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Summary 

Non-Invasive Diagnosis of Human Diseases by Combining 

Breath Analysis and Neural Network Modeling 

 

 It is currently known that there is a direct relation between the moment a disease is 

detected or diagnosed and the consequences it will have on the patient, as an early detection is 

generally linked to a more favorable outcome. This concept is the basis of the present research, 

due to the fact that its main goal is the development of mathematical tools based on computational 

artificial intelligence to safely and non-invasively attain the detection of multiple diseases. To 

reach these devices, this research has focused on the breath analysis of patients with diverse 

diseases, using several analytical methodologies to extract the information contained in these 

samples, and multiple feature selection algorithms and neural networks for data analysis. 

 In the past, it has been shown that there is a correlation between the molecular 

composition of breath and the clinical status of a human being, proving the existence of volatile 

biomarkers that can aid in disease detection depending on their presence or amount. During this 

research, two main types of analytical approaches have been employed to study the gaseous 

samples, and these were cross-reactive sensor arrays (based on organically functionalized silicon 

nanowire field-effect transistors (SiNW FETs) or gold nanoparticles (GNPs)) and proton transfer 

reaction-mass spectrometry (PTR-MS). The cross-reactive sensors analyze the bulk of the breath 

samples, offering global, fingerprint-like information, whereas PTR-MS quantifies the volatile 

molecules present in the samples. 

 All of the analytical equipment employed leads to the generation of large amounts of data 

per sample, forcing the need of a meticulous mathematical analysis to adequately interpret the 

results. In this work, two fundamental types of mathematical tools were utilized. In first place, a 

set of five filter-based feature selection algorithms (χ2 (chi2) score, Fisher’s discriminant ratio, 

Kruskal-Wallis test, Relief-F algorithm, and information gain test) were employed to reduce the 

amount of independent in the large databases to the ones which contain the greatest discriminative 

power for a further modeling task. On the other hand, and in relation to mathematical modeling, 

artificial neural networks (ANNs), algorithms that are categorized as computational artificial 

intelligence, have been employed. These non-linear tools have been used to locate the relations 

between the independent variables of a system and the dependent ones to fulfill estimations or 

classifications. The type of ANN that has been used in this thesis coincides with the one that is 

more commonly employed in research, which is the supervised multilayer perceptron (MLP), due 

to its proven ability to create reliable models for many different applications. 

 Having presented the scope of this research, as well as the tools employed, it is time to 

briefly look into the four main experimental sections that have been carried out and their results. 

The first one is a preliminary study in which a series of artificial gaseous mixtures were prepared 

with low concentrations of 11 known polar and non-polar volatile organic compounds (VOCs), 

chemically similar to molecules found in human breath. Pure samples of each VOC were 

prepared, as well as binary and ternary mixtures, and they were analyzed using an array of 

functionalized cross-reactive SiNW FET sensors. These sensors provided signals which were 

mathematically treated and interpreted using MLPs in an attempt to identify and quantify the 
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VOCs in the samples. The results of this study were promising, as all the compounds were 

perfectly identified, and the mean prediction error during their quantification was below 1.5%. 

These results proved the existence of a relation between the signals provided by the sensors and 

the chemical composition of the gaseous samples, validating the combination of the selected 

chemical and mathematical tools, as well as opening the door for the analysis of biological breath 

samples using this approach. 

 In the second experiment of this research, a study was carried out using the same type of 

sensors as the previous ones, but this time, real human breath samples were analyzed. In this case, 

samples from patients of different diseases were gathered, and a set of binary classifiers based on 

MLPs were designed to distinguish samples from each group. Samples were obtained from lung 

cancer, gastric cancer, chronic obstructive pulmonary disease, and asthma patients, as well as 

others from healthy controls, and they were processed with SiNW FET sensors. Once the data 

was available, it was treated and employed to design models which would distinguish the diseases 

from each other, as well as from the healthy control group. The results ranged from 80% to 100% 

correct classification rate (100% was attained during a series of cross-validations when 

discriminating lung cancer patients from gastric cancer ones, and gastric cancer patients from 

chronic obstructive pulmonary disease or asthma ones), using information from a single sensor 

of the array. With these results, it can be confidently stated that the composition of breath is in 

fact related to the clinical status of a person, as only using information extracted from these 

gaseous samples it is possible to accurately classify the people according to the diseases. 

Additionally, the combination of these sensors and ANNs for breath analysis is confirmed for 

diagnostic purposes. 

 Next, during the third experiment, PTR-MS was employed to analyze the breath samples 

of a group of lung cancer patients and compare them to others from healthy controls, yet high-

risk individuals, with the goal set to classify the samples using MLPs. This quantitative approach 

enables the location of potential volatile biomarkers that can aid in the detection of lung cancer 

(in this case, feature selection algorithms were employed to locate those compounds that possess 

the greatest discriminative power to distinguish the samples from both groups). The breath 

samples were collected during an oral glucose tolerance test, gathering two samples per volunteer, 

one before and one after the glucose uptake. This permitted two different studies where the 

samples can be analyzed regardless of glucose consumption, or considering it. In the first case, 

irrespective of glucose uptake, the classifying models would distinguish the breath samples 

without taking into account if the person had consumed glucose or not. These models offered 

around a 94% correct classification rate. On the other hand, if the influence of glucose is 

considered, compounds which are potentially affected by the Warburg effect could be identified, 

as a change in their concentration would not only be determined by the presence of cancer, but 

by the altered glucose metabolism of the patient as well. In this case, the classification rate was 

approximately 90%. Therefore, during this experiment, two main goals have been achieved, as an 

accurate and non-invasive tool has been developed to detect lung cancer, and the location of 

potential volatile lung cancer biomarkers has been enabled (such as acetic acid, ethylbenzene, 

1,2-dichlorobenzene, and glutamic acid). 

 Finally, in the fourth and last experiment, a set of 34 functionalized cross-reactive GNP 

sensors were used to analyze the breath samples from patients of seven different diseases, as well 

as healthy controls for each group which were matched in terms of age, gender, and smoking 

history. The diseases analyzed were chronic kidney disease, head and neck cancer, inflammatory 

bowel disease, multiple sclerosis, Parkinson’s disease, preeclampsia, and pulmonary arterial 



11 

 

hypertension. The objective of this study was the design of binary classifiers that would 

distinguish samples from patients from others which belonged to their matched healthy controls, 

in order to reach disease detecting tools. In this case, the mathematical treatment phase also 

allowed the identification of the sensors that led to the best possible classifications, enabling the 

development of more cost-effective and specialized tools for specific biomedical sectors. The 

statistical performance of the models in terms of correct classification rate ranged from about 80% 

for the detection of multiple sclerosis to over 90% for head and neck cancer and pulmonary arterial 

hypertension during a cross-validation procedure. On the other hand, all the models were above 

80% classification rate during an internal validation which used an independent set of samples to 

test them. These results reveal and further confirm the relation between the clinical status of a 

person and the composition of his or her breath, and, furthermore, reflect the huge potential behind 

the combination of cross-reactive sensors and neural networks, as these algorithms have been able 

to locate specific patterns in the signals originated by the breaths of patients of such a broad span 

of diseases. 

 To sum up, with these experiments and the results they have provided, it has been possible 

to demonstrate the undoubtable correlation between the clinical status of a human being and the 

composition of their exhaled breath. The door has been opened for the design of countless tools 

to reach an early, safe, non-invasive, accurate, and reliable detection of multiple diseases, which 

could have a priceless repercussion over many biomedical sectors worldwide, giving a relevant 

support to current techniques and, most importantly, saving lives and improving their quality. 
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Resumen en Castellano 

Diagnóstico No Invasivo de Patologías Humanas Combinando 

Análisis de Aliento y Modelización con Redes Neuronales 

 

 Actualmente es sabido que existe una relación directa entre el momento en el cual se 

detecta o diagnostica una enfermedad y las consecuencias que tendrá sobre el paciente, ya que 

una detección temprana va generalmente ligada a un desarrollo más favorable. Este concepto es 

el cimiento de la presente investigación, cuyo objetivo fundamental es el desarrollo de 

herramientas basadas en inteligencia artificial computacional que consigan, mediante medios 

seguros y no invasivos, la detección de diversas enfermedades. Para alcanzar dichos sistemas, los 

estudios han sido enfocados en el análisis de muestras de aliento de pacientes de diversas 

enfermedades, empleando varias técnicas para extraer información, y diversos algoritmos de 

selección de variables y redes neuronales para el procesamiento matemático. 

 En el pasado, se ha comprobado que hay una correlación entre la composición molecular 

del aliento y el estado clínico de una persona, evidenciando la existencia de biomarcadores 

volátiles que pueden ayudar a detectar enfermedades, ya sea por su presencia o por su cantidad. 

Durante el transcurso de esta investigación, se han empleado esencialmente dos tipos de técnicas 

analíticas para estudiar las muestras gaseosas, y estas son conjuntos de sensores de reactividad 

cruzada (basados en transistores de efecto de campo con nanocables de silicio (SiNW FETs) o en 

nanopartículas de oro (GNPs), ambos funcionalizados con cadenas orgánicas) y equipos de 

reacción de transferencia de protones con espectrometría de masas (PTR-MS). Los sensores de 

reactividad cruzada analizan el aliento en su conjunto, extrayéndose información de la muestra 

global, mientras que usando PTR-MS, se cuantifican las moléculas volátiles presentes en las 

muestras analizadas. 

 Todas las técnicas empleadas desembocan en la generación de grandes cantidades de 

datos por muestra, por lo que un análisis matemático exhaustivo es necesario para poder sacar el 

máximo rendimiento de los estudios. En este trabajo, se emplearon principalmente dos tipos de 

herramientas matemáticas. Las primeras son un grupo de cinco algoritmos de selección de 

variables, concretamente, filtros de variables (cálculos basados en estadística de χ2 (chi2), ratio 

discriminante de Fisher, análisis de Kruskal-Wallis, algoritmo relief-F y test de ganancia de 

información), que se han empleado en las bases de datos con grandes cantidades de variables 

independientes para localizar aquellas con mayor importancia o poder discriminativo para una 

tarea de modelización matemática posterior. Por otro lado, en cuando a dicha modelización, se ha 

empleado un tipo de algoritmo que se cataloga dentro del área de la inteligencia artificial 

computacional: las redes neuronales artificiales (ANNs). Estas herramientas matemáticas de 

naturaleza no lineal se han utilizado para localizar las relaciones existentes entre las variables 

independientes de un sistema y las variables dependientes o parámetros a estimar o clasificar. Se 

ha empleado el tipo de ANN supervisada más extensamente usado en investigación, que son los 

perceptrones multicapa (MLPs), debido a su habilidad contrastada para originar modelos fiables 

para numerosas aplicaciones. 

 Habiendo presentado la temática y las herramientas empleadas en la presente 

investigación, ahora se explicarán los cuatro bloques experimentales que se han desarrollado y 
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los resultados obtenidos en los mismos. El primero se trata de un estudio preliminar en el que se 

prepararon una serie de muestras gaseosas artificiales con concentraciones bajas y conocidas de 

11 compuestos orgánicos volátiles (VOCs) polares y no polares, de naturaleza similar a 

compuestos que se encuentran en el aliento humano. Se prepararon muestras puras además de 

mezclas binarias y ternarias, y se analizaron empleando conjuntos de sensores de reactividad 

cruzada basados en SiNW FETs funcionalizados. Estos sensores originaban señales que fueron 

tratadas matemáticamente e interpretadas a través de MLPs para intentar identificar y cuantificar 

los VOCs de las muestras. Los resultados de este estudio fueron satisfactorios, ya que todos los 

compuestos volátiles fueron perfectamente identificados, y el error de la cuantificación en 

términos de error de predicción medio siempre fue inferior al 1,5%. Estos resultados demuestran 

la existencia de una relación entre las señales originadas por los sensores y la composición 

química de las muestras gaseosas, dando validez a la combinación de las herramientas químicas 

y matemáticas seleccionadas, además de representar resultados prometedores a la hora de 

enfrentarse a muestras biológicas de aliento. 

 En segundo lugar, se llevó a cabo un estudio empleando sensores de la misma naturaleza 

que los del primer experimento, pero para el análisis de muestras de aliento reales. En este caso, 

se recogieron muestras de una serie de pacientes de diferentes enfermedades, y se diseñaron 

clasificadores binarios basados en MLPs para diferenciar muestras de cada grupo. Se obtuvieron 

muestras de pacientes que padecían cáncer de pulmón, cáncer gástrico, enfermedad pulmonar 

obstructiva crónica o asma, además de una serie de muestras de individuos sanos o controles, y 

se analizaron con los sensores de SiNW FET. Una vez obtenidos los datos, se procesaron y se 

emplearon para diseñar modelos que distinguiesen las enfermedades entre sí y de los controles, y 

los resultados oscilaron entre un 80% de acierto en los peores casos hasta el 100% (el 100% se 

consiguió durante una serie de validaciones cruzadas al distinguir casos de cáncer de pulmón de 

otros de cáncer gástrico, y al diferenciar casos de cáncer gástrico de otros de enfermedad 

pulmonar obstructiva crónica o asma), llegándose a usar información de un solo sensor del 

conjunto. Con estos resultados se pone de manifiesto la relación entre el estado clínico de un 

paciente y la composición de su aliento, ya que solamente usando datos obtenidos del aliento se 

pueden clasificar las muestras de diferentes enfermedades de forma precisa. Asimismo, se 

confirma la valía de la combinación de los sensores empleados con las redes neuronales para el 

análisis de muestras de aliento reales con fines diagnósticos. 

 En el tercer experimento se empleó PTR-MS para procesar las muestras de aliento de un 

grupo de pacientes de cáncer de pulmón y compararlas a otras pertenecientes a controles sanos, 

pero con elevado riesgo a desarrollar dicha enfermedad, con el objetivo de clasificar las muestras 

empleando MLPs. Al emplear esta técnica analítica cuantitativa, se permite la localización de 

potenciales biomarcadores volátiles que puedan ayudar en la detección de cáncer de pulmón (en 

este caso, se emplearon los algoritmos de selección de variables para localizar aquellos 

compuestos que poseen mayor poder para diferenciar las muestras de los dos grupos). Las 

muestras de aliento se recogieron durante el transcurso de un test oral de tolerancia a la glucosa, 

obteniéndose muestras de cada voluntario antes y después de la ingesta de glucosa. Esto permitió 

un estudio dual, donde se tratan las muestras de forma individual sin importar la ingesta de glucosa 

o considerando la misma. En el primer caso, no considerando la glucosa, se obtendrían modelos 

que usan datos de compuestos que diferencian pacientes de controles independientemente de si 

han ingerido glucosa o no. En estos modelos se obtuvieron precisiones del 94% aproximadamente 

en cuanto a la clasificación de muestras. Por otro lado, si se considera la influencia de la glucosa, 

se pueden potencialmente localizar compuestos que se ven afectados por el efecto Warburg, ya 



15 

 

que el cambio en su concentración en aliento viene determinada no solo por la presencia del 

cáncer, sino también por el metabolismo de la glucosa alterado. En este caso, el rendimiento 

estadístico de los modelos ronda el 90% de acierto. Por lo tanto, este experimento cumple un 

doble propósito, ya que se ha desarrollado una herramienta precisa para la detección de cáncer de 

pulmón de forma no invasiva, y se permite la localización de potenciales biomarcadores de dicha 

enfermedad (como el ácido acético, etilbenceno, 1,2-diclorobenceno o ácido glutámico). 

 Finalmente, en el cuarto y último experimento se empleó un conjunto de 34 sensores de 

reactividad cruzada basados en GNPs funcionalizadas para analizar muestras de aliento 

provenientes de pacientes de siete enfermedades diferentes, además de muestras de controles para 

cada enfermedad que se hicieron coincidir en términos de edad, género e historial fumador. Las 

enfermedades analizadas fueron enfermedad renal crónica, cáncer de cabeza y cuello, enfermedad 

inflamatoria intestinal, esclerosis múltiple, enfermedad de Parkinson, preeclampsia e hipertensión 

arterial pulmonar. El objetivo del estudio fue el diseño de clasificadores binarios que 

diferenciasen las muestras de enfermedades concretas de su grupo correspondiente de controles 

para alcanzar herramientas de detección o diagnóstico de enfermedades. En este caso, el 

tratamiento matemático de los datos también permitió la identificación de aquellos sensores que 

mejor permitían llevar a cabo las clasificaciones de los pacientes y sus respectivos controles, 

pudiendo reducir costes en el desarrollo potencial de herramientas para sectores específicos de la 

biomedicina. Los resultados de los modelos en cuanto a porcentajes de acierto oscilaban entre el 

80% aproximado para esclerosis múltiple y por encima del 90% para la detección de cáncer de 

cabeza y cuello e hipertensión arterial pulmonar, durante una validación cruzada. Por otro lado, 

con una validación interna, empleando muestras separadas de la base de datos, los modelos 

siempre superaban el 80% de aciertos, lo cual pone de manifiesto la relación entre el estado clínico 

y la composición del aliento, además de reflejar la inmensa potencialidad de la combinación de 

sensores de reactividad cruzada y redes neuronales, ya que se han podido localizar con estos 

algoritmos patrones propios de enfermedades tan variadas en las señales proporcionadas por los 

sensores. 

 En resumen, con esta serie de experimentos y sus resultados, se ha podido demostrar que 

hay una relación innegable entre el estado clínico de un ser humano y la composición del aire que 

exhala. Se ha abierto la puerta al desarrollo de cuantiosas herramientas para alcanzar una 

detección precoz, segura, no invasiva, precisa y fiable de diversas enfermedades, que podrían 

tener una repercusión incalculable sobre numerosos sectores de la biomedicina a nivel mundial, 

sirviendo de apoyo a las técnicas actuales y ayudando a salvar vidas y mejorar la calidad de las 

mismas. 
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Non-Invasive Diagnosis of Human Diseases by Combining 

Breath Analysis and Neural Network Modeling 

 

1) Introduction 

 It is well known that the early detection or diagnosis of many and diverse diseases is 

highly correlated with successful treatments which lead to more favorable patient prognosis 

(Befeler and Di Bisceglie, 2002; O’Sullivan and Freedman, 2009). The research behind the 

present thesis is completely and utterly influenced by this concept, as it is focused on attaining 

novel, non-invasive diagnosing tools, which combine breath tests and intelligent non-linear 

computational modeling. In many cases, diseases and syndromes develop and pass unnoticed and 

are asymptomatic for determined time periods that are likely to be crucial for the patient’s 

outcome. The goal that has been set during this study is to reach fast, safe, and reliable systems 

that can potentially help lower the mortality rate of terrible diseases such as cancer by consistently 

detecting the diseases in the earliest stages possible. Discovering diseases early also facilitates the 

following and necessary treatments or procedures, greatly increasing the quality-of-life of the 

patients. Therefore, not only would survival rates increase, but also the wellbeing of cured people 

or patients under treatment. 

 In the following subsections of the introduction, the background of the most relevant 

elements of this research will be revealed and sensibly linked together to fully understand the 

thought process behind its development. In the first phase, the history of breath analysis and breath 

tests will be uncovered, and how they can be used to determine and relate volatile biomarker 

profiles with different diseases and even disease subtypes. It will be backed up by the general 

developments and progress within the biomarker field, which will guide the definition of the wide 

set of diseases included in this research. Next, the analytical methodologies employed for the 

preliminary and breath tests will be shown as well as their past and present applications. Finally, 

the data analysis process followed will be thoroughly displayed and explained as well as how it 

has enabled the design of useful mathematical tools and models for many fields within the 

biomedical sector for disease detection or diagnosis. 

 

1.1) Breath Tests – Exhaled Information 

 Tens of centuries back, at the time of Ancient Greece, particularly, during the Classical 

period, the father of western medicine, Hippocrates of Kos (c.460-c.370 BC), was already starting 

to consider that human breath potentially contained evidence concerning a person’s medical status 

and physiology (Grammaticos and Diamantis, 2008; Risby and Solga, 2006). For instance, he 

understood that determined breath smells such as a sweet scent or a urine odor could be 

representative of diabetes or kidney failure, respectively (Phillips, 1992). Many years later, during 

the late 18th Century, Antoine Lavoisier demonstrated that carbon dioxide could be found in 

exhaled breath and he interpreted that the production of this metabolic byproduct was due to a 

process of slow combustion that takes place in the human body (Amann et al., 2014). In this 

section, we will look into the background of breath and breath analysis as well as its current 

applications and involvement in the biomedical field and, specifically, how its study enables the 

diagnosis of diseases. 
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1.1.1) Breath – A Volatile Tattletale 

 Breath can be defined as a gaseous matrix that mainly contains nitrogen, oxygen, carbon 

dioxide, water vapor, inert gases, and very small, perhaps seemingly insignificant, amounts of 

volatile organic compounds (VOCs) (Cao and Duan, 2007) (Figure 1). Nevertheless, these 

“insignificant” VOCs are the key components that provide underlying clues behind a human 

being’s medical status. A few decades ago, in 1971, the Nobel Prize winning Linus Pauling and 

his research team quantified around 250 compounds in breath using gas-liquid partition 

chromatography (Pauling et al., 1971; Teranish et al., 1972). Most of these detected molecules 

were the mentioned VOCs, and they are the reason why it is possible to link the story that breath 

analysis tells us with a person’s physiology (Figure 1). 

 
Figure 1. Main molecular components of exhaled breath. The small amounts of VOCs present in breath 

provide physiological information from the person offering potential diagnostic evidence. 

It is currently known that there are over 1000 trace VOCs present in human breath, with 

concentrations varying from about 100 ppm all the way to the ppt range (Cao and Duan, 2007; 

Risby and Solga, 2006). They vary qualitatively and quantitatively from person to person and 

only a limited set of them (e.g., isoprene, acetone, ethane, pentane, ethanol, methanol, and other 

alcohols; vide infra) are common to everyone and are the result of essential metabolic processes 

(Mukhopadhyay, 2004; Sánchez and Sacks, 2003). VOCs reach the exhaled breath deep within 

the lungs, from the insides of the alveoli. “Alveolar breath” is the air that has suffered the gaseous 

exchange process with the blood, which is the reason why these VOCs end up in exhaled air and 

act as a true reflection of what is happening inside our bodies (Mukhopadhyay, 2004). 

The VOCs in breath are subdivided into molecules that possess an endogenous or an 

exogenous origin. This subdivision is relevant due to the fact that the information provided solely 

by the endogenous VOCs, many of which are common to all people, is what actually provides a 

clinical perspective and diagnosing hints. On the other hand, the exogenous VOCs simply 

interfere with these results, setting clear hurdles for the analyses of breath tests, as many 

confounding factors appear. Unlike endogenous VOCs, the sources of exogenous ones are inhaled 

air, food ingestion, tobacco use, or even compounds like anesthetics that remain in the body up 

to six weeks after their use (Risby and Solga, 2006). Furthermore, compounds present in ambient 

air may interfere with the breath test results, thus necessary precautions and corrections must be 

considered (Risby and Solga, 2006). For these reasons, revealing and adequately interpreting the 

biomedical tale that is being presented by the endogenous VOCs in breath is not at all an easy or 

straightforward task. 
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Therefore, the real clinical information in breath is offered by the presence and the 

concentration of endogenous VOCs, as they mirror metabolic alterations or malfunctions that take 

place within the body (Hubbard et al., 2009). The biochemical origin of these compounds, which 

can be used for diagnosing purposes, lies in normal or irregular metabolic processes, such as 

inflammation or oxidation damage (Smolinska et al., 2014). The main groups of endogenous 

VOCs, and examples of each one of them, can be seen in Table 1 (Buszewski et al., 2007; 

Miekisch et al., 2004). In order to understand their physiological meaning and evaluate their 

relevance in disease diagnosis and detection, it is important to locate the metabolic pathways in 

which their generation or presence is involved (Table 1) (Buszewski et al., 2007; Miekisch et al., 

2004). 

Table 1. Main endogenous VOCs in exhaled breath. Examples of each main group are shown, as well as 

their metabolic pathway of origin (Buszewski et al., 2007; Miekisch et al., 2004). The numbers in bold are 

used to correlate the molecules with the specific metabolic pathway and clinical importance. 

Group of 

compounds 
Examples Metabolic pathway Clinical relevance 

Saturated 

hydrocarbons 

1) Ethane a,b 

2) Pentane a,b 
1 & 2) Lipid peroxidation a,b 

1 & 2) Control of 

oxidative damage b 

Unsaturated 

hydrocarbons 
1) Isoprene a,b 1) Cholesterol biosynthesis a,b 

1) Cholesterol-

related disorders a 

1) Control of 

oxidative damage b 

Oxygen-containing 

compounds 

1) Acetone a,b 

2) 2-Propanol b 

3) Acetaldehyde a,b 

4) Ethanol b 

5) Methanol b 

1) Decarboxylation of 

acetoacetate and acetyl-CoA a,b 

2) Reduction of acetone b 

3) Oxidation of endogenous 

ethanol b 

4 & 5) Intestinal bacterial flora b 

1) Diabetes 

mellitus a,b 

1) Nutritional 

issues a 

1) Ketonemia a 

Sulphur-containing 

compounds 

1) Ethyl mercaptane a,b 

2) Dimethylsulfide a,b 

3) Dimethyldisulfide a,b 

1, 2, & 3) Metabolism of 

methionine; transamination 

pathway a,b 

1, 2, & 3) 

Impairment of 

liver function a,b 

Nitrogen-containing 

compounds 

1) Ammonia a,b 

2) Dimethylamine a,b 

3) Trimethylamine a,b 

1) Conversion to urea a,b 

1, 2, & 3) Uremia 

and kidney and 

liver impairment a,b 
a Buszewski et al., 2007. 
b Miekisch et al., 2004. 

 The information collected in Table 1 clearly demonstrates the biomedical potential 

behind breath analysis. With only a few molecules it is already possible to assess a relevant span 

of diseases or general altered processes, which allow narrowing down the type of clinical 

irregularities. If we were able to develop a methodology that was capable of suitably analyzing 

the entire bulk of exhaled air (over 1000 trace VOCs), the potential applications would be 

countless. In the next subsection, the current applications of breath tests will be shown, ranging 

from well-known examples such as the alcohol measuring breathalyzer, to more specific devices 

to fulfill biomedical needs. 
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1.1.2) Breath Tests – Disease Diagnosis & Other Applications 

 Breath gas analysis is currently carried out for a wide variety of purposes. The 

implementation of specific applications that rely on breath analysis began when, as mentioned 

previously, Antoine Lavoisier discovered amounts of carbon dioxide in human exhaled air in the 

late 1700s (Amann et al., 2014). This led to the birth of the first breath test-based application: 

capnography (Amann et al., 2014). Capnometry measurements, which are used to monitor the 

amount of carbon dioxide in breath, are used by clinicians to gather information from the systemic 

metabolism of the patient, as well as data from both circulatory and respiratory systems (Sanders, 

1989). 

 Since then, many other applications have developed to become regularly employed tests. 

For instance, the common breathalyzer used to determine the amount of alcohol in blood through 

indirect ethanol measurements in breath. It has been around since being invented by Robert Frank 

Borkenstein (Martin, 2002) back in 1958 (Borkenstein, 1958). Its most known application is for 

law enforcement during traffic controls, to locate inebriated drivers. 

 On the other hand, more focused on the theme of the present work, a wide variety of 

breath tests exist which are medically oriented and serve as disease detectors and evaluators (Kim 

et al., 2012). There are multiple compounds in breath that have shown to be linked to the existence 

of different significant groups of diseases. For example, breath tests are employed to diagnose 

lung diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, 

bronchiectasis, interstitial lung disease, obstructive sleep apnea, and pneumonia), metabolic 

disorders (e.g., diabetes), and gastroenteric diseases (e.g., lactase deficiency, starch 

malabsorption, Helicobacter pylori infection, lactose and fructose intolerance, bacterial 

overgrowth, bile salt wastage, pancreatic insufficiency, liver dysfunction, and abnormal small-

bowel transit), as well as to evaluate the state of oxidative stress in the body (Kim et al., 2012). 

 Many of the above diagnosing breath tests are based on the measurement of specific 

endogenous VOCs. For instance, asthma and COPD, as well as other inflammatory diseases, can 

be related to a characteristic increase in the amount of exhaled saturated hydrocarbons, such as 

pentane and ethane (Miekisch et al., 2004; Paredi et al., 2000-a; Paredi et al., 2000-b). 

Additionally, particular amounts of nitric oxide (not a VOC) have shown determined correlations 

with the state and severity of these diseases (Clini et al., 1998; Pijnenburg and De Jongste, 2008). 

Other examples are listed in Table 1, where determined VOCs appear linked to their clinical 

relevance and/or disease. On the other hand, a different well-known test is the urea breath test to 

diagnose and monitor H. pylori infection. This test does not measure an endogenous VOC as it is 

based on the fact that these Gram-negative bacteria can transform urea into ammonia and carbon 

dioxide through the enzymatic activity of urease. Patients ingest urea labeled with an uncommon 

carbon isotope, and around 10 to 30 minutes later, the amount of labeled carbon dioxide in exhaled 

breath is determined to confirm or monitor this infection (Chey and Wong, 2007; Malfertheiner 

et al., 2002). 

 As can be reasoned from the above paragraphs, metabolic changes that are induced from 

different diseases are to some extent reflected in the molecular profile in breath (Miekisch et al., 

2004; Smolinska et al., 2014). This is the key behind the search of breath-based methodologies 

to diagnose diseases. The goal is clear: to link the information contained in breath to particular 

diseases through non-invasive procedures to attain safe, reliable, and real-time diagnosing tools 

(Peng et al., 2008). Therefore, the premise here is that a specific average molecular breath profile 
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will exist for determined diseases, which will allow differentiating it from other pathological 

developments and from healthy people, and, ideally, even different stages of the same disease. 

These molecules that allow diagnosing diseases are known as biomarkers (Spanel and Smith, 

2011), which will be analyzed in the following section. 

 

1.2) Biomarkers – A Safe Highway to Disease Diagnosis 

 A proper way to begin understanding the clinical relevance of biomarkers and the role 

they play in disease detection and early diagnosis is by comprehending their definition. The 

following was provided by a working group from the National Institutes of Health Director’s 

Initiative on Biomarkers and Surrogate Endpoints (Biomarkers Definitions Working Group, 

2001): 

“Biological marker (biomarker): A characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention”. 

 In other words, biomarkers are molecules that, depending on their presence or amount in 

a determined body fluid, can indicate the existence of a disease or even predict its development 

(Wang et al., 2006) and, for instance, assess the extent of the efficiency of a specific treatment or 

surgical procedure that a patient is undergoing or has undergone, respectively (Biomarkers 

Definitions Working Group, 2001). Therefore, biomarkers are compounds which hide behind 

their presence and amount significant clinical information that can potentially save lives. For this 

reason, it is crucial to design reliable methods that allow the analysis of biological matrices to 

find and extract this kind of information, with the goal set to catch diseases as early as possible 

and greatly improve their outcome. 

 The concept of biological markers appeared in the early 1980s, where research revealed 

a series of tumor markers in human biological body fluids (Johnson et al., 1984; Paone et al., 

1980; Winters, 1983). Since then, a variety of applications related to disease diagnosis and health 

status monitoring have emerged through biomarker analysis. For example, it is possible to locate 

people suffering a particular pathological process, reflect or stage the extent of diseases, provide 

an approximate prognosis, or predict and monitor the clinical development after a medical 

intervention (Biomarkers Definitions Working Group, 2001). If studied and validated adequately, 

these biological markers represent a fast and safe diagnosing alterative, possibly limiting the 

amount of required biopsies. This correct biomarker validation is necessary from the moment of 

discovery all the way through the required preclinical and clinical trials (Anonymous, 2010). In 

order for a molecule to become a biomarker, it must meet three requirements: (a) must exist in 

peripheral body tissue and/or fluid such as blood or serum (Kosaka et al., 2010; Maurya et al., 

2007), urine (Pisitkun et al., 2006), saliva (Pfaffe et al., 2011), or exhaled breath (Shirasu and 

Touhara, 2011); (b) must be affordably and robustly detectable and quantifiable; (c) its presence 

must be specifically linked to damage in a particular tissue, preferably in a quantifiable fashion 

(Anonymous, 2010). 

 Biomarkers, as mentioned before, can be present in a variety of easily accessible body 

fluids, enabling safe disease diagnosis. Additionally, the chemical nature of these molecules is 

not restricted to a determined kind of molecule, as a wide variety of them have been described, 

ranging from proteins (Xiao et al., 2005) to small microRNA molecules (Kosaka et al., 2010) or 
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even cell-free DNA (Jung et al., 2010). A series of clear examples of biomarkers and their clinical 

relevance can be seen in Table 2, manifesting the broad span of possibilities behind these studies. 

Table 2. Biomarker examples from diverse research studies and groups linked to their biochemical nature, 

biological matrix analyzed, and clinical importance. 

Biomarker/s 
Biochemical 

Nature 

Body Fluid 

Analyzed 

Clinical 

Relevance 
Reference 

Acetone VOC Breath 
Correlated with 

diabetes 

Di Francesco et 

al., 2005 

α-Fetoprotein Protein Serum 
Detection of liver 

cancer 

Beneduce et al., 

2004 

Aquaporin-2 

Integral 

membrane 

protein 

Urine 

Related to 

impaired water 

excretion 

Ishikawa and 

Schrier, 2003 

Cell-free DNA DNA Serum 
Myocardial 

infarction marker 

Chang et al., 

2003 

C-reactive 

protein, 

Myoglobin & 

Myeloperoxidase 

Proteins Saliva 

Early detection of 

acute myocardial 

infarction  

Floriano et al., 

2009 

Cystatin C Protein Serum 

Glomerular 

filtration rate 

marker  

Dharnidharka et 

al., 2002 

Isoprene VOC Breath 

Marker for 

cholesterol 

metabolism 

disorders 

Buszewski et al., 

2007 

miR-92 microRNA Plasma 
Colorectal cancer 

marker 
Ng et al., 2009 

miR-210 microRNA Plasma 
Detection of 

pancreatic cancer 
Ho et al., 2010 

Carbonic 

anhydrase VI 

(protein) & set 

of 8 mRNAs* 

mRNA & protein Saliva 
Detection of 

breast cancer 

Zhang et al., 

2010 

*The eight mRNAs are: CSTA, TPT1, IGF2BP1, GRM1, GRIK1, H6PD, MDM4, and S100A8. 

 As can be noticed, the possibilities are immense for safe and non-invasive biomarker-

based diagnosis or disease monitoring. Options are broad in terms of both biological fluids and 

biochemical nature of the markers, greatly widening the potentiality of these kinds of clinical 

studies. Nevertheless, it has been reported that diagnosis based on single biomarkers suffer from 

low sensitivity (true positive rate) and low specificity (true negative rate) values, giving a clear 

advantage to studies based on the analysis of biomarker panels (Kozak et al., 2003). 

In the present thesis, the analysis will be centered around exhaled breath and 

volatonomics (Shehada et al., 2015; Vishinkin and Haick, 2015), based on the well-known 

concept that the average molecular profiles of exhaled volatile compounds (volatile biomarker 

panel) vary between patients suffering different diseases and from healthy people (Amman et al., 

2014; Buszewski et al., 2007). As mentioned several times already, the volatile profile of exhaled 

breath acts as a reflection of the clinical status of a human being. These volatile compounds that 
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can be related to different diseases are great examples of biomarkers, with the clear advantage of 

being present in such an accessible and safe biological matrix. When perfected, breath analysis 

for disease detection, early diagnosis, and evaluation will offer an invaluable source of non-

invasive and real-time biomedical tools (Peng et al., 2008). Therefore, attaining reliable breath-

based diagnosing systems would clearly be devices that many doctors would gladly include into 

their disease-combating resources. 

 In the current research breath samples have been treated as a whole, not so much focusing 

on the search for specific biomarkers for specific diseases, but as a complex matrix with hundreds 

or even thousands of volatile compounds that can offer a general profile or pattern to distinguish 

and identify diseases (Cao and Duan, 2007; Risby and Solga, 2006). This approach, rather than 

seeking for particular evidence from determined molecules, attempts to extract relevant 

information from the big picture, from the complete exhaled sample, to then link it with a 

particular disease, thus taking advantage of what a biomarker panel provides, instead of non-

sensitive and non-specific single biomarker methods. In other words, we are seeking for the entire 

story that breath is willing and able to tell us, not partial bits and pieces. To understand this 

approach, it can be compared with the mechanism of our own olfactory system, which enables us 

to identify smells (more specifically, from 4 to 10 thousand different ones) as they are integrated 

by our brain and treated as particular patterns, without necessarily knowing the individual 

molecules that lead to that smell (Boots et al., 2012). 

 The present work has been centered on the detection of multiple and very dissimilar 

diseases through the analysis of exhaled breath or volatolome. This set of diseases will be looked 

into in the following section of this introduction. 

 

1.3) Diseases Analyzed – Exhale & Detect 

 The breaths of a broad series of patients with different diseases have been analyzed to try 

and discover disease-specific patterns that can potentially allow their diagnosis and detection. 

This study is based on the fact that as all diseases affect and alter the “normal” metabolism, it will 

also specifically change the composition (presence and/or concentration) of volatile biomarkers 

in a patient’s breath. The main study has been focused around lung cancer (LC), as early detection 

greatly improves its otherwise terrible prognosis and recovery rate, and is currently one of the 

main health concerns and deadly diseases (Tisch et al., 2012). In addition, other diseases have 

also been looked into in order to attain fast and non-invasive diagnosing devices. These are asthma 

(AS), chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), gastric 

cancer (GC), head and neck cancer (HNC), inflammatory bowel disease (IBD), multiple sclerosis 

(MS), Parkinson’s disease (PD), preeclampsia (PE), and pulmonary arterial hypertension (PAH). 

The wide variety of diseases assessed through breath tests are gathered in Figure 2. 

 As can be deduced, successfully attaining reliable breath-based tools that can identify 

such diverse diseases at early stages safely, quickly, and non-invasively would imply an explosion 

of new devices for a large variety of health fields, potentially facilitating a trustworthy disease-

screening method. If proven suitable, these systems, combined with current techniques, would 

enable a completely different yet complementary alternative for disease diagnosis, clearly 

lowering detection and treatment time as well as increasing patient safety and satisfaction. 

Furthermore, early detection of diseases would allow reducing the global treatment costs, which, 
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for example, for LC is quite high, as its economic burden represents tens of thousands of euros 

per patient in Europe (McGuire et al., 2015). 

 
Figure 2. Diseases evaluated through breath tests in the present 

research and their approximate and main location in the human body 

(asthma (AS), chronic kidney disease (CKD), chronic obstructive 

pulmonary disease (COPD), gastric cancer (GC), head and neck 

cancer (HNC), inflammatory bowel disease (IBD), lung cancer (LC), 

multiple sclerosis (MS), Parkinson’s disease (PD), preeclampsia (PE), 

and pulmonary arterial hypertension (PAH)). 

 Each one of the diseases analyzed in this work will be looked into next. First, a section 

regarding cancer and LC will be presented, followed by brief descriptions of the other mentioned 

ten diseases. 

 

1.3.1) Cancer & Lung Cancer – Exhaling the Worst of the Worst 

 Due to the horrible outcome that cancer originates in many cases, together with the social 

impact and psychological stress it produces, this disease is one of the most feared, leading to grief 

in both patients and their family members and friends (Robb et al., 2014; Wess, 2007). 

Nonetheless, developments for early diagnosis have aided in greatly decreasing the mortality rate 

of cancer, proving that catching this disease as early as possible is one of the best options to fight 

its effects and improve its prognosis, as the effectiveness of treatments is much greater during the 

early stages of cancer (Lau and Lai, 2008; Soerjomataram et al., 2008). 

 Cancer is a disease that involves dynamic changes in the genome, in other words, which 

requires genetic alterations or mutations to develop (Bishop and Weinberg, 1996). Despite being 

a genetic disease, this fact must not be confused with the origin or the causes behind the 
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appearance of cancer, as 90 to 95% of cancer cases are induced by environmental factors and 

lifestyle, clearly demonstrating that following adequate habits can prevent many tumor favoring 

mutations and, in the end, tumorigenic processes (Anand et al., 2008). As a matter of fact, from 

all cancer-related deaths, around one third of them are related with unhealthy dieting and over 

one quarter are directly linked to smoking tobacco (Anand et al., 2008). Nevertheless, there is 

still a relevant group of cancers that are genetic or hereditary (Kinzler and Vogelstein, 1996). For 

instance, studies have revealed the mutated BRCA-1 and/or BRCA-2 genes clearly predispose 

women to develop breast cancer (Parmigiani et al., 1998), or people presenting mutations in 

MSH-2, MSH-6, PMS-1, PMS-2, and/or MLH-1 have greater chances of suffering colorectal 

cancer (Farrington et al., 1998). In Figure 3, a detailed representation of the causes that are 

involved in the development of cancer can be found. 

Figure 3. Schematic view of the causes behind the development of cancer and a deeper analysis of the main 

lifestyle-related factors involved (Anand et al., 2008). 

 As can be reasoned from this information, the fight against cancer begins in each and 

every human being, by avoiding common negative habits such as smoking, eating too much fast-

food, or consuming excessive amounts of alcohol, and by leaning towards a healthy diet and 

lifestyle (Block et al., 1992). To sum up, prevention comes first. 

 Cancer is, to say the least, a complex disease that requires the malfunction of numerous 

biological phenomena that lead to the excessive proliferation of cells and increase their survival 

rate. These abnormal activities that favor the appearance and development of tumors are the 

“hallmarks of cancer”, which are shown here as brought to us by Hanahan and Weinberg in two 

very well-known scientific publications (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 

2011): 

1. Sustained proliferative signaling; deregulation of growth-promoting signals 

enables exaggerated proliferation. 

2. Evasion of growth suppressors; bypassing signals that negatively regulate cell 

proliferation such as actions from tumor suppression genes. 

3. Cell death evasion; apoptosis is attenuated, especially in tumors with a high-grade 

of malignancy. 

4. Enabled replicative immortality; cells proliferate with no signs of reaching 

senescence. 
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5. Induced angiogenesis; the creation of new blood vessels are fomented to address the 

needs of oxygen and nutrients of the tumors. It enables cancerous cells to reach the 

blood and begin spreading throughout the body. 

6. Activation of tissue invasion and metastasis; tumor cells start to leave behind the 

initial site to form new colonies in other near or distant locations. This is when the 

cancer becomes malignant, greatly worsening prognosis. 

7. Genomic instability and mutations favored; determined mutant genotypes confer 

selective advantages to certain cells, allowing them to outgrow other non-cancerous 

subclones and form a tumor. 

8. Tumor-promoting inflammation; tumor sites are populated with cells from the 

immune system leading to typical inflammation processes. 

9. Cellular energetics deregulated; non-efficient glycolysis is favored in cancerous 

cells, even in aerobic conditions, to produce energy quickly for fast proliferation. This 

is known as the Warburg effect. 

10. Immune system avoided; solid tumors that prevail manage to restrict the actions of 

the immune system. 

In order to clearly break down this list (Hanahan and Weinberg, 2000; Hanahan and 

Weinberg, 2011), all of the above basically favor uncontrolled cell proliferation as well as their 

survival to form, first, localized tumors, and, with time, secondary cancerous sites thanks to 

phenomena like angiogenesis and metastasis. These ten hallmarks represent an organizing 

principle that attempts to rationalize the cosmic underlying complexity behind cancer (Hanahan 

and Weinberg, 2011). 

Apart from the incredible organization of the necessary biological events required for 

tumors to grow and expand in the body, it is also worth mentioning that there are over 200 

different types and subtypes of cancer, according to body location or specific affected tissue or 

cell type in the diseased organ (Cancer Research UK website, 2016-a). Each subtype presents its 

own statistics in terms of incidence, mortality, and prognosis (Jemal et al., 2011), greatly 

widening the complexity of this heterogeneous disease as particular measures, or even 

personalized, should be considered for each patient. For this reason, accurate and early diagnosis 

is vital for any cancer, as it will enable the selection of the optimal available procedure or 

treatment, as well as exponentially improve prognosis (Marcano-Cedeno et al., 2011). 

A representative, diverse, and highly extended example of cancer is lung cancer (LC). 

This kind of cancer has various subtypes and can be histologically classified into small-cell lung 

carcinoma, adenocarcinoma, squamous cell carcinoma, or large cell carcinoma (the last three 

types are also known as non-small-cell lung carcinomas) when the tumor has an epithelial origin 

(Tisch et al., 2012). Currently, about 1.6 million new LC cases are diagnosed worldwide per year 

(Ramalingam et al., 2011). Also, around 1.4 million LC-related deaths take place, which is the 

largest amount when compared to any other type of cancer (Jemal et al., 2011) and accounts for 

approximately 28% of all cancer-related deaths (Peled et al., 2012). In Figure 4, a schematic view 

of the estimated cancer cases and deaths, categorized by types and emphasizing the top three per 

chart, can be seen for the United States in 2014 for both males and females (Siegel et al., 2014), 

as well as for 40 European countries in 2012 (Ferlay et al., 2013). This embodies two 
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characteristic examples, demonstrating that, currently, LC presents one of the highest incidence 

rates, and clearly the worst mortality. 

Figure 4. Representation of the estimated incidence and mortality (total deaths) rates for the United States 

in 2014 and for 40 European countries in 2012, for males and females, highlighting the top three types of 

cancer in each category (Ferlay et al., 2013; Siegel et al., 2014). 

 Figure 4 undoubtedly illustrates the impact LC has as it is the second in terms of 

incidence, but becomes the first in cancer-related deaths for both genders, representing over a 

quarter of them (except for European women in 2012). Furthermore, the deaths due to LC are 

around twice the amount of that of the nearest cancer type in the United States and for men in 

Europe (prostate cancer for men and breast cancer for women) (Ferlay et al., 2013; Siegel et al., 

2014). These statistics are caused by two main factors: LC incidence is clearly correlated with 

smoking tobacco, while the elevated mortality is linked to late diagnosis, which validates the 

relevance of the present research, as one of its aims is early detection of LC. As a matter of fact, 

in the United States, the five-year survival rate of LC patients between 2003 and 2009 was around 

50% for those that were diagnosed early, when the tumor was still local, opposed to the 4% 

survival when diagnosed after distant cancerous colonies had been established (Siegel et al., 

2014). Therefore, once again, the solution is prevention first and early detection after (Jemal et 

al., 2011; Siegel et al., 2014). As of today, LC diagnosis mainly relies on x-ray, computed 

tomography scan, bronchoscopy, or biopsy (Cancer Research UK website, 2016-b). In contrast, 
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in our research, an attempt to aid in LC early diagnosis is carried out, as mentioned already, 

through non-invasive breath tests, which would offer complementary information to the one 

provided by other methods, to discover LC-related patterns created by volatile biomarkers in the 

early stages of this disease to greatly improve its currently devastating prognosis. The fact that 

this prognosis is far from being optimal is mainly because during the early stages of LC, it is an 

asymptomatic disease. For this reason, developing reliable tests that can consistently and 

accurately locate the disease at these initial stages by merely blowing into a breathalyzer-like 

device would imply incredible progress in the clinical field, greatly improving survival rates and 

quality-of-life. 

Several research groups from different parts of the world are and have been working on 

the design of tools with the goal set to diagnose LC through breath analysis (Bajtarevic, et al., 

2009; Dragonieri et al., 2009; Peng et al., 2009; Phillips et al., 2007; Poli et al., 2005), and during 

the present research, it has been looked into in different experiments as well. Nonetheless, we 

would like to take the application of breath analysis a bit further. 

 

1.3.2) Other Diseases Analyzed – Specifically Labeled Breath? 

 It may seem logical or easy to understand that a disease such as LC will have a direct 

impact on the composition of breath, as it particularly affects lungs, which are the organs that 

produce the air we exhale. On the other hand, non-respiratory diseases such as Parkinson’s disease 

or chronic kidney disease could be harder to perceive as diagnosable through breath analysis. In 

any case, in this work, we recognize that the metabolic changes that diseases induce throughout 

the body are somewhat reflected in the volatile compounds in breath in terms of presence and 

amount (Amman et al., 2014; Buszewski et al., 2007). 

 In this part of the introduction, a set of worldwide relevant diseases that have been 

analyzed thorough breath tests during this research will be looked into. Ten completely different 

and unrelated diseases have been assessed in an attempt to confirm that disease-specific patterns 

are reflected in a patient’s breath, enabling the design of versatile diagnosing devices or, in 

general, disease detectors. These diseases are asthma, chronic kidney disease, chronic obstructive 

pulmonary disease, gastric cancer, head and neck cancer, inflammatory bowel disease, multiple 

sclerosis, Parkinson’s disease, preeclampsia, and pulmonary arterial hypertension (Figure 2). 

Some brief notes will be commented next regarding these ten diseases and their background in 

terms of their diagnosis. 

 

1.3.2.1) Asthma 

 Asthma (AS) is a chronic inflammatory airway disorder or respiratory disease which 

affects people irrespective of age, and, when not controlled properly, can greatly hinder the 

quality-of-life of patients and even cause their death (Bateman et al., 2008). Apparently affecting 

women more than men (Kynyk et al., 2011), AS possesses a complex pathogenesis and it is 

defined through a set of clinical, pathological, and physiological traits. It is characterized by 

chronic inflammation due to airway hyperresponsiveness that originates wheezing (most common 

symptom) and coughing, as well as breathlessness and chest tightness. These episodes are 

commonly linked to airflow obstruction inside of the lung, which is usually naturally or artificially 
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(with treatment) reversible (Bateman et al., 2008). It is thought that both genetic and 

environmental factors play a role in the risk and development of AS. Genetic factors are more 

linked to being the causes of the actual development of the disease, while environmental ones, 

such as air pollution or determined allergens, seem to be related to triggering AS symptoms, not 

necessarily due to the disorder (Bateman et al., 2008). 

 The most recent studies estimate that there are around 334 million AS cases worldwide, 

and its prevalence is seemingly increasing in lower-income countries, which represents a clear 

reverse in the trend that has been occurring during the last five to ten years, as wealthy countries 

typically presented higher prevalence rates (Global Asthma Report website, 2016). The burden 

of AS, which is quantified through its disability and mortality rates, is largest for children within 

the ages of 10 and 14 and for the elderly (over 75 years old) (Global Asthma Report website, 

2016). This disease accounts for approximately 250 thousand deaths per year, and, therefore, its 

early detection is obviously relevant (Pinnock et al., 2010). The current state of AS diagnosis is 

based on clinical evidence (symptom evaluation; assessment of medical history and physical 

examination) and by measuring lung function, airway responsiveness, and allergic status 

(Bateman et al., 2008). On the other hand, in terms of breath analysis, there are studies that have 

shown a possible relation between the fraction of exhaled nitric oxide and airway inflammation 

caused by disorders like AS, although the cost-effectiveness of its measurement to diagnose AS 

is yet to be validated (Bjermer et al., 2014). In addition, a different analysis, where time-of-flight-

secondary ion mass spectrometry was used to measure breath samples of AS patients and healthy 

controls, has revealed that the amount of particles in exhaled air in the patients was considerably 

lower than for controls, as well as their unsaturated to saturated phospholipid ratio, showing that 

breath tests can aid in the diagnosis of this disease (Almstrand et al., 2012). 

 

1.3.2.2) Chronic Kidney Disease 

 Chronic kidney disease (CKD) is a serious health condition that affects millions 

worldwide. Its potential adverse consequences range from kidney failure or cardiovascular 

disease, all the way to premature death (Levey et al., 2005). The definition or development of this 

disease is based on two parameters, of which at least one takes place: kidney damage or reduced 

glomerular filtration rate (GFR), which describes the flow rate of filtered fluid through the kidney 

(Levey and Coresh, 2012). Kidney damage is generally assessed by measuring the amount of 

protein in urine, specifically albumin. Albumiuria (excess of urinary excretion of albumin) is 

therefore linked to kidney damage, and is defined as an albumin-to-creatinine ratio greater than 

30 mg/g in two out of three independent urine tests (Go et al., 2014; Levey et al., 2005). On the 

other hand, GFR below 60 mL/min per 1.73 m2 of body surface area, irrespective of cause, for 

over three months, is also understood as CKD (Levey et al., 2005). 

 To get an idea of the extent of this disease, in the United States around 13% of the people 

suffer from CKD (over 26 million), of which most cases are yet to be diagnosed (Go et al., 2014). 

Additionally, another 20 million people are at clear risk (Go et al., 2014). These statistics prove 

that reliable and fast CKD diagnosing tools would be quite handy for this specific part of the 

clinical sector, as currently the detection is mainly based on GFR assessments (Levey and Coresh, 

2012). Recently, some studies have been able to relate breath compounds and certain breath 

compositions with CKD presence. For instance, the amounts of trimethylamine and pentane in 

exhaled breath have shown a statistical difference between CKD patients and healthy subjects 
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(Grabowska-Polanowska et al., 2013). In addition, a different study using cross-reactive gold 

nanoparticle sensors that interact with breath has set a proof-of-concept which validates the 

potential ability to attain early detection of CKD and the monitoring of its progression through 

breath analysis. They were able to correctly distinguish healthy states from early CKD stages 79% 

of the cases, and classify late CKD stages with 85% accuracy (Marom et al., 2012). 

 

1.3.2.3) Chronic Obstructive Pulmonary Disease 

 Chronic obstructive pulmonary disease (COPD) is an airway disorder that affects people 

all around the world, and the main risk factors are smoking and other inhaled exposures such as 

occupational smoke and/or dust, air pollution, or biomass fuels (Halbert et al., 2006). Although 

not as evident as smoking tobacco, studies have also shown potential genetic predisposition to 

having COPD (Eisner et al., 2010; Viegi et al., 2007). The definition proposed by the American 

Thoracic Society and European Respiratory Society states the following: “COPD is a preventable 

and treatable disease state characterized by airflow limitation that is not fully reversible. The 

airflow limitation is usually progressive and associated with an abnormal inflammatory response 

of the lungs to noxious particles or gases, primarily caused by cigarette smoking. Although COPD 

affects the lungs, it also produces significant systemic consequences” (a highly similar definition 

is also given by the Global Initiative for Chronic Obstructive Lung Disease) (Viegi et al., 2007). 

It must be highlighted that a relevant heterogeneity exists regarding the clinical presentation, 

imaging, physiology, therapy responsiveness, lung impairment, and survival rate of different 

COPD cases and populations (Han et al., 2010), which complicates accurate diagnosis. 

 This pulmonary disease represents a global health concern that currently affects around 

10% of the population over 45 years old, rising up to an overwhelming 50% when considering 

heavy smokers (Kirkham and Barnes, 2013), and it causes approximately 2.75 million deaths per 

year (Calverley et al., 2007). Nevertheless, prevalence and incidence data is not extremely 

accurate due to the complicated nature of this disease, broad definition, and, therefore, its complex 

detection and diagnosis, which in many times depends on the physician’s criteria (Viegi et al., 

2007). For these reasons, a fast and non-invasive breath test to help detect COPD or guide the 

clinical specialist would clearly be useful for the health sector. In this regard, several biomarkers 

have been reported to have elevated concentrations in the exhaled breath of COPD patients such 

as carbon monoxide, 8-isoprostane, hydrogen peroxide, nitrite, and 3-nitrotyrosine (Kharitonov 

and Barnes, 2010). On the other hand, a research group used gas chromatography-mass 

spectrometry to identify VOCs in breath from COPD patients and control subjects, reaching a set 

of six compounds that allowed discriminating the groups with a 93% accuracy (Van Berkel et al., 

2010). 

 

1.3.2.4) Gastric Cancer 

 Despite showing decreasing trends in terms of incidence and mortality, especially in 

Western countries, gastric cancer (GC) is still a very extended and dangerous disease (Crew and 

Neugut, 2006; Jemal et al., 2011). Approximately 90% of GC cases or stomach tumors are 

adenocarcinomas (epithelial tumors that possess a glandular origin and/or glandular traits), and 

they are classified according to their microscopic morphology alone. They can be well-

differentiated or intestinal subtypes, or undifferentiated or diffuse subtypes (Crew and Neugut, 



Introduction 

33 

 

2006; Nobili et al., 2011). In relation to risk factors, it has been shown that a H. pylori infection, 

which affects nearly 50% of the population, is the strongest one. These bacteria lead to chronic 

inflammation and greatly increase the risk of developing ulcers in the duodenum and stomach as 

well as GC (Wroblewski et al., 2010). Other observed risk factors are the consumption of high 

quantities of salt and salt-preserved foods, smoking tobacco, and determined genetic 

polymorphisms, although this last factor still lacks consistency in the results revealed by research 

groups (Fock, 2014). 

 Stomach cancer is the fourth most common type in terms of new cases and the second in 

deaths per year (only behind LC), accounting for about 8% of total cases and 10% of deceases, of 

which around 70% occur in developing countries (Crew and Neugut, 2006; Jemal et al., 2011). 

Showing the highest incidence rates in Asia, Eastern Europe, and South America, GC is developed 

in men twice as much as in women (Jemal et al., 2011). Even though the mortality of this disease 

has been decreasing during the past few decades, GC still offers an unfavorable prognosis, mainly 

due to late detection. This is demonstrated by the decrease in mortality in high-risk locations, such 

as Japan, where screening has been implemented (national endoscopic surveillance program) for 

early diagnosis (Crew and Neugut, 2006). Therefore, a breath-based tool that is able to locate GC 

at its early stages would be a great device to aid during these screening programs to try and detect 

this disease at curable stages. Nowadays, many studies focus on finding reliable non-invasive 

approaches based on breath tests to detect H. pylori infections, which is useful for GC diagnosis, 

as it is the main risk factor for its development (Chey and Wong, 2007; Malfertheiner et al., 2002). 

Nevertheless, directly detecting GC through breath is a different story. A research group has used 

a set of nanomaterial-based sensors to analyze the breath samples of 130 patients which had either 

GC, ulcers, or less severe conditions, and they were able to reach correct classification rates that 

ranged from 77 to 93% (Xu et al., 2013). Also, a different study where selected ion flow tube 

mass spectrometry was employed to quantify VOCs in breath samples revealed four potential 

biomarkers (hexanoic acid, phenol, methyl phenol, and ethyl phenol) with significantly distinct 

concentrations in the breath of esophago-gastric cancer patients and healthy controls (Kumar et 

al., 2013). 

 

1.3.2.5) Head and Neck Cancer 

 The term head and neck cancer (HNC) is employed to define a broad set of tumors which 

may arise from multiple different locations. These anatomic origins comprise craniofacial bones, 

soft tissues, salivary glands, skin, and mucosal membranes (Pai and Westra, 2009). Around 90% 

of HNCs are squamous cell carcinomas, implying that most of these tumors have an epithelial 

source (Pai and Westra, 2009). Common to other types of cancer (e.g., LC), smoking tobacco has 

been well established as the main risk factor for the development of HNC. This risk is clearly 

linked to the intensity and duration of the habit, although its cessation does not strictly imply an 

elimination of HNC appearance (Schlect et al., 1999). While tobacco (and alcohol) account for 

most head and neck squamous cell carcinomas, it is important to note that a completely different 

risk factor is behind over 60% of oropharyngeal cancers. It is the human papillomavirus (HPV), 

specifically HPV-16, a DNA virus which solely infects keratinocytes of the skin or mucous 

membranes (Leemans et al., 2011; Marur et al., 2010). 

 Near 500 to 600 thousand new cases of HNC are estimated to develop per year worldwide, 

including oral cavity, laryngeal, and oropharyngeal sites (Parkin et al., 2005). The current status 
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of HNC diagnosis could be greatly improved as most cases are diagnosed late. This leads to a 

lower than 50% cure rate, which could undoubtedly be improved with the implementation of 

accurate disease screening (Hakim et al., 2011). This data would drastically change if a reliable 

breath test to diagnose HNC at its early stages would be validated. The patients would clearly 

benefit from this device, which strengthens the importance of the research carried out here. In the 

recent past, some scientific papers have been published in this regard. Some research groups have 

been working with electronic noses (devices which incorporate metal-oxide sensors) to analyze 

breath samples with noteworthy preliminary results (Leunis et al., 2014; Witt et al., 2012). On 

the other hand, gold nanoparticle-based sensors have also been employed to classify HNC 

patients, providing optimistic evidence for this promising approach by reaching around 95% 

correct HNC patient and control classification rate in a 42 subject study (Hakim et al., 2011). 

Additionally, using gas chromatography/mass spectrometry, during a feasibility study, some 

potential breath biomarker candidates for HNC were found, which were ethanol, 2-propenenitrile, 

and undecane (Gruber et al., 2014). 

 

1.3.2.6) Inflammatory Bowel Disease 

 Inflammatory bowel disease (IBD) represents a group of idiopathic, chronic, and 

inflammatory diseases that are subdivided into two more specific classes known as Crohn’s 

disease (CD) and ulcerative colitis (UC), which present both overlapping as well as distinctive 

clinical and pathological traits (Bernstein et al., 2010; Mowat et al., 2011). CD and UC lead to a 

characteristic inflammation of the gastrointestinal tract, and appear in genetically prone subjects 

that have been exposed to determined environmental risk factors (Molodecky et al., 2012; 

Podolsky, 2008). CD is characterized by patchy and transmural (through the wall of an organ) 

inflammation, which may affect any region of the gastrointestinal tract. On the other hand, UC is 

portrayed by diffuse inflammation which is limited strictly to the colon (Mowat et al., 2011). 

Currently, incidence and prevalence data, or the geographic trends this disease follows, 

still requires great research and analysis, especially for developing countries (Molodecky et al., 

2012). Nevertheless, it seems that incidence and prevalence is greater in westernized nations in 

comparison to other regions. Around 10 to 30 new cases per 100 thousand people are diagnosed 

for each, CD and UC, in countries such as Canada, the United Kingdom, Iceland, or Australia 

(Molodecky et al., 2012). Currently, the diagnosis of IBD requires a thorough physical evaluation 

as well as a meticulous review of the patient’s clinical background, combined with other tests 

(blood tests, stool examinations, endoscopies, biopsies, and so on) to aid and assert the detection 

of the disease (Bernstein et al., 2010). This process would most likely be propelled by a reliable 

and non-invasive breath test to help in this diagnosis, liberating in certain cases both patients and 

medical staff from some of the numerous necessary, and, in cases, bothersome (or embarrassing) 

tests. In other studies that attempt to turn these non-invasive devices into a reality, pentane has 

been quantified in exhaled breath using selected ion flow tube-mass spectrometry (SIFT-MS) 

(Dryahina et al., 2013). This has been done because pentane has been considered a potential 

volatile biomarker for IBD diagnosis as its production is related to inflammatory processes 

(Dryahina et al., 2013). A different research group has speculated that determining the amount of 

exhaled nitric oxide may be valuable during the follow-up of CD patients (Malerba et al., 2011). 

In addition, promising results were obtained by a third group that also used SIFT-MS, this time 

to analyze entire breath samples to locate patterns that allow diagnosing pediatric IBD (Patel et 

al., 2014). Finally, some other very recent publications and reviews have been written in the 
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context of diagnosing IBD and other gastrointestinal diseases through breath analysis employing 

a wide assortment of analytical alternatives (Aggio and Probert, 2014; Cauchi et al., 2014; Huang 

et al., 2014; Markar et al., 2015). 

 

1.3.2.7) Multiple Sclerosis 

Multiple sclerosis (MS) is a heterogeneous autoimmune neurodegenerative disease that 

affects the central nervous system, and its main consequence is the inflammatory- and immune-

mediated demyelination of determined areas of the brain and the spinal cord white matter, which 

lead to axon degeneration and, in the end, neuron demise (Glass et al., 2010; Trapp and Nave, 

2008). This disease produces defects in sensation as well as in motor, autonomic, visual, and 

cognitive systems, mainly affecting young adults, and over twice the amount of females than 

males (Glass et al., 2010). Genetic factors seem to play the main role in the occurrence of MS as 

the frequency of the disease is clearly increased in relatives of MS patients, and it has been proven 

that variations or mutations in the major histocompatibility complex (family of cell surface 

molecules that have a major impact on the immune system) represent the single highest risk factor 

(Sawcer et al., 2011). Nonetheless, it has been reported that in some countries like Canada or 

Denmark the MS incidence ratio for women has been increasing in comparison with that of men, 

leading to the thought of the existence of environmental risk factors as well. As a matter of fact, 

smoking has shown a certain correlation with the development of MS, as similarities have been 

found in the sex-related smoking and MS incidence trends (Palacios et al., 2011). 

It is estimated that around two million people suffer from MS worldwide, of which nearly 

half are European (Kingwell et al., 2013). Currently, MS diagnosis is based on clinical and 

paraclinical laboratory evaluations, which focus on proving the disseminations of lesions in time 

and space and on excluding other possible diseases. Additionally, magnetic resonance imaging of 

the central nervous system plays a relevant role supporting (or even replacing) clinical criteria 

(McDonald et al., 2001; Polman et al., 2011). Nevertheless, this approach is expensive, 

originating the need to search for reliable biomarker-based diagnosing alternatives. For instance, 

the analysis of cerebrospinal fluid has revealed potential MS diagnostic evidence (Link and 

Huang, 2006), although the process is invasive and uncomfortable as a lumbar puncture is 

required. On the other hand, specifically regarding non-invasive breath-based MS diagnosis, an 

article has been found reporting evidence of its potential implementation (Ionescu et al., 2011). 

A cross-reactive sensor array of polycyclic aromatic hydrocarbons and single-wall carbon 

nanotube bilayers was employed to analyze exhaled breath of MS patients and healthy controls, 

and the results were promising as around an 80% accuracy in their classification was attained for 

a 51 volunteer study. Additionally, they discovered two potential MS biomarkers in hexanal and 

5-methyl-undecanes, as the amounts of these VOCs showed a significant statistical difference 

between both studied populations (Ionescu et al., 2011). 

 

1.3.2.8) Parkinson’s Disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disease after 

Alzheimer’s disease (AD), as well as the most frequent movement disorder (Glass et al., 2010). 

PD is, as other neurodegenerative diseases like AD, a proteinopathy that leads to the accumulation 

of incorrectly folded α-sinuclein, which form intracellular protein aggregations known as Lewy 
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bodies (Glass et al., 2010). Its main consequence is the death of dopaminergic neurons (producers 

of the neurotransmitter dopamine) in the substantia nigra pars compacta region of the brain and it 

is associated with chronic inflammation (Schapira, 2009; Tansey and Goldberg, 2010). All these 

consequences trigger various clinical features, both motor (e.g., tremor or rigidity) and non-motor 

related (e.g., cognitive deficits or sleep disorders) (Glass et al., 2010). The etiology of PD, or the 

risk factors involved in its appearance, is not currently fully understood. Nevertheless, both 

genetic and environmental factors seem to play a role (Wirdefeldt et al., 2011). In addition, it is 

worth mentioning that in general terms males are affected more than females (Wirdefeldt et al., 

2011). 

This disease possesses an elevated lifetime risk, which is reflected in most prevalence 

studies. These report that around 100 to 300 people suffer from PD per 100 thousand (Wirdefeldt 

et al., 2011), affecting about 2% of individuals over 60 years old (Glass et al., 2010; Schapira, 

2009). The current state of the diagnosis of PD is mainly based on clinical criteria. Primarily, 

parkinsonian symptoms are assessed and other neurological damage is discarded, as well as 

history of drugs, toxins, or infections that may potentially emulate similar symptoms (Wirdefeldt 

et al., 2011). Diagnosis of PD is addressed in this fashion due to the scarce information provided 

by neuroimaging or biomarker analyses (Wirdefeldt et al., 2011). For these reasons, the design of 

a breath-relying test to assist in the diagnosis of PD would be significant for the field, as it may 

help orient the medical staff in the correct direction. In this context, a scientific paper has been 

found stating this possibility (Tisch et al., 2013). They employed cross-reactive nanomaterial-

based sensors (organically functionalized carbon nanotubes and gold nanoparticles) to attempt 

and classify PD patients, AD patients, and healthy controls, with impressive results ranging from 

78 to 85% correct classification rates. In addition, they discovered several VOCs (biomarkers) 

through gas chromatography coupled with mass spectrometry that showed statistically different 

amounts in the three groups (PD and AD patients and controls) (Tisch et al., 2013). 

 

1.3.2.9) Preeclampsia 

Preeclampsia (PE), formerly known as toxemia of pregnancy, is a multisystem pregnancy 

disorder that begins in the placenta and can take place during the second half of the pregnancy, 

labor, or soon after delivery, potentially affecting both mother and fetus (Redman and Sargent, 

2005; Sibai et al., 2005). It is defined by two main systemic disturbances, these being the 

existence of hypertension and proteinuria (elevated amounts of protein in urine) (Hawfield and 

Freedman, 2009). Some determined risk factors that increase the odds of developing PE are the 

existence of previous episodes, obesity, black race, diabetes, multiple gestation, or being below 

20 years old (Hawfield and Freedman, 2009; Wallis et al., 2008). 

It is reported that around 5% to 8% of pregnancies are complicated by PE (Hawfield and 

Freedman, 2009). Additionally, data has demonstrated that its incidence rate has increased in the 

past, between 1987 and 2004 (Wallis et al., 2008), but, nevertheless, a review covering the PE 

databases from 2002 to 2010 reports that the existing data quality is poor and highlights that the 

information is not broad enough and too heterogeneous to make an accurate worldwide incidence 

estimate (Abalos et al., 2013). The diagnosis of PE is based on the evaluation of the two main 

factors which define this disease: hypertension associated with proteinuria after the 20th week of 

pregnancy (Sibai et al., 2005). Systolic blood pressure values over 140 mm Hg as well as diastolic 

ones above 90 mm Hg (in at least two distinct tests, four to six hours apart) combined with greater 
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than 0.3 grams of protein in urine per day in a formerly normotensive woman are diagnostic 

indicators of PE (Sibai et al., 2005). Despite the non-invasive nature of these tests, the 

gynecological field would definitely benefit from a breath test that can potentially assist in the 

early detection of PE, and there is a research study that has published work in this regard (Moretti 

et al., 2004). They determined that oxidative stress-related VOCs were clearly higher in PE 

patients when compared to healthy pregnant controls, potentially enabling an accurate diagnosing 

device (Moretti et al., 2004). 

 

1.3.2.10) Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension (PAH) is a disease that is characterized by high 

pulmonary arterial pressures and is associated with elevated pulmonary vascular resistance, which 

can originate right ventricular failure, volume overload (chamber of the heart with excessive 

amount of blood), deteriorated cardiopulmonary function, and even premature death (Chan and 

Loscalzo, 2008; Chin and Rubin, 2008; Zhou et al., 2012). The origin of 6% of reported PAH 

cases are linked to genetic alterations (Newman et al., 2004), while the vast majority are 

idiopathic cases and appear due to exogenous factors such as chronic hypoxia, viral infections, 

hemoglobinopathies, or autoimmune vascular disease (Chan and Loscalzo, 2008). In addition, 

according to statistics there is a gender predilection, as women seem to have greater chances to 

suffer PAH compared to men (Robles and Shure, 2004). 

 Different epidemiological studies carried out in France, the United Kingdom, and Ireland 

have revealed that the prevalence of PAH ranges from around 10 to 50 cases per million people, 

while the incidence rate is about 1 to 7 cases per year and per million inhabitants (Humbert et al., 

2006; Ling et al., 2012; Peacock et al., 2007). As with many diseases, early diagnosis of PAH is 

beneficial, as it enables the implementation of targeted therapies prior to the appearance of 

relevant right heart failure (Hoeper et al., 2013). Nonetheless, detection of idiopathic PAH is 

based on a diagnosis of exclusion (made by a process of elimination of other diseases such as, for 

example, human immunodeficiency virus, connective tissue disease, or congenital heart disease) 

(Galie et al., 2009), which clearly indicates that a breath test that could assist in its detection 

would be significantly helpful. In this context, there are some research works that are related to 

breath analysis to diagnose PAH. For instance, there are some scientific articles which explain 

the analysis of the compounds in exhaled breath condensate to discriminate between healthy 

subjects and PAH patients (Mansoor et al, 2014; Warwick et al., 2012). On the other hand, two 

other papers work with direct exhaled breath using gold nanoparticle sensor arrays (Cohen-

Kaminsky et al., 2013) and ion flow tube-mass spectrometry (Cikach et al, 2014) to process the 

samples, and both were successful in terms of distinguishing healthy controls from PAH patients 

(about 92% accuracy for the former and 83% for the latter). 

 Now that cancer and LC, as well as a set of ten other diseases have been defined, it seems 

clear that the design of devices which through breath analysis are able to reliably detect different 

diseases and assist in decision making, would imply a great leap forward in the medical field. The 

prognosis of many diseases incredibly improves with early detection, thus emphasizing the 

importance of these non-invasive and safe disease-detecting systems. Nonetheless, in order to 

reach this goal, adequate and consistent analytical approaches to analyze complex gaseous 

matrices such as breath ought to be correctly selected and tuned. The technology and equipment 

employed in this research will be covered in the following part of the present thesis. 



Introduction 

38 

 

1.4) Analytical Equipment and Technology – Processing Exhalation 

 Once acknowledged that the clinical status of a human being can be to an extent reflected 

in exhaled air (Amman et al., 2014; Buszewski et al., 2007), the potentiality behind breath tests 

for disease detection and early diagnosis is immense. The fact that breath analysis contains 

underlying information that can provide an insight of the clinical status of a person, converts the 

need of perfecting this approach into a must, as the procedure would be straightforward, non-

invasive, and user-friendly for the patient. To achieve this, the equipment to acquire this “exhaled 

data” should be correctly selected, perfected, and optimized. 

 In this research, three main analytical approaches were employed. Each one was used in 

different experimental procedures to analyze breath samples or gaseous mixtures, and they were 

proton transfer reaction-mass spectrometry and two different cross-reactive sensor arrays based 

on functionalized silicon nanowire field-effect transistors and functionalized gold nanoparticles. 

The basis and background of the three methodologies used, together with their applications and 

current involvement with breath analysis will be described next. 

 

1.4.1) Proton Transfer Reaction-Mass Spectrometry 

 Proton transfer reaction-mass spectrometry (PTR-MS) is a technique that is employed 

nearly exclusively to detect VOCs in air (Blake et al., 2009). It has rapidly evolved, turning into 

a quick and sensitive sensing device for monitoring VOCs (Capellin et al., 2013). It is becoming 

a more than feasible alternative to the more commonly employed gas chromatography-mass 

spectrometry (GC-MS) for the detection and quantification of VOCs (Blake et al., 2009; Ligor et 

al., 2009). GC-MS is a highly reliable and sensitive technique, but nonetheless has several 

drawbacks, such as requiring between minutes and tens of minutes to fully separate the VOCs 

and, in many cases, preconcentration steps (Blake et al., 2009). Both of these issues are solved 

through PTR-MS, which practically enables real-time identification and quantification of VOCs 

without preconcentrating, with sensitivities clearly breaching the pptV scale (Blake et al., 2009; 

Ligor et al., 2009). 

 PTR-MS is a type of direct injection mass spectrometry method that was developed in the 

1990s in Professor Werner Lindinger’s laboratory in Austria, initially reaching the on-line 

measurement of components at concentrations as low as 1 ppb (Hansel et al., 1995). This 

technique is based on the chemical ionization through proton transfer of a gaseous sample 

contained in a drift tube (reaction chamber), which is a conducting enclosure at a constant 

potential so charged particles suffer no change in velocity inside it, enabling a stable reaction time 

for the ions as they flow through the tube (Lindinger et al., 1998). The proton source or donor is 

typically H3O+, and if its concentration is essentially unchanged when reacting with the sample, 

the concentration of the acceptor molecules (VOCs) can be determined rapidly and with a great 

sensitivity after combining reaction kinetics with mass spectrometry (Blake et al., 2009). H3O+ is 

selected as it can originate proton-transfer reactions with many VOCs whilst not reacting with the 

common molecules in air such as O2 and N2, as these present lower proton affinities than water 

(Zhan et al., 2013). 

The three most important components in a PTR-MS system are the ion source (hollow 

cathode), which produces H3O+, the drift tube, where the VOCs in the sample experience the non-

dissociative proton transfer, and the analyzing system or mass spectrometer, which leads to the 
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detection and quantification of the VOCs (Ionicon website, 2016-a). A schematic representation 

of a PTR-MS system can be seen in Figure 5 (Hansel et al., 1995; Ionicon website, 2016-a). 

 
Figure 5. Schematic representation of a PTR-MS system. The three main parts are 

shown: (a) Ion source, where water molecules are converted into H3O+; (b) Drift tube, 

where the VOCs in the sample are ionized; (c) Mass spectrometer and detector, where 

the VOCs are identified and quantified (Hansel et al., 1995; Ionicon website, 2016-a). 

 The considerable advantages that PTR-MS brings to the table allows its implementation 

in a wide range of fields and applications. For instance, this technology can be employed within 

the environmental scope, to locate air contaminating sources (Rogers et al., 2006) or to assess 

indoor air quality (Kolarik et al., 2010), all the way to applications in food technology, for 

example, to analyze the complex VOC-profile that coffee emanates (Yeretzian et al., 2003). 

Nevertheless, what truly interests us, within the context of this research, is the utilization of PTR-

MS in the medical and clinical area (Zhan et al., 2013). This methodology has been employed, 

among others, for urine analysis, in vivo skin studies, quality control of medical devices, and, 

most importantly, breath analysis for disease diagnosis (Zhan et al., 2013). 

 Regarding PTR-MS combined with breath analysis, different potential non-invasive 

procedures are being worked on, with the goal set to, for instance, determine blood cholesterol 

levels (Karl et al., 2001) or detect LC (Bajtarevic et al., 2009). In the present work, as mentioned 

in previous sections, an attempt to differentiate LC patients from healthy controls has been carried 

out, and one of the analytical options selected has been PTR-MS, due to its great sensitivity, 

ability to operate at real-time, and because it enables the discovery of breath biomarkers to 

diagnose diseases as well as their quantification at very low concentrations (Smith et al., 2014). 

 

1.4.2) Cross-Reactive Sensor Arrays – Gathering Gaseous Fingerprints 

 To begin this section, prior to analyzing the two specific types of sensor arrays 

synthesized and employed, it is important to fully understand the meaning of cross-reactivity and 

cross-reactive sensors. To define them, a brief description of conventional sensors will be given. 

Typically, sensors are designed to detect specific compounds through a “lock-and-key” 
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interaction, which resembles, for instance, the way enzymes interact with their substrates. In other 

words, sensors are created to act as a “lock” against determined “key” analytes, reaching highly 

selective systems (Tisch and Haick, 2010-a; Tisch and Haick, 2010-b). This methodology comes 

in handy when particular molecules within a fixed or regulated background have to be detected 

or quantified with high sensitivities. Nevertheless, when working with mixtures, the design of 

specific sensors would be required for each compound which needs to be detected. In addition, 

these sensing devices struggle when chemically similar compounds are present in mixtures, as 

cross-reactivity can occur (Tisch and Haick, 2010-b). Therefore, to overcome these issues, sensors 

or sensor arrays can be designed to take advantage of this cross-reactivity, allowing the analysis 

of complex matrices of gases (electronic noses) or liquids (electronic tongues) as fingerprint-like 

responses can be obtained enabling the assignment of patterns to determined types of samples 

(Röck et al., 2008; Tisch and Haick, 2010-b). These are known as cross-reactive sensors, and they 

can be found graphically represented and compared with common selective sensors in Figure 6. 

Figure 6. Comparison regarding sensors for (a) specific analytes (lock-and-key) and (b) cross-reactive 

sensor arrays. The first ones are commonly employed to detect and quantify particular molecules, while the 

second ones are used to extract information about an entire mixture of compounds. 

 As can be deduced, the main difference between the two kinds of sensors defined is that 

specific lock-and-key sensors excel when the quantification of a determined compound in a matrix 

is required, while cross-reactive sensors enable a global analysis of complex samples that may 

contain hundreds or thousands of types of molecules, without the need of fully understanding 

their nature or amount. A perfect example of these kind of samples are exhaled breaths, reason 

why cross-reactive sensors have been selected to carry out the analyses during the present 

research. The idea is to attain specific patterns from breath samples of patients of different 

diseases, as well as healthy controls, which would empower the design of non-invasive diagnosing 

tools based on breath tests. In other words, breath is analyzed as a whole with the goal set to 

search, discover, and interpret the fingerprints (or “breathprints”) that define different diseases. 

Several scientific articles show revealing results in this regard (Hakim et al., 2011; Shehada et 

al., 2015; Tisch and Haick, 2010-a), signifying that this path should be further explored. 

 Two distinct types of cross-reactive sensor arrays have been synthesized to analyze 

gaseous matrices and breath samples, and they are functionalized silicon nanowire field-effect 
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transistors and functionalized gold nanoparticles. They will both be looked into in the next 

subsections. 

 

1.4.2.1) Silicon Nanowire Field-Effect Transistor Sensor Arrays 

 The first type of cross-reactive sensors synthesized were field-effect transistor (FET) 

sensors, which are becoming a popular and useful selection within chemical and biochemical 

contexts as reliable detecting and quantifying systems (Paska and Haick, 2009). Nonetheless, 

prior to getting into the actual sensors, let us look into the basic traits concerning FETs. Invented 

and patented by Julius Edgar Lilienfeld in the 1920s (Kleint, 1998), FETs operate as capacitors 

in which a first plate plays the role of a conducting channel that connects two ohmic contacts 

known as source and drain electrodes (Figure 7). The relative amount of charge carriers within 

the channel depends on the voltage applied to a second plate, which is the gate electrode 

(Horowitz, 1998). FETs, and particularly metal-oxide-semiconductor FETs (MOSFETs), were 

present in around 90% of all the semiconducting devices and equipment in the market at the 

beginning of this century (Sze, 2001). The semiconductor contained inside a MOSFET is a 

material formed by silicon and thermally grown SiO2 (Figure 7), which thanks to the rapid 

development of technology, is ideal to create nanoscale sensing devices (Sze, 2001). 

 A specific kind of FET-based nanosensor is the silicon nanowire (SiNW) FET sensor 

(Figure 7). It acquires this name as silicon nanowires are employed to connect source and drain 

electrodes in the FET sensor, providing the powerful sensing properties (Cui et al., 2003; Shehada 

et al., 2015). SiNWs are highly adaptable as their stability and electrical attributes can be altered 

via molecular engineering. The surface of this nanomaterial can be covalently bonded to or 

functionalized with several organic compounds (Figure 7) (Shehada et al., 2015), such as alkyl 

side chains (Blase and Serra-Fernández, 2008) or biochemical macromolecules (Chen et al., 

2011). This provides a great versatility to these sensors, as they can be tuned or even tailored to 

fulfill specific applications and extract complete patterns from determined gaseous matrices. The 

different SiNW FET sensors employed were functionalized with multiple organic chains, and it 

will be covered in further sections. 

In the case of the present thesis, the exceptional traits of cross-reactive SiNW FET sensors 

have been exploited to analyze controlled gaseous mixtures containing known amounts of specific 

VOCs as well as real breath samples. An array of these sensors has been designed and employed 

in an attempt to locate and describe patterns that determined VOCs or breath samples may 

potentially produce. 
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Figure 7. Graphical representation of a SiNW FET sensor. The most important 

components can be seen: the three electrodes (source, drain, and gate), the 

semiconducting material (silicon and thermally grown SiO2), and the functionalizable 

SiNW (Shehada et al., 2015). 

 

1.4.2.2) Gold Nanoparticle Sensor Arrays 

An alternative set of cross-reactive sensors based on gold nanoparticles (GNPs) have also 

been synthesized and employed to analyze breath samples. These materials, also known as 

colloidal gold, possess appealing optical, electronic, thermal, and catalytic properties (Guo and 

Wang, 2007). Back in the day, around the 4th century, GNPs began being used as a method to 

stain glass. One of the most representative examples of this is the Roman Lycurgus Cup (Figure 

8), which presented somewhat surprising optical effects due to the colloidal gold employed during 

its manufacture (Daniel and Astruc, 2004). Therefore, it is possible that the Ancient Romans were 

the “unexpected” founders of what is currently known as nanotechnology. 

 
Figure 8. Images of the Lycurgus Cup under different light exposures. (a) It is seen green when 

it reflects light (light source outside) and (b) ruby red when it transmits light (light source inside). 

This phenomenon is caused by the presence of GNPs in the glass (Daniel and Astruc, 2004). 

(a) (b)
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Technological advance, combined with the extraordinary properties of GNPs, have 

enabled their implementation in a wide variety of fields ranging from physics and chemistry to 

biology or biomedicine (Guo and Wang, 2007). Being the most stable among all subtypes of 

metallic nanoparticles (Daniel and Astruc, 2004), GNPs own a broad set of traits, such as 

possessing a large surface-to-volume ratio, being chemically functionalizable, and having 

customizable physical and chemical properties, which transform them into an excellent option for 

the design of cross-reactive sensor nanoarrays (Haick, 2007). A representation of a typical 

functionalized (monolayer-capped) GNP-based sensor can be seen in Figure 9 (Tisch and Haick, 

2010-a). Once again, common to SiNW FETs, GNPs are very adaptable or flexible as their 

sensitivity and selectivity can be modified and customized to optimally accomplish specific 

sensing tasks through their functionalization (Nakhleh et al., 2014). 

  
Figure 9. Schematic illustration of a GNP based sensor. The monolayer-capped GNPs 

are on a film contained between two gold electrodes. The necessary semiconducting 

materials are also shown (silicon and SiO2) (Tisch and Haick, 2010-a). 

As well as with the SiNW FET sensors, a GNP based sensor array has been synthesized 

and employed to retrieve relevant information from breath samples, in an attempt to locate 

patterns that may be able to describe determined diseases and allow their diagnosis non-

invasively.  

The goal of the analysis with these cross-reactive sensors is to establish these analytical 

methodologies as viable approaches to translate the information contained in breath into data that 

can be used to create reliable diagnosing tools for the medical field. If it is proven that these 

sensors can be used to discover robust patterns that define determined diseases, it would imply 

that early diagnosis is achievable, and that perfecting these tools would save incredible amounts 

of money and especially lives. 

The three sophisticated analytical techniques described (PTR-MS, SiNW-FET sensors, 

and GNP sensors) clearly own great characteristics for breath analysis. PTR-MS, on one hand, 

can be employed to locate important volatile biomarkers that are representative of specific 

diseases, while cross-reactive sensors, on the other, can provide fingerprint-like information 

regarding the bulk of the breath sample, with the intention of locating disease-specific patterns. 

Although they are clearly different, what these approaches do have in common is that they lead 

to significant amounts of numerical data that ought to be adequately interpreted for these studies 
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to be of use. In the next and final section of the introduction, we will look into the different 

mathematical algorithms that have been employed to convert the great amounts of raw data 

obtained into actual tools or models that, in the end, are the true judges of the feasibility of the 

methods employed and of the assumption that breath can reflect the clinical condition of a human 

being (Amman et al., 2014; Buszewski et al., 2007). We are only trying to extract, understand, 

and take advantage of this “volatile” information. 

 

1.5) Mathematical Analysis – Breath into Numbers 

In many occasions during scientific research, enormous amounts of data and databases 

are produced during experimentation, and the present research is no exception. Regardless of the 

quality and quantity of this data, or the high-tech, state-of-the-art analytical equipment employed 

to gather it, if the results are not properly analyzed and interpreted, all the time and resources will 

have been spent in vain. In this section, the different algorithmic tools employed to extract and 

understand the relevant information contained within the databases obtained will be described. 

Fundamentally, it will cover two themes: feature selection and non-linear modeling based on 

artificial neural networks. These two mathematical tools can be combined in two-step analyses, 

where the first one is employed to identify the most relevant independent variables to solve 

classificatory or estimative problems, and the second to create reliable models based on 

computational artificial intelligence which will employ these variables to carry out the desired 

classifications or estimations. Both of these significant sets of algorithmic “problem solvers” will 

be described next, as well as their background inside the scientific theme. 

 

1.5.1) Feature Selection – Where is the Useful Information? 

Feature selection (FS) is a statistical procedure that is meant to discover a subset of 

relevant attributes from a larger dataset for the construction of a succeeding model (Guyon and 

Elisseeff, 2003). The goal of this process can be summarized into three points: (a) improving the 

performance of mathematical models such as estimators, classifiers, or predictors, while avoiding 

overfitting; (b) originating faster models with lower computational requirements (shorter training 

times); (c) aiding in the comprehension of the basic process behind the production of the data 

(Chandrashekar and Sahin, 2014; Guyon and Elisseeff, 2003). There are many occasions during 

research that databases which contain hundreds, thousands, or even hundreds of thousands of 

variables are generated. In many of these circumstances, these variables or features noticeably 

surpass the amount of available samples. An obvious example of this is gene expression 

microarray analysis, where typical amounts of variables (genes) range from 6 to 60 thousand, 

while the amount of samples (people) is, in some of the greatest of scenarios, only in the hundreds 

(Guyon and Elisseeff, 2003; McLachlan et al., 2004). Therefore, selecting or identifying the most 

significant genes before attempting to design a mathematical model to solve, for instance, a 

disease classification, becomes essential. In the present work, although not so drastic, the amount 

of variables provided by the analytical equipment employed (PTR-MS and cross-reactive sensor 

arrays) is still elevated when compared to the amount of gaseous or breath samples analyzed, thus 

requiring a prior “filtering” phase, which is carried out via FS. 

Although the word “filtering” may seem to have been selected arbitrarily, it was chosen 

because this preliminary analysis of the data was carried out through different filter-based FS 
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algorithms, which analyze the variables independently, and discard the least informative ones for 

a determined task. In other words, filter methods do not take into account potential redundant 

information that different variables may possess, the reason why they are mainly used as a fast 

pre-processing tool (Zhang et al., 2011). In contrast, the other main family of FS methods are 

known as wrappers, which do compare variables when performing the selection, allowing the 

elimination of correlated variables. Nevertheless, the computational time greatly increases with 

the amount of variables, and as these calculations have been employed as an initial analysis, 

wrapper methods were left aside (McLachlan et al., 2004; Zhang et al., 2011). 

To begin analyzing the data that the analytical equipment provides, five different filter-

based FS algorithms have been employed, all of which possess their own traits and selection 

criteria. Their purpose is to locate the most relevant variables (volatile compounds in the case of 

the PTR-MS studies or sensing features during the cross-reactive sensor array analyses) which 

are able to solve a particular problem. The set of five FS algorithms employed can be seen in 

Table 3, with highlights regarding their main characteristics. 

Table 3. Set of five filter-based FS methods employed to begin the data analysis, as well as the main traits 

of each algorithm and a reference where it has been used and/or detailed. 

Feature Selection 

Method 
Main Statistical Characteristics Reference 

χ2 Score 

This test is applied as a FS to attain an estimate about 

the independence of two events. It is employed to 

determine whether the occurrence of a specific feature 

and of a specific class are independent or not. 

Liu and 

Setiono, 

1995 

Fisher’s 

discriminant ratio 

This strategy is based on analyzing the mean and 

deviation of the values of the variables of different 

classes. Bigger mean differences between classes and 

lower value scatters within a class imply a better score 

for the feature. 

Wang et al., 

2011 

Kruskal-Wallis 

It is a non-parametric approach that relies on the 

comparison of the medians of the groups to rank the 

discriminative power of the features. 

Kruskal and 

Wallis, 1952 

Relief-F 

To determine the quality of features, Relief-F searches 

for the nearest neighbors of a sample within its same 

class and the different existing classes, in order to give 

priority to those features or variables which better 

distinguish the sample from their nearest neighbors in 

different classes. 

Wu et al., 

2013 

Information gain 

This FS method measures the dependence of a feature 

and its class label through the information theory. It 

measures the variation of entropy (system disorder) 

when the feature is present or not. 

Dhir et al., 

2007 

 The use of these data filters on large databases provides an ordered list of variables in 

terms of discriminative power, according to different statistical criteria corresponding to each one 

of the FS algorithms. This initial data analysis phase enables locating the relevant and useful 

information-containing features for the construction of further mathematical models with a 

constricted set of variables. These models represent the second step of the data treatment, and 

they are based on artificial neural networks. 
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1.5.2) Artificial Neural Networks – Giving Applicability to Volatolomics 

 Once the most important features is identified to solve a given matter, and it is necessary 

to further treat the data using suitable mathematical models to reach a final application. Typically, 

linear models such as partial least squares or principal components analysis are implemented, due 

to being simple, straightforward, and easy to create and interpret (Aroca-Santos et al., 2015; Frank 

and Friedman, 1993). Nevertheless, there are many cases during research in which these basic 

approaches are just not enough to solve complex systems with loads of information, and a clear 

example of this is breath analysis. The thousands of compounds present in breath make it obvious 

that the mathematical modeling task is not going to be effortless, and the reason why the more 

sophisticated non-linear artificial neural networks (ANNs) have been the chosen algorithms. 

 Back in the 1940s, and inspired by the mechanism of biological neurons, simplified 

versions known as “artificial neurons” were presented as models of their biological brothers that 

were capable of carrying out computational activities (McCulloch and Pitts, 1943). This discovery 

implied that the seed for the development of an entirely new subsection within computational 

artificial intelligence had been planted and it was ready to grow. Years later, these artificial units 

were further arranged into more complex models known as perceptrons, which instigated great 

interest due to their ability to recognize simple patterns and represent the first ANN (Rosenblatt, 

1958). Nevertheless, the expansion and enthusiasm that these algorithms were generating was 

hindered by the publication of a set of deficiencies or limitations within these perceptrons (Minsky 

and Papert, 1969). It was not until the 1980s that the interest in ANNs began to exponentially rise 

again, due to in great measure the discovery of the back-propagation learning algorithm for 

multilayer perceptrons (MLPs), which enable resolving systems that are much more complex than 

those that simple perceptrons can handle (Jain et al, 1996). 

 These, at the time, revolutionary algorithms are the most employed and implemented kind 

of ANN due to their reliability and relatively simple training process. MLPs have been widely 

implemented in a broad number of fields, ranging from chemical (Cancilla et al., 2014-a; Roosta 

et al., 2012), biomedical (Guo et al., 2010; Webster et al., 2009), and food technology research 

(Aroca-Santos et al., 2015), to industry (Geem and Roper, 2009) or even economics (West et al., 

2005). In all these fields, MLPs have been able to model intricate systems, leading to compelling 

applications of diverse natures. All these reasons have guided MLPs into the core of the 

mathematical treatment of the present thesis, turning them into the main character of the entire 

data analysis. 

 A MLP is a supervised type of algorithm, which implies that it requires target data to 

fulfill its training process. In other words, samples or data points have to be labeled with their 

dependent variable values in order to properly complete the optimization of the mathematical tool 

(Basheer and Hajmeer, 2000). In contrast, there are other ANNs that follow an unsupervised 

training procedure, the most common and famous being the self-organizing maps (SOMs) or 

Kohonen’s networks (presented by Teuvo Kohonen in the 80s) (Kohonen, 1989). SOMs, alike 

any unsupervised model, only require independent variables to be trained as they attempt to 

cluster different samples into groups according to the relations that may exist between the 

variables of the samples (Basheer and Hajmeer, 2000). 

Returning back to MLPs, as their name suggests, they are characterized by a layered 

topology or architecture. There are three different kinds of layers that form these algorithms: 

input, hidden, and output layers. The input layer is formed by nodes, which are strictly responsible 
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for introducing the independent variables into the model. There will be as many nodes as 

independent variables employed. On the other hand, the hidden and output layers are both 

comprised of neurons (“artificial neurons”), which are the actual processing units where the non-

linear calculations take place. The amount of hidden neurons should be optimized for each MLP 

to function properly, as low amounts may lead to models with a poor learning capability, and high 

amounts may tend to produce over-fit models (only accurate for the data used to train it, implying 

low generalization ability). Finally, the amount of neurons in the output layer will coincide with 

the quantity of dependent variables that will be estimated (Cancilla et al., 2014-a). In Figure 10, 

an example of a typical MLP can be seen to fully understand their topology. 

Figure 10. Representation of a hypothetical MLP with the following topology: three input nodes, four 

hidden neurons, and a single output neuron. 

 As can be seen in Figure 10, every unit in a determined layer is connected to all the units 

in its neighboring layers (represented by the blue arrows in Figure 10 that connect nodes with 

neurons or neurons with other neurons). Each one of these connections is governed by a weighted 

coefficient or weight. Initially acquiring a random value between zero and one, these weights are 

optimized during the training or learning process of a MLP, with the goal set to increase the 

accuracy of the designed model, whether it acts a classifier or an estimator (Cancilla et al., 2014-

a). Once these weights have been optimized, and the model has been statistically validated 

correctly, the mathematical tool is theoretically ready to offer reliable results. 

 In our specific scenario, the MLPs will be trained with data obtained from the PTR-MS 

studies or the cross-reactive sensor arrays, with a diverse set of goals which will be further detailed 

in the following blocks of the thesis. Now that the main traits and characteristics of the 

mathematical tools that have been used to analyze and process the information contained in 

exhaled breath have been covered, all of the primary steps in this research have been described. 

To conclude this introduction, a brief summary of the key “pillars” that support this work is shown 

in the next and last subsection. 

 

1.6) Summary and Objective 

 Along this introduction, the five principal themes or fields touched during this research 

have been presented: breath, biomarkers, diseases, analytical equipment, and mathematical 

analysis. They have been described and linked together to reach one main goal: obtain a proof-

of-concept that it is possible to design reliable and non-invasive disease diagnosing tools 

based on breath analysis through cutting-edge analytical methodologies and intelligent 

mathematical modeling. A graphical summary of all the phases is shown in Figure 11. 



Introduction 

48 

 

Figure 11. Graphical summary showing the main themes covered during the research as well as the primary 

goal. 

These five main blocks are vital to this research as they can be used to answer the most 

important questions: “where”, “why”, “what”, “who”, “how”, and “when”. “Where” is answered 

by breath, as it is where metabolic information about a patient can be found. “Why” is answered 

by biomarkers, as they are the reason why breath contains discriminative information regarding 

different diseases. “What” is answered by diseases, as they are what is needed to be diagnosed as 

early as possible. “Who” is answered by the analysts, who use the analytical equipment that is 

in charge of translating the information that breath provides. “How” is answered by the 

mathematical analysis, as it is how the information is deciphered and interpreted to attain the 

final diagnosing tools. And, finally, “when” is answered by… Well, there are no more 

protagonists to answer when, yet the answer is clear: early diagnosis to save lives is needed 

NOW. 

As all the pieces of the puzzle have been presented and described, it is time to begin with 

the next section of the thesis, where the different equipment and methodologies employed as well 

as more details regarding the specific protocols followed, both analytical and mathematical, will 

be thoroughly explained. 
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2) Materials and Methods 

 Now that the background of the main themes that cover this research have been described, 

it is time to look into the specific methodologies which have been employed. In this section, a 

detailed description of the breath collection method and protocol, the analytical equipment 

utilized, and the mathematical algorithms used can be found. 

 

2.1) Breath Gathering 

 As mentioned in the introduction, the biological matrix that has been relied on to extract 

metabolic information from different groups of patients was breath. For this reason, the 

development of a reliable system, that can capture breath samples in a stable fashion, must be 

employed. The breath collecting equipment used in all the studies that involved breath analysis 

was developed in the laboratory for nanomaterial based devices (LNBD) at Technion (Haifa, 

Israel) (LNBD website, 2016), and a schematic representation highlighting all its main 

components can be seen in Figure 12. 

Figure 12. Representation of the breath collecting system. 

 During breath collection, it is necessary to retrieve the alveolar breath from the subjects, 

free of exogenous and contaminating VOCs. The VOCs that truly provide metabolic or disease-

related information are the endogenous VOCs (Mukhopadhyay, 2004), the reason why it is crucial 

to clear or separate as many interfering compounds as possible. Therefore, a series of precautions 

have been followed in order to collect in a controlled manner the exhaled alveolar breath samples. 

All the breath tests for a particular study were carried out in the same room, or, in other words, 

under the same atmosphere, to rule out potential location influences or confounding factors on 

the measurements. Also, people that had consumed food, drinks, or tobacco within two hours 

from the time of the test, were excluded to avoid samples that may be heavily contaminated. 

Finally, a meticulous “lung wash” to eliminate ambient contaminants was performed. It consisted 

of a 3-5 minute procedure in which the tested individual had to continuously inhale through a 

mouthpiece containing two different filters, bacterial and charcoal (activated carbon to adsorb 

contaminating VOCs), which eliminated about 99.99% of compounds in inspired air and a great 

part of other exogenous VOCs and bacteria (Risby and Solga, 2006). This mouthpiece was 

acquired from Eco Medics, Duerten, Switzerland (Peng et al., 2009). 
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 Immediately after the lung wash, the subjects exhaled into the breath collecting device 

(Figure 12) against 10-15 cm H2O of pressure (7-11 mm Hg) to ensure closure of the velum (soft 

palate) and avoid potential nasal contaminants. Exhaled breath is composed of respiratory dead 

space air (volume of inhaled air that does not undergo gas exchange) and the relevant alveolar air, 

and, therefore, these parts had to be separated. The device possesses two exit ports, one for the 

dead space air, which is guided into a plastic bag, and another for the alveolar breath. The second 

port directs the alveolar air into a chemically inert 750 mL Mylar sampling bag (Eco Medics). 

Both bags are filled in a single step, which implies that bags did not have to be changed in the 

process. The content of the second bag (alveolar air) was transferred into a Tenax TA and 

Carboxen-1080 glass adsorbent tube or into a two-bed ORBOTM 420 Tenax TA sorption tube 

(Sigma-Aldrich, Saint Louis, MO, USA) using a vacuum pump. The safely sealed tubes 

containing the breath samples were stored at 4ºC and controlled relative humidity until their 

further analysis, which was always carried out considerably before three weeks, which is when it 

has been determined that these samples start to deteriorate as the results they provide begin 

showing a correlation with the storage time beyond this point (Peng et al., 2008; Peng et al., 

2009). 

 

2.2) Proton Transfer Reaction-Mass Spectrometry 

 Proton transfer reaction-mass spectrometry (PTR-MS) is an exceptionally sensitive 

methodology that is intended for real-time identification and quantification of VOCs, without the 

need to preconcentrate the volatile compounds in the gaseous samples (Blake et al., 2009; Ligor 

et al., 2009). In this section, the details and particular specifications of the instrument employed 

will be covered. 

 During this research, a “high-sensitivity PTR-MS” from Ionicon Analytik (Innsbruck, 

Austria) was employed (Ionicon website, 2016-b). It is a type of PTR-QMS, where the “Q” stands 

for quadrupole, as the detection and quantification of the VOCs is based on quadrupole mass 

spectrometry (Dawson, 1976). In Figure 13, a representation of the equipment can be found. 

 It is worth mentioning that when compared to standard PTR-MS systems, the one 

employed during this research possesses about a six times lower detection limit (six times more 

sensitive), at around 5 pptV. This is the reason why it is referred to as a high-sensitivity PTR-MS. 

Regarding the quadrupole mass spectrometer, the model that had been implemented into the 

device was a Pfeiffer QMG 422 (Pfeiffer Vacuum, Germany). The operational conditions 

employed during the measurements, which led to the real-time detection of VOCs, can be seen in 

Table 4. 

 These conditions were tuned and finally selected to reach the optimal performance of the 

system. The PTR-MS operated in vacuum, and the dwell time for each mass (time it takes to 

detect and quantify each compound, which are separated according to their mass/charge ratio 

(m/z)) was set to maximize efficiency, as it is long enough to determine the concentrations of the 

volatile compounds as well as quick enough to enable repetitions and online measurements. 
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Figure 13. Schematic representation of the high-sensitivity PTR-MS device employed, which contains 

a quadrupole-based mass spectrometer (Ionicon website, 2016-b). 

 

Table 4. Operating conditions of the PTR-QMS. 

Parameter Value 

Drift tube pressure 2.2 mbar 

Drift tube temperature 60ºC 

Drift tube voltage 600 V 

Sample inlet temperature 80ºC 

Detector pressure 9.2-9.2·10-6 mbar (vacuum) 

Dwell time for each mass 500 msec 

 

2.3) Cross-Reactive Sensor Arrays 

 An alternative approach to analyze the gaseous matrices is through the use of cross-

reactive sensors, which provide global information of the entire sample, as a whole, rather than 

offer evidence from particular compounds like typical lock-and-key sensors (see Figure 6 in 

section 1.4.2 for graphical comparison) (Röck et al., 2008; Tisch and Haick, 2010-b). 

Furthermore, the use of arrays, instead of single sensors, provides a greater amount of potentially 



Materials and Methods 

52 

 

useful and complementary data. This leads to a “fingerprinting” methodology, which labels entire 

samples with recognizable patterns. As already mentioned, two different approaches have been 

followed, and they will be presented in the next subsections. 

 

2.3.1) Silicon Nanowire Field-Effect Transistor Sensor Arrays 

 The relevant steps during the fabrication of these sensors are the silicon nanowire (SiNW) 

synthesis, the SiNW field-effect transistor (FET) preparation, and the molecular functionalization 

of the SiNW. These three steps are described next. 

 Although the protocol followed to synthesize the p-type SiNWs and to fabricate the SiNW 

FETs has been optimized and described in the past (Assad et al., 2012; Wang and Haick, 2013-a; 

Wang and Haick, 2013-b), the most relevant steps are the following. The SiNWs were prepared 

on a silicon wafer (thin slice of semiconducting material) through chemical vapor deposition 

(SiH4 and B2H6 as precursor gases (B/Si ratio 1:20000) and gold as the growth catalyst), which 

originated nanowires with limited dimensions of 40±8 nm in diameter and of 8.5±1.5 µm in 

length. The as-grown SiNWs (without being further modified) majorly consisted of single-

crystalline silicon cores coated with a layer of native SiOx of 5±1 nm. These as-grown materials 

were then first treated in buffered hydrofluoric acid for 15 seconds and afterwards with a solution 

of KI/I2/H2O (mass ratio 4:1:40) for 2 minutes to remove gold (catalyst and potential surface 

contaminants) and the layer of SiOx. Next, the SiNWs were dispersed in ethanol using 

ultrasonication during 6 seconds, and the resulting SiNW suspensions were spray coated onto a 

previously cleaned silicon substrate known as “p-Si(100)” (p-type; 0.001 Ω cm resistivity; 300 

nm SiO2; 10 titanium nm/200 gold nm gate electrode). Additionally, the source and drain 

electrodes (30 titanium nm/110 gold nm) were added onto the sprayed SiNWs using 

photolithography (Karl Suss MA6 Mask Aligner) and lift-off processes, and were placed to create 

a channel with a 2 µm width, where the SiNWs are exposed and connect these two electrodes 

(Assad et al., 2012; Wang and Haick, 2013-a). 

Once the SiNW FETs were fabricated, the nanowires were molecularly functionalized 

with organic chains to attain 12 different sensors. First, the surfaces of the devices were activated 

through a 30 or 60 second oxygen plasma treatment, and after this phase, three different 

approaches were followed to reach the final SiNW FET sensors: 

1. Two-step silane-acyl chloride modification: this synthesis method begins with a 60 

minute immersion in a 20 mL solution of 3-aminopropyl-triethoxysilane (APTES) 

(10 mM) in dehydrated ethanol at room temperature. This process resulted in APTES-

terminated SiNW FETs, which were then meticulously rinsed with acetone, ethanol, 

and isopropanol, and dried using a flow of N2. At this point, the SiNW FETs are ready 

to undergo the molecular modifications, which were carried out by submerging them 

for 17 hours in a solution of a specific acyl chloride (10 mM) in chloroform containing 

catalytic amounts of triethylamine (Wang and Haick, 2013-a). The particular acyl 

chlorides employed are the chemicals that determine the final and unique nature of 

each sensor. Seven acyl chlorides were employed, which led to seven distinct sensors 

(S1-S7). These compounds were 5-phenylvaleric chloride (C11H13ClO; S1), 1,4-

butanedicarbonyl chloride (C6H8Cl2O2; S2), methyl adipoyl chloride (C7H11ClO3; 

S3), hexanoyl chloride (C6H11ClO; S4), heptanoyl chloride (C7H13ClO; S5), decanoyl 

chloride (C10H19ClO; S6), and dodecanoyl chloride (C12H23ClO; S7). It must be noted 
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that the SiNW FETs that were treated with 1,4-butanedicarbonyl chloride were 

afterwards immersed into hot water (90ºC) for two hours in order to hydrolyze the 

acyl chloride end group. Finally, the functionalized SiNW FETs were rinsed with 

acetone, ethanol, and isopropanol, as well as dried employing a flow of N2, just like 

after being treated with APTES. 

This method led to the synthesis of seven different SiNW FET cross-reactive sensors 

(S1-S7), each one possessing its own chemical properties and structure. In Figure 14, 

a representation of the final surface of the SiNW FETs can be seen, as well as the 

particular head of the organic chains bonded to each sensor (S1-S7). As well, back in 

the introduction section, in Figure 7 (section 1.4.2.1), a graphic illustration showing 

the appearance of these sensors can be found. 

 
Figure 14. Scheme of the molecularly functionalized surfaces of seven of the SiNW 

FET sensors synthesized. 

The chains that are linked to the surface of the SiNWs form monolayers, and 

depending on the head of the chain (Wang and Haick, 2013-a), as well as its length 

(Wang and Haick, 2013-b), they will possess different chemical properties and 

therefore originate distinct responses when interacting with gaseous samples. Sensors 

S1 through S4 possess similar chain lengths, but different functional groups (heads), 

which enables the comparison of the sensing capability according to them (Wang and 

Haick, 2013-a). While S1 and S4 are electron-donating, S2 and S3 are electron-

withdrawing, which will clearly have an effect over the sensing process. On the other 

hand, sensors S4 through S7 have the same functional group, yet increasing chain 

lengths, which allows assessing the effect of the amount of carbon atoms in the 

backbone of the chains on the sensor-sample interaction (Wang and Haick, 2013-b). 

2. Single-step silane modification: to carry out this type of synthesis, the activated 

surfaces of the SiNW FETs were immersed 10 mL of a 2 mM silane/chloroform 

solution for 45 minutes at room temperature, followed by a sequential chloroform, 

acetone, ethanol, and isopropanol rinsing process. At the end, the functionalized 

sensors were dried using a N2 flow. In this case, four different silanes were used to 

reach the final devices. These silanes were trichloro(3,3,3-trifluoropropyl)silane 
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(CF3CH2CH2SiCl3; S8), trichloro(phenethyl)silane (C6H5CH2SiCl3; S9), (3-

bromopropyl)trichlorosilane (C3H6BrCl3Si; S10), and APTES (C9H23NO3Si; S11). It 

must be noted, that during the synthesis of S11 (functionalized with APTES), it was 

carried out with ethanol instead of chloroform during both the functionalizing and 

rinsing steps (Wang and Haick, 2013-a). 

This second methodology originated four very different SiNW FETs with unique 

sensing properties (S8-S11). 

3. Two-step silane-monomer modification: this last approach or synthesis method 

starts with the immersion of the activated devices in 10 mL of a 2 mM trichloro(3,3,3-

trifluoropropyl)silane/chloroform solution for one hour. Next, the resulting surface is 

successively rinsed with chloroform, acetone, ethanol and isopropanol, and then dried 

with a flow of N2. Once it is completely dry, an anthracene (C14H10) monomer 

solution in tetrahydrofuran (THF; catalytic amount) is drop-casted onto the surface 

and preserved in a vacuum oven overnight at 55ºC. Finally, it is rinsed with THF, 

acetone, ethanol, and isopropanol, and again dried with N2, leading to the completion 

of the synthesis of the last, anthracene-functionalized, SiNW FET sensor (S12) 

employed during this research (Wang and Haick, 2013-a). 

As a precaution, every one of the molecularly modified SiNW FET sensors (S1-S12) were 

characterized through X-ray photoelectron spectroscopy to evaluate the amount of functionalized 

sites (monochromatized X-ray Al Kα 1486.6 eV source; Thermo VG Scientific, Sigma Probe, 

England;) and ellipsometry to determine the thickness of the molecular layers (spectroscopic 

ellipsometer, M-2000 V; J. A. Woollam Co., Inc., Lincoln, NE, USA) (Wang and Haick, 2013-a; 

Wang and Haick, 2013-b). Finally, some of the sensors (S1-S7) were loaded into a steel chamber 

of approximately 170 cm3, enabling the extraction of information from every sensor at the same 

time, or, in other words, operating as a cross-reactive sensor array. The chemical compounds 

required during the synthesis of the sensors were purchased from Sigma-Aldrich. 

 

2.3.2) Gold Nanoparticle Sensor Arrays 

 In addition to SiNW-based FET sensors, a broad series of functionalized gold 

nanoparticle (GNP) sensors (sensor array) have also been designed to perform breath analysis. 

Their synthesis process will be explained in the current section. 

 The functionalized GNPs were prepared following an established protocol based on a 

modified two-phase method (Brust et al., 1995), which resulted in monolayer-capped 5-nm gold 

nanoparticles. The difference between sensors relied on the organic capping layer (molecular 

functionalization), which provided unique chemical properties to each of the sensors synthesized 

in the end and enables the extraction of different and, perhaps, complementary information. The 

synthesis of the monolayer-capped GNP began with the transfer of AuCl4
− from a 25 mL aqueous 

solution of HAuCl4·xH2O (31.5 mM) to an 80 mL toluene solution (organic phase) using the 

phase transfer catalyst tetraoctylammonium bromide (34.3 mM). Once the organic phase had been 

separated, thiols in excess were added into the solution. Each particular thiol (hexanethiol, 

decanethiol, dodecanethiol, octadecanethiol, 3-ethoxythiophenol, and 4-

chlorobenzenemethanethiol) led to a specific molecular functionalization, and combined with 

number of layers of thiol, their thickness, density, and percentage of area covered, it originated 
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the synthesis of 34 different GNPs with their own chemical and sensing properties. All of these 

design variables will allow the determination of the best sensors and chemistry for specific 

applications. Then, the thiol-containing solution was vigorously stirred for 10 minutes, and, 

afterwards, 25 mL of an aqueous solution containing a great excess of ice-cooled NaBH4 (0.4 M) 

was included due to being a versatile reducing agent. This chemical reaction was carried out at 

room temperature and stirred for a minimum of 3 hours, which led to a dark brown solution which 

contained thiol-capped GNPs (organically functionalized). The solvent was removed in a rotatory 

evaporator, and the final GNPs were thoroughly washed with ethanol and toluene. Finally, the 

functionalized GNPs were purified through repeated extractions to eliminate free thiol ligands 

(Peng et al., 2009). The chemical compounds mentioned were all acquired from Sigma-Aldrich. 

 To finally develop the GNP sensors, the following steps were fulfilled. First of all, for 

each sensor (chemiresistor), 10 pairs of circular interdigitated gold electrodes were deposited by 

an electron-beam evaporator TFDS-870 (Vacuum Systems and Technologies, Petah Tikva, Israel) 

onto a segment of quality silicon wafer covered with 300 nm of thermal oxide (Silicon Quest 

International, Reno, NV, USA). The external diameter of the entire circular electrode was 3000 

µm, while the gap between the two contiguous electrodes, as well as their own width, were both 

20 µm. Once the electrodes were ready, the previously synthesized functionalized GNPs were 

first dispersed in chloroform by sonicating, and then drop-casted onto the surface of the 

electrodes. When the solution was covering them, they were blown dry with nitrogen. This phase 

was repeated several times until a resistance of around 1 MΩ was reached. Afterwards, the devices 

were dried for two hours at room temperature and finally baked in a vacuum oven at 50ºC all 

night (Peng et al., 2009). At the end, as a precaution, the sensors were characterized similar to 

how the SiNW FET sensors were (vide supra). A schematic representation of a GNP sensor, like 

the ones synthesized in this research, can be seen in Figure 15. The 10 pairs of circular 

interdigitated gold electrodes can be found, as well as an amplification of the functionalized 

nanoparticles. 

 
Figure 15. Schematic representation of the molecularly functionalized GNP sensors synthesized. 
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 Once the 34 sensors were prepared, they were mounted onto a custom 

polytetrafluoroethylene circuit board and located in a stainless steel chamber (100 cm3 volume) 

to create the final sensor array. 

 Both of the types of cross-reactive sensor arrays that have been designed, as well as the 

analyses carried out with PTR-MS, provide great amounts of information when a gaseous sample 

is processed. This data will be treated and modeled appropriately to create the tools desired during 

this research. 

 

2.4) Mathematical Tools and Analysis 

 In this section, an insight regarding the set of mathematical tools that have been employed 

in this research will be given, as they play a basic role in any analysis which leads to the creation 

of substantial amounts of data. They are divided into two fundamental groups: feature selection 

(FS) algorithms and multilayer perceptrons (MLPs). The first group of algorithms will be in 

charge of locating the most relevant independent variables from databases to carry out further 

modeling tasks, which will be done by the non-linear MLPs. A schematic representation of this 

two-phase calculation can be seen in Figure 16. It must be noted that prior to these calculations, 

statistical outliers were located and removed from the databases to avoid potential alterations 

during the FS-MLP two-phase calculation (when the value of a variable for a specific sample was 

lower than Q1-3×IQR or greater than Q3+3×IQR, where Q1 and Q3 represent the first and the third 

quartile values, respectively, and IQR symbolizes the interquartile range, it was considered a 

statistical outlier).  

 
Figure 16. Schematic illustration of the main calculations carried out during the 

present research. They are based on an initial feature selection (FS) procedure 

followed by a multilayer perceptron (MLP) modeling phase. 
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 Now that the two basic groups of algorithms that have been used in this thesis have been 

presented, the first one will be thoroughly described in the next subsection. 

 

2.4.1) Feature Selection 

 During this research, different analytical approaches have been utilized to gather 

information concerning gaseous or breath samples, which were PTR-MS and cross-reactive 

sensor arrays. These methodologies originate large databases, with many variables, after 

processing the samples. A consequence of this is the need to establish a preliminary mathematical 

procedure to eliminate noisy signals and/or irrelevant information. In the present case, filter-based 

feature selection (FS) algorithms have been selected to accomplish this task (Zhang et al., 2011). 

 Five different supervised data filters have been employed, each one with their own 

particular mathematical algorithms and selection criteria. In the case of PTR-MS data, the FS 

process located specific m/z (potential biomarkers) that had the greatest discriminative power. On 

the other hand, for databases originated during the cross-reactive sensor array studies, they 

determined the best sensing features for a successive modeling task. The way these filter-based 

FS methods operate is by ordering the variables, according to their specific mathematical 

calculations, in terms of discriminative power. They can be employed, for instance, to classify 

samples into two groups or classes which are properly labelled, as the FS algorithms employed 

are supervised (e.g., patients with different diseases). This enables the selection of only the most 

useful independent variables, which in the end allow reducing computational load and time, as 

well as improving prediction performance of further mathematical modeling (Chandrashekar and 

Sahin, 2014). 

As mentioned, five different FS methods have been used during the data analysis (see 

Table 3 in section 1.5.1), and they are based on χ2 score (Liu and Setiono, 1995), Fisher’s 

discriminant ratio (Wang et al., 2011), Kruskal-Wallis’ analysis (Kruskal and Wallis, 1952), 

relief-F algorithm (Wu et al., 2013), and information gain test (Dhir et al., 2007). The essential 

mathematical traits and calculations that are used by these data filters to quantify the 

discriminative power of different variables will be described in the following subsections. 

 It must be noted that the first four FS methods were carried out using a software package 

that has been programmed in Matlab language during this research (the code has been created 

manually), and Matlab version 7.0.1.24704 (R14) was employed to perform the calculations. The 

information gain test was carried out through Orange 2.7 Data Mining software (Demsar et al., 

2013). 

 

2.4.1.1) χ2 Score 

 χ2 (chi2) calculations, based on classic χ2 statistics, are employed in FS as a test of 

independence to evaluate if a class or group label depends on the value of a specific feature or 

not. The χ2 score obtained by a feature that has r samples and C classes is calculated using 

Equation 1. 
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𝜒2 = ∑ ∑
(𝑛𝑖𝑗 − 𝜇𝑖𝑗)

2

𝜇𝑖𝑗

𝐶

𝑗=1

𝑟

𝑖=1

                                                                                (1) 

 In this equation, nij represents the number of samples with the ith feature value, and µij is 

obtained through Equation 2. 

𝜇𝑖𝑗 =  
𝑛∗𝑗𝑛𝑖∗

𝑛
                                                                                                       (2) 

 Where n*j symbolizes the amount of samples in class j, ni* is the number of samples with 

ith value for a specific feature, and n is the amount of total samples. Relatively low χ2 scores for a 

specific feature imply that the values of that feature possess discriminative information for the 

classes labeled, indicating that it is an adequate variable for following classification models (Liu 

and Setiono, 1995; Zhao et al., 2011). The χ2 scores can be ordered to determine the variables or 

features with the most discriminative power. 

 

2.4.1.2) Fisher’s Discriminant Ratio 

 This filter-based FS method uses linear calculations to determine the discriminative 

power of a variable. It is widely employed due to its relative simplicity, and it operates by 

searching for a line that can separate the data samples into their corresponding classes the best 

way possible. In mathematical terms, the Fisher score is obtained through Equation 3, which is 

Fisher’s discriminant ratio (FDR). 

𝐹𝐷𝑅 =  
((𝑥1̅̅̅) − (𝑥2̅̅ ̅))

2

𝑉𝑎𝑟(𝑥1) + 𝑉𝑎𝑟(𝑥2)
                                                                          (3) 

 In this function, 𝑥1̅̅̅ and 𝑥2̅̅ ̅ represent the means of the values of a certain feature for classes 

x1 and x2, respectively, while Var(x1) and Var(x2) are the variances of these datasets. Therefore, a 

variable that possesses an elevated discriminative power according to this test, will reflect 

relatively high FDR values, as the means of each group should be different, and the samples 

within each class should not be overly scattered (Wang et al., 2011). These results will directly 

enable the location of the best features for further modeling phases. 

 

2.4.1.3) Kruskal-Wallis Test 

 The Kruskal-Wallis FS method relies on non-parametric calculations to rank the features 

by comparing the medians of the different classes. It is able to interpret non-linear relations 

between the values of the variable evaluated and the class label, and determines whether the 

medians of the values of a feature of two or more classes are equal or not to rank them in terms 

of discriminative capacity. The calculation carried out is shown in Equation 4. 

𝐾𝑊 =
12

𝑁(𝑁 + 1)
∑ 𝑛𝑖(𝑟̅𝑖)

2
− 3(𝑁 + 1)

𝑖=1

                                                     (4) 
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 Where N is the amount of observations or samples in all the groups, ni is the number of 

observations in group i, and 𝑟̅𝑖 represents the mean of the ranks of observations in group i. It is a 

complex calculation that leads to the comparison of the medians of the values of the different 

classes assessed, enabling the selection of those features with greater discriminative power 

(Kruskal and Wallis, 1952; Zhao et al., 2011). 

 

2.4.1.4) Relief-F Algorithm 

 This FS method is based on evaluating features by the extent of their ability to distinguish 

the values of instances or samples that are near to each other. When analyzing a sample value, it 

seeks for the nearest neighbors, one per class (same and different), and adjusts the feature 

weighting vector to enable ranking variables according to their ability to discriminate neighbor 

samples from other classes. The function used to obtain the relief-F score is shown in Equation 

5. 

𝑅𝐹(𝑓𝑖) =
1

2
∑ 𝑑(𝑓𝑡,𝑖 − 𝑓𝑁𝑀(𝑥𝑡),𝑖) − 𝑑(𝑓𝑡,𝑖 − 𝑓𝑁𝐻(𝑥𝑡),𝑖)

𝑡=1

                            (5) 

 In this equation, ft,i represents the value of the sample analyzed (xt) of a specific feature 

(fi), while fNM(xt),i and fNH(xt),i are the values of the ith feature corresponding to the nearest neighbors 

of different and same classes, respectively. Finally, d(·) is the function employed as a distance 

measurement between the sample and the nearest neighbors (Wu et al., 2013; Zhao et al., 2011). 

 

2.4.1.5) Information Gain Test 

 Information gain is a commonly employed type of filter FS method that is based on the 

entropy or, to a certain extent, the uncertainty linked to a determined variable. The calculation it 

uses to determine the discriminative power of a feature is carried out with Equation 6. 

𝐼𝐺(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)                                                                           (6) 

 Where H symbolizes entropy, H(X) is the entropy of a particular variable (X), and H(X|Y) 

is the entropy of the same variable after considering the class label (Y). These entropies are 

calculated through Equations 7 and 8. 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2(𝑃(𝑥𝑖))

𝑖

                                                                  (7) 

𝐻(𝑋|𝑌) = − ∑ 𝑃(𝑦𝑗) ∑ 𝑃(𝑥𝑖|𝑦𝑗)

𝑖

log2(𝑃(𝑥𝑖|𝑦𝑗))

𝑗

                                 (8) 

 In these equations, P(xi) denotes the marginal probability density function for a specific 

variable (X), and P(xi|yj) is the conditional probability of a class (Y) given the analyzed variable 

(X). If the observed values of X are related to those of Y (class label or target variable), and 

H(X|Y)<H(X), then the variable will be linked to the class label, or, in other words, will possess 

discriminative power according to this FS approach. The maximum value of IG(X,Y) is 1, and 
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high scores imply elevated ranks and discriminative potential (Dhir et al., 2007; Novakovic, 2009; 

Zhao et al., 2011). 

 Now that all of the FS methods employed have been mathematically described, it is time 

to begin explaining the algorithms used to design the models that utilize the features or 

independent variables located by these five data filters. These are multilayer perceptrons, the most 

commonly implemented kind of supervised artificial neural network. 

 

2.4.2) Multilayer Perceptron 

 The FS algorithms utilized enable identifying the most relevant features or independent 

variables in a database that can fulfill a following modeling task. In this research, artificial neural 

networks, and, more specifically, feed-forward multilayer perceptrons (MLPs) have been 

selected, as they are powerful non-linear algorithms (Knoerzer et al., 2011). MLPs are supervised 

mathematical tools which rely on non-linear interpolation to perform estimations, identifications, 

or classifications. This means that the operational window of a MLP is limited by the range of the 

values of the variables employed to train the model, meaning that if the model is tested with data 

outside this range, it will not be reliable as it is being forced to extrapolate (Torrecilla et al., 2008-

a). 

 These mathematical tools are reliable algorithms that have been employed in a wide 

variety of fields, such as chemistry, nanotechnology, food technology, biogeology, or 

biomedicine. In particular, some examples of where MLPs have been successfully employed in 

these five fields, respectively, are to accurately estimate the physicochemical properties of 

chemical compounds such as ionic liquids (Cancilla et al., 2015), to sensitively detect xylene 

isomers at low ppm levels with ambipolar diketopyrrolopyrrole-based FET sensors (Wang et al., 

2016), to systematically identify different adulterations in olive oil samples (Aroca-Santos et al., 

2015), to predict the presence of moisture in microbially colonized halite rocks (Wierzchos et al., 

2015), or to classify patients to diagnose diseases like malaria (Webster et al., 2009). 

 As mentioned in the introduction, MLPs possess a layered topology or architecture, with 

a set of units in each layer (nodes in the input layer and neurons in the hidden and output layers) 

(see Figure 10 in section 1.5.2). The input layer is represented by the independent variables (one 

node per variable; in this case, the variables potentially selected by the FS algorithms) that the 

MLP uses to perform its calculations. On the other hand, the amount of neurons or calculation 

centers in the hidden layer must be optimized appropriately (vide infra), while the ones in the 

output layer are determined by the number of dependent variables defined (variables to be 

estimated) (Cancilla et al., 2014-a). Once a specific topology has been established, the preliminary 

model can be trained. 

 

2.4.2.1) Training a Multilayer Perceptron 

 Training a MLP is synonymous to optimizing the weights it contains. The variation in the 

amount of weights in a MLP solely depends on the quantity of units contained within it, which at 

the same time, is determined by the database modeled. The reasoning behind this, is that every 

unit (node or neuron) in a layer will be connected to all of the units in neighboring layers (not 

with units in the same layer), and each one of these connections is controlled by a weight, which 
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initially possesses a random value between zero and one (Cancilla et al., 2014-a). Therefore, the 

amount of weights in a MLP, which changes with the topology, can be calculated through 

Equation 9. 

#𝑊 = 𝐼𝑁 ∗ 𝐻𝑁 + 𝐻𝑁 ∗ 𝑂𝑁                                                                           (9) 

 In the equation above, IN is the number input nodes that the model has (independent 

variables), HN denotes the amount of hidden neurons, and ON represents the number of output 

neurons (dependent variables). It is important to highlight that there are additional weights, which 

are linked to biases (not included in Equation 9), which help shift the results offered by an 

activation function (vide infra) to become more accurate. There is usually one bias that enters all 

the neurons in the hidden layer, and a second one that enters the neurons in the output layer 

(Demuth et al., 2005). During the training process, the weights are iteratively modified during a 

series of training cycles or epochs to reach their optimal values. The goal of these calculations is 

to attain weights that offer lower errors during an estimation or smaller misclassification rates 

during a classifying task (Knoerzer et al., 2011). 

 During a training cycle, two successive calculations take place in every neuron (hidden 

and output) in order to attain a final result (estimated value). This result is evaluated by the MLP 

and compared with the existing real value, which is available as these algorithms are in fact 

supervised (Cancilla et al., 2014-a). Then, through back-propagation, the weights are modified in 

order to lower the errors of the estimated results in the next training cycle (Kröse and van der 

Smagt, 1996). The mentioned calculations are carried out by two different mathematical 

functions. Initially, the activation function processes the data that enters a neuron through 

Equation 10 (Cancilla et al., 2015). 

𝑥𝑘 = ∑ 𝑤𝑗𝑘𝑦𝑗

𝑗=1

                                                                                                (10) 

 Where wjk represents the value of the weight that connects units j and k, yj denotes the 

signal which enters the particular neuron (from an input node or a hidden neuron), and xk is the 

solution of the activation function (Knoerzer et al., 2011). As can be noticed, the activation 

function collects and processes all of the information that enters a single neuron from all the units 

in the previous layer. 

 The solution provided by the activation function (Equation 10) is used to perform the 

second calculation, which is done by the transfer function. This mathematical step is in charge of 

limiting the range of the values emitted by the activation function and perform the mathematical 

interpolations. Various options are available such as linear functions or other non-linear ones like 

hyperbolic tangent or sigmoid functions. In the present research, the selected transfer function 

was the sigmoid function (Equation 11), and its choice was purely based on the success attained 

in the recent past by our research group (Aroca-Santos et al., 2015; Cancilla et al., 2014-a; 

Cancilla et al., 2014-b; Cancilla et al., 2015). 

𝑦𝑘 =
1

1 + 𝑒−𝑥𝑘
                                                                                                 (11) 

 In this equation, xk and yk are the answers of the activation and sigmoid (transfer) 

functions, respectively (Knoerzer et al., 2011). As mentioned, the sigmoid function provides the 
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non-linearity to the MLP, as well as restricts the data values to a range that covers from 0 to 1. It 

can be seen in Figure 17. 

 
Figure 17. Mathematical representation of the sigmoid 

function (Equation 11). 

 The answer provided by the transfer function is the result of a neuron, which may be 

inputted into another neuron, or represent the final answer of the MLP model if it is originated by 

a neuron from the output layer (dependent variable).  

 It must be noted that a requirement that has to be met prior to begin the training or learning 

process is that the database must be prepared accordingly. In first place, it is a good habit to 

normalize all the variables (dependent and independent) in order to have the data limits coincide 

with those set by the transfer function and its interpolation boundaries, which in this case is 

between zero and one, as the sigmoid function has been employed (Lawrence, 1992). 

 Secondly, the database has to be randomly divided into at least two different datasets, 

which are the training and verification datasets (containing around 80-85% and 15-20% of the 

data points, respectively). This is key to achieve a properly trained model, because if every sample 

or data point is used to train it, an over-fit mathematical tool will be obtained, meaning that it will 

not be able to operate reliably with data that is external to the data used to train it, as it will have 

modeled trends which are intrinsic to that data such as experimental error or even noise (Torrecilla 

et al., 2013). In other words, the verification dataset is employed by the MLP during the learning 

process, in every single training cycle, to verify that the error is not only lower for the data in the 

training dataset, which should happen as the weights are modified, but also for data external to it 

(verification dataset). In theory, without a verification dataset, the error rate can be lowered 

practically to zero, reaching an over-fit model (Cancilla et al., 2015). The verification dataset 

denies this phenomenon, because when the error or misclassification rate provided by the MLP 

for samples from this external data increases for a determined number of training cycles in a row 

(six in this case), the learning process ends, and the weights, as well as the MLP, can be thought 

of as optimized. Avoiding being over-fit is equivalent to being able to generalize for data that is 

different from the samples used to train the model, which is the true goal of a MLP, and any other 

mathematical model (Cancilla et al., 2014-a). In Figure 18 a graphical representation of the 

typical development of training and verification errors with the training cycles is shown. In this 

case, the learning process would stop at training cycle 7, as it is the point where the error in the 

verification dataset begins to increase, and continues for six cycles in a row. 

 The process explained leads to a correctly trained, yet preliminary MLP model, as the 

algorithm is far from being optimized. There are several parameters, in addition to the weights, 

that must be properly selected or optimized to accomplish a fully operating and trustworthy MLP, 

and they will be described next. 
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Figure 18. Chart that represents the typical development of the error concerning both datasets involved in 

the training process of a MLP: training dataset (red) and verification dataset (blue). 

 

2.4.2.2) Optimizing a Multilayer Perceptron 

Many parameters in a MLP have to either be selected or optimized so as to reach a proper, 

reliable, and accurate non-linear model. They will be looked into in the following subsections, 

which will describe all the required steps to achieve a useful and fully optimized MLP. These 

steps are optimizing the hidden neuron number, selecting an adequate training function, and 

optimizing a set of MLP parameters (learning coefficient and its modifying parameters). 

 

2.4.2.2.1) Hidden Neuron Number 

 The hidden neuron number (HNN) represents the amount of neurons that are present in 

the hidden layer of a MLP (see Figure 10, section 1.5.2). Artificial neurons are the actual 

calculation centers of the algorithm, so optimizing their amount is crucial for the non-linear model 

(Gnana-Sheela and Deepa, 2013). A MLP that possesses a low HNN may have a hampered 

learning capability, and, therefore, may not be able to adequately interpret the existing relations 

between the variables, resulting in non-accurate models. On the other hand, if the HNN is 

excessive, this could lead to over-fit systems that are not able to generalize well for data that is 

external to the learning or verification datasets (Cancilla et al., 2015). 

 There are various methods to optimize the HNN (Gnana-Sheela and Deepa, 2013), but in 

the present work a heuristic approach has been selected, testing HNNs within a logical range that 

would never lead to models containing less than double the amount of data points compared to 

the amount of weights, which can be calculated through Equation 9 (Aroca-Santos et al., 2015; 

Cancilla et al., 2014-a). An elevated weight-to-sample ratio tends to originate over-fit models 

(Torrecilla et al., 2013). It is worth noting that all of the MLPs designed only contained a single 

hidden layer in an attempt to lower the computational load (testing with more hidden layers was 

not necessary considering the amount of data points in the databases). 
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2.4.2.2.2) Training Function 

 The training algorithm is in charge of modifying the weights in order to reach more 

accurate estimations. In other words, it is in charge of optimizing the weights. There are many 

available training functions to carry out this process and, for this reason, it is essential to select 

an adequate one to fulfill a determined task. Specifically, 14 different training functions were 

considered, as each one possesses its own advantages and characteristics. They can be seen in 

Table 5 (Torrecilla et al., 2008-b). 

Table 5. Different assessed training functions and their main traits (Torrecilla et al., 2008-b). 

Training Function Subclasses Brief Description 

Gradient descendent BP*  

Gradient 

descent with 

variable 

learning rate 

Slow response. Employed during 

incremental-mode training 

Gradient descendent with 

momentum BP In general terms, it is faster than 

trainGD. Also used for incremental-

mode training Gradient descendent with 

momentum and adaptive linear BP 

Gradient descendent with adaptive 

learning rate BP 

Faster than trainGD, but only operates 

in batch-mode training 

Random-order incremental update 

Resilient BP 

Fast optimizing algorithms with very 

low storage needs. Operates in simple 

batch mode. Resilient BP 

Fletcher-Powell conjugate gradient 

BP 

Conjugated 

gradient 

descent 

Lowest storage requirements of the 

conjugate gradient algorithms 

Polak-Ribiere conjugate gradient 

BP 

Larger storage needs that trainCGF. 

Faster optimization for particular 

cases 

Powell-Beale conjugate gradient BP 
Larger storage needs that trainCGP. 

Commonly faster optimization 

Sealed conjugate gradient BP 
No line search required. Reliable 

general-purpose algorithm 

BFGS quasi-Newton BP 
Quasi-

Newton 

algorithm 

Higher computation needs than 

gradient descent algorithms. Usually 

optimizes faster 

One-step Secant BP 

In between conjugate gradient 

algorithms and the quasi-Newton 

algorithm 

Levenberq-Marquardt BP 
Levenberq-

Marquardt 
Fastest for moderate sized databases 

Bayesian regularization 
Automated 

regularization 

Tends to create models that generalize 

well 

*BP stands for back-propagation. 

 Initially, it is difficult to predict the best training function for a specific problem, as it 

depends on many factors such as the amount of data points, weights, and biases, the intricacy of 

the problem, whether the MLP is intended for a classification (pattern recognition) or an 

estimation (function approximation), and so on (Mathworks website, 2016). For these reasons, 
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and based on our recent past experience, the training functions that have been primarily evaluated 

during this research were Levenberq-Marquardt back-propagation (trainLM) and Bayesian 

regularization (trainBR), as they have shown to be the most reliable and fast alternatives in most 

cases during our work (Aroca-Santos et al., 2015; Cancilla et al., 2014-a; Cancilla et al., 2014-b; 

Cancilla et al., 2015). TrainLM is the fastest training algorithm for moderate-sized MLPs, 

possessing a memory reduction feature for when the training dataset is large. On the other hand, 

trainBR is a modified version of trainLM that originates models that generalize well (not over-

fit) and facilitates locating the optimal topology (Demuth et al., 2005; Torrecilla et al., 2008-b). 

 

2.4.2.2.3) Multilayer Perceptron Parameters 

 Finally, to conclude the optimization of a MLP, certain parameters must be optimized as 

well. They are the Marquardt adjustment parameter (Lc), the decrease factor for Lc (Lcd), and the 

increase factor for Lc (Lci) (Demuth et al., 2005). The Lc parameter is analogous to the learning 

coefficient in classic back-propagation algorithms (Palancar et al., 1998), and its value is 

decreased and increased by Lcd and Lci, respectively, until the changes on Lc result in a worsened 

statistical performance for the MLP model. Lc is employed by the MLP during the back-

propagation phase of the calculations that take place during each epoch, which results in the 

modification of the values of the weights (Demuth et al., 2005). The calculation in which it 

participates is covered in Equation 12. 

  𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝐿𝑐 · 𝑀𝑃𝐸 · 𝑦𝑘(1 − 𝑦𝑘) · 𝑦𝑗𝑘                                  (12) 

 In this equation, w stands for the weight value, t denotes the epoch, iteration, or training 

cycle, Lc is the aforementioned training coefficient, MPE is the mean prediction error between 

the real and estimated value (see Equation 13), yk represents the result of the transfer function of 

a unit in layer k of the MLP (result of the direct calculation), and yjk symbolizes the result of the 

transfer function of a unit from layer j that connects to the previous unit in layer k (for example, j 

can represent a neuron in the hidden layer, while k can stand for a neuron in the output layer). 

𝑀𝑃𝐸 =  
1

𝑁
∑

|𝑟𝑘 − 𝑦𝑘|

𝑟𝑘
× 100

𝑁

𝑘=1

                                                                   (13) 

 Where rk represents the real value, yk is the estimated value provided by the model for the 

corresponding real value, and N is the amount of data points evaluated. 

 After understanding where Lc is involved, it is time to define how it is has been optimized, 

together with Lcd and Lci. In order to optimize these three parameters, a meticulous experimental 

design based on the “Box-Wilson Central Composite Design 23 + star points” was performed. The 

range of values tested went from 0.0005 to 1 for Lc and Lcd, and from 2 to 150 for Lci (Cancilla 

et al., 2014-a; Torrecilla et al., 2008-b). This thorough experimental design was carried out using 

the software Statgraphics Centurion XVI, while all of the other MLP-related calculations were 

achieved with Matlab version 7.0.1.24704 (R14) (Demuth et al., 2005). 

 Now that all of the necessary steps to reach a completely optimized MLP have been 

covered, it is required to adequately validate these mathematical models, to be able to assure that 
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they can generalize well and be reliably applied to data that is external to the one used to train it. 

This will be looked into in the next and last subsection of the design of MLPs. 

 

2.4.2.3) Validating a Multilayer Perceptron 

 Alike any type of arithmetical model, MLPs have to be statistically validated once they 

have been optimized. In the present thesis, every model that has been trained, has been validated 

using the following mathematical procedures: k-fold cross-validation (Cancilla et al., 2014-a; 

Soleymani et al., 2011) and/or internal validation (Cancilla et al., 2015; Cancilla et al., 2014-b). 

 

2.4.2.3.1) K-Fold Cross-Validation 

 During a k-fold cross-validation, the own verification dataset is employed to test the MLP. 

As this dataset is not involved in the weight modification process, it is a legitimate approach. It is 

based on the random division of the global database into k parts (or folds) containing the same 

amount of data points, and using k-1 segments as the training dataset, and the extra one as the 

verification dataset. This process is carried out k times, swapping the verification dataset for a 

new one in each new test. The final statistical performance of the model is evaluated by averaging 

the results from all k tests (Cancilla et al., 2014-a; Soleymani et al., 2011), which is usually the 

MPE (Equation 13) for an estimator or the correct classification rate for a classifier. A graphical 

illustration of this mathematical validation method can be seen in Figure 19. 

Figure 19. Representation of the k-fold cross-validation (k = n) method to verify the quality of 

mathematical models (each block represents the global database, with a unique training/verification 

separation). 

 All of the k-fold cross-validations that were performed throughout this research were k = 

6, as it leads to an adequate data segmentation to properly train MLPs (83% training samples and 

17% verification samples). 

 When a model provides accurate results during this validation method, it typically implies 

that the model can generalize well and, therefore, be reliable for data that is different from the one 

used in the training or verification datasets. 
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2.4.2.3.2) Internal Validation 

 In this second validating approach, the subdivision of the database is different than in the 

prior case. Now, the database is divided into three different kind of datasets, rather than two. The 

global database will be randomly divided into training, verification, and simulation datasets, each 

containing around 70%, 20%, and 10% of the data points, respectively. In this scenario, the 

learning phase of the model is carried out using the training and verification datasets, as explained 

above. Once the entire optimization process concludes, the model is tested with the simulation 

dataset that had been initially separated (Cancilla et al., 2015; Cancilla et al., 2014-b). This 

mathematical method can be seen depicted in Figure 20. Three individual tests can be observed, 

as it was the procedure followed during this research. The final score of the internal validation is 

the average of the three tests which possessed different data points in each of the three simulation 

datasets. Once again, the performance of each test is typically evaluated through the MPE 

(Equation 13) for an estimating MLP, or through the correct classification rate for a classifying 

one. 

Figure 20. Representation of the internal validation approach, with three individual tests, to assess the 

statistical quality of mathematical models (each block represents the global database, with a unique 

training/verification/simulation separation). 

 In this case, if the statistical performance of the model is suitable, it is more than likely 

that the model can generalize well because it uses data that is completely separate from the 

training process (the simulation dataset is neither in training nor verification). 

 

2.5) Summary 

 With the previous subsection, all of the analytical equipment and mathematical tools 

employed during this research have been presented and described. Nonetheless, before beginning 

with the results and discussion section, to get a fast and clear view of all the tools that have been 

utilized in this thesis, a graphical summary of the materials and methods can be seen in Figure 

21. 
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Figure 21. Graphical summary of the materials and methods that have been employed during this research 

and thesis. 

 As can be seen, the flow of every study carried out follows the same dynamic. First, the 

gaseous samples are collected, then, they are processed by one of the analytical approaches 

described (PTR-MS, SiNW FET sensors, or GNP sensors), and, finally, the data is treated using 

the mathematical tools covered (FS and/or MLP). Therefore, we are ready to begin analyzing the 

different experiments and results obtained. 
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3) Results and Discussion 

 Now that all the different tools that have been employed during this research, in the form 

of analytical equipment and mathematical algorithms and models, have been thoroughly 

described, it is time to present the results of the experiments that have been carried out. This 

section will be divided into a set of five main subsections. The first four will each cover a separate 

experimental section and its results. The first one involves the use of silicon nanowire field-effect 

transistor sensors and neural networks to set a proof-of-concept regarding the existing relation 

between the volatile organic compounds in a gaseous matrix and the signals provided by the 

sensors. The second through fourth experiments include the use of real breath samples to classify 

patients according to their disease. The second experiment employs silicon nanowire field-effect 

transistor sensors combined with neural networks (analogous to the first experiment), to classify 

patients with lung cancer, gastric cancer, asthma, or chronic obstructive pulmonary disease. The 

third one, describes the use of proton transfer reaction-mass spectrometry and intelligent 

modeling to identify lung cancer patients during an oral glucose tolerance test. The fourth and 

final experiment attempts to distinguish multiple patients with different diseases (chronic kidney 

disease, head and neck cancer, inflammatory bowel disease, multiple sclerosis, Parkinson’s 

disease, preeclampsia, or pulmonary arterial hypertension) from groups of healthy controls using 

gold nanoparticle-based sensors and neural networks. On the other hand, the fifth and last 

subsection of the results and discussion will provide a global analysis of the results obtained and 

a comparison with previous studies. Therefore, we will begin with the description of the first 

experiment next. 

 

3.1) Identifying and Quantifying Volatile Organic Compounds in Gaseous Mixtures 

through Silicon Nanowire Field-Effect Transistor Sensors and Neural Networks 

 In this first work of the research, the goal is to develop a method to selectively identify 

volatile organic compounds (VOCs) in a determined gaseous sample, as well as to estimate their 

concentration. To do so, specific samples of different VOCs were prepared, with known 

concentrations. The main goal of this experiment is to prove that the methodology employed leads 

to a successful end, which is the location and interpretation of the relationship there is between a 

specific VOC, as well as its amount, and the signals produced by silicon nanowire field-effect 

transistor (SiNW FET) sensors. The resulting data will be finally processed by neural networks, 

particularly multilayer perceptrons (MLPs), to reach VOC identifying and quantifying 

mathematical tools. 

 

3.1.1) Obtaining the Data 

 In this first phase, the description of the gaseous samples of the VOCs prepared and 

processed, as well as the sensors and sensing feature extraction procedure will be meticulously 

presented. 
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3.1.1.1) Gaseous Samples 

 Eleven different VOCs were utilized to prepare every gaseous sample of this study, which 

were single- and multi-component mixtures. The molecules can be seen in Figure 22. 

Figure 22. Eleven VOCs used to prepare the samples used in this experiment. 

 Of the compounds employed during this study, there are four non-polar VOCs (Figure 

22; a-c, h) and seven polar ones (Figure 22; d-g, i-k). The non-polar compounds are alkanes 

(Figure 22; a-c) and an ether (Figure 22; h), while the polar ones are alcohols (Figure 22; d-g), 

benzenes (Figure 22; i, j), and a ketone (Figure 22; k). The molecules analyzed possess different 

chemical properties and structure, which allows evaluating the behavior of the SiNW FET sensors 

when interacting with diverse gaseous matrices. 

 The 11 VOCs analyzed are chemically similar to compounds that have been identified in 

breath samples of patients with different diseases, and, in other words, are comparable to 

biomarker candidates in breath (Buszewski et al., 2007; Peng et al., 2009). Therefore, if proven 

worthy, this methodology can be extrapolated to the identification and quantification of true 

volatile biomarkers as a proof-of-concept would be established. 

 The samples that have been employed are divided into two categories: single-component 

samples and multi-component mixtures. Every VOC (Figure 22) was used to prepare four single-

component samples at different concentrations, which, in increasing order, were pa/po = 0.01, 

0.02, 0.04, and 0.08 (where pa and po represent the partial pressure and vapor pressure of the VOC, 

respectively). On the other hand, hexane, octane, and hexanol were used to prepare all possible 

binary and ternary mixtures at a fixed concentration of each VOC (pa/po = 0.08; three binary and 

one ternary mixture). The single-component samples were employed to determine the selectivity 

of the sensors towards the VOCs by using a MLP to identify and quantify them, whereas the 

multi-component samples were used to verify if the compounds that form binary and ternary 

mixtures also provide specific signals or patterns which can enable the identification of the 

elements of the samples (also through a MLP). 

 

3.1.1.2) SiNW FET Sensors and Sensing Features 

 As mentioned in the materials and methods section, different SiNW FET sensors, each 

with unique molecular functionalizations (see Figure 14 in section 2.3.1), were synthesized, and 

seven of them (S1-S7), which were produced through a two-step silane-acyl chloride modification 

process (vide supra), were introduced into a steel chamber to create a sensor array. In other words, 
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every sensor will interact with the gaseous sample at the same time in order to ensure that they 

are all under the same operating conditions. The names that are used to refer to each sensor are 

shown in Table 6 (as well as Figure 14). 

Table 6. Seven SiNW FET sensors in the chamber. 

Name Given 
Molecular Functionalization 

(-R in Figure 14) 

S1 -C6H5 

S2 -COOH 

S3 -COOCH3 

S4 -CH3 

S5 -CH2CH3 

S6 -(CH2)4CH3 

S7 -(CH2)6CH3 

 All of the VOC samples were processed identically. Dry airflow was introduced for 30 

minutes into the chamber, followed by another 30 minutes of VOC flow. The flowrates of air and 

VOC samples were 5 L per minute, and signals were registered during the entire time. Every one 

of the sensors leads to the same kind of signals from which a set of four sensing features are 

calculated and employed as independent variables in the following MLP models. The SiNW FET 

sensors interact with the VOCs through different non-covalent interactions which are dipole-

dipole interactions, induced dipole-dipole interactions, and a tilt of the molecular layer that is 

originated due to the diffusion of the VOCs (Wang and Haick, 2013-a). The mentioned sensing 

features are extracted from source-drain current (Ids) vs. gate voltage (Vg) curves which are a 

result of the sample exposure to the SiNW FET sensors (Vg ranged from 40 to -40 V and the 

source-drain voltage (Vds) was 2 V). A typical example of these kind of curves can be seen in 

Figure 23, where all of the calculated features are shown as well (voltage threshold (Vth), Ids at -

40 V (Ion), subthreshold swing (SS), and charge carrier (hole) mobility (µh)). 

 The features are extracted as follows: (a) Vth is obtained by extrapolating the linear fit of 

the Ids vs. Vg curve to where Ids equals zero. (b) Ion is extracted by determining the source-drain 

current at -40 V (highest current). (c) SS is achieved by calculating the slope of the linear regime 

of the logarithmic Ids vs. Vg curve. (d) µh is calculated using Equation 14 and represents the 

velocity of the charge carriers in motion due to the influence of the electrical field (Wang and 

Haick, 2013-a). 

𝜇ℎ =  
𝑙𝑛[(2𝑡𝑜𝑥 + 𝑅𝑁𝑊)/𝑅𝑁𝑊]

2𝜋𝜀𝑜𝑥

𝐿𝑁𝑊

𝑉𝑑𝑠

𝛿𝐼𝑑𝑠

𝛿𝑉𝑔
                                                  (14) 

 Where tox is the thickness of the gate oxide (300 nm), εox represents the relative dielectric 

permittivity of the oxide (obtained by multiplying the vacuum permittivity (εo) by the dielectric 

constant of the oxide (εr); εo = 8.854e-12 F/m; εr = 3.7) , RNW is the radius of the nanowire (40 nm), 
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LNW symbolizes the length of the FET channel (2 µm), Vds denotes source-drain voltage (2 V), and 

the expression δIds/δVg is the liner fitting slope of the linear region of the Ids vs. Vg curve (Wang 

et al., 2014). 

 
Figure 23. Typical example of an Ids vs. Vg curve originated by a SiNW FET sensor. 

The black line is a linear scale, while the blue one is logarithmic. The four sensing 

features that have been extracted can also be seen. 

 The idea behind the extraction of these parameters is that every VOC at a specific 

concentration, should present a fingerprint-like combination of the four features, enabling VOC 

identification and quantification during the mathematical modeling phase. Three distinct types of 

MLPs will be designed and optimized using the data provided by the SiNW FET sensors, each 

with their own particular goal. Their design, optimization phases, and statistical performances 

will be presented next. 

 

3.1.2) Mathematical Treatment 

 In this section, the results attained in the three different types of MLP-based models will 

be presented, as well as their repercussion in the field. They are intended to (a) identify the VOCs 

using data from single-component samples, (b) quantify the VOCs using the same samples, and 

(c) identify the VOCs from multi-component mixtures. It must be noted that models were 

independently optimized for data retrieved from single sensors, in an attempt to determine if it is 

possible to use them individually to fulfill the desired task. In other words, seven MLP models 

(one per sensor) were developed for every experiment, leading to a total of 21 mathematical tools. 

 

3.1.2.1) Identification of VOCs in Single-Component Samples 

 In this first analysis, the goal was to use the data obtained from the SiNW FET sensors 

after processing the single-component samples to create models that are able to distinguish signals 

from particular VOCs, regardless of their concentration. The global database, from all seven 

sensors (see Table 6), contained a total of 709 data points which were obtained from samples of 

the VOCs at different concentrations (pa/po = 0.01, 0.02, 0.04, and 0.08). Samples were randomly 
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measured twice or three times to possess a greater database and to verify that the results and 

methodology are repetitive (repeatability was confirmed). Therefore, each of the seven MLPs 

(one per sensor) was designed, trained, optimized, and validated using approximately 100 

measurements of the 11 VOCs (see Figure 22). 

 The MLPs were in this case classifiers, as their purpose was to discriminate data points 

or instances that came from samples containing different VOCs. In order to design a classifying 

MLP, discrete outputs or dependent variables must be defined, and in this scenario, each of the 

11 VOCs had a specific binary 1x10 vector assigned. These vectors can be seen in Table 7. 

Table 7. Vectors assigned to each VOC for classifying intent. They will be used as dependent variables 

when training the MLPs. 

VOC Output Vector 

Hexane 1 0 0 0 0 0 0 0 0 0 

Octane 0 1 0 0 0 0 0 0 0 0 

Decane 0 0 1 0 0 0 0 0 0 0 

Ethanol 0 0 0 1 0 0 0 0 0 0 

Hexanol 0 0 0 0 1 0 0 0 0 0 

Octanol 0 0 0 0 0 1 0 0 0 0 

Decanol 0 0 0 0 0 0 1 0 0 0 

Dibutylether 0 0 0 0 0 0 0 1 0 0 

Mesitylene 0 0 0 0 0 0 0 0 1 0 

Chlorobenzene 0 0 0 0 0 0 0 0 0 1 

Cyclohexanone 0 0 0 0 0 0 0 0 0 0 

 In order to reach comparable results, the network parameters and topology of all seven 

MLPs were maintained constant (amount of inputs, hidden neurons, and outputs) after verifying 

that they were adequate. The parameters and functions employed can be found in Table 8 and the 

architecture of the MLPs is depicted in Figure 24. 

  



Results and Discussion 

74 

 

Table 8. MLP parameters and functions employed in 

the seven classifiers. 

MLP Parameters Selection or Value 

Transfer function Sigmoid 

Training function TrainBR 

Lc 0.001 

Lcd 0.1 

Lci 10 

 

Figure 24. Topology of the MLPs used to identify the VOCs from single-component samples. The final 

architecture is 4-3-10 (input-hidden-output). The output 1x10 vector corresponds with the values shown in 

Table 7. 

 As can be seen, the independent variables employed correspond with the four sensing 

features extracted, which are employed to classify the VOCs. The accuracy or statistical 

performance of classifying models can be evaluated in various ways, and, in this case, the 

Euclidean distance (ED) has been employed (Palomar et al., 2009). It is used to compare the target 

vectors (see Table 7) with those estimated by the MLPs, and, in the end, allows assessing the 

recognition power of each individual SiNW FET sensor. ED is calculated through Equation 15. 

𝐸𝐷 =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

                                                                                   (15) 
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 In this equation, xi stands for a value in the target vector, yi is the corresponding value of 

the estimated vector, and k is the amount of elements in the vector (10 in this case). Therefore, 

small EDs imply higher accuracies or correct classification rates. In Table 9, the VOCs that the 

MLPs are able to correctly identify are shown individually for each sensor. These results were 

obtained after evaluating the EDs of the trained MLPs during an internal validation (see Figure 

20, section 2.4.2.3.2). 

Table 9. Correctly and incorrectly classified VOCs by the MLP models corresponding to each SiNW FET 

sensor. 

Sensor VOCs Correctly Classified VOCs Incorrectly Classified 

S1 

Hexane, decane, ethanol, hexanol, 

octanol, decanol, mesitylene, 

chlorobenzene, and cyclohexanone 

Octane and dibutylether 

S2 

Hexane, octane, decane, ethanol, hexanol, 

octanol, decanol, dibutylether, mesitylene, 

chlorobenzene, and cyclohexanone 

- 

S3 

Hexane, octane, decane, ethanol, hexanol, 

octanol, decanol, dibutylether, mesitylene, 

chlorobenzene, and cyclohexanone 

- 

S4 

Hexane, octane, decane, ethanol, hexanol, 

octanol, decanol, dibutylether, mesitylene, 

chlorobenzene, and cyclohexanone 

- 

S5 

Hexane, octane, decane, ethanol, hexanol, 

octanol, decanol, dibutylether, mesitylene, 

chlorobenzene, and cyclohexanone 

- 

S6 

Decane, ethanol, hexanol, octanol, 

decanol, dibutylether, mesitylene, and 

chlorobenzene 

Hexane, octane, and 

cyclohexanone 

S7 

Hexane, decane, ethanol, hexanol, 

octanol, decanol, dibutylether, mesitylene, 

chlorobenzene, and cyclohexanone 

Octane 

 As can be deduced from the results, four of the seven sensors perfectly distinguish all 

single-component VOC samples (S2 through S5), irrespective of concentration, while the other 

sensors at least correctly classify 8/11 VOCs (worst case for S6). This proves that the four sensing 

features extracted are able to characterize the VOC samples properly. In other words, the patterns 

calculated from the Ids vs. Vg curves provided by SiNW FET sensors are VOC-specific and, 

therefore, the sensors are selective towards different volatile molecules. 

 Analyzing the specific performance of particular sensors, it is possible to compare the 

results offered by sensors with similar chain lengths, yet different functional groups (S1 through 

S4) (Wang and Haick, 2013-a), and vice versa, sensors with common functional groups, but 

different chain lengths (S4 through S7) (Wang and Haick, 2013-b). From the first group, only S1, 

which is functionalized with a phenyl group (see Table 6, section 3.1.1.2), fails to recognize some 

of the VOCs (octane and dibutylether). A possible reason for this may be the low adsorption 

power of non-cyclic compounds on phenyl groups (Wang and Haick, 2013-a). On the other hand, 

selectivity seems to decrease as sensors are functionalized with longer alkyl chains (S4 and S5 

originate data that leads to more accurate models than S6 and S7). 
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 To sum up, single functionalized SiNW FET sensors and neural networks can be used to 

perfectly distinguish up to 11 chemically similar VOCs in single-component gaseous samples, 

regardless of their concentration (which was within pa/po = 0.01 and pa/po = 0.08). Now, let us see 

if these concentrations can also be determined using the same data provided by the sensors. 

 

3.1.2.2) Quantification of VOCs in Single-Component Samples 

 In this phase of the experiment, using the data retrieved in the prior analysis (709 data 

points), the quantification of VOCs has been attempted. As mentioned above, the single-

component samples possessed concentrations ranging from pa/po = 0.01 to pa/po = 0.08, and, 

therefore, it will be determined if the signals produced by the SiNW FET sensors are, apart from 

being component-dependent, also linked to VOC amount. Once again, seven independent MLPs 

have been developed, one per every sensor utilized, to assess the discriminative power of every 

individual sensing device. 

 The nature of the mathematical algorithms trained in this case is different than in the last 

study. Now they are estimators instead of classifiers and, for this reason, the dependent variables 

used, as well as the evaluation of their statistical performance, is different. Particularly, rather 

than a binary vector containing 10 outputs, there is only a single target or dependent variable 

which is employed to estimate the concentration of the samples. 

 Once again, with the intention to obtain comparable results, the architecture and the 

different network parameters were stabilized for all seven MLPs, after confirming they were 

suitable. These parameters are located in Table 10, and the topology of the estimators can be seen 

in Figure 25. 

Table 10. MLP parameters and functions employed 

in the seven estimators. 

MLP Parameters Selection or Value 

Transfer function Sigmoid 

Training function TrainBR 

Lc 0.01 

Lcd 0.3 

Lci 5 

 



Results and Discussion 

77 

 

Figure 25. Topology of the MLPs used to quantify the VOCs from single-component samples. The final 

architecture is 4-3-1 (input-hidden-output). 

 In these tools, the statistical performance has been evaluated using the MPE (see 

Equation 13, section 2.4.2.2.3), which is a common calculation to assess the accuracy of 

estimating tools (Cancilla et al., 2014-a). In Table 11 the different MPEs obtained for the 

estimation of the concentration of the VOCs of all seven MLPs is shown, enabling the comparison 

of the accuracy of the different SiNW FET sensors. These are the results of an internal validation 

procedure (see Figure 20, section 2.4.2.3.2). 

Table 11. MPEs of the concentration estimation for every VOC analyzed. The results cover all 

the MLPs designed, which correspond to each SiNW FET sensor employed in this experiment. 

The best estimation for each VOC is marked in bold. 

VOCs 

MPE (%) 

S1 S2 S3 S4 S5 S6 S7 

Hexane 5.7 5.4 <0.1 5.3 4.8 4.4 3.7 

Octane 4.7 1.1 0.2 0.9 4.9 1.3 8.7 

Decane 2.8 2.2 1.3 2.9 3.9 1.9 0.8 

Ethanol 3.9 0.4 0.1 2.9 4.2 1.7 0.3 

Hexanol 2.1 2.4 2.4 0.1 0.3 1.1 <0.1 

Octanol 2.7 1.5 2.4 1.9 2.3 2.2 1.4 

Decanol 1.7 3.1 0.7 0.1 2.2 1.2 3.8 

Dibutylether 3.2 5.7 2.7 1.5 <0.1 1.3 3.9 

Mesitylene 5.1 3.6 0.7 9.6 4.1 3.1 9.7 

Chlorobenzene 1.8 1.9 3.2 0.5 5.4 1.5 6.0 

Cyclohexanone 2.9 1.9 2.3 0.5 <0.1 1.3 1.9 
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 As can be observed, no quantification exceeds a 10% MPE, proving that this approach 

can be reliably employed to estimate the concentration of VOCs in single-component gaseous 

samples. As a matter of fact, every compound can be quantified with MPEs below 1.5% using 

one of the SiNW FET sensors employed, and in many cases with errors of approximately 0.1%. 

Specifically, S3 (ester functionalization) offered the best results for the estimation of the 

concentration of non-polar VOCs (alkanes and mesitylene), while sensors that end in methyl 

groups (S4 through S7) appear to be the best to quantify polar VOCs like alcohols. 

 Therefore, a very accurate system has been attained with the combination of these sensors 

and properly designed and trained MLPs, demonstrating a true relation between the sensing 

features extracted and the quantity of a VOC in a sample (within pa/po = 0.01 and pa/po = 0.08). 

Finally, the last part of this experiment is intended to identify VOCs in multi-component samples. 

 

3.1.2.3) Identification of VOCs in Multi-Component Samples 

 The last part of this experiment was carried out using multi-component samples of three 

chemically similar VOCs (hexane, octane, and hexanol at pa/po = 0.08) to determine if the 

followed approach is valid for the identification of compounds in mixtures. All three possible 

binary mixtures and the ternary mixture were prepared. Also, the data corresponding to the single-

component samples of these VOCs were also employed to train this MLP model, leading to a total 

of 60 data points. Therefore, we had measurements of seven different kinds of samples, which 

were each encoded with an individual 1x3 binary vector that will become the dependent variables 

of the classifying model. The samples as well as their identifying vector can be seen in Table 12. 

Table 12. Vectors assigned to each type of sample employed 

in the multi-component analysis. They will be utilized as 

dependent variables during the MLP optimization process. 

Sample Output Vector 

Hexane 1 0 0 

Octane 0 1 0 

Hexanol 0 0 1 

Hexane-Octane 1 1 0 

Hexane-Hexanol 1 0 1 

Octane-Hexanol 0 1 1 

Hexane-Octane-Hexanol 1 1 1 

 In this case, only data from S2 was used to develop the model. The optimized network 

parameters as well as the functions employed are located in Table 13, whereas the architecture 

of the final MLP is represented in Figure 26. 
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Table 13. MLP parameters and functions employed 

in the multi-component analysis. 

MLP Parameters Selection or Value 

Transfer function Sigmoid 

Training function TrainBR 

Lc 0.001 

Lcd 0.1 

Lci 10 

 

Figure 26. Architecture of the MLP utilized to classify the types of multi-component samples. The final 

architecture is 4-3-3 (input-hidden-output). The output 1x3 vector corresponds with the values shown in 

Table 12. 

 The same four sensing features are employed, and, once again, the ED (Equation 15) 

was used to evaluate the statistical performance of the classifier. For every single classification 

during an internal validation (see Figure 20, section 2.4.2.3.2), the ED was lower than 10-3, which 

means that the MLP model operated with a correct classification rate 100%. It was able to 

distinguish the three individual VOCs (just as in the first part of this study) as well as locate those 

specific samples which correspond with particular binary and ternary mixtures. In other words, 

an approach based on combining a (single) functionalized SiNW FET sensor and intelligent 

algorithms such as ANNs is able to selectively identify VOCs in mixtures, which clearly opens 

the door to the analysis of more complex gaseous mixtures such as real breath samples. 

 To summarize the results of this experiment, using a set of seven molecularly 

functionalized SiNW FET sensors to process gaseous samples of 11 different VOCs, and treating 

the data with MLP models, leads to a reliable methodology that is able to accurately classify and 

quantify single-component samples and identify the compounds in multi-component ones. The 

consequence of this is that it is possible to establish a proof-of-concept that there is a real 

relationship between the composition of a gaseous sample and the signals provided by the cross-

reactive sensors employed, as non-linear models have been able to very accurately carry out the 

desired tasks. All of this clearly favors future research in this line, because if it is possible to link 
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the signals that specific gaseous matrices originate with determined compounds and their 

amounts, it may be possible to relate particular patterns found in breaths of patients with 

determined diseases to that disease, and achieve non-invasive diagnosing tools. These three 

experiments have led to the publication of a scientific article in a prestigious journal which covers 

the mentioned results (Wang et al., 2014). 

 In the second experiment of the current thesis, real breath samples will come into play, as 

they will be analyzed using a different set of functionalized SiNW FET sensors in an attempt to 

classify patients with different diseases as well as healthy controls. 
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3.2) Silicon Nanowire Field-Effect Transistor Sensors to Process Exhaled Breath Samples 

from Patients with Various Diseases to Classify them Via Neural Network Modeling 

 In this study, contrary to the previous one, breath samples obtained from humans will be 

gathered and analyzed with the aim set to distinguish those that come from different patients with 

either lung cancer (LC), gastric cancer (GC), chronic obstructive pulmonary disease (COPD), or 

asthma (AS) from others that are originated by healthy control subjects. This experiment is based 

on the fact that breath exhaled by patients possessing a specific disease is different in terms of 

volatile organic compound (VOC) composition to the breath produced by someone healthy or 

sick with a different disease (Bajtarevic, et al., 2009; Dragonieri et al., 2009; Peng et al., 2009; 

Phillips et al., 2007; Poli et al., 2005). 

 Once the breath samples were gathered, they were processed using a set of differently 

functionalized silicon nanowire field-effect transistor (SiNW FET) sensors. Afterwards, the 

acquired databases were mathematically analyzed and prepared for the following two-phase 

calculations based on feature selection (FS) algorithms and multilayer perceptrons (MLPs) (see 

Figure 16, section 2.4). These MLPs were designed using data from individual SiNW FET 

sensors to classify the different diseases (LC, GC, COPD&AS, and healthy controls) through 

multiple binary classifiers. Once the models are fully optimized and validated, their statistical 

performance will allow determining the best sensor to carry out this task, as well as reaching 

useful tools, if accurate, that can aid in the breath-based non-invasive detection of these serious 

diseases. 

 

3.2.1) Breath Samples and Population Study  

 The breath samples were all gathered as explained in section 2.1 from 374 volunteers that 

were able to sign a written informed consent. Relevant clinical data regarding the participants can 

be seen in Table 14. 

Table 14. Clinical traits of the population study of every subgroup involved in this analysis. 

Data LC GC COPD&AS Controls 

Amount of participants 149 40 56 129 

Gender (male/female) 86/63 28/12 35/21 51/78 

Age ± SEM* 65 ± 11 60 ± 10 71 ± 11 65 ± 9 

Smoking status (current or past/never) 30/119 15/25 15/41 22/107 

*SEM stands for standard error of the mean (it is the standard deviation divided by the square root of the 

sample size). 

 It is worth noting that data regarding the staging of LC and GC cases was also attained 

(34 LC patients were staged as I or II, 110 were staged as III or IV, and 5 were unknown; 12 GC 

patients were staged as I or II, 24 were staged as III or IV, and 4 were unknown). The information 

from Table 14 and concerning disease staging was gathered from self-report surveys done by the 
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volunteers as well as from hospital data. Next, the specific SiNW FET sensors employed will be 

described, as well as the extracted sensing features. 

 

3.2.2) SiNW FET Sensors and Sensing Features 

 During this experiment, six different SiNW FET sensors were synthesized as described 

in section 2.3.1 to carry out the breath analysis, and were all located in a steel chamber to act as 

a sensor array. The employed sensors (S5 and S8-S12), their synthesis process, and their surface 

functionalizations can be seen in Table 15. 

Table 15. Six SiNW FET sensors in the chamber and their synthesis process. 

Name Given Synthesis Process Molecularly Functionalized With 

S5 
Two-step silane-acyl chloride 

modification 

3-Aminopropyl-triethoxysilane 

(APTES) + heptanoyl chloride 

S8 

Single-step silane modification 

Trichloro(3,3,3-

trifluoropropyl)silane 

S9 Trichloro(phenethyl)silane 

S10 (3-Bromopropyl)trichlorosilane 

S11 APTES 

S12 
Two-step silane-monomer 

modification 

Trichloro(3,3,3-

trifluoropropyl)silane + anthracene 

 Every breath sample of this experiment was processed identically using this sensor array. 

The sensors were exposed to the breath samples for 15 min, after being under vacuum for also 15 

min. During the sample exposure time, continuous measurements were gathered in the form of 

source-drain current (Ids) vs. gate voltage (Vg) curves, where Vg ranged from 40 to -40 V and the 

source-drain voltage (Vds) was 2 V (as shown in the Figure 23, in section 3.1.1.2 of the previous 

experiment). A set of sensing features were extracted from these curves, but in this case, instead 

of directly obtaining information from single or averaged Ids vs. Vg curves (like single 

measurements of voltage threshold (Vth), Ids at -40 V (Ion), subthreshold swing (SS), or hole 

mobility (µh)), specific Ids values were calculated at different Vg to gather multiple sensing 

features per exposure. Each fixed Vg led to the calculation of four unique sensing features, which 

were the peak (maximum or minimum), the middle, the end, and the area under the curve of the 

resulting Ids plateau. A hypothetical example of this feature extraction process can be seen 

represented in Figure 27. 

 Therefore, as explained, the different sensing features that have been extracted are based 

on a specific Vg value. A set of 19 voltages and/or related parameters have been used, which are 

14 specific Vg (-39.8 V, -35 V, -30 V, -25 V, -20 V, -15 V, -10 V, -5 V, -0.2 V, 5 V, 10 V, 20 V, 

30 V, and 39.8 V), Vth, µh, Ion (highest current), lowest current (Ioff), and Ion/Ioff. This leads to a 

total of 76 sensing features from a single sensor per sample analyzed, as four features are extracted 

from each of these 19 parameters (peak, middle, end, and area under curve). 
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Figure 27. Charts such as these were employed to calculate the sensing features of 

this experiment (they represent a particular example). (a) Representation of different 

source-drain current (Ids) values at fixed gate voltages (Vg). In this hypothetical 

example, Vg was set at -30 V. As can be seen, there is an Ids plateau, and it is used to 

extract four features (peak, middle, end, and area under curve). (b) Ids vs Vg graph 

from which the current values at specific times are gathered. In this case, it represents 

the measurement carried out at 25 min (during sample exposure). The red squares in 

both charts symbolize the same Ids, or, in other words, the current that is extracted 

from (b) to represent (a). 

 As a result of this process, a large database is created, where each of the volunteers’ breath 

samples (374 samples) are characterized by 76 sensing features per sensor of the array. This leads 

to the next phase of the experiment, which is the mathematical analysis of the databases in order 

to reach disease classifying algorithmic tools and locating the best sensor from the array. 

  



Results and Discussion 

84 

 

3.2.3) Mathematical Treatment 

 In order to achieve useful tools from the large databases produced, a proper mathematical 

analysis and treatment must be carried out. This procedure is mainly divided into two calculation 

phases, a filter-based FS to locate those sensing features with the greatest discriminative power, 

followed by a modeling phase using non-linear MLPs to classify the samples (as can be seen in 

Figure 16, section 2.4). This process will be carried individually for the databases originated by 

each of the six sensors, enabling the identification of the best sensor to distinguish samples from 

patients with different diseases (LC, GC, and COPD&AS) or healthy controls through a set of 

binary classifiers (MLPs). 

 

3.2.3.1) Feature Selection 

 A total of six databases containing 76 sensing features were available, as six differently 

functionalized SiNW FET sensors were employed to process the breath samples. As there are four 

distinct groups (LC, GC, COPD&AS, and healthy controls) that are going to be classified through 

binary classifying MLP models, the possible combinations of two different groups are six. 

Therefore, there are 36 resulting databases that have each been run through the filter-based FS 

algorithm Relief-F (section 2.4.1.4). The samples within each of these databases were labeled 

with either a zero or a one, to differentiate the two groups being classified (these labels become 

the dependent variables of the samples). 

 The criteria set to determine the amount of selected sensing features was to reduce the 

database until there was a 1:10 independent variable/sample ratio. At least 10 samples per variable 

are desired to avoid over-fitting effects during this stage as well as the following modeling one 

(Torrecilla et al., 2013). The amount of features selected during the FS calculations are presented 

in Table 16. 

Table 16. Amount of variables selected by the Relief-F FS algorithm to distinguish breath samples from 

different diseases. The amount may differ within a binary classifier due to the elimination of samples that 

were catalogued as statistical outliers. 

SiNW 

FET 

Sensor 

Amount of Features Selected for each Binary Classifier 

LC vs GC 
LC vs 

COPD&AS 

LC vs 

Control 

GC vs 

COPD&AS 

GC vs 

Control 

COPD&AS 

vs Control 

S5 18 20 27 9 16 18 

S8 18 20 24 9 16 18 

S9 18 20 27 9 16 18 

S10 15 20 20 9 15 18 

S11 18 20 27 9 16 18 

S12 18 20 27 9 16 18 
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 These selected sets of sensing features were each used to train individual MLP models 

during the second phase of the calculations.  

 

3.2.3.2) Multilayer Perceptrons 

 A total of 36 MLPs were developed and trained, and their statistical performances (correct 

classification rate (%)) were compared to determine the most suitable sensor to classify the 

diseases through breath analysis. For every specific binary classifier, the MLPs had to be 

comparable, and, therefore, they were trained using the same parameters, training and transfer 

functions, and topology. This information can be seen in Table 17. 

Table 17. MLP parameters, functions, and architecture of the different binary classifiers. 

MLP 

Parameters 

and Topology 

Selection or Value 

LC vs 

GC 

LC vs 

COPD&AS 

LC vs 

Control 

GC vs 

COPD&AS 

GC vs 

Control 

COPD&AS vs 

Control 

Transfer 

function 
Sigmoid 

Training 

function 
TrainLM 

Lc 0.001 

Lcd 0.1 

Lci 10 

Inputs 15 or 18 20 20, 24, or 27 9 15 or 16 18 

Hidden 

neurons 
4 

Outputs 1 

 It must be noted that the amount of hidden neurons was set so the maximum value 

possible that still originated at least a 2:1 ratio of samples/weights to avoid over-fit models 

(Cancilla et al., 2015). 

 In order to compare the models and determine the best SiNW FET sensor to distinguish 

the diseases, a k-fold cross-validation test (k=6) (see Figure 19, section 2.4.2.3.1) was performed 

for each of the 36 MLPs to evaluate their generalization capability and accuracy. To assess the 

statistical performance of these binary classifiers, a threshold value was set to determine how well 

the models classify the samples. For example, a threshold of 0.5 would imply that all results 

provided by the MLP below that value would be seen as “0”, while the ones above 0.5 would be 

considered “1”. Initially, the thresholds were all set at 0.5, as it is the middle value of the possible 

dependent variables (zero or one). The results attained during the validations can be seen in Table 

18. 
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Table 18. Statistical performance of the binary classifiers (MLPs) from each group combination and SiNW 

FET sensor used, in terms of correct hits (%), according to a k-fold cross-validation (k = 6). Best 

performances within a classifier marked in bold. 

Sensor 

LC vs GC 
LC vs 

COPD&AS 

LC vs 

Control 

GC vs 

COPD&AS 

GC vs 

Control 

COPD&AS vs 

Control 

Statistical Performance* 

S5 100/100/100 100/75/95 91/75/84 100/100/100 88/100/97 80/55/65 

S8 94/80/92 97/75/93 81/83/82 100/90/95 75/92/88 60/55/57 

S9 94/100/95 88/88/88 91/83/88 100/100/100 88/88/88 60/77/70 

S10 100/86/97 82/75/80 75/75/75 100/90/95 75/96/91 53/68/62 

S11 91/100/92 91/100/93 94/88/91 100/100/100 75/96/91 67/73/70 

S12 100/60/95 91/88/90 81/83/82 100/100/100 63/92/85 60/67/64 

*The results are given in terms of correct % group1/correct % group2/correct % total. 

 As can be deduced, the results confirm the usefulness of this approach. Many of the 

designed tools operate fairly accurately (many breaching the 90% mark), except for the 

COPD&AS vs control classifier, which barely reaches 70% in the best cases (this fact can be 

explained as there is a wider heterogeneity within this population, as two diseases have been 

combined into a single group and the control samples are inherently heterogeneous). From the 

results, it is possible to say that any of the six SiNW FET sensors synthesized combined with 

neural network modeling can lead to accurate and non-invasive detection of severe diseases such 

as LC and GC through breath analysis. 

 If a smaller set of sensors had to be selected to design a medical device for breath analysis, 

probably S5 and S11 would be chosen (molecularly functionalized with APTES + heptanoyl 

chloride and with APTES, respectively; see Table 15), as they have shown the best statistical 

performances in general. For this reason, the MLP models corresponding to these two sensors 

have been fully optimized (as described in section 2.4.2.2). The resulting hidden neuron number, 

learning coefficients, and final validation results (k-fold cross-validation (see Figure 19, section 

2.4.2.3.1) and internal validation (see Figure 20, section 2.4.2.3.2)) with their optimal thresholds, 

which were calculated to achieve the best possible performances for both groups classified (best 

possible multiplied percentage; correlated with results from receiver operating characteristic 

curves (Kumar and Indrayan, 2011)), are gathered in Tables 19 and 20, one for each sensor. 

 The results of these optimized MLP models reveal accurate tools to distinguish the 

defined groups using this approach. A single functionalized SiNW FET sensor (S5 or S11) that is 

used to analyze breath samples is capable of producing data that is clearly representative of LC, 

GC, or COPD&AS patients, as the models are able to accurately classify them. The statistical 

performance offered by both validation procedures ensure as well the generalization capability of 

the system, especially from the results of the internal validations, which employ data that is 

completely unrelated to the training process. It is worth highlighting that the internal validations 



Results and Discussion 

87 

 

for all six binary classifiers designed with the data provided by S11 showed accuracies above 

86%. 

Table 19. Optimized MLP parameters and architecture of the different binary classifiers for S5, as well as 

the statistical performance of a k-fold cross-validation and an internal validation. 

MLP Parameters and 

Topology 

Optimized Value/Statistical Performance 

LC vs 

GC 

LC vs 

COPD&AS 

LC vs 

Control 

GC vs 

COPD&AS 

GC vs 

Control 

COPD&AS vs 

Control 

Lc 0.001 0.001 0.001 0.001 0.001 0.001 

Lcd 0.1 0.1 0.001 0.1 0.1 1 

Lci 10 10 2 10 10 100 

Inputs 18 20 27 9 16 18 

Hidden neurons 4 4 3 4 4 4 

Outputs 1 

K-fold cross-validation 

performance (correct % 

group1/correct % 

group2/correct % total) 

100 

100 

100 

100 

75.0 

95.0 

87.2 

83.8 

85.6 

100 

100 

100 

88.0 

100 

97.0 

64.3 

76.0 

72.4 

K-fold cross-validation 

threshold 
0.50 0.50 0.49 0.50 0.50 0.52 

Internal validation 

performance (correct % 

group1/correct % 

group2/correct % total) 

97.7 

92.8 

96.5 

95.3 

60.0 

84.1 

95.3 

73.2 

84.5 

100 

95.2 

96.7 

75.0 

100 

94.1 

63.6 

89.1 

84.2 

Internal validation 

threshold 
0.40 0.46 0.51 0.66 0.45 0.50 

 To sum up, in this second experiment, a relation between the compounds in the breath of 

sick and healthy people and their clinical status has been successfully found, interpreted, and 

taken advantage of to create mathematical tools that are able to distinguish and detect different 

relevant diseases like LC, GC, COPD, and AS. The SiNW FET sensor and intelligent modeling 

combination has proven to be a worthy approach to non-invasively evaluate the clinical status of 

patients, opening the door to the implementation of such devices during disease screening 

procedures. These results have been submitted to a relevant journal in the nanotechnology field 

for publication (Shehada et al., 2016). 

 The following experiment of this thesis will presented during the next subsections. It 

involves the use of proton transfer reaction-mass spectrometry to analyze the breath of different 

LC patients as well as a high-risk population for LC, during an oral glucose tolerance test, to try 

and design LC-detecting MLP models and locate potential volatile LC biomarkers. 
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Table 20. Optimized MLP parameters and architecture of the different binary classifiers for S11, as well 

as the statistical performance of a k-fold cross-validation and an internal validation. 

MLP Parameters and 

Topology 

Optimized Value/Statistical Performance 

LC vs 

GC 

LC vs 

COPD&AS 

LC vs 

Control 

GC vs 

COPD&AS 

GC vs 

Control 

COPD&AS vs 

Control 

Lc 1 0.001 0.001 0.001 0.001 0.001 

Lcd 0.001 0.1 0.1 0.1 0.001 0.001 

Lci 2 10 10 10 2 2 

Inputs 18 20 27 9 16 18 

Hidden neurons 4 4 4 4 3 4 

Outputs 1 

K-fold cross-validation 

performance (correct % 

group1/correct % 

group2/correct % total) 

98.6 

97.5 

98.4 

91.0 

100 

93.0 

94.0 

88.0 

91.0 

100 

100 

100 

80.0 

98.4 

94.1 

69.6 

83.7 

79.4 

K-fold cross-validation 

threshold 
0.69 0.50 0.50 0.50 0.58 0.39 

Internal validation 

performance (correct % 

group1/correct % 

group2/correct % total) 

97.9 

88.9 

96.5 

87.2 

93.8 

88.9 

92.5 

81.8 

86.9 

100 

94.4 

96.7 

85.7 

100 

96.1 

78.6 

90.7 

87.7 

Internal validation 

threshold 
0.32 0.43 0.40 0.61 0.56 0.38 
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3.3) Detecting Lung Cancer during an Oral Glucose Tolerance Test through Breath 

Analysis Using Proton Transfer Reaction-Mass Spectrometry and Intelligent Modeling 

 In this experiment, breath samples from lung cancer (LC) patients were obtained, studied, 

and compared to others from controls that had been identified as high-risk individuals for LC. 

Additionally, in the present study, the tests were carried out during the course of an oral glucose 

tolerance (OGT) test to assess the role that glucose metabolism plays on the volatile compounds 

found in breath. 

 The breath samples were analyzed using proton transfer reaction-mass spectrometry 

(PTR-MS) and, therefore, quantitative information regarding specific volatile organic compounds 

(VOCs) was attained. Afterwards, the data was treated using a two-step calculation procedure 

based on feature selection (FS) and multilayer perceptrons (MLPs), as explained in the materials 

and methods section (see Figure 16, section 2.4), after necessary preliminary mathematical 

calculations were done. In the next subsections, population characteristics, OGT test, sample 

gathering, PTR-MS analysis, and mathematical treatment will be described and the results given 

and discussed. 

 

3.3.1) Population Traits 

 Initially, 48 Israeli participants were included in the study, but due to technical 

difficulties, eight of the samples they produced were excluded from the analysis. From the 

remaining 40 people, 18 were LC patients and 22 were controls which were identified as high-

risk for LC and were being treated in pulmonology clinics at the time of the breath sampling. Age, 

gender, and medical and smoking history of the sick and control groups were comparable, and 

this information can be seen in Table 21. 

Table 21. Relevant information from the population study. 

Data LC Patients Controls 

Amount of participants 18 22 

Gender (male/female) 10/8 15/7 

Age ± SEM* 63 ± 15 61 ± 15 

Body mass index ± SEM* 25 ± 5 25 ± 5 

Participants with allergies (pollen or dust/other) 2/8 4/4 

Participants with exposure to asbestos** 2 1 

Smoking status (current/past/never) 5/6/7 5/7/10 

*SEM stands for standard error of the mean. 

**Exposure to asbestos, which are a set of naturally appearing silicate minerals, has been linked 

to the development of certain LC cases (Nicholson et al., 1982). 
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 The data from Table 21 was obtained from self-report surveys (filled in by the 

participants) and from different databases at hospitals. Regarding the histology of the LC cases, 

there were two small cell and 16 non-small cell cases. These last 16 were divided into 12 

adenocarcinomas, two squamous cell cancers, and two others. In addition, it is worth noting that 

17 out of the 18 cases were in stages three or four (no reliable information regarding staging for 

the last case). 

 Finally, there was a set of exclusion criteria that was followed to reach the final population 

study: (a) patients that were uninterested in participating or were not able to sign the according 

consent form, (b) LC patients who had begun treatment prior to the research, (c) those who were 

unable to complete the needed steps during the research and/or the follow up visits, and (d) 

individuals (patients or controls) who suffered from diabetes. 

 

3.3.2) Oral Glucose Tolerance and Breath Tests 

 All the participants (patients and controls) were asked to drink a 273 mL solution 

containing 75 grams of glucose and water, after having fasted for six hours, and glucose levels in 

blood were determined before and after the OGT test (average glucose levels and standard 

deviation for LC patients: 101.2 ± 25.1 mg/dL pre-OGT test and 166.1 ± 58.3 mg/dL post-OGT 

test; average glucose levels and standard deviation for controls: 94.1 ± 12.1 mg/dL pre-OGT test 

and 155.2 ± 46.3 mg/dL post-OGT test). Two exhaled breath samples were gathered per 

individual, one before the test, and another 90 minutes (lay period) after the OGT test. Therefore, 

two breath samples were obtained per participant, and they will be referred to as pre-glucose 

uptake and post-glucose uptake samples, leading to a total of 80 breath samples. These samples 

were obtained as explained in the materials and methods section 2.1, and directly loaded onto the 

PTR-MS system within one to three hours of their collection. 

 

3.3.3) PTR-MS Analysis 

 As mentioned before in section 2.2, PTR-MS is a very sensitive system which is able to 

identify and quantify VOCs, without requiring any preconcentrating procedures, sample 

preparation, or chromatography (Blake et al., 2009; Ligor et al., 2009). In this study, bar scan 

mode was used to achieve clean information about specific VOCs, which are characterized by 

mass/charge ratios (m/z). The concentration of the volatile molecules was measured 20 times (20 

cycles) for each sample, to ensure that the results and methodology were statistically repetitive 

and robust (it was confirmed). The m/z measured were 21 and every option (every natural 

number) between 32 and 180, both included. 

 

3.3.4) Mathematical Treatment 

 In this section, the procedures followed to reach the final mathematical tools are 

presented. First of all, the initial data analysis and preparation was carried out. Once the databases 

were ready, two distinct analyses, with different goals, were performed using FS and MLPs. 
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3.3.4.1) Preliminary Analysis and Database Preparation 

 In this phase, the results provided by the PTR-MS system were organized and made 

comparable to be able to proceed with the further mathematical analysis. The steps carried out 

were as follows: 

1. Locate and eliminate statistical outliers from the measurements (as described at the 

beginning of section 2.4). 

2. Calculate the means of every m/z for every sample (without outliers) to possess 

representative data. 

3. Discard m/z that possess relatively high values such as m/z 21, which corresponds 

to H3
18O+, and has around 107-108 times greater values than most of the remaining 

m/z. Nine out of the initial 150 m/z were consequently excluded. 

4. Normalize the data per participant between zero and one in order to make all the 

samples comparable. 

 After completing these four steps, the database is prepared to be treated in order to reach 

the desired mathematical models. In Figure 28 two examples of the resulting PTR-MS data can 

be seen after undergoing these four preliminary phases. 

Figure 28. Graphical representation of two samples from the PTR-MS study after the preliminary analysis. 

(a) Example corresponding to a control individual (pre-glucose uptake), and (a.1) is its amplified version 

(amplified ordinate axis; allows a better evaluation of the intensity values of VOCs presenting low 

concentrations); (b) example belonging to a LC patient (pre-glucose uptake), and (b.1) is its amplified 

version (amplified ordinate axis). 

 In these representations, thanks to bar scan mode employed during the measurements and 

the preliminary analysis and calculations performed, single intensity values are linked to specific 

m/z or VOCs in the breath samples. These m/z will become the independent variables of the 

models that will be presented next. 

 Two main algorithmic tools have been developed in this research, each one possessing its 

own purpose. The first one was designed using all 80 samples individually, regardless of the 
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glucose uptake, and only labeling them with their medical status (LC vs. control). Therefore, 

every participant originated two breath samples which were used to create a classifier to 

distinguish those samples that come from LC patients or controls, in order to reach a diagnosing 

system. This study will be looked into next. 

 

3.3.4.2) Distinguishing LC Patients from Controls Regardless of Glucose Uptake 

 The database for this study contained 80 data points, two per participant (pre- and post-

glucose uptake; 44 from controls and 36 from LC patients), with a total of 141 m/z which are the 

independent variables of the system. These 141 m/z represent different volatile molecules present 

in the breath samples, and hopefully some of them will enable the discrimination of controls from 

LC patients. If accurate models are achieved, it may reveal potential m/z with discriminative or 

diagnostic power, indicating that they might be possible volatile biomarker candidates for LC 

diagnosis. On the other hand, every data point was labeled according to the participant’s status. 

Every control was assigned a zero, while every LC patient was given a one. These labels are the 

dependent variable of the analysis, as they will be employed to classify the samples. 

 The first step of this analysis involves the use of the five filter FS algorithms presented 

previously (section 2.4.1). They were used to determine the m/z (independent variables) with the 

greatest discriminative power to separate breath samples from controls and LC patients. In Table 

22 the top eight variables selected by each FS method can be found (eight was selected to maintain 

a 1:10 ratio of independent variables/samples during the subsequent MLP modeling, avoiding 

potential over-fitting effects (Torrecilla et al., 2013)). 

Table 22. Variables (m/z) selected by the FS algorithms to distinguish breath 

samples from both populations (repeated m/z marked in bold). 

FS Algorithm m/z Selected 

χ2 152, 160, 162, 166, 168, 175, 176, and 178 

Fisher 60, 61, 62, 119, 125, 126, 147, and 148 

Kruskal-Wallis 62, 78, 125, 126, 140, 147, 148, and 161 

Relief-F 41, 42, 43, 69, 70, 120, 126, and 173 

Information gain 50, 62, 107, 109, 125, 126, 148, and 164 

 As can be seen, various m/z are selected in more than one test (the selected m/z (volatile 

compounds) will be covered afterwards), even though each algorithm employs its own 

mathematical criteria to select the features. The variables selected by these algorithms were 

directly employed as inputs in five different yet comparable MLP models. Therefore, the 

statistical results provided by these non-linear binary classifiers will indicate the best m/z 

combination to distinguish breath samples from controls and LC patients, and may reveal 

potential volatile biomarker candidates for LC diagnosis (irrespective of glucose consumption). 
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 So as to reach analogous results, the set of network parameters as well as the architecture 

of the five MLPs were stabilized once determined that they were suitable. These parameters and 

mathematical functions can be found in Table 23 and the topology of the MLPs is represented in 

Figure 29. 

Table 23. MLP parameters and functions employed 

in the five classifying models (glucose consumption 

not considered). 

MLP Parameters Selection or Value 

Transfer function Sigmoid 

Training function TrainLM 

Lc 0.001 

Lcd 0.1 

Lci 10 

 

Figure 29. Topology of the MLPs used to distinguish breath samples from controls and LC patients, 

regardless of glucose consumption. The final architecture is 8-4-1 (input-hidden-output). 

 To evaluate the statistical performance of the classifiers, a threshold value was set to be 

able to compare the estimated values with the real labels. These thresholds were optimized 

according to the results obtained during the validation procedures, to achieve the best possible 

performances for both groups classified (best possible multiplied percentage). In this study, for 

every MLP, a k-fold cross-validation (k = 6) (see Figure 19, section 2.4.2.3.1) and an internal 

validation (see Figure 20, section 2.4.2.3.2) were carried out. In all of the validation tests, the 

samples were divided randomly into the required training, verification, and simulation datasets, 

but equivalently for every different MLP. This implies that the results from the different models 
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are comparable, as the same samples are evaluated during the same kind of validations. The final 

results are shown in Table 24 in terms of accuracy (correct hits (%)). 

Table 24. Statistical performance of all five MLPs, in terms of correct hits (%), according to two validation 

procedures (k-fold cross-validation and internal validation). Best results are marked in bold. 

MLP 

k-Fold Cross-Validation (n = 80) Internal Validation (n = 24) 

Th* 
Control 

(n = 44) 
LC 

(n = 36) 
Total Th 

Control 

(n = 14) 
LC 

(n = 10) 
Total 

χ2 0.50 70.4% 36.1% 55.0% 0.50 78.6% 50.0% 66.7% 

Fisher 0.50 84.1% 83.3% 83.8% 0.50 92.8% 80.0% 87.5% 

Kr.-Wa. 0.45 88.6% 86.1% 87.5% 0.50 78.6% 80.0% 79.2% 

Relief-F 0.50 90.9% 91.7% 91.2% 0.60 92.8% 90.0% 91.7% 

Info gain 0.55 90.9% 77.8% 85.0% 0.52 100% 80.0% 91.7% 

*Th symbolizes threshold. 

 As can be seen, except for the MLP model that uses the m/z selected by χ2 FS method, all 

of the other variable sets lead to considerably accurate mathematical tools. As a matter of fact, 

the variables selected by χ2 possess a great amount of zeroes (around 90% of the values), due to 

the relatively simple type of calculations it performs. All of the VOCs it selects possess elevated 

m/z ratios (on the right of the charts in Figure 28), which are the least abundant molecules. For 

this reason, the models are not accurate when only employing these kind of m/z to discriminate 

the two kinds of samples. On the other hand, when looking at Table 14, it can be seen that several 

of the m/z provided by Fisher’s discriminant ratio, Kruskal-Wallis test and information gain test 

overlap (up to five m/z). This may be the reason why the statistical performances of these models 

are very similar. Finally, the MLP which employs the m/z selected by relief-F appears to be the 

most accurate considering both of the validation tests carried out (only model with an accuracy 

over 91% for both tests). 

 As the results from the model that uses the m/z selected by relief-F FS method are the 

most accurate, the parameters and topology of this model have been fully optimized (as described 

in section 2.4.2.2). The results of this process can be seen in Table 25, as well as the statistical 

results of both a k-fold cross-validation (k = 6) and an internal validation. The final results of the 

validations have been graphically represented in Figure 30. 

 Therefore, it can be concluded that it is possible to accurately distinguish breath samples 

originated from LC patients and high-risk controls, regardless of the individuals’ glucose 

consumption, by combining PTR-MS analysis and intelligent mathematical modeling. This could 

signify that potential interfering signals originated by glucose metabolism may be avoided using 

this approach, facilitating the sample gathering procedure and perhaps evading certain 

confounding factors. The accurate results provided by two independent validation tests (93.8% 

and 95.8% for the k-fold cross-validation and internal validation, respectively) show that the 

relationship exists between the m/z selected and the clinical status of the patient. As well, these 
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tests ensure the generalization capability and applicability of the models, as they avoid over-fit 

systems. 

Table 25. Optimized MLP parameters and architecture of the binary classifier that distinguishes LC 

patients from healthy controls regardless of their glucose uptake, as well as the statistical 

performance of a k-fold cross-validation and an internal validation. 

MLP Parameters and Topology 
Optimized Value or 

Statistical Performance 

Lc 1 

Lcd 0.001 

Lci 2 

Inputs 
8 (m/z 41, 42, 43, 69, 70, 120, 

126, and 173) 

Hidden neurons 3 

Outputs 1 

K-fold cross-validation performance (correct % 

controls/correct % LC patients/correct % total) 
93.2/94.4/93.8 

K-fold cross-validation threshold 0.50 

Internal validation performance (correct % 

controls/correct % LC patients/correct % total) 
92.3/100/95.8 

Internal validation threshold 0.50 

 It has been shown that only utilizing sets of eight m/z as independent variables, it is 

possible to create a MLP-based model that offers an accuracy above 93% for an 80 sample study. 

Finally, the VOCs that originate these m/z with discriminatory power (m/z from the models that 

produced accurate results; 41, 42, 43, 50, 60, 61, 62, 69, 70, 78, 107, 109, 119, 120, 125, 126, 

140, 147, 148, 161, 164, and 173) may potentially represent volatile biomarkers to help detect 

and diagnose LC in a non-invasive and safe manner, as their concentrations may differ when 

comparing breath samples from LC patients and others from controls. Furthermore, the identity 

of some these VOCs has been proposed according to the mass of the compounds. They are m/z 

61, 107, 147, and 148, which possess masses which coincide with acetic acid, ethylbenzene, 1,2-

dichlorobenzene, and glutamic acid, respectively. These molecules, which are present in the body, 

may represent volatile biomarkers in breath that can aid in LC diagnosis. Nevertheless, these 

results embody an initial phase that should be backed up by further research to potentially validate 

the compounds as true LC volatile biomarkers. 
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Figure 30. Graphical representation of the results offered by the fully optimized 

classifier that uses the independent variables selected by relief-F. Blue dots 

represent samples, and the red line is the optimized threshold. (a) Shows the results 

from the k-fold cross-validation test (93.8% accuracy; 75/80 correct hits) while 

(b) indicates those from the internal validation (95.8% accuracy; 23/24 correct 

hits). 

 The second part of the analysis covers the influence of glucose consumption on the 

exhaled breath samples, and it will be presented next. 

 

3.3.4.3) Distinguishing LC Patients from Controls Considering Glucose Uptake 

 In this study, the effect that the OGT test has on the breath samples produced by the 

participants will be assessed. In other words, the evaluation of the role that glucose metabolism 

plays on the final volatile compounds and breath composition will be carried out. To do so, the 

first step that has been performed was the subtraction of the post-glucose uptake samples from 

their corresponding pre-glucose uptake ones (for every sample, which had already been 

normalized per individual). This way, a single sample for every participant is available, where the 

final m/z will represent the variation in the amount of VOCs originated by the consumption of 

glucose (subtracted m/z). Therefore, when attempting to locate the variables with the greatest 

power to distinguish samples from LC patients and controls, the FS algorithms will determine 

those m/z that have changed differently between the two groups after consuming glucose. In other 

words, those VOCs that vary their concentrations in breath differently after consuming glucose 

when comparing LC patients and controls, will be selected by the FS methods. 

 After this calculation, 40 samples formed the final database that has been used in this 

analysis (22 from controls and 18 from LC patients). Once again, 141 independent variables were 
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available, which in this case were the subtracted m/z. After labeling the samples (zeros were 

assigned to the controls and ones to the LC samples), the FS calculations were executed just like 

in the previous study. The results offered by the data filters can be seen in Table 26, where the 

first four variables selected by the FS algorithms are shown (four were selected to not surpass a 

1:10 ratio of independent variables/samples for the following modeling tasks, evading possible 

over-fit models (Torrecilla et al., 2013)). 

Table 26. Variables (subtracted m/z) selected by the FS 

algorithms to distinguish breath samples from controls from 

LC cases (repeated m/z marked in bold). 

FS Algorithm Subtracted m/z Selected 

χ2 160, 162, 168, and 176 

Fisher 43, 44, 131, and 148 

Kruskal-Wallis 41, 43, 44, and 61 

Relief-F 119, 142, 148, and 170 

Information gain 108, 132, 142, and 145 

 Just like in the previous study, several variables coincide in more than one FS test, which 

implies that although the algorithms use their own selection criteria, some of them show high 

relative discriminative power according to different statistical analyses. Each set of four 

subtracted m/z have been employed as independent variables or inputs for a series of classifying 

MLPs, which are intended to distinguish samples produced by LC patients and controls. If the 

results provided by these models are statistically robust, it might imply that those subtracted m/z 

employed represent volatile compounds in breath that change their concentrations differently after 

consuming glucose when comparing LC patients with controls. Potentially, this analysis may help 

locate subtracted m/z that are linked to volatile compounds in breath that might have a modified 

production due to the Warburg effect. This phenomenon, which was discovered back in the 1950s 

by Otto Warburg, is associated with cancerous cells and their altered glucose metabolism 

(Warburg, 1956). These cells typically produce energy through a high glycolysis rate and lactic 

acid fermentation in the cytosol of the cell, instead of the normal glycolysis and pyruvate 

oxidation that occurs in the mitochondria and leads to oxidative phosphorylation for a much 

higher energetic or ATP yield per glucose molecule that non-cancerous cells carry out (Vander 

Heiden et al., 2009). Therefore, even in the presence of oxygen, tumor cells favor anaerobic 

glycolysis over oxidative phosphorylation, despite the much lower ATP production (Zheng, 

2012). 

 The five MLP models designed possessed the same parameters and topology in order to 

reach comparable results, which are gathered in Table 27 and Figure 31, where the parameters 

and the architecture can be found, respectively. 
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Table 27. MLP parameters and functions employed 

in the five classifying models (glucose uptake 

considered). 

MLP Parameters Selection or Value 

Transfer function Sigmoid 

Training function TrainLM 

Lc 0.001 

Lcd 0.1 

Lci 10 

 

Figure 31. Architecture of the MLPs employed to distinguish breath samples from controls and LC patients, 

while taking glucose consumption into account. The final architecture is 4-4-1 (input-hidden-output). 

 In order to assess the statistical performance of the five MLP models, the same process 

was followed as the previous study. A threshold was optimized for each validation test (k-fold 

cross-validation (k = 6) (see Figure 19, section 2.4.2.3.1) and internal validation (see Figure 20, 

section 2.4.2.3.2)) of the binary classifiers to obtain the accuracy of the non-linear models in terms 

of correct hits (%). It is worth noting that, once again, the data points were randomly divided into 

the different datasets to correctly train and validate the applicability of the models, and that this 

division was analogous for all the MLPs in order to reach results which are as comparable as 

possible. The statistical performance of every model can be seen in Table 28. 

 In this case, the results show that, in general terms, two of the five models are 

considerably accurate (those using the variables selected by relief-F algorithm and information 

gain test), while the remaining three appear to be statistically worse models, especially regarding 

the internal validation. It is worth noting that the best all-round model, according to both kinds of 

validations, is the one that employs the variables selected by relief-F (at least 90% correct hits in 

both validation procedures), which matches with the previous study. Perhaps the non-linear 

relations in this database, between the clinical status of the participants and the compounds in 

their breath samples, are located better by this particular FS method when compared to the others 

(reflected in the more accurate MLPs). 
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Table 28. Statistical performance of the MLPs, in terms of correct hits (%), obtained through two validation 

processes (k-fold cross-validation and internal validation). Best results are marked in bold. 

MLP 

k-Fold Cross-Validation (n = 40) Internal Validation (n = 12) 

Th* 
Control 

(n = 22) 
LC 

(n = 18) 
Total Th 

Control 

(n = 7) 
LC 

(n = 5) 
Total 

χ2 0.50 63.6% 77.8% 70.0% 0.46 85.7% 40.0% 66.7% 

Fisher 0.37 86.4% 94.4% 90.0% 0.50 85.7% 60.0% 75.0% 

Kr.-Wa. 0.50 72.7% 83.3% 77.5% 0.50 57.1% 60.0% 58.3% 

Relief-F 0.53 90.9% 88.9% 90.0% 0.60 100% 80.0% 91.7% 

Info gain 0.49 86.4% 94.4% 90.0% 0.50 85.7% 80.0% 83.3% 

*Th symbolizes threshold. 

 Due to the fact that the performance of the model that utilizes the four subtracted m/z 

selected by relief-F is the best of the five, the parameters and architecture of this MLP have been 

fully optimized (as explained in section 2.4.2.2). The final results can be seen in Table 29, 

including the statistical results of a k-fold cross-validation (k = 6) and an internal validation. 

Table 29. Optimized MLP parameters and architecture of the binary classifier that distinguishes LC 

patients from healthy controls while considering glucose uptake, as well as the statistical 

performance of a k-fold cross-validation and an internal validation. 

MLP Parameters and Topology 
Optimized Value or 

Statistical Performance 

Lc 0.001 

Lcd 0.001 

Lci 2 

Inputs 
4 (subtracted m/z 119, 142, 

148, and 170) 

Hidden neurons 4 

Outputs 1 

K-fold cross-validation performance (correct % 

controls/correct % LC patients/correct % total) 
86.4/94.4/90.0 

K-fold cross-validation threshold 0.39 

Internal validation performance (correct % 

controls/correct % LC patients/correct % total) 
100/80.0/91.7 

Internal validation threshold 0.57 
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 The statistical results of both of the validations have been graphically represented and can 

be seen in Figure 32. 

 
Figure 32. Charts of the results offered by the fully optimized binary classifier 

that uses the independent variables selected by relief-F. Blue dots symbolize 

samples, and the red line is the optimized threshold. (a) Represents the results from 

the k-fold cross-validation test (90% accuracy; 36/40 correct hits) whereas (b) 

shows those from the internal validation (91.7% accuracy; 11/12 correct hits). 

 These results show that accurate neural network models can be designed to distinguish 

LC patients from control participants, during an OGT test, using data retrieved from the analysis 

of breath samples through a PTR-MS system consisting of subtracted m/z (to consider the glucose 

consumption status). MLP models are able to provide compelling results during their meticulous 

validation, which guarantees the generalization ability and wide applicability range of the 

algorithmic tools. 

 The subtracted m/z selected by two of the FS methods have led to significantly accurate 

MLP models, which solely employ four independent variables each, during a 40 sample analysis. 

These subtracted m/z with discriminatory power (subtracted m/z from the two models that 

produced the most accurate results; 108, 119, 132, 142, 145, 148, and 170) may be associated 

with the Warburg effect, as they represent volatile compounds that possess different 

concentrations in breath before and after glucose consumption depending on their clinical status 

(LC vs control) (Vander Heiden et al., 2009). Therefore, these compounds could represent the 

beginning of the development of a non-invasive LC diagnosing or screening system that relies on 

an OGT test, a PTR-MS-based breath analysis, and intelligent mathematical modeling. 

 With these results, the third experiment of the present thesis has been fully presented and 

discussed. To sum them up, it has been shown that using breath samples processed by a PTR-MS 
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system from LC patients and controls (high-risk individuals for LC) it is possible to attain reliable 

and non-invasive diagnosing tools after an appropriate mathematical treatment (FS and MLPs in 

this case). Two different scenarios have been analyzed, as the data has been collected during an 

OGT test. The first tool designed used data regardless of the glucose consumption of the 

individuals (pre- and post-glucose uptake breaths were studied as unrelated samples), while the 

second one did take it into account (pre- and post-glucose uptake samples from a specific 

participant were used as a single data point for the models, as they were subtracted). The final 

outcome of both kinds of MLP models was encouraging, as accurate mathematical tools were 

reached (never below 90% accuracy in terms of correct participant classification for any of the 

validation procedures carried out for the best model of each type). Therefore, it has been proven 

that this is a noteworthy approach which may lead to the design of captivating tools for the 

biomedical sector, as a safe and non-invasive diagnosing or screening system for LC has been 

potentially revealed. Some of these results have been presented at a multi-disciplinary meeting in 

Tel Aviv receiving the 3rd prize (Alkoby et al., 2015), while a full and detailed version of this 

experiment has recently been accepted by a prestigious scientific journal of the breath analysis 

field (Feinberg et al., 2016). 

 Finally, the fourth and last experiment of this research has been reached, and will be 

covered next. It relies on the use of functionalized GNP-based sensor arrays to identify patients 

of seven different diseases through their breath samples. 
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3.4) Non-Invasively Diagnosing Diseases by Combining Gold Nanoparticle Sensor Arrays 

and Neural Network Modeling to Analyze Breath Samples 

 This section will cover the results and discussion of the final experiment of this thesis. It 

is based on a study where cross-reactive sensor arrays based on functionalized gold nanoparticle 

(GNP) sensors have been used to analyze breath samples from different individuals. A set of 34 

different GNP sensors will be employed during this experiment, which will include seven 

different population studies of seven diseases in order to reach individual mathematical models 

to distinguish sick patients from healthy controls using breath samples. The different diseases are 

chronic kidney disease, head and neck cancer, inflammatory bowel disease, multiple sclerosis, 

Parkinson’s disease, preeclampsia, and pulmonary arterial hypertension. 

 Once the databases were produced, they were statistically analyzed (preliminary 

mathematical study) and, afterwards, treated with feature selection (FS) algorithms and multilayer 

perceptrons (MLPs) to reach classifying models (see Figure 16, section 2.4). The goals of this 

experiment can be separated into two. The obvious one is reaching mathematical systems that are 

able to distinguish samples that come from sick and healthy people, for each of the seven studies, 

only using data retrieved from breath samples. On the other hand, the FS algorithms are intended 

to locate those sensing features (or sensors) that have the greatest discriminative power, and, 

therefore, will be able to determine the specific sensors that are better suited for detecting 

determined diseases. This would enable the design of smaller and less expensive devices for 

particular sectors in the health field. 

 

3.4.1) Breath Samples and Population Studies 

 Every breath sample from the seven different studies was attained as explained in the 

materials and methods section 2.1, and, during the next subsections, the traits of the volunteering 

participants of each individual study, which provided their sample after signing a written informed 

consent, will be presented. 

 

3.4.1.1) Population Study 1 – Chronic Kidney Disease 

 The breath samples of 109 individuals were taken at the Poria Hospital (Tiberias, Israel) 

and analyzed to carry out this study. The participants are divided into 27 healthy control subjects 

and 82 chronic kidney disease (CKD) patients with different severity ranks. All of the patients 

went through an exhaustive physical examination and both routine blood and urine tests. The 

results were all available less than 30 days before the breath test. The patients were staged using 

their estimated glomerular filtration rate, which were determined from a set of parameters which 

included plasma creatinine levels, age, and gender, and using the equation of the modification of 

diet in renal disease (Levey et al., 1999). The staging results, as well as additional information 

regarding the participants can be seen in Table 30. 
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Table 30. Relevant data from the CKD population study. 

Data CKD Patients Healthy Controls 

Amount of participants 82 27 

Gender (male/female) 52/30 12/15 

Age ± SEM* 65 ± 12 46 ± 2 

Smoking status (current or past/never) 24/58 11/16 

Staging results (early (1-2)/advanced (3-5))** 27/49 - 

*SEM stands for standard error of the mean. 

**The staging results of six CKD patients were not conclusive due to the results from the biochemical 

tests. 

 It must be noted that none of the patients had been under dialysis or had suffered a kidney 

transplant prior to the breath test (exclusion criteria). 

 

3.4.1.2) Population Study 2 – Head and Neck Cancer 

 In this second case, breath samples from 63 people were taken at the Carmel Medical 

Center (Haifa, Israel). They were divided into 43 head and neck cancer (HNC) patients (different 

stages) and 20 healthy controls. The controls were matched to the patients in terms of age and 

lifestyle as best as possible, and they did not undergo any kind of examination (they were not 

aware of any kind of relevant medical condition). The main characteristics of the individuals can 

be seen in Table 31. 

Table 31. Relevant data from the HNC population study. 

Data HNC Patients Healthy Controls 

Amount of participants 43 20 

Gender (male/female) 37/6 6/14 

Age ± SEM* 62 ± 12 50 ± 12 

Smoking status (current or past/never) 25/18 5/15 

Benign/Malignant 21/22 - 

*SEM stands for standard error of the mean. 

 Some exclusion criteria were considered during this study and were applied prior to 

sampling. They are the following: (a) having any kind of medical history regarding malignancies 

or previous oncological treatment, (b) being under 18 years old, (c) possessing an active infectious 

disease, (d) being under an antibiotic treatment, (e) being pregnant, and (f) having an active 
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lactation period. Biopsies were taken from all the patients after collecting the breath samples (this 

fact did not delay the biopsy or alter the management protocol for any patient). 

 

3.4.1.3) Population Study 3 – Inflammatory Bowel Disease 

 Regarding the inflammatory bowel disease (IBD) study, 170 total volunteers provided 

samples at the Rambam Medical Center (Haifa, Israel), of which 123 were sick patients and 47 

were healthy controls. Among the sick patients, 97 had IBD (combining 49 cases of Crohn’s 

disease (CD) and 48 cases of ulcerative colitis (UC)) while the remaining 26 had irritable bowel 

syndrome (IBS). Every participant was evaluated by a gastroenterologist and filled out a physician 

guided questionnaire. The groups were matched in terms of age, gender, body mass index (BMI), 

and smoking history as best as possible. These traits can be found in Table 32. 

Table 32. Relevant data from the IBD population study. 

Data 

Patients 
Healthy 

Controls 
CD (IBD) UC (IBD) IBS 

Amount of participants 49 48 26 47 

Gender (male/female) 27/22 27/21 8/18 28/19 

Age ± SEM* 38 ± 12 41 ± 16 38 ± 13 41 ± 2 

BMI ± SEM* 23.9 ± 1.3 23.8 ± 0.8 23.2 ± 0.9 29.0 ± 1.0 

Smoking status (current or past/never) 25/24 21/27 8/18 16/31 

*SEM stands for standard error of the mean. 

 Every volunteer had to be at least 18 years old. The IBD patients that participated in the 

study were diagnosed by an expert gastroenterologist who employed common standards such as 

clinical presentation as well as radiologic, endoscopic, and histopathologic data. On the other 

hand, IBS patients met the Rome Criteria III (Drossman and Dumitrascu, 2006) as they 

manifested recurrent abdominal pain (or discomfort) at least during three days per month in the 

previous three months (their symptoms appeared to be unrelated to potential metabolic, 

inflammatory, or neoplastic processes). Finally, the healthy controls were randomly chosen from 

an unselected population, and it was verified that they did not present any gastrointestinal 

symptoms. 

 

3.4.1.4) Population Study 4 – Multiple Sclerosis 

 In this study, breath samples from a total of 202 volunteers were gathered at the Carmel 

Medical Center (Haifa, Israel) and analyzed. There were 129 multiple sclerosis (MS) patients 

(most cases in remission and a small percentage in relapse phase) and 73 healthy controls which 
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were selected to match the patients in age and gender as best as possible. The main characteristics 

of the cohort can be found in Table 33. 

Table 33. Relevant data from the MS population study. 

Data MS Patients Healthy Controls 

Amount of participants 129 73 

Gender (male/female) 57/72 28/45 

Age ± SEM* 38 ± 10 39 ± 11 

Smoking status (current or past/never) 41/88 25/48 

Remission/Relapse 112/17 - 

*SEM stands for standard error of the mean. 

 There were a few exclusion criteria during this study which should be mentioned: (a) 

being below 18 years old, (b) being pregnant, (c) having HIV, hepatitis, or other severe and/or 

infectious diseases, and (d) having any type of autoimmune condition or up to a third degree 

family member with MS or any other autoimmune disease would exclude healthy control subjects. 

 

3.4.1.5) Population Study 5 – Parkinson’s Disease 

 Breath samples from 97 people were collected for this study at the Carmel Medical Center 

(Haifa, Israel), of which 60 had Parkinson’s disease (PD) (considering as PD cases both idiopathic 

(44) and atypical Parkinsonism (16)) and 37 were healthy subjects. The patients were diagnosed 

by an experienced specialist and examined at least two times by a movement disorder expert. All 

of the patients went through a computerized tomography to exclude other potential diseases such 

as cancer. The control and sick groups were matched in terms of age and gender, and their main 

traits can be seen in Table 34. 

Table 34. Relevant data from the PD population study. 

Data 

PD Patients 
Healthy 

Controls 
Idiopathic Atypical 

Amount of participants 44 16 37 

Gender (male/female) 23/21 7/9 19/18 

Age ± SEM* 65 ± 14 67 ± 8 62 ± 12 

Smoking status (current or past/never) 7/37 6/10 9/28 

*SEM stands for standard error of the mean. 
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 All participants had to be over 18 years old (exclusion criterion) to be able to enter the 

population study. 

 

3.4.1.6) Population Study 6 – Preeclampsia 

 During this study, the breath samples of 71 women were gathered at the Nazareth English 

Hospital (Nazareth, Israel) to carry out the analysis. It included 24 preeclampsia (PE) patients and 

47 controls, of which 26 were healthy pregnant women and 21 were healthy non-pregnant women. 

All of the pregnant volunteers were past the 24th week of pregnancy, and the ones with PE had 

been diagnosed accordingly (blood pressure over 140/90 and proteinuria (Hawfield and 

Freedman, 2009)). The main characteristics of the participants in each group (age-matched) are 

shown in Table 35. 

Table 35. Relevant data from the PE population study. 

Data PE Patients 

Healthy Controls 

Pregnant Non-Pregnant 

Amount of participants 24 26 21 

Age ± SEM* 30 ± 6 29 ± 4 29 ± 4 

Smoking status (current or past/never) 0/24 0/26 0/21 

*SEM stands for standard error of the mean. 

 The healthy pregnant women were free of any kind of pregnancy complications, as well 

as chronic diseases. Also, the non-pregnant women did not possess any relevant medical history 

(diseases) or treatments. There were also some exclusion criteria in this study: (a) being under 18 

years old, (b) having a pre-pregnancy body mass index greater than 35, (c) possessing any 

smoking history, and (d) having chronic diseases and/or treatments. 

 

3.4.1.7) Population Study 7 – Pulmonary Arterial Hypertension 

 Finally, in this last study, 45 breath samples were collected at the Antoine-Béclère 

Hospital (Paris, France). From them, 22 were provided by pulmonary arterial hypertension (PAH) 

patients (7 heritable cases and 15 idiopathic) and 23 by healthy controls. Heritable PAH was 

diagnosed if mutations in the genes of the BMP/TGFβ family were detected (Sztrymf et al., 2008) 

and/or if one or more cases of PAH had been diagnosed in their family (regardless of mutations). 

On the other hand, the idiopathic PAH cases were recognized as such after ruling out all other 

possibilities. The main traits of the population study can be found in Table 36. 
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Table 36. Relevant data from the PAH population study. 

Data 

PAH Patients 
Healthy 

Controls 
Hereditary Idiopathic 

Amount of participants 7 15 23 

Gender (male/female) 2/5 4/11 10/13 

Age ± SEM* 48 ± 12 47 ± 12 38 ± 8 

Smoking status (current or past/never) 4/3 8/7 10/13 

*SEM stands for standard error of the mean. 

 The main exclusion criterion was that the volunteers had to be older than 18 to be able to 

participate in the study. 

 This concludes the description of the different populations that are involved in this 

experiment. A total of 757 breath samples have been gathered and analyzed to design seven binary 

classifiers that are intended to identify patients from different diseases, and lead to potential 

diagnosing devices. To do so, the breath samples were first processed using a functionalized GNP 

sensor array which contained 34 sensors. This led to a vast amount of data (sensing features) per 

sample, which will be looked into next. 

 

3.4.2) GNP Sensors and Sensing Features 

 As mentioned previously in the materials and methods subsection 2.3.2, a set of 34 

different molecularly functionalized GNP sensors were prepared and used to create a sensor array 

to provide information regarding the breath samples gathered in this experiment. These samples 

were contained in adsorption tubes and, therefore, the trapped VOCs had to be transferred into 

the chamber where the sensors were. To do so, the samples were put through a thermal desorption 

process at 250ºC using a TD20 auto-sampling thermal desorption system (Shimadzu Corporation, 

Japan). The desorbed molecules were provisionally stored in a stainless steel column at 150ºC 

until the analysis, which was carried out soon after. Meanwhile, the chamber containing the sensor 

array was maintained under vacuum pressure (at approximately 30 mtorr) until the sample was 

introduced in it (the extra volume was filled with purified N2 (99.999%) until atmospheric 

pressure was reached). 

 On the other hand, the measurements or resistance readings provided by the GNP sensors 

in the chamber were attained using a data logger device model 2701 DMM (Keithley Instruments, 

Inc., Cleveland, OH, USA). Resistance measurements (sensor signals) were gathered following 

the next sequence: (a) five minutes in vacuum (baseline), (b) five minutes interacting with the 

breath sample, and (c) five minutes of sensor recovery after evacuating the sample and reaching 

vacuum conditions once again inside the chamber. When the GNP sensors are exposed to a 

sample, the interaction between the gaseous molecules (VOCs) and the organic layer that 

functionalizes each nanoparticle leads to a modified resistance, which reaches baseline values 
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rapidly after the sample evacuation. From each one of these measurements, four sensing features 

were extracted. They were the change of resistance originated by the breath sample at the peak 

(maximum or minimum), at the middle of the measurement, and at the end of the measurement, 

as well as the area under the curve of the complete measurement (all features were linearly 

normalized between zero and one). The whole process was controlled through a custom-made 

LabView software, and an example of the obtained measurements (and sensing features) can be 

seen in Figure 33. 

 
Figure 33. Graphical representation of the typical response provided by a GNP sensor 

during this study. Rb denotes the baseline resistance in vacuum conditions (first and 

last five minutes of the measurement), whereas ΔR symbolizes the baseline-corrected 

steady-state resistance change that occurs when the sensor is exposed to a breath 

sample (from minute five to ten). The four extracted sensing features can be seen: they 

were the ΔR/Rb at the peak, middle, and end of the breath sample exposure, as well as 

the total area under the curve. 

 As a precaution during this experiment, in order to monitor the responsiveness of the GNP 

sensors as well as mitigate the possible response drift, the sensors were calibrated daily employing 

a fixed gas mixture which contained 11.5 ppm of isopropyl alcohol, 2.8 ppm of trimethylbenzene, 

and 0.6 ppm of 2-ethylhexanol. All the measurements (raw data) of a particular day were 

normalized using the responses originated by the calibration gas, which ensured attaining 

comparable data from different days. 

 Therefore, now that the data that will be used during this analysis has been described, it 

is time to determine if a combination of particular sensing features are suited to reach accurate 

mathematical tools that can classify or locate sick patients from seven different diseases, only 

using information gathered from their exhaled breath samples. 

 

3.4.3) Mathematical Treatment 

 In this section, the different steps followed to reach the final binary classifiers will be 

presented. It is mainly divided into two mathematical procedures based on an initial FS process 

using the five algorithms previously described in materials and methods section 2.4.1, followed 

by a non-linear modeling process using MLPs (see Figure 16, section 2.4). The goals of this 

experiment are to reach classifiers that can distinguish healthy controls from sick patients as 



Results and Discussion 

110 

 

accurately as possible for each individual study, as well as locate those GNP sensors from the 

array that are better suited for specific diseases. 

 

3.4.3.1) Feature Selection 

Table 37. Results obtained from the FS process for each one of the seven databases (diseases). 

Database FS Algorithm Amount of Features Amount of Sensors Selected 

CKD 

χ2 

7 

3 

Fisher 3 

Kruskal-Wallis 4 

Relief-F 3 

Information gain 3 

HNC 

χ2 

5 

3 

Fisher 4 

Kruskal-Wallis 4 

Relief-F 3 

Information gain 4 

IBD 

χ2 

10 

5 

Fisher 4 

Kruskal-Wallis 4 

Relief-F 4 

Information gain 5 

MS 

χ2 

19 

6 

Fisher 7 

Kruskal-Wallis 6 

Relief-F 7 

Information gain 6 

PD 

χ2 

7 

4 

Fisher 4 

Kruskal-Wallis 3 

Relief-F 3 

Information gain 4 

PE 

χ2 

5 

4 

Fisher 3 

Kruskal-Wallis 3 

Relief-F 3 

Information gain 4 

PAH 

χ2 

4 

3 

Fisher 4 

Kruskal-Wallis 3 

Relief-F 4 

Information gain 4 

 The first main calculation was based on the use of the five filter FS algorithms that have 

been described and used in the previous experiments. They were employed to locate those features 

from the GNP sensors with the highest discriminative power to distinguish breath samples from 

healthy controls from those originated by patients. Therefore, this was carried out seven times, 
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one per database, disease, or population study. As 34 GNP sensors have been used, and four 

sensing features have been extracted per sensor (see Figure 33, section 3.4.2), a total of 136 

independent variables were available initially in each database before the FS process. All healthy 

controls were labeled with a zero, while the patients were given ones. The results obtained during 

this analysis are covered in Table 37. 

 As can be seen, in most cases there are more variables than sensors due to the fact that up 

to four features have been extracted per sensor (vide supra), enabling the algorithms to select 

multiple features from the same sensor as the ones with the greatest discriminative power in the 

global database. The amount of features that were selected per study depended on the amount of 

data points (samples) remaining after withdrawing the statistical outliers. The criterion followed 

was to stay below a 1:10 ratio of variables/samples in order to avoid potential over-fitting effects 

in the following modeling phase (Torrecilla et al., 2013) (in no case this ratio was surpassed; there 

were always at least 10 times more data points than sensing features selected). 

 

3.4.3.2) Multilayer Perceptrons 

 The next step during the analysis was to use the selected features as independent variables 

or inputs in a series of MLP models. Therefore, five comparable binary classifiers were designed 

and trained per database, leading to a total of 35 MLPs. The best of each study, in terms of 

statistical performance (correct hits (%)), will determine the set of independent variables (or, 

basically, sensors) with the greatest discriminatory power and, in the end, allow the location of 

the sensors that are best suited to detect specific diseases through breath analysis. 

 Within each database, all the non-linear models had to be comparable. In other words, 

they had to possess analogous parameters and topology. All of this information is gathered in 

Table 38. Regarding the amount of hidden neurons, it was set so the maximum value possible 

that would lead to a minimum of 2:1 ratio of samples/weights to avoid over-fitting MLPs (Cancilla 

et al., 2015). 

 So as to determine the statistical performance of all 35 MLPs, a k-fold cross-validation 

(k = 6) (see Figure 19, section 2.4.2.3.1) was carried out for each one to determine their accuracy 

and generalization capability (the threshold was set at 0.5 for each classifier). Every MLP from a 

specific disease used equivalent training and verification datasets (randomly divided) to ensure 

that the results were comparable. This analysis reveals the best set of sensing features to 

distinguish healthy controls from patients of a particular disease. In Table 39, the results 

regarding the most accurate model for each database can be seen. 
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Table 38. MLP parameters and functions employed, as well as architecture of the different binary 

classifiers. 

MLP 

Parameters and 

Topology 

Selection or Value 

CKD HNC IBD MS PD PE PAH 

Transfer 

function 
Sigmoid 

Training 

function 
TrainLM 

Lc 0.001 

Lcd 0.1 

Lci 10 

Inputs 7 5 10 19 7 5 4 

Hidden neurons 4 

Outputs 1 

 

Table 39. Statistical performance of the most accurate MLPs, in terms of correct hits (%), of each 

disease according to a k-fold cross-validation (k = 6). The amount of GNP employed and the FS 

method that led to their identification are also shown. 

Database FS Amount of GNP Sensors Healthy Patients Total 

CKD Info Gain 3 66.7% 87.5% 79.1% 

HNC Relief-F 3 85.0% 93.8% 90.9% 

IBD Relief-F 4 83.0% 80.6% 81.4% 

MS χ2 6 71.4% 74.4% 73.1% 

PD Relief-F 3 86.5% 83.7% 85.0% 

PE Relief-F 3 88.5% 90.9% 89.6% 

PAH Relief-F 4 91.3% 90.9% 91.1% 

 As can be seen, five out of the seven best models were attained using the features provided 

by the Relief-F algorithm. Just like in the previous experiment (PTR-MS), the combination of this 

particular FS method and neural networks seem to work very efficiently, leading to relatively 

higher correct classification rates. In the next phase, these best MLPs for each disease will be 
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fully optimized by calculating the parameters and most suitable topology (as described in section 

2.4.2.2). These results are gathered in Table 40. 

Table 40. Optimized MLP parameters and architecture of the binary classifiers for each of the studied 

diseases, as well as the statistical performance of a k-fold cross-validation and an internal validation. 

MLP Parameters and Topology 

Optimized Value/Statistical Performance 

CKD HNC IBD MS PD PE PAH 

Lc 1 0.001 0.001 0.001 1 1 0.500 

Lcd 0.001 0.1 0.001 1 0.001 0.001 0.500 

Lci 2 10 10 2 2 100 51 

Inputs 7 5 10 19 7 5 4 

Hidden neurons 3 4 4 4 3 3 3 

Outputs 1 

K-fold cross-validation performance 

(correct % controls/correct % 

patients/correct % total) 

81.5 

94.0 

89.6 

95.0 

90.9 

92.4 

80.8 

83.3 

82.2 

69.9 

83.6 

78.5 

89.2 

81.0 

84.8 

86.1 

87.0 

86.4 

91.3 

90.9 

91.1 

K-fold cross-validation threshold 0.47 0.48 0.50 0.50 0.49 0.50 0.49 

Internal validation performance 

(correct % controls/correct % 

patients/correct % total) 

70.0 

92.8 

83.3 

83.3 

83.3 

83.3 

78.6 

84.2 

81.8 

85.2 

84.8 

85.0 

77.8 

93.3 

87.5 

81.8 

100 

88.9 

85.7 

87.5 

86.7 

Internal validation threshold 0.40 0.46 0.53 0.44 0.57 0.48 0.48 

 In general, the final optimized models provide fairly accurate results in terms of correct 

classification, proving that the combination of breath analysis, functionalized GNP-based sensing, 

and intelligent mathematical models can lead to tools that are able to discriminate among healthy 

people and others which present a disease. In other words, systems that are capable of detecting 

a wide variety of diseases through breath analysis have been achieved. The accuracy of the 

different models varies between 78.5% and 92.4% for a k-fold cross-validation and between 

81.8% and 88.9% for an internal validation. The worst case is the model trained to detect MS 

(either in remission or relapse conditions) which correctly identifies 78.5% of the participants. In 

contrast, 92.4% of the samples are correctly classified in the case of the HNC study, 91.1% for 

the PAH population, and 89.6% for the CKD group, these three being the MLPs with the best 

statistical performances regarding the k-fold cross-validation. On the other hand, all models 

showed performances greater than 81% accuracy for the internal validation, which gives 

reliability and provides a wide generalization capability to these mathematical tools, as samples 

that were blind to the MLPs were accurately classified. 

 The results from this study, which will be submitted soon to a very prestigious scientific 

journal, have also allowed determining the best sensors from a 34 sensor array which offer 
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disease-specific signal patterns. These patterns were discovered by the FS algorithms and 

interpreted by the MLPs, enabling the development of much more cost-effective devices which 

only contain three to six sensors. These new “specialized” tools could potentially make their way 

into determined biomedical sectors, acting as non-invasive and safe disease detectors. 

 With this experiment, it has been proven that different diseases alter the volatile 

components in breath and that it is possible to take advantage of these changes to design non-

invasive tools based on neural networks to aid in their detection. Hopefully, this study will keep 

encouraging research in this line, as it appears that disease diagnosis can be reached through a 

simple exhalation. In the next and final subsection of the results and discussion, the statistical 

results of all the disease detecting systems that have been optimized throughout these experiments 

will be analyzed and compared, to reach some final conclusions regarding their clinical relevance. 
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3.5) Analyzing and Comparing the Results of the Disease Detecting Models 

 In this last subsection, the results that have been attained regarding disease detection 

during the present thesis will be brought together and analyzed as a group, to summarize the 

importance behind these findings. As well, they will be compared to other results found in the 

literature from other research groups that also work with breath analysis to diagnose diseases. 

 In the first place, the statistical performances of the neural network-based models, 

specifically, multilayer perceptrons (MLPs), that have been created and trained during the three 

experiments that involve the use of real breath samples from a total of 1171 volunteers (sections 

3.2, 3.3, and 3.4), can be seen graphically represented in Figure 34. 

 
Figure 34. Representation of the total accuracies of the optimized neural network-based disease classifiers 

for each disease (asthma (AS), chronic kidney disease (CKD), chronic obstructive pulmonary disease 

(COPD), gastric cancer (GC), head and neck cancer (HNC), inflammatory bowel disease (IBD), lung cancer 

(LC), multiple sclerosis (MS), Parkinson’s disease (PD), preeclampsia (PE), and pulmonary arterial 

hypertension (PAH)). (a) Results from experiment covered in section 3.2, (b) from section 3.3, and (c) from 

section 3.4. The percentages presented symbolize the accuracies given by the models to discriminate 

between the given disease and a set of comparable healthy controls for an internal validation of the 

optimized mathematical tools. 

 As can be seen, all of the MLPs that have been designed and optimized lead to disease 

detectors that possess accuracies above 81% during an internal validation process (using samples 

that are not involved in the training process of the models to determine their performance; see 

Figure 20, section 2.4.2.3.2). These results confirm the existence of a true relationship between 

the clinical status of a person and the composition of his or her breath, as solely information 

gathered from these exhaled samples has been used to train the mathematical systems. Even 

diseases not directly related with the respiratory system such as CKD, MS, or PD seem to cause 

a relevant enough metabolic alteration that it leads to the modification of the composition of 

breath. These results strengthen the mentioned statement that this non-invasive approach should 

have its place in the medical field to serve as a reliable and complementary alternative to the 

current disease diagnosing methods. 
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 Looking more into the results shown in Figure 34, it can be noticed that LC patients were 

evaluated during two different studies. In the first case, shown in Figure 34-a, these results 

correspond to those obtained during the experiment where the cross-reactive silicon nanowire 

field-effect transistor (SiNW FET) sensors were combined with MLPs to find patterns within the 

global breath samples to classify the patients (section 3.2). Here, 149 samples were gathered from 

LC patients and 129 from control volunteers. On the other hand, Figure 34-b shows the results 

from a study where proton transfer reaction-mass spectrometry (PTR-MS) was employed to attain 

quantitative information about the molecules present in the breath samples of 18 LC patients and 

22 healthy controls (two independent samples were gathered per person). The gathered 

information was then processed and finally inputted into MLPs to reach, once again, classifying 

or disease detecting models (section 3.3). As can be noticed, there is around a 9% higher correct 

classification rate that favors the PTR-MS approach (96% versus 87%), which can be explained 

by the fact that the information is quantitative and specific for individual compounds in the breath, 

which are directly potential LC biomarkers, and, therefore, possess useful data in terms of disease 

diagnosis. In contrast, the information which SiNW FET sensors provide cannot be assigned to 

determined molecules, as the signals they offer are the result of analyzing the bulk of the breath 

sample. Afterwards, comparable patterns must be found between samples from the same group 

which will lead to correct classifications. Nevertheless, it is worth mentioning that the sample size 

of this experiment was much larger than the PTR-MS one, which provides a greater robustness to 

these models and their results. Additionally, the cross-reactive sensors can be contained in 

portable devices and are much more adaptable, customizable, and cost-effective than PTR-MS 

systems. 

 Finally, some of the results that have been obtained (Figure 34) will be compared to 

others that have been found in bibliographical references where breath analysis was employed as 

well to classify patients and healthy controls (not all the diseases are shown because they were 

not all found in the literature in a comparable fashion). In Table 41, this comparison can be found 

in terms of methodologies employed (analytical equipment and mathematical analysis), amount 

of breath samples analyzed, validation procedures, and statistical performances achieved. 

 In general terms, most of the comparisons seen in Table 41 are versus other studies that 

employed cross-reactive sensor arrays (six out of seven), which is analogous to what was carried 

out in two of the experiments that have been covered here (sections 3.2 and 3.4). The amount of 

samples in the CKD, GC, HNC, MS, and PD analysis was larger in the present research 

(especially for the CKD, MS, and PD databases, where the samples were more than doubled), 

which enables the creation of more robust models with broader applicability spans. Moreover, the 

correct classification rate of the models that located CKD, GC, MS, and PD patients was higher 

when compared to the results found in the literature, despite the use of more samples. This fact 

reveals the power of the combination of cross-reactive sensors and neural network modeling. 

 It must be noted as well, that the statistical results which were obtained during this 

research were gathered from three independent and randomized internal validations per model 

(see Figure 20, section 2.4.2.3.2), which is a strict validating method that employs external data 

to test the performance of the model (comparable to blind validations). In contrast, five of the 

seven models that have been found employed different versions of cross-validations (CKD, GC, 

HNC, MS, and PD), which is perfectly valid, yet subject to potential random associations and 

over-fitting effects, which are avoided during internal validations (Cancilla et al., 2015; Cohen-

Kaminsky et al., 2013). 
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Table 41. Comparison of the results attained with others found in the literature where breath analysis was 

carried out to detect diseases. 

Disease Current Research* In the Literature* Reference 

CKD 

Gold nanoparticle (GNP) sensors + 

MLPs/109 samples/triple internal 

validation/83% 

GNP sensors + support vector 

machine/42 samples/cross-

validation/79% 

Marom et al., 

2012 

GC 
SiNW FET sensors + MLPs/169 

samples/triple internal validation/96% 

GNP sensors + discriminant factor 

analysis/130 samples/leave-one-out 

cross-validation/90% 

Xu et al., 2013 

HNC 
GNP sensors + MLPs/63 

samples/triple internal validation/83% 

GNP sensors + support vector 

machine/42 samples/cross-

validation/95% 

Hakim et al., 

2011 

MS 
GNP sensors + MLPs/202 

samples/triple internal validation/85% 

Polycyclic aromatic hydrocarbons and 

single-wall carbon nanotube bilayer 

sensors + discriminant factor 

analysis/51 samples/leave-one-out 

cross-validation/80% 

Ionescu et al., 

2011 

PD 
GNP sensors + MLPs/97 

samples/triple internal validation/88% 

Carbon nanotubes and GNP sensors + 

discriminant factor analysis/42 

samples/leave-one-out cross-

validation/78% 

Tisch et al., 2013 

PAH 
GNP sensors + MLPs/45 

samples/triple internal validation/87% 

GNP sensors + discriminant factor 

analysis/45 samples/internal 

validation/92% 

Cohen-Kaminsky 

et al., 2013 

Ion-flow tube-mass spectrometry + 

discriminant factor analysis/65 

samples/internal validation/83% 

Cikach et al., 

2014 

* The following is shown: methodology or chemometric tool employed (analytical equipment + 

mathematical treatment)/amount of samples/validation method/total accuracy (%). 

 Another main difference is that five of the seven studies found in the literature revealed 

the use of linear mathematical modeling tools in the form of discriminant factor analysis (DFA), 

which is a common linear and supervised pattern recognition approach used for classifying 

purposes (Tisch et al., 2013). Nonetheless, in occasions, DFA lacks the sufficient power to extract 

all the information contained in databases, especially when compared to non-linear algorithms 

such as artificial neural networks. In fact, in four out of the five cases where DFA was used (GC, 

MS, PD, and second PAH studies), the statistical performance of the MLPs was better, even when 

significantly larger datasets were involved, proving suitable the use of such non-linear tools for 

the design of non-invasive disease detectors. On the other hand, the other two studies found in 

bibliographic references (CKD and HNC) employed support vector machine (SVM) analysis to 

process the data. This mathematical approach is a supervised learning or pattern recognition 

method which locates a line that best separates samples from different classes, automatically using 

the most suitable features or variables to do so. It is also known for excelling when the databases 

are small (Marom et al., 2012). In this case, when compared to the results given by the MLPs, it 

can be seen that the accuracy is higher for the CKD analysis, but lower for the HNC when 

compared to the results given by the SVMs. Nevertheless, it should be noted that in both cases 

the amount of samples employed was greater during the present research, and, additionally, that 

the feature selection (FS) process was thoroughly carried out with five different filter-based 

methods to try and locate the best independent variables to carry out the classifications. 
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 With the end of this subsection, the results and discussion of this thesis conclude. 

Hopefully, it has been possible to transmit that reliable analytical equipment, such as cross-

reactive sensors and PTR-MS, to process breath samples combined with powerful FS algorithms 

and sophisticated intelligent models, like artificial neural networks, is a worthy approach for the 

design of non-invasive breath-based disease detecting systems. 
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4) Conclusion 

 During this research, a set of four experimental sections involving breath analysis and 

disease diagnosis have been successfully carried out, revealing that there is information contained 

in these accessible biological samples that can aid in the detection of many threatening diseases 

if this data is extracted and analyzed properly. In this section, a list of conclusions that can be 

gathered from the findings of this research will be covered. 

1. There are clear correlations between the composition of gaseous samples and the 

signals given by cross-reactive sensors based on functionalized silicon nanowire 

field effect transistors (SiNW FETs), as supervised artificial neural networks based 

on multilayer perceptrons (MLPs) can reliably and accurately identify and quantify 

volatile organic compounds (VOCs) in artificially prepared gaseous samples that are 

processed by these sensors (see section 3.1). 

2. Signals from a single functionalized SiNW FET sensor are enough to design 

accurate binary classifiers based on MLPs to distinguish breath samples from 

lung cancer (LC), gastric cancer (GC), chronic obstructive pulmonary disease 

(COPD), and asthma (AS) patients, as well as samples from healthy controls. 

Specifically, the signals given by a sensor functionalized with 3-aminopropyl-

triethoxysilane (S11, Table 15, section 3.2.2) led to MLP-based models with 

statistical performance that ranged from about 87% to distinguish LC samples from 

controls to over 96% to discriminate LC from GC, GC from COPD&AS, and GC 

from controls, according to internal validation procedures (see Figure 20, section 

2.4.2.3.2) (see section 3.2). 

3. Algorithms based on MLPs can successfully aid in the location of the most 

appropriate sensor from an array to classify breath samples from LC, GC, 

COPD, and AS patients, and healthy controls, enabling the design of specific and 

cost-effective tools for particular purposes. These results can guide the synthesis of 

future sensors, as potentially viable sensor chemistries have been algorithmically 

located (see section 3.2). 

4. Proton transfer reaction-mass spectrometry (PTR-MS) is suitable to process 

breath samples from LC patients and high-risk yet healthy controls and 

originate quantitative data that can be used to classify both groups accurately 

with MLPs. This was carried out during the course of an oral glucose tolerance test, 

enabling a dual study where glucose consumption was firstly not considered, and then 

it was. The results from both analyses were successful, as accuracies were never 

below 90% for any of the model validations (see section 3.3). 

5. The quantitative nature of PTR-MS allows the location of potential volatile 

biomarkers present in breath that could aid in LC diagnosis (see section 3.3). 

6. During the PTR-MS analysis, five filter-based feature selection (FS) algorithms 

have been employed to locate the VOCs with the greatest discriminative power 

to classify LC patients and controls. Several endogenous VOCs have been proposed 

as potential LC biomarkers as a result of the PTR-MS study, and they are acetic 

acid, ethylbenzene, 1,2-dichlorobenzene, and glutamic acid. Furthermore, during 
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the study that considers the effects of glucose consumption, biomarkers that are 

affected by the Warburg effect can be theoretically identified (see section 3.3). 

7. From the five FS algorithms employed, specifically one of them, Relief-F (see 

section 2.4.1.4), located the compounds that led to the development of the MLPs 

with the highest classification rates in both cases during the PTR-MS study 

(considering glucose uptake and irrespective of it). This fact reveals a powerful tool 

in the combination of these Relied-F and non-linear MLPs (see section 3.3). 

8. SiNW FET sensors and PTR-MS have proven to be complementary approaches 

that can be used to detect LC through breath analysis and MLPs. The former 

represents a cost-effective and fast approach that evaluates the bulk of the exhaled 

breath, and the latter reveals quantitative information of the VOCs, enabling the 

location of biomarkers, which are the true reason why samples from LC patients can 

be distinguished from ones obtained from healthy controls (see sections 3.2, 3.3, and 

3.5). 

9. Cross-reactive functionalized gold nanoparticle (GNP)-based sensors combined 

with FS and MLPs can lead to the design of a wide assortment of precise breath-

based disease detectors, which include chronic kidney disease (CKD), head and 

neck cancer (HNC), inflammatory bowel disease (IBD), multiple sclerosis (MS), 

Parkinson’s disease (PD), preeclampsia (PE), and pulmonary arterial 

hypertension (PAH), and they were all detected with high accuracies ranging from 

around 80% for MS to over 90% for HNC and PAH according to a k-fold cross-

validation (see Figure 19, section 2.4.2.3.1) (see section 3.4). 

10. The signals that were mathematically selected for five out of the seven diseases 

(HNC, IBD, PD, PE, and PAH) detected with GNP sensors were provided by the 

Relief-F algorithm, once again showing the power of the combination of this method 

with MLPs (see section 3.4). 

11. The FS methods enabled the reduction of a 34 sensor array to small sets of three 

to six sensors to accurately detect diseases through breath analysis. This allows 

to determine the best chemical synthesis of sensors for particular applications and 

guide future research in this regard. Furthermore, it leads to the possible design of 

much more specialized and less expensive tools for particular medical sectors (see 

section 3.4). 

 The results obtained have proven the main hypothesis of this research, as it has been 

demonstrated that different diseases people may suffer lead to determined patterns in the 

composition of their exhaled breath, as only using information from these samples has allowed to 

design accurate disease detecting devices based on intelligent mathematical models. The main 

conclusion that can be extracted from this research, which had the invaluable cooperation of a 

grand total of 1171 volunteers, is that the composition of human breath is comparable to a book 

which reveals the clinical status of a human being, and that only some of the ways to successfully 

read it and use this knowledge to save people’s lives and greatly improve their quality have been 

presented. It has been shown that the large-scale production of numerous non-invasive breath-

based tools for many biomedical sectors to aid in the detection of a wide variety of diseases in an 

efficient, reliable, safe, and cost-effective fashion, should be just around the corner. The answer 

is only a breath away. 
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