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ABSTRACT  
   

Aquifers host the largest accessible freshwater resource in the world. However, 

groundwater reserves are declining in many places. Often coincident with drought, high 

extraction rates and inadequate replenishment result in groundwater overdraft and 

permanent land subsidence. Land subsidence is the cause of aquifer storage capacity 

reduction, altered topographic gradients which can exacerbate floods, and differential 

displacement that can lead to earth fissures and infrastructure damage. Improving 

understanding of the sources and mechanisms driving aquifer deformation is important for 

resource management planning and hazard mitigation. 

Poroelastic theory describes the coupling of differential stress, strain, and pore 

pressure, which are modulated by material properties. To model these relationships, 

displacement time series are estimated via satellite interferometry and hydraulic head levels 

from observation wells provide an in-situ dataset. In combination, the deconstruction and 

isolation of selected time-frequency components allow for estimating aquifer parameters, 

including the elastic and inelastic storage coefficients, compaction time constants, and 

vertical hydraulic conductivity. Together these parameters describe the storage response of 

an aquifer system to changes in hydraulic head and surface elevation. Understanding aquifer 

parameters is useful for the ongoing management of groundwater resources.  

Case studies in Phoenix and Tucson, Arizona, focus on land subsidence from 

groundwater withdrawal as well as distinct responses to artificial recharge efforts. In 

Christchurch, New Zealand, possible changes to aquifer properties due to earthquakes are 

investigated. In Houston, Texas, flood severity during Hurricane Harvey is linked to 

subsidence, which modifies base flood elevations and topographic gradients.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Overview 

Freshwater availability is increasingly important as the climate changes and global 

population increases [Vörösmarty et al., 2000].  The world's largest accessible freshwater 

resource is hosted by aquifers; however, groundwater reserves are declining in many places 

causing decreased well yields, increased pumping costs, and diminishing water quality 

[Konikow and Kendy, 2005]. Groundwater overdraft occurs when water removed is not 

replenished in an aquifer system. Many regions are threatened by a changing climate, which 

can exacerbate overdraft in drought scenarios when surface water is scarce, accelerating 

depletion of the groundwater supply [Aeschbach-Hertig and Gleeson, 2012]. Groundwater 

exploitation can also lead to irreversible land subsidence and altered topography [Poland and 

Davis, 1969].  

The surface of the earth deforms due to stresses stemming from natural and/or 

anthropogenic forces. Subtle, widespread surface deformation occurs when large volumes of 

fluid are withdrawn from or reintroduced to underground reservoir systems [Fielding et al., 

1998; Holzer and Galloway, 2005]. Land subsidence, in particular, is documented in a growing 

number of cities throughout the United States including: Houston-Galveston, Texas [Holzer, 

1981], southern New Jersey [Sun et al., 1999], the San Joaquin Valley, California [Holzer and 

Galloway, 2005], the Antelope Valley, California [Galloway et al., 1998], and the Santa Clara 

Valley, California [Schmidt and Bürgmann, 2003]. The arid southwestern United States is 

especially susceptible to subsidence with notable examples in Las Vegas, Nevada [Amelung et 

al., 1999], Phoenix, Arizona [Casu et al., 2005; Galloway and Burbey, 2011] and Tucson, Arizona 

[Carruth et al., 2005; Kim et al., 2015]. 
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1.2. Aquifer System and Poroelastic Primer 

Aquifer system deformation is governed by the principle of effective stress, 𝜎′, 

which is the foundation of the coupled relationship of changes in hydraulic head levels and 

deformation in one dimension (Equation 1.1) [K. Terzaghi, 1925]. 

𝜎′ = 𝜎 − 𝑝        (1.1) 

where 𝜎 is total overburden stress and 𝑝 is pore pressure. Assuming constant overburden 

stress, changes in pore pressure ∆𝑝 and hydraulic head ∆ℎ are related by: [Poland and Davis, 

1969] 

∆𝑝 = −∆𝜎′ = ∆ℎ𝜌𝑤𝑔      (1.2) 

Where 𝜌𝑤 is the density of water, 𝑔 is gravitational acceleration and ∆𝜎′is the change in 

effective stress. The equation for aquifer compressibility 𝛼 includes vertical deformation, 

given by: 

𝛼 = −
∆𝑏

∆𝜎′𝑏𝑜
=

∆𝑏

∆ℎ𝜌𝑤𝑔𝑏𝑜
                           (1.3) 

where ∆𝑏 is compaction and 𝑏𝑜 is initial thickness [Jacob, 1940]. Specific storage of a 

confined aquifer, 𝑆𝑠, is the amount of water produced as pore pressure declines, as the 

aquifer system compresses, and water expands [Theis, 1935; Jacob, 1940; Burbey, 2001a];  

𝑆𝑠 = 𝜌𝑤𝑔(𝛼 + 𝑛𝛽)                                            (1.4) 

Where 𝛽 is water compressibility and 𝑛 is porosity. By incorporating Equation (1.4) with 

Equation (1.3) and assuming water compressibility 𝛽 is negligible relative to aquifer system 

deformation:  

𝑆𝑘 = 𝑆𝑠𝑏𝑜 =
∆𝑏

∆ℎ
       (1.5) 
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The storage coefficient 𝑆𝑘, which is dimensionless, describes the volume of fluid released 

from an aquifer system area with a change in hydraulic head level. At the surface, the 

poroelastic response to groundwater withdrawal is detected as depression of the land 

surface, either elastic/recoverable or inelastic/permanent [Poland and Ireland, 1988]. The 

skeletal storage can be separated into elastic 𝑆𝑘𝑒 and inelastic 𝑆𝑘𝑣 skeletal storage coefficients 

based on whether effective stress is greater than a pre-consolidation stress 𝜎𝑚𝑎𝑥
′  threshold 

[Hoffmann et al., 2003b]: 

𝑆𝑘 = 𝑆𝑘𝑒 + 𝑆𝑘𝑣,         

𝑆𝑘 = {
𝑆𝑘𝑒 for 𝜎′ < 𝜎𝑚𝑎𝑥

′

𝑆𝑘𝑣 for 𝜎′ ≥ 𝜎𝑚𝑎𝑥
′       (1.6) 

The dimensionless elastic storage coefficient 𝑆𝑘𝑒 represents the elastic behavior of both the 

aquifer and aquitard units [Hoffmann et al., 2001; Liu and Helm, 2008]. It is an important 

parameter for groundwater flow models [Riley, 1969; Green and Wang, 1990] and describes the 

volume of fluid removed or retained as the hydraulic head levels fluctuate. 

𝑆𝑘𝑒 =
∆𝑏𝑝

∆ℎ𝑝
         (1.7) 

where ∆𝑏𝑃 and ∆ℎ𝑃 are the elastic, seasonal components of the vertical displacement and 

water level time series, respectively. The dimensionless inelastic skeletal storage coefficient 

𝑆𝑘𝑣 describes the volume of fluid slowly expelled due to permanent compaction of an 

aquitard volume [Hoffmann et al., 2003a]. The temporal lag is described by a compaction time 

constant, 𝜏, which represents delayed equilibration of aquitard head levels to neighboring 

aquifer head levels; 

∆𝑏𝑙

∆ℎ𝑙
= 𝑆𝑘𝑣 (1 −

8

𝜋2 𝑒
−𝜋2𝑡

4𝜏 )      (1.8)  
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where ∆𝑏𝑙 and ∆ℎ𝑙 are the inelastic, long-term vertical surface deformation and hydraulic head 

level time series. The inelastic skeletal storage coefficient can be several orders of magnitude 

greater than the elastic storage coefficient [Burbey, 2001b]. 

Slow draining aquitard materials and residual compaction are characterized by modeling the 

vertical deformation time series ∆𝑏 as an exponential function of time, t [K. Terzaghi, 1925; 

Buisman, 1936; Chaussard et al., 2014];  

∆𝑏 = 𝑀(𝑒(𝐵𝑡)-1)        (1.9) 

where 𝑀 is the coefficient of the magnitude of aquifer response (subsidence 𝑀>0, uplift 𝑀<0) 

and 𝐵 is the coefficient of decay [-1,0].  If pore pressure is regained by natural or artificial 

aquifer recharge, a similar exponential decay pattern in the elastic relaxation of the matrix can 

occur and result in uplift; this is referred to as poroelastic rebound [Amelung et al., 1999; Schmidt 

and Bürgmann, 2003]. Aquifer parameters and coefficient values describe coupled aquifer 

system responses to changes in head levels and surface topography. To understand and model 

system behavior and porous medium flow, defining aquifer parameters is a priority. 

 

1.3 Organization 

Subtle surface deformation is difficult to detect. Various, often complementary, 

geodetic techniques are used to measure deformation at a range of temporal and spatial 

scales. Geodetic leveling surveys provide highly accurate and precise measurements of 

localized areas by comparing the height difference between two points [Dokka, 2006]. 

Global Positioning System (GPS) stations offer nearly continuous temporal data at selected 

points [Mossop and Segall, 1997]. Interferometric Synthetic Aperture Radar (InSAR) covers a 

broad area at repeated intervals [Ferretti et al., 2000; Dixon et al., 2006]. To provide a robust 



  5 

evaluation, a multi-disciplinary approach is advantageous, including in situ, remote sensing, 

and field observations.  

In this dissertation, five projects related to anthropogenic and natural surface 

deformation of aquifer systems are presented: 

1) Land subsidence occurrences in Phoenix, Arizona, where InSAR is used to 

investigate ground displacement time series from 1992-2010. Three zones of subsidence with 

unique deformation patterns and characteristics, as well as a broad uplift zone coinciding 

with recharge well locations are identified. Observation wells provide an in situ, independent 

dataset of hydraulic head level time series. Continuous wavelet transform is implemented to 

isolate long-term and seasonal trends for aquifer parameter estimation. Deformation and 

well level time series are used to estimate elastic storativity, inelastic storativity, and the 

compaction time constant. These parameters describe the storage response of the aquifer 

system.  

2) Time series of volumetric strain is modeled in the subsidence zones of the 

Phoenix, Arizona aquifer system. An inversion is constrained with the line-of-sight 

interferometric displacement time series from 2004-2010, solving for deforming triangular 

prism volumes from the surface to a depth of 900m. Within each prism, volume strain is 

assumed constant and due only to vertical deformation of a horizontal plane, buried in a 

homogenous, isotropic elastic half-space. The model is used to solve for the stress tensor 

near the surface. The ratio of minimum principal stress and tensile strength of the aquifer 

material is used to identify locations where earth fissures are likely to form. 

3) Aquifer overdraft also causes subsidence in Tucson, Arizona, where groundwater 

is a critical water resource. From 1990 to 2015, long time series of surface deformation are 

generated from InSAR and extensometer/well sites, validated by GPS. Aquifer parameters 
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are estimated, including elastic storativity, inelastic storativity, and the compaction time 

constant as with Phoenix, as well as vertical hydraulic conductivity. Recharge efforts have 

slowed subsidence to a near halt, likely reducing hazards associated with earth fissuring and 

infrastructure damage.  

4) The 2010 to 2011 Canterbury earthquake sequence in Christchurch, New Zealand, 

caused unprecedented liquefaction and unusual groundwater fluctuations. Groundwater 

systems exhibit complex responses to static and dynamic stresses associated with 

earthquakes. Poroelastic theory describes the coupling of differential stress, strain, and pore 

pressure, which are modulated by material properties, including the elastic storage 

coefficient. Elastic storativity is estimated by comparing seasonal vertical deformation data 

and hydraulic head levels. This study explores possible changes to aquifer properties because 

of the earthquake sequence. 

5) Following rapid intensification, Hurricane Harvey stalled over Texas and caused a 

rare, 9000-year extreme precipitation event in August 2017. The spatial extent of flooding 

due to the cyclone is observed through analysis of backscatter properties of satellite radar 

imagery. Also, coastal flooding due to storm tide is modeled on a high-resolution Light 

Detection and Ranging (LIDAR) digital elevation model (DEM). Land subsidence is 

detected for the years preceding the cyclone using InSAR and a chi-squares goodness of fit 

test to determine the significance of the correlation between flooded and subsiding areas. 

Scenarios of future coastal flood patterns by 2100 are explored using projections of sea level 

rise, continued subsidence, and storms. 
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CHAPTER 2: SPATIOTEMPORAL CHARACTERIZATION OF SUBSIDENCE AND 

UPLIFT IN PHOENIX USING INSAR TIME SERIES AND WAVELET 

TRANSFORMS 

 

Abstract: The effects of land subsidence pose a significant hazard to the 

environment and infrastructure in the arid, alluvial basins of Phoenix, Arizona. Improving 

our understanding of the source and mechanisms of subsidence is important for planning 

and risk management. Here we employ multitemporal interferometric analysis of large 

synthetic aperture radar data sets acquired by ERS and Envisat satellites to investigate 

ground deformation. The ERS data sets from 1992 to 1996 and Envisat, 2003–2010, are 

used to generate line of sight (LOS) time series and velocities in both the ascending and 

descending tracks. The general deformation pattern is consistent among data sets and is 

characterized by three zones of subsidence and a broad zone of uplift. The multitrack 

Envisat LOS time series of surface deformation are inverted to obtain spatiotemporal maps 

of the vertical and horizontal deformation fields. We use observation wells to provide an in 

situ, independent data set of hydraulic head levels. Then we analyze vertical interferometric 

synthetic aperture radar and hydraulic head level time series using continuous wavelet 

transform to separate periodic signal components and the long‐term trend. The isolated 

signal components are used to estimate the elastic storage coefficient, the inelastic skeletal 

storage coefficient, and compaction time constants. Together these parameters describe the 

storage response of an aquifer system to changes in hydraulic head and surface elevation. 

Understanding aquifer parameters is useful for the ongoing management of groundwater 

resources.  
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2.1 Background 

The Phoenix valley was dominated by agriculture in the first half of the twentieth 

century and relied heavily on groundwater for irrigation. After World War II, the population 

increased rapidly and many agricultural areas transformed to urban and suburban areas. By 

the 1970s, drawdown exceeded 100 meters in many wells and land subsidence up to six 

meters was recorded in some areas [Anderson, 1995; Galloway et al., 1999; Tillman and Leake, 

2010].  Arizona passed legislation in 1980 to authorize the Arizona Department of Water 

Resources (ADWR) to regulate groundwater depletion, allocate resources, and minimize 

overdraft with the goal of eliminating overdraft by 2025. In particular, Active Management 

Areas (AMA) with significant prior drawdown, were heavily regulated [Tillman and Leake, 

2010; Galloway and Burbey, 2011]. Because of the law, surface water was supplied to the city by 

the Central Arizona Project canal and groundwater pumping was reduced. Nonetheless, 

subsidence and earth fissuring continued in the Phoenix AMA [Casu et al., 2005; Galloway and 

Burbey, 2011], as well as several other locations in Arizona: the Avra Valley and Tucson 

[Schumann and Andserson, 1988], Casa Grande [Jachens and Holzer, 1982], and Eloy [Epstein, 

1987]. The most recent deformation observations are collected by ADWR with an ongoing 

land subsidence monitoring program using InSAR [Conway, 2013] and updated earth fissure 

maps are maintained by the Arizona Geological Survey (AZGS) [Arizona Geological Survey, 

2015].  

Phoenix, Arizona is situated in the Basin and Range Province, which formed in two 

phases of Tertiary crustal extension. First, low-angle normal detachment faults trending 

northeast-southwest accommodated much of the extension. Next, high-angle normal faults 

trending southeast-northwest formed steep basin bounding ranges, rotating and tilting along 

the décollement [Jenny and Reynolds, 1989]. The impermeable, tilted igneous or metamorphic 



  9 

bedrock eroded over time, filling the basins with sediment. These consolidated and 

unconsolidated alluvial sediments are hosts to Phoenix AMA groundwater systems. 

[Anderson, 1995; Reynolds and Bartlett, 2002].  

 

Figure 2.1. Phoenix Study Area. ERS and Envisat satellite footprints are shown with blue 

and red boxes, respectively. Orange boxes are observation wells for hydraulic head time 

series analysis. White outlines mark known subsidence zones recognized by ADWR, and 

green polygons outline the ADWR East Salt River Valley and West Salt River Valley 

groundwater sub-basins, which are distinct hydrologic units. Aerial photography (1-m 

resolution) composite from National Agriculture Imagery Program. 

ADWR divides the Phoenix AMA into sub-basins that act as distinct, independent 

hydrologic basins [Freihoefer et al., 2009]; the East Salt River Valley (ESRV) and West Salt 

River Valley (WSRV) sub-basins encompass the study area of this paper (Figure 2.1). 

Sediment stratigraphy is similar between sub-basins and is broken into three spatially varying 

units. The youngest, upper alluvial unit is composed of sand, gravel, and some fine-grained 

silts, representing recent floodplain deposits. The middle basin-fill unit consists of 

interbedded sands and gravels with an increasing number and thickness of fine-grained layers 



  10 

of clay, silt, and mudstones. The lower alluvial unit overlies, or is in fault contact with, the 

bedrock and consists of conglomerate and gravel near the basin margins, grading into 

mudstones towards the basin center [Corkhill et al., 1993; Dubas, 2010]. 

Most aquifer-bearing units are contained within the middle unit and are considered 

unconfined, with lenses of finer-grained material acting as confining layers. Depth to 

bedrock ranges from a few hundred to more than 3000 meters and the basement surface is 

uneven. The WSRV is host to a thick salt body, is generally deeper, and has a thicker middle 

alluvial unit compared to the ESRV [ADWR, 1999]. Sub-basin stratigraphy and bedrock 

topography both affect the spatiotemporal evolution of surface deformation in the valley.  

Previous work by Casu et al., 2005 measured land subsidence in Phoenix, Arizona 

with InSAR time series from the descending track of ERS satellites. Here, synthetic aperture 

radar (SAR) images are acquired in ascending and descending tracks of ERS, and Envisat 

satellites from 1992-2011. Through multitemporal interferometric processing of these data 

sets, the spatiotemporal evolution of the surface deformation is constrained. Multi-track data 

are combined to obtain vertical and horizontal (east-west) displacement time series 

components. Next, hydraulic head data from observation wells, provided by ADWR, are 

used to form a time series at 33 locations. Wavelet decomposition is applied to the time 

series of vertical surface deformation data and hydraulic head levels to construct the time-

frequency representation of the signal. The elastic components are then isolated from the 

inelastic trend. The availability of elastic and inelastic components at selected period 

durations allows for the estimation of mechanical properties of the aquifer system, including, 

the elastic storage coefficient, the inelastic skeletal storage coefficient, and the compaction 

time constant [Hoffmann et al., 2003a; Wang and Kümpel, 2003]. These parameters are 

important for groundwater management, modeling, and effective urban planning.  
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2.2. Data, Methods, and Results 

2.2.1 InSAR Time Series Methods 

With broad spatial coverage and frequent repeat intervals, InSAR is well suited for 

studying land subsidence. To measure the time-dependent surface deformation across the 

Phoenix valley, a multitemporal SAR interferometric approach, the Wavelet-Based InSAR 

(WabInSAR) algorithm is implemented [Shirzaei, 2013; Shirzaei and Bürgmann, 2013]. A large 

set of SAR images acquired from similar radar viewing geometry are precisely co-registered 

to the same master image. WabInSAR generates a large set of interferograms with respect to 

predefined perpendicular and temporal baseline thresholds. The flat earth effect and 

topography are removed using a reference digital elevation model and satellite ephemeris 

data [Franchioni and Lanari, 1999]. The algorithm then applies a statistical framework for 

identifying elite (i.e. less noisy) pixels based on the complex phase noise that is estimated 

using wavelet analysis of the interferometric dataset. WabInSAR then implements a variety 

of wavelet-based filters for correcting the effects of topography correlated atmospheric delay 

[Shirzaei and Bürgmann, 2012] and orbital errors [Shirzaei and Walter, 2011]. Through a 

reweighted least square approach, WabInSAR inverts the interferometric data set and 

generates a uniform time series of the line-of-sight (LOS) surface deformation and uses 

these values to fit a linear velocity. The effect of the temporally uncorrelated atmospheric 

delay is then removed using a high pass filter. The WabInSAR algorithm is thoroughly tested 

and validated in a variety of settings for measuring deformation associated with volcanic 

[Shirzaei et al., 2013a] and faulting processes [Shirzaei and Bürgmann, 2013]. WabInSAR is 

applied to ascending and two descending tracks of the C-band ERS and Envisat satellites, 

spanning periods 1992-1996 and 2003-2010, respectively. ERS satellites acquired data until 

2010, however, some of the scenes acquired following 1996 do not cover the entire study 
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area. Commonly, InSAR deformation estimates are validated by independent data, such as 

GPS. Due to the unavailability of GPS data coinciding with InSAR, in this chapter, the 

redundancy of measurements between the four datasets: ERS and Envisat, ascending and 

descending tracks, which show similar velocities and deformation patterns are presented for 

validation. 

 In areas with overlapping spatiotemporal Envisat coverage, multi-track acquisition 

geometries are used to reconstruct deformation in two dimensions and improve the 

temporal resolution of the datasets.  Combined processing techniques cannot be 

implemented for ERS due to fewer acquisitions, long temporal baselines, and large gaps. 

Furthermore, there is less spatial overlap between ERS track footprints, resulting in limited 

coverage of the west and north features. Therefore, the Envisat time series is decomposed 

into vertical and horizontal (east-west) deformation fields by jointly inverting the LOS 

deformation time series obtained from ascending and descending tracks [Samsonov and 

d’Oreye, 2012]. First, co-located unique, elite pixels are identified by resampling the 

descending track onto the ascending track by the nearest pixel, provided the distance is also 

less than a ground pixel resolution (~100 m). The previously estimated LOS displacement 

time series, velocity, and variance of each track for each pixel are used going forward. To 

estimate the uncertainty of the obtained vertical and horizontal components, the concept of 

error propagation is employed [Mikhail et al., 1978]. Given the 3D displacement field (𝑑𝑥, 

𝑑𝑦, 𝑑𝑧), the LOS displacement is defined as; 

𝐿𝑂𝑆 = 𝑆𝑥𝑑𝑥 + 𝑆𝑦𝑑𝑦 + 𝑆𝑧𝑑𝑧,        

𝑆𝑥 = −sin(𝜃) ∗ sin(∝  −270°) 

𝑆𝑦 = −sin(𝜃) ∗ cos(∝  −270°) 
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𝑆𝑧 = cos(𝜃)        (2.1) 

Where, 𝑆𝑥, 𝑆𝑦, and 𝑆𝑧 are LOS unit vectors that are a function of the heading angle 𝛼 and 

incidence angle 𝜃 (for angle values, see Table 2.1), projecting the 3D displacement field onto 

LOS direction [Hanssen, 2001]. An assumption must be made that the contribution of the 

north-south component of the deformation is negligible. This is a valid assumption, owing 

to the polar orbit of the SAR satellites and that the nature of the investigated signal is 

dominantly vertical. This simplifies the mathematical relations linking ascending 𝐿𝑂𝑆𝐴 and 

descending 𝐿𝑂𝑆𝐷 observations with directional displacement to; 

𝐿𝑂𝑆𝐴 = 𝑆𝑥𝐴
𝑑𝑥 + 𝑆𝑧𝐴

𝑑𝑧  ,          Ω𝐴 

𝐿𝑂𝑆𝐷 = 𝑆𝑥𝐷
𝑑𝑥 + 𝑆𝑧𝐷

𝑑𝑧  ,        Ω𝐷     (2.2) 

where, Ω represents the observation variance-covariance matrix [Hanssen, 2001]. Given that 

the ascending and descending data are not acquired at the same time, acquisitions are 

interpolated into an evenly spaced time series, which may smooth out fluctuations that 

occurred during that timeframe. To minimize this effect, only acquisitions separated by a few 

days are selected.  Considering Equation (2.2) in a matrix form; 

 

[
𝐿𝑂𝑆𝐴 
𝐿𝑂𝑆𝐷

] =  [
𝑆𝑥𝐴

𝑆𝑧𝐴

𝑆𝑥𝐷
𝑆𝑧𝐷

] [
𝑑𝑥

𝑑𝑧
] ,           𝛀 = [

Ω𝐴

Ω𝐷
]
−1

   

𝑳 = 𝑨𝑿,          𝛀        (2.3) 

where 𝑳 is the estimated LOS displacements, 𝑨 is the design matrix including unit vectors, 𝑿 

is the vector of unknowns, the estimated directional components of the displacement, and 

the variance 𝛀 is estimated by propagating the error from individual interferograms to the 

final time series (see equation 9 in Shirzaei [2013]). The average standard deviation is 
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estimated to be ~5 mm, which is also confirmed through validation against continuous GPS 

data [Shirzaei, 2013]. To calculate the variance covariance matrix of the horizontal and 

vertical components 𝑸; 

𝑸 = (𝑨′𝑷𝑨)−1,  

𝑿 = (𝑨′𝑷𝑨)−1𝑨′𝑷𝑳,  

𝑷 = 𝜎𝑜
2𝛀−1         (2.4) 

where 𝑨′ is the transpose matrix of 𝑨, 𝑷 is the weight matrix, 𝜎𝑜
2 is the primary variance 

factor, assumed to be 1 and is updated following the inversion to obtain the secondary 

variance factor [Mikhail et al., 1978].  

Table 2.1. Phoenix Satellite Information. Ascending and descending ERS and Envisat data  

Satellite 
ERS 

Ascending       Descending 

Envisat 

Ascending        Descending 

Track No. 220 499 449 499 

Heading Angle 350° 192° 350° 192° 

Incidence Angle 23° 23° 23° 23° 

No. of Images 6 12 29 50 

No. of Interferograms 7 25 239 423 

Earliest Image 1992-6-21 1992-7-10 2005-03-25 2004-02-02 

Latest Image 1996-4-10 1996-4-28 2010-10-15 2010-10-18 

 

2.2.2 InSAR Time Series Results 

ERS satellites provide the earliest C-band SAR data from June 1992 to April 1996; 

satellite acquisition geometry, the number of images, and interferograms generated are 

detailed in Table 2.1. Ascending interferograms do not cover the entire study area but 

provide good coverage of the western valley. Figure 2.2a is an example of a wrapped 

interferogram from June 06, 1993 to April 25, 1995. One phase cycle, or fringe, represents 

28 mm displacement in LOS direction. The example contains many noisy pixels due to the 
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Table 2.2. Line-of-sight and Vertical Velocities 

 

 

Figure 2.2 Wrapped Interferograms. (a) Ascending ERS #220 (1993-06-06 to 1995-04-25) 

(b) descending ERS #499 (1996-02-18 to1996-04-28) (c) ascending Envisat #449 (2006-

02-03 to 2007-08-17), and (d) descending Envisat #499 (2004-07-26 to 2006-06-26). One 

color cycle is 28 mm displacement. Increasing phase is motion away from the satellite. 

the long duration between acquisitions, partially obscuring the subsidence feature. Compare 

this to an example from the ERS descending track spanning Feb-18-1996 to Apr-28-1996 

(Figure 2.2b), where there is less noise and clear subsidence in the west valley. The Envisat 

mission provides numerous images of Phoenix, yielding a robust picture of deformation  

 ERS LOS Envisat LOS Envisat 

Zone Ascending Descending Ascending Descending Vertical 

West Valley −1.23 − 1.40 −1.30 − 1.28 -1.39 

North valley − 1.09 − 0.71 − 0.67 − 0.80 0.75 

East valley n/a − 0.18 − 1.81 − 1.56 -1.83 

Zone of uplift 1.01 0.75 0.53 0.61 0.60 
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Figure 2.3. Line of Sight Velocity Maps and Time Series. The magenta circle is the stable 

reference pixel used in InSAR processing. LOS velocities for (a) ERS ascending Track 

220, (b) ERS descending Track 499, (c) Envisat ascending Track 449, and (d) Envisat 

descending Track 499. The LOS displacement time series for Envisat (e) ascending and (f) 

descending are pixels with maximum subsidence or uplift. Location of pixels for time 

series shown in e) and f) are: West Bowl (-112.30, 33.61), North Bowl (-111.94, 33.68), 

East Bowl (-111.60, 33.37), Uplift (-111.83, 33.39). 
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spanning February 2004 to 

October 2010 and details are 

listed in Table 2.1. An ascending 

wrapped interferogram from 

Feb-3-2006 to Aug-17-2007 

(Figure 2.2c) shows clear 

deformation fringes for three 

features labeled West Bowl, 

North Bowl, and East Bowl. A 

descending example from Jul-

26-2004 to Jun-26-2006 (Figure 

2.2d) displays comparable 

deformation patterns. 

 

The estimated velocity 

fields for each dataset are 

compared to verify consistent 

patterns between datasets (Table 

2.2). The ERS velocity fields 

(Figure 2.3a & b) reveal two 

zones of subsidence, labeled West Bowl and North Bowl. The eastern valley, where a known 

subsidence zone is located, is outside of the ERS footprints. Envisat velocities (Table 2.2) 

and deformation feature locations (Figure 2.3c & d) agree well with ERS and capture all 

 

Figure 2.4. Vertical and Horizontal Velocity Maps from 

Combined Envisat Datasets. Displacement time series 

profiles from A-A’ to F-F’ (detailed in Fig. 2.5.) and 

locations of wells referenced in Figs. 2.7, 9, & 10 are 

TS-A to TS-D. 
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three zones of subsidence, including the East Bowl. The LOS subsidence rates in the East 

Bowl are -1.81 cm/yr. from ascending, and -1.56 cm/yr. from descending tracks. 

The locations of subsiding zones in Envisat data agree with those independently identified in 

InSAR by ADWR [Conway, 2013]. The sensitivity of InSAR to vertical motion and the 

similarity of deformation rates for each track lead to the conclusion that the vertical 

component of displacement is dominant [Bürgmann et al., 2000]. The LOS time series at four 

locations (West, North, and East Bowls and Uplift) are detailed in Figure 2.3e & f. There is 

an agreement between the long-term trends at each location in both tracks. 

Envisat datasets are combined (Equation 2.3) to estimate the vertical and horizontal velocity. 

Vertical velocities range from -1.83 cm/yr. subsidence to +0.60 cm/yr. uplift with a standard 

variance of 0.85 mm/yr. The velocity field for elite pixels is displayed in Figure 2.4a & b.  

Vertical velocities are comparable to LOS rates (Table 2.2), as are the feature 

locations (Figure 2.4a). Horizontal velocities range from 0.77 eastward cm/yr. to 0.53 

westward cm/yr. with a standard variance of 0.15 mm/yr. The horizontal velocity field 

(Figure 2.4b) exhibits a nearly valley-wide westward trend, which coincides with the direction 

of groundwater flow in existing groundwater models, except for eastward motion near the 

Uplift zone and complex behavior near the East Bowl. 

Deformation profiles through time are examined for each subsiding feature in the 

valley (locations identified in Figure 2.4). The West Bowl profiles are characterized by steady 

subsidence next to a smaller zone of uplift to the south (Figure 2.5a-d, A-A’ & B-B’). 

Comparatively, the North Bowl profiles feature less cumulative subsidence and are made up 

of discontinuous subsidence bowls (Figure 2.5e-h, profiles C-C’ & D-D’). 
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Figure 2.5: Profiles of InSAR Vertical and Horizontal Displacement Time Series. Profiles 

are marked from A-A’ to F-F’ in Figure 2.4; gaps occur where noise is statistically 

significant throughout the interferograms and the pixel is excluded. 

 

Horizontal displacement along cross-section C-C’ is unique in that the eastern side of 

the transect oscillates, while the western side shows relatively steady eastern motion. The 

East Bowl (Figure 2.5i-l, profiles E-E’ & F-F’) is asymmetric with a steep vertical subsidence 
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progression next to a relatively stable area in the northwest section of the feature. Horizontal 

displacement also shows interesting patterns from F-F’, with westward motion to the north 

and south and eastward motion in the center. Hypotheses for this observed behavior, 

including various possible aquifer system heterogeneities and structural controls, are 

discussed in Section 2.6.  

 

2.2.3 Hydraulic Head Level Time Series 

Hydraulic head levels from observation wells provide direct measurements of the 

fluid pressure at depth. Pumping, recharge, intra-basin transfer, and stress affect 

groundwater levels and changes can take place over a range of time scales [Galloway and 

Burbey, 2011]. Challenges can arise with these observations; they may only represent nearby 

conditions, may be affected by proximate pumping, or represent multiple aquifer-aquitard 

units. The Groundwater Site Inventory (GWSI) Database maintained by ADWR provides 

observation well locations, measurements, and information on well status. ADWR wells with 

three or more measurements coinciding with the InSAR data time series are identified in 

Figure 2.6 with circles [Davis et al., 2014]. Observation wells previously used by the USGS to 

identify regional groundwater level trends [Tillman and Leake, 2010], that also have 25 or 

more measurements coinciding with Envisat are identified in Figure 2.6 with boxes. In the 

Phoenix metropolitan area, 33 wells were suitable for CWT time series analysis using the 

chosen methodology described in Section 2.2.4. These wells are scattered around the valley 

and not necessarily located near zones of maximum subsidence or uplift.  
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Figure 2.6.  

Hydraulic Head 

Levels. Colored 

boxes and dots 

show the average 

yearly change in 

hydraulic head levels 

from 2003-2012. 

Boxes are wells used 

in time series 

analysis.  

To examine head level data in conjunction with InSAR vertical displacement data, a 

group of pixels is selected coinciding with observation well locations. Examples of this 

comparison are shown in Figure 2.7, and the locations of the sites are shown with the prefix 

TS- in Figure 2.4. For wells near the west valley subsidence feature (Figure 2.7a & b, TS-A & 

TS-B), head levels trend upward from 2003 to 2012 by tens of meters, in contrast to ongoing 

subsidence. As discussed in Section 2.3-4, this deformation behavior is likely due to the slow 

draining of aquitard lenses. A different trend is observed in wells located near the uplifting 

zone (Figure 2.7c & d, TS-C & TS-D), where there is a correlation between increasing head 

levels and uplift. This contrast suggests there are significant heterogeneities throughout the 

valley in the spatial distribution of aquifer and aquitard units. Where interesting deformation 

patterns occur in the east valley, there are no nearby observation wells with sufficient data to 

form a time series. 
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Figure 2.7. Deformation Near Wells. The difference from the mean value for each dataset: 

hydraulic head level time series, ∆h, and nearby pixels of the vertical InSAR time series, 

∆b. Locations of pixels/wells are indicated in Figure 2.4.  Note that observation wells 

record increasing hydraulic heads both in proximity to subsidence features (TS-A & TS-B) 

and the uplift zone (TS-C & TS-D).  

  

Residual compaction of slow draining aquitard layers and the effect of poroelastic 

rebound can both be characterized by modeling vertical deformation as an exponential 

function of time [K. Terzaghi, 1925; Buisman, 1936; Chaussard et al., 2014]. To test if this 

delayed behavior is present in vertical deformation time series, the following equation is 

used;  

∆𝑏 = 𝑀(𝑒(𝐵𝑡)-1)        (2.5) 
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Where ∆𝑏 is the vertical 

deformation time series, 

𝑀 is the coefficient 

representing the 

magnitude of aquifer 

response (subsidence 

𝑀>0, uplift 𝑀<0), 𝐵 is 

the coefficient of decay 

[-1,0], and t is the time 

of the observations. The 

coefficients are 

estimated using a genetic 

algorithm, which is a 

random, iterative 

optimization technique 

based on the principles 

of natural selection [Haupt and Haupt, 2004; Shirzaei and Walter, 2009] to identify the optimum 

𝑀 and 𝐵. Equation (2.5) is defined as the cost function. Next, an initial population is 

generated, and through random operations such as pairing and mutation, the algorithm 

minimizes the cost function and eventually, converges to a set of coefficients. Next, a chi-

squares test is performed to include only those pixels where the fit passes at the 95% 

confidence level (Figure 2.8a). Examples of this analysis are shown for the west valley and 

the uplift zone (Figure 2.8b & c). Higher decay coefficient values are found in and near 

 
Figure 2.8. Residual Compaction. Decay coefficients are 

estimated for each pixel, ∆b, using a genetic algorithm that 

passes the chi-squares 95% test. Examples of this relationship 

are shown for the (b) west valley and the uplift zone (c). 
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subsidence features and lower values characterize the uplift zone. However, delayed 

compaction and poroelastic rebound do not exhibit strong exponential behavior. It is 

possible that the observation period is not long enough, or the aquifer system response to 

changes in pore pressure is not at a delayed stage. In future work, a poroelastic model will be 

used in conjunction with a longer observation period to further explore this relationship.   

 

2.2.4 Signal Decomposition via Wavelet Transform 

 Decomposition of a time series into short-term, elastic and long-term, inelastic 

components are necessary to synthesize deformation and hydraulic head data to estimate 

aquifer parameters. Earlier studies have applied principal component analysis (PCA), to 

separate seasonal and long-term components of surface deformation and hydraulic head 

level changes [Chaussard et al., 2014]. Despite its advantages for signal decomposition, PCA 

does not provide a significant spectral resolution suitable for dealing with signals of low 

amplitude [Rencher, 2002].  The Fourier transform of the time series signal will identify 

relevant frequencies, yet does not describe when it occurs in the series. A windowed Fourier 

transform can provide the time-frequency representation, but the selection of a window size 

limits the resolution of either the time or frequency components.  

 To overcome these limitations, continuous wavelet transform (CWT) is applied.  

CWT offers a time-frequency representation of the time series signal. With this method, the 

CWT of a time series, 𝑋(𝑛) =  {𝑥𝑛}𝑛=1…𝑁, which in this study is the InSAR and hydraulic 

head level time series, along with time step, 𝛿𝑡, can be defined via convolution with a scaled 

and normalized wavelet function, 𝜓𝑜, as follows [Christopher Torrence, 1998]; 

𝑊(𝑎, 𝑛) =  𝜓𝑇(𝑛, 𝑎)∗ 𝑋(𝑛)                                                               (2.6) 
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𝜓(𝑛, 𝑎) =  (
𝛿𝑡

𝑎
)
1/2

𝜓𝑜 (
𝑛𝛿𝑡

𝑎
) 

Where 𝑎 is a scaling parameter, T is the complex conjugate, and * is the convolution operator. 

The time resolution increases with a decreasing scale size, while the frequency resolution 

decreases with a decreasing scale size. CWT can be evaluated using the convolution theorem 

in the Fourier domain [Christopher Torrence, 1998].  The global wavelet spectrum, 𝐺, at scale 𝑎 

is defined as; 

𝐺(𝑎) =  
1

𝑁
∑ (𝑊(𝑎, 𝑛))2𝑁

𝑛=1        (2.7)      

Using linear algebra, Equation (6) can be re-written in the following form; 

𝑊(𝑎, 𝑛) =  Ψ(𝑛, 𝑎)𝑋(𝑛)       (2.8) 

Where Ψ is a 𝑛 x 𝑛 circulant matrix, 𝜓 is the first row of Ψ and each row vector is rotated by 

one element forward relative to the preceding one. Here, the derivative of a Gaussian (DOG) 

wavelet function is used with degree 𝑚, which is dependent on a non-dimensional time 

parameter 𝜂 and is defined as follows: 

𝜓𝑜(𝜂) =  
(−1)𝑚+1

√Γ(𝑚+
1

2
)

𝑑𝑚

𝑑𝜂𝑚 (𝑒−
𝜂2

2 )      (2.9) 

Providing a high spectral resolution suitable to identify high frequency, m=30, low amplitude 

signals within the time series. Since the time series are padded with zeroes, a cone of influence 

(COI) needs to be defined to identify the region of the wavelet spectrum, which is affected 

significantly by the edge effect. To identify these areas, an e-folding time (√2𝑎) is used for the 

autocorrelation of the wavelet spectrum at each scale [Christopher Torrence, 1998]. This selection 

assures that the wavelet spectrum for the discontinuity at the edge drops by a factor of 𝑒−2 

and thus the edge effects are negligible beyond this point.  
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Recently wavelets have been applied to a variety of SAR applications for data analysis 

and interpretation. This includes precise orbital error correction [Shirzaei and Walter, 2011], 

topography correlated atmospheric delay reduction [Shirzaei and Bürgmann, 2012], differential 

interferogram inversion and time series generation [Hetland et al., 2012], a new approach for 

multitemporal InSAR analysis [Shirzaei and Bürgmann, 2013], and analysing dense InSAR time 

series to extract components due to aseismic faulting processes [Shirzaei et al., 2013a]. CWT 

avoids data shrinkage and provides a large spectral resolution suitable for extracting non-

stationary signal components with small amplitude [Christopher Torrence, 1998]. One 

consideration before implementing CWT is to ensure the time steps are consistent when 

comparing different datasets. Hydraulic head levels are interpolated in this study to coincide 

with the previously generated InSAR time series.  Another step before decomposing the 

signal is to remove the long-term trend from both the InSAR and hydraulic head level time 

series. Next, the wavelet power spectrum is generated for the vertical and horizontal 

components of InSAR and the hydraulic head level time series. In the vertical InSAR and 

hydraulic head time series, the short-term component is isolated by the period range between 

0.5 to 1 years. Periods less than a half year are unreliable due to the repeat interval of satellite 

data and the assumption that a physical deformation in response to pore pressure change is 

delayed.  

This range is reconstructed into a time series including short-term components 

reflecting recoverable, elastic deformation and seasonal variations of the hydraulic head 

levels. This reconstructed short-term signal is subtracted from the original time series to 

identify the remaining long-term signal components, which are akin to inelastic, 

irrecoverable compaction and multi-year trends in the water table level. 
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Figure 2.9. Wavelet Power Spectra for Vertical InSAR and Well Levels. (a-h) Contours are 

coefficient amplitudes. Grey background is period [0.5–1] yr. The black curve is COI.  
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Separating the short-term and long-term signal components in vertical InSAR and 

hydraulic head level time series is needed to estimate aquifer system parameters. The wavelet 

power spectrum (WPS) shows the distribution of a frequency component with respect to the 

time and is shown for selected InSAR pixels and observation wells in Figure 2.9. Each WPS 

contains a black curve, the Cone of Influence (COI) that marks the boundary of where 

signal decomposition is influenced significantly by edge effects. Since the time series is 

padded with zeroes in CWT, regions outside the COI are not reliable and are identified with 

a grid pattern. The West Bowl (Figure 2.9a) and East Bowl (Figure 2.9c) have high rates of 

subsidence and less short-term periodicity than the north valley (Figure 2.9b) or the uplift 

zone (Figure 2.9d). Overall, the vertical InSAR WPS are lower in amplitude than the 

hydraulic head WPS, which varies by data type and the strength of the seasonal response. 

Each observation well WPS (Figure 2.9e-h) contains a significantly short period signal [0.5–1 

yr.], but the amplitude varies between the wells. Wells TS-A and TS-B are located adjacent 

to, yet on opposite sides of, the west valley subsidence feature; TS-B has a higher amplitude 

signal than TS-A. Well TS-D (Figure 2.9h) is in the uplift zone and shows the strongest 

amplitude signal component; this is in stark contrast to TS-C, which is west of the eastern 

subsidence feature and features weaker amplitude. Long-term trends, which have low 

frequency and are outside of the COI, are better observed upon time series reconstruction.  

After WPS formation, shorter periods from [0.5-1] year are isolated and 

reconstructed into a separate, seasonal time series (∆𝑏𝑝, ∆ℎ𝑝). The remainder (∆𝑏𝑙, ∆ℎ𝑙) is 

dominated by long-term components (Figure 2.10). The results of wavelet analysis are used 

as inputs to the equations detailed in Section 2.3-4 to determine the elastic storage 

coefficients, inelastic skeletal storage coefficients, and the compaction time constants. 
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Figure 2.10.  

Original, Seasonal, 

and Long-term Time 

Series. Raw time 

series for (a) vertical 

InSAR, ∆b, and (b) 

for hydraulic heads, 

∆h. Isolated seasonal 

time series (period 0.5 

to 1 year), which are 

elastic signal 

components for (c) 

InSAR, ∆bp, and (d) 

heads ∆hp. First and 

last years are excluded 

to minimize edge 

effects. The 

remaining signal 

components for (e) 

InSAR, ∆bl, and (f) 

heads ∆hl represent 

inelastic signal 

components. 

2.3 Aquifer Parameter Estimation 

Aquifer and aquitard behaviors are described by several parameters, including the 

elastic storage coefficient, 𝑆, the inelastic skeletal storage coefficient, 𝑆𝑠𝑘, and the 

compaction time constants, 𝜏. These parameters detail the poroelastic response of aquifer 

systems to changes in pressure as the water table changes [Skopp, 1999]. These parameters 

can be calculated in laboratory experiments, or derived from known intra-parameter 

relationships and observations. In this section, a brief description of each parameter is 

provided along with the methodological framework used for estimating these parameters. 



  30 

The dimensionless elastic storage coefficient 𝑆, or elastic storativity, represents the 

volume of fluid released or absorbed, per change in the hydraulic head level of an aquifer 

system area, provided head fluctuations remain above the previous lowest level. For semi-

confined aquifer systems, elastic storativity is given by [Green and Wang, 1990; D.M. et al., 

2011]; 

𝑆𝑘 = 𝑆𝑆𝑏 + 𝑆𝑔        (2.10) 

where, 𝑆𝑆 is the average elastic specific storage, 𝑏 is the cumulative thickness of the saturated 

confined/confining layers, and 𝑆𝑔 is specific yield of the saturated, unconfined layers. 

Specific yield is the volume of fluid that drains from an aquifer volume due to gravitational 

effects. There is also a component of elastic storage attributed to elastic deformation of 

aquitard layers before breaching the preconsolidation stress threshold. However, the 

magnitude is small compared to the aquifer unit contributions [Galloway and Burbey, 2011]. 

Elastic storativity for an aquifer system can be estimated from short-term vertical surface 

deformation data, ∆𝑏𝑝, which is assumed to equal the change in aquifer system thickness, 

plus hydraulic head levels ∆ℎ𝑝 [Riley, 1969]; 

∆𝑏𝑝 = 𝑆𝑘𝑒∆ℎ𝑝        (2.11)    

𝑆𝑘𝑒 is solved for without distinguishing between 𝑆𝑆 and 𝑆𝑦, as the thicknesses of the 

unconfined and confined aquifer units require additional data to resolve.  

 Elastic storativity 𝑆𝑘𝑒 is the volume of water that an aquifer unit area absorbs or 

discharges per change in hydraulic head. It is estimated by comparing the reconstructed 

vertical InSAR periodic time series ∆𝑏𝑝 with the reconstructed hydraulic head level periodic 

time series ∆ℎ𝑝 using the linear relationship described in Equation (2.11). InSAR provides a 

spatially dense dataset compared to the sparsely located wells. To provide adequate coverage  
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of areas with InSAR data, the hydraulic head data is spatially interpolated using inverse 

distance for wells <40 km apart in each sub-basin. This distance was selected assuming that 

lateral changes in unit thicknesses and hydraulic properties are gradual. Inter-basin transfer is 

assumed to be negligible and the sub-basins act as independent hydraulic units.  

The result provides good coverage of the west and north subsiding zones and the 

uplift zone not the east valley (Figure 2.11). Elastic storativity values in the WSRV range 

between 5.0x10-6 to 4.9x10-3, and in the ESRV between 5.0x10-6 to 3.8x10-3 with error 

estimates of 1.3x10-6. The upper bound of 𝑆𝑘𝑒 for the WSRV basin is larger than that of the 

ESRV. The deeper WRSV basin contains a thicker middle basin-fill unit of interbedded 

sands and fine-grained clays. Since the calculation is for the whole aquifer system column, a 

thicker middle unit in the WSRV contributes a greater percentage to the column average, 

accounting for the greater range. The elastic storage coefficient can be used to estimate how 

much water can be pumped without causing permanent deformation.  

 

Figure 2.11.  

Aquifer Parameters. 

Elastic storativity 

identified with the 

colormap. Inelastic 

skeletal storativity, 

𝑆𝑠𝑘, and compaction 

time constant, 𝜏, are 

shown for features 

where solvable.  
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 The dimensionless inelastic skeletal storage coefficient, 𝑆𝑆𝑘, describes the volume of 

fluid expelled due to the permanent compaction of an aquitard volume. This occurs when 

drawdown surpasses the previous lowest level and the preconsolidation stress of an aquifer 

system is overcome. Residual compaction can occur even after head levels have recovered 

from prior lows due to the delayed equilibration of aquitard head levels with the neighboring 

aquifers. The delay can take place many years after hydraulic heads have recovered and is 

described by the compaction time constant, 𝜏. While elastic deformation is reversible, 

compaction is irreversible and has a greater magnitude. For cumulative aquitards layers in an 

aquifer volume, 𝑆𝑆𝑘 and 𝜏 are found with the following relation [Hoffmann et al., 2003b, 

2003a];  

∆𝑏𝑙

 ∆ℎ𝑙
= 𝑆𝑠𝑘 (1 − 

8

𝜋2) e−
𝜋2𝑡

4𝜏                                                                   (2.12) 

Where ∆𝑏𝑙 and ∆ℎ𝑙 are the inelastic, long-term vertical surface deformation and hydraulic 

head level time series. Together 𝑆, 𝑆𝑆𝑘, and 𝜏 describe the storage response of an aquifer 

system volume to changes in hydraulic head level as the surface deforms. These parameters 

are found using a genetic algorithm to solve Equation 2.12, inputting the average long-term 

component of the hydraulic head ∆ℎ𝑙 and vertical InSAR time series ∆𝑏𝑙. The coefficients 

for the north valley feature are: 𝑆𝑠𝑘 = 1.19x10−2 with a standard deviation of 2.4x10−3 

and a compaction time constant 43.4 years and 1-sigma confidence interval of [33.1, 53.6]. 

For the west valley, the inelastic skeletal storage coefficient is 𝑆𝑠𝑘 = 4.46x10−2 with a 

standard deviation of 7.0x10−3. The compaction time constant could not be resolved for 

this feature, partly due to ongoing recovery of the aquifer.  
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2.4 Aquifer System Characterizations 

 Estimating aquifer parameters from geodetic and hydraulic head level data is an 

approach that has promise for groundwater modeling. The techniques used in this study can 

independently verify and improve the spatial distribution and value of conventional 

MODFLOW input parameters. The distribution of aquifer and interbedded aquitard lenses 

affects the pattern and mechanics of surface deformation. By estimating the elastic storage 

coefficients, inelastic storage coefficients and compaction time constants, unit 

heterogeneities can be identified within and between sub-basins.  

 The spatial distribution of data can limit estimates, as both hydraulic head levels and 

deformation data are needed to calculate aquifer system parameters. An example is the 

scarcity of observation wells with sufficient measurements within or near deformation zones. 

Even after hydraulic head levels are spatially interpolated, the east valley feature does not 

have sufficient data to compare with InSAR for elastic storativity estimates (Figure 2.11). 

Assumptions are made when interpolating sparse points to compare CWT spectra trends 

with broad deformation data. A gradual gradient of the hydraulic head surface is assumed, 

which may not be representative of all the aquifer system. Also, spatial interpolation of 

observation wells is limited to the sub-basin in which they are located. Inter-basin flow is 

known to occur, but the transfer extent or the effect on hydraulic head levels near the 

boundaries are unable to be resolved at this stage of research. Another consideration is the 

depth of observation wells, which may not represent the pore pressure conditions in layers 

that dominate deformation of the aquifer system. 

 The elastic storage coefficient is estimated for broad areas of each sub-basin and is 

assumed to incorporate elastic behavior of both aquifer and aquitard units. Short-term 

signals are estimated through wavelet analysis in many vertical InSAR pixels and hydraulic 
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head levels, allowing the elastic coefficient to be estimated on a broader scale than the 

inelastic skeletal storage coefficient. Long-term trends are estimated by subtracting the short-

term signal from the original time series and fewer wells are in proximity to deformation 

zones. The inelastic skeletal storage coefficient is estimated for each subsidence bowl with a 

detectable long-term subsidence trend and nearby observation well data. A value for the East 

Bowl could not be estimated, as the nearest observation wells were too far away to 

reasonably represent the feature for this analysis. Within the subsidence bowls, calculation of 

compaction time constants is attempted, but given that aquifers are still recovering and the 

low density of the observation wells, the constant could only be resolved for the north valley 

feature (Figure 2.11). In future works, using estimated unit thicknesses and hydraulic 

conductivities, it may be possible to calculate the compaction time constant for all features. 

This additional data will also specify the vertical distribution of fine-grained interbeds.  

 

2.5 Uplift and Recharge 

 The broad uplifting zone in the ESRV is characterized by a concurrent increase in 

hydraulic head levels, which stems from active groundwater management by ADWR. This 

region has 19 underground storage facilities (USF) managed by ADWR to promote the 

recovery of the water table. These USF are projected to steadily increase artificial recharge to 

ESRV aquifer systems from 2.07𝑥108 m3/yr. in 2005 to 2.54𝑥108 m3/yr. by 2030 [Hipke, 

2007]. The total amount of recharge is estimated annually by combining USF, agricultural, 

and incidental recharge amounts. These estimates are projected into the future by five-year 

increments and compared to similar projections of estimated future pumping rates. Net 

recharge estimates were highest for 2005 with 1.67𝑥108 m3/yr., and decrease each 5-year 
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period through 2020 with an estimated net recharge of 1.73𝑥107 m3/yr. By the 2025 period, 

net pumping rates are estimated to be (1.73𝑥107) m3/yr., then (8.67𝑥107) m3/yr. by 2030 

[Hipke, 2007]. Steady, near linear relationships are observed between hydraulic head levels 

and combined, vertical InSAR data from 2005-2010 in the uplift zone. If the net recharge 

projections are accurate, continued uplift of the system is expected for the next decade, 

followed by subsidence.   

 

2.6 East Valley Deformation Feature 

 The east valley subsidence feature has the highest deformation rates in the valley and 

has persisted for decades. A previous USGS estimate of cumulative subsidence measured 

with repeated leveling surveys between 1933-1980 was 1.58 m [Carpenter, 1987]. Although 

observation well data is lacking in the feature, Envisat ascending and descending coverage 

allow the retrieval of useful information.    

 The east valley subsidence feature comprises a unique horizontal displacement 

pattern during the observation period (Figure 2.12a). The center of the East Bowl moves 

eastward, while the northern and southern edges of the feature trend westward (Figure 

2.12b). Yet there is much agreement in short-term elastic horizontal deformation (0.5-1-year 

periods) between points in the feature (Figure 2.12c). Although the long-term direction of 

displacement of point B is opposite of points A & C in Figure 2.12b, the short-term signal 

components in Figure 2.12c are in the same direction. The horizontal InSAR wavelet power 

spectra display similar period-amplitude patterns throughout the time series (Figure 2.12d-f). 

In each power spectra, amplitudes increase for shorter periods towards the end of the time 

series, regardless of the direction of horizontal motion.  
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 To rule out the possibility that the horizontal deformation pattern is a data artifact 

effect, the uncertainty of the velocity is estimated (1 mm/yr), and the amplitude of the 

observed signal is beyond the estimated error in the data. Then, the temporal duration of the 

ascending and descending datasets is tested as causes to the pattern. To this end, the 

calculation for vertical and horizontal velocities is rerun for the temporally overlapping 

period and where both tracks contain nearly the same number of images. The obtained 

pattern of the horizontal velocities is similar in this analysis and observational errors are not 

the cause. 

 

 

Figure 12. East Valley Deformation. (a) Horizontal velocity of east valley feature atop 

aerial photo imagery with points A, B &C marking locations for detailed analysis. b) 

Horizontal time series for each point. Note that the long-term deformation direction of B 

is opposite of A and C, yet short-term fluctuations appear correlated. c) Reconstructed 

horizontal time series for short-term signal components highlighting the correlation of all 

three points. d-f) Wavelet power spectrum for each point. 
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Several hypothesized models could explain an opposing directional horizontal 

displacement field.  Uneven bedrock topography in the form of a buried impermeable ridge 

can induce horizontal motion away from the element, or conversely, a bedrock depression 

induces motion towards the element. Depending on the size of the topographic anomaly, 

this could also result in differential vertical deformation. The basement topography of the 

valley is known to be uneven. 

 

Figure 2.13. East Valley Feature Analysis. Hypothesized models of opposing horizontal 

displacement and differential compaction by (a) a buried bedrock ridge (b) a bedrock 

depression, (c) a fault scarp, or (d) aquitard heterogeneities. The dashed black line 

represents the original surface elevation before deformation. 

 

An impermeable bedrock layer may have experienced significant erosion before burial, 

leaving a positive or negative topographic feature (Figure 2.13a & b). Another closely related 

model is a buried fault scarp, which causes draping of the overlying aquifer system layers and 

subsequent rotations of the beds in opposite directions (Figure 2.13c) [Sheng et al., 2003]. 
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However, if a bedrock feature significantly contributes to this unique deformation pattern, 

the size and shape of the feature is anomalous. The ADWR groundwater flow model 

recognizes a steep gradient of cumulative layer thicknesses under this deformation pattern 

[Freihoefer et al., 2009], but depth to bedrock information is not available at the scale necessary 

to support a particular model.  

To distinguish between these models, detailed measurement of the depth to bedrock 

under the East Bowl are needed. A third possibility is abrupt, significant differences in 

aquifer and aquitard thicknesses or spatial distribution, causing differential vertical 

compaction (Figure 2.13d). This scenario results in horizontal compression towards the 

higher magnitude compaction zones and horizontal extension where compaction magnitude 

is lower. This hypothesis alone does not adequately explain the anomaly, as elastic 

deformation is highly correlated in the short-term (Figure 12c). If the differences in aquifer 

and aquitard layer thicknesses contributed significantly to the horizontal deformation 

pattern, the elastic response would vary among locations in the area. To determine which 

mechanisms, affect this feature, additional data is needed. 

 

2.7 Summary Conclusion 

 InSAR is useful for examining surface deformation due to groundwater withdrawal 

and recharge in Phoenix, Arizona. ERS and Envisat satellites provided data used to calculate 

LOS velocities and the more robust Envisat data from 2003-2010 was used to form 

ascending and descending time series, which are separated into vertical and horizontal 

components. Continuous wavelet transform provides a powerful tool for signal 

decomposition and extracting short-term, elastic and long-term, inelastic components of a 

time series. Comparing the short-term signal components of hydraulic head and vertical 
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InSAR data allows for the elastic storage coefficient to be estimated across the Phoenix 

Valley. The long-term signal components are suitable to estimate the inelastic skeletal storage 

coefficient for subsidence features with adequate data. Thus, InSAR proves to be an 

effective tool for analysis of land subsidence and uplift in alluvial basins.  

 

This chapter is adapted from: 

M. M. Miller, M. Shirzaei, Spatiotemporal characterization of land subsidence and uplift in 

Phoenix using InSAR time series and wavelet transforms. J. Geophys. Res. Solid Earth. 120, 

5822–5842 (2015). 
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CHAPTER 3: TIME-DEPENDENT VOLUME STRAIN AND SURFACE FISSURING 

IN PHOENIX, ARIZONA 

 

Abstract: Significant hazards associated with land subsidence threaten the environment 

and infrastructure in Phoenix, Arizona. Multitrack Envisat interferometric time series 

chronicles surface deformation caused by aquifer system compaction due to groundwater 

extraction. An inversion is constrained with the line-of-sight displacement time series from 

2004-2010, solving for deforming triangular prism volumes from the surface to a depth of 

900m. Within each prism, volume strain is assumed constant and due only to vertical 

deformation of a horizontal plane, buried in a homogenous, isotropic elastic half-space. The 

model is used to solve for the stress tensor near the surface. The ratio of minimum principal 

stress and tensile strength of the aquifer material is used to identify locations where earth 

fissures are likely to form. Improving our understanding of the source and mechanisms of 

subsidence and the resulting stress regime is important for planning and risk management. 

 

3.1 Introduction and Background 

Understanding the initiation and propagation of earth fissures due to groundwater 

exploitation is essential for hazard mitigation in Phoenix and other heavily populated cities 

atop alluvial aquifers. The fissuring process is directed by movement, subterranean 

structures, and the in-situ stress field [Sheng et al., 2003]. Poroelastic models allow for an 

understanding of the stress regime and can be constrained with geodetic observations of 

surface deformation. In this chapter, time series of InSAR LOS displacements presented in 

Chapter 2, are inverted to solve for the three-dimensional volumetric strain of subsidence 

zones (Figure 3.1a).  This model is then used to solve for the stress field near the surface and 
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following Sheng et al., 2003, the ratio between minor principal stresses and rock tensile 

strength are calculated to identify areas prone to fissuring.  

Existing earth fissures are mapped and described in professional reports [Arizona 

Geological Survey, 2015, 2017] and have been documented in the southwest for decades 

[Galloway et al., 1999]. Maps specifying the presence of earth fissures (Figure 3.1b) indicate 

fissures are threatening urban areas with extensive property and infrastructure. Recall from 

the previous chapter that the Phoenix AMA is divided into sub-basins, ESRV & WSRV, 

which act as distinct, independent hydrologic basins and have similar sediment stratigraphy 

[Freihoefer et al., 2009]. Most aquifer-bearing units are considered semi-confined, with lenses 

of finer-grained material acting as confining layers. Depth to bedrock ranges from a few 

hundred to more than 3000 meters and the basement surface is uneven. Stratigraphy, 

bedrock topography, and anomalous features affect the spatiotemporal evolution of 

deformation and the potential for fissuring. 

 

3.2. Observations and Methods 

3.2.1 InSAR Deformation Time Series 

InSAR is a valuable tool for studying land subsidence because it has broad spatial 

coverage and frequent repeat intervals. In Miller and Shirzaei, [2015], an advanced 

multitemporal InSAR algorithm [Shirzaei, 2013; Shirzaei and Bürgmann, 2013] was applied to 

sets of 38 and 50 images acquired in ascending and descending orbits of Envisat C-band 

satellite, spanning the period of 2-Feb-2004 through 18-Oct-2010. Ascending and 

descending datasets with overlapping spatiotemporal coverage were combined to reconstruct 

a deformation time series in vertical and horizontal dimensions and improve temporal 

resolution. 
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Figure 3.1. Vertical Velocity, Modeling Extent, and Existing Earth Fissures. (a) Phoenix, 

Arizona vertical velocity map formed from overlapping Envisat satellite frames. (b) SAR 

frame extent, model mesh for each subsidence zone, and earth fissures as mapped by 

AZGS. Red polygons outline the ADWR ESRV and WSRV groundwater sub-basins, 

which are distinct hydrologic units. 
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Vertical velocities of subsidence up to 1.83 cm/yr were estimated and three zones of 

subsidence are highlighted, referred to as the West, North, and East ‘Bowls’ (Figure 3.1a). 

Image and signal processing, time series and velocity patterns, and long-term and seasonal 

trends are discussed in detail and the ascending and descending LOS time series obtained in 

this work are used in the following analysis.  

 

3.2.2 Volumetric Strain Inversion Method 

Using a method similar to that of Mossop and Segall [1999], an inversion constrained by 

InSAR displacements is performed to solve for the distribution of volumetric strain caused 

by aquifer compaction due to water extraction. The deforming volume is discretized into 

triangular prisms from the surface to a depth of 900-m with depth intervals of 150-m, with 

an additional interval at 50-m depth to focus on the shallower areas. Within each prism, the 

volume strain is assumed constant and is only due to the prism vertical deformation [Mossop 

and Segall, 1999]. At the center of each prism {Xi, Y𝑖 , Zi}, a horizontal plane is considered to be 

buried in a homogenous isotropic elastic half-space [Okada, 1992]. To solve for volume 

strain, 𝑢𝑖(Xi, Y𝑖 , Zi), i = 1,2, . . , m, associated with each plane, the Okada [1992] Green’s 

functions are modified. Given LOS surface deformation time series, L = [L1, L2, … , Ln]
T, the 

following system of equations are solved: 

[
 
 
 
L1.
.
.

Ln]
 
 
 

= [G1 … Gm] [

𝑢1.
.
.

𝑢𝑚

] + [

r1.
.
.
rn

]    ,  𝑃 = 𝑆0
2𝐶𝐿𝐿

−1      (3.1) 

where, G includes the elastic Green’s functions scaled by the thickness of prism and the 

LOS unit vectors, 𝑟 = [𝑟1 … , 𝑟𝑛]𝑇 is the observation residual and 𝐶𝐿𝐿
−1 is a diagonal matrix 

including the variance of LOS displacements. The variance is estimated during 



  44 

multitemporal interferometric analysis and is on average less than 5 mm. The variance-

covariance matrix 𝑄 of the volume strain can be obtained as; 

𝑄 = 𝑆0
2(𝐺𝑇𝑃𝐺)−1                                                                                   (3.2)  

where, 𝑆0
2 is the primary variance factor and usually assumed to be 1 [Mikhail et al., 1978]. To 

avoid the unrealistic variations of the volume strain, its second derivative is minimized 

[Harris and Segall, 1987]. Availability of the time series of LOS displacement in ascending and 

descending tracks allows us to obtain time-dependent models of volume strain for each 

track.  

Assuming {𝑢0
1, … , 𝑢𝑁1

1 } and {𝑠0
21

, … , 𝑠𝑁1

21
} are the volume strain time series and the 

associated variance of an arbitrary prism in the first data set, respectively, and {𝑢0
2, … , 𝑢𝑁2

2 } 

and {𝑠0
21

, … , 𝑠𝑁2

21
} are the corresponding time series and variance of the same prism in the 

second data set, 𝑁1 and 𝑁2 are the number of images in ascending and descending data sets. 

A Kalman filter structure is used  to combine these two data sets and generate a seamless 

map of the volumetric strain {𝑦0, 𝑦1, … , 𝑦𝑁1+𝑁2
}, that includes both ascending and 

descending results [Grewal and Andrews, 2001]. The dynamics model is in the form of; 

𝑦𝑘 = 𝑦𝑘−1 + 𝑣𝑘,𝑘−1𝑡𝑘,𝑘−1 + 𝑤𝑘−1                                                     (3.3) 

where, 𝑣𝑘,𝑘−1 and 𝑡𝑘,𝑘−1 are the linear velocity and time difference between time 𝑘 and 𝑘 −

1, and 𝑤𝑘−1 is the system noise. The measurement model is given by; 

𝑦𝑘1
= 𝑢𝑘1

1 + 휀1 

𝑦𝑘2
= 𝑢𝑘2

2 + 𝑐 + 휀2                                                                            (3.4) 

Where 𝑘1 and 𝑘2 refer to the acquisition time of the ascending and descending data sets, 

respectively, 𝑐 is the constant shift between the temporal mean value of the ascending and 
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descending data sets with an initial value of ∑ 𝑢𝑖
1𝑁1

𝑖=0 − ∑ 𝑢𝑖
2𝑁2

𝑖=0 , and 휀 is the measurement 

noise. The system of Equations (3.3) and (3.4) is solved subject to the constraint; 

1
𝑁1

⁄ ∑ 𝑦𝑘1

𝑁1
𝑘1=0 = 1

𝑁2
⁄ ∑ 𝑦𝑘2

𝑁2
𝑘2=0                                                      (3.5) 

To obtain initial values used in the Equations (3.3-5), the volumetric strain and 

variance time series of one track is interpolated on the other. Given the 𝑢𝑎 and 𝑠𝑎
2 volume 

strain and associated variance at time 𝑡𝑎, and 𝑢𝑏 and 𝑠𝑏
2 respected values at time 𝑡𝑏, the 

interpolated volume strain and variance at time 𝑡𝑐 is obtained by; 

𝑢𝑐 =
𝑡𝑐−𝑡𝑎

𝑡𝑏−𝑡𝑎
(𝑢𝑏 − 𝑢𝑎) + 𝑢𝑎  

𝑠𝑐
2 = (

𝑡𝑐−𝑡𝑎

𝑡𝑏−𝑡𝑎
𝑠𝑏)

2 + (
𝑡𝑐−𝑡𝑎

𝑡𝑏−𝑡𝑎
𝑠𝑎)2 + 𝑠𝑎

2                                                   (3.6) 

Note that to apply Equation 3.6, it is not required that 𝑡𝑐 falls between 𝑡𝑎 and 𝑡𝑏. 

Given the observed pattern of surface deformation map (Figure 3.1a), three zones of 

volumetric strain are to be generated on three separate meshes. The West zone mesh is 33 km 

x 25 km divided into scalene triangles with an average horizontal dimension of 1.5 km. The 

North zone valley mesh is 26 km x 20 km divided into scalene triangles with an average 

horizontal dimension of 0.7 km. The East zone mesh is 26 km x 30 km and divided into 

scalene triangles with an average horizontal dimension of 1.6 km. 

 

3.2.3 Synthetic Test  

Before examining real data, a checkerboard test like that of Mossop and Segall [1999], is 

set up to determine if the complex spatial pattern can be recovered. This test is performed 

on the North mesh since it has the finest resolution. Synthetic LOS surface deformation 

observations are projected via forward modeling from a fabricated volumetric strain model  
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displaying a checkerboard pattern with values of either zero or -3x10-5 (Figure 3.2 a&d). The 

synthetic observations are then inverted to solve for recovered volumetric strain (Figure 3.2 

b&e) and forward modeled to project recovered observations. The model has sufficient 

resolution to retrieve major features of volume strain and handle data gaps, when comparing 

 
Figure 3.2. Checkerboard Test (a) using synthetic observations, the (b) recovered model 

and (c) residuals compare the (d) synthetic three-dimensional volumetric strain for forward 

modeling (c) and the recovered model after inversion of synthetic observations. 
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the residuals (Figure 3.2c) between the synthetic and recovered model. However, it is 

important to note the recovered volumetric strain models tend to dull sharp rectangular 

edges. Regardless, subsidence zone deformation patterns are generally curvilinear and the 

impact of dulling using these methods will suffice to proceed with actual observations.  

 

3.3 Time-dependent Volume Strain Results 

To solve for volumetric 

strain using the displacement 

time series, the ideal smoothing 

factor for each subsidence zone 

is identified. The optimal 

lambda 𝜆𝑜𝑝𝑡 is found by 

starting with a range of test 

values, and analyzing tradeoff 

curves (Figure 3.3) of model 

roughness and model misfit for 

each smoothing factor. The 

optimal values (Table 3.1) tend to scale with the size of the model mesh extent. The resulting 

volumetric strain models provide a detailed picture at depth and highlight nuances between 

deformation zones. Parameters for each inversion are listed in Table 3.1.  

First, the West valley feature cumulative LOS observations, model, and residuals are 

presented for the ascending (Figure 3.4a-c) and descending (Figure 3.4d-f) Envisat time 

series. Spatial subsidence patterns are similar between the two perspectives, yet the 

 
Figure 3.3. Tradeoff Curves for Optimal Smoothing. 
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descending track displays a greater amount of vertical displacement, which is likely due to 

the additional 13 months captured in that time series. The models reproduce subsidence 

patterns with minimal residuals; however, misfits attributed to smoothing include less 

subsidence in the center of the zone and a more diffuse pattern around the periphery. The 

three-dimensional volume strain models (Figure 3.4g-h) depict the subterranean distribution. 

Table 3.1. Volumetric Strain Inversion Parameters 

Zone 
# of Triangles Laplacian 

Plane Total λ z/x ratio 

West 924 7392 7 2.7x10-2 

North 1300 10400 3 3.5x10-2 

East 760 6080 5 3.0x10-2 

 

Second, the North Valley feature cumulative LOS observations, model, and residuals 

are presented for the ascending (Figure 3.5a-c) and descending (Figure 3.5d-f) Envisat time 

series. Similarly, to the West Valley, differences between tracks, subsidence patterns, and 

residuals exist. However, the North valley subsidence pattern is discontinuous and patchy. 

Despite these challenges, the model reasonably reproduces the deformation patterns model 

misfit is minimal, while the three-dimensional volume strain models (Figure 3.5g-h) continue 

to depict the complex geometry in the subterranean distribution.  

Third, the East Valley feature cumulative LOS observations, model, and residuals are 

presented for the ascending (Figure 3.6a-c) and descending (Figure 3.6d-f) Envisat time 

series. Deformation rates are greater in this feature compared to the other areas. However, 

the East Valley is not captured in entirety by the descending track, thus the oblong 

subsidence feature is truncated in the southeast. Incidentally, the area with maximum 

displacement is captured by both tracks and the three-dimensional volume strain models 

(Figure 3.6g-h) can depict volumetric strain for this important zone. 
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Figure 3.4) West Valley Cumulative LOS Observations, Model, and Residuals (a-c) for the 

ascending and (d-f) descending Envisat time series and the respective three-dimensional 

strain models (g-h). This encompasses the time period: Feb-2004 to Oct-2010. 
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Figure 3.5) North Valley Cumulative LOS Observations, Model, and Residuals (a-c) for 

the ascending and (d-f) descending Envisat time series and the respective three-

dimensional strain models (g-h). This encompasses the time period: Feb-2004 to Oct-

2010. 
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Figure 3.6) East Valley Cumulative LOS Observations, Model, and Residuals (a-c) for the 

ascending and (d-f) descending Envisat time series and the respective three-dimensional 

strain models (g-h). This encompasses the time period: Feb-2004 to Oct-2010. 
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By combining the ascending and descending derived volumetric strain models, we 

generate time series of strain evolution, spanning 2-Feb-2004 to 18-Oct-2010 (Figure 3.7). 

For each zone, the prism with the maximum compressive strain is outlined in black and the 

corresponding time series at each depth plane are shown.  

 

3.4. Earth Fissures 

Earth fissures can be initiated in aquifer system sediments from shear failure on 

vertical planes [Sheng et al., 2003; Budhu, 2008]. To identify whether a location is prone to 

earth fissuring, the minor principal stress/tensile strength ratio 𝑅, which is the ratio of minor 

principle stress 𝜎3 to the tensile strength 𝜏𝑠 is calculated; 

𝑅 =  
𝜎3

𝜏𝑠
         (3.7) 

We follow the convention that 𝜎1 < 0 is compression and 𝜎1 > 0  is extension. 

Following Hernandez-Marin and Burbey [2010], in estimating tensile strength, an intermediate 

value of tensile strength (𝜏𝑠 = 1 x 105 Pa) is assumed, considering the alluvial material 

contains an amalgamation of various materials from soil (1x104 Pa) to caliche (3.27x106 Pa) 

[Hernandez-Marin and Burbey, 2010; Zhang et al., 2017]. Zhang et al. [2017] asserts that tensile 

strength is typically tens of kilopascals in clayey soils. To determine minor principal stresses 

𝜎3, the volumetric strain model and the displacement gradient tensor derived from 

displacements due to angular dislocations is used to calculate near-surface strain on a new 

observation triangular mesh surface at 1 m depth for the period Feb-2004 to Oct-2010 

[Comninou and Dundurs, 1975]. 

Figure 3.7. (Following page) Cumulative Volumetric Strain Models and Time Series of 

Combined Ascending/Descending Observations (Feb-2004 to Oct-2010) for the West (a-

b), North (c-d), and East (e-f) zones. 
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Strain is converted to a stress tensor using the linear transformation relations of Hook’s Law. 

Characteristic values, or eigenvalues are identified to isolate the maximum and minimum 

stresses on the observation surface and the major and minor principle stresses. When the 

minor principal stress/tensile strength ratio is less than -1, tensile cracks can form [Sheng et 

al., 2003]. Many areas beyond this threshold of R < -1 are towards the perimeter of the 

subsidence zones (Figure 3.8), with patchier concentrations within the deformation zones. 

Since these locations are more prone to fissuring and the next step is to compare these 

locations with mapped earth fissures. Earth fissures are mapped in shapefiles that are 

distributed by the AZGS with releases in 2015 and 2017 

(repository.azgs.az.gov/uri_gin/azgs/dlio/997). Time of fissure discovery is not indicated in 

the files; therefore, fissure formation may have occurred when stress was distributed 

differently. Most fissures are in both 2015 and 2017 files with few exceptions, indicating very 

few new fissures were added during this time. 

The West zone (Figure 9a) has many fissures to the south and west of where R-

values exceed the threshold during the 2004-2010 period.  These fissures may be related to 

deformation prior to 1992, in which 18 feet of subsidence near Luke Air Force Base (AFB) 

is estimated to have taken place [Galloway et al., 1999]. However, many areas we identify as ‘at 

risk’ are in relatively heavily populated areas, such as Peoria and Sun City West. In the North 

zone (Figure 3.8b), only two fissures are mapped, yet the perimeter of all three deformation 

zones are at risk. The East zone is associated with many documented fissures and many 

other areas are at risk (Figure 3.8c). The aquifer system is complex in this area, including 

opposing directional horizontal motion [Miller and Shirzaei, 2015] and clay zones of low 

hydraulic conductivity which are associated with sags in subsidence profiles [Budhu and 

Adiyaman, 2013].  



  55 

 

 

 

Figure 3.8. Minor Principal Stress/Tensile 

Strength Ratio R and Locations of Earth 

Fissures (a) for West, (b) North, (c) and East 

subsidence zones (Feb-2004 to Oct-2010). 

Fissures mapped and reported by AZGS in 

2015 and 2017.  

 

3.5 Concluding Remarks 

The ascending and descending InSAR LOS displacement time series are inverted to 

solve for the three-dimensional volumetric strain of subsidence zones. The model is then 

used to convert strain to a near-surface stress field using Hook’s Law linear transformation. 

Characteristic values, or eigenvalues are identified to isolate the maximum and minimum 

stresses on the observation surface and the major and minor principal stresses. The ratio 

between minor principal stresses and rock tensile strength are calculated to identify areas 

prone to fissuring.  

This study focuses on cumulative displacement and strain from 2004-2010 in 

Phoenix, as well as areas prone to fissuring due to near-surface stresses. If pumping rates 
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increase, or is pumped from different locations, strain and stress patterns can change. As 

new radar imagery becomes available and deformation patterns change, the process should 

be repeated to determine if different or additional areas are at risk for earth fissure 

formation. 

 

This chapter is adapted from a manuscript in preparation for submission  
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CHAPTER 4: AQUIFER MECHANICAL PROPERTIES AND DECELERATED 

COMPACTION IN TUCSON, ARIZONA 

 

Abstract: In recent decades, high groundwater extraction rates, often coincident with periods 

of severe drought, result in the widespread decline of water levels. Overexploitation of 

aquifers also causes land subsidence, which poses a severe threat to infrastructure. Tucson, 

Arizona experiences land subsidence coupled with the depletion of groundwater, a critical 

water resource for the desert city. Long time series of surface deformation and head levels 

are examined to understand the spatiotemporal evolution of land subsidence and its 

implications for aquifer properties. Measurements at extensometer stations indicate rapid 

compaction of fine‐grained material up to 8.5 mm/yr from 1990 to 2005, which results in 

permanent storage volume losses up to 4.1%. The analysis of densely populated sets of 

interferograms generated from Envisat and RadarSAT C band acquisitions yields 

multitemporal maps of surface deformation at unprecedented resolution. These maps reveal 

that subsidence significantly slows by the late 2000s, corresponding with the implementation 

of artificial recharge efforts. Subsequent to groundwater level recovery, a brief 6.6-year 

interval of residual compaction is observed, suggesting a high vertical hydraulic conductivity, 

which is then shown to be up to 9.8x10−4 m/d. The average elastic and inelastic skeletal 

storage coefficients are estimated for the aquifer system to be 3.78x10−3 and 6.01x10−3, 

respectively. Interferometric synthetic aperture radar shows deformation nearly ceases by 

2015, likely reducing hazards associated with Earth fissuring and infrastructure damage. This 

study highlights successful outcomes of water management and conservation plans that 

preserve existing groundwater reserves and increase artificial recharge. 
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4.1 Background 

Over 650,000 people reside in Tucson, which is in the Upper Santa Cruz (USC) 

alluvial basin and bounded by fault-block mountains in southeastern Arizona (Figure 4.1a & 

b). The population is reliant on a semi-confined, unconsolidated aquifer system, which 

supplies much of the community freshwater demand. Land subsidence and earth fissures 

associated with groundwater pumping are well documented in the Tucson Active 

Management Area (TAMA), which includes both the USC and nearby Avra Valley 

sedimentary basins [Anderson, 1988; Evans and Pool, 2000; Carruth et al., 2005; Garcia-Fresca and 

Sharp, 2005; Tillman and Leake, 2010; Galloway and Burbey, 2011; Conway, 2015; Kim et al., 2015]. 

The TAMA was established by the Groundwater Management Act of 1980 in response to 

decades of subsidence and steep declines in well levels. An important task of ADWR 

regarding TAMA is to attain safe-yield by 2025, meaning long-term drawdown volumes 

should equal replenishment volumes [Jacobs and Holway, 2004]. To this end, diverted 

Colorado River water via the Central Arizona Project (CAP) canal is artificially recharging 

aquifers and is a key strategy against drought-related water scarcity [Scanlon et al., 2016]. 

Managed recharge is accomplished with gravity-driven spreading basins and underground 

storage facilities and helps offset groundwater withdrawals and prevents overexploitation. 

[Mason and Bota, 2006]. The groundwater management and conservation challenges facing 

Tucson offer lessons for cities with similar predicaments [Megdal, 2007].  

TAMA basin-fill deposits are up to 3800 meters thick, but most productive wells are 

less than 300 meters, as the water quality declines at greater depths and contains dissolved 

solids [Mason and Bota, 2006]. Valley wide, groundwater flow is typically northward, but 

pumping alters the flow paths and several areas developed perched aquifers as recharge 

pools atop aquitard layers [Hanson, 1989]. The mountains and bedrock of this region are 
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structurally complicated with many instances of metamorphic core complexes above low-

angle décollement faults. The impermeable bedrock basement in the Tucson valley is uneven 

and offset by high-angle normal faults (Figure 1b), which also displaced some of the lower 

basin-fill deposits and may affect compaction patterns [Evans and Pool, 2000].  

 

Figure 4.1. Tucson, Arizona Study Area (a) SAR Satellite footprint polygons and 

observation well sites are equipped with extensometers (b) Generalized hydrogeologic 

cross-section adapted from Mason and Bota, 2006, where productive aquifer system is 

above the blue dotted line (below is brackish water containing more than 500 mg/L of 

dissolved solids). (c) Estimates of clay content percentages in the Fort Lowell adapted 

from Anderson, 1988. 

The heterogeneous aquifer systems of this region are composed of discontinuous, 

interbedded aquifer and aquitard layers [Anderson, 1995]. Aquifer units consist of coarse-

grained water-bearing beds, while aquitard lenses act as less permeable confining layers. The 

distribution and thickness of aquitard clays generally decreases towards the basin edges, but 

the localized variability of interbedded lenses are complex and thus wells in close proximity 

can show differences [Anderson, 1988; Mason and Bota, 2006]. The estimated percentage of 
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fine-grained aquitard material for the Fort Lowell and upper Tinaja Formations (Figure 4.1c 

& d) in the study area ranges from less than 20% to greater than 80% [Anderson, 1988].  

Aquifer system deformation is governed by effective stress, i.e. normal stress minus 

pore pressure, in that elastic deformation occurs when effective stress is beyond a pre-

consolidation stress threshold [K. Terzaghi, 1925; Jacob, 1940; Burbey, 2001b]. On the other 

hand, aquifer system storage capacity is permanently lost if effective stress increases beyond 

pre-consolidation stress causing inelastic deformation. Moreover, changes in effective stress 

can modify aquifer-aquitard hydrological properties [Helm, 1976; Rudolph and Frind, 1991; 

Preisig et al., 2014]. As a part of successful water management effort, water managers and 

policymakers need to know whether groundwater declines will induce permanent, inelastic 

compaction and storage volume loss.  

Recent studies making use of interferometric data and groundwater levels improve 

understanding of the spatiotemporal patterns of deformation and the underlying physical 

processes [Amelung et al., 1999; Bell et al., 2008; Cabral-Cano et al., 2008; Chaussard et al., 2014; 

Reeves et al., 2014; Miller and Shirzaei, 2015; Scanlon et al., 2015; Chen et al., 2016; Smith et al., 

2017].  To begin, the vertical time series of compaction and expansion at monitoring well 

sites equipped with borehole extensometers are examined. This allows for investigation of 

the longer-term behavior of the aquifer system in response to groundwater level declines, yet 

at a lower spatial resolution. Next, high spatiotemporal resolution InSAR data captures 

surface deformation during a period of groundwater level recovery between 2004 and 2015. 

An advanced multitemporal InSAR algorithm is applied to large sets of C-Band SAR images 

acquired by both Envisat and RADARSAT-2 satellites, which operate at a 5.6 cm 

wavelength. For Envisat, the opposing look angle geometries of the ascending and 

descending satellite tracks allows for projecting vertical and east-west directional 
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components. To validate the InSAR, results are compared with GPS and extensometer time 

series. Analysis of the seasonal components of the vertical InSAR displacement time series 

and hydraulic head levels enables the calculation of elastic skeletal storativity, describing the 

amount of fresh water an aquifer system produces without inducing irreversible compaction. 

The long InSAR time series highlights the spatiotemporal evolution of the land subsidence 

and sheds light on the mechanical properties of the aquifer-aquitard system.  

 

4.2. Data and Methods 

4.2.1 Extensometer and Well Data 

The broad spatial extent and imperceptible temporal behavior of land subsidence 

make measurement and monitoring difficult. Since the late 1980’s, the United States 

Geological Survey maintains observation wells equipped with borehole extensometers. 

Figure 4.1 shows the well locations and associated labels. These wells provide measurements 

of groundwater levels with an accuracy of 3 mm (private correspondence USGS) (Figure 4.2) 

at key locations in the city of Tucson [Cunningham and Schalk, 2011]. Several wells, B76, C45, 

D61, WR52, and WR53, exhibit significant long-term declines until the mid-2000s when 

recovery begins coincident with the intensification of artificial recharge efforts. Water levels 

at SC17 and SC30 also reflect this increasing trend, yet did not withstand earlier long-term 

declines.  

Borehole extensometers measure compaction and expansion of vertical thickness 

using a recorder as the land surface moves relative to a anchored plate at the borehole base  

[Hanson, 1989; Evans and Pool, 2000]. Thus, compaction is measured from the surface to the 

anchor platform fixed in less compressible layers and does not measure any compaction 

deeper than the anchor [Hanson, 1989; Carruth et al., 2005]. Extensometer measurements 
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Figure 4.2) Head levels, Compaction, and Recharge. Groundwater levels (cyan) are 

compared to compaction logged by extensometers (red) and artificial recharge volumes 

(blue bars). Site-specific intervals of declining water levels are marked with red lines along 

with the mean compaction rate. The grey shaded areas identify the coinciding Envisat and 

RADARSAT-2 acquisition intervals. 

are accurate to 0.6 mm with a precision of 0.3 ± 0.6 mm ([Anderson et al., 1982] and personal 

communications, Robert Carruth with USGS, 2017). Compaction rates for intervals 

exhibiting long-term water level declines are shown for each extensometer site (Figure 4.2). 

For the five locations with significant persistent drawdowns (B76, C45, D61, WR52, WR52), 

the mean compaction rate is 4.1 mm/yr. and is as high as 8.5 mm/yr. at site B76. However, 

even sites with stable, or increasing long-term hydraulic head levels throughout the 1990s 
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(e.g., SC17 & SC30) exhibit compaction (Figure 4.2). This may be due to sustained residual 

effects of significant drawdowns prior to this study, or perhaps a natural settlement of basin-

fill sediment.  

 

4.2.2. InSAR Datasets 

InSAR observations offer unprecedented spatial resolution to investigate surface 

deformation across the Tucson basin. The so-called Wavelet-Based InSAR (WabInSAR) 

algorithm, an advanced multitemporal InSAR approach [Shirzaei, 2013; Shirzaei and Bürgmann, 

2013], is implemented to analyze multiple sets of SAR images. This includes 24 ascending 

(11-Jan-2004 to 9-May-2010) and 52 descending (14-Feb-2003 to 10-Sept-2010) orbit track 

images of the Envisat satellite, and 23 ascending orbit track images from RADARSAT-2 

satellite from 30-Oct-2010 to 6-Jun-2015. Figure 4.1 shows the footprint of different SAR 

frames as well as flight directions. Using this dataset 681 interferograms are generated with 

spatial and temporal baselines shorter than 300 meters and 3 years, respectively. The effect 

of topography and the flat earth is calculated and removed using a reference digital elevation 

model (DEM) and satellite ephemeris data [Franchioni and Lanari, 1999]. Elite (i.e. less noisy) 

pixels are identified using a statistical framework applied to the noise time series estimated 

through wavelet analysis of the complex phase observations [Shirzaei, 2013]. Additional 

wavelet-based filters are used to adjust for topography correlated atmospheric delay and 

orbital errors; temporally uncorrelated atmospheric delay is removed with a high-pass filter 

[Shirzaei and Walter, 2011; Shirzaei and Bürgmann, 2012]. The algorithm uses a reweighted least 

squares approach to invert the datasets for LOS displacement time series and linear 

velocities with sub-millimeter precision.  
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Figure 4.3. Line of Sight Velocity Maps (a) of ascending Envisat track 177 (heading angle 

350, incidence 23), (b) descending Envisat track 456 (heading angle 192, incidence 23), and 

(c) descending RADARSAT2 (heading angle 348, incidence 28). Dashed white lines are 

velocity contour intervals in mm/yr. 

The ascending Envisat velocity map (Figure 4.3a) is characterized by two distinct 

zones of rapid subsidence to the east and west with LOS rates up to -8.9 mm/yr. for the 

period 11-Jan-2004 to 09-May-2010. A similar pattern occurs in the descending track for the 

period 14-Feb-2003 to 10-Sept-2010, where LOS velocities reach -6.3 mm/yr. (Figure 4.3b). 

This agreement indicates that effect of uncompensated artifacts is negligible and that 

majority of the signal is vertical. The ascending RADARSAT-2 LOS velocity map shows 

subsidence up to -1.5 mm/yr. (Figure 4.3c) calculated from 30-Oct-2010 to 6-Jun-2015. 

Combining Envisat ascending and descending viewing geometries following the 

approach detailed in [Miller and Shirzaei, 2015], the LOS displacement time series and velocity 

fields are decomposed into vertical and east-west directional components. To this end, the 

north-south component of displacement field is considered negligible. Thus, knowing the 

full geometry (i.e., satellite heading and LOS incidence angles) of SAR acquisitions, the 

vertical and east-west displacement fields are calculated. Figures 4.4a & b show the 

corresponding directional components. The map of vertical deformation rate (Figure 4.4a) 
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indicates that the greatest subsidence with a linear rate of -8.2 mm/yr. occurs towards the 

center of the smaller western zone (location marked by magenta triangle in Figure 4.4a). 

The greatest cumulative subsidence of -52.3 mm occurs at the eastern zone (location 

marked by yellow triangle in Figure 4.4a). No obvious patterns of horizontal velocity are 

observed in the east-west direction (Figure 4.4b). Next, patterns of the directional times 

series are examined along a profile (A-A’) that crosscuts the major subsidence zones. Noting 

a steady decline of the land surface in the vertical time series (Figure 4.4c) and an undulation 

in the east-west direction with a negligible long-term trend (Figure 4.4d), the primary 

direction of motion is vertical.  

Table 4.1. Tucson Aquifer Parameters. Depth is for both well and borehole extensometer. 

The inelastic skeletal storage coefficient (𝑆𝑘𝑣) and compaction time constant (𝜏) is for 

periods of steady water level declines at applicable sites identified in Fig. 4.2.  The elastic 

storage coefficient (𝑆𝑘𝑒) and standard deviation are calculated with Envisat seasonal vertical 

displacement and head levels. Uncertainties at a 95% confidence interval. 

 
Observation well / extensometer site 

B76 C45 D61 SC17 SC30 WR52 WR53 

Site 

Depth 

(m) 

270 148 314 245 294 246 314 

Inelastic 

period 

(yr.) 

1994-

2006 

1990-

2004 

1990-

2006 
-- -- 

1990-

2006 

1994-

2005 

𝑆𝑘𝑣 

1.09x10-2 

± 

7.31x10-4 

4.64x10-3 

± 

2.38x10-3 

4.67x10-3 

± 

3.05x10-3 

-- -- 

1.86x10-3 

± 

2.63x10-3 

7.95x10-3 

± 

2.27x10-4 

𝜏 

(yr.) 

 

15.0 ± 3.3 2.7 ± 3.8 5.4 ± 2.4 -- -- 5.1 ± 1.9 5.1 ± 1.2 

𝑆𝑘𝑒 

1.09 x10-5 

± 

7.91x10-6 

5.85 x10-3 

± 

1.14x10-3 

1.00 x10-2 

± 

1.17x10-3 

9.33 x10-4 

± 

2.03x10-4 

4.67 x10-4 

± 

5.11x10-5 

8.05 x10-4 

± 

1.64x10-4 

8.37 x10-3 

± 

1.61x10-3 
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Figure 4.4) Vertical and Horizontal Velocity Maps and Time Series. Envisat imagery from 

Jan-2004 to May-2010 showing (a) vertical and (b) east-west velocity and displacement 

time series along A-A’ (c & d), as well as for RADARSAT-2 (e-f) from Oct-2010 to Jun-

2015. Locations in the western (magenta triangle) and eastern (yellow triangle) subsidence 

zones are detailed in Figure 4.7b. 
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Precluded from considering an east-west component for RADARSAT-2 due to the 

lack of an overlapping descending track, owing to the dominance of the vertical component 

found in Envisat, the horizontal contribution is assumed negligible to the overall signal. The 

vertical component is estimated by scaling the time series using the LOS vertical unit vector. 

The RADARSAT-2 vertical velocity map (Figure 4.4e) exhibits a significantly slower rate 

during the period 30-Oct-2010 to 6-Jun-2015 with a maximum of -1.7 mm/yr. Figure 4.4f 

shows the vertical time series along the profile A-A’ in which a seasonal oscillation is 

modulated on a weak long-term subsidence trend. 

To validate InSAR results, the 3D displacement field is compared at 6 continuous 

GPS stations (locations shown in Figure 4.3). Technical advances in GPS positioning 

associated with data reprocessing [Desai et al., 2011], satellite phase center variation models 

[Schmid et al., 2007, 2010], and solar radiation pressure models [Sibthorpe et al., 2010] have 

dramatically improved vertical accuracy [Argus, 2012]. For example, such advances in vertical 

GPS positioning allow for inferring changes in water as a function of time from solid Earth's 

elastic response to mass loading in California [Argus et al., 2014].  

First, to obtain the vertical displacement time series, GPS satellite orbits and a subset 

of 100 site positions on Earth's surface are determined. These parameters are used to 

determine the positions of hundreds of sites on Earth's surface using the GIPSY-OASIS 

algorithms and precise point positioning method [Zumberge et al., 1997; GIPSY-OASIS, 2016]. 

Elastic deformation due to the solid Earth tide, the ocean tides, and the pole tide are 

removed from the GPS positions. The monthly-averaged GPS vertical displacements 

presented in Figure 4.5 are estimated with respect to the GPS station COT1, which is used 

as a local reference for both InSAR and GPS. Comparing the vertical component of InSAR 

to that of GPS, suggests an overall good agreement between the two independent time series 
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with an average standard deviation of ~3.3 mm. However, only two stations have lengthy 

GPS time series coincident with the Envisat study duration (Figure 4.5). Inopportunely, 

stations are peripherally located outside of subsiding zones, thus exhibiting a seasonal signal 

with an insubstantial long-term trend.  

 

 

Figure 4.5) InSAR 

Comparison with 

GPS. Z-

component of 

monthly GPS 

time series and 

vertical InSAR 

from Envisat and 

RADARSAT-2. 

GPS stations are 

referenced to 

station COT1. 

InSAR marker is 

the average of 

pixels within 250 

meters of GPS 

station and are 

referenced to 

pixels within a 

250-meters of 

COT1. 
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For additional validation, vertical compaction at 7 borehole extensometers is also 

compared to the InSAR vertical displacement time series (locations in Figure 4.1a). 

Extensometer site WR53 is considered as the reference for both datasets to localize the 

reference frame. Although extensometers sites B76 and C45 show more compaction than 

that of InSAR (Figure 4.6) and some phase differences occur at station SC30, there is 

generally good agreement between dataset measurements with an average standard deviation 

of ~3.1 mm. The long-term differences are likely due to measurement scope, as InSAR 

estimates are an average of pixels within a 250-m diameter of the site (pixels are 80 m2) and 

extensometers diameters are less than 16 cm. Moreover, any N-S oriented horizontal motion 

directly affects extensometer measurements but has a negligible effect on InSAR 

observations. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 next page) Comparison of Extensometer and Vertical InSAR Time Series. Both 
referenced to station WR53 and InSAR pixels are referenced to pixels within 250 meters of 
an extensometer site. The standard deviations of the difference between time series are in 
each box. The agreement suggests compaction below extensometer anchor is minimal at 
most sites. 
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4.3 Hydrological Implications 

4.3.1 Aquifer Parameters 

Specific storage of a confined aquifer, 𝑆𝑠, is the amount of water produced as pore 

pressure declines, as the aquifer system compresses, and water expands [Theis, 1935; Jacob, 

1940; Burbey, 2001a];  

𝑆𝑠 = 𝜌𝑤𝑔(𝛼 + 𝑛𝛽)                                            (4.1) 

where, 𝜌𝑤 is the density of water, 𝑔 is gravitational acceleration, 𝛼 is aquifer 

compressibility, 𝛽 is water compressibility, and 𝑛 is porosity. This relates to the principle of 

effective stress, 𝜎′ = 𝜎 − 𝑝, which is equal to the total overburden stress 𝜎 less pore 

pressure 𝑝, and is the foundation of the coupled relationship of changes in hydraulic head 

levels and deformation in one dimension [K. Terzaghi, 1925]. Assuming a constant 

overburden load, ∆𝑝 = −∆𝜎′ = ∆ℎ𝜌𝑤𝑔, where ∆ℎ is the change in hydraulic head [Poland 

and Davis, 1969], aquifer compressibility is given by: 

𝛼 =  −
∆𝑏

∆𝜎′𝑏𝑜
=

∆𝑏

∆ℎ𝜌𝑤𝑔𝑏𝑜
                           (4.2) 

where ∆𝑏 is the compaction and 𝑏𝑜 is initial thickness [Jacob, 1940]. By incorporating 

Equation (2) with Equation (1) and assuming water compressibility is negligible relative to 

aquifer system deformation, the storage coefficient 𝑆𝑘  is defined as:  

𝑆𝑘 = 𝑆𝑠𝑏𝑜 =
∆𝑏

∆ℎ
       (4.3) 

This dimensionless coefficient describes the volume of fluid released from an aquifer 

system area with a change in hydraulic head level. The skeletal storage can be separated into 

elastic 𝑆𝑘𝑒 and inelastic 𝑆𝑘𝑣 skeletal storage coefficients based on whether effective stress is 

greater than a pre-consolidation stress 𝜎𝑚𝑎𝑥
′  threshold [Hoffmann et al., 2003b]: 
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𝑆𝑘 = 𝑆𝑘𝑒 + 𝑆𝑘𝑣   

𝑆𝑘 = {
𝑆𝑘𝑒 for 𝜎′ < 𝜎𝑚𝑎𝑥

′

𝑆𝑘𝑣 for 𝜎′ ≥ 𝜎𝑚𝑎𝑥
′       (4.4) 

Aquifer storativity is likely permanently lost when effective stress increases beyond pre-

consolidation stress and deformation is inelastic, i.e., mostly interbeds compact. The lateral 

distribution of clay lenses and variation in thicknesses are difficult to derive from sparse bore 

logs, yet can contribute to differential subsidence patterns. Thus, determining coefficient 

values in relation to historical deformation and water head levels is a priority for 

understanding and modeling the behavior of aquifer systems. 

The dimensionless elastic skeletal storage coefficient 𝑆𝑘𝑒, an important parameter for 

groundwater flow models [Riley, 1969; Green and Wang, 1990], describes the volume of fluid 

removed or retained as the hydraulic head level fluctuates over an aquifer area without 

causing inelastic deformation. This coefficient represents the elastic behavior of both the 

aquifer and aquitard units [Hoffmann et al., 2001; Liu and Helm, 2008]. To estimate this 

parameter: 

𝑆𝑘𝑒 =
∆𝑏𝑝

∆ℎ𝑝
        (4.5) 

where ∆𝑏𝑃 and ∆ℎ𝑃 are the elastic, seasonal components of the vertical displacement and 

water level time series, respectively.  

To estimate the time series of seasonal vertical displacement ∆𝑏𝑝 and hydraulic head 

level ∆ℎ𝑝, the time-frequency components of the time series are deconstructed via 

continuous wavelet transform following Miller & Shirzaei [2015]. Wavelets allow analyzing 

signals with nonstationary components and are capable of decomposing the signal into its 

building block based on its localized frequency properties [Christopher Torrence, 1998]. 
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Fluctuations occurring within 0.5 to 1-year periods are identified, which are then isolated and 

reconstructed into ∆𝑏𝑝 and ∆ℎ𝑝. This assumption is made to be consistent with the natural 

seasonal recharge/discharge cycle of the aquifer system. Moreover, given the slow 

infiltration rate of the recharged fluid and temporal sampling of the SAR acquisitions being 

1-2 months, shorter periods may not be reliable. Also, regarding hydraulic head and 

extensometer data, signals with shorter periods can be attributed to tidal effects, which need 

to be avoided. The mean range of seasonal vertical displacement is 5.2 mm and the 

maximum range is 11.5 mm for the Envisat period. The range increases during the 

RADARSAT-2 period with a mean range of vertical seasonal displacement of 8.4 mm and a 

maximum range of 17.4 mm. Wavelet analysis is performed on the well level time series 

coinciding with the Envisat period, where the mean range of seasonal water levels is 1.93 m 

and the maximum range of 6.36 m occurs at the well SC30.  

To estimate elastic skeletal storage coefficient and associated uncertainties, a 

constrained least squares algorithm [Mikhail et al., 1978] and an iterative bootstrapping 

scheme are implemented. During the bootstrapping step, the least squares estimation step is 

repeated 500 times, and in each iteration, 80% of the time steps are randomly selected for 

the calculation. This results in a robust statistical estimation and a probability distribution 

function for elastic skeletal storage. The elastic storativity values are calculated for the 

Envisat period and the associated uncertainties in 95% confidence interval, which are 

displayed in Table 2.1, with values ranging from 1.09x10-5 to 1.00x10-2. Using a smooth 

spline interpolation approach, the estimated elastic storage coefficients are interpolated on a 

grid with cell resolution of 5 m (Figure 4.7a). The elastic storage coefficient is generally 

smaller towards the west on the resulting map, which correlates to areas of the basin with 
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higher percentages of fine-grained material (Fig 4.1 c&d). In conjunction with high-

resolution maps of surface deformation obtained from InSAR, availability of such maps 

allows approximating head level changes where well data are not available. Moreover, they 

can be used to inform hydrological models. 

The dimensionless inelastic skeletal storage coefficient describes the volume of fluid 

expelled from cumulative aquitard layers in a compacting aquifer system volume when 

stressed beyond the pre-consolidation stress level [Hoffmann et al., 2003a]. The inelastic 

skeletal storage coefficient can be several orders of magnitude greater than the elastic storage 

coefficient [Burbey, 2001b]. A temporal lag described by a compaction time constant occurs 

due to delayed equilibration of aquitard head levels to neighboring aquifer head levels.  

Ignoring the elastic changes in aquifer compaction and head levels, the following relationship 

can be used [Hoffmann et al., 2003a]; 

∆𝑏𝑙

∆ℎ𝑙
= 𝑆𝑘𝑣 (1 −

8

𝜋2 𝑒
−𝜋2𝑡

4𝜏 )      (4.6) 

where, ∆𝑏𝑙 is the compaction time series, ∆ℎ𝑙 is the long-term head level time series, 𝜏 is the 

compaction time constant, and 𝑆𝑘𝑣 is the inelastic skeletal storage coefficient [Bell et al., 

2008]. These parameters are estimated using a Genetic Algorithm, a nonlinear optimization 

algorithm inspired by the principles of natural selection, where a population of solutions is 

stochastically improved by iteratively comparing fitness to a cost function [Shirzaei and 

Walter, 2009]. To evaluate Equation (4.6), only a subset of extensometer data and associated 

wells are used. First, only sustained periods (~1990-2005) of declining well levels at each 

applicable site (B76, C45, D61, WR52, WR53) are considered, thus excluding wells with 

stable or rising levels (SC17, SC30). Second, these periods with declining well levels are 

below historic lows, thus exceeding the pre-consolidation stress. This assumption is 
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reasonable, given the long-term decline in head levels for the entire period that affected wells 

are monitored in the dataset. Moreover, this approach is tested successfully elsewhere [Bell et 

al., 2008]. The alternative approach would be to use a protracted time series of head levels 

capturing the entire period of pumping activity to establish the historical low as pre-

consolidation level [Smith et al., 2017]. Such an approach, however, requires high resolution 

head level measurements, going back several decades, which are not available. Comparing 

the vertical compaction time series and water level time series, the inelastic storage 

coefficient ranges from 1.86x10-3 to 1.09x10-2, and the compaction time constant from 2.7 to 

15.0 years (Table 4.1). Uncertainties are estimated to a 95% confidence interval for both 

parameters [Shirzaei and Walter, 2009]. Disparate values between sites are expected due to the 

varied spatial distribution of clay content, yet may also be attributed to differences 

composition and bedrock structures.  

 

4.3.2. Aquifer Storage Loss 

To investigate the effects of inelastic compaction prior to 2005 on the storage 

capacity of the aquifer system, sites are identified within and nearby zones of subsidence in 

the basin (B76, C45, D61, WR52, WR53). The mean inelastic storage coefficient value (𝑆𝑘𝑣 

= 6.01x10-3), the mean hydraulic head level time series ∆ℎ, and the surface area of the 

subsiding zones, 𝐴 = 104 𝑘𝑚2, are used to estimate the lost storage volume ∆𝑉; 

  ∆𝑉 = 𝑆𝑘𝑣∆ℎ𝑏𝑜𝐴       (4.7) 

where 𝑏𝑜 is the estimated initial thickness of the fine-grained, aquitard layers. To estimate 𝑏𝑜, 

the aquifer system column thickness is represented by the average observation well depth of 

the nearby sites (258 m). Then the percentage of compressible, aquitard material of the 
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column is estimated, ranging from low (20%) to high (30%). This percentage range is 

selected based on a conservative interpretation of the maps of the fine-grained material of 

the Fort Lowell and Upper Tinaja bed aquifer system formations (Figure 4.1 c&d) [Anderson, 

1988]. We choose a basin-scale estimate because fine-grained material thicknesses, which 

vary due to an uneven basement, fault offsets, and aquitard lens distribution, can affect 

localized compaction and we are interested in the overall pattern. Also, considering a range 

of compressible thicknesses is better to account for the variable, complex heterogeneity of 

aquitard layers in the basin. This estimation of storage capacity lost via compaction of fine-

grained sediments ranges from 2.81x108 m3 to 4.21x108 m3 (or 2.28x105 to 3.41x105 acre-

feet), which is a 2.7% to 4.1% storage volume loss. In terms of the TAMA conceptual 

groundwater budget, the amount of storage volume lost approximates the four to six years 

of pumpage outflow from the entire area [Mason and Bota, 2006]. A permanent reduction in 

storage volume has important implications for future withdrawals. For example, using the 

values from the previous calculation and pumping the same volume at the same rate in the 

future, the groundwater level would drop an additional 0.37 meters (1.2 feet). It is also 

important to note that from 1940 to 1995, water table levels declined from 30 to 60 meters 

in the Tucson valley [Mason and Bota, 2006] and this study does not capture volume losses 

preceding 1990.  

 

4.3.3. Residual Compaction  

Subsidence rates decelerate over time with an exponential decay pattern representing 

delayed compaction of slow draining aquitards [K. Terzaghi, 1925]. Aquifer systems with thick 

aquitard lenses may enter a state of nearly perpetual lagged equilibration if the effects of past 

pumping are sustained as a subsequent pumping period begins [Pavelko, 2004]. Deceleration 
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patterns of two locations in the heart of each urban subsidence zone are highlighted (marked 

by triangles in Figure 4.4). The vertical InSAR displacement time series obtained from 

Envisat and RADARSAT-2 are combined with negligible displacement assumed between 

09-May-2010 and 30-Oct-2010 (Figure 4.7b). Vertical deformation significantly slows by 

2009, supporting this assumption of negligible deformation between dataset periods, and is 

concurrent with recovering well levels (Figure 4.2). We model Terzaghi’s relationship as an 

exponential function of time, ∆𝑏 = 𝑀𝑒(−𝐵𝑡)−1, where ∆𝑏 is the vertical deformation time 

series, 𝑀 is the magnitude of the aquifer subsidence response, and 𝐵 is the decay coefficient 

ranging [-1,0]. The Genetic Algorithm is used to estimate optimum coefficients 𝑀 and 𝐵 for 

the selected locations in each subsidence zone. The magnitude response of the larger eastern 

zone is 54.4 mm and the decay coefficient is -0.35; the smaller western zone is similar with a 

magnitude response of 54.8 mm and decay coefficient of -0.30.  

Such large decay coefficients are indicative of a relatively high vertical hydraulic 

conductivity 𝐾𝑣 for the hydrologic units, meaning the duration of the delay in equilibrating 

neighboring aquifer/aquitard units is relatively short. Vertical hydraulic conductivity relates 

to delayed compaction by the following equation [Riley, 1969; Smith et al., 2017], 

𝜏̅ =
𝑆𝑘𝑒̅̅ ̅̅ ̅

𝐾𝑣
 (

𝑏𝑜̅̅̅̅

2
)
2

        (4.8) 

Where 𝜏̅ = 6.6 years, the mean of the previously estimated compaction time 

constants, which is supported by the observation of recovering hydraulic head levels 

beginning ~2003 and subsidence cessation in the center of the subsidence zones ~2009. 

Note that during this period of recovering water levels, inelastic deformation is negligible 

and the system is dominated by elastic, seasonal behavior.  Thus, the mean elastic skeletal 
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storage coefficient is used, 𝑆𝑘𝑒
̅̅ ̅̅ = 1.79 x10-3, as are low and high (20-30%) estimates of 𝑏𝑜

̅̅ ̅, 

the thickness of the fine-grained, aquitard layers. 

 

Figure 4.7 Analysis of Aquifer Characteristics (a) 

Elastic skeletal storage coefficient values. Values 

in between well sites estimated with spline 

interpolation (built in MATLAB function). b) 

Continuous time series of maximum subsidence 

locations (marked in Figure 4.4a, b, c with yellow 

triangles, respectively). The modeled relationship 

follows Terzaghi’s exponential decay relationship 

for slow draining aquitards within a 95% 

confidence interval, assuming negligible 

deformation in between datasets. US Drought 

Monitor Intensity Classification drought severity 

via weekly average for Tucson. 

 

This estimate is based on geologic maps outlining the approximate percentage clay 

content of formations, which is simplified into one problem for the overall aquifer system 

column in the basin (Figure 4.1b & c) [Anderson, 1988]. A range of 4.4x10-4 and 9.8x10-4 

m/day is estimated for vertical conductivity. This is compared to the TAMA Upper Santa 

Cruz groundwater flow model, where the vertical hydraulic conductivity values for 20%-40% 
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and 40-60% fine-grained material are 7.9x10-4 m/day and 5.2x10-4 m/day respectively, 

consistent with estimates from this study. However, this estimate is much faster than 

estimates of 1.67x10-8 to 2.48x10-6 m/day for San Joaquin Valley [Sneed, 2001]. The history, 

composition, and structure of the Tucson and San Joaquin aquifer systems are istinct, yet 

several observations support a disparity between locales. Drillers’ logs samples from San 

Joaquin Valley indicate that thick clay layers have already drained following historical 

pumping, thus current pumping mostly affects thin aquitard layers resulting in lower 

hydraulic conductivities [Faunt et al., 2009]. Values in the San Joaquin Valley have reduced by 

a factor as great as 6 times the original calculated laboratory values [Williamson et al., 1989]. 

Furthermore, the lack of an uplift signal in Tucson associated with recovering heads suggests 

diffusion is quickly assimilating water into the system. However, the difference in hydraulic 

conductivity values between sites is also partly due to the first order assumption of a single 

layer aquifer system. A multilayered approach which accounts for individual interbed 

stratigraphy is required to capture complex aquitard lens distribution and provide a more 

accurate estimation. Even with a simplified model using generalized stratigraphy, the results 

provide information that can aid water management.  

 

4.4 Discussion and Conclusions 

Inherent limitations of coherent imaging systems, such as SAR interferometry, are 

sensitivity to the land surface cover change and poor temporal sampling rate. However, the 

data from Sentinel-1A/B satellites [Shirzaei et al., 2017] and future SAR satellites such as 

NISAR (NASA-ISRO SAR mission) will offer an improved sampling rate as low as 6 days. 

The unparalleled spatial resolution and coverage provided by InSAR measurements are 

invaluable for monitoring the regional scale of land subsidence (Table 4.2). More expensive 
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and difficult to improve is the spatial distribution of observation wells, which provide an in-

situ measurement of the groundwater head level. Regions with sparse reliable well data must 

rely on alternative strategies, such as local gravity surveys and regional GRACE storage 

change estimates [Scanlon et al., 2015]. Borehole extensometers and GPS often offer robust 

temporal sampling but are limited to point locations. Also, extensometer measurements can 

be sensitive to temperature, humidity, and soil moisture content in shallow zones. To obtain 

a robust perspective of aquifer properties and mechanics, the approach of analyzing multiple 

datasets helps minimize the impact of individual dataset limitations.  

Table 4.2: Methods of Monitoring Deformation.[Anderson et al., 1982; Cunningham and Schalk, 

2011; D.M. et al., 2011; Argus, 2012]. Resolution means the spatial extent of the ground 

surface that is covered by individual measurement. Spatial coverage refers to the extent of 

monitoring network or dimension of satellite imagery. 

 Resolution 

Spatial 

coverage 

Temporal 

sampling Accuracy Precision 

Extensometer point 10’s m daily ~ 0.6 mm 0.3 ± 0.6 mm 

InSAR 10’s m x 10’s m 100’s km < 30 days ~ 5 mm < 1 mm/yr. 

GPS point 10’s - 1000’s km daily ~ 4 mm 0.1 mm 

 

In this study, the time series of surface deformation is investigated across the Tucson 

Valley in conjunction with measurements of groundwater levels at several observational 

wells. During periods of rapid subsidence from 1990 through the mid-2000s, compaction of 

fine-grained material is as fast as 8.5 mm/yr., which results in permanent storage volume 

losses of 2.7% to 4.1%. The subsidence significantly slows throughout the valley by 2004, 

coincident with the implementation of artificial recharge efforts. Following, a relatively brief 

interval of residual compaction, subsidence nearly ceased by 2015. This rapid recovery likely 

stems from unusually high vertical conductivity in the valley, contributing to the success of 

water management plans by reducing the duration of delayed compaction. Estimated aquifer 
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mechanical properties, including elastic and inelastic storage, and lateral variability are also 

observed in the valley. The heterogeneity of clay content, thickness, and distribution of 

lenses significantly affects the spatiotemporal subsidence patterns observed in Tucson.  

Other regions with rising water levels exhibit uplift of the land surface due to 

poroelastic aquifer rebound. For example, in the Taipei Basin, Taiwan,  rebound is 10% of 

the magnitude of earlier subsidence rates [Chen et al., 2007] and in the Santa Clara Valley, 

California, Chaussard et al. [2014] describes uplift up to 4 mm/yr. Shirzaei et al. [2017] also 

report uplift in the Santa Clara Valley up to 8mm from August 2015 through September 

2015. Precipitation during this period was negligible and the observed uplift is attributed to a 

combination of reducing pumping, a shift to using treated surface water and increasing the 

allocation of imported water. Lastly, in Phoenix, Arizona, Miller and Shirzaei, [2015] 

characterize a zone of uplift reaching 6 mm/yr. located near underground storage facilities 

designed to replenish depleted aquifer systems (refer to Chapter 2). Conversely, Tucson, 

Arizona lacks a long wavelength uplift pattern associated with the managed recharge 

program. High vertical conductivity values, may account for the lack of an uplift zone in 

Tucson by allowing faster diffusion of recharged fluid. The type of recharge apparatus may 

also have an impact, as Tucson generally employs spreading basins relying on infiltration 

rather than underground storage facilities that penetrate deeper.   

Interestingly, the arrest of subsidence in metropolitan Tucson occurs during a 

drought. In Figure 4.7b, displacement data and models are superimposed on a drought 

intensity chart for the Tucson area.  The weekly US Drought Monitor (USDM) intensity 

classification scheme and categorical statistics are based on the Palmer Drought Severity 

Index, Climate Prediction Center Soil Moisture Model Percentiles, USGS Weekly 

Streamflow Percentiles, Standardized Precipitation Index, Objective Drought Indicator 
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Blends Percentiles, and numerous supplementary indicators [Svoboda et al., 2002]. The USDM 

intensity classification categories increase in intensity from abnormally dry to exceptional 

drought (D0-D4), considered for the Tucson urban area (918 km2). Tucson drought 

conditions fluctuated in severity since 2000 and intensified in 2011, which is common in a 

historical context [Morehouse et al., 2002]. Decelerated subsidence despite worsening drought 

is a testament to thoughtful groundwater management. Since 1996, artificial recharge efforts 

have added 3.51x109 m3 (2.8x106 acre-feet) to aquifer storage (private correspondence 

AWDR), which is greater than 45 years of pumpage at the current rate of the conceptual 

model [Mason and Bota, 2006]. Conservation and recharge efforts help the city reduce aquifer 

depletion in subsidence zones and store water for the future. Considering the fact that water 

usage in 2013 was at the same level as 1989 [Megdal and Forrest, 2015], and the Tucson 

population projected to increase, continued conservation efforts are vital. Drought-resilience 

improved by storing CAP canal deliveries, which continue despite declines in total water 

storage in the Colorado River Basin [Scanlon et al., 2015]. However, future CAP deliveries are 

dependent on conditions in the water-stressed Colorado River Basin. In the case of a 

shortage, future deliveries and recharge efforts are at risk and overexploitation of 

groundwater will resume [Castle et al., 2014]. Careful study of new satellite data will aid in 

identifying zones susceptible to subsidence and storativity changes for Tucson as conditions 

change. 

 

This chapter is adapted from:  

M. M. Miller, M. Shirzaei, D. Argus, Aquifer Mechanical Properties and Decelerated 

Compaction in Tucson, Arizona. J. Geophys. Res. Solid Earth (2017), 

doi:10.1002/2017JB014531. 
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CHAPTER 5: ELASTIC RESPONSE OF AQUIFER SYSTEM TO 2010-2011 

CANTERBURY EARTHQUAKE SEQUENCE, NEW ZEALAND 

 

Abstract: During the 2010 to 2011 Canterbury earthquake sequence, Christchurch, 

New Zealand, experienced loss of life, unprecedented liquefaction, and devastation to 

infrastructure. Hydrogeological effects included damaged wells and pumping mechanisms, 

instantaneous and sustained groundwater fluctuations, and evidence of decreased aquifer 

transmissivity and permeability in response to the events. As porous solids deform, fluid 

pressure changes, and flow is affected in response to stress. Groundwater systems exhibit 

complex responses to static and dynamic stresses associated with earthquakes and these 

observations are possible indicators the aquifer properties were affected. One of these 

properties, the elastic storage coefficient, represents the volume of water released or 

absorbed per unit area of the aquifer with a unit change in the hydraulic head due to elastic 

processes. In this study, a combination of surface deformation data obtained from 

interferometric synthetic aperture radar (InSAR) and groundwater level data are used to 

explore the possible variations of elastic skeletal storativity because of the 2010 to 2011 

Canterbury earthquake sequence, Christchurch New Zealand. 

 

5.1 Background 

The 2010 to 2011 Canterbury earthquake sequence, Christchurch, New Zealand, 

occurred on previously unmapped faults starting on September 4, 2010, with a Mw 7.1 event, 

followed by three large events: Mw 6.2 on February 22, 2011, Mw 6.0 on June 13, 2011, and 

offshore Mw 5.9 on December 23, 2011 [Atzori et al., 2012; Bannister and Gledhill, 2012; Quigley 

et al., 2012]. As a result, the city of Christchurch experienced loss of life, unprecedented 
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liquefaction [Cubrinovski et al., 2011; Quigley et al., 2013], lateral spreading [Cubrinovski et al., 

2012], instantaneous and sustained groundwater fluctuations [Cox et al., 2012; Gulley et al., 

2013], and evidence of decreased aquifer transmissivity and permeability in response to the 

events [Rutter et al., 2016]. Wells and pumping mechanisms were also damaged, which poses 

a threat to the city of Christchurch water supply [Gulley et al., 2013]. 

Groundwater systems exhibit complex responses to static and dynamic stresses 

associated with earthquakes [Roeloffs, 1996; Manga and Wang, 2007]. Static stress stems from 

fault offset and is most significant in the near and intermediate distances [Manga and Brodsky, 

2006]. Many co-seismic, time-dependent hydrological responses are constrained spatially by 

the volumetric strain field [Zhou and Burbey, 2014] and are also determined by the faulting 

style [Muir-Wood and King, 1993]. Furthermore, the early post-seismic deformation can also be 

attributed to pore-pressure changes due to co-seismic events [Jónsson et al., 2003]. On the 

other hand, the dynamic stress changes due to the passage of seismic waves can impact the 

far field [Manga and Brodsky, 2006]. Phenomena attributed to dynamic strain changes include 

sustained co-seismic changes to groundwater levels [Roeloffs, 1998], permeability changes in 

the shallow crust [Rojstaczer et al., 1995; Elkhoury et al., 2006; Manga et al., 2012], and breaching 

of confining layers to hydrologically connect aquifers [Wang, C., Wang, 2004; Wang et al., 

2016] and new springs [Manga et al., 2016; Wang et al., 2017]. Moreover, the maximum 

distance of liquefaction occurrence increases with earthquake magnitude [Papadopoulos and 

Lefkopoulos, 1993].  

As porous solids deform, fluid pressure changes, and flow is affected in response to 

stress. Poroelastic theory describes the coupling of differential stress, strain, and pore 

pressure, which are modulated by material properties [Biot, 1941; Rice and Cleary, 1976; 

H.Wang, 2000]. One of these properties, the elastic storage coefficient, represents the volume 
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of water released or absorbed per unit area of the aquifer with a unit change in the hydraulic 

head due to elastic processes [Jacob, 1940; Cooper, 1966]. This parameter can be determined 

through laboratory experiments [Riley, 1969; D.M. et al., 2011] or derived from deformation 

and well level observations [Miller and Shirzaei, 2015; Miller et al., 2017]. Elastic skeletal 

storativity 𝑆𝑠𝑘𝑒 is estimated by comparing the recurring, elastic oscillations in vertical 

deformation data 𝛥𝑏 and hydraulic head levels 𝛥ℎ, using the relation: 𝛥𝑏 =  𝑆𝑠𝑘𝑒𝛥ℎ. In this 

study, a combination of surface deformation data obtained from interferometric synthetic 

aperture radar (InSAR) and groundwater level data are used to explore the possible 

variations of elastic skeletal storativity because of the 2010 to 2011 Canterbury earthquake 

sequence, Christchurch New Zealand. 

 

 

 

Figure 5.1. Study Area Overview in Lower Hutt, New Zealand. (a) SAR Satellite footprint 
polygons for ascending Envisat (blue, azimuth = 349º, incidence angle = 23º) and 
descending TerraSAR-X (magenta, azimuth = 196º, incidence angle = 44.5º). Locations and 
focal mechanisms of four largest earthquakes are yellow stars/beach balls. (b) Liquefaction 
map and generalized cross-section. Wells are screened within various aquifer units and 
confined by aquitards (brown) that thin landwards. Unit thicknesses, lenses, and 
discontinuities are interpreted and not to scale. 
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5.2 Geologic Setting 

The Canterbury Plains are flanked by the Alpine Fault and active strike-slip regimes 

to the west, and the Marlborough region to the northeast, which accommodates much of the  

plate motion between the Pacific and Australian plates [Wallace et al., 2007]. The Canterbury 

earthquakes are thought to be related to intraplate tectonic stresses in the upper crust rather  

than plate boundary kinematics [Sibson et al., 2011]. Although faults and folds were identified 

via seismic reflection prior to the emergence and surface rupture of the Greendale fault in 

2010 [Jongens et al., 2012], neither the Greendale fault nor blind structures related to the 

sequence were previously mapped [Beavan et al., 2012]. Bounded to the west by the Southern 

Alps, the Canterbury Plains (Figure 5.1a) contain a sequence of amalgamated alluvial fans of 

Mesozoic Greywacke [Brown et al., 1988]. Quaternary periods of glaciation and sea level 

regression led to deposition of alluvial and fluvial gravel aquifers, alternating with periods of 

sea-level transgression and glacial retreat, in which confining marine aquitard layers were 

deposited inland [Forsyth et al., 2008]. Thus, the coastline at times was closer to the 

mountains and at times farther than the present coastline. Above a basement of greywacke, 

an alternating sequence of confined aquifers and confining aquitard layers extend to a depth 

of 300-500 meters and is topped by a shallow unconfined aquifer where the water table is 

near the land surface.  The thickness of the confining units increases seaward, while 

permeability increases landward due to gravel sorting and enhanced recharge by influent 

seepage [Wilson, 1973].   
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Table 5.2. Christchurch Well Information, Location, and Distance from Earthquakes 

Well ID Long. Lat. 
Depth 

(m) 

Aquifer 

name 

Well distance from the epicenter (km) 

Sept-04 Feb-22 Jun-13 Dec-23 

M36/4886 172.55 -43.61 9.0 n/a 10.6 10.8 10.4 11.1 

M36/4804 172.45 -43.64 12.0 n/a 12.3 7.2 8.0 13.5 

M36/4741 172.59 -43.56 12.4 Springston 10.7 14.2 13.3 10.4 

M35/5560 172.58 -43.52 21.0 Riccarton 8.7 14.2 13.0 7.8 

M35/3614 172.53 -43.49 24.5 Riccarton 6.5 13.2 11.9 5.1 

M36/4740 172.59 -43.56 27.2 Riccarton 10.7 14.2 13.3 10.4 

M35/1079 172.49 -43.53 29.3 Riccarton 1.2 7.7 6.3 1.1 

M36/4018 172.54 -43.57 29.5 Riccarton 7.5 10.3 9.5 7.6 

M35/1080 172.45 -43.51 30.0 n/a 2.5 7.6 6.3 2.7 

M35/2565 172.63 -43.53 30.4 Riccarton 12.7 17.6 16.5 11.9 

M36/1160 172.70 -43.57 30.8 Riccarton 18.8 22.3 21.5 18.3 

M36/5325 172.70 -43.56 33.0 Riccarton 19.0 23.0 22.1 18.4 

M36/0217 172.42 -43.57 40.5 n/a 6.5 0.7 1.1 7.9 

M35/2564 172.63 -43.53 55.4 Linwood 12.7 17.6 16.5 11.9 

M35/3779 172.65 -43.51 82.9 Linwood 14.6 20.0 18.8 13.8 

M35/0846 172.65 -43.39 87.5 n/a 21.9 28.8 27.4 20.6 

M35/5157 172.61 -43.52 99.5 Burwood 11.3 16.5 15.4 10.4 

M35/2081 172.66 -43.54 125.8 Wainoni 15.1 19.7 18.7 14.5 

M36/5895 172.75 -43.55 138.0 Wainoni 22.6 26.7 25.8 21.9 

 

The aquifer system stratigraphy is heterogeneous and thicknesses of aquifer and 

aquitard units can vary and layers can be discontinuous. Many wells in the Environment 

Canterbury Network (ECAN) investigated here list the aquifer unit name with some offering 

borehole logs detailing stratigraphy at a site. Wells are screened from several different aquifer 

formations, including Wainoni, Burwood, Linwood, Riccarton, and Springston Formations, 

in order of decreasing depth (Figure 5.1b and Table 5.1). However, not all the wells listed in 

the ECAN database identify which aquifer unit is screened. Because the aquifer-aquitard 
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sequences were deposited with similar source material during regressive-transgressive sea-

level change, the composition and sedimentary structures of each unit include many 

similarities.  The depositional environment is primarily glacial outwash river deposits 

consisting of gravels, sand, and occasional clay or silt lenses [Brown et al., 1988]. Some 

distinctive features are prevalent yellow clays in the Burwood Formation, occasional peat 

layers in the Riccarton and Linwood Formations, and that the Springston Formation caps 

degradational terraces and presently is exposed in several river cuts [Brown et al., 1988]. To 

the south, Miocene volcanics comprise much of the Banks Peninsula and locally affect the 

groundwater systems. Banks Peninsula aquifers have isotopically distinctive groundwater 

within fractures and joints of volcanic rocks and complex flow paths allow mixing with the 

Canterbury fluvial aquifers [Brown and Weeber, 1994].  

 

5.3 Data and Methods  

5.3.1 InSAR Surface Deformation  

InSAR observations provide high spatial resolution measurements of Canterbury 

surface deformation caused by earthquake sequences and hydrogeological processes. 

Wavelet-Based InSAR (WabInSAR) is an advanced multitemporal InSAR approach to 

analyze numerous sets of SAR images [Shirzaei, 2013; Shirzaei and Bürgmann, 2013]. The 

topographic effects and the flat earth are computed and deducted using a reference digital 

elevation model (DEM) and satellite ephemeris data [Franchioni and Lanari, 1999]. Less noisy 

pixels, referred to as elite, are recognized by applying a statistical framework to the estimated 

noise time series through wavelet analysis of the complex phase observations [Shirzaei, 2013]. 

Wavelet-based filters are also used to correct for topography correlated atmospheric delay 

and orbital error, while a high-pass filter addresses temporally uncorrelated atmospheric 
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delay [Shirzaei and Walter, 2011; Shirzaei and Bürgmann, 2012]. The algorithm implements a 

reweighted least squares approach, thereby inverting the datasets for the line of sight (LOS) 

displacement time series and achieving sub-millimeter vertical precision. 

 

Figure 5.2. Co-seismic Displacement. Time frame for (a) 9-Jul-2010 to 17-Sept-2010, (b) 18-
Sept-2010 to 2-Mar-2011, (c) 9-Jun-2011 to 20-Jun-2011 and (d) 2-Dec-2011 to 26-Jan-2012. 

From 24-Oct-2003 to 17-Sept-2010, 37 ascending orbit track images from the 

Envisat satellite capture the pre- and co-seismic deformation of the Mw 7.1 Darfield event 

(Figure 5.2a). The median repeat interval is 35 days, the mean is 70 days, and the maximum 

data gap is 664 days. Using this dataset, 165 interferograms are generated with spatial and 

temporal baselines shorter than 350 meters and 1000 days, respectively. To avoid 

complications from large temporal gaps, the portion of the time series preceding the 

maximum gap starting on 28-Sept-2007 is isolated for time series analysis. This selected 
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interval of nearly 4 years preceding the earthquake sequence serves as a baseline for later 

comparisons.  

Next, the 102 descending orbit track images from TerraSAR-X satellite are examined 

from 7-Sept-2010 to 27-Aug-2015. Using this dataset, ~600 interferograms are generated 

with horizontal spatial and temporal baselines shorter than 200 meters and 200 days, 

respectively. The median repeat interval is 11 days, the mean is 18 days, maximum data gap 

is 165 days, and the complete time series captures the surface deformation associated with 

the final three of the four shocks (Figure 5.2b-d). To minimize the impact of co-seismic 

deformation on the estimates of aquifer elastic properties, a subset of the time series is 

selected that begins shortly after the last event of sequence spanning period 26-Jan-2012 to 

27-Aug-2015. Using the viewing geometries of the satellites, the LOS time series is projected, 

scaled, and the vertical unit vector is isolated (Envisat: incidence = 23º, heading = 349º; and 

TerraSAR-X: incidence angle = 44.5º, heading angle = 196º).  

 

Figure 5.3. The 

Vertical 

Component of 

Daily GPS Time 

Series Compared to 

InSAR Vertical 

Component. (a) 

Envisat and (b) 

TerraSAR-X. GPS 

Station LYTT is 

referenced to 

MQZD. InSAR 

values are the mean 

of pixels within 

250-m of GPS 

station and are 

referenced to 

MQZD. 



  91 

To validate the InSAR results, the 3D displacement field is compared using two 

continuous Global Positioning System (GPS) stations LYTT and MQZD which are supplied 

by GeoNet (http://apps.linz.govt.nz/positionz/). Data measurements for these stations are 

given in the northern, eastern, and vertical directions and originally referenced to a global 

reference frame. The daily GPS vertical displacements presented in Figure 5.3 are estimated 

with respect to the GPS station MQZD, which is used as a local reference for both InSAR 

and GPS. Comparing the vertical component of InSAR to that of vertical GPS, there is an 

overall agreement between the two independent time series with an average standard 

deviation of 6.5 mm for Envisat and 6.2 mm for TerraSAR-X. Inopportunely, the GPS 

stations are peripherally located on the Banks Peninsula, thus the seasonal behavior 

exhibited is not coupled with aquifer system processes.  

 

5.3.2 Groundwater Levels 

The city of Christchurch and 

neighboring Canterbury Plains 

boast a well maintained, dense 

network of monitoring wells 

accessible through 

Environment Canterbury 

(ECAN).  

(www.ecan.govt.nz/data/well-

search/). Wells with data 

coincident with InSAR 

intervals, pre-seismic 24-Oct-

 

Figure 5.4: Well Names and Locations. Large squares are 

statistically significant 𝑆𝑠𝑘𝑒.  
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2003 to 28-Sept-2007 and post-seismic 26-Jan-2012 to 27-Aug-2015 are selected, excluding 

those wells with temporal gaps of six months or more. Each wellsite record is examined to 

assess if the damage sustained in the earthquakes resulted in significant changes in well level 

readings, i.e. deepening. Nineteen wells meet this criterion and are suitable for analysis 

(Figure 5.4). The distance of each well to each epicenter (Table 5.1) is shortest for the Feb-

22 event with a mean of 11 km and longest the Sept-4 event at 34 km. 

 

5.3.3 Elastic storage coefficient calculation 

The elastic skeletal storage coefficient 𝑆𝑠𝑘𝑒 is an important parameter for 

groundwater flow models and hydrologic theory and it describes the volume of fluid 

removed or retained as the hydraulic head level fluctuates over an aquifer area [Riley, 1969; 

Green and Wang, 1990]. This coefficient represents the elastic behavior of both aquifer and 

aquitard units in the system [Hoffmann et al., 2001; Liu and Helm, 2008]. For the calculation, 

the seasonal time series of vertical displacement and hydraulic head levels are deconstructed 

into time-frequency components via continuous wavelet transform following Miller & 

Shirzaei [2015]. Wavelets evaluate signals with nonstationary components and are capable of 

decomposing a signal into building blocks based on localized frequency properties 

[Christopher Torrence, 1998]. Selected oscillations are identified as occurring within 0.5 to 1.5-

year periods, as these wavelengths capture summer highs and winter lows. These seasonal 

fluctuations elicit an elastic response and exclude shorter-term elastic behavior attributed to 

tidal effects. The isolated signal components are then reconstructed into seasonal time series 

for vertical displacement ∆𝑏 and hydraulic head levels ∆ℎ, as inputs to solve:  𝛥𝑏 =

 𝑆𝑠𝑘𝑒𝛥ℎ. Next, a constrained least squares algorithm is applied with an iterative 
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bootstrapping process [Mikhail et al., 

1978]. The bootstrapping step repeats 

the least squares estimation 500 times 

where each iteration utilizes 80% of 

time steps that are randomly selected for 

the calculation. This results in a robust 

statistical estimation and a probability 

distribution function for elastic skeletal 

storage coefficient with uncertainties. 

 

5.4 Results 

The skeletal elastic storativity 

values calculated for the period from 24-

Oct-2003 to 28-Sept-2007, i.e. Envisat 

(Figure 5.5a), range from 1.1 x 10-5 to 

4.0 x 10-3. For the TerraSAR-X period 

from 26-Jan-2012 to 27-Aug-2015 

(Figure 5.5b), the values range from 1.1 

x10-5 to 4.3 x 10-3 (values and 

uncertainties in Table 5.2).  Spatially, the 

elastic storativity values are lower to the 

west and north, with higher values 

found near metropolitan Christchurch 

and the Banks Peninsula in both 

 

Figure 5.5. Elastic Storage Coefficients 
calculated at each well for (a) Envisat and (b) 
TerraSAR-X intervals, and the (c) percentage 
change difference of mean values between 
time periods (a & b). 
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Table 5.2. Elastic Storage Coefficient Values. The unitless value is calculated for each well 

using well and InSAR time series and head levels (SD = standard deviation). 

Well ID 

Envisat 

24-Oct-2003 to 28-Sept-2007 

TerraSAR-X 

26-Jan-2012 to 27-Aug-2015 

𝑆𝑠𝑘𝑒 SD 𝑆𝑠𝑘𝑒 SD 

M36/4886 2.22 x103 2.43 x104 8.71 x104 7.86 x105 

M36/4804 1.75 x104 2.48 x105 4.47 x105 4.75 x107 

M36/4741 1.16 x105 4.36 x106 1.16 x105 3.56 x1010 

M35/5560 1.12 x105 3.78 x106 1.12 x105 7.36 x1010 

M35/3614 1.12 x105 5.51 x106 1.11 x105 5.03 x109 

M36/4740 1.15 x105 3.88 x106 1.15 x105 4.32 x1010 

M35/1079 7.10 x105 2.75 x105 7.01 x105 1.96 x107 

M36/4018 1.06 x105 3.32 x106 1.06 x105 1.33 x109 

M35/1080 1.12 x104 3.12 x105 2.87 x105 3.26 x107 

M35/2565 1.22 x103 5.14 x104 2.12 x103 3.27 x106 

M36/1160 1.31 x105 1.36 x105 1.31 x105 2.66 x1010 

M36/5325 4.00 x103 3.72 x104 4.25 x103 1.01 x103 

M36/0217 2.82 x104 6.41 x106 7.18 x105 7.23 x107 

M35/2564 8.05 x104 3.25 x104 1.41 x103 2.14 x106 

M35/3779 2.33 x103 4.62 x104 7.45 x104 7.46 x105 

M35/0846 1.19 x105 1.02 x105 1.19 x105 4.00 x1010 

M35/5157 2.07 x104 7.78 x105 5.27 x105 6.35 x107 

M35/2081 1.23 x103 2.71 x104 9.41 x104 1.11 x104 

M36/5895 2.34 x104 8.10 x105 4.08 x104 7.48 x107 

calculation intervals. The difference in storativity before and after the earthquake sequence is 

of interest, therefore it is necessary to determine if the change in elastic storage coefficients 

is statistically significant. A statistical test is performed on the mean difference at 99% 

confidence. This test investigates if given the measurement variance estimated through 

bootstrapping, whether the difference between means is meaningful at the given confidence 

range [Meyer, 1970]. As a result, a subset of 11 wells with significant changes are identified 

(Figure 5.4). 
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5.5 Discussion 

To investigate if the measured changes in storativity are correlated to stress changes 

imparted by the earthquake sequence, the spatial distribution and sign of significant 

storativity changes are compared with the estimates of co-seismic volumetric strain change 

and peak ground velocity. Any meaningful relation between the type of response and 

distance of sites from epicenter or locations of mapped liquefaction are also explored. To 

estimate the spatial distribution of co-seismic dilatational strain changes, already published 

models of co-seismic slip distribution are used. For the first three seismic events, Atzori et.al, 

[2012] model the earthquakes by inverting InSAR displacement maps with constraints based 

on relocated aftershocks, field data, and Global Positioning System (GPS). 

 

 

 

Figure 5.6. Dilatational Strain solutions from 

Atzori et al. [2012]. (a) September 4, 2010 event 

exhibits sizable strains in the Canterbury Plains 

with most wells in a compressive regime 

(excepting M36/0217, M36/4804 & M36/4886), 

the (b) February 22, 2011 event affects City 

Centre and the northern Banks Peninsula hills, 

and the (c) June 13, 2011 event near the coast 

and Banks Peninsula with most wells in a tensile 

regime (excepting M35/0846 & M36/5325). 
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5.5.1 Co-seismic Dilatational Strain Change 

The study uses a nonlinear inversion for constraining fault geometry and a linear 

inversion for slip distribution assuming an elastic half-space on variably sized rectangular 

patches. Using a forward calculation [Okada, 1992], the spatial distribution of dilatational 

strain for each individual earthquake is 

obtained and corresponding values at each 

site are listed in Table 5.3. As one or more 

events may have an impact on elastic storage 

properties, the cumulative dilatational strain 

is explored for three events at each 

individual site (Figure 5.7). The spatial 

pattern of the cumulative strain values is 

complex and areas of compression (positive 

values) and extension (negative) are often 

close together near the wells. Net cumulative dilatational strain values range from -2.8 x10-4 

to 1.33 x10-4 with two zones of extreme values: west of the city and north of Banks 

Peninsula in the south of the city. It is determined if the storage change result is consistent 

with expectations, i.e., compression reduces storage and extension increases storage. 

Qualitatively, the net cumulative dilatational strain result agrees with storage increase or 

decrease. Thirteen of the nineteen wells exhibit changes consistent with the cumulative strain 

regime, of which eight of eleven have statistically significant changes (Table 5.3). Of the six 

anomalous wells, three are not showing statistically significant changes (M4740, M35/4741, 

M36/1160). Well M35/5157, along with the well of statistically insignificant change 

M36/4740 and M36/4741, is in a cumulative extensive regime, yet initially experienced 

 

Figure 5.7. Elastic Storativity Change and 

Cumulative Dilatational Strain Solutions. 

Strain solutions are combined from Atzori et 

al. [2012] for the three largest earthquakes. 
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a compressive regime for the Darfield earthquake. A possible explanation for the 

inconsistent result at these sites is that storage was permanently reduced in the first event, 

and subsequent extensive strains were unable to dilate the aquifer system.  

Table 5.3. Comparing ∆𝑆𝑠𝑘𝑒 with Atzori et al. [2012] dilatational strain solutions. Wells with 

statistically significant ∆𝑆𝑠𝑘𝑒 have an x. The Cumulative column is strain of Sept-4 + Feb-22 + 

Jun-13 earthquakes. Negative strain is extension (orange) and positive strain is contraction 

(purple). An x in the column ∆𝑆𝑠𝑘𝑒 ~ ∑σ indicates the Cumulative result is consistent with 

expectations, i.e. compression reduces storage and extension increases storage. 

Well 

∆𝑺𝒔𝒌𝒆 Strain (+) compression (-) extension 

%∆𝑆𝑠𝑘𝑒 
Stat 

Sig 

∆𝑆𝑠𝑘𝑒

~ ∑ 𝜎 
Cumulative Sept-4 Feb-22 Jun-13 

M36/4886 -60.8 x - -8.7x10-6 -7.1x10-6 -9.8x10-8 -1.5x10-6 

M36/4804 -74.5 x - -5.7x10-5 -5.7x10-5 -6.7x10-8 -5.1x10-7 

M36/4741 -0.02 - - -2.2x10-5 6.1x10-6 -2.4x10-5 -4.8x10-6 

M35/5560 -0.05 - x 2.0x10-6 1.4x10-5 -6.7x10-6 -4.9x10-6 

M35/3614 -0.26 - x 1.6x10-5 2.1x10-5 -2.9x10-6 -2.7x10-6 

M36/4740 -0.02 - - -2.2x10-5 6.1x10-6 -2.4x10-5 -4.8x10-6 

M35/1079 -1.33 - x 3.2x10-5 3.7x10-5 -2.3x10-6 -1.9x10-6 

M36/4018 -0.07 - x 3.3x10-6 1.2x10-5 -5.6x10-6 -2.9x10-6 

M35/1080 -74.4 x - 4.0x10-5 4.3x10-5 -1.5x10-6 -1.4x10-6 

M35/2565 74.5 x x -1.2x10-6 6.9x10-6 1.4x10-7 -8.2x10-6 

M36/1160 0.01 - - 2.0x10-5 8.7x10-7 2.6x10-5 -7.3x10-6 

M36/5325 6.24 x x -2.0x10-4 1.5x10-6 -2.0x10-4 -2.2x10-6 

M36/0217 -74.5 x x 1.3x10-4 1.3x10-4 -8.4x10-7 -8.9x10-7 

M35/2564 74.5 x x -1.2x10-6 6.9x10-6 1.4x10-7 -8.2x10-6 

M35/3779 -68.0 x x 1.3x10-5 6.1x10-6 1.6x10-5 -8.7x10-6 

M35/0846 -0.02 - x 7.6x10-6 6.0x10-6 7.5x10-7 8.9x10-7 

M35/5157 -74.5 x - -2.8x10-6 9.2x10-6 -5.2x10-6 -6.8x10-6 

M35/2081 -23.7 x x 4.1x10-5 4.2x10-6 4.6x10-5 -9.2x10-6 

M36/5895 74.5 x x -2.8x10-4 1.1x10-6 -2.6x10-4 -1.9x10-5 

Table 5.4 displays an estimate of correlation coefficients relating total cumulative dilatational 

strain to the percentage change in the elastic storage coefficient ∆𝑆𝑠𝑘𝑒 for A-all wells, SS-wells 

with statistically significant changes in elastic storativity, further categorized into C-

compressive and D-dilatational regimes. 
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Table 5.4. Correlations Coefficients: all wells (A), sites with statistically significant 

∆𝑆𝑠𝑘𝑒, (SS), a compressive regime (C), and represents extensive regime (D). 

Considering all wells, the correlation coefficient is 0.45. Considering only wells with 

statistically significant change results in a coefficient of 0.51. Considering the effect of 

individual events, the highest correlation coefficients are found in relation to the February 

earthquake, with statistically significant wells in a compressive regime at 0.58 and in a 

dilatory regime at 0.98.  

Oblique-slip earthquakes, even with small components of dip-slip, are known to 

have diverse, complex hydrologic responses to static strain [Muir-Wood and King, 1993]. The 

Darfield event was dominantly right-lateral strike slip with up to 1.5 m vertical displacement 

[Beavan et al., 2010; Quigley et al., 2012]. The Canterbury events generated widespread 

groundwater level changes which varied spatially, with depth, and response type and 

Correlating 
(Sites) 

(Sites/regime) 

Correlation coefficients 

Cumulative Sept-4 Feb-22 Jun-13 Dec-23 

Dilatational 

strain 

 

% ∆𝑆𝑠𝑘𝑒 

(A) 0.45 0.18 0.41 0.52 -- 

(SS) 0.51 0.19 0.47 0.65 -- 

(A, C) 0.62 0.47 0.58 -- -- 

(SS, C) 0.28 0.47 0.65 -- -- 

(A, D) 0.31 -- 0.67 0.56 -- 

(SS, D) 0.32 -- 0.98 0.65 -- 

Epicenter 

distance 

(km) 

% ∆𝑆𝑠𝑘𝑒 
(A) -- 0.54 0.45 0.53 0.57 

(SS) -- 0.65 0.60 0.66 0.64 

PGV  

(cm/s) 
% ∆𝑆𝑠𝑘𝑒 

(A) -- -0.28 0.48 0.50 0.44 

(SS) -- -0.39 0.67 0.58 0.57 

Liquefaction 

severity 
% ∆𝑆𝑠𝑘𝑒 

(A) 0.29 -0.06 0.44 -- -- 

(SS) 0.42 -0.03 0.66 -- -- 

Liquefaction 

severity 
Strain 

(A, C) 
0.40 

0.23 0.37 -- -- 

(A, E) -- 0.77 -- -- 
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direction i.e., slope change, spike offset, step change, and or spikes [Cox et al., 2012; Gulley et 

al., 2013]. Many of these changes are thought to be permanent [Cox et al., 2012; Rutter et al., 

2016] and are still discernable through August 2017. Qualitatively, there is evidence 

supporting static strain as a mechanism for the changes seen in elastic storage at 13 wells, 

however, quantitatively, the correlation numbers are not conclusive. 

 

5.5.2 Peak Ground Velocity  

Peak ground velocity (PGV), also referred to as strong ground motion, measures the 

rate of shaking using seismic data and provides a measurement of dynamic strain. Using 

PGV values from USGS ShakeMaps, (www.earthquake.usgs.gov/data/shakemap/), the 

spatial distribution of shaking due to each individual earthquake is investigated (Figure 5.8)  

 

Figure 5.8: Peak Ground Velocity Contours for Each Earthquake. 
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as well as its amplitude at the location of each site. Each event generates shaking greater than 

25 cm/s in or around Christchurch, with velocities over 100 cm/s at several wells during the 

February earthquake (Table 5.5). To determine if being shaken repeatedly may correlate with 

observed changes in storativity, the models are combined (Figure 5.9). The solid colormap 

contours the maximum PGV calculated of all the events, while the green contour lines 

indicate how many times the area shook greater than 25 m/s. All wells experienced strong 

ground motion at least once, with most shaking significantly multiple times. As provided in 

Table 5.4, the observed Darfield earthquake PGV is weakly anticorrelated with elastic 

storage change for all wells and statistically significantly changed wells. For the subsequent 

three earthquakes, correlations improve. The response of hydrologic systems to earthquakes 

is complex, and many studies focus on the evolution of permeability. Linearly dependent on  

the amplitude of peak ground velocity, 

analogous to dynamic strain [Elkhoury et 

al., 2006], sustained permeability 

increases are observed in California and 

thought to be related to new fractures or 

widening fractures [Rojstaczer et al., 1995]. 

The shaking induced fracturing of 

aquitards resulting in increased vertical 

permeability between aquifers is observed 

in relation to the 1999 Chi-Chi 

earthquake in Taiwan [Wang et al., 2016]. 

The 2008 Wenchuan earthquake also induced a permeability increase, which then decreased 

exponentially with time [Geballe et al., 2011].   Permeability decreases are observed in 

 

Figure 5.9. Peak Ground Velocity for All Four 

Events. The solid colormap contours the 

maximum speed calculated, while the green 

contour lines indicate how many times the 

area shook greater than 25 cm/s.    
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laboratory tests, with or without the addition of silts, when multiple shaking episodes are 

introduced and permeability decreases with each round as flow paths are blocked [Liu and 

Manga, 2009]. Whether permeability increases or decreases in relation to dynamic strain 

depends on several mechanisms such as, the number and/or size of fractures, and/or the 

mobilization of fine-grained sediments which either clears or blocks the flow paths [Manga et 

al., 2012]. Elastic storage properties are likely to be affected by these same mechanisms.  

 

Table 5.5. Comparing ∆𝑆𝑠𝑘𝑒 with PGV Solutions and Liquefaction. Wells with 
statistically significant ∆𝑆𝑠𝑘𝑒 have an x. Liquefaction codes are (1) minor and (2) 
moderate/severe. 

Well 

∆𝑺𝒔𝒌𝒆 Peak ground velocity (cm/s) Liquefaction 

%

∆𝑆𝑠𝑘𝑒 

Stat 

Sig 
Sept-4 Feb-22 Jun-13 Dec-23 Sept-4 Feb-22 

M36/4886 -60.8 x 48 27 23 8 - - 

M36/4804 -74.5 x 44 13 10 6 - - 

M36/4741 -0.02 - 49 49 38 11 - 1 

M35/5560 -0.05 - 51 39 25 12 - - 

M35/3614 -0.26 - 53 24 17 8 - - 

M36/4740 -0.02 - 49 49 38 11 - 1 

M35/1079 -1.33 - 58 17 13 7 - - 

M36/4018 -0.07 - 52 33 22 9 - - 

M35/1080 -74.4 x 56 13 9 6 - - 

M35/2565 74.5 x 52 69 44 19 - 1 

M36/1160 0.01 - 26 79 58 17 - 1 

M36/5325 6.24 x 30 105 64 21 - 2 

M36/0217 -74.5 x 50 11 9 5 - - 

M35/2564 74.5 x 52 69 44 19 - 1 

M35/3779 -68.0 x 48 67 48 23 1 1 

M35/0846 -0.02 - 34 18 14 12 1 - 

M35/5157 -74.5 x 51 54 37 16 1 1 

M35/2081 -23.7 x 49 100 48 23 - 1 

M36/5895 74.5 x 20 96 66 22 1 2 
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5.5.3 Liquefaction  

Liquefaction is dependent on 

earthquake magnitude, shaking speed and 

duration, depth to water table, and the 

composition and structure of the basin 

sediments [Manga and Wang, 2007]. The 

liquefaction extent is mapped for the Darfield 

earthquake and the Feb-22 event [Townsend et 

al., 2016] (Figure 5.10). These shapefiles are 

the culmination of interpreting aerial 

photographs, satellite imagery, and ground-

based surveys. Liquefaction is determined 

based on evidence of predominantly fine 

sediments and/or water ejected to the surface, 

and/or the presence of lateral spreading 

cracks. Similar liquefaction patterns are 

identified by Atzori et al. [2012], who characterized liquefaction using lack of coherence in 

interferograms.  

Qualitatively, 11 out of 19 wells experienced at least one liquefaction event, as did 7 

of the 11 statistically significantly changed wells. Figure 5.11 highlights the areas where 

minor to moderate/severe liquefaction occurs during either earthquake. Numbers represent 

liquefaction severity in Table 5.5, (1 – minor, 2 – moderate/severe), which are compared to 

the change in elastic storativity. Correlation is strongest (0.66) in relation to the  

 

Figure 5.10: Liquefaction Maps [Townsend 

et al., 2016]  adapted by GNS Science for 

(a) the Darfield earthquake and (b) 

February event. Liquefaction ranging 

from present, minor, to moderate/severe.  
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February 2011 earthquake, when 

liquefaction also correlates well with 

dilatational strain (0.77); correlation 

coefficients in Table 5.4.  

 

5.5.4 Analysis 

A mechanism proposed for the 

prevalence of liquefaction in Christchurch 

is the vertical breach of aquitards, 

releasing artesian fluids upward. Gulley et 

al. [2013], observed several wells with evidence of the vertical movement of fluid coinciding 

with this study. They identify offsets, which reflect a post-seismic change in aquifer 

formation in either the positive or negative direction, and spikes, which reflect an immediate, 

positive transient response of a passing seismic wave. M36/4886, the shallowest well in this 

study at 9 m, is collocated with a deeper well (M36/4783, 21.5 m) that did not meet the 

criteria for estimating a change in storage. M36/4886 is a site with a loss of elastic storativity, 

inconsistent with the extensive dilatational strain regime. However, the hydrographs at this 

site for the September and February earthquakes, record positive offsets and spikes (Table 

5.6), which decay for days. During both earthquakes, the offsets and spikes are higher in the 

shallower well, but the deeper well remains artesian during the first earthquake while rising 

to ground level in the second earthquake  [Gulley et al., 2013]. This suggests the vertical 

movement of fluid, and despite the lack of liquefaction mapped at M35/4886, it is possible 

fine-grained sediments act as plugs in the pore space of the shallower well, reducing storage. 

M36/4783 has more data than the nearby M36/4804, another well with loss of elastic  

 

igure 5.11. Combined Liquefaction 

Occurrence (minor to moderate/severe) 

Related to Darfield Earthquake and/or the 

February Event. 
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storage in a consistently extensive strain 

regime, but the same mechanisms may be 

responsible for the change in properties.  

Gulley et al. [2013] posit that 

negative offsets correlate to deeper wells, 

which indicates a reduction in storativity. 

Other wells shared between these two 

studies are the collocated wells: 

M36/4740, M36/4741, and M35/5157. 

Similar patterns exist at these sites, 

including a compressive regime during 

the Darfield earthquake, followed by 

extensive regimes netting in an extensive 

cumulative strain regime, negative water 

level offsets and spikes during the 

earthquakes, and liquefaction mapped. 

The shallower sites exhibit a slight decrease in storage, that is not statistically significant, but 

M35/5157 is significantly reduced up to 74.5% at this well. If storativity were reduced in the 

first earthquake in a compressive regime, subsequent extensive strains greater in absolute 

values, are likely not enough to re-dilate the system and recuperate what was compacted. 

Also, the presence of liquefaction at this site suggests movement of fine particles, likely due 

to transient dynamic strain. 

 

 

Table 5.6. The Behavior of Selected Wells 

from Gulley et al., 2013. 

Well 

Groundwater response 

[Gulley et al., 2013] 

Sep-4 Feb-22 

step spike step spike 

M36/4886 0.1 1.8 0.1 1.5 

M36/4804 - - - - 

M36/4741 -0.1 1.3 -0.0 1.8 

M35/5560 0.0 0.3 - - 

M35/3614 - - - - 

M36/4740 -0.1 1.2 -0.0 1.6 

M35/1079 - - - - 

M36/4018 -0.2 1.1 -0.0 0.3 

M35/1080 - - - - 

M35/2565 - - - - 

M36/1160 - - - - 

M36/5325 -0.2 0.4 - - 

M36/0217 - - - - 

M35/2564 - - - - 

M35/3779 -0.4 1.4 - - 

M35/0846 - - - - 

M35/5157 -0.0 1.2 - - 

M35/2081 -0.4 2.1 - - 

M36/5895 - - - - 
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5.6 Concluding Remarks 

High-quality water depth data with relatively dense spacing makes Christchurch a 

natural laboratory for studying the effects of earthquakes on aquifer systems. Many areas in 

tectonically active zones are reliant on groundwater supplies, which are vulnerable to seismic 

events. The San Joaquin Valley, California is an agricultural hub near the San Andreas system 

with the added complications of land subsidence from overexploitation of groundwater and 

periodic drought. A reduction in storage capacity due to a large magnitude earthquake can 

threaten the availability of freshwater.  Co-seismic changes in water level are observed near 

Parkfield, California, but any hydraulic conductivity changes during the study duration were 

within the bound constraints [Roeloffs, 1998]. Permeability increased in relation to the Loma 

Prieto, California earthquake in 1989, and the groundwater water table level declines as 

discharge increases and the water system is drained [Rojstaczer and Wolf, 1992]. Pumping tests 

of an aquifer system thought to be in a compressional regime during the Chi-Chi 1999 

earthquake show a decrease in storativity attributed to consolidated soil particles [Jang et al., 

2008]. With the rise of induced seismicity from fluid injection related to fracking activities 

[Chang and Segall, 2016; Shirzaei et al., 2016], there is also concern that a sufficiently large 

magnitude event can affect groundwater or alter the properties of freshwater aquifers nearby 

[Wang et al., 2017]. Additional work is needed studying changes in elastic storativity due to 

earthquakes.  

 

This chapter is adapted from a journal article in preparation for submission.  
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CHAPTER 6: IMPACT OF LOCAL SUBSIDENCE AND GLOBAL CLIMATE 

CHANGE ON FLOODING SEVERITY FROM HURRICANE HARVEY 

 

Abstract: Hurricane Harvey caused unprecedented flooding and socioeconomic devastation 

in Eastern Texas with high winds, elevated storm tide, and record rainfall. Inland flooding is 

mapped with satellite radar imagery and vast areas outside of hazard zones are overwhelmed. 

We explore subsidence using measurements with synthetic aperture radar interferometry and 

find that prior to the cyclone 89% of the flooded area subsided 3 mm/yr or more. The 

robust correlation demonstrates subsidence intensifies flood severity by modifying base 

flood elevations and topographic gradients.  Given projections of sea level rise and ongoing 

subsidence through 2100, we determine that 247-294 km2 of land is at risk of inundation 

during a future cyclone, compared to 100-158 km2 considering sea level rise alone. This 

study highlights the importance of incorporating local land subsidence in flood resilience 

strategies. 

 

6.1 Background 

Climate change amplifies flooding in coastal cities around the world and such 

flooding is further exacerbated by a combination of anthropogenic and natural changes to 

the land surface [Hanson et al., 2011]. Sustained climate warming trends result in global Sea 

Level Rise (SLR), increasing both the occurrence and extent of flooding [Hirabayashi et al., 

2013; Aerts et al., 2014]. Concurrent ocean temperature rise increases the frequency and 

intensity of tropical cyclones [Knutson et al., 2010; Mousavi et al., 2011; Woodruff et al., 2013] and 

storm surge magnitudes [Lin et al., 2012]. In addition to global climate change phenomena, 
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localized anthropogenic changes to land usage and cover also worsens flooding by wetland 

depredation [Day et al., 2007], conversion to less permeable ground cover [Liscum, 2001], and 

land subsidence. The vertical motion of land surface primarily stems from groundwater and 

hydrocarbon extraction and can lower flood control structures [Dixon et al., 2006], change 

floodplain boundaries and base flood drainage [Wang et al., 2012], and submerge wetlands 

[Galloway et al., 2003; Morton et al., 2006]. Already, the combined effects of land subsidence 

and SLR prompted construction of expensive flood defense infrastructure in Tokyo, 

Bangkok, and Shanghai [Nicholls and Cazenave, 2003], elevated housing in the Philippines 

[Jamero et al., 2017], and abandoned communities in the greater Houston area [Ingebritsen and 

Galloway, 2014]. Storm surge flooding is particularly sensitive to SLR in Galveston Bay 

[Warner and Tissot, 2012] and furthermore, the land subsides due to both aquifer [Coplin, L.S., 

Galloway, 1999] and hydrocarbon reservoir depletion [Holzer and Bluntzer, 1984]. The 

Houston-Galveston region acts as a natural laboratory to study the flooding patterns during 

cyclones and the convergence of disastrous, anthropogenic complications. 

Following rapid intensification Hurricane Harvey made landfall on August 25th, 2018, 

then stalled over Texas for three days causing a rare 9000-year extreme precipitation event as 

a tropical storm [van Oldenborgh et al., 2017]. The cyclone spawned during a natural warm 

swing of temperature variances in the North Atlantic Ocean [Rosen, 2017], however, 

modeling indicates global warming increased the intensity of rainfall increased by 15% and 

the probability of this much rain or more by a factor of three [van Oldenborgh et al., 2017]. The 

category-4 storm claimed 80 lives, displaced multitudes, damaged more than 80,000 houses 

lacking flood insurance [Shultz et al., 2017], of which most are outside of the Federal 

Emergency Management Agency (FEMA) designated 500-year flood zone [Blessing et al., 
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2017]. These severe socioeconomic consequences illustrate the importance of disseminating 

the concerted impacts of global climate change and localized land subsidence to anomalous 

flooding. 

In this chapter, the spatial extent of flooding is observed through analysis of 

backscatter properties of synthetic aperture radar (SAR) data sets. Second, the extent of 

storm surge flooding is determined by modeling inundation during the storm tide on a high-

resolution DEM created with Light Detection and Ranging (LIDAR) data. Third, land 

subsidence in the region is detected for the years preceding the cyclone using InSAR and a 

chi-squares goodness of fit test to determine the significance of the correlation between 

flooded and subsiding areas. Finally, focus is directed to future coastal flood patterns by 

2100 considering projections of sea level rise, continued subsidence, and storms. 

 

6.2 Estimating the Extent of the Harvey Flooding 

Change detection to determine the near real-time flood extent using multi‐temporal 

satellite SAR data sets offers the benefit of broad spatial cover and cloud penetration [Long et 

al., 2014; Clement et al., 2017]. A snapshot of the extent of the flooded zone due to Hurricane 

Harvey is mapped using synthetic aperture radar (SAR) images acquired by Sentinal-1A/B 

satellites. Following the approach of Clement et al. [2017], a flood-free reference amplitude 

image is generated using 44 SAR images acquired prior to the hurricane. The amplitude 

values of each pixel in the reference image are the median of the amplitude time series, 

minimizing the effects of seasonal surface changes and enhancing the signal to noise ratio. 

The difference of amplitudes is calculated between the reference image and an image 

acquired after the storm on August 30th, reflecting the change in radar backscattering  
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primarily due to flooding. The speckle noise is removed from both the pre-cyclonic 

reference image and the flood image with a median filter of 5×5 pixels. This minimally 

impacts the reference image and improves the signal to noise ratio for flood image. Clement 

et al. [2017] further filter the difference images using a reference DEM to remove the zones 

that are unlikely to flood. However, in this case this step is avoided because the DEM is 

possibly modified by local land subsidence. The criteria for identifying flooded pixels is given 

by;  

𝑃(𝑥, 𝑦) < μ − 𝑓𝑐 σ                                                                            (6.1) 

 

Figure 6.1. Study Overview (a) SAR satellite footprints for ALOS-PALSAR (green) and 

Sentinel-1A/B SAR (red). Inland flooded pixels from runoff and precipitation are detected 

using Sentinel SAR. Area inundated due to a 1.3-meter storm tide identified with magenta 

markers. Location marked by cyan box is location of (B) tide gauge time series from 

NOAA station located at Galveston Bay entrance, North Jetty (Station ID: 8771341). 
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where μ and σ are the mean and standard deviation of difference image and 𝑓𝑐 is a 

coefficient. If the pixel located at azimuth and range location of (𝑥, 𝑦) passes this test, it is 

flooded. The coefficient 𝑓𝑐 is site dependent and Clement et al., [2017] following Long et al. 

[2014] consider it to be 1.5. However, visual inspections indicate that 𝑓𝑐 equal to 1.25 yields a 

more accurate estimate of flood extent for this area (Figure 6.1). The satellite frame 

encompasses the Houston metropolitan area and inland suburbs. Extensive flooding is 

detected west and southwest of the Houston metropolitan area, with a total submerged area 

of 782 km2 (Figure 6.1a). Although many concentrations follow river channels, there is also 

extensive flooding beyond the designated 500-year flood zone. A National Oceanic and 

Atmospheric 

Administration (NOAA) 

tide gauge in Galveston 

records a high storm tide 

of 1.3 m above mean sea 

level (Figure 6.1b). 

Focusing on the 

coastal region, the flood 

extent due to storm tide is 

modeled for Harris and 

Galveston counties on 1m x 1m horizontal resolution LIDAR DEMs (Figure 6.2), which are 

reviewed by NOAA. Harris County data (data.noaa.gov/dataset/2001-hcfcd-lidar-harris-

county-tx) was collected in 2001 and Galveston County in 2005 

(coast.noaa.gov/htdata/lidar1_z/geoid12a/data/89/). Heights are given in the North 

 

Figure 6.2. LiDAR Footprints. Harris County (green) 

acquired in 2001 and Galveston County (red) acquired in 

2005.  
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American Vertical Datum of 1988 (NAVD 88) reference frame and the vertical error 

associated with LiDAR DEM is ~10 cm. In modeling the high storm tide of 1.3 m on the 

LIDAR DEMs, floods overwhelm 71 km2, including much of the northern coastlines of 

Galveston Island and Bolivar Peninsula (Figure 6.1a), as well as low-lying shores of the 

Houston Ship Channel and several natural and man-made islands. However, the storm tide 

does not extend far inland. The total flooded area for both the inland and coastal regions is 

853 km2.  

 

6.3. Flooding Compared to Hazard Zones 

National Flood Hazard Layer (NFHL) incorporates all flood insurance rate map 

databases published by FEMA. The primary risk classifications in the study area are a 0.2% 

annual chance flood risk (500-year flood) and a minimal risk (Figure 6.3a). Areas flooded by 

Hurricane Harvey, as detected from Sentinel-1A/B are compared with the NFHL risk 

designation (Figure 6.3b). Assuming a pixel size of 50m x 50m, the total area flooded in a 

500-year flood zone is 27 km2 and that in a minimal risk classification is 115 km2. In the 

following, land subsidence is investigated as a possible driver for flood waters to accumulate 

in minimal risk areas. 

 

 

 

 

 

Figure 6.3 next page) Flood Hazard Areas and Classification (a) FEMA NFHL 500-yr flood 

areas (red) and areas of minimal hazard (yellow) mapped as of 2015 (b) NFHL Classification 

of flooded pixels detected with SAR. 
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6.4 Subsidence and Flooding 

Historically the study area subsided due to oil and gas production [Holzer and Bluntzer, 

1984] and groundwater exploitation [Kearns et al., 2015]. Rapid groundwater extraction 

occurred prior to 1980 in the Houston Galveston area; since 2005, hydraulic head levels are 

relatively stable with annual change of less than 1 m (Figure 6.4), yet prior pumping may still 

have an effect [Poland and Davis, 1969]. 

 

Figure 6.4) Water Level History (a) Colored circles show well level change per year 

(2005-17). Wells north of the city decline at this time, yet the Houston and coastal wells 

remain comparatively stable. (b) Time series of selected wells. (c) Extended time series 

displaying period of significant drawdown, which begins to reverse in the 1970-80’s. 

www.waterdata.usgs.gov. 

6.5 InSAR and GNSS Data  

InSAR and GNSS are widely used to monitor land subsidence due to natural and 

anthropogenic processes [Galloway and Burbey, 2011; Miller and Shirzaei, 2015]. To characterize 

the rate of vertical land motion prior to the cyclone, a multitemporal InSAR approach is 

applied to large data sets from ALOS and Sentinel 1A/B satellites in combination with 

horizontal velocities of continuous GNSS stations [Shirzaei et al., 2013b, 2017]. To transfer 

the vertical deformation estimates into a continental framework, NA12, a 1-D conformal 



  114 

transformation is applied to the rates of vertical motion at continuous GNSS stations. 

Wavelet-Based InSAR (WabInSAR) algorithm is implemented, which is a multitemporal 

SAR interferometric approach, [Shirzaei, 2013; Shirzaei and Bürgmann, 2013; Shirzaei et al., 

2017].  

 

Figure 6.5) Overview of ALOS Frames and LOS Velocity Maps (identified by outline 

color). The colormap is uniform for all maps where cool colors are moving away from the 

satellite. Average heading and incidence angles are 345º and 38.5º. 
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Starting with a large set of SAR images acquired from similar radar viewing geometry, they 

are precisely co-registered to the same master image. The flat earth effect and topography are 

removed using a reference 30 m Shuttle Radar Topography Mission DEM [Farr et al., 2007] 

and satellite ephemeris data [Franchioni and Lanari, 1999]. The algorithm applies a statistical 

framework to identify elite pixels based on the complex phase noise estimated with wavelet 

analysis. WabInSAR implements a variety of wavelet-based filters to correct the effects of 

topography correlated atmospheric delay [Shirzaei and Bürgmann, 2012]. Lastly, through a 

reweighted least square approach, WabInSAR inverts the interferometric phase and 

generates a seamless time series of the line-of-sight (LOS) surface deformation.  

Overlapping frames of ALOS 

in ascending orbit include 101 L-

Band SAR images acquired in 8 

partially overlapping tracks and 

spanning the period 2007-2011 

(Appendix A.1). The average heading 

and incidence angles are 345 and 38.5 

degrees, respectively. These datasets 

generate 496 high-quality 

interferograms (Appendix A.2). The 

LOS displacement rates are shown in Figure 6.5, which include more than 20,000,000 pixels 

at ~50 m resolution.  

This method I also applied to a data set of 44 C-band images acquired in descending 

orbit of Sentinel-1A/B satellites spanning the period 2015/12/21 and 2017/08/24 

(Appendix A.2). 195 interferograms are generated with spatial and temporal baselines less 

 

Figure 6.6) LOS Velocity via Sentinel-1-A/B.  

Cool colors are moving away from the satellite. 

Average heading and incidence angles are 192º 

and 23º. 
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than 45 m and 120 days, respectively. The pixel size is ~50m x 50m.  The specifics of this 

SAR processing are detailed in Shirzaei et al., [2017]. LOS displacement rates are shown in 

Figure 6.6.  

To correct LOS measurements for horizontal motions due to tectonic processes, the 

approach of Burgmann et al. [2006] is implemented and the horizontal velocities of permanent 

global navigation satellite system (GNSS) stations, both E-W, and N-S components 

[Bürgmann et al., 2006]. The measurements of more than 500 permanent GNSS stations of 

the PBO network across southern Texas are provided by University of Nevada geodetic 

laboratory [Blewitt et al., 2013]. A subset of these stations with measurements spanning the 

duration of SAR acquisitions is used to calculate and remove the effect of horizontal 

displacement rates. The remaining signal considered to be solely due to vertical land motion 

and is projected on the vertical direction using satellite unit vectors. 

 
Figure 6.7. Vertical Velocity Maps, The colormap represents subsidence rates calculated 

from multitemporal SAR interferometric analysis of (a) ALOS and (b) Sentinel-1A/B to 

generate vertical velocity map. 

 

InSAR derived subsidence velocities show a rate up to 49 mm/yr during the ALOS 

acquisition period (Jul-07 – Jan-11, Figure 6.7a) and 34 mm/yr during Sentinel (Dec-15 to 
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Aug-17, Figure 6.7b). Both data sets are also characterized by several localized zones of 

uplift, potentially related to salt diapirs [Huffman et al., 2004], tectonic processes, and/or 

faulting [Qu et al., 2015]. The standard deviation between ALOS and GNSS is 2.34 mm/yr, 

Sentinel 1-A/B, and GNSS is 6.1 mm/yr, and ALOS and Sentinel1-A/B is 5.0 mm/yr, 

which constitutes good agreement. Considering 3 mm/yr. as the threshold for subsidence to 

be significant, 89% of the inland flooded areas are also characterized by significant 

subsidence prior to the storm (Figure 6.8a&b).  

 

Figure 6.8) Subsidence of Flooded Areas. Areas flooded by Hurricane Harvey and 

detected following investigating Sentinel-1A/B SAR backscattering intensity. The 

colormap represents subsidence rates calculated from multitemporal SAR interferometric 

analysis of (a) ALOS and (b) Sentinel-1A/B to generate vertical velocity map.  

A Chi-square test is performed to investigate the statistical significance of the 

correlation between observed subsidence and mapped flood extent, The Chi-square statistic 

tests the similarity between frequency distributions, where out of a total of potential 

outcomes, the observed frequency is compared to expected frequency for a particular 

outcome [Meyer, 1970]. To define these outcomes, the subsidence map derived from ALOS 

and flood map derived from Sentinel-1A/B are interpolated onto a reference grid. At each 

collocated area, it is determined if subsidence greater than 3 mm/yr occurs or not 𝑠, and if 
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flooding 𝑓 is detected or not. Four potential outcomes are identified as: 1) flooded, 

subsiding 2) flooded, not subsiding 3) not flooded, subsiding 4) not flooded, not subsiding. 

The expected frequency is calculated separately for each outcome, 𝐸𝑖 = (𝑛𝑠 ∗ 𝑛𝑓)/𝑛, where 

n is the number of total observations.  The chi-squares statistic, 𝜒2 = ∑
(𝑂−𝐸)2

𝐸

4
𝑖=1 , is then 

compared to the inverse of a chi-square cumulative distribution function with probability 

significance level (99%) and one degree of freedom. If the chi-squares statistic is larger, the 

null hypothesis is rejected and the populations are not independent. 

If flooded areas and subsidence zones are correlated, the flooded area should be 

proportional to the subsided area. Thus, the Chi-square statistic is used to test the null 

hypothesis that flooded areas are randomly distributed with respect to subsided zones. 

Figures 6.8 a&b insets show the results of the Chi-squares test at 99% confidence level. Both 

ALOS and Sentinel data sets have levels of correlation exceeding the 99% significance level 

and thus the null hypothesis is rejected. Since flooded areas and subsided zones are 

correlated, special attention to subsidence patterns is needed to identify where floodwaters 

can collect without proper draining. Other anthropogenic factors likely intensified damage 

from precipitation and runoff, as Houston has experienced a 114% increase in asphalt and 

concrete land cover since 1984 [Khan, 2005].  

 

6.6 Inundation Extent Forecasting 

Exploring the contribution of land subsidence to coastal inundation considering SLR 

projections, LIDAR data is combined with InSAR derived subsidence maps projected 

forward 100 years. Next, the SLR forecast based on Representative Concentration Pathway 
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(RCP) 8.5 is applied  [IPCC Working Group 1, 2014]. The forecast range by 2100 (67% 

probability) is from 0.78 to 1.50 meters [DeCaonto and Pollard, 2016]. The RCP 8.5 is a 

scenario in which no significant effort to mitigate or remove emissions is taken. 

 

Figure 6.9) Inundation Scenarios (a – i) (a) Areas of inundation by 2100 using SLR 

forecast range of 0.8 to 1.5 meters following RCP 8.5 and modeled using a LiDAR DEM 

at 2m x 2m resolution to simulate surface topography. (b) Zoom on Texas City and (c) 

Galveston. 

 

(d) Areas of inundation by 2100 using SLR forecast and a Hurricane Harvey equivalent 

storm tide. (e) Zoom on Texas City and (f) Galveston.   
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(g) Areas of inundation by 2100 using SLR forecast and static subsidence following RCP 

8.5. (h) Zoom on Texas City and (i) Galveston. 

Using the lower and upper RCP projection as bounds, modeling shows that SLR 

alone will submerge an area from 100 to158 km2 by 2100 (Figure 6.9a-c). Sea level rise 

accompanied by a storm tide equivalent to that of Hurricane Harvey, the area engulfed is 197 

to 235 km2 (Figure 6.9d-f). Next, projections of steady subsidence rates are considered in 

addition to SLR and it is determined that the total flooded area to be 169 km2 to 215 km2 

(Figure 6.9g-i). Finally, a composite scenario including SLR, a storm tide of 1.30 m, and 

unabated subsidence are projected (Figure 6.10), in which the area vulnerable to flooding is 

247 or 294 km2. Much of Galveston Island, the Bolivar Peninsula, Texas City and La Marque 

are affected in these models. Although this scenario is extreme, the exercise allows for 

exploring a worst-case scenario and gives perspective on potential flooding patterns.  
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Figure 6.10. Modeling Extreme Coastal Flooding (a) Areas of inundation by 2100 using 

SLR forecast following RCP 8.5, static subsidence, and a Hurricane Harvey equivalent 

storm tide of 1.3 meters above MSL. (b) Texas City and (c) Galveston exhibit extensive 

flooding whether SLR is at the lower bound or upper bound of the RCP range.  

6.7 Discussion 

The unprecedented flooding during Hurricane Harvey results primarily from heavy 

rainfall, yet its correlation to localized land subsidence is robust. Land subsidence is likely to 

continue throughout the 21st century and has the potential to accelerate if substantial 

groundwater overdraft resumes. Moreover, accelerated land subsidence is possible with 

rising oil prices, because oil production rates are price-dependent [Rehrl and Friedrich, 2006]. 

 Houston is a natural laboratory for studying the combined effects of global climate 

change on coastal city flooding, including long-term SLR and intensified hurricanes. The 

probability of Harvey-like rainfall, estimated to be ~1% during the period 1981-2000 under 

RCP 8.5 scenario, but it rises to 18% for the period 2081-2100 [Emanuel, 2017]. Here, the 

contributions of local land subsidence to flood severity are confirmed. Improved inundation 
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scenarios are developed, integrating high-resolution digital topography, detailed and accurate 

estimates of coastal LLS, probabilistic projections of SLR and a Harvey-like storm tide.    

These techniques do have limitations. SAR imaging used for flood mapping and 

interferometry for deformation time series relies on the availability of satellite scenes, which 

are as frequent as every 6 days with Sentinel. However, the availability of an image at peak 

flood is unlikely. In this case, floodwater recession may have occurred prior to the 

acquisition, making this estimate a lower bound on the extent of flooding.  Near real-time 

flood mapping would require the use of airborne radar, like the Uninhabited Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR).  

As of 2005, more than 40 million people worldwide lived in areas prone to coastal 

flooding, and over $3,000 Billion USD is at risk [Hanson et al., 2011]. Coastal populations will 

grow more than 300% by 2070 and the properties affected by flash flooding will value to 

~9% of the projected global GDP [Aerts et al., 2014]. The countries of USA, Japan, and the 

Netherlands include the most areas with significant flood exposure, but major flood disasters 

can affect regional to continental scales making flood hazard interdependencies an additional 

concern [Jongman et al., 2014]. Combining remote sensing techniques such as InSAR and 

GNSS will provide a broad perspective of vertical land motion. A more accurate hydrologic 

model including subsidence and sea level rise can help coastal cities to remap flood risk 

zones and improve their flood resilience. The techniques implemented in this study can be 

used to evaluate other cities, inform policy decisions, improve hazard risk assessments and 

flood resilience strategies.  

 

This chapter is adapted from a manuscript in preparation for submission  
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CHAPTER 7: CONCLUSION 

Monitoring and managing groundwater is crucial for ensuring freshwater availability. 

Geodesy and remote sensing techniques, including InSAR, GPS, and LIDAR capture the 

surface manifestation of aquifer deformation at depth. In turn, time series and inversion 

analysis reveals insight about underground reservoir characteristics, water in storage, and 

forecast areas where deformation is likely to form hazardous earth fissures and flood prone 

zones. Case studies featured in this work lead to several conclusions: 

1) In the Phoenix AMA, three subsidence zones with unique deformation patterns and 

characteristics are detected, as well as a broad uplift zone coinciding with recharge well 

locations. Subsidence continues in locations where well levels have significantly recovered. 

Aquifer properties are estimated, including elastic storativity, inelastic storativity, and the 

compaction time constant. Distinctive horizontal deformation patterns indicate there are 

heterogeneities in either the aquifer system material or the basement.  

2) For the Phoenix AMA, time series of displacement are used to constrain an inversion 

for volumetric strain. Volumetric strain at depth is used to solve for the stress tensor near 

the surface. By examining the ratio of minimum principal stress and the tensile strength of 

the aquifer material, areas prone to earth fissures are identified.  

3) Investigating a long-time series of deformation and well levels in Tucson, the volume 

of storage previously permanently lost to compaction is calculated. Decelerated compaction 

is observed with the implementation of artificial recharge effort, likely reducing hazards 

associated with earth fissuring and infrastructure damage. Calculation of aquifer properties 

suggests that vertical hydraulic conductivity is comparatively high in this area.  
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4) Elastic storage values calculated before and after the 2010-2011 Canterbury 

earthquake sequence are statistically different. A pattern is sought by comparing the patterns 

of elastic storativity change to static strain of dilatation, dynamic strain of peak ground 

velocity, maps of liquefaction. Results are inconclusive, likely due to the complex nature of 

the earthquake sequence, layered aquifer system, and data availability.  

5) Hurricane Harvey devastated Houston and Galveston, Texas in August 2017. The 

spatial extent of flooding observed with SAR backscatter analysis is compared to subsidence 

maps derived from InSAR. Of the flooded area, 89% subsided at least 3 mm/yr in the years 

leading up to the cyclone. Scenarios of future coastal flood patterns by 2100 are explored 

using LIDAR data and projections of sea level rise, continued subsidence, and intense 

storms. Much of the coast of Houston-Galveston is subject to inundation in these scenarios. 

These case studies highlight that each aquifer system has unique properties and 

behavior. For example, in Phoenix artificial recharge is tied to a broad uplift zone, while in 

Tucson, artificial recharge diffuses quickly and uplift is not detected. Also, Phoenix 

experiences residual compaction where wells have recovered, whereas subsidence in Tucson 

has stalled. This work also emphasizes the versatility of the methods used. For example, 

identifying and analyzing subtle seasonal variations for calculation of elastic storativity is 

applicable in a variety of environments. Techniques used in the deserts of Arizona are also 

applied to temperate, seismically active areas like Christchurch.  

Assessing aquifer responses and understanding subterranean poroelastic processes 

and mechanisms are vital for sustainability of freshwater supplies. The increasing availability 

of high spatiotemporal resolution SAR data and refinement of inversion techniques will 

continue to improve our understanding.  
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Table S1) Frame ID and dates of ALOS L-band SAR images. Used for estimating pre-

cyclone vertical land motion 

ALOS 

Frame 

Year Month Date 

F560P176 2007 7 13 

2007 10 13 

2008 1 13 

2008 4 14 

2008 5 30 

2009 1 15 

2010 6 5 

2010 7 21 

2010 9 5 

2010 12 6 

2011 1 21 

F570P175 2006 12 24 

2007 9 26 

2007 12 27 

2008 2 11 

2008 3 28 

2008 6 28 

2008 12 29 

2009 3 31 

2009 10 1 

2010 5 19 

2010 7 4 

2010 11 19 

2011 1 4 

F570P176 

  

  

 

  

  

  

  

  

  

2007 7 13 

2007 10 13 

2008 1 13 

2008 4 14 

2008 5 30 

2009 1 15 

2010 6 5 

2010 7 21 

2010 9 5 

2010 12 6 

ALOS 

Frame 

Year Month Date 

F570P176 2011 1 21 

F580P174 2006 12 7 

2007 6 9 

2007 9 9 

2007 12 10 

2008 1 25 

2008 4 26 

2009 6 14 

2009 9 14 

2009 12 15 

2010 3 17 

2010 5 2 

2010 6 17 

2010 9 17 

2010 12 18 

F580P175 2006 12 24 

2007 9 26 

2007 12 27 

2008 2 11 

2008 3 28 

2008 6 28 

2008 12 29 

2009 3 31 

2009 10 1 

2010 5 19 

2010 7 4 

2010 11 19 

2011 1 4 

F580P176 

  

  

  

  

  

2007 7 13 

2007 10 13 

2008 1 13 

2008 4 14 

2008 5 30 

2009 1 15 
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ALOS 

Frame 

Year Month Date 

F580P176 2010 6 5 

2010 7 21 

2010 9 5 

2010 12 6 

2011 1 21 

F590P174 

  

  

  

  

  

  

 

  

  

  

  

2006 12 7 

2007 6 9 

2007 9 9 

2007 12 10 

2008 1 25 

2008 4 26 

2009 6 14 

2009 9 14 

2009 12 15 

2010 3 17 

2010 5 2 

2010 6 17 

ALOS 

Frame 

Year Month Date 

F590P174 

 

2010 9 17 

2010 12 18 

F590P175 2006 12 24 

2007 5 11 

2007 9 26 

2007 12 27 

2008 2 11 

2008 3 28 

2008 6 28 

2008 12 29 

2009 3 31 

2009 10 1 

2010 5 19 

2010 7 4 

2010 11 19 

2011 1 4 
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Table S2) ALOS interferometric pairs 

ALOS Frame Number of pairs Image 1 Image 2 Perpendicular baseline (m) 

F560P176 (47) 20070713 20071013 605.9 

20070713 20080113 960.9 

20070713 20080414 1733.4 

20070713 20080530 1501.8 

20070713 20090115 -1387.8 

20070713 20100605 910.9 

20070713 20100721 924.9 

20070713 20100905 1144.0 

20070713 20101206 1293.5 

20070713 20110121 1671.0 

20071013 20080113 355.0 

20071013 20080414 1127.5 

20071013 20080530 895.9 

20071013 20090115 -1993.7 

20071013 20100605 305.0 

20071013 20100721 319.0 

20071013 20100905 538.0 

20071013 20101206 687.5 

20071013 20110121 1065.0 

20080113 20080414 772.5 

20080113 20080530 540.9 

20080113 20100605 -50.0 

20080113 20100721 -36.0 

20080113 20100905 183.0 

20080113 20101206 332.5 

20080113 20110121 710.0 

20080414 20080530 -231.6 

20080414 20100605 -822.5 

20080414 20100721 -808.4 

20080414 20100905 -589.4 

20080414 20101206 -439.9 

20080414 20110121 -62.4 

20080530 20100605 -590.9 

20080530 20100721 -576.9 

20080530 20100905 -357.9 

20080530 20101206 -208.4 

20080530 20110121 169.1 
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20100605 20100721 14.1 

20100605 20100905 233.1 

20100605 20101206 382.6 

20100605 20110121 760.1 

20100721 20100905 219.0 

20100721 20101206 368.5 

20100721 20110121 746.0 

20100905 20101206 149.5 

20100905 20110121 527.0 

20101206 20110121 377.5 

F570P175 60 20061224 20070926 1607.1 

20061224 20071227 1915.3 

20061224 20080628 1022.9 

20061224 20081229 -285.0 

20061224 20090331 611.5 

20061224 20091001 1109.3 

20070926 20071227 308.2 

20070926 20080211 1175.4 

20070926 20080328 1175.4 

20070926 20080628 -584.2 

20070926 20081229 -1892.1 

20070926 20090331 -995.6 

20070926 20091001 -497.8 

20070926 20100519 622.2 

20070926 20100704 889.7 

20070926 20101119 1040.7 

20070926 20110104 1449.6 

20071227 20080211 867.2 

20071227 20080328 867.2 

20071227 20080628 -892.4 

20071227 20090331 -1303.8 

20071227 20091001 -806.0 

20071227 20100519 314.0 

20071227 20100704 581.5 

20071227 20101119 732.5 

20071227 20110104 1141.4 

20080211 20080328 0.0 

20080211 20080628 -1759.6 

20080211 20091001 -1673.2 

20080211 20100519 -553.2 
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20080211 20100704 -285.6 

20080211 20101119 -134.6 

20080211 20110104 274.2 

20080328 20080628 -1759.6 

20080328 20091001 -1673.2 

20080328 20100519 -553.3 

20080328 20100704 -285.7 

20080328 20101119 -134.7 

20080328 20110104 274.2 

20080628 20081229 -1307.9 

20080628 20090331 -411.4 

20080628 20091001 86.4 

20080628 20100519 1206.4 

20080628 20100704 1474.0 

20080628 20101119 1625.0 

20081229 20090331 896.5 

20081229 20091001 1394.3 

20090331 20091001 497.8 

20090331 20100519 1617.8 

20090331 20100704 1885.3 

20091001 20100519 1120.0 

20091001 20100704 1387.5 

20091001 20101119 1538.6 

20091001 20110104 1947.4 

20100519 20100704 267.6 

20100519 20101119 418.6 

20100519 20110104 827.5 

20100704 20101119 151.0 

20100704 20110104 559.9 

20101119 20110104 408.9 

F570P176 46 20070713 20071013 612.8 

20070713 20080113 977.1 

20070713 20080414 1760.6 

20070713 20080530 1531.9 

20070713 20090115 -1415.1 

20070713 20100605 925.3 

20070713 20100721 940.3 

20070713 20100905 1162.8 

20070713 20101206 1321.7 

20070713 20110121 1705.1 
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20071013 20080113 364.3 

20071013 20080414 1147.8 

20071013 20080530 919.1 

20071013 20100605 312.4 

20071013 20100721 327.5 

20071013 20100905 550.0 

20071013 20101206 708.9 

20071013 20110121 1092.3 

20080113 20080414 783.5 

20080113 20080530 554.8 

20080113 20100605 -51.8 

20080113 20100721 -36.8 

20080113 20100905 185.7 

20080113 20101206 344.7 

20080113 20110121 728.0 

20080414 20080530 -228.7 

20080414 20100605 -835.3 

20080414 20100721 -820.3 

20080414 20100905 -597.8 

20080414 20101206 -438.8 

20080414 20110121 -55.5 

20080530 20100605 -606.6 

20080530 20100721 -591.6 

20080530 20100905 -369.1 

20080530 20101206 -210.1 

20080530 20110121 173.2 

20100605 20100721 15.1 

20100605 20100905 237.5 

20100605 20101206 396.5 

20100605 20110121 779.8 

20100721 20100905 222.5 

20100721 20101206 381.4 

20100721 20110121 764.7 

20100905 20101206 159.0 

20100905 20110121 542.3 

20101206 20110121 383.3 

F580P174 83 20061207 20070609 -115.3 

20061207 20070909 416.8 

20061207 20071210 817.9 

20061207 20080125 1146.6 
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20061207 20090614 -936.3 

20061207 20090914 -682.1 

20061207 20091215 -103.9 

20061207 20100317 736.8 

20061207 20100502 854.9 

20061207 20100617 897.0 

20061207 20100917 1030.1 

20061207 20101218 1512.5 

20070609 20070909 532.1 

20070609 20071210 933.2 

20070609 20080125 1261.9 

20070609 20090614 -821.0 

20070609 20090914 -566.8 

20070609 20091215 11.4 

20070609 20100317 852.1 

20070609 20100502 970.2 

20070609 20100617 1012.3 

20070609 20100917 1145.4 

20070609 20101218 1627.9 

20070909 20071210 401.1 

20070909 20080125 729.8 

20070909 20080426 1927.9 

20070909 20090614 -1353.1 

20070909 20090914 -1098.9 

20070909 20091215 -520.7 

20070909 20100317 320.0 

20070909 20100502 438.1 

20070909 20100617 480.1 

20070909 20100917 613.2 

20070909 20101218 1095.7 

20071210 20080125 328.7 

20071210 20080426 1526.8 

20071210 20090614 -1754.2 

20071210 20090914 -1500.0 

20071210 20091215 -921.8 

20071210 20100317 -81.1 

20071210 20100502 37.0 

20071210 20100617 79.1 

20071210 20100917 212.2 

20071210 20101218 694.6 
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20080125 20080426 1198.1 

20080125 20090914 -1828.7 

20080125 20091215 -1250.5 

20080125 20100317 -409.8 

20080125 20100502 -291.7 

20080125 20100617 -249.7 

20080125 20100917 -116.6 

20080125 20101218 365.9 

20080426 20100317 -1607.9 

20080426 20100502 -1489.8 

20080426 20100617 -1447.7 

20080426 20100917 -1314.6 

20080426 20101218 -832.1 

20090614 20090914 254.2 

20090614 20091215 832.4 

20090614 20100317 1673.1 

20090614 20100502 1791.2 

20090614 20100617 1833.3 

20090614 20100917 1966.4 

20090914 20091215 578.2 

20090914 20100317 1418.9 

20090914 20100502 1537.0 

20090914 20100617 1579.1 

20090914 20100917 1712.2 

20091215 20100317 840.7 

20091215 20100502 958.8 

20091215 20100617 1000.9 

20091215 20100917 1134.0 

20091215 20101218 1616.5 

20100317 20100502 118.1 

20100317 20100617 160.2 

20100317 20100917 293.3 

20100317 20101218 775.7 

20100502 20100617 42.0 

20100502 20100917 175.1 

20100502 20101218 657.6 

20100617 20100917 133.1 

20100617 20101218 615.6 

20100917 20101218 482.5 

F580P175 60 20061224 20070926 1624.2 
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20061224 20071227 1941.6 

20061224 20080628 1022.8 

20061224 20081229 -300.6 

20061224 20090331 607.2 

20061224 20091001 1113.4 

20070926 20071227 317.4 

20070926 20080211 1189.2 

20070926 20080328 1196.4 

20070926 20080628 -601.4 

20070926 20081229 -1924.8 

20070926 20090331 -1017.0 

20070926 20091001 -510.8 

20070926 20100519 631.1 

20070926 20100704 898.1 

20070926 20101119 1060.3 

20070926 20110104 1473.4 

20071227 20080211 871.7 

20071227 20080328 879.0 

20071227 20080628 -918.8 

20071227 20090331 -1334.4 

20071227 20091001 -828.2 

20071227 20100519 313.7 

20071227 20100704 580.7 

20071227 20101119 742.9 

20071227 20110104 1156.0 

20080211 20080328 7.2 

20080211 20080628 -1790.6 

20080211 20091001 -1699.9 

20080211 20100519 -558.0 

20080211 20100704 -291.1 

20080211 20101119 -128.8 

20080211 20110104 284.3 

20080328 20080628 -1797.8 

20080328 20091001 -1707.2 

20080328 20100519 -565.3 

20080328 20100704 -298.3 

20080328 20101119 -136.1 

20080328 20110104 277.0 

20080628 20081229 -1323.4 

20080628 20090331 -415.6 
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20080628 20091001 90.7 

20080628 20100519 1232.6 

20080628 20100704 1499.5 

20080628 20101119 1661.8 

20081229 20090331 907.8 

20081229 20091001 1414.1 

20090331 20091001 506.2 

20090331 20100519 1648.1 

20090331 20100704 1915.1 

20091001 20100519 1141.9 

20091001 20100704 1408.8 

20091001 20101119 1571.1 

20091001 20110104 1984.2 

20100519 20100704 266.9 

20100519 20101119 429.2 

20100519 20110104 842.3 

20100704 20101119 162.3 

20100704 20110104 575.3 

20101119 20110104 413.1 

F580P176 46 20070713 20071013 618.9 

20070713 20080113 991.4 

20070713 20080414 1784.6 

20070713 20080530 1558.5 

20070713 20090115 -1439.2 

20070713 20100605 937.9 

20070713 20100721 953.9 

20070713 20100905 1179.4 

20070713 20101206 1346.8 

20070713 20110121 1735.2 

20071013 20080113 372.5 

20071013 20080414 1165.7 

20071013 20080530 939.6 

20071013 20100605 319.1 

20071013 20100721 335.0 

20071013 20100905 560.5 

20071013 20101206 727.9 

20071013 20110121 1116.3 

20080113 20080414 793.2 

20080113 20080530 567.1 

20080113 20100605 -53.4 
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20080113 20100721 -37.4 

20080113 20100905 188.1 

20080113 20101206 355.4 

20080113 20110121 743.9 

20080414 20080530 -226.1 

20080414 20100605 -846.6 

20080414 20100721 -830.7 

20080414 20100905 -605.2 

20080414 20101206 -437.8 

20080414 20110121 -49.4 

20080530 20100605 -620.5 

20080530 20100721 -604.5 

20080530 20100905 -379.0 

20080530 20101206 -211.7 

20080530 20110121 176.8 

20100605 20100721 16.0 

20100605 20100905 241.5 

20100605 20101206 408.8 

20100605 20110121 797.3 

20100721 20100905 225.5 

20100721 20101206 392.8 

20100721 20110121 781.3 

20100905 20101206 167.3 

20100905 20110121 555.8 

20101206 20110121 388.5 

F590P174 83 20061207 20070609 -95.0 

20061207 20070909 438.9 

20061207 20071210 847.9 

20061207 20080125 1182.6 

20061207 20090614 -928.2 

20061207 20090914 -668.8 

20061207 20091215 -85.4 

20061207 20100317 766.5 

20061207 20100502 888.1 

20061207 20100617 930.7 

20061207 20100917 1069.7 

20061207 20101218 1558.7 

20070609 20070909 533.8 

20070609 20071210 942.9 

20070609 20080125 1277.6 
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20070609 20090614 -833.2 

20070609 20090914 -573.8 

20070609 20091215 9.6 

20070609 20100317 861.5 

20070609 20100502 983.1 

20070609 20100617 1025.7 

20070609 20100917 1164.7 

20070609 20101218 1653.6 

20070909 20071210 409.1 

20070909 20080125 743.8 

20070909 20080426 1949.1 

20070909 20090614 -1367.1 

20070909 20090914 -1107.6 

20070909 20091215 -524.2 

20070909 20100317 327.6 

20070909 20100502 449.3 

20070909 20100617 491.9 

20070909 20100917 630.9 

20070909 20101218 1119.8 

20071210 20080125 334.7 

20071210 20080426 1540.0 

20071210 20090614 -1776.1 

20071210 20090914 -1516.7 

20071210 20091215 -933.3 

20071210 20100317 -81.4 

20071210 20100502 40.2 

20071210 20100617 82.8 

20071210 20100917 221.8 

20071210 20101218 710.7 

20080125 20080426 1205.3 

20080125 20090914 -1851.4 

20080125 20091215 -1268.0 

20080125 20100317 -416.2 

20080125 20100502 -294.5 

20080125 20100617 -251.9 

20080125 20100917 -112.9 

20080125 20101218 376.0 

20080426 20100317 -1621.5 

20080426 20100502 -1499.8 

20080426 20100617 -1457.2 
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20080426 20100917 -1318.2 

20080426 20101218 -829.3 

20090614 20090914 259.5 

20090614 20091215 842.9 

20090614 20100317 1694.7 

20090614 20100502 1816.4 

20090614 20100617 1858.9 

20090614 20100917 1998.0 

20090914 20091215 583.4 

20090914 20100317 1435.2 

20090914 20100502 1556.9 

20090914 20100617 1599.5 

20090914 20100917 1738.5 

20091215 20100317 851.8 

20091215 20100502 973.5 

20091215 20100617 1016.1 

20091215 20100917 1155.1 

20091215 20101218 1644.0 

20100317 20100502 121.7 

20100317 20100617 164.2 

20100317 20100917 303.3 

20100317 20101218 792.2 

20100502 20100617 42.6 

20100502 20100917 181.6 

20100502 20101218 670.5 

20100617 20100917 139.0 

20100617 20101218 627.9 

20100917 20101218 488.9 

F590P175 71 20061224 20070511 1811.9 

20061224 20070926 1641.1 

20061224 20071227 1967.4 

20061224 20080628 1022.9 

20061224 20081229 -315.7 

20061224 20090331 603.2 

20061224 20091001 1117.7 

20070511 20070926 -170.8 

20070511 20071227 155.5 

20070511 20080211 1031.8 

20070511 20080328 1046.0 

20070511 20080628 -789.0 
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20070511 20090331 -1208.7 

20070511 20091001 -694.3 

20070511 20100519 469.1 

20070511 20100704 735.4 

20070511 20101119 908.6 

20070511 20110104 1325.7 

20070926 20071227 326.3 

20070926 20080211 1202.6 

20070926 20080328 1216.8 

20070926 20080628 -618.1 

20070926 20081229 -1956.8 

20070926 20090331 -1037.9 

20070926 20091001 -523.4 

20070926 20100519 639.9 

20070926 20100704 906.2 

20070926 20101119 1079.4 

20070926 20110104 1496.6 

20071227 20080211 876.3 

20071227 20080328 890.5 

20071227 20080628 -944.5 

20071227 20090331 -1364.2 

20071227 20091001 -849.8 

20071227 20100519 313.6 

20071227 20100704 579.9 

20071227 20101119 753.1 

20071227 20110104 1170.2 

20080211 20080328 14.2 

20080211 20080628 -1820.8 

20080211 20091001 -1726.0 

20080211 20100519 -562.7 

20080211 20100704 -296.4 

20080211 20101119 -123.2 

20080211 20110104 294.0 

20080328 20080628 -1834.9 

20080328 20091001 -1740.2 

20080328 20100519 -576.9 

20080328 20100704 -310.5 

20080328 20101119 -137.4 

20080328 20110104 279.8 

20080628 20081229 -1338.6 
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20080628 20090331 -419.7 

20080628 20091001 94.7 

20080628 20100519 1258.0 

20080628 20100704 1524.4 

20080628 20101119 1697.5 

20081229 20090331 918.9 

20081229 20091001 1433.3 

20090331 20091001 514.5 

20090331 20100519 1677.8 

20090331 20100704 1944.1 

20091001 20100519 1163.3 

20091001 20100704 1429.7 

20091001 20101119 1602.8 

20100519 20100704 266.4 

20100519 20101119 439.5 

20100519 20110104 856.7 

20100704 20101119 173.1 

20100704 20110104 590.3 

20101119 20110104 417.2 
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Table S3: Dates of Sentinel1-A/B C-band SAR images used for estimating pre-cyclone 

vertical land motion, as well as flood mapping via a flood-free reference SAR amplitude 

image and post-cyclone amplitude image. 

Year Month Date 

20151221 2015 12 

20160114 2016 1 

20160126 2016 1 

20160326 2016 3 

20160419 2016 4 

20160630 2016 6 

20160712 2016 7 

20160724 2016 7 

20160928 2016 9 

20161004 2016 10 

20161016 2016 10 

20161022 2016 10 

20161103 2016 11 

20161109 2016 11 

20161203 2016 12 

20161215 2016 12 

20161221 2016 12 

20170108 2017 1 

20170114 2017 1 

20170213 2017 2 

20170219 2017 2 

20170225 2017 2 

20170303 2017 3 

Year Month Date 

20170315 2017 3 

20170321 2017 3 

20170327 2017 3 

20170402 2017 4 

20170408 2017 4 

20170420 2017 4 

20170426 2017 4 

20170502 2017 5 

20170508 2017 5 

20170526 2017 5 

20170607 2017 6 

20170613 2017 6 

20170619 2017 6 

20170625 2017 6 

20170701 2017 7 

20170713 2017 7 

20170725 2017 7 

20170806 2017 8 

20170812 2017 8 

20170818 2017 8 

20170824 2017 8 

20170830 2017 8 

 

 


