35 research outputs found

    Improvement of ms based e-nose performances by incorporation of chromatographic retention time as a new data dimension

    Get PDF
    Mejora del rendimiento de la nariz electrónica basada en espectrometría de masas mediante la incorporación del tiempo de retención cromatografico como una nueva dimensión de datosLa importancia del sentido de olor en la naturaleza y en la sociedad humana queda latente con el gran interés que se muestra en el análisis del olor y el gusto en la industria alimentaria. Aunque las aéreas mas interesadas son las de la alimentación y bebida, también se ha mostrado la necesitad para esta tecnología en otros campos como en el de la cosmética. Lamentablemente, el uso de los paneles sensoriales humanos o paneles caninos son costosos, propensos al cansancio, subjetivos, poco fiables e inadecuados para cuantificar, mientras que el análisis de laboratorio, a pesar de la precisión, imparcialidad y capacidad cuantitativa, necesita una labor intensa, con personal especializado y requiere de mucho tiempo. Debido a estos inconvenientes el concepto de olfato artificial generó un gran interés en entornos industriales.El término "nariz electrónica" se asocia con una serie de sensores de gases químicos, con una amplia superposición de selectividad para las mediciones de compuestos volátiles en combinación con los instrumentos informáticos de análisis de datos. La nariz electrónica se utiliza para proporcionar una información comparativa en vez de una cualitativa en un análisis, y porque la interpretación puede ser automatizada, el dispositivo es adecuado para el control de calidad y análisis. A pesar de algunos logros prometedores, los sensores de estado sólido de gas no han cumplido con sus expectativas. La baja sensibilidad y selectividad, la corta vida del sensor, la calibración difícil y los problemas de deriva han demostrado serias limitaciones. En un esfuerzo para mejorar los inconvenientes de los sensores de estado sólido, se han adoptado nuevos enfoques, utilizando diferentes sensores para la nariz electrónica. Sistemas de sensores ópticos, la espectrometría de movilidad iónica y la espectrometría infrarroja son ejemplos de técnicas que han sido probadas.Las narices electrónicas basadas en la espectrometría de masas (MS) aparecieron por primera vez en 1998 [B. Dittmann, S. y G. Nitz Horner. Adv. Food Sci. 20 (1998), p. 115], y representan un salto importante en la sensibilidad, retando a la nariz electrónica basada en sensores químicos. Este nuevo enfoque del concepto de una nariz electrónica usa sensores virtuales en forma de proporciones m/z. Una huella digital compleja y muy reproducible se obtiene en forma de un espectro de masas, que se procesa mediante algoritmos de reconocimiento de patrones para la clasificación y cuantificación. A pesar de que la nariz electrónica basada en la espectrometría de masas supera a la nariz electrónica clásica de sensores de estado sólido en muchos aspectos, su uso se limita actualmente a la instrumentación de laboratorio de escritorio. La falta de portabilidad no representará necesariamente un problema en el futuro, dado que espectrómetros de masas en miniatura se han fabricado ya en una fase de prototipado.Un inconveniente más crítico de la nariz electrónica basada en MS consiste en la manera en la que se analizan las muestras. La fragmentación simultánea de mezclas complejas de isómeros pueden producir resultados muy similares a raíz de este enfoque. Una nariz electrónica mejor sería la que combina la sensibilidad y el poder de identificación del detector de masas con la capacidad de separación de la cromatografía de gases. El principal inconveniente de este enfoque es de nuevo el coste y la falta de portabilidad de los equipos. Además de los problemas anteriores con la espectrometría de masas, el análisis de cromatografía de gases requiere mucho tiempo de medida.Para abordar estas cuestiones, se han reportado miniaturizaciones en cromatografía capilar de gases (GC) que hacen posible el GC-en-un-chip, CG-rápido y CG-flash que hacen uso de columnas cortas, reduciendo el tiempo de análisis a los tiempos de elución como segundos y, en algunos casos, se han comercializado. La miniaturización de la espectrometría de masas y cromatografía de gases tiene un gran potencial para mejorar el rendimiento, la utilidad y la accesibilidad de la nueva generación de narices electrónicas.Esta tesis se dedica al estudio y a la evaluación del enfoque del GC-MS para la nariz electrónica como un paso anterior al desarrollo de las tecnologías mencionadas anteriormente. El objetivo principal de la tesis es de estudiar si el tiempo de retención de una separación de cromatografía puede mejorar el rendimiento de la nariz electrónica basada en MS, mostrando que la adición de una tercera dimensión trae más información, ayudando a la clasificación de las pruebas. Esto se puede hacer de dos maneras: · comparando el análisis de datos de dos vías de espectrometría de masas con análisis de datos de dos vías de matrices desplegadas y concatenadas para los datos de tres vías y · comparando el análisis de datos de dos vías del espectrometría de masas con el análisis de datos de tres vías para el conjunto de datos tridimensionales.Desde el punto de vista de cromatografía, la meta será la de optimizar el método cromatográfico con el fin de reducir el tiempo de análisis a un mínimo sin dejar de tener resultados aceptables.Un paso importante en el análisis de datos multivariados de vías múltiples es el preprocesamiento de datos. Debido a este objetivo, el último objetivo será el de determinar qué técnicas de preprocesamiento son las mejores para y el análisis de dos y tres vías de datos.Con el fin de alcanzar los objetivos propuestos se crearon dos grupos de datos. El primero consiste en las mezclas de nueve isómeros de dimetilfenol y etilfenol. La razón de esta elección fue la similitud de los espectros de masas entre sí. De esta manera la nariz electrónica basada en espectrometría de masas sería retada por el conjunto de datos. También teniendo en cuenta el tiempo de retención de los nueve isómeros solos, las soluciones se hicieron, como si el conjunto de datos demostraría el reto si se usaría sólo el tiempo de retención. Por tanto, este conjunto de datos "artificiales" sostiene nuestras esperanzas en mostrar las mejoras de la utilización de ambas dimensiones, la MS (espectros de masas) y la GC (tiempo de retención).Veinte clases, representando las soluciones de los nueve isómeros se midieron en diez repeticiones cada una, por tres métodos cromatográficos, dando un total de 600 mediciones. Los métodos cromatográficos fueron diseñados para dar un cromatograma resuelto por completo, un pico coeluido y una situación intermediaria con un cromatograma resuelto parcialmente. Los datos fueron registrados en una matriz de tres dimensiones con las siguientes direcciones: (muestras medidas) x (proporción m/z) x (tiempo de retención). Por "colapsar" los ejes X e Y del tiempo de retención cromatográfica y los fragmentos m/z, respectivamente, se obtuvieron dos matrices que representan los espectros de masa regular y el cromatograma de iones totales, respectivamente. Estos enfoques sueltan la información traída por la tercera dimensión y el despliegue por lo que la matriz original 3D y la concatenación de las TIC y el espectro de masa media se han tenido en consideración como una forma de preservar la información adicional de la tercera dimensión en una matriz de dos dimensiones.Los datos fueron tratados mediante la alineación de picos, con una media de centrado y la normalización por la altura máxima y el área del pico, los instrumentos de pre-procesamiento que también fueron evaluados por sus logros.Para el análisis de datos de dos vías fueron utilizados el PCA, PLS-DA y fuzzyARTMAP. La agrupación de PCA y PARAFAC fueron evaluados por la relación intervariedad - intravariedad, mientras que los resultados mediante fuzzy ARTMAP fueron dados como el éxito de la las tasas de clasificación en porcentajes.Cuando PCA y PARAFAC se utilizaron, como era de esperar, el método de cromatografía resuelto (método 1) dio los mejores resultados globales, donde los algoritmos 2D funcionan mejor, mientras que en un caso más complicado (picos más coeluidos del método 3) pierden eficacia frente a métodos 3D.En el caso de PLS-DA y n-PLS, aunque los resultados no son tan concluyentes como los resultados del PCA y PARAFAC, tratándose de las diferencias mínimas, el modelo de vías múltiples PLS-DA ofrece un porcentaje de éxito en la predicción de ambos conjuntos de datos. También se recomienda el n-PLS en vez de utilizar datos desplegados y concatenados, ya que construye un modelo más parsimonioso.Para el análisis fuzzyARTMAP, la estrategia de votación empleada ha demostrado que al usar los espectros de masa media y la información del cromatograma de iones totales juntos se obtienen resultados más consistentes.En el segundo conjunto de datos se aborda el problema de la adulteración del aceite de oliva extra virgen con aceite de avellana, que debido a las similitudes entre los dos aceites es una de las más difíciles de detectar. Cuatro aceites extra virgen de oliva y dos aceites de avellana se midieron puros y en mezclas de 30%, 10%, 5% y 2% con los mismos objetivos mostrando que la adición de la extra dimensión mejora los resultados. Se han hechos cinco repeticiones para cada preparación, dando un total de 190 muestras: 4 aceites puros de oliva, 2 aceites puros de avellana y 32 adulteraciones de aceite de avellana en aceite de oliva, dando un total de 38 clases. Dos métodos cromatográficos fueron utilizados. El primero estaba dirigido a una completa separación de los componentes del aceite de oliva y empleó una separación con temperatura programable, mientras que el objetivo del segundo método fue un pico coeluido, por lo tanto fue contratada una temperatura constante de separación. Los datos fueron analizados por medio de la PCA, PARAFAC, PLS-DA y PLS-n.Como en el conjunto "artificial" de datos, el PCA y PARAFAC se analizaron por medio de la capacidad de clusterización, que mostró que los mejores resultados se obtienen con los datos desplegados seguido por los datos 3D tratados con el PARAFAC.Desde el punto de vista de optimización de la columna, los logros obtenidos por la columna corta está por debajo del enfoque de la columna larga, pero este caso demuestra una vez más que la adición de los incrementos de tercera dimensión mejoran la nariz electrónica basada en MS.Para el PLS-DA y n-PLS se evaluaron las tasas de éxito comparativamente, tanto para las corridas cromatográficas largas como para las cortas. Mientras que para la columna larga el mejor rendimiento es para los datos del cromatograma de iones totales (TIC), la columna corta muestra mejor rendimiento para los datos concatenados de los espectros de masa media y TIC. Además, la predicción de las tasas de éxito son las mismas para los datos TIC de columna larga como para los datos concatenados de la columna corta. Este caso es muy interesante porque demuestra que el enfoque PLS de la tercera dimensión mejora los resultados y, por otra parte, mediante el uso de la columna corta el tiempo de análisis se acorta considerablemente.Se esperan ciertos logros de la nariz electrónica. Por el momento, ninguno de esos enfoques se acercó lo suficiente para producir una respuesta positiva en los mercados. Los sensores de estado sólido tienen inconvenientes casi imposibles de superar. La nariz electrónica basada en espectrometría de masas tiene una falta de portabilidad y a veces sus logros son insuficientes, y el aparato del cromatógrafo de gases-espectrómetro de masas sufre problemas de portabilidad igual que espectrómetro de masas y toma mucho tiempo. El desarrollo de potentes algoritmos matemáticos durante los últimos años, junto con los avances en la miniaturización, tanto para MS y GC y mostrar cromatografía rápida cierta esperanza de una nariz electrónica mucho mejor.A través de este trabajo podemos afirmar que la adición del tiempo de retención cromatográfica como una dimensión extra aporta una ventaja sobre las actuales tecnologías de la nariz electrónica. Mientras que para los cromatogramas totalmente resueltos no se logran mejoras o la ganancia es mínima, sobre todo en la predicción, para una columna corta la información adicional mejora los resultados, en algunos casos, hacerlos tan bien como cuando una larga columna se utiliza. Esto es muy importante ya que las mediciones en un cromatógrafo de gases - espectrometro de masas se pueden optimizar para tramos muy cortos, una característica muy importante para una nariz electrónica. Esto permitiría el diseño de un instrumento de mayor rendimiento, adecuado para el control de calidad en líneas de productos

    Bacteria classification with an electronic nose employing artificial neural networks

    Get PDF
    This PhD thesis describes research for a medical application of electronic nose technology. There is a need at present for early detection of bacterial infection in order to improve treatment. At present, the clinical methods used to detect and classify bacteria types (usually using samples of infected matter taken from patients) can take up to two or three days. Many experienced medical staff, who treat bacterial infections, are able to recognise some types of bacteria from their odours. Identification of pathogens (i.e. bacteria responsible for disease) from their odours using an electronic nose could provide a rapid measurement and therefore early treatment. This research project used existing sensor technology in the form of an electronic nose in conjunction with data pre-processing and classification methods to classify up to four bacteria types from their odours. Research was performed mostly in the area of signal conditioning, data pre-processing and classification. A major area of interest was the use of artificial neural networks classifiers. There were three main objectives. First, to classify successfully a small range of bacteria types. Second, to identify issues relating to bacteria odour that affect the ability of an artificially intelligent system to classify bacteria from odour alone. And third, to establish optimal signal conditioning, data pre-processing and classification methods. The Electronic Nose consisted of a gas sensor array with temperature and humidity sensors, signal conditioning circuits, and gas flow apparatus. The bacteria odour was analysed using an automated sampling system, which used computer software to direct gas flow through one of several vessels (which were used to contain the odour samples, into the Electronic Nose. The electrical resistance of the odour sensors were monitored and output as electronic signals to a computer. The purpose of the automated sampling system was to improve repeatability and reduce human error. Further improvement of the Electronic Nose were implemented as a temperature control system which controlled the ambient gas temperature, and a new gas sensor chamber which incorporated improved gas flow. The odour data were collected and stored as numerical values within data files in the computer system. Once the data were stored in a non-volatile manner various classification experiments were performed. Comparisons were made and conclusions were drawn from the performance of various data pre-processing and classification methods. Classification methods employed included artificial neural networks, discriminant function analysis and multi-variate linear regression. For classifying one from four types, the best accuracy achieved was 92.78%. This was achieved using a growth phase compensated multiple layer perceptron. For identifying a single bacteria type from a mixture of two different types, the best accuracy was 96.30%. This was achieved using a standard multiple layer perceptron. Classification of bacteria odours is a typical `real world' application of the kind that electronic noses will have to be applied to if this technology is to be successful. The methods and principles researched here are one step towards the goal of introducing artificially intelligent sensor systems into everyday use. The results are promising and showed that it is feasible to used Electronic Nose technology in this application and that with further development useful products could be developed. The conclusion from this thesis is that an electronic nose can detect and classify different types of bacteria

    Diagnóstico no invasivo de patologías humanas combinando análisis de aliento y modelización con redes neuronales

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Químicas, leída el 09-09-2016It is currently known that there is a direct relation between the moment a disease is detected or diagnosed and the consequences it will have on the patient, as an early detection is generally linked to a more favorable outcome. This concept is the basis of the present research, due to the fact that its main goal is the development of mathematical tools based on computational artificial intelligence to safely and non-invasively attain the detection of multiple diseases. To reach these devices, this research has focused on the breath analysis of patients with diverse diseases, using several analytical methodologies to extract the information contained in these samples, and multiple feature selection algorithms and neural networks for data analysis. In the past, it has been shown that there is a correlation between the molecular composition of breath and the clinical status of a human being, proving the existence of volatile biomarkers that can aid in disease detection depending on their presence or amount. During this research, two main types of analytical approaches have been employed to study the gaseous samples, and these were cross-reactive sensor arrays (based on organically functionalized silicon nanowire field-effect transistors (SiNW FETs) or gold nanoparticles (GNPs)) and proton transfer reaction-mass spectrometry (PTR-MS). The cross-reactive sensors analyze the bulk of the breath samples, offering global, fingerprint-like information, whereas PTR-MS quantifies the volatile molecules present in the samples. All of the analytical equipment employed leads to the generation of large amounts of data per sample, forcing the need of a meticulous mathematical analysis to adequately interpret the results. In this work, two fundamental types of mathematical tools were utilized. In first place, a set of five filter-based feature selection algorithms (χ2 (chi2) score, Fisher’s discriminant ratio, Kruskal-Wallis test, Relief-F algorithm, and information gain test) were employed to reduce the amount of independent in the large databases to the ones which contain the greatest discriminative power for a further modeling task. On the other hand, and in relation to mathematical modeling, artificial neural networks (ANNs), algorithms that are categorized as computational artificial intelligence, have been employed. These non-linear tools have been used to locate the relations between the independent variables of a system and the dependent ones to fulfill estimations or classifications. The type of ANN that has been used in this thesis coincides with the one that is more commonly employed in research, which is the supervised multilayer perceptron (MLP), due to its proven ability to create reliable models for many different applications...Actualmente es sabido que existe una relación directa entre el momento en el cual se detecta o diagnostica una enfermedad y las consecuencias que tendrá sobre el paciente, ya que una detección temprana va generalmente ligada a un desarrollo más favorable. Este concepto es el cimiento de la presente investigación, cuyo objetivo fundamental es el desarrollo de herramientas basadas en inteligencia artificial computacional que consigan, mediante medios seguros y no invasivos, la detección de diversas enfermedades. Para alcanzar dichos sistemas, los estudios han sido enfocados en el análisis de muestras de aliento de pacientes de diversas enfermedades, empleando varias técnicas para extraer información, y diversos algoritmos de selección de variables y redes neuronales para el procesamiento matemático. En el pasado, se ha comprobado que hay una correlación entre la composición molecular del aliento y el estado clínico de una persona, evidenciando la existencia de biomarcadores volátiles que pueden ayudar a detectar enfermedades, ya sea por su presencia o por su cantidad. Durante el transcurso de esta investigación, se han empleado esencialmente dos tipos de técnicas analíticas para estudiar las muestras gaseosas, y estas son conjuntos de sensores de reactividad cruzada (basados en transistores de efecto de campo con nanocables de silicio (SiNW FETs) o en nanopartículas de oro (GNPs), ambos funcionalizados con cadenas orgánicas) y equipos de reacción de transferencia de protones con espectrometría de masas (PTR-MS). Los sensores de reactividad cruzada analizan el aliento en su conjunto, extrayéndose información de la muestra global, mientras que usando PTR-MS, se cuantifican las moléculas volátiles presentes en las muestras analizadas. Todas las técnicas empleadas desembocan en la generación de grandes cantidades de datos por muestra, por lo que un análisis matemático exhaustivo es necesario para poder sacar el máximo rendimiento de los estudios. En este trabajo, se emplearon principalmente dos tipos de herramientas matemáticas. Las primeras son un grupo de cinco algoritmos de selección de variables, concretamente, filtros de variables (cálculos basados en estadística de χ2 (chi2), ratio discriminante de Fisher, análisis de Kruskal-Wallis, algoritmo relief-F y test de ganancia de información), que se han empleado en las bases de datos con grandes cantidades de variables independientes para localizar aquellas con mayor importancia o poder discriminativo para una tarea de modelización matemática posterior. Por otro lado, en cuando a dicha modelización, se ha empleado un tipo de algoritmo que se cataloga dentro del área de la inteligencia artificial computacional: las redes neuronales artificiales (ANNs). Estas herramientas matemáticas de naturaleza no lineal se han utilizado para localizar las relaciones existentes entre las variables independientes de un sistema y las variables dependientes o parámetros a estimar o clasificar. Se ha empleado el tipo de ANN supervisada más extensamente usado en investigación, que son los perceptrones multicapa (MLPs), debido a su habilidad contrastada para originar modelos fiables para numerosas aplicaciones...Fac. de Ciencias QuímicasTRUEunpu

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Coding and learning of chemosensor array patterns in a neurodynamic model of the olfactory system

    Get PDF
    Arrays of broadly-selective chemical sensors, also known as electronic noses, have been developed during the past two decades as a low-cost and high-throughput alternative to analytical instruments for the measurement of odorant chemicals. Signal processing in these gas-sensor arrays has been traditionally performed by means of statistical and neural pattern recognition techniques. The objective of this dissertation is to develop new computational models to process gas sensor array signals inspired by coding and learning mechanisms of the biological olfactory system. We have used a neurodynamic model of the olfactory system, the KIII, to develop and demonstrate four odor processing computational functions: robust recovery of overlapping patterns, contrast enhancement, background suppression, and novelty detection. First, a coding mechanism based on the synchrony of neural oscillations is used to extract information from the associative memory of the KIII model. This temporal code allows the KIII to recall overlapping patterns in a robust manner. Second, a new learning rule that combines Hebbian and anti-Hebbian terms is proposed. This learning rule is shown to achieve contrast enhancement on gas-sensor array patterns. Third, a new local learning mechanism based on habituation is proposed to perform odor background suppression. Combining the Hebbian/anti-Hebbian rule and the local habituation mechanism, the KIII is able to suppress the response to continuously presented odors, facilitating the detection of the new ones. Finally, a new learning mechanism based on anti-Hebbian learning is proposed to perform novelty detection. This learning mechanism allows the KIII to detect the introduction of new odors even in the presence of strong backgrounds. The four computational models are characterized with synthetic data and validated on gas sensor array patterns obtained from an e-nose prototype developed for this purpose

    Active Control Strategies for Chemical Sensors and Sensor Arrays

    Get PDF
    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor’s next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise

    Raman spectroscopic characterization and analysis of agricultural and biological systems

    Get PDF
    Technical progresses in the past two decades in instrumental design, laser and electronic technology, and computer-based data analysis have made Raman spectroscopy, a noninvasive, nondestructive optical molecular spectroscopic imaging technique, an attractive choice for analytical tasks. Raman spectroscopy provides chemical structural information at molecular level with minimal sample preparation in a quick, easy-to-operate and reproducible fashion. In recent years it has been applied more and more to the analysis and characterization of agricultural products and biological samples. This dissertation documents the innovative research in Raman spectroscopic characterization and analysis in both biomedical and agricultural systems that I have been working on throughout my PhD training. The biomedical research conducted was focused on glaucoma. Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of pathological changes and progression in glaucoma and other neuroretinal diseases, which is critical for the prevention of permanent structural damage and irreversible vision loss, remains a great challenge. In my research, the Raman spectra from canine retinal tissues were subjected to multivariate discriminant analysis with a support vector machine algorithm to differentiate disease tissues versus healthy tissues. The high classification accuracy suggests that Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue not only at late stage but also at early stage with high specificity. To expand the scope of application of Raman analysis, it was also applied to characterize agricultural and food materials. More specifically, Raman spectroscopy was applied to analyze meat. Existing objective methods (e.g., mechanical stress/strain analysis, near infrared spectroscopy) to predict sensory attributes of pork in general do not yield satisfactory correlation to panel evaluations. Raman spectroscopic methodology was investigated in this study to evaluate and predict tenderness, juiciness and chewiness of fresh, uncooked pork loins from 169 pigs. The method developed in this thesis yielded good prediction of sensory attributes such as tenderness and chewiness, and it has the potential to become a rapid objective assay for tenderness and chewiness of pork products that may find practical applications in pork industry. In addition, a Raman spectroscopic screening method in conjunction with discriminant modeling was developed for rapid evaluation of boar taint level in pork. Through the research demonstrated in this dissertation, Raman spectroscopy has been shown to have great potential to address analytical needs in new fields with great potential for innovative applications

    Black box and mechanistic modelling of electronic nose systems

    Get PDF
    Electronic nose systems have been in existence for around 20 years or more. The ability to mimic the function of the mammalian olfactory system is a very tempting goal. Such devices would offer the possibility of rapid chemical screening of samples. To gain a detailed insight into the operation of such systems it is proposed to carry out a systems modelling analysis. This thesis reports such an analysis using black box and mechanistic models. The nature and construction of electronic nose systems are discussed. The challenges presented by these systems in order to produce a truly electronic nose are analysed as a prelude to systems modelling. These may be summarised as time and environmental dependent behaviour, information extraction and computer data handling. Model building in general is investigated. It is recognised that robust parameter estimation is necessary to build good models of electronic nose systems. A number of optimisation algorithms for parameter estimation are proposed and investigated, these being gradient search, genetic algorithms and the support vector method. It is concluded that the support vector method is most robust, although the genetic algorithm approach shows promise for initial parameter value estimation. A series of investigations are reported that involve the analysis of biomedical samples. These samples are of blood, urine and bacterial cultures. The findings demonstrate that the nature of such samples, such as bacterial content and type, may be accurately identified using an electronic nose system by careful modelling of the system. These findings also highlight the advantages of data set reduction and feature extraction. A mechanistic model embodying the operating principles of carbon black-polymer sensors is developed. This is validated experimentally and is used to investigate the environmental dependencies of electronic nose systems. These findings demonstrate a clear influence of environmental conditions on the behaviour of carbon black-polymer sensors and these should be considered when designing future electronic nose systems. The findings in this thesis demonstrate that careful systems modelling and analysis of electronic nose systems allows a greater understanding of such systems

    Metabolic profiling of volatile organic compounds and enhanced vibrational spectroscopy

    Get PDF
    Metabolomics is a post genomic field of research concerned with the study of low molecular weight compounds within a biological system permitting the investigation of the metabolite differences between natural and perturbed systems (such as cells, organs and tissues). Rapid identification and discrimination of biological samples based upon metabolic differences and physiological status in microbiology, mammalian systems (particularly for disease diagnosis), plants and food science is highly desirable. Volatile organic compound (VOC) profiling is a novel area of research where the composition of the VOCs emitted by the biological samples can be correlated to its origin and physiological status. The aim of this project was to investigate the applicability of VOC profiling as a potential complementary tool within metabolomics.In this project the discrimination of bacteria using a novel gas phase separation method was investigated and the development of VOC-based profiling tools for the collections of VOCs emitted from biological samples was also studied. The optimisation and validation of a high throughput method for VOC analysis was achieved and this was used to assess wound healing.VOC metabolite profiling was further extended to the discrimination of S. typhimurium contaminated meat; the study was conducted in parallel with metabolite profiling analysis for the analysis of non-volatile small molecules. Finally, enhanced vibrational spectroscopic techniques were applied to the characterisation and screening of dye molecules in contaminated foodstuffs using Raman spectroscopy. This thesis clearly demonstrates that VOC metabolic profiling is a complementary tool within the metabolomics toolbox, one of its great attractions is that it permits the characterisation of biological samples in a rapid and non-invasive manner. The technique provides detailed chemical information regarding the VOC composition present above the headspace of the sample and can be used to understand its physiological status and biological origin. VOCs metabolite profiling will become a valuable tool for non-invasive analysis of many biological systems. Raman spectroscopy is a sensitive and non-destructive technique which can generate detailed chemical and structural information regarding the analyte under investigation with little or no sample preparation needed. The effect of the weak Raman signal can be significantly amplified by coupling the analyte molecule to surfaces of nanoparticles and demonstrated that it is ideal for analysing aqueous dye solutions in a quantitative manner.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore