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AbstractA large class of scienti�c and engineering applications may be classi�ed as irregularand loosely synchronous from the perspective of parallel processing. We present apartial classi�cation of such problems. This classi�cation has motivated us to enhanceFortran D to provide language support for irregular, loosely synchronous problems.We present techniques for parallelization of such problems in the context of FortranD.



1 IntroductionAlthough parallel computer systems have been widely available for several years,they have not yet ful�lled their enormous promise. In spite of the widespread interestin parallel systems, few scientists and engineers are using parallel machines to dotheir most important calculations, relying instead on conventional supercomputers.There are two reasons for this. First, parallel computer systems have only recentlybecome powerful enough to outperform conventional supercomputers. Second, andmore importantly, there exists no machine-independent programming interface forparallel machines that can achieve an e�ciency comparable to programs hand codedin languages that reect the speci�c underlying architectures. This second problemis particularly troublesome because it puts the parallel programming investment atrisk|if a program is converted at great e�ort to run on a parallel machine, theinvestment may be lost when the next generation of parallel computers emerges withan entirely di�erent programming interface. Today, each new parallel architecturerequires a signi�cantly di�erent software implementation.1.1 Software ModelAn important lesson learned from using parallel machines has been the need for a closecoupling between software and applications. Even though the problems that we andothers have looked at tend to be in a limited domain, predominantly scienti�c and en-gineering simulations, we expect this lesson to be valid in general. Good performancefor a parallel machine requires a good mapping of the problem onto the machine.Getting this mapping \right" seems to imply a close coupling between the appli-cation requirements and the software environment. Good mappings for many largeproblems have been discovered by users tuning their codes \by hand" using relativelycrude software approaches. The Caltech Computation Project, for example, devel-oped 50 successful parallel applications using node Fortran or C plus message passingon distributed memory MIMD multicomputer. Building on that success requires amore automatic method of detecting and implementing good problemmappings. Ourthesis is that providing such an environment will be a great help toward establishinga portable programming model for parallel machines.The success of hand-parallelization should be contrasted with the experience ofparallelizing compilers where false dependencies often prevent the compiler from ex-ploiting the available parallelism. We can understand this as follows: the problem1



has a computational graph (such as a mesh for many signal processing or partial dif-ferential equation algorithms) that needs to be mapped onto the underlying parallelmachine topology. In hand-coding programs, users are responsible for identifying theproblem and machine topology and performing the mapping. The automatic com-piler approach to parallelizing the C, Fortran or ADA code version of the problem failswhen the compiler is unable identify the underlying graph and the relation betweenprogram components. This can happen for a number of reasons.1. The compiler's analysis can simply fail, reporting a dependence when noneexists. (This is a particular problem in the loosely synchronous problems inSection 3, due to the data structures required there.) In these cases, there islittle the programmer can do except complain to the compiler vendor.2. An actual dependence may be an artifact of a sequential optimization, such asreusing an array's storage to save memory. In these cases, it is often possible torewrite the program to allow parallelization, if the user can detect the problem.3. The program may use an inherently sequential algorithm, or an algorithm withlimited parallelism. For example, the standard method of solving a tridiagonalsystem uses a �rst-order recurrence that cannot be directly parallelized. In thiscase, the best option is to change to a di�erent algorithm.Our experience has been fully automatic compilers often fail on realistic applications,although they may perform better on individual loop nests. Languages such as *LISP,C* and CM Fortran have succeeded on larger-scale problems because unlike Fortran77 or C, these \data-parallel" languages properly express the the structure of theproblem and its computation.Generalizing from the above discussion, we feel that successful parallel softwaremodels must provide a mechanism for expressing the decomposition by the program-mer (as in C with message passing extensions) or provide this mechanism indirectly(as in C*). We feel that the interaction of applications and software support (lan-guages, run time systems) is very important for parallel computing. In other words,parallel computing demands \high-level" software support{ software that preciselyand e�ectively captures the structure of the application resulting in automatic gener-ation of good parallel programs. Our belief is that there is no need to write softwaredesigned for a single specialized domain. On the other hand, it is very hard to designuniversal software models. Instead, we de�ne broad classes of computations (we now2



have a total of about ten) which together can cover a large range and each is itselflarge enough to warrant individually tailored category-speci�c software support. Webelieve that our approach can be e�ectively extended to a much broader range ofapplications. Although, this work was motivated by our Fortran D compiler projectfor SIMD and MIMD distributed memory machines, we believe the classi�cation canimmediately be used for these applications with other languages including C, C++and ADA.1.2 Problem Classi�cationWe have classi�ed problems into �ve broad categories in terms of the parallelizationand software support issues they address:� synchronous� Loosely Synchronous� Asynchronous� Embarrassingly Parallel� Loosely Synchronous ComplexEach problem category covers a broad range of applications. Current data parallellanguages such as C* and Fortran D provide language support for expressing reg-ular synchronous and loosely synchronous problems. The success of the Fortran Dcompiler project is partly due to our experience in parallelizing this class of scienti�capplications. In this paper we examine scienti�c applications that are irregular andloosely synchronous in nature. We present an overview of techniques for parallelizingsuch problems. Although we use speci�c applications as examples, our parallelizationtechniques are applicable to other disciplines and are in no way restricted to theseparticular codes. We propose language extensions and compiler techniques that areuseful for successfully expressing such problems in a data parallel language such asFortran D.Section 2 provides a review the architectural classi�cation for problems. In Sec-tion 3 we describe di�erent subclasses of irregular and loosely synchronous problems.In Section 4, we discuss several parallelization strategies for the inclusion of theseproblems in the solution space of Fortran D.3



2 Problem ArchitecturesWe have looked at many applications in a detailed survey in [20]. Our analysis ofproblem architecture or structure is based on a break up of each problem into spatial(data) and temporal (control) aspects. Following Fox [14] we describe three problemarchitecture classes in terms of their temporal (time or synchronization) structure.The temporal structure of a problem is analogous to the hardware classi�cation intoSIMD and MIMD. The spatial structure of a problem provides the computationalgraph of the problem at a given instant and is analogous to the interconnect ortopology of the hardware. The detailed spatial structure is important in determiningthe performance of an implementation but it does not a�ect the broad categories.Synchronous problems are data parallel with the restriction that the time depen-dence of each data point is computed by the same operations. Both algorithmicallyand in the natural SIMD implementation, the problem is synchronized microscopicallyat each computer clock cycle. Such problems are particularly common in academia asthey naturally arise in any description of a system in terms of identical fundamentalunits. We believe that Fortran D (in its current version) should be able to addressalmost all of these problems.Loosely synchronous problems are also typically data parallel but now we allowdi�erent data points to be evolved with distinct algorithms. Points are also oftenconnected in an irregular, data-dependent manner; for this reason we sometimes referto this class as \irregular problems." Such problems appear when one describes theworld macroscopically in terms of the interactions between irregular inhomogeneousobjects evolved in a time synchronized fashion. Loosely synchronous problems arespatially irregular but temporally regular. This class is the main focus of this paper.The asynchronous problem class is irregular in space and time. Because of thisirregularity, it is di�cult to give general methods for parallelizing asynchronous prob-lems. Some run well with functional decompositions, some require real-time synchro-nization techniques, and some have never been run successfully on massively parallelmachines. For a detailed description of these classes the reader is referred to [19].The class of embarrassingly parallel problems contains those problems that aretotally disconnected in space and time. In these problems, no synchronization orcommunication is needed at all. (Actually, there is typically a �nal synchronizedphase to collect the computed answers, but this only uses a small part of the totaltime.) Depending on the structure of the problem at each point, these can be run4



e�ciently on either SIMD or MIMD hardware. We believe that Fortran D and otherdata-parallel languages should be able to express these problems well.The class of loosely synchronous complex contains problems that are an asyn-chronous collection of loosely synchronous problems. A typical application in com-mand and control belongs in this class. Each of the tasks in such an application issynchronous or loosely synchronous and can be parallelized individually. An overallasynchronous expert system coordinates the interaction between these tasks.3 Types of Loosely Synchronous ProblemsGeneral purpose mapping tools and runtime support must be able to handle a rea-sonably broad range of problems. As mentioned in the previous sections, we intendto develop a parallel software environment for what we call loosely synchronous prob-lems, linked to the Fortran D compiler project at Rice and Syracuse Universities.This concept has been explained in detail in [13, 14, 15]. The current Fortran Dis designed to handle the special cases of synchronous problems and loosely syn-chronous problems with regular interconnection patterns. In extending the FortranD environment, we have found it useful to divide this problem into several subclasseswhich are described below. All loosely synchronous problems can, by de�nition, bedivided into a sequence of concurrent computational phases. The di�erences betweenthe subclasses lie in how the phases are separated and when the computation andcommunication patterns within phases are set. In the remainder of this section, wewill describe several subclasses of loosely synchronous problems, illustrated by actualapplications. We present these subclasses to give an idea of the types of problems weplan to address, but we do not claim at this point to be in a position to present anykind of formal taxonomy. As described in Section 3.5, our classi�cation is of coursenot complete and we are continuing our study of problem structures [13, 14].3.1 Static Single Phase ComputationsA static single phase computation consists of a single concurrent computationalphase, which may be executed repeatedly without change. Examples of static sin-gle phase computations are iterative solvers using sparse matrix-vectormultiplications(e.g. [32]) and explicit unstructured mesh uids calculations (e.g. [42]). The key prob-lem in e�ciently executing these programs is partitioning the data and computation5



S1 do i=3D1,NS2 do j=3D1,My(i) =3D y(i) + a(i,j)*x(col(i,j))end doend do Figure 1: Sparse Matrix Vector Multiplyto minimize communication while balancing load. This partitioning then dictatesthe program's synchronization and communication requirements, which must also becomputed. Because the computational pattern is only set at run time, this cannotbe done directly by the compiler; instead, calls to a run-time environment must begenerated to do the partitioning dynamically. Reducing the overhead of these calls,both by reusing information computed in the calls and by performing the calls e�-ciently, is also vital for high e�ciency. The PARTI library [10] and the Kali compiler[17] introduced the inspector/executor paradigm to perform these optimizations.In the remainder of this section, we describe some of the details that must beconsidered in implementing these kernels.In some cases, there is a straightforward relationship between the way we partitiondistributed arrays and the way we partition work. Figure 1 depicts a sparse matrixvector multiply. The integer array col is used to represent the sparsity structure ofthe matrix. Loop S1 sweeps over the matrix rows, while loop S2 sweeps over thecolumns of the sparse matrix and calculates the required inner product. If the sparsematrix vector multiply in Figure 1 is to be carried out repeatedly, it is reasonable topartition x and y between processors in a conforming manner. In such a problem,we can follow the common convention of carrying out computational work associatedwith computing a value for distributed array element y(i) on the processor onto whichy(i) is mapped [16].There are other common cases in which the assignment of distributed array ele-ments to processors and assignment of work to processors cannot be coupled in such astraightforward fashion. Figure 2 depicts a loop that sweeps over the edges of a mesh;indirection is used to index array x on the right hand side of S3 while indirection isused to index array y on the left hand side of S4 and S5. In this loop, it appears to6



C This is a simpli�ed sweep over edges of a mesh. A ux across aC mesh edge is calculated. Calculation of the ux involvesC ow variables stored in array x. The ux is accumulated to array y.do i =3D 1; NS1 n1 =3D nde(i; 1)S2 n2 =3D nde(i; 2)S3 flux =3D f(x(n1); x(n2))S4 y(n1) =3D y(n1) + fluxS5y(n2) =3D y(n2)� fluxend do Figure 2: Another example of Static Single Phasebe advantageous to assign each iteration of loop to a single processor. By doing this,we avoid having either to recalculate or to communicate values for flux. Since y(n1)and y(n2) appear on the left hand sides of statements. We can see that we must nowdetermine separately how to partition distributed array elements and loop iterations.3.2 Multiple Phase ComputationsA multiple phase computation consists of a series of dissimilar loosely synchronouscomputational phases. Such applications usually have several parallelizable loops thatinvolve a variety of distributed arrays. In this section, we will only consider the casewhere each individual phase is a static single phase computation as de�ned above. Ex-amples of these computations include unstructured multigrid (e.g. [26]), parallelizedsparse triangular solver (e.g. [4, 1]), particle-in-cell codes (e.g. [38, 24]), and vortexblob calculations [3]. The key problem in implementation is again partitioning com-putation and data, but now the task is complicated because the interfaces betweenphases must be considered in the partitioning. The synchronization and communi-cation requirements are similarly complicated by the multiple phases. As for staticsingle phase computations, this partitioning must be performed at run time. Saltzand his coworkers have recently extended the PARTI library to include incrementalroutines which will be applicable to these problems [29] It is not clear whether furtherextensions will also be needed. It is clear, however, that these computations can again7



Figure 3: Unstructured Multigrid - coarse grid .

Figure 4: Unstructured Multigrid - re�ned grid .8



take advantage of saving information computed in the run-time environment.In the remainder of this section, we describe the unstructured multigrid applica-tion to show some of the implementation complexities of this class.Unstructured multigrid codes [26], carry out mesh relaxation over each of severalincreasingly re�ned meshes M1; :::; Mn. Figure 3 and Figure 4 depict two levels ofthese meshes from a uid dynamics code that we have parallelized. Both of thesegrids represent the same physical geometry but the grid in 4 is more highly re�nedthan the grid in 3. The algorithm alternates between sweeping over each mesh andmoving data between meshes, as shown in Figure 5. The meshes M1; :::; Mn should bepartitioned so that1. sweeps over each mesh Mi do not require excessive amounts of interprocessorcommunication,2. the computation involved in sweeping over each mesh should exhibit good loadbalance and3. interpolations and projections should only require modest amounts of datamovement.We have partitioned the grids in our example using the partitioner described in [35]with good results, but there are many other possible partitioners.3.3 Adaptive Irregular ComputationsAn adaptive irregular computation consists of a loosely synchronous computation ex-ecuted repeatedly in which the data access pattern changes between iterations. Thechanges may be gradual, reecting adiabatic changes in the physical domain, or large-scale, reecting additions to a data structure. Molecular dynamics applications oftenexhibit the �rst behavior because interactions between particles are implemented byneighbor lists which change as the atoms move [6]. Adaptive PDE solvers are oftenexamples of the second behavior, as discussed below. Other examples with whichwe are familiar include some vision algorithms including region growing and labeling[7, 41], statistical physics simulations near critical points [8], and the particle sortingphase of a direct monte carlo simulation [9]. The key problems in implementing thesealgorithms are to react quickly to changes in the data structure. The physical and9



C Greatly oversimpli�ed multiple mesh computation - Sweep over coarseC mesh, transfer information to �ne mesh, sweep over �ne meshC and transfer information back to coarse mesh. xc,yc represent coarseC mesh variables, xf,yf represent �ne mesh variables.C Typically these computations are carried out in an iterative manner.C Sweep over coarse meshdo i =3D 1; Ncoarsedo j =3D 1;Kcourseyc(i) =3D yc(i) + ac(i; j) � xc(ic(i; j))end doend doC Transfer data from coarse mesh to �ne meshdo i =3D 1; Nfinedo j =3D 1; Ninterpf(i)xf(i) =3D xf(i) + weightf(i; j) � yc(interpf(i; j))end doend doC Sweep over �ne meshdo i =3D 1; Nfinedo j =3D 1;Kfineyf(i) =3D yf(i) + af(i; j) � xf(if(i; j))end doend doC Transfer data from �ne mesh to coarse meshdo i =3D 1; Ncoarsedo j =3D 1; Ninterpc(i)xc(i) =3D xc(i) + wc(i; j) � yf(interpc(i; j))end doend do Figure 5: Static Multiple Phase10



Figure 6: Adaptive Grid - after re�nement.numeric properties of these algorithms typically guarantee that large-scale restruc-turing of data is only needed infrequently. New constructs are needed, however, tocommunicate this to the underlying system software.Adaptive algorithms are useful for solving Euler and Navier Stokes problems thatarise in aerodynamics. In these algorithms, mesh re�nement is carried out in portionsof a computational domain where it is estimated that additional resolution may berequired (e.g., see [39, 30]). The grid in Figure 6 is an adaptive re�nement of the grid inFigure 4. The initial mesh-point distribution is determined from the geometry of theairfoil to be simulated. Adaptive mesh re�nement is achieved by adding new pointsin regions of large ow gradients. A simple version of the algorithm is presented inFigure 8. The remapping needs to be performed before the inner do loop is executed.3.4 Implicit Multiphase Loosely Synchronous Computa-tionsAn implicit multiphase computation is one containing irregular inter-iteration de-pendencies. The problems discussed thus far have consisted of a sequence of clearlydemarcated computational phases. There are a number of problems in which thereare inter-iteration dependencies that might at �rst appear to inhibit parallelization.These data dependency patterns 11



C Adaptive Two Mesh Algorithm C Coarse mesh Uc covers entire domainC Re�ned mesh Ur covers \active" portion of domainC Location, shape, and size of re�ned mesh all changedo kc =3D 1 to KSweep over the UcFlag region of Uc that should be re�ned.If agged region is not empty.Modify shape of UrInterpolate boundary values for Ur from Uc.do kr =3D 1 to KrSweep over Urend doInject values of Ur into Ucend do Figure 7: Adaptive Two Mesh Algorithm
12



C Implicit MultiphaseC Example - sparse triangular solve (unit diagonal)do i =3D 1; Ny(i) =3D rhs(i)doj =3D ija(i); ija(i+ 1) � 1y(i) =3D y(i)� a(j) � y(col(j))end doend do Figure 8: Implicit MultiPhase1. are known only at runtime but,2. can be fully predicted before a program enters the irregular loop or loops. Figure8 shows a the back substitution phase of a sparse matrix factorization, a simplealgorithm of this type.This is similar to solving sparse triangular systems of linear equations arising fromILU preconditioning methods [36, 37]. Another example of this class is the tree gen-eration phase of the adaptive fast multipole algorithms for particle dynamics [18, 33].The key problem in implementing these algorithms is to detect and exploit opportu-nities for partial parallelization. In Figure 8, it is often possible to carry out manysimultaneous row substitutions. The sparsity structure of the system determineswhich row substitutions can be carried out concurrently; however, this informationis only available at run time. In such problems, we carry out a form of runtime pre-processing with the goal of de�ning a sequence of loosely synchronous computationalphases. In bus based shared memory multiprocessors, we have demonstrated thatit is possible to integrate runtime parallelization with compilers [34]. We anticipatethat it will also be possible to link runtime parallelization with compilers aimed atscalable multiprocessors and have carried out preliminary work in this area.A more di�cult problem is that of runtime aggregation of work and data. Whenwe carry out sparse computations such as sparse triangular solves or sparse directfactorizations [11], our runtime preprocessing can determine the number and contentof the concurrent computational phases that will comprise a computation. We will13



call this process runtime aggregation or runtime tiling. There have been a variety ofnumerical algorithms to carry out what we call runtime tiling for multiprocessor andvector computers, a small subset of this extensive collection of methods may be foundin [21, 2].3.5 Static and Dynamic Structured ProblemsThis class of problems consist of highly structured computations on sets of subdomainsthat are coupled in an irregular manner. The computations on each individual sub-domain are frequently highly structured, but the computational relationship betweenthe subdomains is known only at runtime. Furthermore, the relationship betweenthe subdomains frequently changes dynamically during the course of a computation.The examples described in this sub-section di�er from the examples described inthe previous four sub-sections in that the previous problems consist of irregularlycoupled \points" whereas we now deal with collections of nontrivial structures. Ex-amples of such problems include the adaptive mesh method described below anda combined hydrodynamics and particle astrophysical simulations implemented byEdelson at Syracuse [12]. The key to e�ciency on these problems is to aggressivelyapply optimizations to the regular subproblems, which can be implemented with loweroverheads. Also, the larger granularity of the coupled subproblems can be exploitedto reduce preprocessing overheads and also reduce memory requirements [5].An example of this class is shock pro�ling as described in [5]. The basic problem isto solve a partial di�erential equation in the presence of a shock, computing the pro�le(detailed shape) of the shock. Resolution of the pro�le implies that a highly re�nedgrid must be used in a neighborhood of the shock. The method initially computesthe solution on a coarse mesh. An error estimator is then applied to determine theregions that will be covered by a re�ned mesh. An example mesh from this two-levelre�nement is shown in Fig. 9. The solution is time-dependent. Time-marching on there�ned mesh is performed by taking many (e.g. 100) time steps on the re�ned meshfor a single coarse-grid time step. The re�ned mesh is dynamic { its location, shape,and size all change. This means that the relationship of the two meshes will changeduring the execution of the program. Hence the structure of the computations changewith time and a non-uniform communication pattern arises due to the sharing of databetween grids. This example also generalizes to a full structured adaptive multigrid.An example of a mesh employed in such a full structured adaptive multigrid may beseen in Figure 10. This mesh is used in a solution of the Euler equations used to14



Figure 9: Two-mesh re�nement.simulate interaction of a planar shock wave with a double wedge [31].4 ConclusionsIn this paper, we presented a partial classi�cation of scienti�c and engineering appli-cations which are irregular and loosely synchronous from the perspective of parallelprocessing. This classi�cation should be helpful in extending Fortran D to permit itsapplication to a large class of loosely synchronous problems. There are a few impor-tant tasks may be necessary for the above. While we have made signi�cant progresson each of these tasks, there is still much work that remains to be carried out.Firstly there is a need for development of automatic and semi-automatic data par-titioners and a strategy for incorporating these in a compiler. Currently, partitionersare designed using programmers' a priori knowledge about a problem's computa-tional structure and its expected computational behavior. There has been signi�cantprogress in the development of robust partitioners for static single phase loosely syn-chronous calculations see e.g. [35, 22] but much work remains to be done in order todeal with other problem classes. Similarly, we have proposed a scheme for integratingdata partitioners into compilers that appears to be appropriate for static single andperhaps for multiphase loops [29]. Much work is needed to generalize these methodsbefore they are able to handle the more challenging classes of computations. Somepreliminary work along these lines has been reported in [28] and [25].Time dependent or iterative loosely synchronous computational problems can ex-15



Figure 10: Mesh Used to Calculate Interaction of planar shock wave with a doublewedge. 16



hibit a range of dynamic behaviors. These behaviors can be divided into three roughcategories:(A) data dependency pattern is static and does not change between iterations.(B) data dependency pattern is modi�ed on occasion but between changes, thedependency pattern remains static for many iterations(C) data dependency pattern changes every iteration.Problems in category A would fall either into the class of static, single phase looselysynchronous computations (Section 3.1) or into the class of static, multiple phaseloosely synchronous computations (Section 3.2), while problems in categories B andC would fall into the class of unstructured adaptive problems (Sections 3.3, 3.4) orstructured adaptive problems (Section 3.5). It is also useful to categorize irregularproblems by whether a given iteration or time-step is composed of multiple, dissimilarloosely synchronous computational phases. In such cases, it is often necessary topartition a problem in a way that takes into account all of the computational phases inan iteration. Further, there are issues related to partitioning and runtime aggregation[28, 21, 2]. which can a�ect the performance of these problemsSecondly, we need to standardize extensions to Fortran D to facilitate the speci�-cation of partitioning strategies and irregular meshes. These extensions will be usedto 1. indicate which loops in a program should to be taken into account when con-sidering how to partition distributed arrays,2. allow users to force the selection of a particular partitioner,3. allow users to assert that a given set of loop dependencies can or cannot changewhen the loop is iteratively invoked,4. allow users to specify the granularity with which parallelism is to be exploited.In [29], we have proposed extensions (and developed runtime support) that ful�ll the�rst two of the above mentioned goals. There is also a need for development of newdata structures targeted towards problems in which highly structured computationson a set of subdomains are coupled in an irregular manner. We are particularlyinterested in representing structured adaptive problems in which subdomains arecoupled by irregular tree dependency structures.17
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