6 research outputs found

    The DIRAC code for relativistic molecular calculations

    Get PDF
    DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree?Fock, Kohn?Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.Fil: Saue, Trond. Université Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bast, Radovan. Uit The Arctic University Of Norway; NoruegaFil: Gomes, André Severo Pereira. University Of Lille.; Francia. Centre National de la Recherche Scientifique; FranciaFil: Jensen, Hans Jorgen Aa.. University of Southern Denmark; DinamarcaFil: Visscher, Lucas. Vrije Universiteit Amsterdam; Países BajosFil: Aucar, Ignacio Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Di Remigio, Roberto. Uit The Arctic University of Norway; NoruegaFil: Dyall, Kenneth G.. Dirac Solutions; Estados UnidosFil: Eliav, Ephraim. Universitat Tel Aviv.; IsraelFil: Fasshauer, Elke. Aarhus University. Department of Bioscience; DinamarcaFil: Fleig, Timo. Université Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Halbert, Loïc. Centre National de la Recherche Scientifique; Francia. University Of Lille.; FranciaFil: Hedegård, Erik Donovan. Lund University; SueciaFil: Helmich-Paris, Benjamin. Max-planck-institut Für Kohlenforschung; AlemaniaFil: Ilias, Miroslav. Matej Bel University; EslovaquiaFil: Jacob, Christoph R.. Technische Universität Braunschweig; AlemaniaFil: Knecht, Stefan. Eth Zürich, Laboratorium Für Physikalische Chemie; SuizaFil: Laerdahl, Jon K.. Oslo University Hospital; NoruegaFil: Vidal, Marta L.. Department Of Chemistry; DinamarcaFil: Nayak, Malaya K.. Bhabha Atomic Research Centre; IndiaFil: Olejniczak, Malgorzata. University Of Warsaw; PoloniaFil: Olsen, Jógvan Magnus Haugaard. Uit The Arctic University Of Norway; NoruegaFil: Pernpointner, Markus. Kybeidos Gmbh; AlemaniaFil: Senjean, Bruno. Universiteit Leiden; Países BajosFil: Shee, Avijit. Department Of Chemistry; Estados UnidosFil: Sunaga, Ayaki. Tokyo Metropolitan University; JapónFil: van Stralen, Joost N. P.. Vrije Universiteit Amsterdam; Países Bajo

    P,T-Odd Interactions in Atomic 129{}^{129}Xe and Phenomenological Applications

    Full text link
    We calculate interaction constants for the contributions from \PT-odd scalar-pseudoscalar and tensor-pseudotensor operators to the electric dipole moment of 129{}^{129}Xe, for the first time in case of the former, using relativistic many-body theory including the effects of dynamical electron correlations. These interaction constants are necessary ingredients to relating the corresponding measurements to fundamental parameters in models of physics beyond the Standard Model. We obtain αCS=(0.71±0.18)[1023e cm]\alpha_{C_S} = \left( 0.71 \pm 0.18 \right) [10^{-23}\, e~\text{cm}] and \alpha_{C_T}= \left( 0.520 \pm 0.049 \right) [10^{-20}\, \left_{\text{Xe}}\, e~\text{cm}], respectively. We apply our results to test a phenomenological relation between the two quantities, commonly used in the literature, and discuss their present and future phenomenological impact.Comment: 25 pages, 0 figure

    Optimizing the Four-Index Integral Transform Using Data Movement Lower Bounds Analysis

    Get PDF
    International audienceThe four-index integral transform is a fundamental and com-putationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from one basis to another. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four-dimensional tensor with a two-dimensional transformation matrix. Differing degrees of permutation symmetry in the intermediate and final tensors in the sequence of contractions cause intermediate tensors to be much larger than the final tensor and limit the number of electronic states in the modeled systems. Loop fusion, in conjunction with tiling, can be very effective in reducing the total space requirement, as well as data movement. However, the large number of possible choices for loop fusion and tiling, and data/computation distribution across a parallel system, make it challenging to develop an optimized parallel implementation for the four-index integral transform. We develop a novel approach to address this problem, using lower bounds modeling of data movement complexity. We establish relationships between available aggregate physical memory in a parallel computer system and ineffective fusion configurations, enabling their pruning and consequent identification of effective choices and a characterization of optimality criteria. This work has resulted in the development of a significantly improved implementation of the four-index transform that enables higher performance and the ability to model larger electronic systems than the current implementation in the NWChem quantum chemistry software suite

    WTEC Panel Report on International Assessment of Research and Development in Simulation-Based Engineering and Science

    Full text link
    corecore