5 research outputs found

    Finding parallel functional pearls : automatic parallel recursion scheme detection in Haskell functions via anti-unification

    Get PDF
    This work has been partially supported by the EU H2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications–a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology) , by EPSRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore Systems” (EP/P020631/1), and by Scottish Enterprise PS7305CA44.This paper describes a new technique for identifying potentially parallelisable code structures in functional programs. Higher-order functions enable simple and easily understood abstractions that can be used to implement a variety of common recursion schemes, such as maps and folds over traversable data structures. Many of these recursion schemes have natural parallel implementations in the form of algorithmic skeletons. This paper presents a technique that detects instances of potentially parallelisable recursion schemes in Haskell 98 functions. Unusually, we exploit anti-unification to expose these recursion schemes from source-level definitions whose structures match a recursion scheme, but which are not necessarily written directly in terms of maps, folds, etc. This allows us to automatically introduce parallelism, without requiring the programmer to structure their code a priori in terms of specific higher-order functions. We have implemented our approach in the Haskell refactoring tool, HaRe, and demonstrated its use on a range of common benchmarking examples. Using our technique, we show that recursion schemes can be easily detected, that parallel implementations can be easily introduced, and that we can achieve real parallel speedups (up to 23 . 79 × the sequential performance on 28 physical cores, or 32 . 93 × the sequential performance with hyper-threading enabled).PostprintPeer reviewe

    Parallelizing Functional Programs by Generalization

    Get PDF
    List homomorphisms are functions that are parallelizable using the divide-and-conquer paradigm. We study the problem of finding a homomorphic representation of a given function, based on the Bird-Meertens theory of lists. A previous work proved that to each pair of leftward and rightward sequential representations of a function, based on cons- and snoc-lists, respectively, there is also a representation as a homomorphism. Our contribution is a mechanizable method to extract the homomorphism representation from a pair of sequential representations. The method is decomposed to a generalization problem and an inductive claim, both solvable by term rewriting techniques. To solve the former we present a sound generalization procedure which yields the required representation, and terminates under reasonable assumptions. We illustrate the method and the procedure by the parallelization of the scan-function (parallel prefix). The inductive claim is provable automatically

    Parallelizing functional programs by generalization

    No full text
    corecore