3,133 research outputs found

    Parallelization of irregularly coupled regular meshes

    Get PDF
    Regular meshes are frequently used for modeling physical phenomena on both serial and parallel computers. One advantage of regular meshes is that efficient discretization schemes can be implemented in a straight forward manner. However, geometrically-complex objects, such as aircraft, cannot be easily described using a single regular mesh. Multiple interacting regular meshes are frequently used to describe complex geometries. Each mesh models a subregion of the physical domain. The meshes, or subdomains, can be processed in parallel, with periodic updates carried out to move information between the coupled meshes. In many cases, there are a relatively small number (one to a few dozen) subdomains, so that each subdomain may also be partitioned among several processors. We outline a composite run-time/compile-time approach for supporting these problems efficiently on distributed-memory machines. These methods are described in the context of a multiblock fluid dynamics problem developed at LaRC

    Software Support for Irregular and Loosely Synchronous Problems

    Get PDF
    A large class of scientific and engineering applications may be classified as irregular and loosely synchronous from the perspective of parallel processing. We present a partial classification of such problems. This classification has motivated us to enhance Fortran D to provide language support for irregular, loosely synchronous problems. We present techniques for parallelization of such problems in the context of Fortran D

    Software Support for Irregular and Loosely Synchronous Problems

    Get PDF
    A large class of scientific and engineering applications may be classified as irregular and loosely synchronous from the perspective of parallel processing. We present a partial classification of such problems. This classification has motivated us to enhance Fortran D to provide language support for irregular, loosely synchronous problems. We present techniques for parallelization of such problems in the context of Fortran D

    A Parallel Mesh-Adaptive Framework for Hyperbolic Conservation Laws

    Full text link
    We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the time-dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented numerical schemes include standard finite-differences as well as shock-capturing central schemes, both in connection with Runge-Kutta type integrators. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading and MPI-distribution with dynamic load balancing. One- two- and three-dimensional test computations for the Euler equations have been carried out and show good parallel scaling behavior. The Racoon framework is currently used to study the formation of singularities in plasmas and fluids.Comment: late submissio

    Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow

    Get PDF
    In this work we are interested in numerical simulations for bedload erosion processes. We present a relaxation solver that we apply to moving dunes test cases in one and two dimensions. In particular we retrieve the so-called anti-dune process that is well described in the experiments. In order to be able to run 2D test cases with reasonable CPU time, we also describe and apply a parallelization procedure by using domain decomposition based on the classical MPI library.Comment: 19 page

    Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Full text link
    As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR) code, Enzo, designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 10^12 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA) to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.Comment: 23 pages, 5 figures. Peer reviewed technical paper accepted to the proceedings of Supercomputing 2001. This entry was a Gordon Bell Prize finalist. For more information visit http://www.TomAbel.com/GB

    Adaptive Mesh Fluid Simulations on GPU

    Full text link
    We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.Comment: Submitted to New Astronom
    corecore