern pacific (Kidwell et al. 2014). On the eastern and western US, namely Virginia 

and California, EMD along with other tools showed the El Niño impact on precipitation variability 

using rain gauge and climate division data (El-Askary et al. 2004, 2012).  

EMD aims to decompose a time series, precipitation in our case, as a sum of a small number of 

non-stationary components, IMFs, which may be understood and analyzed in isolation. Each IMF 

traces an independent non-stationary physically meaningful process that contributes to the full 
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series, for example seasonality, annual variability, El Niño cycle, decadal oscillation, etc. The HHT 

re-frames each series as instantaneous-frequency-over-time (much like sparse wavelet 

decomposition), tracing the progression of each IMF over instantaneous frequency space as a 

function of time. Thus, we can trace the process of one single physical process as it moves through 

instantaneous frequency space over time. For a general real-valued time series 𝑥𝑥(𝑡𝑡) of length 𝑇𝑇, 

the series is decomposed in terms of a sum of 𝑁𝑁 (typically small) mutually orthogonal IMFs 𝑐𝑐𝑖𝑖(𝑡𝑡) 

and a residual series 𝑟𝑟(𝑡𝑡).  

𝑥𝑥(𝑡𝑡) = ��𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖

� + 𝑟𝑟(𝑡𝑡) (1) 

The HHT then allows the visualization of each IMF 𝑐𝑐𝑖𝑖 as a curve in frequency-time space 𝜔𝜔𝑖𝑖(𝑡𝑡) 

with a magnitude 𝐴𝐴𝑖𝑖(𝑡𝑡) associated at each point.  

𝑐𝑐𝑖𝑖(𝑡𝑡) ⇒ 〈𝜔𝜔𝑖𝑖(𝑡𝑡),𝐴𝐴𝑖𝑖(𝑡𝑡)〉 (2) 

Physical Interpretation of IMFs for Precipitation and SOI Data  

EMD produces IMFs which are mutually orthogonal for practical purposes, and each correspond 

to the contribution of an independent non-stationary physical process (or the sum of independent 

physical processes with similar time scales of variability). Junsheng et al. (2006) has shown that 

when one has a time series when the underlying physical processes are known, EMD yields IMFs 

that matches on each underlying series. Figure 53 shows EMD applied to the monthly Ethiopia 

precipitation records (recorded as monthly anomalies in the Pentad temporal scale) since 1980, 

yielding IMFs with different time scales of variability. The collection of nine IMFs is mutually 
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orthogonal in L^2 (by their construction), and, according to the theory of EMD, each IMF most 

likely tracks the progression of a separate physical process driving Ethiopia precipitation.  

 

Figure 53: IMFs from EMD applied to historical Ethiopia Precipitation. 

 

The full decomposition of SOI monthly recordings from January 1866 to January 2019 (Figure 54) 

isolates 14 IMFs at varying time scales. Of these, it can be proposed that IMF 6 corresponds to El 

Niño and La Niña occurrences: its non-stationary periodicity matches the historical record of large 

El Niño and La Niña events. In particular, the three largest El Niño events in recorded history are 

observed in 1982 – 83, 1997 – 98, and 2014 – 2016 as negative swings in IMF 6. El Niño events 

with their varying strength and impact on wetness and dryness were presented using recurrent 

neural networks by Le et al. (2017). Performing a correlation analysis between annual totals of 

IMF 6 and other ENSO SST time series (such as NIÑO 3.4, NIÑO 1, NIÑO 4) yields correlation 
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coefficient around 0.5, similar to the results of directly performing correlation analysis between 

SOI and such SST indices. 

 

Figure 54: IMFs from EMD applied to historical SOI records 

  

7.4 Results and Discussion  
  Hilbert-Huang Transform  

Application of the HHT to the SOI shows the progression of each of these IMFs through frequency 

as a function of time, as depicted in Figure 55. The transform shows the range of variability in 
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which each IMF dominates. IMFs have been shown to correspond to meaningful physical 

processes when applied to a wide variety of physical systems. By studying a single IMF, it is 

possible to analyze a single physical process contributing to the variation of the system at that time 

scale. It is also possible to match this observed physical subprocess with other known physical 

processes. For example, IMF 1 accounts for quarterly variations, IMF 3 accounts for annual 

variations, and IMF 7 accounts for variations on the order of six to twelve years. Longterm 30-

year variations are accounted for in IMF 9. By this association, IMF 6 corresponds to variations in 

the strength of the Easterly Trade Winds and size of Walker Cell disruptions, factoring the 

influence of climatology as previously discussed (Le et al. 2017). The (nonstationary) oscillation 

of IMF 6 represents the fundamental periodicity of this cycle, while isolating out variations in El 

Niño/La Niña intensity as reflected in SOI. It can be used as a binary indicator, if symmetric 

thresholds are used, to determine if such an event occurs, while not being influenced by the relative 

intensity of each event. However, on top of the dominant periodicity, there are extra factors that 

drive the relative strength between El Niño events as reflected by SOI. These factors, by the 

orthogonality conditions of EMD, are seen to be captured largely in IMFs 7 and 8.   
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Figure 55: Two displays of data resulting from HHT transformations. (a) Skeleton 

lines arising from HHT from historical Ethiopia Precipitation IMFs. (b) Stacked 

area plot of SOI IMF relative instantaneous power. 
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Therefore, it is clear that the decomposition of the Ethiopia precipitation time series isolates nine 

independent, mutually orthogonal signals that correspond to non-stationary physical processes at 

different time scales. Those independent signals form the overall variation of the precipitation 

record over Ethiopia which can be robustly scaled to the whole NRB region.  

In those IMFs, we observe the relative strength of the physical process driving the variation in 

effects of El Niño events as reflected through negative anomalies in SOI over time, with large 

swells in times of larger and more intense events. This fact can be seen in the stacked area plot 

(Figure 55b) of instantaneous power of each IMF, derived from the HHT. Each layered color 

represents the relative power of the influence of each IMF at each point in time. While IMF 6 (the 

primary event signal) has a relatively steady contribution (except during the mid-century lull), 

IMFs 7 and 8 appear to surge in power during known spikes in event strength.  

Therefore, although we found that IMF 6 is tracking the periodic events in SOI itself, there is a 

separate, orthogonal physical process tracked by IMFs 7 and 8 that drives internnual Niño 

variability as reflected in SOI. There is therefore an underlying process, which has not yet been 

identified so far and is currently not yet studied, that contributes to interannual variability. It is an 

orthogonal physical circulation that strongly determines the relative strength of subsequent events. 

Hence, the SOI IMF 6 is now considered to be an El Niño indicator index, due to its ability to 

identify El Niño and La Niña events, isolating out variations in intensity. As a result, the IMF 6 is 

now useful as a “binary” indicator in establishing whether or not an El Niño or La Niña event is 

happening (by setting symmetric thresholds about 0). The SOI IMFs 7 and 8 are named the 

Interannual ENSO Variability Indices (IEVIs), as they are interannual variability indices that are 

derived from the study of ENSO. We differentiate between them as IEVI 𝛼𝛼 and IEVI 𝛽𝛽, 

respectively, as a pair of indices for predicting the intensity of a given El Niño or La Niña event, 
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should one occur in that year. Hence, these IEVIs would shed the light on NRB precipitation 

linkage as discussed later.  

NRB Precipitation and SOI Data Comparison  

Applying the EMD and HHT to NRB precipitation records (as Pentad anomalies) from January 

1981 to December 2018, shows that many NRB precipitation IMFs, especially decadal IMF, 

correlate strongly with the IEVIs, particularly with IEVI 𝛽𝛽, yet with a varying ranges of lag (Figure 

5). NRB precipitation IMFs correlations with SOI IMFs are represented at different time scales. 

Each IMF is noted with the timescales it varies in, derived from the HHT, and each correlation 

coefficient is noted with the NRB IMF delay, computed using direct descent, for that correlation. 

In this method the lag is increased, up to four years, as long as the correlation also increases, until 

the point where increasing lag will decrease the correlation coefficient. This provides an effective 

measure to obtain a meaningful lag without the risk of overfitting which would occur if lags are 

permitted to slide past a local maximum. It is clear that precipitation for every NRB country yields 

an IMF that highly correlates with IEVI 𝛽𝛽, SOI IMF 8, predominantly at zero lag. Yet it is 

noteworthy that precipitation for the majority of NRB countries still yield an IMF that correlates, 

in some weaker manner, with IEVI 𝛼𝛼, SOI IMF 7. Each Precipitation IMF corresponds to an 

underlying physical process that drives the variation in precipitation for that country. The fact that 

Ethiopia IMF 7 correlates at 𝜌𝜌 = 0.719 with IEVI 𝛽𝛽 at 0 month lag means that the underlying 

physical process driving the interannual variability (IEVI 𝛽𝛽) is the same as the one driving 

variability Ethiopia precipitation between different decades. Therefore, it can confidently be 

concluded that interannual variability is strongly associated with decadal variability in this case 

owed to the observed high correlation at 0 lag.   
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Table 4: Correlations between NRB nations precipitation IMFs and SOI IMFs. 

Each IMF is noted with the approximate range of periodic variability the IMF 

accounts for, and each correlation is noted with the lag of correlation in months. 
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The strong correlations between NRB precipitation IMFs and IEVI suggests that the Nile River 

yield and total accumulation is somehow dependent on ENSO strength and variability.  

ENSO strength accounts for ~ 22% of the annual variance in the Blue Nile and Atbara rivers’ flow, 

which primarily drain Ethiopia, Eritrea, Sudan, and South Sudan (Amarasekera et al. 1997). In 

agreement with these findings, we suggest that ENSO strength as reflected in the isolated IMF of 

SOI is strongly linked to precipitation in Ethiopia, the primary drainage basin of these two rivers. 

Therefore, we can deduce that the Ethiopia, Sudan, and South Sudan precipitation will be strongly 

linked with the IEVIs and ENSO. Speaking of the NRB countries, the link is established with 

varying correlative power geographically with IEVI 𝛼𝛼 (SOI 7) and IEVI 𝛽𝛽 (SOI 8) (Figure 56).  

 

Figure 56: Map of NRB nations colored and overlaid with correlations between 

national precipitation IMFs and IEVI 𝛼𝛼 (SOI 7) and IEVI 𝛽𝛽 (SOI 8). Insets depict 
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the actual IMF of national precipitation against lagged IEVI component, where are 

highlighted and discussed in the text. 

  

For instance, Ethiopia and Sudan show the strongest correlation with IEVI 𝛽𝛽, at 0.72 and 0.86, 

respectively, while South Sudan is not much lower, with 0.68. ENSO variation is known to have 

a much weaker influence on the White Nile flow (Amarasekera et al. 1997). This adds to our 

confirmed observations that Kenya and Tanzania, out of all NRB countries, have the two lowest 

correlations with IEVIs. Precipitation IMFs for Ethiopia and northward, downstream of Lake Tana, 

negatively correlates with IEVI 𝛼𝛼, opposite to countries extending from Lake Victoria to Sudan. 

However, precipitation for all NRB countries, except for the Mediterranean bordered Egypt, 

positively correlates with IEVI 𝛽𝛽. Because of our usage of IEVI 𝛽𝛽 instead of a direct El Niño index, 

we can be certain that our claims of dependency and correlation, specifically, result from the 

interannual variability derived from ENSO, and not simply SST or other environmental internnual 

factors. In other words, we track ENSO cycle, specifically, and not any other potential overlapping 

periodicity.  

  Blue Nile Yield Prediction  

IMFs of physical systems can be predicted using traditional statistical models, such as ARIMA 

models (Abadan and Shabri 2014). A hybrid discrete Bayesian model proves to be effective in 

linking ENSO-based factors and NRB precipitation activity (Wang and Eltahir 1999; Siam and 

Eltahir 2015). If a traditional model can project IEVI 𝛼𝛼 and 𝛽𝛽, then it is possible to predict on the 

precipitation levels decadal variability for NRB countries. This is important for NRB nations with 

lagged correlations between precipitation IMFs and IEVIs. The importance stems from the fact 

that predictions in IEVIs will manifest as correlations, at a known lag time, in precipitation of NRB 
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countries. Therefore, we can for instance predict any hydrological variable that might be driven by 

precipitation. To demonstrate this ability the Blue Nile yield will be predicted annually based on 

IEVIs and autocorrelative terms. The Blue Nile yield data from the GERD measurement site from 

1900 to 2014 was made available from official sources through GERD communications. The 

location of the measurement station with respect to the watershed of the Blue Nile river is depicted 

in Figure 7c. Since the IEVIs have a monthly sampling frequency, as opposed to the yearly 

frequency of our yield data set, next year prediction will be based on two groups of predictors. 

These are namely, the twelve IEVI 𝛼𝛼 measurements from the year before the observed 

measurement and the autocorrelative terms represented by the six previous measurements of the 

Blue Nile yield. For simplicity, this is a simple ARMA model represented as a multivariate linear 

regression on annual total Blue Nile Yield 𝑦𝑦𝑖𝑖:  

𝑦𝑦𝑖𝑖 = 𝒃𝒃⊤𝜶𝜶𝑖𝑖−1 + 𝑑𝑑1𝑦𝑦𝑖𝑖−1 + 𝑑𝑑2𝑦𝑦𝑖𝑖−2 + ⋯+ 𝑑𝑑6𝑦𝑦𝑖𝑖−6 (3) 

 

𝛂𝛂𝑖𝑖 is the 6-vector of IEVI 𝛂𝛂 readings for year 𝑖𝑖 for the months of June to November, and 𝑦𝑦𝑖𝑖 is the 

Blue Nile Yield for year 𝑖𝑖 for months June to November. The model is parameterized by a 6-vector 

𝒃𝒃 (𝑏𝑏1, … , 𝑏𝑏6) and the six coefficients 𝑑𝑑1, … , 𝑑𝑑7. These parameters are fitted according to ordinary 

linear least squares estimation (Hayashi 2000). The actual estimation involves a series of matrix 

multiplications and inversions, involving the Moore-Penrose Pseudoinverse methodology 

(BenIsrael and Greville 2003). 

Our justification for the ARMA model arrives from the fact that it is the simplest possible model 

requiring the least a priori assumptions: it posits that the Blue Nile Yield has both linear auto-
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regressive contributions (that is, that it is resistant to sudden year-by-year changes) and a linear 

moving average contribution from an external contributing factor (IEVI 𝛼𝛼, in our situation). 

Figures 6a and b show the estimated model when fitted to the full time series, compared to actual 

historical Blue Nile yield. The error in the fully fitted model is RMSE 8.1 × 109𝑚𝑚3, with a Pearson 

correlation coefficient of 𝜌𝜌 = 0.52. The fitted model against IEVI 𝛼𝛼 explains 30% of the variability 

of the Blue Nile Yield.   
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Figure 57: A multivariate linear regression based on IEVI   to predict Blue Nile 

Yield. (a) Model output against measured values. (b) Correlation plot between 

model and measured values. (c) Location of measurement station with respect to the 

Blue Nile watershed (highlighted) and the surrounding regional borders. 
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Other model inputs were considered, such as precipitation, the actual SOI time series, and other 

IMFs — however, predicting only on IEVI  gives the most significant results against the null 

hypothesis. Predicting on other parameters using this method tends to overfit. This means that 

IEVI  is a stronger unbiased predictor than directly using SOI, or even NRB precipitation.  

These methods also suggest that, while each SOI IMF is physically meaningful, IEVI 𝛼𝛼 is closely 

tied with precipitation and related long-term phenomenon, such as drought and periods of heavy 

rain. This initial model strongly suggests that IEVI 𝛼𝛼’s inherent physical properties lend itself to 

be able to predict on significant geophysical and hydrological processes. In the future, more 

advanced statistical or data-driven models may prove to be even more effective. This is a very 

important finding where it addresses the Blue Nile Yield as a very a significant measure in 

addressing a serious societal issue with transboundary implications on Ethiopia, Sudan and Egypt.  

7.5 Conclusions  

The 2020 Global Risk Report lists Climate Action failure and Extreme weather as top global risks 

in terms of both likelihood and impact. The SDGs, established in 2015, set a course of action for 

addressing upcoming potential global crises; SDG 6 acknowledges the role of Clean Water and 

Sanitation in sustainable development. The SDG establishes transboundary cooperation as an 

important indicator in the progress for this goal. Therefore, accurate modeling of transboundary 

hydrological resources like precipitation runoff and Nile River flow are integral in addressing the 

future of sustainability and climate action.  

We have shown how the introduction of Climate Indices IEVI 𝛼𝛼 and 𝛽𝛽 account for the inter-annual 

variability of El Niño as reflected by SOI and also drives many physical processes. We have shown 

that our inter-annual El Niño variability index, expressed by IEVI 𝛽𝛽 has extremely strong 
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correlations (up to 𝜌𝜌 = 0.864) for NRB precipitation Decadal variation, as isolated by EMD. We 

have also shown that a statistically significant association of NRB Precipitation decadal variation 

is our inter El Niño variability index, expressed by IEVI 𝛽𝛽, and that these correlations should allow 

the IEVIs predictive models to characterize decade-to-decade precipitation levels on NRB nations. 

The geographic distribution of correlation with IEVI 𝛽𝛽 also matches that predicted by the 

conclusions of the cited works. All countries but Egypt vary in precipitation in the same direction 

as IEVI 𝛽𝛽, whereas Egypt varies in the opposite direction. We attribute this change in direction 

due to Egypt’s influence by the Mediterranean Sea’s dependence on El Niño. A weaker effect (𝜌𝜌 

= 

0.44) is found in that all southern Nile River Basin countries vary in the same direction as IEVI 𝛼𝛼, 

whereas all northern NRB countries downstream of Lake Tana vary in the opposite direction.  

Physically, our conclusions match known properties about the NRB. Comparing the relative 

dependence of Blue Nile and White Nile dependence on ENSO based on established literature, we 

observe the correct geographical distribution of correlation. We expand on previous results by 

uncovering a more physically meaningful index on which to build models and make predictions, 

instead of simply raw SOI and precipitation. By applying EMD, we aimed to isolate a signal 

corresponding only to inter-event variability. Because of this filtering, our correlation factors are 

known to correspond only to inter-ENSO variability, and not only significant events themselves. 

This gives a strong footing on which to base claims about inter-ENSO variability (and not only 

interannual variability) as it affects Nile River flow. To solidify this claim, we predict on Blue Nile 

River yield based only on IEVI, with successful results. These results show that EMD has 

uncovered an underlying process mutually driving both ENSO (as reflected in SOI and 
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precipitation measurements) and also physical processes in the Nile River Basin. It should be noted 

that this does not attempt to justify a causal link between SOI and NRB processes, but rather a 

mutual causality. Further study should involve the usage of modeling IEVI 𝛽𝛽 and IEVI 𝛼𝛼 to show 

the exact accuracy of such models on decadal variability of NRB country precipitation, as well as 

further studies of the IEVIs against the precipitation and climate of other regions. In addition, 

further study could link the IEVIs to the variations within swells of the thermocline, Walker 

Circulation deviations, and Southern Easterly Trade Wind deviations.  
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 8 Summary & Conclusion 

Learning-based adaptive models show promise as tools within their proper context in climate 

science and other empirically based scientific methods, with their predictive power.  One major 

factor limiting the usage of learning-based adaptive models is their inability to properly explain 

the predictions they make.  While their predictive power has been established and is gradually 

gaining acceptance, science is fundamentally a tool for building understanding of the world.  We 

believe that progress in the understandability of recurrent neural networks and in the analysis of 

EMD IMFs can help build progress along this front.  This dissertation presents a road forward in 

this endeavor, in the hopes of inspiring further research in the future.  Indeed, the assistance of 

empirical and adaptive models in guiding scientific progress (and the movement of focus away 

from simply their predictive power) may become an indispensable tool in the future of computer-

aided scientific modeling.  The role of adaptive models must not be as the replacement of 

traditional models, but rather as a tool to help test models and as a guiding tool to help guide 

scientific innovation.  Adaptive models and machine learning must not supplant traditional 

scientific models.  Instead, they must fill these new roles: roles that were much needed but missing 

or lacking in the past.  Only working together and in complementary manner can traditional 

scientific models and machine learning/adaptive models create a future of more sustainable 

promise. 
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