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ABSTRACT 

 

Coding and Learning of Chemosensor Array Patterns in a Neurodynamic Model of the 

Olfactory System. 

(May 2006) 

Agustin Gutierrez Galvez, B.S.; B.En., Universitat de Barcelona, Spain 

Chair of Advisory Committee: Dr.  Ricardo Gutierrez-Osuna 

 

Arrays of broadly-selective chemical sensors, also known as electronic noses, have been 

developed during the past two decades as a low-cost and high-throughput alternative to 

analytical instruments for the measurement of odorant chemicals.  Signal processing in 

these gas-sensor arrays has been traditionally performed by means of statistical and 

neural pattern recognition techniques.  The objective of this dissertation is to develop 

new computational models to process gas sensor array signals inspired by coding and 

learning mechanisms of the biological olfactory system. We have used a neurodynamic 

model of the olfactory system, the KIII, to develop and demonstrate four odor processing 

computational functions: robust recovery of overlapping patterns, contrast enhancement, 

background suppression, and novelty detection. First, a coding mechanism based on the 

synchrony of neural oscillations is used to extract information from the associative 

memory of the KIII model. This temporal code allows the KIII to recall overlapping 

patterns in a robust manner. Second, a new learning rule that combines Hebbian and 

anti-Hebbian terms is proposed. This learning rule is shown to achieve contrast 
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enhancement on gas-sensor array patterns. Third, a new local learning mechanism based 

on habituation is proposed to perform odor background suppression. Combining the 

Hebbian/anti-Hebbian rule and the local habituation mechanism, the KIII is able to 

suppress the response to continuously presented odors, facilitating the detection of the 

new ones. Finally, a new learning mechanism based on anti-Hebbian learning is 

proposed to perform novelty detection. This learning mechanism allows the KIII to 

detect the introduction of new odors even in the presence of strong backgrounds. The 

four computational models are characterized with synthetic data and validated on gas 

sensor array patterns obtained from an e-nose prototype developed for this purpose. 
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CHAPTER I 

INTRODUCTION 

 

Arrays of broadly-selective chemical sensors, also known as electronic noses, have been 

developed during the past two decades as a low-cost and high-throughout alternative to 

analytical instruments for the measurement of odorant chemicals.  Signal processing in 

these sensors arrays has been performed by means of statistical and neural pattern 

recognition techniques.  The objective of this dissertation is to develop new 

computational models for gas sensor arrays inspired by information processing in the 

biological olfactory pathway.  

 

The olfactory system and gas sensor arrays rely on an analogous approach for the 

representation of odorant information: distributed activation across a population of 

cross-selective sensory units (Pearce, 1997a; Pearce, 1997b).  Each odorant elicits a 

particular pattern of activity across olfactory receptor neurons (Malnic et al., 1999) (the 

biological counterparts of odor sensors) and, likewise, a particular response pattern 

across gas sensors in an array (Persaud and Dodd, 1982).  This analogy suggests that 

olfactory information processing mechanisms in the olfactory system may also be 

applicable to the processing of gas sensor array signals. 

 

This dissertation follows the style of Biological Cybernetics. 
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Particularly, we propose to explore two relevant aspects of olfactory information 

processing, namely neural coding (Laurent, 1997) and learning (Brennan and Keverne, 

1997).  Given that both concepts (coding and learning) are broadly used in a number of 

disciplines, a concrete definition of these terms in the context of this dissertation is first 

proposed.  By neural coding we shall refer to how information is transmitted from 

neuron to neuron.  A number of coding mechanisms have been proposed in the literature, 

including frequency rate, inter-spike latency and firing synchrony (Cariani, 1995).  (i) 

We propose to explore and compare two such coding schemes, one based on temporal 

information, namely synchrony of neural activity (i.e., phase coding), and a second 

based on stationary information, namely temporal averaging of neural activity (i.e., 

firing-rate coding).  By learning we shall refer to the modification of a neural circuit to 

optimize the function performed by the system with respect to the stimuli.  We propose 

to use two biologically-inspired learning mechanisms, Hebbian and habituation learning, 

to realize three known processing functions of the olfactory system: (ii) Odor contrast 

enhancement, (iii) Background suppression, and (iv) Novelty detection.  Items (i) 

through (iv) above form the backbone of the research developed in this dissertation.  

 

We propose to investigate these processing principles using the KIII, a neurodynamic 

model of the olfactory system that has been developed by Freeman and colleagues over 

the past thirty years (Yao and Freeman, 1990).  The KIII captures the mesoscopic 

oscillatory behavior of the olfactory system (Freeman, 1975), which emerges as a result 

of the coupling between excitatory and inhibitory neuron populations.  We argue that the 
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KIII operates at an appropriate level of abstraction (i.e., neural ensembles) for the study 

of biologically-inspired pattern recognition, yet the model displays a richer dynamic 

behavior, in the form of oscillatory patterns, than fixed-point attractor networks (e.g., 

Hopfield models).  In recent years, encoding schemes using bifurcational limit-cycle 

patterns (Freeman, et al., 2000), such as those produced by the KIII, have been shown to 

have resistance to noise and higher storage capacity (Kozma and Freeman, 2000; Kozma 

and Freeman, 2001; Kuzmina et al., 2001). 

I.1. Contributions of this work 

Despite the parallelisms between the olfactory system and gas sensor arrays, as well as 

the successful application of neuromorphic solutions with other sensory modalities 

(Mahowald and Mead, 1991), biologically-inspired solutions have been mostly 

disregarded in the gas-sensor-array community (Pearce et al., 2003).  The research 

conducted in this dissertation aims at exploring this largely uncharted territory: 

neuromorphic processing mechanisms for gas sensor arrays.  The main contributions of 

the research conducted in this dissertation can be summarized as follows: 

(1) We propose a new coding mechanism for the KIII model based on the synchrony 

of oscillations in the network.  

(2) We propose a new learning mechanism with Hebbian and anti-Hebbian terms 

that improves contrast between gas sensor array patterns 

(3) We develop a local habituation mechanism and combined it with the contrast 

enhancement rule to perform background suppression on gas sensor array 

patterns.  
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(4) We propose an anti-Hebbian rule that allows the KIII model to perform novelty 

detection on experimental data from gas sensor arrays. 

I.2. Organization of the dissertation 

Chapter II and Chapter III present a review of the two key areas upon which this 

dissertation builds: electronic nose technology and coding and learning of olfactory 

information, respectively.  Chapter II also includes description of the e-nose prototype 

built to address the experimental requirements of this dissertation.  Chapter IV is 

devoted to a thorough description of the KIII model.  In Chapter V we address the issue 

of temporal coding in the KIII model, and study how the information extracted from an 

oscillatory network can be enhanced by considering the temporal dimension.  In Chapter 

VI, we propose a combination of Hebbian and anti-Hebbian learning to increase the 

contrast between sensor response patterns across odors.  Habituation is used in Chapter 

VII to perform background suppression following the previous contrast-enhancement 

stage.  In Chapter VIII anti-Hebbian learning is used to adapt the system to previous 

stimuli and environmental changes, keeping it ready to detect new stimuli.  Finally, 

Chapter IX draws conclusions from this dissertation and suggests directions for future 

work.  Supplementary information describing the relationship between spike-dependent 

synaptic plasticity and the Hebbian rule proposed in Chapter VI is included in Appendix 

A; the use of the Fisher discriminant ratio as a distance measure is covered in Appendix 

B.  
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CHAPTER II 

THE ELECTRONIC NOSE 

 

This chapter presents a review of the electronic nose technology, including different gas 

sensing technologies as well as statistical and neuromorphic approaches to signal 

processing for gas sensor arrays.  The prototype system built for the purpose of data 

collection is also described in this chapter. 

II.1. The electronic nose technology 

An electronic nose (e-nose) consists of an array of cross-selective gas sensors coupled 

with a pattern recognition engine capable of detecting, identifying and quantifying 

volatile compounds.  Since the e-nose paradigm was first conceived by Persaud and 

Dodd (1982), a number of gas sensor technologies and pattern recognition techniques 

have been used to tackle a large number of gas detection applications.  Table 1 presents a 

sample of the last twenty years of research on electronic noses.  Applications using MOS 

sensors clearly outnumber those using any other gas sensor type, mainly due to their 

broad commercial availability and higher sensitivity to a number of industrial volatiles 

(an overview of the different gas sensor technologies is provided in section II.1.1).  

Pattern recognition for e-noses has in turn been dominated by statistical methods and 

artificial neural networks, whereas neuromorphic processing, the subject of this 
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dissertation, has been largely disregarded.  A few notable exceptions of biological 

inspired processing for e-noses are reviewed in section II.1.3.2.  

 

 

Table 1  Survey on e-nose research (1982-2005).  Sensor types: quartz crystal microbalance 

(QCM), surface acoustic waves (SAW), metal oxide semiconductor field effect transistor 

(MOSFET), metal oxide semiconductor (MOS).  Pattern recognition techniques: multilayer 

perceptron (MLP), principal components analysis (PCA), linear discriminant analysis (LDA), 

fuzzy learning vector quantization (FLVQ), optimal control theory (OCT), cluster analysis (CA), 

perceptron (P), adaptive least squares (ALS), probability neural networks (PNN), correlation 

(CO), discrete function analysis (DFA), multivariate analysis of variance (ANOVA), partial least 

squares (PLS), self-organizing maps (SOM), least squares (LS), k nearest neighbors (KNN), 

fuzzy C means (FUZZ), radial basis functions (RBF), and multi-exponential analysis (MA). 

Chemo-
sensor 
type 

Number 
of  
sensors 

Applications Pattern  
recognition Reference 

QCM 8 Perfume, fruity flavors MLP, PCA Nakamoto et. al (1993) 
QCM 8 Essential oils PCA Ide et al. (1993) 
QCM 6 Alcoholic drinks MLP, LDA Ema et al. (1993) 
QCM 8 Whisky aroma MLP Nakamoto et al. (1991) 
QCM 8 Whisky aroma MLP Nakamoto et al. (1990) 
QCM 8  Fragrances PCA Yokohama and Ebisawa (1993) 
QCM 3 Harmful gases PCA Mosley, (1988) 
QCM 6 Perfumes FLVQ Okahata and Shimizu (1997) 
QCM 8 Bitter substances none Okahata and En-na  (1989) 
QCM 15 Citrus flavor OCT Wyszynski et al. (2005) 
SAW 4 Organic gases none Chang et al. (1991) 
SAW 12 Organic gases PCA, CA, P, Ballentine et al. (1986) 
SAW 10 Hazardous gases CA  Rose-Pehrsson, et al. (1988) 
SAW 12 Organic gases CA Rose-Pehrsson and Grate (1993) 
SAW 8 Wines LDA, PCA Santos et al. (2005) 
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Table 1 Continued 
Chemo-
sensor  
type 

Number 
of  
sensors 

Applications Pattern 
recognition Reference 

FET,  
MOS 

15 Meats MLP Winquist et al. (1993) 

FET 324 Ammonia, hydrogen, and 
ethanol 

none Lundström et al. (1991) 

MOS 3 Alcohols and tobacco CO Shurmer et al. (1989) 
MOS 12 Coffees DFA, ANOVA  Gardner and Shurmer (1992) 
MOS 12 Alcohols and beverages PCA, CA Gardner (1991) 
MOS 12 Alcohols MLP Gardner and Hines (1990) 
MOS 12 Alcohols and beers MLP Gardner et al. (1992) 
MOS 3 Organic gases PCA, CA, PLS Wamsley et al. (1991) 
MOS 12 Wines MLP, SOM Corcoran and Lowery (1995) 
MOS 6 Organic gases LS Hoffheins and Lauf (1998) 
MOS 8 Methanol and acetone MLP Wang et al. (1993) 
MOS 8 Benzene, toluene, and 

acetone, trichloroethylene 
MLP Wang et al. (1993) 

MOS 6 Organic gases LS Ikegami and Kaneyasu (1985) 
MOS 8 Alcohols and  ketons CA Abe et al (1987) 
MOS 7 Alcohols and ketons k-NN, CA Abeet al. (1988) 
MOS 6 coffee PCA Aishima (1991a) 
MOS 6 Alcoholic drinks LDA, CA Aishima (1991b) 
MOS 3 Organic gases MLP Nakamotoet al. (1992) 
MOS 6 Simulated SOM Davide et al. (1994) 
MOS 4 Teas PCA, FUZ,  

SOM, RBF,  
PNN, 

Dutta et al. (2003) 

MOS 4 Organic gases MA Gutierrez-Osuna et al. (2003) 
MOS 14 Wines PCA Rodriguez-Mendez et al (2004) 

 

 

II.1.1. Gas sensor types 

Several types of broadly selective gas sensors are commonly employed in e-noses: 

chemoresistors, potentiometric sensors, and gravimetric sensors (Pearce et al., 2003).  

Chemoresistors are the most widely used gas sensor technology.  These devices are 
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based on changes in the conductivity of an active material by chemical reaction with or 

absorption of gaseous molecules.  Chemoresistive sensing materials include metal oxide 

semiconductors (MOS) and organic conducting polymers (CP).  Potentiometric sensors 

exploit changes in the gate voltage of a MOS field effect transistor (MOSFET) when a 

volatile chemical is present.  The last type of device discussed here are gravimetric gas 

sensors, which measure the mass of volatile chemicals adsorbed by certain active 

materials.  This transduction principle includes quartz crystal microbalance (QCM) and 

surface acoustic waves (SAW) sensors.  Optical sensors are an alternative but not 

commonly used type of gas sensors; for this reason they are not included in this review.  

II.1.1.1. Metal Oxide Semiconductor (MOS) sensors 

MOS sensors detect chemical volatiles through a change of their conductivity.  Different 

materials have been used to build this type of sensors, including SnO2, ZnO, Fe2O3, and 

WO3.  However, only sensors based on stannic oxide (SnO2) have been widely 

manufactured and utilized (Ikohura and Watson, 2000).  Fig. 1(a) shows a micrograph of 

the stannic oxide material (SnO2) used in commercial MOS sensors.  The transduction 

principle of these sensors is based on the adsorption and desorption of ambient oxygen 

molecules by the stannic oxide.  At temperatures of 100-520°C (Yamazoe, 1979), these 

semiconductor materials adsorb ambient oxygen as negatively-charged ion species −O , 

−
2O , −2O   (Fig. 1(b)) (Mizokawa, 1997).  The adsorbed oxygen ions bind electrons of the 

semiconductor conduction band according to the following equilibrium reactions 

(Ikohura and Watson, 2000):  
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  −+ eO2  −
2O  

−+ eO
2
1

2
−O                        (2.1) 

−+ 2eO
2
1

2
−2O  

 

These reactions occur at different temperatures creating a different distribution of 

oxygen ions at the surface of the stannic oxide for different temperatures.  As reviewed 

in (Yamazoe , 1979), −
2O  is formed at about 100°C, while −O  and −2O  appear at higher 

temperatures.  In a different study (Iwamoto, 1989), it was reported that −
2O  exist on the 

surface of the stannic oxide only in a temperature range below 150°C, whereas −O  can 

be found at temperatures up to 400°C.  This study also suggested that between 400°C 

and 500°C the only oxygen ion present is −2O .  This distribution of oxygen ions on the 

surface of the sensor makes it possible for the semiconductor to interact with reducing 

chemical gases in contact with the sensor.  The temperature dependence of the oxygen 

ion species is used to customize sensors for different applications (e.g., CO2 vs. NO) by 

operating them at the temperature of maximum sensitivity to the target gas, and is also 

the basis of the temperature modulation procedures we will employ in this dissertation. 
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Fig. 1 Operating principle of stannic oxide semiconductor sensors.  (a) Micrograph of the stannic 

oxide material (SnO2).  (b)  Stannic oxide in the presence of air.  Oxygen ions are adsorbed at the 

surface, trapping electrons from the semiconductor conduction band.  This increases the potential 

barrier bφ , which represents a decrease in the conductivity of the semiconductor.  (c) Stannic 

oxide in the presence of CO.  Carbon monoxide molecules react with adsorbed oxygen ions, 

releasing trapped electrons back into the conduction band.  This causes the potential barrier  bφ  

to decrease, which in turn increases the conductivity of the semiconductor (adapted from Figaro, 

1996). 

 

When presented to the sensor (Fig. 1(b)), a reducing volatile chemical such as CO or a 

combustible gas will react with the chemisorbed oxygen molecules, altering their 
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concentration at the surface of the semiconductor.  In the case of CO, the reaction with 

adsorbed oxygen species follows Ikohura and Watson, 2000: 

 

−+→+ eCOCOO 22
 

−− +→+ eCOCOO 2
                                 (2.2) 

   
−− +→+ 2eCOCOO 2

2
 

 

These reactions will then release the electrons trapped by the oxygen molecules back 

into the conduction band of the semiconductor, causing an increase in the conductivity 

of the sensor.   This conductivity change is a common response of the semiconductor to 

any reducing gas.  The opposite response can also be obtained from the stannic oxide 

semiconductor when interacting with oxidizing gases.  In this case, the conductance 

increases since the oxidizing gas will trap electrons from the conductance band of the 

semiconductor.   

   

These interactions can be explained by Potential barrier theory (Morrison, 1977), which 

links the trapping of electrons on the surface with the change in conductivity of the 

semiconductor.  The trapping of electrons builds up a potential barrier between the 

grains of stannic oxide (Fig. 1(a)) that decreases the conductivity of the semiconductor.  

The potential barrier is lowered when a reducing gas reacts with the surface oxygen 

species releasing the trapped electrons (Fig. 1(b)).  As a consequence, the conductivity 
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of the stannic oxide increases.  The height of the potential barrier and the conductance of 

the semiconductor are related by the following expression: 

 

�
�

�
�
�

�−=
kT

GG bφ
exp0      (2.3)     

       

where  ds NgqG µ=0 , g is a constant determined by the semiconductor geometry, q is 

the electronic charge, sµ   is the mobility of the electrons, dN  is the density of donors in 

the semiconductor, bφ  is the potential barrier shown in Fig. 1(a) and (b), k is Boltzman’s 

constant, and T is the temperature.   

 

Fig. 2(a) shows the different components of a MOS sensor: a sensing layer, sensing 

electrodes (to measure changes in the conductivity of the sensing layer), and a resistive 

element.  The resistive element is needed to bring the oxide to an optimal temperature 

(typically between 300 and 500 ºC) since oxygen molecules are not chemisorbed at room 

temperature.  Traditionally, MOS sensors have been operated at a fixed temperature.  In 

recent years, however, it has been shown that by modulating the temperature of the 

sensor it is possible to obtain more information about the chemical stimulus (Gutierrez-

Osuna, et al., 2003).  This technique, known as temperature modulation (Lee and Reedy, 

1999), is used in most of the experiments conducted in this dissertation, and will be 

reviewed in section II.1.2. 
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MOS have several advantages as compared with other sensor types: namely high 

sensitivity (sub-ppm for a number of volatile species), temperature modulation, and 

economic manufacturing cost.  On the other hand, these materials have poor selectivity 

and high power consumption.   
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Fig. 2  Structure of a MOS sensor.  (a) A MOS sensor comprises a metal oxide material, sensing 

electrodes, and a resistive heater (adapted from Nagle, Schiffman, and Gutierrez-Osuna, 1998).  

(b) Typical TO-5 packaging for a commercial MOS sensor TGS2610 (adapted from Figaro, 

1996).   

 

II.1.1.2. Conducting polymer (CP) sensors 

CP sensors are also based on the chemoresistive principle: interaction with organic 

vapors changes the conductivity of the sensing layer.  The most commonly utilized 

sensing materials in these devices are polypyrrole (Fig. 3), polyaniline, polythiophene, 

and polyacetylene, which are based on pyrrole, aniline or thiophene monomers, 

respectively (Pearce et al., 2003).  Fig. 3 shows a polypirrol polymer formed by six 
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pirrol monomers.  The polymer structure is formed by a chain of organic molecules 

which generate a large molecular orbital along the chain, allowing conductivity through 

the polymer.  Chemical gases produce reversible changes in the conductivity of the 

polymers when they are absorbed and desorbed.  The exact mechanism through which 

this conductivity change occurs is not clear at present (Pearce et al., 2003). 

 

CPs have high sensitivity (below 20 ppm for a number of volatiles), and their selectivity 

can be altered by substitution of the side groups in the backbone.  This makes it possible 

to design a large number of different CP sensors.  An added advantage of CP sensors is 

that they are operated at room temperature, which reduces power consumption when 

compared with MOS sensors.  The main drawback of CP sensors is high sensitivity to 

humidity and ambient temperature changes. 

 

Pyrrol PolypyrrolPyrrol Polypyrrol

 

Fig. 3 Pyrrol monomer and polypirrol molecule (adapted from Mark, Alloc, and Lampe, 1990). 
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II.1.1.3. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) sensors 

MOSFET gas sensors are regular MOSFET transistors in which the gate is made of a 

catalytic metal, such as palladium, platinum, or iridium (Gardner and Barlett, 1999; 

Pearce et al., 2003).  These catalytic metals can produce a reaction when in contact with 

volatile organic compounds.  The products of this reaction diffuse through the gate of the 

MOSFET (Fig. 4), creating a dipole layer at the metal-insulator (metal-oxide) interface.  

This dipole layer, change the I-V characteristic of the transistor.  This metal-oxide-

semiconductor structure has been also used as a gas sensitive capacitance.  In this case, 

the dipole layer changes the capacitance-voltage characteristic of the device (Gardner 

and Barlett, 1999).  

 

The main advantage of MOSFET sensors is that they can be fabricated using integrated 

circuit technology, which also increases their repeatability.  However, because of the 

lack of variety in sensitive materials, MOSFET have not been used as widely as MOS or 

CP devices.    
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Fig. 4  MOSFET sensor.  The gate of the sensors is made of a catalytic metal, such as palladium, 

platinum, or iridium, which makes the sensor sensitive to volatile organic compounds (adapted 

from Nagle, Schiffman, and Gutierrez-Osuna, 1998). 

 

II.1.1.4. Quartz Crystal Microbalance (QCM) sensors 

Depicted in Fig. 5, a QCM device consists of a (typically) AT-cut of a single crystal 

quartz, a metal electrode on each surface of the crystal, and a sensing material deposited 

atop the crystal (Gardner and Barlett, 1999; Pearce et al., 2003).  The device operates as 

a resonator:  application of an AC voltage between the electrodes causes the quartz 

crystal to oscillate at a characteristic frequency due to the piezoelectric effect.  Since the 

oscillation frequency of the QCM varies with the mass of the sensor, absorption of 

odorants in the coating material can be detected as shift in resonant frequency.  Several 

types of coating materials can be used to build QCM devices with different response 
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profiles to odorants.  The most commonly used materials are stationary phases from GC 

columns, which can have different polarities, and lipid materials. The main advantage of 

these sensors is their high selectivity due to the different coatings that can be deposited 

on the sensor.  Drawbacks are low sensitivity, high cost, reproducibility, drift, and a 

relatively large size of the sensor.   
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Fig. 5  QCM sensor.  A QCM sensor comprises a cut of a single crystal quartz with one metal 

electrode on each surface.  An active coating material is deposited on top of the electrodes 

(Adapted from: http://www.4timing.com/crypicture/FTQCMA-HC51U.jpg). 

 

II.1.1.5. Surface Acoustic Wave (SAW) sensors  

SAW sensors are also based on piezoelectric materials, but they rely on a different 

transduction principle than QCM sensors.  SAW sensors comprise a thick plate of 

piezoelectric material (e.g., ZnO and lithium niobate) coated with a sorbent membrane 

(polymer), and interdigitated electrodes to excite the oscillation of the surface (Fig. 6) 
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(Gardner and Barlett, 1999; Pearce et al., 2003).  This type of sensors can be operated in 

two different configurations: delay line or resonator.  In the delay line configuration, two 

interdigitated electrodes are situated at both extremes of the piezoelectric plate (Fig. 6).  

One of the set of electrodes is excited with an AC signal which, by virtue of the 

piezoelectric effect, generates a mechanical oscillation on the surface of the plate.  These 

oscillations are transmitted as a wave crossing the active membrane, and reach the other 

side of the plate, where they are converted back into an electrical signal at the output 

electrode.  The amount of gas adsorbed is measured as the delay of the acoustic wave in 

reaching the second group of electrodes, since the wave velocity is affected by the 

adsorbed gas.  In the resonator configuration, there is only one group of interdigitated 

electrodes, which are used as emitters and receivers.  The electrodes are situated at the 

middle of the piezoelectric plate and two groves are formed at both extremes of the plate 

to reflect the acoustic waves.  The operation principle of the resonator is the same as the 

delay line configuration.  SAW sensors can be built using photolithographic methods, 

and there are many polymer coatings available.  The main disadvantage of SAW sensors 

is the complexity of the instrumentation required to interface the devices. 
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Fig. 6  SAW sensor in delay line configuration.  An acoustic wave is generated by one of the 

group of electrodes and received by the opposite interdigitated electrodes.  The traveling time of 

the acoustic wave is used to estimate the amount of gas adsorbed by the active material (adapted 

from Nagle et al., 1998). 

 

II.1.2. Temperature modulation in MOS sensors 

As already described in section II.1.1.1, the selectivity of a MOS sensor is a function of 

its operating temperature.  This temperature-selectivity dependence can be exploited to 

improve the information content of the sensor by modulating the operating temperature 

of the device during exposure to analytes and processing the resulting dynamic response 

(Lee and Reedy, 1999).  Temperature modulation approaches for MOS sensors can be 

broadly classified into two categories: temperature cycling and thermal transients.  In 

temperature cycling, the sensor is excited with a periodic heater voltage, typically a 

sinusoidal waveform or a ramp.  To help resolve the various peaks in sensitivity that 
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may occur during the cycle, a slow varying profile (sinusoidal or ramp) is often desirable 

(Gutierrez-Osuna et al., 2003).  If the heater waveform is slow enough to allow the 

sensor to approach the set-point temperature, the behavior of the sensor at each 

temperature may then be treated as a ‘‘pseudo-sensor’’ by virtue of the relationship 

between operating temperature and sensor selectivity.  In thermal transients, on the other 

hand, the sensor is driven by a step or pulse waveform in the heater voltage, and the 

discriminatory information is contained in the chemical transient induced by the fast 

change in temperature.   

 

To the best of our knowledge, the work of Sears, Colbow, and Cansadori, 1989a, and 

Sears, Colbow, and Cansadori, 1989b constitutes one of the first studies on temperature 

cycling for metal-oxide sensors.  The authors used a Figaro sensor with a sinusoidal 

heater voltage, and analyzed selectivity and sensitivity as a function of the frequency and 

the heater voltage for different analyte concentrations.  For more than a decade, Nakata 

and co-workers (Nakata et al., 1991; Nakata, Nakamura, and Yoshikawa, 1992; Nakata, 

et al., 1998) have also used a sinusoidal heater voltage for temperature modulation 

purposes.  The authors transformed the sensor response into the frequency domain by 

means of the fast Fourier transform (FFT), and used the coefficients of higher harmonics 

to discriminate various analytes.  Nakata et al. (1996) and Nakata and Yoshikawa (1996) 

also applied these procedures to qualitatively characterize the mixtures of two gases.  

However, no quantitative classification was performed.  Heilig et al. (1997) used multi-

layer perceptrons (MLPs) to process FFT features from the sensor response to a 
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sinusoidal temperature modulation.  The authors utilized two separate MLPs to perform 

a quantitative and qualitative analysis of the gases.  The MLPs were able to detect the 

presence of an analyte in a mixture and predict the concentration of a single gas and gas 

mixtures.  Llobet et al. (2001) applied the discrete wavelet transform to extract features 

from the sensor response, and showed that they are more informative than those 

provided by the FFT.  The authors used two different neural networks, fuzzy ARTMAP 

and MLPs, coupled with leave-one-out and bootstrap for validation purposes.  Perez-

Lisboa et al. (1999) used the DC and AC root-mean-squared (RMS) values from the 

sensor response to a periodic excitation signal.  Wlodek et al. (1991) used a ramp as a 

heater excitation signal.  The response of the sensor was modeled with a family of 

Gaussian curves, after which the parameters of the curves were used as features.  Using 

micro-hotplate sensors, Kunt and co-workers (Kunt, 1997; Kunt et al., 1998) developed 

a numerical optimization procedure capable of deriving a temperature profile that 

maximized the discrimination between two analytes of interest.   

 

In the realm of temperature modulation with transients, Hiranaka et al. (1992) analyzed 

the cooling temperature transients when the heater supply was switched from a high 

voltage to a low voltage.   
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The response of the sensor for different odors presented peaks at different positions in 

the transient.  Similar results were also achieved by Amamoto et al. (1993).  Kato et al. 

(1997) used a pulse signal to drive the heater voltage of a stannic oxide gas sensor.  A 

phenomenological equation with four parameters was used to model the sensor response 

to each analyte, after which the model parameters were used as features.  Yea et al. 

(1997) used a train of pulses to discriminate and quantify flammable gases.  The authors 

processed the sensor response with the FFT, and the AC components were passed to an 

MLP to determine which odor was present.  Once the odor was recognized, the output of 

the MLP and the DC component of the FFT were passed to a neuro-fuzzy algorithm to 

estimate the concentration. 

II.1.3. Signal processing for gas sensor arrays 

The multivariate response of the gas sensor array can be used as a fingerprint to identify 

odors.  This response has been traditionally processed with statistical methods (Duda et 

al., 2001) and artificial neural networks (ANN) (Haykin, 1999) (Table 1).  Recent work 

has started to consider alternative processing strategies for gas sensor arrays based on 

biologically-inspired models (Pearce, 1997a; Pearce, 1997b).  In this section, we review 

both approaches to gas sensor array signal processing. 
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II.1.3.1. Statistical and ANN methods 

Following the classical pattern-recognition architecture, the processing of gas sensor 

array signals can be divided into a number of steps (Gutierrez-Osuna, 2002): (1) 

preprocessing, where the sensor signal is prepared for further processing (e.g., drift 

compensation, concentration normalization); (2) dimensionality reduction, where the 

dimensionality of the input signal is reduced to avoid problems associated with high-

dimensionality data; (3) prediction, where the interesting properties of the sample are 

estimated (e.g, class membership, related odor samples) ; and (4) validation, where 

model and parameter settings are selected in order to optimize a criterion function (e.g., 

classification rate, mean-squared error). 

 

Fig. 7 shows a summary of statistical and ANN methods that have been used to process 

gas sensor array signals.  These methods are broadly classified into three categories: 

dimensionality reduction, classifiers, and clustering methods.  Readers are referred to 

(DeCoste et al. 2001; Gutierrez-Osuna, 2002; Pearce et al., 2003) for a thorough review 

of these methods.  
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Fig. 7  Statistical and ANN methods for gas sensor array processing (DeCoste et al. 2001; Gutierrez-Osuna, 2002; Pearce et al., 2003).  

MDS- Multi-Dimensional Scaling, PCA- Principal Component Analysis, SOM- Self-Organ26ized Maps, ICA- Independent Component 

Analysis, CA- Cluster Analysis, LDA- Fisher’s Linear Discriminant Analysis, PLS- Partial Least Squares, FSS- Feature Selection Search, 

PCR- Principal Component Regression, MLR- Multi Linear Regression, CCR- Canonical Correlation Regression, MLP- Multi-Layer 

Perceptron, RBF- Radial Basis Functions, PNN- Probabilistic Neural Network, k-NN- k-Nearest Neighbors, SVM-Support Vector 

Machines, ART- Adaptive Resonance Theory, GA- Genetic Algorithms, and HC- Hierarchical Clustering.  
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II.1.3.2. Neuromorphic processing for chemical sensor  

Neuromorphic approaches for gas sensor arrays have been traditionally disregarded by 

the e-nose community.  However, recent neurophysiological findings (Buck and Axel, 

1991; Vassar et al., 1994) in the olfactory system along with a growing body of 

knowledge from computational neuroscience (Davis and Eichenbaum, 1991), have made 

neuromorphic signal processing techniques a recent focus of attention.  

 

Ratton et al. (1997) employed the olfactory model of Ambros-Ingerson et al. (1990), 

which simulates the closed-loop interactions between the olfactory bulb and higher 

cortical areas.  The model performs a hierarchical processing of an input stimulus into 

increasingly finer descriptions by repetitive projection of bulbar activity to (and 

feedback from) the olfactory cortex.  Ratton et al. (1997) used the model to classify data 

from a micro-hotplate MOS excited with a saw-tooth temperature profile.  Sensor data 

was converted into a binary representation by means of thermometer and Gray coding, 

which was then used to simulate the spatial activity at the olfactory bulb.  Their results 

showed that classical approaches (Gram-Schmidt orthogonalization, fast Fourier 

transform and Haar wavelets) yield better classification performance.  This is, however, 

a reasonable result given that the thermometer and Gray codes are unable to faithfully 

simulate the spatial activity at the olfactory bulb, where the most critical representation 

of odor stimuli is formed.   
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White et al. (1998) and White and Kauer (1999), employed a spiking neuron model of 

the peripheral olfactory system (White et al., 1992) to process signals from a fiber-optic 

sensor array.  In their model, the response of each sensor was converted into a pattern of 

spikes across a population of ORNs, which then projected to a unique mitral cell (MC).  

Different odors produced unique spatio-temporal activation patterns across MCs, which 

were then discriminated with a delay line neural network (DLNN).  Their OB-DLNN 

model was able to produce a decoupled odor code: odor quality being encoded by the 

spatial activity across units, and odor intensity by the response latency of the units.  

Pearce et al. (2001) investigated the issue of concentration hyperacuity by means of 

massive convergence of ORNs onto GL.  Modeling spike trains of individual ORNs as 

Poisson processes, the authors showed that an enhancement in sensitivity of n  can be 

achieved at the GL, where n is the number of convergent ORNs.  Experimental results 

on an array of optical micro-beads were presented to validate the theoretical predictions. 

 

Raman et al. (2004) processed data from MOS sensors with a model of the early stages 

of the olfactory pathway.  A self-organizing map was used to group the response of the 

sensors at different temperatures in a manner akin to the chemotopic projection of ORNs 

onto the glomerular layer.  Center-ON surround-OFF connectivity was used to model the 

olfactory bulb.  In (Raman et al., 2004), the authors used a first-order neuron model with 

adaptation, whereas in (Raman and Gutierrez-Osuna, 2004) integrate-and-fire neurons 

were used instead.  Their model was able to code the quality and intensity of odors, 
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yielding glomerular images similar to those observed in the olfactory bulb through 

optical imaging.  . 

II.2. The PRISM e-nose prototype 

We have built an electronic nose prototype to address the experimental requirements of 

this dissertation.  The instrument is composed of three basic parts (Fig. 8, Fig. 9, Fig. 

10): 

1. Sensor array.  The array consists of four MOS gas sensors (TGS2602, 

TGS2610, TGS2611, and TGS2620), in addition to an integrated 

temperature-humidity sensor (HIH-3602-C) to measure environmental 

variables in the sensor chamber. 

2. Delivery system.  A dynamic headspace delivery system was built to 

transport odorants to the sensor chamber.  The delivery system comprises 

of seven components:  

a. three gas diluters to control the concentration of up to three 

analytes;  

b. an air filter with drierite® to remove humidity from the air used to 

dilute the analytes; 

c. a manifold with three valves to control which odorants are 

delivered to the sensors;  

d. flow buffers to remove small oscillations on the gas flow; 

e. a sensor chamber housing the sensors;  

f. a flow meter to control and measure the gas flow; and 
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Fig. 8  Building blocks of the PRISM e-nose.  The prototype system is composed of three basic blocks: (1) sensor array, including four 

MOS sensors, one temperature and one humidity sensor; (2) delivery system, composed of three diluters, air filter, manifold with three 

valves, flow buffers, sensor chamber, flow meter, and a miniature pump, (3) instrumentation,  comprised of a computer with two data-

acquisition cards and several interface circuits. 
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Fig. 9  Experimental setup: sensor chamber, diluters, pump, instrumentation electronics, manifold and valves, air filters, flow buffer, flow 

meter, and analyte samples.  
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Fig. 10  Close-up view of the sensor chamber.  The four MOS sensors are shown in front side of 

the chamber.  The humidity/temperature sensor is placed on opposite side of the chamber, which 

contains sockets for an additional four sensors.  

 

g. a hydraulic miniature pump downstream from the sensor chamber 

to create a negative pressure that draws the odorants through the 

system. 

3. Instrumentation: A computer with two data-acquisition cards (PCI-6024E, 

PCI-6713) and several interface circuits:  

a. Pump driver circuit (Fig.11): This circuit produces an output of 0V 

and 12V when the digital output (DO) of the data-acquisition card 

(DAQ) is enabled or disabled.  This output is used to turn on and off 

the miniature pump. 
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Fig. 11 Pump driver circuit. VCC = 12 V, R1 = 300 k�, R2 = 100 k�, R3 = 

10 k�, and C = 100 pF.  DO is a digital output of the DAQ.  The operational 

amplifier used is a 741; the MOSFET is an IRF9520. 

 

b. Valve driver circuit (Fig. 12): The same circuit as for the pump 

driver is used to control the state of the valves.  Three replicas of the 

circuit were built to control each one of the valves.  
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Fig. 12  Valve driver circuit. VCC = 12 V, R1 = 300 k�, R2 = 100 k�, R3 = 

10 k�, and C = 100 pF.  DO is a digital output of the DAQ.  The operational 

amplifier used is a 741; the MOSFET is an IRF9520. 
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c. Heater driver circuit (Fig. 13): This circuit supplies enough current 

to drive the heater of the MOS sensors.  It works as a voltage 

follower: the voltage introduced through the analog output of the 

DAQ to the circuit is the same applied to the heater. 
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Fig. 13 Heater driver circuit. VCC = 9V, R =10k�, and the operational 

amplifier used was a 741. The BJT was a TIP29C. 

 

d. MOS resistance measurement circuit (Fig. 14): A voltage divider 

is used to measure the resistance/conductance change in the MOS 

sensors.  In this circuit, the MOS sensor resistance (RS) and the output 

voltage (Vout) follow: 

outCC

outL
S VV

VR
R

−
⋅=                                     (2.4) 

This expression allows us to compute RS through Vout, which is 

captured by an analog input (AI) of the DAQ.  One replica of the 
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circuit was built to measure the resistance change of each of the four 

sensors.  
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Fig. 14  MOS resistance measurement circuit. VCC = 10V and RL = 1 k�, RH 

is the resistance of the MOS sensor heater, RS is the resistance of the MOS 

sensor, VHeater is the voltage introduced to the heater through the previous 

circuit, Vout is the output of the circuit, and AI is the analog input of the 

DAQ.  It is worth to note that the same load resistance (RL) was used for the 

four sensors. 

 

e. Temperature measurement circuit (Fig. 15): The temperature 

sensor is a thermistor, which changes its resistance with temperature.  

We use a voltage divider to capture the resistance changes of the 

thermistor.  
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Fig. 15  Temperature measurement circuit. VCC = 5V, RL =1k�, Vout is the 

output of the circuit, and AI is an analog input of the DAQ. 

 

Note: The three diluters and the humidity sensor do not need any 

interface circuitry.  The diluters are driven directly with three analog 

outputs of the DAQ and the humidity sensor output is captured with 

one of the analog inputs. 

 

II.3. Collected datasets 

Two datasets were collected with the PRISM e-nose prototype: (1) a temperature 

modulation dataset, which was used to validate the contrast enhancement (Chapter VI) 

and background suppression (Chapter VII) mechanisms; and (2) an isothermal dataset, 

which was designed to validate the novelty detection mechanism (Chapter VIII). 
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II.3.1. Temperature-modulation dataset 

This dataset contains the response of four MOS sensors (TGS2602, TGS2610, TGS2611, 

and TGS2620) to five different concentrations of allyl alcohol, tert-butanol, benzene, as 

well as their binary and ternary mixtures.  Pure analytes were introduced in a 30 ml vial 

to obtain the base concentration of each sample.  This base concentration was 

subsequently diluted in air to obtain the different concentrations.  Table 2 shows the 

dilution factors used to generate the seven odors (3 single analytes, 3 binary mixtures 

and 1 ternary mixture) at five different concentrations each.  Dilution factors in Table 2 

denote the percentage at which the analytes are diluted before mixing with other analytes.  

It is worth notice that the dilution factors used for tert-butanol are double than those used 

for allyl alcohol and benzene.  This is done to balance the sensor response level to the 

three analytes.  

 

Repeats for each sample were collected on seven consecutive days to determine the 

repeatability of the sensors patterns.  On each day 35 samples were prepared, 7 odors at 

5 concentrations, for a total of 245 samples in 7 days.  Additionally, 7 air samples were 

taken every day.  To increase the information content of the response, the MOS sensors 

were modulated in temperature (Gutierrez-Osuna et al., 2003) with a ramp profile on the 

heater voltage from 2V to 4.5V over a period of 200 seconds.  Fig. 16 shows the 

response of the four sensors to the three analytes for the five different concentrations.  

The error bars of this sensor response are shown in Fig. 17. 
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Table 2  Dilution factors.  Samples of seven odors (3 single, 3 binary, and 1 ternary) at five 

different concentrations each were used.  Each sample is considered to be formed by certain 

contribution of allyl alcohol (A), tert-butanol (B), and benzene (C).  Dilution factors denote the 

percentage at which the analytes were diluted before mixing with other analytes.  

 Conc. 1 Conc. 2 Conc. 3 Conc. 4 Conc. 5 

  A B C A B C A B C A B C A B C 

Allyl alcohol 
        A 10 - - 20 - - 30 - - 40 - - 50 - - 

tert-Butanol 
        B - 20 - - 40 - - 60 - - 80 -   100   

Benzene 
        C  - - 10 - - 20 - - 30 - - 40 - - 50 

Allyl alcohol 

tert-Butanol 
10 20 - 20 40 - 30 60 - 40 80 - 50 100 - 

Allyl Alcohol 

Benzene 
10 - 10 20 - 20 30 - 30 40 - 40 50 - 50 

tert-Butanol 

Benzene 
- 20 10 - 40 20 - 60 30 - 80 40 - 100 50 

Ally alcohol 
tert-Butanol 
Benzene 

10 20 10 20 40 20 30 60 30 40 80 40 50 100 50 

 

 

 

 

 

 

 



 

 

37 

0

1

0

1

0

1

0

1

2

3

0

2

4

0

0.5

0

1

2

0

1

0

1

2
0

1

2

3

0

1

2

3

4

0

1

1

2

3

4

5

0

Allyl alcohol tert-Butanol Benzene

TG
S

26
00

TG
S

26
10

TG
S

26
20

TG
S

26
11

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s)

(a) (i)(e)

(b)

(c)

(d)

(f)

(g)

(h)

(j)

(k)

(l)
0

1

0

1

0

1

0

1

2

3

0

2

4

0

0.5

0

1

2

0

1

0

1

2
0

1

2

3

0

1

2

3

4

0

1

1

2

3

4

5

0C
on

du
ct

an
ce

(a
.u

.)
C

on
du

ct
an

ce
(a

.u
.)

C
on

du
ct

an
ce

(a
.u

.)
C

on
du

ct
an

ce
(a

.u
.)

Allyl alcohol tert-Butanol Benzene

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

(a) (i)(e)

(b)

(c)

(d)

(f)

(g)

(h)

(j)

(k)

(l)
0

1

0

1

0

1

0

1

2

3

0

2

4

0

0.5

0

1

2

0

1

0

1

0

1

0

1

2

3

0

2

4

0

0.5

0

1

2

0

1

0

1

2
0

1

2

3

0

1

2

3

4

0

1

1

2

3

4

5

0

Allyl alcohol tert-Butanol Benzene

TG
S

26
00

TG
S

26
10

TG
S

26
20

TG
S

26
11

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s)

(a) (i)(e)

(b)

(c)

(d)

(f)

(g)

(h)

(j)

(k)

(l)
0

1

0

1

0

1

0

1

2

3

0

2

4

0

0.5

0

1

2

0

1

0

2

4

0

0.5

0

1

2

0

1

0

1

2
0

1

2

3

0

1

2

3

4

0

1

0

1

2
0

1

2

3

0

1

2

3

4

0

1

1

2

3

4

5

0C
on

du
ct

an
ce

(a
.u

.)
C

on
du

ct
an

ce
(a

.u
.)

C
on

du
ct

an
ce

(a
.u

.)
C

on
du

ct
an

ce
(a

.u
.)

Allyl alcohol tert-Butanol Benzene

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

(a) (i)(e)

(b)

(c)

(d)

(f)

(g)

(h)

(j)

(k)

(l)

 

Fig. 16  Response of four MOS sensors (TGS2602, TGS2610, TGS2611, and TGS2620) to three 

analytes: allyl alcohol, tert-butanol, benzene at five different concentrations.  
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Fig. 17  Repeatability of the response of four MOS sensors to three analytes: allyl alcohol, tert-

butanol, benzene.  The error bars represent one standard deviation of the distribution obtained 

with repetitions from seven different days. 
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II.3.2. Isothermal dataset 

This database consists of the response of four MOS sensors (TGS2600, TGS2610, 

TGS2611, and TGS2620) to the introduction of allyl alcohol, tert-butanol, and benzene 

with isothermal operation of the heater voltage. The heater voltage value was selected to 

maximize the separability of the sensor-array response to the three analytes.  For each 

possible heater voltage, we used the discrimination measure:   

 

))()()(()(
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,23,13,12��

= =
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C S

CSCSCS hdhdhdhD          (2.5) 

 

where h is the heater voltage, and ijd  is the distance between the output of sensor S to 

analytes i and j at concentration C.  Fig. 18 shows the discrimination measure D as a 

function of the heater voltage.  Maximum discrimination is obtained at h=3.25V; this 

heater voltage was therefore used in all subsequent experiments. 
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Fig. 18  Discrimination measure between the three odors as a function of the heater voltage.  

Maximum discrimination is obtained for h = 3.25. 

 

Five different experiments were performed, depending on the number of odors 

introduced as well as the concentration profile of the odors and humidity.  We designed 

one experiment with one odor and humidity, two experiments involving two odors, and 

two experiments with three odors.  In the first experiment, tert-butanol was presented to 

the sensors with the concentration profile shown in Fig. 19(a).  Humidity was also made 

to fluctuate by using water vapor as an additional odorant (Fig. 19(b)).  Fig. 19(d) shows 

the response of the four sensors. 
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Fig. 19  Experiment with tert-butanol and humidity.  (a) Concentration profile of tert-butanol.  

(b) Concentration profile of water vapor.  (c) Response of the humidity sensor.  (d) Response of 

the four MOS sensors.  

 

The second experiment involved two odors: benzene and allyl alcohol.  Benzene was 

introduced first; allyl alcohol was not introduced until t = 5300 s, and at a lower 

concentration than benzene.  The concentration profile for both odors is shown in Fig. 

20(a).  The sensor array response in this experiment is shown in Fig. 20(b).  
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Fig. 20  Experiment with benzene and allyl alcohol.  (a) Concentration profile of both benzene 

and allyl alcohol.  (b) Response of the four MOS sensors. 

 

The third experiment was very similar to experiment 2.  Benzene and allyl alcohol were 

also used; however, the order of introduction of the analytes was inverted with respect to 

experiment 2.  Furthermore, the concentrations were made more dissimilar than 

experiment 2 in order to determine the sensitivity of the system.  Fig. 21(a) shows the 

concentration profile of both analytes.  Fig. 21(b) shows the sensor response. 
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Fig. 21  Experiment with allyl alcohol and low concentration of benzene.  (a) Concentration 

profile of both benzene and allyl alcohol.  (b) Response of the four MOS sensors. 

 

In experiment 4, the four MOS sensors were presented with three odors: tert-butanol, 

allyl alcohol, and benzene.  Tert-butanol was introduced at t = 300 s, followed by allyl 

alcohol at t = 5300 s with lower concentration, and benzene at t = 10300 s with the 

lowest concentration.  The concentration profiles of tert-butanol, allyl alcohol, and 

benzene are shown in Fig. 22(a), (b), and (c) respectively.  Fig. 22(d) shows the sensor 

response. 
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Fig. 22  Experiment with tert-butanol, allyl alcohol, and benzene.  (a) Concentration profile of 

tert-butanol.  (b) Concentration profile of allyl alcohol.  (c) Concentration profile of benzene.  (d) 

Response of four MOS sensors.  

 

In the last experiment, the same three odors were used, but we further increased the 

difference between their concentrations in order to identify the detection limits of the 

system.  Fig. 23(a), (b), and (c) show the concentration profile of tert-butanol, allyl 

alcohol, and benzene respectively.  The response of the four MOS sensors is shown in 

Fig. 23(d). 
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Fig. 23  Experiment with tert-butanol, allyl alcohol, and benzene at low concentration.  (a) 

Concentration profile of tert-butanol.  (b) Concentration profile of allyl alcohol.  (c) 

Concentration profile of benzene.  (d) Response of four MOS sensors. 
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CHAPTER III 

CODING AND LEARNING OF OLFACTORY INFORMATION 

 

The objective of this chapter is to provide an introduction to the role of dynamics in 

coding and learning of odor signals.  We first examine the olfactory pathway to identify 

the specific signal processing functions that are later modeled in the dissertation, and 

identify the coding schemes and learning procedures underlying these functions.  We 

describe how dynamical systems theory provides the necessary mathematical tools to 

model these mechanisms and analyze their computational functions: coding and learning 

have a natural interpretation in dynamical systems through the concept of attractor.  This 

review will provide the necessary background to understand the dynamics of odor 

encoding and learning explained in subsequent chapters. 

III.1. Coding and learning in the olfactory system 

The olfactory system has been optimized over evolutionary time to perform an exquisite 

function: analyze odorant molecules by their molecular features, and synthesize holistic 

representations of them when presented in complex mixtures.  It has been estimated that 

the olfactory system is able to detect approximately 10,000 odors (Axel, 1995) over a 

large range of concentrations.  However, unlike the sense of hearing or vision, this 

modality has been elusive to psychophysical analysis because no simple set of physical 

properties, such as light wavelengths for sight or sound frequency for hearing, have been 
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found.  Rather, olfaction appears to be intrinsically multidimensional.  Along with the 

multidimensional nature of olfaction, the striking similarity of different olfactory 

systems across phyla (Hildebrand and Shepherd, 1997) suggests that its architecture has 

been optimized to reflect basic properties of olfactory stimuli.   

III.1.1. A review of the olfactory pathway   

The olfactory pathway can be divided into three basic building blocks (Fig. 24): 

olfactory epithelium, olfactory bulb, and piryform (or olfactory) cortex.  In the olfactory 

epithelium, the molecular properties of the odorants are transduced into electrical signals 

through a collection of olfactory receptor neurons (ORN).  Mammals have tens of 

millions of ORN (Hildebrand and Shepherd, 1997; Doty, 1991) which belong to as many 

as 1,000  different types of receptors (Ma and Shepherd, 2000).  The prevailing 

hypothesis about olfactory primary reception is that ORNs do not respond to specific 

molecules, but rather to specific molecular features of an odorant molecule, commonly 

referred to as ‘odotopes’ (Shepherd, 1987; Shepherd, 1994), such as carbon-chain length, 

the  presence of benzene rings, or different functional groups (e.g., ester, aldehydes).  

Considering that most odorants in the environment consist of mixtures of volatile 

molecules (e.g., roasted coffee has been estimated to contain the order of 600 volatile 

components), and that each molecule can contain several odotopes, an odorant is then 

detected as a large combination of specific odotopes.   
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Fig. 24  Structure of the olfactory system.  The olfactory pathway is composed of three basic 

stages: epithelium, bulb and cortex.  (I) The olfactory epithelium is where the molecular 

information of the odor is detected and transformed into electrical signals by ORNs.  ORNs 

project their axons in an orderly fashion onto spherical regions of neuropil known as glomeruli 

GL.  (II) The olfactory bulb processes information at the glomerular level through a series of 

excitatory-inhibitory circuits (M, T, PG, and GR cells) to enhance the contrast between odors.  

(III) The olfactory cortex is where the holistic representation of an odor is formed, and where 

odors are identified (adapted from Mori, Nagao, and Yoshihara, 1999). 

 

ORN axons synapse the first relay of the olfactory system inside the brain: the olfactory 

bulb.  ORNs project in a very orderly fashion into spherical regions of neuropil known 
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as glomeruli.  Each glomerulus receives axons from one type of ORN, and each ORN 

type projects into one or a few glomeruli (Vassar, 1994; Ressler et al., 1994).  Therefore, 

at the glomerular level, olfactory information can be thought of as being represented by 

an image of the molecular features of the stimulus.  Two types of neurons can be found 

in the olfactory bulb: projection neurons (mitral and tufted cells), and local interneurons 

(periglomerular and granule cells) (Shepherd and Greer, 2004).  Projection neurons 

receive inputs from their main dendrite, which is located at the glomeruli, and send their 

axons to the olfactory cortex.  Thus, projection neurons serve as the output channels of 

the olfactory bulb.  The second type of cells, local interneurons, provides lateral 

connectivity between projection neurons at two different levels in the olfactory bulb.  

First, periglomerular interneurons synapse projection neurons dendrites at the glomerular 

level.  There is some controversy as to whether periglomerular cells are excitatory or 

inhibitory (Shepherd and Greer, 2004).  However, it is commonly accepted that their role 

is a form of volume control (Freeman, 1999).  Second, granule interneurons synapse 

secondary dendrites of projection neurons at the level of their cell body.  Granule cells 

play an essential role in the olfactory bulb, namely the enhancement of odor 

representation (Yokoi, et al., 1995), which facilitates the odor identification performed at 

the following stage in the signal pathway, the olfactory cortex.   

 

The olfactory cortex is where the holistic representation of an odor is formed and where 

odors are identified (Haberly, 2004).  Recurrent connections are pervasive in cortex 

(Mountcastle, 1998), and the olfactory system is no exception.  There exist feedback 
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connections from cortex to granule cells, which are believed to modulate their inhibitory 

effect in the olfactory bulb. 

 

Among these three building blocks (i.e., epithelium, bulb and cortex), the olfactory bulb 

is the most clearly involved in the processing of odor information (Shepherd and Greer, 

2004).  For this reason, our research is focused on the study of coding and learning 

mechanisms at this stage.   

III.1.2. Experimental evidence for coding schemes and learning mechanisms in the 

olfactory bulb 

The encoding of olfactory information in the first stages of the olfactory pathway, before 

it is processed by the olfactory bulb, has been elucidated by the findings of Buck and 

Axel (1991), 2004 Nobel laureates in Physiology/Medicine.  Their findings have also 

helped discover a highly ordered projection of ORNs onto the olfactory bulb (Vassar, 

1994; Ressler et al., 1994) and better understand the information content of these signals.  

Despite these advances, the coding of olfactory information in the olfactory bulb has not 

been entirely elucidated.  Recent experimental results indicate that time is an important 

coding dimension, information about odor identity being stored/recalled as a spatio-

temporal pattern across mitral cells (Spors, 2002).  Specifically, Laurent and colleagues 

have proposed an odor coding mechanism based on synchronization of neural population 

activity (MacLeod and Laurent, 1996; Laurent and Davidovich, 1994).  These findings 

form the basis of the neural coding studies that are described in Chapter V of this 

dissertation. 
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Learning mechanisms are used to achieve different processing functions in the olfactory 

bulb, including odor contrast enhancement through associative learning (Hebbian)  or 

odor segmentation through habituation.  Experimental support for learning in the 

olfactory bulb is provided by Fletcher and Wilson (2000), who have shown that the 

molecular receptive range of mitral cells becomes more highly tuned following sustained 

exposure to an odorant, thus reducing the overlap among the representation of different 

odorants.  These findings form the basis of the Hebbian/anti-Hebbian learning model 

that will be proposed in Chapter VI as a mechanism to improve the initial contrast 

among odor patterns. 

 

Habituation has been also observed in the olfactory bulb (Wilson, 2000), and proposed 

as a mechanism to reduce the response to an odor previously presented.  These findings 

form the basis for the odor segmentation studies that are proposed in Chapter VII as a 

mechanism to suppress background odors. 

III.2. Coding and learning with dynamical systems: computing with attractors  

The origin of dynamical systems theory goes back to the work of Isaac Newton (1999) 

on the description of the dynamical laws of motion.  With these laws, Newton created a 

framework to describe the dynamical evolution of any object subjected to a force.  This 

framework was redefined a hundred years later by Lagrange with the analytical 

mechanics theory.  This theory introduced the concept of “phase space” as the space of 

those variables that are needed to univocally describe the state of a physical system.  In 
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phase space, the evolution of any dynamical system is defined by its equations of motion, 

usually defined as a set of differential equations. 

 

In the 1970’s, dynamical system theory started to be applied to the study of biological 

neural systems (Arbib, et al., 1997).  Thee models consist of a number of interconnected 

non-linear processing units, representative of neurons or neuron ensembles, where the 

dynamic evolution of each unit is modeled with a differential equation.  Connections 

between units result in a coupling of their differential equations.  Consequently, the time 

course of the complete system is defined by a set of coupled non-linear differential 

equations.  The non-linearity and coupling of the neurons make these dynamical systems 

unusually complex and very difficult to study analytically.  However, since neural 

systems are dissipative (Arbib, et al., 1997), their dynamics typically settles on subsets 

of phase space known as attractors (Eckmann and Ruelle, 1985).  The number and type 

of attractors displayed by the dynamical system can be used to understand its properties 

and behaviors.  This paradigm, which has been known as “computing with attractors” 

(Hirsch and Baird, 1995; Hertz, 1995), elegantly captures the concept of coding and 

learning in neural systems.  Coding is implemented by the different types of attractors 

and the itinerancy of the system between them (Arbib, et al., 1997), whereas learning 

shapes the attractor landscape, creating and altering the attractors of the system (Hirsch 

and Baird, 1995). 
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III.2.1. Dynamical systems and attractors 

A dynamical system consists of a set of possible states along with a rule that determines 

the present state in terms of past states (Alligood, et al., 1997).  This rule takes the form 

of QQTs →×:  (autonomous system), where T  is the time dimension, and Q  is the 

phase space, which defines the set of all possible states in the system.  The phase space 

is also known as the state space.  In the continuous case, this rule usually takes the form 

of an Ordinary Differential Equation (ODE).  Provided that the state of a dynamical 

system can be completely described at any time by a point in phase space, the ODE will 

generate trajectories in this space that represent the temporal evolution of the system.  

An attractor can be defined as a subset A of the state space that “attracts” the trajectory 

of nearby states.  More formally, A is an attractor if (Arbib, et al., 1997): 

 

1.  Axts ∈),(  for x in A and all 0≥t . 

2.  No proper subset of A has the previous property. 

3.  Stability property: A is said to be stable if for every Ax ∈  there exists 0>ε  

such that each state y whose distance to x satisfying ε<),( xyd  has the 

property that 0)),,(( →Aytgd  as ∞→t  (i.e., every point “close enough” to 

A tends to move towards A. 

 

An important magnitude of an attractor A is its basin of attraction, which is defined as 

the set of all states y such that 0)),,(( →Aytgd  as ∞→t . 
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Attractors can be classified in three broad types: fixed points, limit cycles, and strange 

attractors (Fig. 25).  The simplest form of attractor is a fixed point, a situation in which 

trajectories will converge to a stable equilibrium point of the system.  The second type of 

attractor, known as a limit cycle, is defined by a closed periodic trajectory.  Finally, the 

most complex type of attractor is the strange attractor, which is a set that has zero 

measure in the embedding phase space and has a fractal dimension.  Trajectories within 

a strange attractor appear to wander around randomly, yet they are deterministic in 

nature.    

 

•
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Chaotic
attractor

•••

Fixed point
attractor

Limit cycle
attractor

Chaotic
attractor

••

 

Fig. 25  Different attractor types: Fixed point, limit cycle, and chaotic. 

 

III.2.2. Fixed-point attractor networks 

Cohen and Grossberg (1983) have shown that non-linear recurrent networks (networks 

with feedback connections) always converge to fixed point attractors if the connections 

between the neurons are symmetric.  The analysis of this type of networks is facilitated 

by the existence of a Lyapunov function: a function of the state variables of the system 
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that monotonically decreases with the temporal evolution of the system (except for the 

fixed points, where it remains constant).  Therefore, the evolution of these systems can 

be thought of as sliding downhill the surface of the Lyapunov function, following the 

direction of maximum slope (gradient) until the system reaches a fixed point, as 

illustrated in Fig. 26 (Haykin, 1999).   
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Fig. 26  Lyapunov function of a dynamical system.  The state of the system is represented as a 

ball sliding downhill.  The minimums of the Lyapunov function are fixed points of the system.  

The absolute minimum represents a stored memory, whereas the local minimum is a spurious 

state. 

 

Many fixed point networks have been proposed, including those studied by Grossberg 

(1988), and the more recently proposed for the orientation tuning in primary visual 

cortex (Ben-Yishai et al., 1995), eye position (Seung , 1993), and spatial location in the 

hippocampus (Samsonovich and McNaughton, 1997).  However, the more famous fixed 
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point network proposed is the celebrated Hopfield (1982), Hopfield (1984) net.  

Hopfield took motivation from the spin glass to propose a binary network that is able to 

work as a content addressable memory (CAM).  Binary patterns are stored in the 

connection weights of the net through a learning rule based on the outer product of the 

stored patterns.  Each one of the stored pattern generates a fixed point (memory state) in 

state space.  The Hopfield net operates as follows: an input is presented to the system at 

iteration zero and is then removed to let the system evolve without any external 

interference (i.e., the input is only used to initialize the state of the neurons).  After the 

input (initial conditions) is presented to the system, the system will converge to the 

nearest fixed point, which represents a memory state.  This allows the system to perform 

pattern completion: stored patterns can be recalled from noisy or incomplete versions.  

The size of the basin of attraction of the fixed points gives an idea of the robustness of 

the net to recover the stored patterns.  The size of these basins is reduced with the 

number of stored patterns, since each stored pattern requires a separate basin of 

attraction to be allocated in the same state space.  An additional factor that reduces the 

capacity of the network, and probably represents the major drawback of the model, is the 

existence of spurious memories (Fig. 26); the outer-product learning rule not only 

creates one fixed point attractor per pattern, but also additional fixed points (spurious 

memories) in which the system can become trapped.   

 

Even though imposing symmetry on the neural connections give rise to interesting 

computational functions, this constraint seems far from what occurs in its biological 



 

 

57 

counterpart.  Connections in the brain are almost never symmetrical, which lead to more 

complex dynamics on the system than just fixed point attractors.  Furthermore, a fixed 

point attractor does not seem compatible with the continuous activity that is observed in 

all types of biological neural systems (Arbib et al., 1997).  Therefore a different type of 

attractor is necessary to describe the temporal evolution of neural systems. 

III.2.3. Limit-cycle attractor networks 

Oscillatory behavior is pervasive in the central nervous system; it has been consistently 

found in many neural systems and at different hierarchical levels: single neurons, groups 

of neurons, and populations of neurons (Arbib et al., 1997).  This oscillatory behavior 

clearly suggests the presence of limit cycle attractors in neural systems.  When compared 

with fixed points, limit cycles present several advantages in terms of computing and 

coding, the most important one being the use of time as additional degree of freedom.   

 

The seminal work of Kuramoto (1984), who studied the synchronization of groups of 

coupled intrinsic oscillators, set the foundations for subsequent studies on oscillatory 

networks.  Kuramoto took inspiration from the previous studies of Wiener (1958), 

Wiener (1961) and Winfree (1967) in collective synchronization, and laid them on a 

firmer mathematical foundation.  Kuramoto’s model is based on Winfree’s intuition that 

there exists a weakly-coupled regime for any group of nearly identically coupled 

oscillators in which their state can be totally defined by their phases.  In this way, 

Kuramoto defined the following group of N coupled limit-cycle oscillators: 
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where iθ  is the phase, iω  is the natural frequency of oscillator i, iω  has a distribution 

with negligible spread since the oscillators are nearly identical, and K is the coupling 

strength.  This model was used by Kuramoto to study the onset of synchronization with 

increasing coupling strength K.  He showed that from a totally desynchronized system, 

the network goes through a phase of partial synchronization, where some oscillators are 

synchronized and some are not, and reaches a state where all oscillators are in synchrony.  

Since this early work, synchronization has been shown to be one of the central 

mechanisms in oscillatory networks, one that has a fundamental role in the various 

computational functions that are achieved with these networks.  A large number of 

neural networks based on limit cycle attractors have been proposed in the literature.  

These neural networks have been shown to perform a variety of computational functions, 

including associative memory, pattern segmentation, binding, and object selection, as 

reviewed below. 

 

In a similar manner to fixed-point Hopfield network, oscillatory neural networks with 

limit-cycle attractors can also act as associative memories. Aonishi and Kurata (1999) 

showed that by making the connections on Kuramoto’s model adaptable and ignoring 

the natural frequency term in Eq. 3.1, the oscillatory network can work as an associative 

memory.  The memory patterns, stored through Hebbian learning, are defined through 
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neuron synchronization: neurons that oscillate in synchrony belong to the same pattern.  

The capacity of this associative memory was shown to be 042.0=cα , where cα  is the 

ratio between the maximum number of patterns stored and the number of neurons of the 

network.  Yamana et al. (1999) studied the same model, but as opposed to Kuramoto 

considered a set of oscillators with non-negligible spread on the oscillators frequency 

distribution (first term on the right of Eq. 3.1).  Using the same Hebbian learning 

mechanism and synchronization retrieval scheme as Aonishi and Kurata (1999), their 

results showed that the capacity of the network can be improved by using distributed 

neural frequencies.  The error-free capacity of the oscillatory networks mentioned thus 

far is smaller than that of the fixed-point Hopfield network.  To improve the capacity the 

associative memories derived from Kuramoto’s model, Nishikawa, Lai and 

Hoppensteadt (2004) introduce a second-order term in the coupling function of Eq. 3.1.  

The dynamic equations of the system become: 
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With this new equation for the oscillators, the capacity of the system is comparable to 

that of the Hopfield network.  One advantage of networks based on Kuramoto’s model is 

that synchronization has a natural hardware implementation with phase-locked loops 

(Hoppensteadt and Izhikevich, 2000).   
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Aoyagi (1995) proposed a network of oscillators, defined by complex first order 

differential equations, that is able to store and retrieve patterns from the relative phase of 

the oscillators.  The network follows the weakly-coupled regime as the Kuramoto’s 

model, and the patterns are stored through a generalized Hebbian rule.  As in the 

Hopfield network, an external input is applied as the initial condition of the network in 

order to retrieve a stored pattern.  The author also proved the convergence of the system 

towards the stored limit cycle states by finding a Lyapunov function for the model.   

 

Wang, et al. (1990) showed how a limit-cycle based associative memory can perform 

computational functions besides of pattern storage and retrieval.  Their model is able to 

perform temporal segmentation, separating the basic components of a mixture pattern.  

The basic building block in the model is an excitatory and an inhibitory neuron, mutually 

connected and with self-connection.  The temporal evolution of the neurons follows a 

first-order differential equation, defined on the state of the neuron rather than on the 

phase of that state as had been done in previously explained models.  Therefore, the 

oscillations of the system do not arise from the individual neurons, as is the case in all 

previous models, but from the positive-negative interactions of the basic building block.  

The basic units are fully connected laterally through the excitatory neurons, and these 

lateral connections are trained through Hebbian learning to form an associative memory.  

The authors stored eight binary patterns using a model with 50 basic units.  The system 

is able to recover the stored patterns from incomplete or corrupted versions of it, as in a 

regular associative memory.  In addition, when the network is presented with three 
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patterns simultaneously, the system oscillates so that each individual pattern can be 

recovered sequentially.  Thus, the system is able to segment the excitation pattern into its 

three stored components.  Lourenço, et al. (2000) extended the model of Wang et al. in 

two ways.  First, they proposed a feature binding scheme based on the synchrony of the 

oscillators.  Second, they introduced an on-line rule for synaptic changes that allows the 

model to learn patterns continuously, as they are presented at the inputs.   

Limit-cycle networks have also been used to perform object selection based on 

oscillatory correlations.  Wang (1999) presented a model that is capable of selecting the 

largest among a set of objects in a binary image.  The model consists of a 2-D layer of 

basic oscillatory blocks, each of which is connected to its 4 neighbors, and two 

inhibitory neurons that are connected to all the oscillators in the 2-D layer.  Each basic 

oscillatory block is composed of coupled excitatory and inhibitory neurons.  When an 

image containing different objects is presented to the model, the oscillators that belong 

to the same object phase lock because of their local positive connectivity, whereas 

oscillators that belong to different objects will have different phase since they are only 

connected through the global inhibitory neurons.  This process will start a competition 

among the different objects, and the object with larger number of elements wins. 

 

Note: Spiking neuron models are not considered in this review since they are rarely 

studied as limit cycle systems, even though they are oscillatory networks. 
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III.2.4. Chaotic attractor networks 

Chaotic behavior has been found in the central nervous system both at the level of single 

neurons, and at the level of populations of neurons (Arbib, et al. 1997).  This third type 

of attractor is different to the two previous ones in that chaotic attractors can be high 

dimensional whereas fixed-point and limit-cycle attractors are low dimensional.  This 

unique feature has been hypothesized to play an important role in the ability of a neural 

system to visit all possible lower dimensional attractors (limit cycles) (Tsuda, 1992).  

Furthermore, chaotic behavior inherently possesses an infinite amount of cyclic regimes 

that can be exploited for the purpose of coding information.  Though the role of this non-

periodic behavior in the brain is still not well understood at large (Tsuda, 1992), some 

functional roles of chaos have been proposed and successfully tested in dynamical neural 

network models.  These computational functions include associative memory, avoidance 

of spurious memories, memory search, and signal to noise ratio improvements, as 

reviewed below.   

 

Associative memories can also be built using chaotic neural networks.  Kojima and Ito 

(1998) derived a basic neural model with three neurons, which is equivalent to the 

Lorenz equations, and also displays chaotic dynamics.  This basic model is used as a 

building block to construct a larger network.  By linking a group of these building blocks 

through Hebbian connections, the system is able to act as an associative memory.  When 

a stored pattern is introduced at the input, the system wanders through several stored 

patterns until it settles on the correct one.  Depending on the strength of the input, the 
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number of stored patterns that are visited vary.  If the input is strong enough, the system 

settles directly into the stored pattern.  As the strength of the input decreases, the system 

visits new patterns at increasingly larger Hamming distances from the desired pattern.  

This temporal evolution of the system reflects a hierarchical structure of the memorized 

patterns.  When a non-stored pattern is introduced at the input, the system evolves 

chaotically through all the stored patterns.  This chaotic trajectory is interpreted by the 

authors as a “memory searching” state.  Molter, et al. (2005) studied how Hebbian 

learning can lead a network of continuous Hopfield neurons to chaotic behavior when 

the learning is applied in sequences.  The network was also shown to work as a chaotic 

associative memory.  Quoy (1995) proposed an associative memory with chaotic 

behavior, also trained with a Hebb-like rule.  They observed that this kind of learning 

rule reduces the attractor dimension during learning.  This increases the separation 

between the resulting attractors and also increases the capacity of the system.  Tsuda 

(1992) observed that the chaotic behavior of an associate memory prevents the system 

from falling into spurious memories, thus increasing the number of successful retrievals. 

 

The chaotic wandering among different patterns displayed by Kojima’s network is an 

example a common behavior observed in chaotic neural networks known as chaotic 

itinerancy (Rowe, 2002; Freeman, 1995).  The concept of chaotic itinerancy was first 

introduced by Tsuda (1996), and later by Kaneko and Tsuda (2001), but has been 

reported by a number of researchers (Kay et al., 1996).  During chaotic itinerancy, the 

dynamical system wanders in a high dimensional orbit while repeatedly entering and 
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leaving domains of low-dimensional behavior (limit cycle attractors).  In the context of 

this dissertation, chaotic itinerancy will be used to denote the basal state of a model of 

the olfactory system.  Without external stimuli the model will show a chaotic wandering.  

This state allows the system to be ready to jump to limit-cycle attractor as soon a new 

odor is introduced.     

 

Chaotic behavior is also characterized by an extremely high sensitivity to the initial 

state: two trajectories of the same system that start close diverge rapidly as time goes on.  

This behavior seems to hold promise in signal detection, since differences between 

signals introduced to a chaotic neural network can be greatly amplified.  However, this 

approach is not directly useful for classification purposes since the chaotic neural 

network will amplify irrelevant differences in the input patterns as well (i.e. 

amplification of noise).  This issue has been addressed by (Kozma and Freeman, 2001) 

through chaotic resonance with the KIII model.  Similarly to stochastic resonance, 

chaotic resonance uses noise to improve the classification performance of the system.  

The added noise allows the network to remain in a stable global attractor that improves 

the classification performance of the system.   

III.2.5. Neurodynamic models of the olfactory system 

The olfactory system has been extensively modeled because of it simple organization 

when compared to other sensory systems, and easy accessibility for experimentation.  

The olfactory system has also been used as a “test model” to understand fundamental 
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mechanisms in the central nervous system at large.  Thus, these models capture many of 

the computational functions of the olfactory system.    

 

Li and Hopfield (1989) proposed a model of the olfactory bulb that reproduces 

electroencephalogram (EEG) recordings in the olfactory bulb.  The proposed neural 

system models mitral and granule cells, which are distributed as a two ring-shaped sets 

of neurons, one for excitatory mitral cells and the second one for inhibitory granule cells.  

Mitral cells are only connected to the closest granule cells and, conversely, granule cells 

only synapse the closest mitral cells (Fig. 27).  Inputs are presented to the model through 

the mitral layer.  Each neuron is modeled with a first-order differential equation.  The 

limit-cycle behavior of the model is generated by excitatory-inhibitory connections 

between mitral and granule cells.  Simulations show that the system acts as a patterns 

classifier, since some input patterns drive the bulb to high activity and others patterns do 

not.  However, the reason for this behavior it is not clear since there is no relation 

between the patterns and the connections of the network.  In other words, the patterns 

have not been directly stored in the system.    
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Fig. 27  Excitatory and inhibitory connections in the olfactory bulb model of Li and Hopfield, 

(1989) (adapted from Li and Hopfield, 1989). 

 

Aradi et al. (1995) modified the model of Li and Hopfield by introducing mitral to mitral 

connections, which were learned through Hebbian learning.  The authors studied the 

behavior of the model for different values of the mitral lateral connection, and showed 

that the system can display fixed point, limit cycle, and chaotic behavior depending on 

the strength of the lateral connections. 

 

Li and Hertz (2000) expanded the original model of Li and Hopfield (1989) by adding an 

olfactory cortex layer to the original model.  The olfactory cortex was modeled as one 

layer of excitatory pyramidal cells and two layers of inhibitory interneurons (Fig. 28).  

The layer of pyramidal cells was fully interconnected, and pyramidal to pyramidal 

connections were trained through Hebbian learning.  The model also contained a 

feedback loop that connected the pyramidal cells in the olfactory cortex with granule 
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cells in the olfactory bulb.  Since the feedback loop excited inhibitory neurons, the effect 

of the feedback was shown to lead to a reduction in the activity of the olfactory bulb.  

When a mixture of odors is presented to the system, the strongest component of the 

mixture is first recognized by the olfactory cortex as an increase in the activity of the 

pyramidal cells.  Subsequently, and as a result of the feedback loop, the recognized 

pattern is inhibited at the bulb, allowing other components of the input mixture to 

dominate the activity in the bulb, effectively segmenting the input. 

 

 

Fig. 28  Structure of the olfactory system model of Li and Hertz (2000) (adapted from Li and 

Hertz, 2000). 

 

Ambros-Ingerson et al. (1990) developed a model of the olfactory system that performs 

hierarchical clustering of patterns.  The bulb contains both mitral and granule cells; the 

former receive an external input and project onto the cortex, whereas the later receive 
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feedback projections from cortex.  The synaptic strength of the feedback projection is set 

during a development period in which hundreds of patterns are presented to the system 

and the strength of feedback synapses is allowed to vary according to a Hebb-like rule.  

The model is able to learn a multilevel hierarchical memory that uncovers statistical 

relationships inherent in collections of learned patterns. 

 

Liljestrom (1995) proposed a model of neuron populations in the olfactory cortex that 

also displays chaotic dynamics.  The model consists of three layers of neurons: two 

layers of inhibitory neurons and one layer of excitatory neurons.  The neurons are 

connected as represented in Fig. 29.  The top and bottom layers of inhibitory neurons are 

different in that only the top layer receives external input, and also because their 

temporal evolution is characterized by different time constants.  Excitatory-to-excitatory 

connections are trained with Hebbian learning, thus allowing the model to store and 

retrieve patterns.  The system presents limit-cycle attractors with oscillation in two 

separate frequency bands, and also chaotic attractors.  To model the effect of 

neuromodulators, the author increased the slope of the sigmoidal function of the neurons 

and also reduced the weights of excitatory and inhibitory network to simulate depression 

of the excitatory and inhibitory transmission.  Through computer simulations, the author 

showed that neuromodulatory control improves the associative memory performance by 

reducing recall time and improving robustness.  He also showed that limit-cycle 

attractors are more robust and require less recall time as associative memory than fixed-

point attractors.   
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Fig. 29  Inhibitory and excitatory connections in the neocortex model of Liljestrom, (1995) 

(adapted from Liljestrom, 1995). 

 

The next chapter describes the KIII model, which is arguably the more complete 

neurodynamic model of the olfactory system.  The KIII captures chaotic and limit cycle 

behaviors observed in the olfactory system, and uses the itinerancy of the system 

through these attractors to process olfactory information. 
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CHAPTER IV 

THE KIII MODEL 

 

The objective of this chapter is to provide a detailed introduction to the KIII model.  We 

will describe the hierarchical structure of the KIII, implementation issues, and also 

provide a review of the work performed on the KIII model during the last three decades. 

 

IV.1. The advent of the KIII model 

The KIII is a neurodynamic model of the olfactory system developed by Freeman and 

colleagues over the last thirty years (Freeman, 1978; Yao and Freeman, 1990).  The 

model was designed to reproduce electroencephalographic (EEG) recordings in the 

olfactory system of rabbits.  Two factors were crucial for the development of the KIII 

model (Freeman, 1975): (1) advances in multi-electrode measurement systems, and (2) 

the emergence of a new computational paradigm based on dynamic attractors.  When the 

KIII was first proposed (Freeman, 1975), the possibility of taking simultaneous 

recordings from multiple electrodes had recently become available.  The development of 

simultaneous recordings was made possible by advances in two areas: integrated circuit 

technology, which allowed the construction of a large number of reliable amplifiers, and 

digital computers, which allowed the acquisition and storage of simultaneous multi-

electrode measurements.  This new technology made it possible to obtain patterns of 
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response in the olfactory system instead of single readings, as it had been done 

previously.  A wealth of experimental data became available as a result of this emerging 

technique, which allowed Freeman and colleagues to develop and test the KIII model.    

 

Freeman recorded EEGs on the olfactory system of rabbits (Fig. 30); these recordings 

revealed two main types of behavior at the level of neural populations.  First, nearly 

periodic oscillations (limit-cycle attractor) were observed when an odorant stimulus was 

presented.  Second, aperiodic oscillations (strange attractors) emerged in the absence of 

an odorant stimulus (Freeman, 1992; Freeman, 1991).  Based on these observations, 

Freeman hypothesized that computations in the olfactory system were performed by the 

itinerancy of the system through different attractor states.  More interestingly, he also 

hypothesized that the chaotic behavior observed in the olfactory system plays an 

important role in the system’s ability to process odor information (Freeman, 1988; 

Freeman, 1992).  At the time those observations were made (throughout the 1970s), 

multiple examples of chaotic behavior were also found in experiments on fluids, 

chemical reactions, electronic circuits, mechanical oscillations, and semiconductors 

(Strogatz, 1994).  It was known that the chaotic behavior arose from the non-linear 

dynamics of these systems.  Furthermore, mathematical models of these systems based 

on non-linear differential equations were also found to accurately predict chaotic 

behavior.  In light of these findings, Freeman proposed to model the attractor itinerant 

behavior of the olfactory system, including chaotic dynamics, using a system of non-

linear differential equations that later became known as the K-set model.  As stated by 
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Freeman (1975): “the aim of building a model is to construct nonlinear Ordinary 

Differential Equations (ODE) under the known constraints of the anatomy and 

physiology, and to find aperiodic solutions that simulate the statistics, spectra, and 

visually displayed patterns of the EEG.” 

 

 

Fig. 30  Recordings of a rabbit’s olfactory bulb with a 8x8 array of electrodes when amyl acetate 

(banana oil) and air are presented (Freeman , 1975). 

 

IV.2. The KIII as a hierarchical model: the K sets 

The KIII follows a hierarchical architecture with four different levels (Yao and Freeman, 

1990; Freeman, 1978): K0, KI, KII, and KIII.  The basic building block is the K0, which 

represents a neuron population.  Higher hierarchical levels (KI, KII, and KIII) are 

formed by interconnection of K0 sets.  These are described next. 

IV.2.1. The K0 set 

The lowest building block in the K-set hierarchy is the K0 set, which models a set of 

neurons (103-108) with a common source of input, a common sign of output (e for 

excitatory or i for inhibitory), and no interaction between neurons within the set.  To 
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study the behavior of neural populations, experiments were conducted where an impulse 

current was introduced to one such population and its extracellular response was 

recorded (Freeman, 1975) (Fig. 31).  This extracellular response or mean field potential 

(MFP) was used as a measure of the neural population activity.  To avoid any interaction 

between neurons, the synaptic activity of the neural population was suppressed by 

anesthetizing the animal.  From the impulse response, the neuron ensemble was 

determined to be of second order.  The neural population was then modeled with a 2nd 

order ODE (Eq. 4.1), and the parameters of the system were found by fitting the 

experimental impulse response curve to Eq. 4.1 (Fig. 31).   

 

( ) ( ) ( ) ( ) )(2

2

tItXab
dt

tdX
ba

dt
tXd =⋅+++                                  (4.1) 

 

where X(t) is the population activity (MFP), a = 220 sec-1, b = 720 sec-1, and I(t) is the 

external input applied to the neuron population. 
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Fig. 31  Impulse response of an anesthetized population of neurons (adapted from Freeman, 

1975). 

IV.2.2. The KI set 

The second hierarchical level is the KI set, which consists of a group of neuron 

populations with a common source of input, a common output sign, and dense 

interactions between them.  There are two types of KI sets: KI with excitatory 

interactions or KIe, and KI with inhibitory interactions or KIi, as illustrated in Fig. 32.  

To model the interaction between neural populations it is necessary to first determine the 

relationship between the internal state variable of the neural population and its output.  

Due to the large number of neurons in a single neural population (103 to 108), its output 

can be considered to be a pulse density and therefore continuous.  Furthermore, 

assuming that the pulse trains of individual neurons are uncorrelated (Freeman, 1975) 

and nearly random, the functional relationship between the neuron population output and 
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its MFP (activity of the neuron population) can be considered to be time-invariant.  The 

expression for this function can be derived as a generalization of the Hodgkin-Huxley 

model (Freeman, 1975), and is shown in Eq. 4.2.  Experimental data are obtained by 

exciting the neural population with different levels of extracellular electrical activity 

with one electrode and recording its output value with a different electrode (Fig. 33).  

The model in Eq. 4.2 is then fitted to the data in order to estimate Qm, a parameter that 

captures the state of arousal of the animal.   
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Fig. 32  (left) The K0 set.  (center)  The KI excitatory set.  (right) The KI inhibitory set. 
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Fig. 33  Experimental determination of the output of a population of neurons in terms of its 

internal state (adapted from Freeman, 1975). 

 

Merging Eqs. 4.1 and 4.2, the dynamics of the KI sets is expressed by a set of two 

coupled non-linear ordinary differential equations: 

KIi: 
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KIe: 
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where Xi1, Xi2, Xe1, and Xe2, are the population activity (MFP) of neural populations i1, i2, 

e1, and e2, respectively (Fig. 32),  A = a + b, B = ab, and  Kee and Kii are the connection 

strengths between K0 sets (See the table on page page 82) 

IV.2.3. The KII set 

The next hierarchical level is the KII set, which consists of two pairs of densely 

interconnected KIe and KIi sets.  A compact version of the KII set, (commonly referred 

to as a reduced KII set), which consists of only one pair of connected KIe and KIi sets, 

has also been used for computational savings (Chang et al. 1998b).  The regular and 

reduced KII sets are shown in Fig. 34.  As a result of the positive and negative 

interconnections, the KII set acts as a coupled oscillator.  It is the oscillatory behavior of 

the KII sets what gives the olfactory system model its oscillatory properties.   
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Fig. 34  (left) The regular KII set.  (right) The reduced KII set. 

 

The dynamics of the regular KII set are specified by the following system of ODEs. 

KII: 
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whereas the dynamics of the reduced KII set are modeled by the simpler system: 
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)(2

2

iiei
ii XQKXB

dt
dX

A
dt

Xd ⋅−=⋅++    

where Xe1, Xe2, Xi1, Xi2, Xe, and Xi, are the population activity (MFP) of i1, i2, e1, e2, e, 

and i respectively (Fig. 33),  A = a + b, B = ab, and  Kee , Kei, Kie, and Kii are the 

connection strengths between KO sets (Table 3) 

IV.2.4. The KIII model 

The KIII is the highest level of the K-set hierarchy, and is specifically aimed at modeling 

the broad anatomical units of the olfactory system and their interconnections.  (Yao and 

Freeman, 1990; Freeman, 1978).  Shown in Fig. 35, the KIII is composed of four stages: 

(1) receptor layer, representing the inputs to the system; (2) olfactory bulb (OB), 

composed of a layer of fully-connected periglomerular cells modeled with a K0 set, and 

mitral/granule cells represented as a fully-connected KII network; (3) anterior olfactory 

nucleus (AON), modeled as a single KII set; and (4) prepyriform cortex (PC), composed 

by one KII and one K0 set.  Two feedforward and four feedback sets of connections link 

these four stages.  The OB has a feedforward connection with the AON and the PC.  

Feedback connections link the PC with the AON and OB, and also link the AON with 

the OB at two different levels (G1 and P).  Feedback connections are implemented 

considering cable delays.  Additionally, random noise is introduced at two different 

stages in the KIII model: at the receptor layer and in the AON.  The presence of noise 

stabilizes the attractors of the KIII model (Freeman et al., 1997; Chang et al 1998c; 

Kozma, 2003), and is biologically justified by its widespread presence in neural systems.   
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Fig. 35  KII model structure.  The KIII model is built after the basic architecture of the olfactory 

system: (1) receptors; (2) olfactory bulb; (3), anterior olfactory nucleus; and (4) prepyriform 

cortex.  The basic building blocks in the KIII are modeled after their counterparts in the olfactory 

system: R, olfactory receptor neurons; P, periglomerular cells; M, mitral cells; G. granule cells; 

E and I cells from the anterior olfactory nucleus; A and B cells from piriform cortex; C 

represents deep pyramidal cells (adapted from Chang, et al. 1998). 
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Following these topological connections, and the differential equations governing the 

time evolution of the K sets, the time course of the KIII model is described by the 

following set of massively-coupled non-linear delay differential equations: 

Olfactory bulb (OB): 

(4.7) 
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Anterior olfactory nucleus (AON): 
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Prepyriform cortex (PC): 
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where i = 1, 2, … N; N is the number of channels of the model; A = a+b; B = ab; K1, K2, 

K3, and K4 are feedback gains; TSj and TEj (j=1,2,3,4) are the starting and ending delay 

times.  Finally, t- TSj through t-TEj defines the time window over which delay connection 

j integrates; the value of this integral is the output of the delay connection at time t. 

 

Odor stimuli are presented to the KIII as activation patterns across the input layer of 

receptors.  Each receptor is connected to a periglomerular cell and to a KII set (two 

mitral and two glomerular ensembles), forming a channel.  Each of these channels can 

then be associated with one dimension of the input stimulus and also to the 

corresponding output pattern.  The KIII is able to store previously seen patterns by 

means of Hebbian lateral connections at the M1 mitral layer (Freeman et al., 1998).  This 

form of learning allows the KIII to recover not only the originally stored pattern when 

presented at the input, but also incomplete or distorted versions of it.  Therefore, the KIII 

acts as an associative memory.  The global behavior of the KIII is scale invariant (i.e., 

independent of the number of input channels) (Yao and Freeman, 1990), an essential 

property to allow the model to process inputs of any dimensionality. 

 

In the absence of an external stimulus, the KIII channels follow an aperiodic oscillatory 

or chaotic behavior, which is known as a basal state (Fig. 36 (b)).  When an input is 
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presented, the system moves into a limit-cycle attractor in state space (Fig. 36 (c)), 

which can also be observed as pseudo-periodic oscillations in the output channels.  Once 

the input is removed, the KIII returns to an aperiodic basal state (Fig. 36 (d)).  The 

amplitude of the oscillations at each channel depends on the activation level of its 

receptor input, but is also influenced by activity in other receptors as a result of the 

Hebbian lateral connections.  The output pattern of the KIII is commonly assumed to be 

encoded in the amplitude or root mean square (RMS) of the oscillations of each channel 

(Yao and Freeman, 1990). 
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Fig. 36  The KIII dynamical behavior.  (a) Temporal evolution of a G2 cell.  Without external 

input, the model shows aperiodic oscillations (b).  When an input is introduced from 1,000 to 

1,400 ms (top thick black line), the system jumps into a limit cycle (c).  Once the input is 

removed, the system returns to the basal state (d). 
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IV.3. Implementation aspects of the KIII 

The first numerical implementation of the KIII model (Freeman, 1978) solved the set of 

non-linear coupled delay differential equations (DDE) using the Euler method.  However, 

the numerical solutions of the model lacked robustness, and oftentimes changed with the 

implementation of the numerical algorithm and the precision of the machine. 

 

Chang et al., (1998c) proposed an alternative solution to work around the DDE 

integration problem.  The authors replaced the DDE with equivalent ordinary differential 

equations using a kernel.  Using the Laplace transform, the authors were able to show 

that both representations of a delay line are equivalent.  Being able to convert the DDE 

system into an ODE system, the authors were able to solve the system in a much more 

reliable manner with conventional numerical methods such as Runge-Kutta (Hoffman, 

1992).   

 

Even though more reliable solutions were obtained with an ODE implementation of the 

KIII, the stability of the attractors was still very sensitive to the choice of parameters.  

To solve this problem, Freeman and colleagues proposed the introduction of additive 

noise into the system as a mechanism to stabilize the attractors (Freeman et al., 1997; 

Kozma, 2003).  As shown in Fig. 35, noise was injected at two different levels in the 

model: at the peripheral level (R populations) and at the central level (E1 population).  It 

was shown that the presence of noise allowed the system to stay in the attractors for an 

indefinite amount of time.  The ability of noise to stabilize the KIII was later 
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hypothesized by the authors to be a possible role for the pervasive presence of noise in 

neural systems (Chang et al., 1998c; Kozma and Freeman, 2001). 

 

The abovementioned work on practical implementation issues has tremendously 

facilitated our ability to reproduce previous results in the literature. 

IV.3.1. Our implementation of the KIII 

Following the abovementioned improvements, our implementation of the KIII model 

consists of an ODE system with additive noise.  The model has been implemented in 

MATLAB using fourth-order Runge-Kutta ODE integration and a fixed time step of 1.0 

ms.  Initial conditions for all variables and their derivatives are set to zero.  Parameter 

values and notation have been borrowed from (Chang et al., 1998b), and are summarized 

in Table 3.  This unique set of parameters will be used throughout the dissertation, with 

the following exceptions: 

 

• In Chapter VI, WMM will be trained with Hebbian/anti-Hebbian learning. 

• In Chapter VII, WMM and WGM will be adapted through habituation. 

• In Chapter VIII, WPPL will be trained with anti-Hebbian learning. 
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Table 3  Parameter values for the KIII model (from Chang et al., 1998b). 

a 0.22  qC 5.000 
b 0.72  wM1P 0.050 
qP 1.824  wM1M1L

low 0.599 
wPPL 0.900  wM1M1L

high 2.100 
kPR 0.500  wE1M1 1.311 
qOB 5.000  wA1M1 1.710 
wMM 1.500  wG1G1L -0.580 
wMG -2.063  wCB1 -1.543 
wGM 2.323  wB1C 0.698 
wGG -2.445  wG1D1 2.349 
kM1R 1.000  wPD2 1.087 
qAON 5.000  wI1D3 2.553 
wEE 1.202  wG1D4 2.305 
wEI -1.426  Ts

1 20.000 
wIE 1.372  Te

1 11.000 
wII -1.571  Ts

2 22.000 
qPC 5.000  Te

2 15.000 
wAA 0.823  Ts

3 21.000 
wAB -1.938  Te

3 12.000 
wBA 1.947  Ts

4 30.000 
wBB -2.354  Te

4 24.000 
 

 

Three conditions are commonly checked when validating a given implementation of the 

KIII model, (Chang et al., 1998a): 

(1) the frequency distribution of the basal state follows a 1/f distribution, 

(2) when an odor is introduced, the system moves from the aperiodic basal state to 

a limit cycle and remains there as long as the input is maintained, and  

(3) when the input is removed, the system returns to the original aperiodic basal 

state.   

These necessary conditions have also been used to verify the correctness of our KIII 

implementation.  Fig. 37(a) shows the power spectra of a 2,000 ms simulation of the 

basal state with our model.  For comparison purposes, Fig. 37(b) shows the power 

spectra of the basal state in (Chang et al., 1998c).  It can be observed that our 
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implementation of the KIII model follow a 1/f power spectra very similar to that 

obtained by Chang et al. (1998c).  Thus, our model satisfies condition (1).  Conditions 

(2) and (3) are also satisfied, as illustrated in Fig. 36 (c) and (d).  These three conditions 

will later be used in Chapter V, Chapter VI and Chapter VII to determine the range of 

values that the learnable/habituable parameters (WMM, WGM, and WPPL) must have in 

order for the KIII to operate in a well-behaved region. 
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Fig. 37  Comparison of 1/f  spectra of the basal state.  (a) Power spectra for a 2000ms simulation 

of basal state of G2 cells in our implementation of the KIII.  (b) Power spectra of basal state in G2 

cell from Chang et al. (1998c) (adapted from Chang et al. 1998c). 

 

IV.4. Applications of the KIII model 

In recent years, a handful of research groups have explored the use of K-set models for 

real-world problems.  The earliest application was proposed by Yao et al. (1991), who 

used the KIII model to process binary images from two types of manufacturing parts 

(screws and bolts); the objective was to classify them as faulty or acceptable.  The 

classification performance of the KIII model was compared with that of a KII network, a 
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Hopfield network, a three layer multi-layer perceptron, and a Bayesian network.  Their 

results showed that computations in the KIII (based on limit cycles with a chaotic basal 

state) outperformed the limit-cycle-based computations of the KII network (which does 

not exhibit a chaotic basal state), the fixed-point-attractor computations of the Hopfield 

network, as well as the multilayer perceptron and the Bayesian classifier.  The authors 

argued that the classification task was facilitated by the chaotic dynamics of the KIII, 

which helped suppress noise and irrelevant information. 

Kozma and Freeman (2003) and Kozma and Ankaraju (2003) have used K sets to 

perform spatial navigation with autonomous agents.  K-sets were used to model activity 

in the hippocampus and cortex, which are the brain regions responsible for spatial 

navigation.  Their navigation model was able to perform goal finding, detouring, 

shortcutting, maze-learning and goal-finding with cluttered environments.  Kozma et al. 

(1997) and Li and Kozma (2003) have also employed the KIII for time series predictions.   

 

Hardware implementations of the KIII were developed by Freeman and colleagues in 

order to speed up computations.  Eisenberg et al. (1989) and Yao and Freeman (1989), 

performed an analog-circuit implementation of a fully connected network with eight 

reduced KII units.  The dynamical behavior of each K0 set was modeled in three stages: 

a summation stage, a two pole network, and a non-linearity stage.  Each one of the stages 

was modeled with a different configuration of operational amplifiers.  The reduced KII 

sets were connected with fixed weights (i.e., without any learning capabilities).  This 

analog implementation of a KII network was able to reproduce the oscillatory behavior 
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of the olfactory system.  It was also able to reduce noise, allowing a stored pattern to 

emerge from incomplete and noisy input.   

 

Principe and colleagues have also developed several hardware implementations of 

Freeman’s model.  Ozturk et al. (2003) proposed a discrete-network implementation of 

the KII and KIII models to facilitate implementation with a digital multi-purpose 

processor such as a microcontroller or a DSP.  The impulse response of a K0 set was 

sampled and decomposed over the gamma basis, which is set of complete real basis 

functions.  The expression of the gamma basis in discrete time makes possible the digital 

implementation of the K0 dynamics.  Afterwards, the digital KIII was implemented in a 

DSP and compared with the solutions obtained by software version of the KIII.  The 

results showed similar solutions for both systems, but the DSP implementation 

performed significantly faster.  Xu and Principe (2004) performed an analytical 

characterization of the KIII model.  The authors were able to identify the different 

regions in parameter space within which a reduced KII set can operate. 

 

Of particular interest for the research in this dissertation is the work of Clussnitzer et al. 

(2001) and Otto et al. (2000), who applied the KIII to process data from Fourier 

Transform Infrared (FT-IR) spectrometers and chemical sensors using habituation and 

Hebbian learning.   
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The FT-IR spectrum of each analyte was decimated, Hadamard-transformed, and 

normalized before being passed as an input vector to the KIII model.  The authors 

showed that the principal components of the mitral cell state-space attractors can be used 

to discriminate different analytes.  To the best of our knowledge, the work of Otto is the 

first and only attempt to use the KIII to process data from chemical sensors/instruments. 

 

These previous efforts have shown that models based on K-set theory are able to solve 

practical application problems.  Even so, the KIII model fails to capture some of the 

fundamental functions of the olfactory system, particularly those that affect the pattern-

recognition capabilities of the model.  This should come as no surprise since the KIII 

was not designed as a pattern classifier, but as a model of EEG activity in the rabbit’s 

olfactory system.  In this dissertation, we propose to improve the processing capabilities 

of the KIII model through alternative coding and learning mechanisms.  In Chapter V, 

we use phase coding to enhance the performance of the KIII’s associative memory.  In 

Chapter VI, we propose a new Hebbian/anti-Hebbian rule that allows the KIII to 

increase the contrast between stored patterns.  In Chapter VII, habituation is used in the 

KIII to allow the model to do background suppression.  Finally, in Chapter VIII, the KIII 

model is trained with anti-Hebbian learning to perform novelty detection. 
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CHAPTER V 

TEMPORAL CODING 

 

The objective of this chapter is to study how the associative memory performance of the 

KIII model can be enhanced by considering temporal information.  Our experience with 

the KIII model shows that the information provided by the amplitude of the channels 

tends to degrade when the input patterns have a significant degree of overlap, as is 

oftentimes the case in electronic-nose data due to the cross-selectivity of the chemical 

sensors.  These observations prompt us to question whether or not additional and more 

robust information can be extracted from the output of the model (i.e., a “read-out”).  In 

particular, we have consistently observed that the KIII has a tendency to display similar 

phases in channels that encode for the same odor.  This observation, along with 

experimental evidence for a neural code based on coherent oscillations in neural 

populations, motivates the study presented in this chapter.  Such neural coding schemes, 

based on firing synchrony, are the most compelling hypothesis for a temporal code 

spatially distributed across large neural populations.  These types of codes have been 

found experimentally in different neocortical areas (Recce, 2001), and also play an 

important role in the integration of visual information (Singer and Gray, 1995) and 

coding of odors (Laurent and Davidowitz, 1994; MacLeod and Laurent, 1996).   

 

 



 

 

93 

V.1. Temporal coding and coherent oscillations 

Work by Adrian more than 75 years ago showed that the firing rate of stretch receptor 

neurons is related to the force being applied to the muscles (Adrian, 1926; Adrian, 1928).  

This seminal contribution led to the widespread belief that firing rate was the code used 

by neural systems to transmit information.  As a consequence, early neural network 

models interpreted the output of artificial neurons as an abstraction of the neural firing 

rate in their biological counterparts.  In recent years, this view has been challenged with 

ample experimental evidence showing the need to take into consideration the temporal 

dimension in neural information processing.  

 

Undisputable evidence for a temporal code is best illustrated by the work of Thorpe, 

Delorme, and Van Ruellen (2001) and Van Ruellen and Thorpe (2000), who have shown 

that humans and monkeys are able to respond to a visual categorization problem in a 

very short period of time.  In their experiments, an image is briefly flashed and the 

subject has to decide if it belongs to a target category or not.  Considering (i) the 

pathway of the visual signal as it propagates through the brain, (ii) the minimum time 

required for a neuron to generate an action potential and (iii) the response time of the 

subjects in these experiments, it is possible to determine that there is time for only one 

spike to be generated at every relay station in the visual pathway.  This result clashes 

with a frequency-rate coding hypothesis, and clearly points to the existence of a 

temporal dimension.  
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A number of possible temporal coding mechanisms have been proposed, including inter-

spike interval codes, time of arrival (latency) codes and synchrony codes (Cariani, 1995).  

Among these, the synchronous oscillation of ensembles presents the most empirical 

evidence.  Synchronization has been proposed as a potential mechanism to correlate 

information from different senses or different parts of the brain (Recce, 2001).  It has 

also been found to play a role in visual feature integration (Singer and Gray, 1995).  Of 

particular interest to our work, Laurent and Davidiwitz (1994) and MacLeod and Laurent 

(1996) have found that synchronous oscillations of neuron populations in insects are 

used as an odor encoding mechanism.  Their work has shown that different odors evoke 

coherent oscillations in different but usually overlapping ensembles of neurons in the 

olfactory system.  

V.2. Phase coding in the KIII model 

Information at the output of the KIII is commonly assumed to be encoded by the 

amplitude or RMS of the oscillations of each channel (Yao and Freeman, 1990).  

However, considering that the KIII is a model of neuron populations, it is appealing to 

consider the phase of the oscillations across channels as an analogous of the coherent 

oscillation coding scheme in biological neural systems.   
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Hence, the goal of this chapter is to investigate the extent to which this phase 

information can be used as a coding mechanism, and compare its pattern-recovery 

performance against the conventional amplitude code. 

 

In order to efficiently compute phase information, we consider the state-space trajectory 

of pairs of KIII channels (G1 populations) as a two-dimensional distribution.  As shown 

in Fig. 38, differences in phase (θ) can be mapped into the correlation coefficient (ρ) of 

the 2D distribution, and vice versa.  Two sinusoidal waveforms with the same phase will 

lead to a correlation coefficient ρ=1 (Fig. 38(a)), whereas a phase difference of θ=180° 

results in a correlation coefficient of ρ=-1.  Intermediate phase differences result in 

correlation coefficients between those two extremes (-1, 1). 

 

The waveforms and trajectories in Fig. 38 were obtained by first training a 32-channel 

KIII on two binary patterns (shown in Fig. 38(e)), and then introducing a distorted 

version of the first pattern.  It can be seen that the shape and orientation of the attractors 

can be associated to different types of errors in the input stimulus.  It is also important to 

note that the correlation coefficient not only captures information about the orientation 

of the principal eigenvector but also about the area enclosed by the trajectory (i.e. the 

shape of the attractor.) 
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Fig. 38  Extracting phase information from the KIII model.  Phase is computed as the correlation 

coefficient of each channel with respect to a reference channel (channel 1).  In this toy problem 

(refer to inset (e)), pattern A is recalled with an incomplete input.  (a) Output of a channel that 

belongs to pattern A and is also excited at the input.  (b) Output of the channel that belongs to 

pattern A and is not excited at the input.  (c) Output of a channel that belongs to pattern A and 

pattern B and is not excited at the input.  (d) Output of a channel that does not belong to pattern 

A and is not excited at the input. 
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V.3. Scaling invariance 

Yao and Freeman (1991) showed that some properties of the KIII model are invariant 

with respect to the number of channels: the amplitude and general shape of the 

oscillations at each channel are independent of the number of inputs in the model.  To 

determine if their results also apply to phase information, we first present a thorough 

study on three KIII models with 16, 32 and 64 channels.  The study simulates a two-odor 

classification problem with varying levels of complexity in terms of:  

(i) the degree of overlap between the two stored patterns, and  

(ii) the number of missing or corrupted channels at the input.   
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Fig. 39  Overlap between input patterns for a 16-channel KIII. (a)  Simulating an incomplete (b) 

and a corrupted (c) input pattern. 
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Fig. 39 illustrates the two input patterns for the 16-channel case.  Each pattern consists 

of four active channels, each represented by a bit set to 1, and twelve inactive channels, 

represented by a blank bit.  Due to the symmetry of the problem, in what follows the 

KIII model is always excited with a stimulus from pattern A.  To incorporate different 

degrees of overlap, three patterns sets are considered having 0, 1 and 2 bits of overlap.  

Each one of these three sets leads to a unique Hebbian associative matrix and, therefore, 

a separate KIII model.  Fig. 39(a) illustrates the situation where the patterns have an 

overlap of 2 bits.  To simulate incomplete patterns (e.g. caused by sensor degradation), 0, 

1 or 2 of the active bits in the stimulus may be set to zero.  Fig. 39(b) illustrates the case 

where the stimulus for pattern A is incomplete by one bit.  Finally, to simulate corrupted 

patterns (e.g. to due to background odors), 0, 1 and 2 bits not belonging to either pattern 

may be set to one.  Fig. 39(c) shows a stimulus for pattern A with one corrupted bit.  All 

these different combinations lead to 3⋅3⋅3=27 possible scenarios for a 16-channel KIII 

model.  Data for the 32- and 64-channel models is obtained by scaling the stored patterns 

and input stimuli by a factor of 2 and 4, respectively.  
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Fig. 40  Scatter plot of amplitude vs. phase codes for different input-stimulus�desired-response 

cases.  
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Simulation results are presented in Fig. 40 in the form of bivariate scatter plots.  Each 

point in the scatter plots represents the output of one KIII channel for one stimulus.  The 

abscissa is the RMS amplitude of the channel, whereas the ordinate is the phase relative 

to channel 0, which is consistently activated and used as a reference.  Four different 

cases of input-stimulus�desired-response are considered in the study, which correspond 

to two correct and two erroneous input stimuli:  

• 1�1 (no error): stimulus in a channel that encodes for pattern A 

• 0�0 (no error): no stimulus in a channel that does not encode for pattern A 

• 0�1 (incomplete pattern): missing stimulus in channel that encodes for 

pattern A 

• 1�0 (corrupted pattern): noisy stimulus in a channel that does not encode for 

pattern A 

The results in Fig. 40 show that, although a higher number of channels yields a more 

detailed structure of the amplitude/phase clusters, these scatter plots have a similar 

structure regardless of the number of channels.  This result leads to the conclusion that 

the KIII model is not only scale invariant with respect to amplitudes, a result previously 

established in (Yao and Freeman, 1990), but also with respect to phase information. 

 



 

 

101 

Amplitude

Phase

D
en

si
ty

D
en

si
ty

0�0 
0�1 

1�0 

1�1 
0�0 0�1 

1�0 

1�1 

Threshold

Amplitude

Phase

D
en

si
ty

D
en

si
ty

0�0 
0�1 

1�0 

1�1 
0�0 0�1 

1�0 

1�1 

Threshold

 

Fig. 41  Univariate density functions for the amplitude and phase codes. 

 

V.3.1. Bit recovery 

An important conclusion can also be extracted from these scatter plots.  Fig. 41 shows 

the univariate distribution of the amplitude and phase codes in the 64-channel model for 

the each of the four input-stimulus�desired-response cases.  A Gaussian distribution has 

been assumed for visualization purposes.  It can be observed that the amplitude code is 

able to recover either incomplete or corrupted bits, but not both, since the 0�1 and 1�0 

densities lie on opposite sides of their desired response.  This result indicates that the 

amplitude of a particular channel tends to be driven primarily by the input stimulus 

rather than by the lateral connections in the Hebbian matrix.  In the case of a phase code, 

a simple threshold can be obtained to correct the majority of the incomplete or corrupted 
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bits, indicating a higher sensitivity to lateral connections.  Bit recovery is, therefore, 

more reliable using phase information.   

 

V.3.2. Pattern recovery: preliminary results  

The results in the previous sections demonstrate the significant advantage of a phase 

code in the recovery of individual errors at the channel level (bit-wise).  How do these 

results translate into classification performance at the pattern level?  To explore this 

issue, we employed a Hamming-distance classifier (Lippmann, 1987) at the output of the 

KIII.  Oscillatory activity (phase or amplitude) at each KIII output channel was first 

discretized using a Likelihood Ratio Test: samples from the 0�0 (true negatives, T-) 

and 1�0 (false negatives, F-) conditions were assigned to one Gaussian density, samples 

from the 1�1 (true positives, T+) and 0�1 (false positives, F+) condition were assigned 

to a second Gaussian density, and a decision threshold was computed to minimize the 

probability of error of the two densities (van Trees, 1968).  The process is illustrated in 

figure Fig. 42.  Inputs and prototype patterns were generated using a 16-channel KIII 

model with 8 active channels (as opposed to the 4 active channels in Fig. 39) to explore 

higher levels of overlap between patterns.  The number of incomplete or corrupted bits 

was allowed to range between 0 and 2.   
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Fig. 42  Likelihood ratio test for the classification of channel activity. True negatives (T-) and 

false positives (F+) are assigned to a Gaussian distribution (OFF). False negatives (F-) and true 

positives (T+) are assigned to a second Gaussian distribution (ON) (Gutierrez-Osuna and 

Gutierrez-Galvez, 2003). 

 

The average classification rate as a function of the overlap between prototypes is shown 

in Fig. 43, where ties (e.g., the input pattern is equidistant from the two prototypes) are 

counted as miss-classifications.  With zero overlap between the two prototypes 

(1111111100000000 and 0000000011111111), both codes provide 100% classification 

rate since the Hamming-distance classifier is robust against errors in a few bits.  As the 

overlap between the prototypes grows, discrimination between them becomes more 

difficult.  As a result, bit-wise corrections become increasingly relevant, allowing the 

phase code to clearly outperform amplitude information1.   

 

 
                                                 

1 Not shown in the figure, for overlaps of 7 bits (1111111100000000 and 0111111110000000) and 8 bits 
(the two prototypes are identical), the performance of both codes drops to 0%. 



 

 

104 

0 1 2 3 4 5 6
40

60

80

100
Phase

Amplitude

Overlap (# bits)

C
la

ss
. R

at
e

(%
)

0 1 2 3 4 5 6
40

60

80

100
Phase

Amplitude

Overlap (# bits)

C
la

ss
. R

at
e

(%
)

 

Fig. 43  Performance of a Hamming-distance classifier on the two codes. 

 

V.4. Symmetry of the associative memory matrix 

Once the scale invariance of the KIII model with respect to phase information has been 

validated, the study can now be focused on a lower dimensional model where an 

exhaustive evaluation of every possible combination of input stimulus and pattern sets is 

computationally feasible.  Although 2- and 4-channel models could be used to this effect, 

the results in Fig. 40 show that more channels lead to higher resolution.  For this reason, 

an 8-channel model is chosen for the final study.   

 

In order to avoid exploring redundant combinations, symmetries in the KIII associative-

memory matrix will also be exploited.  Following Yao and Freeman (1990), mitral-

mitral lateral connections can be computed as: 
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=
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iiM ppfW 1                                         (5.1) 

where pi is the correct input pattern for the i-th odor class, and f(⋅) is a threshold function 

so that the elements in WM1 are binary, either HIGH or LOW2; diagonal elements in the 

matrix are set to zero.  Thus, a HIGH element in the Hebbian matrix represents two KIII 

channels that are simultaneously active for at least one odor pattern.  Since different 

pattern sets can lead to the same Hebbian matrix, an exhaustive evaluation of every 

possible pattern set can be reduced to the study of all possible matrix configurations.  

 

A representation of the Hebbian matrix as an undirected graph will be used to illustrate 

the existing symmetries.  For simplicity, assume a 4-channel model with only one 

connection between channels.  Since the channels are symmetric, the behavior of the 

system will be the same regardless of where this connection is located, as illustrated in 

Fig. 44.  Generalizing this idea, graphs with the same number of connections and the 

same topology (i.e. isomorphic graphs) have to be considered just once.  As a result, a 4-

channel model with 26 = 64 possible configurations is reduced to the 11 non-isomorphic 

graphs in Fig. 44.  Similarly, a 8-channel model can be reduced from 228 = 2,7⋅108 to 

1,192 cases, for a significant savings in CPU time.  

 

                                                 

2 LOW and HIGH values are denoted by WM1M1L
low and WM1M1L

high, respectively Yao and Freeeman 
(1990).  
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Fig. 44  Reduction of a 4-channel model to 11 non-isomorphic classes.  The index above each 

graph denotes the number of active Hebbian connections. 

 

V.5. Pattern recovery: final results 

The final comparison of the two coding schemes will be performed on an 8-channel KIII 

model, for a total of 1,192 non-isomorphic cases.  As opposed to the preliminary study 

in section V.3.1, where performance was studied as a function of degrees of overlap in 

the pattern set and distortions in the input stimulus, the pattern recovery capabilities in 

this final study can only be evaluated in terms of the properties of each graph since the 

relationship between pattern sets and graphs is many-to-one.  Two observations will 

greatly simplify this analysis.  First, any two neighboring nodes (those that are connected 

directly by an edge) represent channels that are simultaneously active for at least one 

stored pattern.  Conversely, any two nodes that are more than one edge away represent 
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channels where two or more patterns overlap.  Therefore, it is possible to analyze the 

pattern-recovery performance of the phase and amplitude codes by comparing the 

activation between nodes connected by a single edge (which represents a true pattern) 

against the activation between nodes connected by a multi-edge path (which represents 

an undesirable overlap).   

 

This idea is illustrated in Fig. 45(a).  For a given graph, a single input stimulus is applied 

to the channel with the highest number of lateral connections (d0 in the figure), and the 

activity on the remaining channels is analyzed.  Nodes within one edge from d0 (denoted 

by d1) are part of a pattern.  Nodes two edges away (denoted by d2) are the effect of an 

overlap between two or more patterns.  The remaining nodes (d3 through d∞) can be 

neglected since they involve higher-order overlaps between patterns.  Fig. 45(b) 

illustrates the situation where the response of d0 and d1 nodes is linearly separable from 

the rest, indicating that a simple threshold function could be used to recover an 

incomplete pattern from an input stimulus having a single active channel.  Fig. 45(c) 

illustrates the opposite situation, where the response of d0 and d1 nodes is not linearly 

separable from the rest and, as a result, the incomplete pattern cannot be recovered. 
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Fig. 45  (a) Pattern and overlap bits for a given Hebbian graph.  (b, c) Pattern recovery as a linear 

separability problem.  

 

The procedure outlined in Fig. 45 is repeated individually for each of the 1,192 non-

isomorphic cases in the 8-channel KIII in order to measure the pattern recovery 

capabilities of the amplitude and phase codes.  The results are presented in Fig. 46 as a 

function of the number of d2 connections in each graph, which can be related to the 

overlap (e.g. the complexity) of the corresponding pattern sets.  Each point in the plot 

represents the percentage of graphs where the linear separability in Fig. 45(b) is 

achieved, relative to the total number of graphs.  This result shows that the performance 

of the amplitude code decreases dramatically as the degree of overlap increases, whereas 

the phase code degrades in a more graceful manner and always provides higher 

classification rates. 
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Fig. 46  Overall performance of the phase and amplitude codes as a function of pattern overlap. 

 

The average phase difference between the input node (d0) and all remaining nodes is 

shown in Fig. 47(a).  The phase of d1 nodes is closer to the input node than to the 

remaining nodes.  For comparison, the corresponding average amplitudes are shown in 

Fig. 47(b).  In this case the situation is reversed, with the amplitude of d1 nodes being 

farther from the input node than to the other nodes.  These results provide additional 

evidence for the superiority of the phase code.  
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Fig. 47  Phase difference and amplitude as a function of distance (number of edges) to the input 

node. d0 and d1 correspond to nodes that belong to the same pattern. 

 

V.6. Phase code with continuous patterns 

Previous sections in this chapter explored the performance of the phase code when the 

KIII operates with binary inputs.  In this section, we extend our study of the phase code 

to continuous inputs.  It is worth to note that, with the exception of (Kozma and Freeman, 

2001) all previous studies on the KIII model have used binary input patterns. 

 

In order to process continuous inputs, the Hebbian rule in Eq. 5.1 must be modified.  

With binary patterns, mitral-to-mitral connections were forced to have one of two 

possible values: HIGH if the channels connected were active for the same patterns and 

LOW otherwise (refer to section V.4).  In the case of continuous patterns, however, 
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these connections must be allowed to have a continuous range of values.  This is 

achieved by removing the threshold function f(⋅)  in Eq. 5.1:  

 

BppW
i

T
iiM +=�

∀
1        (5.2) 

 

where 1MW  is the lateral connectivity between mitral cells, and B is an offset term that 

defines the minimum strength of any connection.  We found that this offset term is 

critical to the computation of the phase code: without such offset, aperiodic oscillations 

in the basal state make it difficult to obtain a stable estimate of the phase of each channel 

(if such “phase” can at all be defined for an aperiodic signal).  The offset term B allows 

all channels to jump to a limit cycle whenever an input is introduced, thus facilitating 

computation of the phase.  

 

To study the performance of the phase and amplitude codes with continuous patterns, we 

trained a 64-channel KIII model with the three overlapping bell-shaped patterns shown 

in Fig. 48(a).  Fig. 48(b) and (c) shows the amplitude and phase of the KIII, respectively, 

when the target pattern (pattern B) was introduced.  The amplitude read-out retrieves not 

only the target pattern (pattern B) but also interfering contributions from the other stored 

patterns (A and C).  This is because the overlapping patterns are excited to some extent 

by the input applied to the common channels (pattern completion).  In contrast, the phase 

read-out retrieves the target pattern with minimum interference from the other stored 
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patterns, as shown in Fig. 48(c).  This behavior is consistent with that we have reported 

earlier in this chapter for binary patterns. 
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Fig. 48  Retrieval of continuous patterns through the amplitude and phase of the oscillations in 

the KIII.  (a) Three overlapping bell-shaped patterns are stored in the KIII.  (b) When the central 

pattern is presented as an input, the AC amplitude of the oscillation in the KIII channels shows a 

high degree of cross-talk with previously stored patterns.  (c) When the same central pattern is 

introduced, the relative phase of the oscillations in the KIII channels shows minimum 

interference with other patterns.  

 

Next, we further characterize the performance of the amplitude and phase code as a 

function of the degree of overlap between stored patterns.  For this purpose, we trained 

the KIII with the two bell-shaped patterns shown in Fig. 49.  Increasingly higher levels 

of overlap between the two patterns were achieved by shifting pattern A to the right 



 

 

113 

(Table 4).  The Euclidian distance between the recalled pattern (the output of the KIII) 

and the target pattern (pattern B) was used to evaluate the performance of amplitude and 

phase codes3.  Results are shown in Fig. 50.  It can be observed that both phase and 

amplitude are able to achieve near-perfect retrieval of the target pattern when the overlap 

is low.  As the overlap increases, the performance of the amplitude code degrade faster 

compared to that of the phase code.  It is also worth noting that the phase code always 

performs better than the amplitude code.  Therefore, we can conclude that the phase 

code is more reliable than the amplitude code, also for continuous patterns. 

 

Table 4  Euclidean distance and corresponding overlap between patterns A and B.  

Euclidean distance 4.96 4.96 4.96 4.93 4.87 4.76 4.56 4.25 3.78 3.14 
Overlap (%) 1.23 2.67 3.82 7.39 10.01 17.44 22.42 35.27 43.16 61.68 
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Fig. 49  Two bell-shaped patterns are used to train the KIII.  Different degrees of overlap are 

achieved by shifting pattern A to the right.  

                                                 

3 For each output pattern (phase and amplitude) and the stored pattern, the activity of each channel was 
divided by the maximum activity across all channels.  This form of normalization is necessary since the 
three representations (phase, amplitude, and stored patterns) have different scales.  
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Fig. 50  Ability of the phase and amplitude codes to recall an overlapping pattern.  The KIII is 

trained with patterns A and B from Fig. 49; pattern B is used as input.  The figure shows the 

distance between the recalled pattern and the stored patterns A and B.  As the overlap between 

the stored patterns (A and B) increases, the performance of the amplitude code degrades faster 

compared to that of the phase code. 

 

V.7. Conclusions 

This chapter has proposed an analogy between coherent oscillations in neural 

populations and phase locking in the KIII model.  We have shown that phase differences 

between channels can be efficiently measured by treating the state-space trajectory as a 

two-dimensional distribution and computing its correlation coefficient.  Scale invariance 

of the KIII with respect to phase information has been empirically validated on three 
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models with binary patterns and 16, 32 and 64 channels.  The performance of the phase 

code has been demonstrated in terms of (1) bit-wise error recovery from a decision-

theoretic viewpoint, and (2) pattern-level completion with a Hamming-distance classifier.  

An exhaustive comparison of the pattern-recovery capabilities of the phase and 

amplitude codes has been presented on an 8-channel model with binary patterns.  In 

order to avoid a combinatorial explosion, redundant pattern and stimulus combinations 

have been eliminated by means of graph isomorphism.  Experimental results show that 

information embedded in the phase of the KIII channels clearly outperforms the 

amplitude code. 

 

The performance of the phase code has also been evaluated with continuous patterns.  

The ability of both codes to recover an input pattern has been established as a function of 

the overlap between stored patterns.  Our results show that phase code is more robust 

than amplitude code as the overlap of the stored patterns increases.  The output patterns 

obtained with the amplitude code tend to have more interference from overlapping 

stored patterns than those obtained with the phase code.  Thus, our initial results on 

binary patterns (reported in section V.5 and in Gutierrez-Osuna and Gutierrez-Galvez, 

2003) also extend to the continuous case: the phase code provides a better recovery of 

the target pattern than the amplitude code. 

 

It appears that an amplitude code would be easier to decode as it does not require the 

precision involved in decoding the information from phase. It has been reported in the 
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literature that the olfactory system uses both amplitude and phase information (Stopfer, 

1997). 

 

Additional information other than correlation coefficients, which are equivalent to phase 

differences in sinusoidal oscillations, could also be extracted from the KIII dynamic 

attractors in two- or higher-dimensional state spaces.  This area constitutes promising 

directions for future work. 
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CHAPTER VI 

CONTRAST ENHANCEMENT 

 

The objective of this chapter is to develop a new learning rule to enhance the separability 

of gas-sensor-array patterns.  Inspired by the ability of the olfactory bulb contrast 

enhancement through excitatory and inhibitory circuits, we propose a learning rule that 

employs a Hebbian term to build associations within odors and an anti-Hebbian term to a 

reduce correlated activity across odors.  First, a formal study of the learning procedure is 

performed on a feed-forward linear model.  Then, the KIII model is trained with the new 

learning rule, and validated on both synthetic data and experimental sensor-array 

patterns. 

VI.1. Contrast enhancement in the olfactory bulb 

The olfactory bulb enhances the contrast across odors, facilitating their recognition in 

higher stages of the olfactory pathway.  Following Yokoi et al. (1995) and Mori, et al. 

(1999), contrast enhancement in the olfactory bulb results from inhibition of mitral cells 

by nearby granule interneurons (Fig. 51).  This inhibition has the effect of reducing the 

molecular tuning range (i.e., increasing the specificity) of a mitral cell relative to that of 

the olfactory receptor neurons that converge onto it.  This effect is corroborated by 

experimental results, which are also illustrated in Fig. 51.  The right hand side of the 

figure shows the response of three glomerular units (A, B, C) and one mitral cell output 
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(D) upon exposure of the ORN to n-aliphatic aldehydes with different carbon chain 

lengths.  It can be observed that the output of mitral cell D is reduced with respect to its 

input (glomerulus B) for those n-aliphatic aldehydes for which nearby mitral cells have a 

high response.  This effect is due to the inhibitory lateral connections of surrounding 

mitral cells.   
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Fig. 51  Contrast enhancement in the olfactory bulb.  (a) Architecture of the early stages of the 

olfactory pathway: Olfactory Receptor Neurons (ORN), Glomeruli (GL), Mitral/Tufted cells 

(M/T), Granule cells (GR).  (b) Response of three glomerular units (A, B, C) and one mitral cell 

output (D) upon exposure of the ORN to n-aliphatic aldehydes with different carbon chain 

lengths.  It can be observed that the output of mitral cell D is sharpened with respect of the input 

(B) as a result of the lateral interaction with neighboring M/T cells (adapted from Yokoi, Mori, 

and Nakanishi, 1995). 
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VI.2. Contrast enhancement through Hebbian/anti-Hebbian learning 

The effect of lateral inhibition through granule cells can be thought of as an 

orthogonalization of patterns.  This computational function can be achieved by means of 

anti-Hebbian learning, a mechanisms known to decorrelate inputs (Principe et al., 1999).  

The anti-Hebbian learning rule is the opposite of the Hebbian rule, and states that the 

strength of the connection between two neurons should decrease when both activate 

simultaneously: 

 

lkkl xxw −=∆          (6.1) 

 

where xk and xl are the k-th and l-th inputs to the system.  

 

Application of the anti-Hebbian rule to the KIII model is not trivial because of the 

oscillatory nature of the KII sets: the interaction between laterally-connected oscillators 

is a vector operation.  Depending on the relative phase of the two oscillators, it is 

possible for an inhibitory connection to have an excitatory effect.  This problem has been 

previously reported with oscillatory neural networks by Hirsch and Baird (1995).  To 

address this problem, we propose a new learning rule that avoids negative connections 

by combining Hebbian and anti-Hebbian terms.  The role of the Hebbian term is two-

fold.  First, it preserves the associative-memory function of the KIII, allowing the model 

to learn odor-specific attractors.  Second, it provides positive mitral-to-mitral 
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connections, which are subsequently reduced by an anti-Hebbian term without the risk of 

becoming negative.  The use of both Hebbian and anti-Hebbian terms on the same 

connections has been linked to the mechanism of spike-dependent synaptic plasticity (Bi 

and Poo, 2001).  This analogy is described in Appendix A. 

 

VI.2.1. Adapted Hebbian/anti-Hebbian rule 

To derive a new learning rule inspired by the synaptic time dependent plasticity (STDP) 

mechanism (Appendix A), let us consider the linear-associative memory (LAM) in Fig. 

52. 

 

x
y

W

x
y

W  

Fig. 52 Linear associative memory with a feed forward network. 

The input-output relationship of a LAM is: 

 

( ) ( ) ( )nxnwny T ⋅=                                                  (6.2) 
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where x(n), y(n) and w(n) are the values of input, output, and weight matrix at the nth 

iteration, respectively. 

 

Following STDP, the weight update will have two terms: 

 

)()()()1( nwnwnwnw decorrcorr ∆+∆+=+                           (6.3) 

 

where corrw∆  and decorrw∆  are the correlation and decorrelation terms respectively. To 

understand how these two terms could emerge during learning, we assume that (1) inputs 

are presented to the LAM in a random fashion as a result of the system interacting with 

its environment and (2) the system’s response is latched at the output until the system 

processes the next input. This sequence is illustrated in Fig. 53.   
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Fig. 53 The network correlates or decorrelates the input and the output depending on their causal 

relationship. 
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Causally related inputs-outputs (x(i), y(i)) lead to correlation, whereas non-causally 

related inputs-outputs (x(i+1), y(i)) lead to decorrelation. Therefore, the two terms take 

the following form: 

 

)()()( nynxnw T
corr ⋅⋅=∆ λ                                             (6.4) 

 

)()1()( nynxnw T
decorr ⋅+⋅−=∆ ρ                                       (6.5) 

 

where λ  and ρ  capture the strength of the correlation and decorrelation mechanism 

respectively. Given that our model does not capture specific timing, we estimate λ  and 

ρ  to be proportional to the area enclosed by the positive and negative curves in Fig. 100 

respectively. Since these areas are comparable, we set λ  and ρ  to an equal value 

( λ = ρ =1). 

 

Considering Eq. 6.2, the correlation term can be rewritten as: 

 

( ) )()()()()()( nwnxnxnxnwnxw TTT
corr ⋅⋅=⋅⋅=∆                      (6.6) 

 

note that the first two terms )()( nxnx T⋅  are the outer product of the input with itself. 

Similarly, the decorrelation term reads: 
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( ) )()()1()()()1( nwnxnxnxnwnxw TTT
decorr ⋅⋅+−=⋅⋅+−=∆              (6.7) 

 

where )()1( nxnx T⋅+  is the outer product of input vectors x(n) and x(n+1), which are 

presented at different times n and n+1, respectively. 

 

To determine the final weight matrix w obtained by training the LAM with these two 

terms, let us consider that N non-negative patterns { }Npppp ,...,,, 321  are randomly 

presented to the system. Following Eq. 6.6 and assuming that the initial value of the 

weight matrix w(0) is zero, the correlation term will be a superposition of the outer 

product of all the inputs: 

 

�
=

⋅=
N

i

Tii
corr ppw

1

)(                                                  (6.8) 

 

 

Similarly, following Eq. 6.7, the decorrelation term will be a superposition of the outer 

product of each pattern with the rest. This term reads: 

 

��
=

≠
=

⋅−=
N

i

N

ij
j

Tii
decorr ppw

1 1

)(                                             (6.9) 

 

Combining the two terms, we obtain the proposed Hebbian/anti-Hebbian rule: 
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The Hebbian learning rule is ultimately applied to the mitral-to-mitral connections of a 

reduced KIII model, shown in Fig. 54.  The first term in Eq. 6.10 is the Hebbian rule, 

which strengthens the connection between neurons that are active within a pattern.  The 

second term is the anti-Hebbian component, which reduces the connection weights 

between neurons that are active for multiple patterns, on the average reducing the 

overlap across patterns.  Negative mitral-to-mitral connections are avoided by forcing to 

zero all elements in Eq. 6.10 that become negative. 
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Fig. 54  Mitral to mitral connections of the reduced KIII model are trained with the 

Hebbian/anti-Hebbian rule (adapted from Kozma and Freeman, 2001). 

 

VI.3. Formal analysis of the Hebbian/anti-Hebbian rule 

To isolate computational function from non-linear dynamics intricacies of the KIII 

model, a formal analysis of the proposed learning rule is performed on a simplified feed-

forward network with linear neurons.  The objective of this analysis is to prove that the 
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Hebbian/anti-Hebbian rule orthogonalizes stored patterns.  First, we explain how the 

study of the learning rule in a feed-forward network with linear neurons can be used to 

infer the effect of the learning rule in the KIII model.  Next, we determine necessary 

conditions for the learning rule to orthogonalize the stored patterns.  In doing so, we will 

also show that the Hebbian/anti-Hebbian learning rule completely removes cross-talk4.  

Finally, we prove that, under the above mentioned conditions, the Hebbian/anti-Hebbian 

learning rule orthogonalizes the stored patterns.  Therefore, the conditions are not only 

necessary but also sufficient to orthogonalize the patterns. 

VI.3.1. Feed-forward linear model  

The simplified feed-forward linear network used for this analysis is equivalent to the 

unfolding in time of a recurrent structure with linear neurons (Haykin, 1999; pp.  732-

789).  Fig. 55(b) shows the unfolding of the fully-laterally-connected network in Fig. 

55(a).  At any specific time t, the activity on the network xi(t) is computed as: 

( ) ( ) iii btxwtx +−⋅= 1                                                (6.11) 

The evolution of this system will differ from that of the KIII because of the non-linear 

behavior of K0 sets.  However, the effect of one single linear step will be similar in both 

systems, and much information about the effect of the learning rule on the recurrent 

network can still be gained by studying this simplified model.  

 

                                                 

4 Cross-talk is defined as the interference that a stored pattern has in the recall of any other pattern. 
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Fig. 55  Unfolding in time of a recurrent neural network.  (a) Fully-connected recurrent neural 

network, where Xi is the state of neuron i, bi is the input to neuron i, and wij is the connection 

weight between neurons i and j.  (b) Unfolding in time of the recurrent network.  Xi(t) denotes 

the state of neuron i at time t, and wij is the connection weight between neurons i and j.   

 

In this study, the bias term will be assumed to be zero; this will allow us to isolate the 

effect of learning on the output of the system.  Specifically, we consider a network with 

M fully-connected neurons, analogous to the interconnectivity between mitral cells (Fig. 

35, Chapter IV) that plays a major role in the processing of information in the KIII 

model (adapted from Haykin, 1999).   

 

VI.3.2. Necessary conditions for orthogonalization 

We first determine necessary conditions for the Hebbian/anti-Hebbian learning rule to 

orthogonalize the stored patterns.  We assume that N non-negative patterns 

[ ] 0;1;...21 ≥≤≤= i
j

Ti
M

iii xNixxxp  have been stored according to Eq. 6.10.  To ensure that 
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the model outputs are non-negative as well, a Heaviside function � is used to threshold 

the output units.  This step function does not affect the following derivations, and it will 

be only considered to prove that the learning rule leads to the orthogonalization of the 

input patterns.  When presented with one of the previously stored patterns pk, the output 

of a single linear step becomes: 

 

k
N

i

N

i

N

ij
j

TjikTiik pppppppw ⋅⋅−⋅⋅=⋅ � ��
= =

≠
=1 1 1

)()(                        (6.12) 

 

Since the projection matrix w consists of the outer product of training patterns {pi}, this 

linear transformation projects the M-dimensional input space onto the N-dimensional 

space spanned by the training patterns {pi}.  Therefore, the output of the system can be 

expressed as a linear combination of the stored patterns {pi}.  Separating the terms 

containing the input pattern pk from the rest: 
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and regrouping, we can find the coefficients for each training pattern: 
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From this expression, we can derive two conditions that guarantee orthogonalization:  
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0)()(
1

<⋅−⋅ �
≠
=

N

ij
j

kTjkTi pppp             Ni ≤≤1              (6.16) 

 

The first constraint 6.15 requires that term A in Eq. 6.14 be positive, ensuring that the 

input pattern has a positive contribution to the output.  This constraint is met when the 

norm of the target pattern ( kp ) is larger than the sum of the projections of all other 

training patterns onto it.  The second constraint 6.16 requires that term B in Eq. 6.14 be 

negative, so that the overlap with other patterns is subtracted from the output.  

 

It is worth notice that the two conditions are not independent; the second constraint 6.16 

is a subset of the first 6.15.  If constraint 6.15 is met, it then follows that: 
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kTikTk pppp ⋅>⋅ )()(                                                (6.17) 

 

since the right-hand side of 6.17 is simply one of the terms in the right-hand side of 6.15, 

and patterns are assumed to be non-negative.  With this result in mind, and rearranging 

the left-hand side of constraint 6.16:  
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         (6.18) 

 

which shows that constraint 6.16 is always met when constraint 6.15 is met.  Therefore, 

constraint 6.15 is the only condition that is required in order for the Hebbian/anti-

Hebbian rule to orthogonalize the stored patterns. 

VI.3.3. Cross-talk elimination 

A direct consequence of condition 6.15 is the elimination of cross-talk at the output of 

the linear network.  The cross-talk term is illustrated in Eq. 6.14.  This term causes 

interferences from other stored patterns in the recall of any pattern.  To illustrate this, we 

consider the response of the model when only the Hebbian term in Eq. 6.10 is included: 
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In this case, the ideal response of the model is the original pattern pk, which corresponds 

to the first term in Eq. 6.19.  However, as a result of overlap with other patterns in the 

associative matrix (pi, i≠k), a cross-talk term appears at the output of the system, as 

reflected in the second term of Eq. 6.19.  The introduction of the anti-Hebbian term 

reduces the cross-talk as shown in 6.14.  In fact, imposing condition 6.15 the cross-talk 

is totally removed since 0)()( <⋅−⋅ kTkkTi pppp  (Eq. 6.18). 

VI.3.4. Formal proof of orthogonalization  

We now prove that Eq. 6.15 is not only a necessary but also a sufficient condition to 

achieve orthogonalization of the training patterns.  To do so, we prove that, when 

condition 6.15 is met, only one pattern per feature will have a positive value at the 

output of the network; the remaining patterns will have a negative value, which will be 

brought to zero by the Heaviside function.  This process is illustrated in Fig. 56 
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Fig. 56 Orthogonalization through competition across channels and within features. The KIII is 

trained with the three input patterns, and subsequently presented with the three of them. A 

feature is active at the output of any of the patterns if that feature is highest across patterns at the 

corresponding input pattern. 

 

 Considering the output of the linear network feature-wise, we can rewrite Eq. 6.12 as: 
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where k
ip  denotes the ith feature (or component) of pattern [ ]Tk

M
kkkk ppppp ,,,, 321 �= , 

and the subindex outi is used to differentiate the ith component of the output pattern from 
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that of the stored patterns.  Now consider that, among all the training patterns, there is a 

pattern pt whose ith component is highest across training patterns: 

 

k
i

t
i pp >      ;   tkNk ≠= ;,...,1                                                (6.21) 

 

We want to show that the ith component of the output pattern will be negative when any 

stored pattern pk except for pt ( tk ≠ ) is used as input.  Introducing pk at the input of the 

network, and redefining ( ) kTjjk ppp ⋅≡ , Eq. 6.20 reads: 
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Unfolding of terms A and B in Eq. 6.22 leads to: 
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Regrouping Eq. 6.23 we obtain: 
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Term I in Eq. 6.24 is positive because of condition 6.17, whereas term II is negative 

because of condition 6.22; as a result, term III is negative.  Terms IV and V are negative 

since all training patterns are positive-defined and the dot products ijp  are also positive.  

Since rkkk pp >  6.17, term VI is also negative.  Since the four terms in Eq. 6.24 are 

negative, the left-hand side i
k
newp  is also negative, and only pattern pt will have a positive 

value for the i-th component.  Therefore, each pattern will only have a non-zero value 

for those components for which it has the maximum value among all stored patterns, 

which proves that the learning rule performs pattern orthogonalization. 
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VI.4. Characterization with synthetic inputs 

The behavior of the KIII with the new learning rule will be characterized on two 

different synthetic datasets.  The first dataset consists of three overlapping bell-shaped 

patterns (similar to those used in Chapter IV) with 64 dimensions, as shown in Fig. 57.  

This dataset will be used to qualitatively characterize the behavior of the new learning 

rule on continuous patterns.  The second dataset consists of a training set of three 

overlapping binary patterns, and a test set with noisy versions of these patterns.  This 

dataset will be used to compare our model against other pattern classifiers. 

VI.4.1. Qualitative analysis of the learning model 

Input patterns for this dataset are shown in Fig. 57(a).  To facilitate visual interpretation, 

the input channels are sorted such that activity for a particular odor pattern is localized in 

a specific region of the feature vector5.  

 

                                                 

5 Note that a permutation of the input channels would lead to exactly the same configuration because of 
the symmetry of the KIII with respect to the channels. 
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Fig. 57  (a) Overlapping synthetic patterns used to characterize the Hebbian/anti-Hebbian 

learning rule.  (b)  Output of the KIII model (i.e., AC amplitude of mitral cells) when each odor 

pattern is presented at the input.  Note that the overlap between odor patterns at the outputs of 

the KIII model has been eliminated.  

 

To better understand the role of the new Hebbian/anti-Hebbian rule, it is useful to isolate 

the connection matrices that result from each term in Eq. 6.10.  Fig. 58(a) show the 

connection matrix for the Hebbian term, which is the sum of the outer product of each 

odor pattern with itself.  As shown in the figure, the Hebbian term leads to associative 

connections, where input channels that are active for a given odor reinforce each other.  

Fig. 58(b) shows the connectivity matrix for the anti-Hebbian term, which is computed 

as the outer product of each odor pattern with the rest of the odor patterns.  This matrix 

reinforces connections between channels that are active for more than one odor.  By 
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subtracting the anti-Hebbian term from the Hebbian term, and forcing negative 

connections to zero, the resulting connectivity matrix is able to depress 

incoming/outgoing connections from/to overlapping channels.  This has two important 

effects.  First, it eliminates cross-talk between patterns, as shown analytically in the 

previous section.  As a result, recalling one odor pattern will not elicit other stored odors.  

Second, the contrast between odors is significantly enhanced at the output of the KIII. 
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Fig. 58  Connections matrix. Lateral connections between mitral cells: (a) Hebbian term, (b) 

anti-Hebbian term, and (c) combined effect by subtracting anti-Hebbian from Hebbian terms. 

 

A KIII model with 64 channels was trained on the three odor patterns shown in Fig. 

57(a) using the Hebbian/anti-Hebbian learning rule.  Each odor pattern was then 

presented to the model, and the AC amplitude of mitral activity was used as an output.  

Results are shown in Fig. 57(b).  First, as predicted earlier, the recall of one odor pattern 

does not elicit activity in channels where other odor patterns are prevalent.  Second, 

contrast among odor patterns is enhanced by reducing activity in channels of significant 

overlap. 
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Alternatively, one can analyze the response of individual KIII channels across odors to 

determine the effect of the lateral interaction on their individual receptive ranges.  For 

this purpose, four channels with significant overlap across patterns (channels 23, 26, 38, 

and 41 in Fig. 57) were selected, and analyzed in terms of their inputs and KIII outputs 

for the three patterns.  The results are shown in Fig. 59.  The inputs to the KIII model 

respond significantly to two of the three odor patterns.  In contrast, as a result of lateral 

interactions, each mitral cell in the KIII model becomes specifically tuned to one odor.  

This result is analogous to the sharpening of the molecular receptive field first described 

by Yokoi et al. (1995). 
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Fig. 59  Activity of four KIII channels (23, 26, 38 and 41) for the three synthetic odors patterns 

(A, B and C).  Upper row: Input to the KIII.  Lower row: AC amplitude of mitral cells. 
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VI.4.2. Comparison with other methods 

In this section, the performance of the KIII model with the new Hebbian/anti-Hebbian 

rule is compared to that of three additional procedures: a Hopfield network (Hopfield, 

1982), a KIII with only Hebbian learning, and a Linear Discriminant Analysis (LDA) 

(Duda, et al. 2001).  The first two procedures are associative memories, and were chosen 

to determine the extent to which the proposed learning rule can improve the performance 

of a model trained with Hebbian learning.  LDA was used to provide an upper bound on 

the optimum pattern separability; LDA is known to find the optimum projection for 

Gaussian likelihoods with equal covariances (Duda et al., 2001) by maximizing the 

Fisher Discriminant Function (Appendix B).  In turn, the pattern separability of the raw 

inputs was used as a lower bound of performance for the models.  

 

The three binary overlapping patterns shown in Fig. 60 were used as a training set.  Test 

examples were generated by randomly mutating bits of these 16-dimensional patterns.  

Six levels of noise ere considered by mutating between 1 and 6 bits, which corresponds 

to a 6-37% change in the original pattern.  1,000 examples were generated for each noise 

level. 
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Fig. 60  Overlapping binary patterns used to test model performance. 

 

Fig. 61 shows the pattern-separability obtained by the four procedures, and also that 

available at the input.  The separability J (described in Appendix B) is plotted as a 

function of the amount of noise in the input patterns.  The KIII-Hebbian/anti-Hebbian 

clearly outperforms the KIII-Hebbian and the Hopfield network, and performs close to 

the upper bound defined by LDA.  This result can be understood in terms of the 

mechanisms that increase the pattern separability at each network.  The Hopfield 

network and the KIII-Hebbian model are able to increase the separability of the input 

patterns through pattern completion.  This mechanism is able to partially restore the 

stored patterns from the noisy version presented at the input, reducing the within-class 

scatter SW.  The KIII-Hebbian/anti-Hebbian takes advantage not only of the pattern-

completion mechanism of Hebbian learning, but also performs a reduction of 

overlap/crosstalk by means of the anti-Hebbian term, which can be thought of as a 

mechanism to increase the between class-scatter SB of the input patterns. 
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Fig. 61  Separability of the output patterns against the level of noise introduced in the input 

patterns.  Separability of the output patterns of LDA, KIII-Hebbian/anti-Hebbian, KIII-Hebbian, 

Hopfield output, along with the separability of the raw input. 
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VI.5. Validation with sensor-array patterns 

The KIII-Hebbian/anti-Hebbian model was finally validated on experimental data with 

the temperature modulation database (section II.3.1, in Chapter II).  The array consisted 

of four MOS sensors (TGS2600, TGS2610, TGS2611, and TGS2620) (Figaro, 1996).  

The delivery system, described in section II.2 of Chapter II, was used to expose the 

sensors to the dynamic headspace of three analytes: allyl alcohol (A), tert-butanol (B), 

and benzene (C) at five different concentrations.  To increase the information content of 

the sensor response, the MOS sensors were modulated in temperature (Gutierrez-Osuna 

et al., 2003) with a ramp profile on the heater voltage from 2V to 4.5V over a period of 

200 seconds.  Fig. 62 shows the response of the four sensors to five different 

concentrations of each analyte.  Using this excitation profile, we collected a database of 

sensor response patterns for the three analytes (A, B, C), five concentrations per analyte, 

and seven repetitions each, for a total of 35 samples.  Each repetition was collected on a 

different day to determine the extent to which sensors patterns were repeatable. 
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Fig. 62  Response of the four MOS sensors (TGS2600, TGS2610, TGS2611, TGS2620, first to 

fourth rows respectively) to five different concentrations of allyl alcohol , tert-butanol , and 

benzene, first to third columns respectively.  The bottom curve in each plot is the sensor 

response to air.  The heater voltage was modulated using a ramp profile (2V to 4.5V; 200 

seconds). 
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The temperature-modulated response of the four MOS sensors at the highest 

concentration was concatenated to form a single pattern, and used to train the KIII.  Each 

pattern was previously normalized individually to have a maximum value of one, and 

decimated to obtain 64 samples per sensor response.  The resulting training patterns have 

256 dimensions.  This preprocessing, performed for every analyte at every 

concentration, is necessary to balance the inputs to the KIII and ensure that the model 

operates in a well-behaved dynamic region.  

VI.5.1. Performance of the amplitude code 

In this section, we employ the amplitude code to study the contrast enhancement 

achieved by the model.  Fig. 63(a, c, e) shows the concatenated response from the four 

MOS sensors.  Even though the sensors provide a unique response pattern to each 

analyte, there is also a significant degree of overlap that overshadows the most relevant 

discriminatory information.  Fig. 63(b, d, e) shows the amplitude output of the KIII to 

the three analytes; the KIII is able to noticeably reduce the overlap across patterns and 

enhance the channels (i.e., operating temperatures) with highest selectivity.  The 

response pattern for allyl alcohol is highly reduced on the right-hand side of the two 

peaks of sensors TGS2610 and TGS2611 since that region is highly overlapping with the 

response to tert-butanol and benzene.  On the other hand, activity on the left-hand side of 

the peaks is preserved because this area contains discriminatory information of allyl 

alcohol.  The response pattern for tert-butanol has a large overlap with the other two 

response patterns on both sides of the peaks; thus, the KIII narrowly sharpens the 

activity of the patterns around its peaks (Fig. 63).  Finally, the sensor response pattern 
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for benzene is also sharpened around the two peaks of sensors TGS2610 and TGS2611, 

which is where discriminatory information for this analyte is highest.   
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Fig. 63  Contrast enhancement in the KIII with experimental data from gas sensors.  Plots (a, c, 

e) show the original sensor response to the three analytes, which serves as the input to the KIII.  

Plots (b, d, f) show the corresponding output of the KIII, measured as the AC amplitude of mitral 

cells.  
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The tuning range of six individual KIII channels (34, 75, 98, 111, 219 and 224) is shown 

in Fig. 64.  These channels were chosen for temperatures that showed higher activity for 

each one of the three input odors.  The top row shows the input to the KIII, whereas the 

bottom row shows the AC amplitude at the mitral outputs.   
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Fig. 64  Activity across odors of channels 34, 75, 98, 111, 219 and 224.  Upper row: sensor 

response.  Lower row: AC amplitude of mitral cells. A denotes allyl alcohol, B tert-butanol, and 

C benzene. 
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We can observe that the model is able to significantly sharpen the response of mitral 

nodes with respect to that in the sensor response, to where each mitral node becomes 

highly tuned to a particular odor.  This sharpening is similar to winner-take-all 

competition, where only the response to the odor with highest response at the input is 

kept at the output.  

 

VI.5.2. Performance of the phase code 

In this section, we study the performance of the phase code in recovering stored patterns 

resulting from the Hebbian/anti-Hebbian rule.  Fig. 65(b, d, and e) shows the output 

patterns obtained using phase code. The response pattern for allyl alcohol is highly 

reduced on the right-hand side of the two peaks of sensors TGS2610 and TGS2611 since 

that region is highly overlapping with the response to tert-butanol and benzene.  On the 

contrary, activity to the left of the peaks is preserved because this area contains 

discriminatory information of allyl alcohol.  The response pattern for tert-butanol has a 

large overlap with the other two response patterns on both sides of the peaks.  Thus, the 

KIII narrowly sharpens the activity of the patterns around its peaks (Fig. 65).  Finally, 

the sensor response pattern for benzene is also sharpened around the two peaks of 

sensors TGS2610 and TGS2611, which is where discriminatory information for this 

analyte is highest. 
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Fig. 65  Contrast enhancement through phase coding in the KIII with experimental data from gas 

sensors.  Figures (a, c, and e) show the original sensor response to three analytes, which serves 

as the input to the KIII.  Figures (b, d, and f) show the corresponding output of the KIII, 

measured as the relative phase of mitral cells. 

 

From Fig. 63 and Fig. 65, we note that both phase and amplitude read-outs give similar 

performance on this dataset.  This result, though, should come as no surprise.  As 

mention in section V.6, the phase code is able to reduce the cross-talk between 

overlapping stored patterns.  However, the anti-Hebbian component of the new learning 
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rule already performs contrast enhancement of the sensor patterns, thus reducing the 

overlap between stored patterns.  As a result, the performance of amplitude and phase 

codes following contrast enhancement should be expected to be comparable. 

VI.5.3. Effect of concentration on the performance of the model 

In this section, we study the ability of the KIII to increase the contrast of sensor-array 

patterns obtained with different concentrations of the analytes.  As in section VI.4.2, 

model performance was measured using the Fisher discriminant ratio (J) (Appendix B).  

The KIII model was trained with the sensor-array response at the highest concentration 

of each analyte, and subsequently tested with the entire database.  Given that phase and 

amplitude codes perform similarly following Hebbian/anti-Hebbian learning (as shown 

in the previous section), only the amplitude code will be used in this section.  Fig. 66 

shows the pattern separability at the input and output of the KIII as a function of analyte 

concentration.  Pattern separability increases with concentrations.  This is due to two 

reasons.  First, the analytes become more separable at increasing concentrations.  This is 

clearly shown by the lower curve in Fig. 66, which represents separability in the raw 

sensor data.  Second, the KIII is likely to display better performance at concentrations 

close to the one it was trained on (the highest concentration in our case).  However, the 

model is also able to increase pattern separability at all lower concentrations as well, as 

can be observed in Fig. 66. 
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Fig. 66  Pattern separability at the input and output of the KIII as a function of the concentration 

of the analytes.  The model was trained using only the sensor patterns at the highest 

concentration. 

 

VI.6. Discussion 

There are two prevailing views on how odor contrast enhancement occurs at the 

olfactory bulb.  The first, proposed by Yokoi et al. (1995) and Mori et al. (1999), states 

that lateral inhibitory connections sharpen the molecular receptive range (i.e. the tuning 

specificity) of projection neurons in the bulb, in a manner akin to edge detection through 

receptive fields in the retina.  The second, more recent view of Laurent and colleagues 

(Laurent et al., 2001; Laurent, 2002) argues that contrast enhancement occurs as a global 

redistribution of activity across the entire olfactory bulb, as opposed to local 

improvements in the molecular receptive field of individual projection neurons or 
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winner-take-all selection of the most active units.  According to this view, the 

representation in the olfactory bulb changes continuously throughout a stimulus in an 

odor-specific manner; this distributed temporal patterning progressively increases the 

contrast between bulb-wide odor representations.  From this perspective, the model 

proposed in this paper is consistent with the view of Mori, since the main mechanism for 

contrast enhancement is a form of winner-take-all competition.  

 

To achieve contrast enhancement, the proposed learning rule relies on (1) a Hebbian 

term to build associations within odors and (2) an anti-Hebbian term to reduce co-

occurring activity across odors.  Formal analysis on a linear neural network has shown 

that the anti-Hebbian term of the learning rule is able to completely eliminate cross-talk.  

We have also provided mathematical proof that the proposed learning rule also performs 

pattern orthogonalization.   

 

The model has been characterized with a synthetic problem with binary patterns.  The 

proposed learning rule has been shown to increase the separability (Fisher discriminant 

ratio) of the output patterns with respect to that available at the input.  This is achieved 

by both a decrease of the within-class scatter and the increase of the between-class 

scatter of the output distribution.  It is worth to notice that the simulated dataset in 

section VI.4.2 consisted of isotropic likelihoods and, therefore, all discriminatory 

information was contained in the mean of the distribution.  This type of distribution was 
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used to ensure a fair comparison between the two KIII models and the Hopfield model, 

which are limited to first-order statistics, and LDA, which can also consider second-

order statistics. Furthermore, having the same covariance matrix for all classes ensures 

that LDA finds the optimal solution. Thus, the close performance between the KIII-

Hebbian/anti-Hebbian and LDA is a remarkable result. 

 

The model has also been validated on the response of four MOS sensors to three 

analytes: allyl alcohol, tert-butanol, and benzene, at different concentrations. Our results 

have shown that the model is able to increase the separability of gas-sensor-array 

patterns, and also generalizes well across concentration levels.  

 

The phase and amplitude codes have been shown to perform similarly.  This is due to the 

reduction of cross-talk achieved by the Hebbian/anti-Hebbian rule.  This result leads us 

to think that phase coding and the Hebbian/anti-Hebbian rule are two alternative 

solutions for the same problem: robust recovery of overlapping patterns.  In Chapter V, 

the phase code was shown to recover stored patterns even with high degrees of overlap.  

In this chapter, the Hebbian/anti-Hebbian rule has been also shown to robustly recover 

overlapping patterns.  However, the way in which both approaches operate is different.  

The phase code recovers the complete stored pattern, whereas the Hebbian/anti-Hebbian 

learning rule recovers an overlap-free version of the target pattern.  
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CHAPTER VII 

BACKGROUND SUPPRESSION 

 

Habituation is a process that allows a sensory system to reduce its sensitivity to 

previously detected stimuli, preventing sensory overflow in the central nervous system 

and improving the ability to detect new and, therefore, more informative stimuli (Wang, 

1998).  This computational function has great potential in sensor-based machine 

olfaction as a mechanism to reduce the effect of background odors and enhance 

selectivity towards the interesting components in a sample.  

 

Wang et al. (1990) proposed a mechanism for the related problem of pattern 

segmentation.  The authors employed a neural network of oscillatory units linked with 

Hebbian connections to perform temporal segmentation of the stored patterns.  

Alternating bursts of activity induced by self-inhibition are used to create a spatio-

temporal pattern that sequentially extracts the components of a mixture.   
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Hendin et al. (1994) studied odor segmentation as a blind-source separation problem, 

where the different components in an odor mixture follow independent temporal 

fluctuations.  Li and Hertz (2000) proposed a feedback mechanism for odor 

segmentation whereby the olfactory bulb activity is modulated with an efferent signal 

after an odor is recognized.  Gutierrez-Osuna and Powar (2003) presented a statistical 

pattern recognition approach for odor segmentation with chemical sensor arrays where 

habituation is triggered by a central feedback signal, in a manner akin to (Li and Hertz, 

2000).   

 

The objective of this chapter is to investigate the habituation process using (1) a 

biologically plausible computational model and (2) an adaptation mechanism based on 

local activity.  In order to facilitate the process of background suppression, the 

contrast-enhancement rule developed in the previous chapter will be used to reduce the 

overlap between odor patterns.  The complete system is evaluated with synthetic data on 

a series of habituation scenarios to odor mixtures.  Finally, the model is validated on gas-

sensor array data. 
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VII.1. Habituation in the KIII model 

Following Kozma and Freeman (2001), the habituation process is assumed to induce 

depression of synapses from mitral nodes onto other neuron populations, as highlighted 

in Fig. 67.  Following Wang (1998), changes in these synapses are assumed to be 

proportional to their instantaneous value and, thus, follow an exponential decay: 

 

( ) ( ) ( )[ ] ( )[ ]τ/exp1 ttwBtwttww ∆−−−=−∆+=∆                            (7.1) 

 

where w represents a synapse from the habituating mitral cell to other mitral or granule 

cells, �6 is a time constant governing the rate of habituation, and B is the final value that 

the connection will approach asymptotically.  During the habituation process, B is the 

minimum strength of the connection (i.e., under complete habituation.)  A suitable value 

of B=1.5 was obtained through experimentation7.  Under dishabituation, B is simply the 

original value of the connection which, along with all remaining KIII parameters, are 

borrowed from (Chang, Freeman, and Burke, 1998a). 

 

                                                 

6 A value of �=500ms is used in this work to aid visualization. The implementation of Kozma and Freeman 
(2001) is equivalent to a slower time constant τ=2s. 
 
7 For values of B≤1.5, we observed that the KIII response to a stimulus was similar to the basal state. 
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Fig. 67  Connections from mitral cells to any other cells in the KIII model are adapted through 

habituation (adapted from Chang, Freeman, and Burke, 1998). 

 

Fig. 68 shows the evolution of parameter Wgm, which is the connection weight between 

mitral and granule cells under habituation and dishabituation.  
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Fig. 68  Habituation and dishabituation processes.  The weight of a mitral-to-granule connection 

is plotted against time.  The habituation mechanism is triggered when an odor is introduced to 

the system (thick bar on top).  Likewise, the dishabituation process is triggered by the removal of 

the odor. 

 

In contrast with the mechanism of Kozma and Freeman (2001), in which a node 

undergoes habituation if it exceeds the average activity across the mitral layer, our 

habituation/dishabituation processes are initiated based solely on the local activity at 

each channel (for biological-plausibility purposes.)   
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Our triggers are illustrated in Fig. 69(b-d).  Following (Chang et al. 1998a), the AC 

activity at each G2 node (G2AC) is computed with a 50ms-wide moving window.   

 

The window is split into 10 non-overlapping segments, and the average of the standard 

deviation at each segment is used as a measure of AC amplitude (see Fig. 69(b)).  From 

the derivative of G2AC (see Fig. 69 (c)), suitable thresholds Thab=0.6 mV/ms and 

Tdishab-AC=0.4 mV/ms are then used to detect the onset of habituation and dishabituation, 

respectively.  The threshold Tdishab-AC works as long as the stimulus is removed before 

full habituation is reached.  Otherwise, the AC amplitude cannot be discriminated from 

the basal state, as illustrated in Fig. 69(d).  In this case, a sudden change in DC offset can 

be used to detect that the stimulus has been removed.  The DC component of each G2 

node (G2DC), shown in Fig. 69(e), is computed with a 200-ms causal moving average.  A 

threshold Tdishab-DC=0.25 mV/ms is then applied to the derivative of G2DC (see Fig. 69(f)) 

to trigger dishabituation.  To avoid false triggers, the threshold Tdishab-DC is applied only 

if the connection is near full habituation (w≤1.8).  The derivative of G2AC (G2DC) is 

computed by subtracting from the signal its average activity on the previous 50ms 

(200ms). 
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Fig. 69  (a) Habituation in the KIII is effected through mitral connections (Chang, Freeman, and 

Burke, 1998a).  Triggering habituation and dishabituation from G2 activity: (a-c) stimulus is 

removed before and (d-f) after full habituation. 
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VII.2. Characterization with synthetic data 

The habituation mechanism is first characterized on a set of binary patterns in order to 

illustrate the processes of habituation, dishabituation, and pattern completion.  Then, a 

dataset of bell-shaped overlapping patterns is used to demonstrate the ability of the 

habituation mechanism (combined with the Hebbian/anti-Hebbian learning rule of 

Chapter VI) to segment continuous patterns. 

VII.2.1. Binary patterns  

The synthetic patterns of single odors and their binary mixtures used to study the effect 

of the habituation mechanism are shown in Fig. 70. Note that the mixtures patterns (AB, 

BC, and CA) are formed by addition of the single odors (A, B, and C). Fig. 71(a) shows 

the KIII response when exposed separately to samples of A, C and AC; the habituation 

process is disabled to emphasize the steady-state response. 
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Fig. 70  Binary patterns used to characterize the habituation mechanism.  Mixture patterns (AB, 

BC, and CA) are obtained by addition of the basic patterns (A, B, and C). 
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The performance of the KIII is analyzed on three separate scenarios.  The first 

experiment is designed to illustrate a shift in the response to an odor mixture when the 

system has previously habituated to one of the components.  The system is presented 

with odor A and allowed to habituate.  At t = 800 ms, binary mixture AC is presented.  

As shown in Fig. 71 (b), the response to AC is as if only C was present, suppressing the 

background odor.  The second experiment shows the ability of the KIII to fully recover 

from habituation to an odor.  The model is excited with odor mixture AC and allowed to 

habituate.  The sample is then removed and the KIII is allowed to dishabituate.  When 

the sample is reintroduced, the KIII does not show any memory effects, as shown in Fig. 

71(c).  The final experiment further illustrates the pattern-completion capabilities of the 

system.  The KIII is presented with an incomplete version of pattern C, one where the 5th 

bit is missing.  However, the system is able to induce an oscillation in the missing 

channel that is strong enough to trigger habituation.  When subsequently exposed to a 

complete pattern of mixture BC, the KIII behaves as if it had been previously exposed to 

the complete pattern for odor B.  
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Fig. 71  Habituation scenarios. (a) Output patterns (G2 activity) of the KIII without habituation.  

(b) Mixture perception following habituation.  The KIII habituates to odor A; when a mixture of 

A and C is presented at t=800 ms, the system responds as if only odor C was presented (c) 

Reversibility of the habituation process.  After habituation to mixture AC, the KIII undergoes 

dishabituation when the mixture is removed at t=1,000 ms.  This allows the KIII to respond to 

mixture AC again when is introduced at t=2,000 ms.  (d) Pattern recovery.  An incomplete 

version of pattern B (with the fifth bit missing) is introduced at t=200 ms.  
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VII.2.2. Continuous patterns 

In this section, the ability of the habituation mechanism to suppress continuous 

overlapping patterns is evaluated.  The overlapping bell-shaped patterns shown in Fig. 

72 will be used for these experiments.  To facilitate habituation to overlapping odors, the 

Hebbian/anti-Hebbian rule is first used to orthogonalize the odor representations. Fig. 73 

shows the response of the KIII model in a simple habituation scenario using the 

synthetic patterns in Fig. 72.  The system is initially exposed to odor pattern A for 500 

ms (100ms-600ms).  As a result of the habituation term, the activity in the network 

decays towards zero in an exponential fashion.  Following habituation to odor pattern A, 

the system is then presented with an additive mixture of odors A and B at time t=600 ms.  

As shown in Fig. 73, after the introduction of the mixture of A and B, the KIII model is 

able to suppress the activity in those channels that code for odor A, to where the 

resulting output pattern is as if only odor B was present. This allows the system to tune 

its sensitivity to the new odor in the environment.  At t=1,100 ms an additive mixture of 

odors A, B, and C is introduced.  Similarly to the result for the previous mixture, the 

KIII responds as if only odor C was present, further illustrating the 

background-suppression ability of habituation mechanism. 
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Fig. 72  Overlapping bell-shaped patterns used to characterize the habituation mechanism.  (a) 

Single patterns.  (b) Additive mixture of patterns A and B.  (b) Additive mixture of patterns A, 

B, and C. 
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Fig. 73  Evolution of the KIII activity (AC amplitude of mitral cells) in a habituation experiment 

with synthetic patterns.  (a) Input presented to the KIII.  (b) Output of the KIII (amplitude of 

mitral cells).  Odor A is presented at time t=100 ms, and the system is allowed to habituate.  At 

time t=600 ms a mixture of odors A and B is introduced; the response of the system is as if only 

odor B was present.  At time t=1,100 ms a mixture of A, B, and C is introduced.  The system 

responds as if only C was present. 

 

VII.2.2.1. Habituation without contrast enhancement 

To illustrate the need for contrast enhancement prior to habituation, we repeat the 

previous experiment, in this case training the KIII only with Hebbian learning.  Fig. 

74(b) shows the output of the KIII (amplitude of mitral cells) when the inputs in Fig. 

74(a) are presented.  The introduction of pattern A at t=100 ms produces activation not 

only on the KIII channels where pattern A is active, but to some extent also on those 
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channels that encode for pattern B, and to a lesser extent on those channels for pattern C.  

This early activation of patterns B and C, due to cross-talk caused by the Hebbian 

learning rule, makes the KIII habituate to them.  As a consequence, the KIII does not 

respond to the later introduction of odors B and C at t=600 ms and t=1,100 ms, 

respectively, a shown in Fig. 74(b).  This result clearly illustrates the need to reduce 

cross-talk and increase contrast between patterns prior to the habituation mechanism.   
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Fig. 74  Habituation experiment without contrast enhancement.  (a) Input presented to the KIII.  

(b) Output of the KIII (amplitude of mitral cells).  Odor A is presented at time t=100 ms.   As a 

result of cross-talk, the KIII recalls not only odor A, but to some extent also odors B and C.  The 

early activation of odors B and C causes the KIII to habituate to them, which prevents them from 

being detected when they are introduced at t=600 s and t=1,100 s, respectively. 
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VII.3. Validation with sensor array patterns 

In this section, we finally validate the habituation mechanism on experimental data from 

a MOS sensor (TGS210) exposed to combinations of three analytes.  Fig. 75 shows the 

sensor response to tert-butanol (A), allyl alcohol (B), benzene (C), the binary mixture of 

tert-butanol and allyl alcohol (AB), and the ternary mixture of tert-butanol, allyl alcohol, 

and benzene (ABC).  The KIII model was trained on the sensor response to the three 

pure compounds, and then tested on the mixtures to simulate a background-suppression 

scenario.  The system was first presented with odor A, which in this case served as a 

background odor, and allowed to habituate for 500 ms.  At this time, the system was 

presented with the response pattern to a mixture AB.  Fig. 76 shows the response of the 

KIII when trained using the new hebbian/anti-hebbian rule.  Even though the two 

analytes are present at the input after t=600 ms, the KIII shows sensitivity only to those 

temperatures (channels) that are specific to odor B.  At time t=1,100 ms a ternary 

mixture of A, B, and C is presented to the sensor.  Fig. 76 shows that the KIII responds 

only to those temperatures specific for odor C.  Note that the KIII response to mixture 

AB and ABC are not identical to the ideal response to odor B in Fig. 76 but a further 

contrast-enhanced version.  The ability of the KIII model to respond only to one of the 

components in the mixture is consistent with a known olfactory perception phenomenon 

known as release from mixture suppression.  According to this phenomenon, the odor 

quality of a binary mixture can be shifted to one of the components by adapting to the 

other one (Wijk, 1989).  
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Fig. 75  Gas sensor response to (a) tert-butanol, (b) a binary mixture of tert-butanol and allyl 

alcohol, and (c) a ternary mixture of tert-butanol, allyl alcohol, and benzene. 

 

VII.3.1. Habituation without contrast enhancement 

In analogy to section VII.2.2.1, we now illustrate the need to perform contrast 

enhancement in order for the habitation mechanism to work properly.  The KIII is 

trained (Hebbian learning) with the sensor response to tert-butanol, allyl alcohol, and 
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Fig. 76  Habituation scenario with experimental data from a gas sensor.  (a) Sensor response 

used as input for the KIII.  (b) AC amplitude of mitral cells in the KIII.  Tert-butanol (A) is 

introduced at t=100 ms.  Following habituation of odor A, the KIII is presented with a mixture of 

odors A and B (allyl alcohol) at t=600 ms.  The system response to mixture A+B is a contrast-

enhanced version of pattern B alone.  At time t=1,100 ms a ternary mixture A+B+C is 

introduced.  It can be observed that the KIII is able to suppress background odors A and C, and 

respond as if only odor C was presented. 

 

benzene, shown in Fig. 75(a).  Fig. 77(b) shows the amplitude of the KIII mitral cells 

when the input sequence in Fig. 77(a) is introduced.  Tert-butanol is presented at time 

t=100 s.  Due to cross-talk, the KIII response is a combination of the three stored 

patterns.  As a consequence, the KIII habituates to the three odors and is unable to 
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respond later to the introduction of allyl alcohol and benzene at times t=600 s and 

t=1,100 s, respectively.  This experiment clearly shows the need for the Hebbian/anti-

Hebbian learning rule in order to segment highly-overlapping odors with the habituation 

mechanism. 
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Fig. 77  Habituation to gas-sensor-array responses without contrast enhancement.  (a) Sensor 

response sequence presented to the KIII.  (b) Output of the KIII (amplitude of mitra cells).  Tert-

butanol is introduced at time t=100 ms.  As a result of cross-talk, the KIII recalls not only tert-

butanol, but to some extent also allyl alcohol and benzene.  The early activation of allyl alcohol 

and benzene causes the KIII to habituate to them, which prevents them from being detected 

when they are introduced at t=600 s and t=1,100 s, respectively. 
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VII.4. Conclusions 

This chapter has shown that habituation and dishabituation of KIII channels can be 

triggered from changes in local AC and DC activity.  When combined with 

Hebbian/anti-Hebbian learning, the system can simulate the effects of habituation in the 

processing of odor mixtures.  The system has been validated on an array of temperature 

modulated metal-oxide sensors.  

 

It is generally agreed that olfactory adaptation occurs at multiple levels in the olfactory 

system: olfactory receptors, olfactory bulb and olfactory cortex (Dalton, 2000).  This 

adaptation is mediated by two mechanisms: feed forward and feedback adaptation. The 

former case is due to the input from a preceding area of the olfactory pathway. This 

adaptation occurs at the level of the olfactory receptors and the olfactory bulb. In the 

later case, the input causing the adaptation comes from an area downstream the olfactory 

pathway. This occurs at the olfactory bulb through the feedback projection from 

olfactory cortex. These two mechanisms complement each other: whereas feedforward 

adaptation is triggered and determined by the stimuli, feedback adaptation can be 

modulated by other areas of the brain depending on factors such as the state of arousal of 

the animal. Since the habituation scheme proposed in this dissertation models only 

feedforward adaptation at the olfactory bulb level, our model can only mimic adaptation 

effects that are directly produced by the stimulus. 

 



 

 

172 

The KIII has been shown to have limited performance when presented with overlapping 

patterns.  This limitation is due to the lack of degrees of freedom when adapting 

connections: since all outgoing mitral connections are habituated when the mitral cell 

activity exceeds a threshold, the number of independent habituable connections is 

limited to the number of mitral cells.  This places an upper bound on the number of 

independent odors that can be processed (i.e., habituated to) using this model.  This issue 

is addressed in the next chapter by means of a novelty-detection scheme. 
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CHAPTER VIII 

NOVELTY DETECTION 

 

Detection of novel stimuli is a common function in sensory systems, including vision, 

audition, and olfaction.  Novelty detection allows the system to focus on new inputs that 

are potentially more informative.  Such computational function has a number of 

applications in chemical monitoring, including detection of gas leaks, chemical vessels 

breakages, filter breakdown, atmospheric contamination, and microbial contamination in 

central air conditioning systems (Russell et al., 2000; Perera, 2003).  In order to perform 

novelty detection with MOS sensors, adequate processing is required to discriminate 

changes in sensor response due to humidity and temperature (i.e.  background) from 

those that are produced by the introduction of a new stimulus.   

 

In the preceding chapter, we developed a habituation mechanism that allowed the KIII to 

detect novel inputs.  The proposed habituation mechanism affected all outgoing 

connections of each mitral cell.  Therefore, the number of independently habituable 

connections was limited by the number of mitral cells (N degrees of freedom, N being 

the number of mitral cells).  As a result, the KIII required that odor representations be 

orthogonal in order to adapt to as many as N-1 odors.  This limitation was overcome by 

combining the habituation mechanism with Hebbian/anti-Hebbian learning, which 

orthogonalizes the odor representations.  Even though this allows the habituation 
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mechanism to deal with non-orthogonal odors, the degrees of freedom (N) still limits the 

number of odors that the KIII can adapt to.  Assuming that each odor has discriminatory 

information in a different channel, the system is able to adapt to at most N-1 different 

odors.  In general, however, odors have discriminatory information spread over across 

channels, making it more difficult to adapt to the maximum number of odors.  

Furthermore, the Hebbian/anti-Hebbian rule also has an upper bound on the number of 

heavy overlapping patterns that can orthogonalize; this limitation is due to condition 

(6.15).  

 

With this in mind, the objective of this chapter is to develop a novelty-detection 

mechanism to allow the KIII model to perform novelty detection with non-orthogonal 

odor representations and allow adaptation to N odors.  This new mechanism is based on 

anti-Hebbian learning.  The advantage of this mechanism is that, since anti-Hebbian 

learning is based on the joint activity of pairs of neurons, each connection in the network 

is allowed to vary independently.  As a result, the degrees of freedom of the network 

increase from N (the number of mitral cells) to N2 (the number of lateral connections 

between mitral cells).  

 

We first present a literature survey of novelty-detection filters with neural networks.  

Next, we propose an anti-Hebbian rule for lateral connections between periglomerular 

cells that allows the KIII model to perform novelty detection.  Finally, we characterize 
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the rule on synthetic data, and validate it on experimental data from a MOS gas sensor 

array.  

VIII.1. Novelty detection with neural networks 

Several types of neural networks have been used to perform novelty detection, including 

Multi Layer Perceptrons (MLP), Self Organizing Maps (SOM), and Hopfield Networks 

(HN), as reviewed below. 

 

Ryan et al. (1998) employed an MLP to identify intruders breaking into a computer 

system by analyzing the sets of commands typed by the users.  The network consists of 

an input layer with 100 units, a hidden layer with 40 units, and an output layer with 10 

units.  The MLP is trained through backpropagation on sequences of commands usually 

typed by each authorized user.  A separate output neuron is used to identify each one of 

the users.  Novelty is detected when the activity of each output neuron drops below 0.5, 

indicating that the network is unable to assign the input sequence to one of the 

authorized users.  LeCun et al. (1990) also used an MLP trained with backpropagation to 

recognize new handwritten characters. The authors rely on heuristics to define a 

rejection criterion.  First, activity in the winning neuron has to be larger than certain 

threshold T1.  Second, activity in the second higher neuron has to be lower than certain 

threshold T2. Finally, the absolute difference between the highest and the second highest 

neurons has to be larger than a threshold Td.   
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Harris (1993) presented an approach using SOM for novelty detection in a health 

monitoring system Comparing the distance between the input and the winning node, the 

authors were able to determine if the health of the patient could be considered as normal 

or not. 

 

Bogacz et al. (1999; 2000) used a Hopfield network trained with Hebbian learning to 

detect novel inputs.  The authors show that patterns not stored in memory lead to higher 

values of the energy function than stored patterns.  Consequently a threshold on the 

value of the Hopfield energy function can be used to identify novel patterns.  Crook and 

Hayes (2001) applied this novelty-detection concept to detect changes in the 

environment of a mobile robot.  The performance of the Hopfield network is analyzed as 

a function of the number of stored patterns.  Their results show that the value of the 

energy function is independent of the number of patterns stored in the network.  

However, the performance of the novelty detector still decreases with the number of 

stored patterns because the threshold becomes less effective. 

 

VIII.2. Novelty detection with anti-Hebbian learning  

Novelty detection with anti-Hebbian learning has been studied using both feedforward 

and recurrent networks.  Both approaches are reviewed in this section. 

 

Principe et al. (1999) used a simple feed-forward network such as the one illustrated in 

Fig. 78 to achieve novelty detection.  The network has the following transfer function: 
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iijj xwy =                                                  (8.1) 

where ix  is the input vector, jy  is the output vector, and ijw  is the connection strength 

between input nodes and neurons.  Connections ijw  are randomly initialized and trained 

with anti-Hebbian learning as follows: 

jiij yxw ⋅−=∆ α                                                   (8.2) 

The resulting connection matrix spans the subspace perpendicular to that of the input 

vectors.  As a result, any of the learned input patterns or their linear combinations is 

mapped to the null vector, whereas novel inputs that do not lie in the subspace captured 

by the input vectors generate a non-zero response.  

 

xi yj

wij

xi yj

wij  

Fig. 78  Novelty detection with a feed forward single-layer network. xi, yi, and wii represent the 

inputs, outputs, and the weight matrix, respectively.  The weight matrix is trained with anti-

Hebbian learning to achieve novelty detection. 
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More relevant for this work, since the KIII is a recurrent network, is the recurrent 

novelty detection network proposed by Kohonen and Oja (1976).  Their model uses a 

single-layer fully-connected recurrent neural network (Fig. 79) with both positive and 

negative connections.  These connections are trained with anti-Hebbian learning as 

follows: 

ji
ij yy

dt

dw
⋅−= α                                                      (8.3) 

 

where iy  and jy   are the output of neurons i and j respectively, wij is the strength of the 

connections between neurons i and j, and α  is a learning rate.  The dynamic response of 

the neural network when presented with input vector ix  is: 

 

�
=

+−=
N

j
ijiji xnywny

1

)1()(                                            (8.4) 

 

from which the steady-state response of the network in vector form becomes:   
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xyw =⋅− )1(                                                   (8.5) 

 

Therefore, this network cannot produce a zero output for any input other than the null 

vector.  This implies that the null space of the transformation generated by the recurrent 

network is the null vector. On the other hand, note that the null space of the feedforward 

network can contain vectors other than the null vector. 

 

To overcome this problem, Kohonen and Oja (1976) introduced a continuous 

background activity to all neurons.  The neuron activity is then represented in a scale in 

which the background activity is treated as zero.  The network is able to learn the 

subspace spanned by the input vectors and respond only to vectors that have at least one 

component outside of this subspace.  

 

xi

yj

wij

xi

yj

wij

 

Fig. 79  Novelty detection with a single-layer recurrent network, as used by Kohonen and Oja 

(1976). 
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Following Kohonen and Oja (1976), the stability of the network in Fig. 79 can be 

determining by analyzing the temporal evolution of the network.  First, let us consider 

the transfer function Φ  of the network: 

 

xWIxy 1)( −−=Φ=                                                    (8.6) 

 

From this expression and Eq. 8.4, we can compute the temporal evolution of the 

network: 

 

dt
dW

dt
d

dt
d −=ΦΦΦ−=Φ −−

−
11

1

                                        (8.7) 

22 ΦΦ⋅−=Φ Txx
dt
d α                                                (8.8) 

 

Eq. 8.8 shows that the motion of the system can be described by a Bernoulli equation8, 

for which a solution is known to exist for 0≥α  (Kohonen and Oja, 1976).  Therefore, 

only negative values of dtdW  (Eq. 8.3) lead to stable solutions of the network. Positive 

values of dtdW  convert Eq. 8.3 into a Hebbian-like update rule, causing the weight 

values wij to increase without bound, which leads to unstable behavior.  

 

                                                 

8 The general form of the Bernoulli equation is: nyxqyxp
dx
dy

)()( =+  
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VIII.3. Novelty detection in the KIII through anti-Hebbian learning 

In this section, we study the application of anti-Hebbian learning to perform novelty 

detection with the KIII.  As already mention in Chapter V, the oscillatory nature of KII 

sets prevents the use of anti-Hebbian learning for the lateral connections.  For this, 

reason, we propose to apply anti-Hebbian learning at the level of periglomerular-to-

periglomerular connections (shown in Fig. 80) since periglomerular cells follow a fixed-

point behavior.  It is worth noticing that adaptation of periglomerular to periglomerular 

connections is a novel contribution of our research; these connections have been 

considered fixed in all previous studies.  

 

The anti-Hebbian learning rule used to train periglomerular lateral connections is: 

 

jPiPijP xxw ,,, ⋅−=∆ µ                                              (8.9) 

where ijPw ,  is the connection matrix between periglomerular cells, and iPx ,  and jPx ,  are 

the activity of periglomerular cells i and j, respectively. 
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Fig. 80  Periglomerular to periglomerular lateral connections (thick lines) are trained with the 

proposed anti-Hebbian rule. 
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As discussed in section VIII.2, a recurrent neural network trained with anti-Hebbian 

learning cannot produce a null output with non-zero inputs.  To overcome this limitation, 

we propose to adapt the KIII model to include an additional layer of periglomerular cells, 

as shown in Fig. 81.  Each P1 cell connects to all P2 cells, which have fully lateral 

connectivity between P2 cells.  All this connections between periglomerular cells (P1-P2 

and P2-P2) are trained with anti-Hebbian learning following Eq. 8.9. In this case, the first 

layer of periglomerular cells provides feed forward inhibition that allows the model to 

produce a null output even for non-zero inputs. 

 

• • •

P1 P1 P1

P2 P2 P2

Input

Output

first
layer

second
layer

• • •

P1 P1 P1
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• • •• • ••
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Fig. 81 Two layers of PG cells.  The first layer of PG cells provides feed forward inhibition to 

the second layer of PG cells.   
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VIII.4. Characterization with synthetic data 

In this section we characterize the ability of the proposed model to perform novelty 

detection on synthetic inputs, both static and dynamic.   

VIII.4.1. Static inputs 

First, the KIII model is trained on a synthetic problem consisting of two 3-dimensional 

input vectors: [1 2 -3] and [4 1 2].  During the training phase, the two training vectors 

are presented alternatively, as illustrated in Fig. 82(a, b).  Periglomerular cells respond to 

each presentation with an initial transient that eventually settles to zero as a result of 

anti-hebbian learning.  During the subsequent testing phase, the KIII is presented with 

four input vectors: the two training vectors [1 2 -3] and [4 1 2], a linear combination of 

the two training vectors [5 3 -1] = [1 2 -3] + [4 1 2], and a vector outside the linear 

subspace [2 1 -3].  The response of periglomerular cells to the test vectors are shown in 

Fig. 82(d).  As shown, the KIII displays a null steady-state for all vectors belonging to 

the linear subspace defined by the training patterns, yet generates a non-null response to 

the vector outside this subspace.  This experiment illustrates the ability of the learning 

technique to desensitize the KIII to previous stimuli, allowing it to respond only to novel 

odors.   
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Fig. 82  Characterization with synthetic data. (a, b) Training of KIII with two inputs: [1 2 -3] and 

[4 1 2].  (c, d) Testing the KIII with the two training vectors [1 2 -3], [4 1 2], a linear 

combination of them ([1 2 -3] + [4 1 2]), and a vector outside the linear subspace [2 1 -3]. 

A more detailed characterization of the KIII response as a function of the novelty of the 

pattern is shown in Fig. 83.  The KIII is trained on vectors [1 2 -3] and [4 1 2], and 

subsequently tested with vector v, which forms an angle � with the plane S spanned by 

the training vectors.  The angle � is used as a measure of novelty.  As shown in Fig. 83, 

periglomerular cells provide a higher response as the input vector moves away from the 

plane S.   
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Fig. 83  Projection performed by the novelty detector.  (a) Projection of an input vector v onto 

the space perpendicular to the subspace spanned by the training patterns [1 2 -3] and [4 1 2].  (b) 

Output of periglomerular cells as a function of cos(�), where � is the angle between the input 

vector v and the vector perpendicular to the subspace spanned by the training inputs. 

 

VIII.4.2. Dynamic inputs 

The previous sections have validated the novelty-detection model on static inputs.  

Sensor responses are, however, typically dynamic.  The objective of this section is to 

illustrate the ability of the KIII model to perform novelty detection on dynamic inputs.   

 

For this purpose, a three channel KIII model was trained with the two oscillatory inputs 

shown in Fig. 84(a).  First, the oscillatory input A is introduced at t =0 ms and removed 

at t=2,500 ms.  The oscillatory pattern B is subsequently introduced at time t=2,500 ms.  

Fig. 84(b) show the response of the three second-layer periglomerular cells to these two 
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patterns.  The response to the oscillatory trajectory A is initially high, but slowly dies out 

as a result of adaptation.  When oscillatory trajectory B is suddenly introduced, the 

activity of the KIII increases abruptly, but eventually dissolves as a result of the novelty-

detection mechanism.  These results parallel those obtained on static inputs, and show 

that the KIII trained with the proposed anti-Hebbian rule is able to reduce response to 

already presented inputs, but is also sensitive to novel inputs. 
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Fig. 84  Novelty detection with oscillatory patterns.  (a) Trajectory of the two oscillatory patterns 

in the input space (three-dimensional).  (b) Output of the KIII. 

 

VIII.4.3.  Receptive operating characteristic analysis 

A more systematic characterization of our novelty detector is performed using the 

Receiver Operating Characteristic (ROC).   
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ROC analysis is an established method to evaluate the quality of a detector by 

considering the trade-off between the number of correct detections (true positives) and 

incorrect detections (false positives) (Egan, 1975; Perera et al. 2003).   

 

This is accomplished by plotting the true-positive rate against the false-positive rate 

(ROC curve) as the sensitivity of the detector is changed (Zou et al., 1997; Provost and 

Fawcet, 1997).  At position (0, 0) in the ROC curve, the detector has zero sensitivity and 

there are no detections, whereas at position (1, 1) the detector has very high sensitivity, 

and all true positives and all possible false positives are detected.  The shape of the curve 

denotes the quality of the detector.  The diagonal line between the (0,0) and (1,1) 

operating points represents an ineffective detector, since an increase in the true-positive 

rate incurs an equal increase in the false-positive rate.  An ROC curve that lies above the 

diagonal line corresponds to a useful detector, since true positives outnumber false 

positives.  The more the ROC curve approaches the upper left corner of the plot, the 

better the quality of the detector. 

 

In the case of the proposed novelty-detector, the estimates of true-positives and false-

positives are obtained by thresholding the activity of the periglomerular cells (i.e., 

activity above threshold corresponds to detection of a new odor).  The value of the 

threshold determines the sensitivity of the novelty detector.  
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In order to obtain a ROC curve with good resolution, the detector needs to be tested for a 

large number of operating conditions, which would require an impractical amount of 

experimental data.  For this reason, the ROC analysis is performed on synthetic data 

from an accurate model of the sensor response.  Following Clifford and Tuma (1983), 

the sensor response to benzene (C6 H6) and tert-butanol (C4 H10 O) is modeled as: 

 

4321 ][][][][ 1046631042661
0

ββββ OHCHCkOHCkHCk
G
G ⋅⋅+⋅+⋅=              (8.10) 

 

where G is the conductance of the sensor, G0 the conductance of the sensor in air, 

][ 66HC  and ][ 104 OHC  are the concentrations of benzene and tert-butanol respectively, 

and k1, k2, k3, 1β ,  2β , 
3β , and 

4β  are the parameters of the model.  The sensor model 

was adjusted in a least-square fashion to fit the experimental response of four MOS 

sensors to a mixture of benzene and tert-butanol. 

 

In the ROC experiments that follow, tert-butanol and benzene will be used as target and 

background odors, respectively.  Tert-butanol is introduced and removed one hundred 

times during 23.6 hours of simulation (Fig. 85(a)).  Each introduction of tert-butanol is 

modeled using the positive cycle of a sinusoidal waveform with a period of 400 seconds, 

as shown in Fig. 85(c).   
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The concentration amplitude of each of the 100 introductions of tert-butanol is chosen 

from a uniform random distribution.  

 

The maximum value of this distribution is set to 0.1, 1, and 10 in three different 

experiments, and the minimum value is 0 for all the three experiments. Each one of these 

values will require to run the 23.6 hour simulated experiment for a total of 23.6 x 3 = 

70.8 hours.   

 

For the duration of the simulated experiments, the concentration of benzene is made to 

fluctuate randomly between 10% and 30% (Fig. 85(a)) as follows.  Random 

concentrations were generated every T = 50 seconds from a uniform distribution in the 

range [10, 30], and a cubic spline was used to interpolate the points between each 

random sample.  Fig. 85(a,d) shows the resulting concentrations of benzene and tert-

butanol, where the maximum concentration of tert-butanol was set to 10.  

 

The simulated sensor response generated from this scenario is presented to the KIII, 

which has been trained with the simulated sensors response to oscillatory fluctuations of 

benzene.  During the experiment, the training rate is set to a low value ( 5101 −⋅=µ ) to 

avoid fast adaptation to the target odor.  The output of the KIII (training phase not 

shown) is shown in Fig. 85(b,e) where each vertical line indicates the introduction of 

benzene.  
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Fig. 85  Simulated scenario to perform ROC analysis.  Tert-butanol (target odor) is introduced 

100 times in a random background of benzene.  (a,d) Concentration profile of tert-butanol and 

benzene. (b,e) Simulated response of the 4 MOS gas-sensors when simulated concentration 

profile (a,d) is used as input.  (c,f) Periglomerular activity produced by the simulated sensor 

response to the concentration profile in (a,d); vertical lines in (f) denote each introduction of tert-

butanol.  Parts (c) and (d) are a close-up view for three of the one hundred introductions of tert-

butanol. 

 

Fig. 86 shows the ROC of the novelty-detector for three different values of the 

maximum amplitude (A) of tert-butanol: 0.1, 1, and 10.  The ROC curve for A=0.1 is 

nearly a straight line, which indicates that the novelty detector fails to detect the target 
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odor.  In this case, the true-positive rate is equal to the false-positive rate for any value of 

the threshold.  When A=1, the ROC curve is above the diagonal line.  This indicates that 

the true-positive rate is higher than the false-positive rate.  The performance is improved 

even further when A is set to 10.  This results show that the novelty detector is able to 

detect fluctuations in the concentration of the target odor that are up to one order of 

magnitude lower than fluctuations in the concentration of a background odor. 
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Fig. 86  ROC curves for three different values of the maximum amplitude of the target odor (A).  

 

VIII.5. Validation with gas sensor array data 

The novelty-detection model is finally validated with experimental data from MOS 

sensors.  Specifically, we will illustrate the ability of the KIII model to cancel 
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fluctuations in humidity and up to two background odors.  The isothermal database 

(section II.3.2; Chapter II) was used for this purpose.   

 

A preprocessing stage that removes the DC offset of the sensor response is applied to 

simplify the training required by the system. To understand the need for this 

preprocessing stage, let us consider the following example shown in Fig. 87. The figure 

illustrates the response trajectory (thick line) of a system with three sensors as an 

operating parameter (temperature, humidity, or concentration) is varied. Illustrated in Fig. 

87(a), in the case of sensor response with DC offset the KIII learns the subspace spanned 

by the vectors from the origin to the response trajectory instead of capturing the odor 

trajectory alone.  This will prevent the detection of novel odors that may lie on this plane.   

 

Without DC offset

Plane captured by
the novelty detector 

With DC offset

Line captured by
the novelty detector 
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Plane captured by
the novelty detector 

With DC offset

Line captured by
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Plane captured by
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Plane captured by
the novelty detector 
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Line captured by
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Plane captured by
the novelty detector 
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Line captured by
the novelty detector  

Fig. 87  Novelty detection (left) with DC offset and (right) without DC offset.  The figure 

illustrates the trajectory of a system with three sensors.  If the raw sensor response (i.e., with DC 

offset) is used, the KIII adapts to the plane spanned by the vectors from the origin to the odor 

trajectory. In the case of sensor response without DC offset, the KIII adapts exclusively to the 

direction of sensor responses to the odor. 
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To overcome this drawback, we perform DC offset removal, which translates the 

response trajectory to the origin, as shown in Fig. 87(b).  In this case, the KIII captures 

exclusively the direction of the sensor responses to the odor. 

 

VIII.5.1. Cancellation of fluctuations in two simultaneous stimuli 

The objective of the first experiment is to demonstrate the ability of the novelty-

detection model to compensate for fluctuations in background odors and humidity.   For 

this purpose, the sensor array is exposed to a fluctuating concentration of tert-butanol 

(concentration range: 80-100% of the headspace concentration; oscillation period T = 

440 s) and humidity (52-65% relative humidity; T= 880 s), as shown in Fig. 88(a) and 

(b), respectively.  The response of the humidity sensor and the chemical sensor array is 

shown in Fig. 88(c) and (d), respectively.  The output of the KIII, shown in Fig. 88(e) 

clearly illustrates that the novelty-detector is able to rapidly learn the subspace of 

variation due to fluctuations in tert-butanol and humidity, allowing the KIII model to 

cancel its response to those fluctuations. 
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Fig. 88  Cancellation of fluctuations in two simultaneous stimuli (humidity and tert-butanol).  (a) 

Concentration fluctuations of tert-butanol (b).  Concentration fluctuations of water vapor used to 

vary the humidity at the sensor chamber.  (c)  Response of the humidity sensor.  (d) Response of 

the gas sensor array; notice that the sensors respond mostly to fluctuations in tert-butanol.  (e) 

Output of the periglomerular cells in the KIII model. As a result of anti-Hebbian learning, the 

model is able to cancel the effect of fluctuations in humidity and tert-butanol.  
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VIII.5.2. Detection of a novel stimulus in the presence of a fluctuating background 

The objective of this experiment is to determine the ability of the KIII to detect the 

introduction of a novel stimulus in the presence of a fluctuating background odor.  For 

this purpose, the sensor array is exposed to a fluctuating concentration of benzene 

(concentration: 10-30%; period T=440 s), as shown in Fig. 89(a).  At time t=5,300 s, 

tert-butanol is introduced (concentration: 0-10%; period T=880 s) while maintaining the 

benzene fluctuations.  Oscillations in concentration for the two analytes are chosen with 

different frequencies for visualization purposes.  Fig. 89(b) shows the raw sensor 

response to these chemicals.  Fig. 89(c) shows the sensor response after subtraction of 

the DC offset.  This signal is the actual input to the KIII model.  The output of the model 

is shown in Fig. 89(d).  As a result of anti-Hebbian learning, the KIII adapts to 

fluctuations in tert-butanol, and significantly reduces its response to these fluctuations.  

When benzene is introduced at time t=5,300 s, activity in the KIII significantly increases, 

indicating that the model has been able to detect the introduction of the novel stimulus.   
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Fig. 89  Detection of benzene in the presence of a fluctuating background of tert-butanol.  (a) 

Concentration of benzene (top trace) and tert-butanol (bottom).  (b) Response of the four MOS 

sensors (labeled 1 through 4).  (c) Response of the sensors after subtraction of their DC offset.  

(d) Periglomerular cell activity with anti-Hebbian learning.  The increase of activity at time 

t=5,300 ms indicates that the novel odor has been detected. 

 

Fig. 90 shows the performance of the model as a function of the learning rate.  Small 

learning rates lead to slower adaptation and larger responses when the new odors are 

presented.  On the other hand, large learning rates allow for faster adaptation but result 

in a lower response to new odors.  This leads to a shorter and weaker transient, but the 

model is still able to adapt to background odors and detect new ones.  The role of the 

learning rate on the performance of the model is expected to be more important if the 



 

 

198 

period of the odor fluctuations and the time constants of the KO dynamics are 

comparable. 
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Fig. 90  Effect of the anti-Hebbian learning rate on the detection of a new odor.  

 

The results in Fig. 89(d) were obtained by maintaining anti-Hebbian adaptation 

throughout the experiment.  Better detection results can be achieved if adaptation is 

stopped once the system has learned to cancel fluctuations in the background analyte 

(benzene in that case).  
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Fig. 91 shows the output of the KIII model to the same stimulus in Fig. 89, but in this 

case anti-Hebbian learning is stopped at time t=4,000 s.  When the new odor (tert-

butanol) is introduced at t = 5,300 s, the KIII is able to recover its fluctuations, an 

indication that the new odor has been detected.  
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Fig. 91  Detection of benzene with discontinuous training.  Anti-Hebbian adaptation is stopped at 

time t=4,000 s.  This allows the KIII model to better identify the presence of the novel analyte. 
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To further analyze the performance of the model, we also attempted to detect the 

introduction of the novel stimulus (tert-butanol) based on the response of sensors 3 and 4.  

As shown in Fig. 89(b), the introduction of benzene can be readily detected by a sudden 

change in the response of sensors 1 and 2, but the response of sensors 3 and 4 is rather 

subtle.  The results of novelty detection when operating only on sensors 3 and 4 are 

shown in Fig. 92.  Though the response in this case is less pronounced, the model is still 

able to identify the introduction of tert-butanol at time t = 5,300 s. This additional result 

illustrates the sensitivity of our novelty detection mechanism, even when the 

introduction of a new stimulus produces only subtle responses in the sensors. 
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Fig. 92  Detection of benzene on a background of tert-butanol using only the response of sensors 

1 and 2 in Fig. 89(b).  The introduction of benzene at t = 4,000 s is also clearly detected by the 

KIII. 
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VIII.5.3. Suppression of strong backgrounds 

In the previous section, we studied novelty detection when background and novel odors 

have comparable concentrations.  In real-world scenarios, however, it is oftentimes 

critical to detect target odors that embedded in strong and fluctuating backgrounds.  In 

this section we simulate a more realistic scenario in which a target odor at low 

concentrations (benzene: 0-10%; period T=880 s), needs to be detected in the presence 

of a fluctuating background at high concentrations (concentration: 80-100%; period 

T=440 s).  Fig. 93 (a-e) shows the concentration profiles for the two analytes, sensor 

responses before and after DC offset removal, and the output of the KIII model with 

continuous anti-Hebbian learning.  Similar to the results in the previous sections, the 

KIII model is able to identify the introduction of the novel odor, though the response is 

rather diminished.  This response can be enhanced if anti-Hebbian adaptation is “turned 

off” once the fluctuations in the background odor have been learned.  Results are shown 

in Fig. 94.  In this case, the KIII is able to provide a significantly large response when 

the target odor is introduced; note that the model is also able to return to null activity 

once the target odor is removed at t = 8,000 s.  Finally, it is worth noting that the 

analytes used as background and target odors in this experiment are the opposite of those 

in the previous experiment (Fig. 89).  This further illustrates the generality of our 

novelty-detection model. 

 



 

 

202 

4

6

8

10
20
60

100

-1

-0.2

0.6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-1

-0.2

0.6

-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
na

ly
te

s
co

nc
en

tr
at

io
ns

S
en

so
rr

es
po

ns
e

(c
on

du
ct

an
ce

)
S

en
so

rr
es

po
ns

e
w

ith
ou

tD
C

 o
ffs

et
P

er
ig

lo
m

er
ul

ar
ce

lls

(a)

(b)

(c)

(d)

4

6

8

10
20
60

100

-1

-0.2

0.6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-1

-0.2

0.6

-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a)

(b)

(c)

(d)

4

6

8

10
20
60

100

-1

-0.2

0.6

4

6

8

10
20
60

100

-1

-0.2

0.6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-1

-0.2

0.6

-1

-0.2

0.6

-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
na

ly
te

s
co

nc
en

tr
at

io
ns

S
en

so
rr

es
po

ns
e

(c
on

du
ct

an
ce

)
S

en
so

rr
es

po
ns

e
w

ith
ou

tD
C

 o
ffs

et
P

er
ig

lo
m

er
ul

ar
ce

lls

(a)

(b)

(c)

(d)

4

6

8

10
20
60

100

-1

-0.2

0.6

20
60

100

-1

-0.2

0.6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-0.2

0

0.2

0.4

Time (s)

(a)

(b)

(c)

(d)

4

6

-1

-0.2

0.6

-1

-0.2

0.6

-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a)

(b)

(c)

(d)

 

Fig. 93  Suppression of strong background odor with continuous anti-Hebbian training.  (a) 

Concentration profile for the two analytes.  (b) Raw sensor response.  (c) Sensor response 

without DC offset.  (d) Periglomerular cell activity.   
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Fig. 94  Suppression of a strong background when anti-Hebbian learning is stopped after the 

system habituates (time t=4,000 s).  This allows the KIII model to better detect the introduction 

of a novel analyte at time t=5,300 s.  Note that KIII activity returns to background once the novel 

analyte is removed at time t=8,300 s. 

 

VIII.5.4. Sequential novelty detection 

Real environments are usually formed by a melange of odorants with different 

concentrations.  In this type of environment, a novelty detector should be able to adapt to 

odor mixtures in order to detect the presence of new odors.  To test our novelty detection 

model in this type of scenario, the sensor array will be exposed to fluctuations in an 

increasing number of analytes: tert-butanol (concentration: 0-20%; period T=440 s), 

followed by allyl alcohol (concentration: 0-10%; period T=880 s), and finally benzene 

(concentration: 0-5%; period T=1,320 s).  Fig. 95(a-d) shows the concentration profile of 

each analyte, and the corresponding sensor response with and without DC offset.  
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 Notice that the concentrations of the odors have different oscillation frequencies to 

facilitate visual interpretation of the KIII outputs, which are shown in Fig. 96.  With 

continuous anti-Hebbian adaptation, the KIII model is able to adapt to fluctuations in 

tert-butanol and therefore detect the introduction of allyl alcohol at time t=5,300 s.  

Subsequently, the model adapts to both tert-butanol and allyl alcohol, enabling the 

detection of benzene when it is introduced at time t=10,300 s.  As in the previous 

sections, stopping the anti-Hebbian adaptation prior to the introduction of an analyte 

enhances the response of the model to that analyte.  Results are shown in Fig. 96(b, c) 

when adaptation is turned off before allyl alcohol and benzene are introduced, 

respectively.  These results further illustrate the ability of the model to perform novelty 

detection in presence of one or more background odors.   

 

Finally, we illustrate the limits of detection of the proposed model.  For this purpose, the 

sensor array was exposed to weak fluctuations of a target odor (benzene: 0-5%; period 

T=1,320 s) in the presence of two strong backgrounds (tert-butanol; 0-100%; period 

T=440 s; and allyl alcohol; 0-30%; period T=880 s).  Fig. 97 shows concentration 

profiles (a,b,c), sensor response with (e) and without DC offset (d), and the output of the 

KIII model.    
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Fig. 95  Novelty detection with two background odors.  (a,b,c) Concentration profile of the three 

analytes presented to the sensor array.   Sensor response (d) with and (e) without DC offset. 
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Fig. 96  Output of the KIII model to the experiment in Fig. 95.  (a) Periglomerular cell activity 

with continuous anti-Hebbian training: the KIII is able to detect the introduction of allyl alcohol 

at t=5,300 s and benzene at t=10,300 s.  (b) KIII response when anti-Hebbian adaptation is 

stopped just before benzene is introduced at time t=9,000 s.  (c) KIII response when anti-

Hebbian adaptation is stopped just before allyl alcohol is introduced at time t=4,000 s.   
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Fig. 97  Exploring the detection limits of the novelty detector.  The sensors are exposed to a high 

concentrations of tert-butanol and allyl alcohol.  The goal is to detect the introduction of benzene 

at very low concentrations.  (a,b,c) Concentration profile of the analytes.  Response of the four 

sensors (d) with DC offset and (e) without DC offset.  (f) Output of the KIII; the model is unable 

to detect the introduction of benzene at low concentrations. 
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The model is able to detect the introduction of allyl alcohol against the strong tert-

butanol background, but fails to detect the introduction of benzene in presence of two 

strong background odors.  The concentration of benzene in this experiment is not enough 

to elicit a significant response in the novelty detector.   

 

VIII.6. Discussion 

In this chapter we have presented a mechanism that allows the KIII model to perform 

novelty detection.  The mechanism employs anti-Hebbian learning to adapt lateral 

connections at the level of periglomerular units.  No biological plausibility claims can be 

made about the proposed model; to the best of our knowledge, anti-Hebbian learning on 

periglomerular cells has not been reported (or suggested) in the literature.   

 

The novelty-detection model has been characterized on synthetic data, both static and 

dynamic, and validated on a number of scenarios with experimental data from a MOS 

sensor array.  Our results show that the KIII is able to cancel the sensor response due to 

fluctuations on humidity, one and two analytes, allowing it to detect the introduction of 

new odors.   

 

As discussed earlier in this chapter, anti-Hebbian learning allows the KIII model to 

capture the subspace in which background inputs are embedded, and consequently 

respond only to inputs outside this subspace (i.e., novel inputs).  Thus, this approach can 

be expected to be successful with gas-sensor-array responses whenever novel odors 
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introduce different directions of variance in the sensor response from those due to 

backgrounds.  Such is the case for the experimental data employed in this chapter; the 

input sequence of Fig. 98 generates the sensor output shown in Fig. 99. Note how allyl 

alcohol and water produce different directions of variance in the sensor response.  It is 

this sensor behavior what allows the novelty-detection model to perform well. 
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Fig. 98  Variations on humidity and allyl alcohol concentration. (a) Concentration profile of allyl 

alcohol. (b) Humidity. The concentration of allyl alcohol is increased following a staircase 

profile form 30% to 100% (denoted by numbers 1-8), whereas the humidity varies from its 

minimum (0%) to its maximum value (100%) for each level of allyl alcohol concentration. 
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Fig. 99  Response of the MOS sensors to increasing concentrations of allyl alcohol (denoted by 

numbers 1-8) under fluctuations in humidity.    

 

Fluctuations in the background signals are essential to allow the model to learn the odor-

specific hyperplane in which the sensors operate when exposed to the background, as we 

have just expained. The speed at which the KIII model learns the odor-specific 

hyperplane depends on the type of the fluctuation. Our experience with the model (not 

formally reported in this manuscript) indicates that cyclic fluctuations speed up the 

training process, whereas random fluctuations lead to longer training periods. 
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It is interesting to note that, in the olfactory system, fluctuations in the odorant stimulus 

are pervasive due to the respiratory cycles. These fluctuations have been suggested to 

lead to hierarchical identification of odors (Ambros-Ingerson et al., 1990). 

 

It is worth to notice that the dynamics of the KIII model are not fully exploited by the 

proposed novelty-detection mechanism, since activity at the periglomerular cell level 

reflects only the processing performed at that stage.  The only influence on the 

periglomerular cell actitivity comes in the form of feedback connection anterior 

olfactory nucleus. This feedback does not seem to play an important role in the 

computational function:  removal of this connection has little impact in the behavior of 

the novelty detector (not formally reported in this manuscript). One potential approach to 

engage the complete KIII model, and thus exploit its rich dynamics, would be to detect 

novelty as a transition between different types of attractors, i.e. from fixed points to limit 

cycles to strange attractors.  

 

An interesting direction of future work with the KIII novelty detector is to determine the 

extent to which anti-Hebbian learning can cope with long-term sensor drift. It is known 

that MOS sensors response drifts over time due to irreversible chemical reactions and 

poisoning of the sensors. It is possible that the anti-Hebbian learning rule may be able to 

capture the direction of variance introduced by drift and, therefore, compensate for this 

effect without losing its ability to detect new odors. 
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CHAPTER IX 

CONCLUSIONS 

 

In this dissertation we have taken a dynamical systems approach for processing signals 

from gas-sensor arrays.  We have presented coding and learning mechanisms that have 

been inspired by processing in the olfactory system.  Using this approach, we have 

tackled the following four computational functions: (i) enhanced memory recall, (ii) 

contrast enhancement, (iii) background suppression, and (iv) novelty detection.  

 

First, we have proposed a coding scheme that captures temporal information in the KIII 

model.  This scheme is based on the synchrony of oscillations across channels.  We have 

compared this temporal code with the conventional approach based on the amplitude of 

the oscillations.  We have also shown that our approach is more robust in cases with 

overlapping patterns.  These results support a growing body of evidence (Laurent and 

Davidowich, 1994) indicating that temporal information is key to neural information 

processing.  

 

Second, we have proposed a Hebbian/anti-Hebbian learning rule that models contrast 

enhancement in the olfactory bulb.  We have shown that the Hebbian/anti-Hebbian rule 

leads to pattern orthogonalization when used in a linear associative memory.  We have 

also shown that the Hebbian/anti-Hebbian rule provides pattern separarability that is 
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comparable to that obtained with Fisher’s Linear Discriminat Analisys (LDA).  

Considering that LDA is optimal when class-covariances are equal (as is the case in the 

synthetic problem studied in Chapter VI), it is remarkable that our local learning rule can 

provide comparable performance. We have shown the contrast-enhancement mechanism 

to be particularly suitable to process highly collinear patterns, as is the case of MOS gas 

sensor arrays.   

 

Third, we have combined the local habituation mechanism with the Hebbian/ant-

Hebbian rule to achieve background suppression. The Hebbian/anti-Hebbian learning 

rule reduces the overlap of the stored patterns, thus facilitating the habituation to odors 

already presented. Using this approach, we have demonstrated background suppression 

with gas-sensor-array responses to binary and ternary mixtures. 

  

Finally, we have proposed a novelty-detection mechanism based on anti-Hebbian 

learning of periglomerular lateral connections.  This mechanism allows the system to 

suppress the output activity of the KIII to previous odors, thereby increasing its 

sensitivity to new ones. Since different odors represent sources of variance along 

different directions in feature space, anti-Hebbian learning allows the KIII model to 

reduce its response to inputs along the directions of odor previously presented.  This 

increases the sensitivity of the KIII model to novel odors.  We have also demonstrated 

the ability of our approach to detect novel odors in presence of a strong background.   
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Three different dynamical behaviors are generated by the KIII model: chaotic, limit 

cycles, and fixed points.  Different parts of the KIII model are responsible for each of 

these behaviors.  Chaotic behavior is due to feedback connections from cortex and 

anterior olfactory nucleus, whereas limit cycle behavior is generated by the coupled 

oscillators (KII sets) in the olfactory bulb, and fixed-point behavior is originated at the 

periglomerular cell layer.  By analyzing the role played by the neurodynamics in 

achieving the computational function, we can determine which components in the KIII 

model are involved in achieving those functions.  In the case of phase coding, odor-

discriminatory information is due to the limit-cycle behavior of the model; chaotic 

activity does not seem to be relevant for this coding scheme.  Similarly, oscillatory 

behavior in the model seems sufficient to perform contrast enhancement and background 

suppression.  In the case of novelty detection, we use the fixed point behavior of the 

periglomerular cells rather than the limit cycle behavior provided by the olfactory bulb. 

Thus, it appears that most of the useful dynamics in the KIII have their origin in the 

oscillatory behavior of the olfactory bulb.  The chaotic behavior of the KIII model seems 

to have little, if any, influence on the computational functions proposed in this 

dissertation.  This should come as no surprise by considering that the phase code and the 

three learning mechanisms operate when an input is present; in this case, the KIII model 

displays a near-limit-cycle behavior.   

 

The four mechanisms presented in this dissertation can be grouped according to their 

computational function:  
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• temporal coding (Chapter V) and Hebbian/anti-Hebbian learning (Chapter VI) 

address the issue of robust recovery of overlapping patterns;  

• habituation (Chapter VII) and anti-Hebbian learning (Chapter VIII) address the 

problem of novelty detection.   

The proposed mechanisms have been systematically characterized on synthetic data, and 

also validated on experimental data from an e-nose prototype built for this purpose. It 

should be noted that although the mechanisms presented in this dissertation were 

primarily used for processing of gas-sensor-array signals, their application is not limited 

to this type of input. For example, the Hebbian/anti-Hebbian rule can be used to improve 

the separability of any general set of overlapping pattens.  

 

IX.1. Future work 

A clear direction of future work is to study other coding and learning mechanisms, or 

combination of those, to mimic new computational functions for processing gas-sensor-

array data.  One such learning mechanism is reinforcement learning.  Since this type of 

learning occurs at a higher level rather than at synaptic level, it would complement the 

learning mechanisms studied in this dissertation. In terms of new coding schemes, our 

results from Chapter V indicate that those based on temporal aspects of odor information 

are rather promising.  Examples of such codes are latency codes, time to reach the limit 

cycle; temporal multiplexing, and phase locking (Cariani, 1995).  These coding schemes 

can be studied in conjunction with the proposed learning mechanism to further improve 

signal processing. 
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The associative memory function in the KIII model is located in the olfactory bulb.  

However, it is commonly accepted that memory functions in the olfactory system are 

located at the olfactory cortex.  A possible direction of research, one that would improve 

the biological realism of the model, is to replace the single KII set that models the 

prepyriform cortex with a bank of KII sets. Combined with learning mechanisms to 

establish feed-forward and feedback connection between the olfactory bulb and olfactory 

cortex, this addition would allow the model to perform odor segmentation and/or 

hierarchical clustering of odors.  

 

Laurent and Davidowich (1994) have hypothesized that the temporal evolution of the 

odor code, which increases odor separability, can be thought as a non-linear projection 

onto a high dimensional space.  Principe (2004) has suggested that the temporal 

evolution of activity of a KII bank can perform a similar projection to improve pattern 

separability.  This represents an additional direction of future work, one that shares 

parallels with kernel approaches, in which a non-linear projection to a high dimensional 

space is used to improve pattern separability. 

 

IX.1.1. Experimental 

There are several improvements that could be made to the e-nose prototype used for 

collecting data. Specifically, we suggest the following two additions to provide more 

precise control of experimental conditions: (1) including a mass-flow controller, and (2) 
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closed-loop temperature control. We expect the mass-flow controller to provide finer 

control of the dynamic headspace, thereby further improving the repeatability of the 

senor response. The closed-loop temperature control would improve the repeatability of 

the sensors’ operating temperatures, helping compensate for the loss/gain in temperature 

due to endothermic/exothermic reactions on the sensor surface.  

 

Finally, another direction for future work is optimization of temperature profile to 

enhance discrimination between different odors at multiple concentrations.  
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APPENDIX A 

SYNAPTIC PLASTICITY 

 

The classical Hebbian learning rule postulates that the synaptic connection between two 

neurons is strengthened if the presynaptic neuron A contributes to the activation of the 

postsynaptic neuron B (Hebb, 1949).  Bi and Poo (2001) extended this postulate by 

showing that synaptic connections can also be weakened by a lack of causality between 

the presynaptic and the postsynaptic neuron.  Fig. 100 shows the change in the synaptic 

efficacy between two neurons as a function of their relative activation time.  These 

results indicate that synaptic efficacy is increased if the presynaptic neuron fires before 

the post-synaptic neuron (i.e., Hebb’s postulate).  But more important for our purposes, 

these results also suggest that synaptic efficancy is decreased if the postsynaptic neuron 

fires after the presynaptic neuron.  This represents an extension of Hebb’s rule, and is 

commonly referred to as spike-time dependent plasticity (STDP) Bi and Poo (2001). 
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Fig. 100  Spike-time dependent learning rule.  Synaptic change as a function of relative 

activation time between two neurons.  Negative values of the activation time, which indicate that 

the presynaptic spike follows the postsynaptic spike, cause weakening of the connection, 

whereas positive values of the activation time, which indicate that the postsynaptic spike follows 

the presynaptic spike, cause a strengthening of the connection. 
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APPENDIX B 

FISHER DISCRIMINANT RATIO 

 

Pattern separability in Chapter VI was measured with the Fisher Discriminant Ratio 

(Duda and Hart, 2001).  Assuming a discrimination problem with C classes the Fisher 

Discriminant Function is computed following the expression (Wang and Chang, 2002):  
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where 
iµ  is the mean of class i, µ  is the pooled mean, and Ci is the number of samples 

from class i.  The between-class scatter is a measure of the distance between the mean of 

each one of the classes, whereas the within-class scatter is a measure of the spread of 
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each class.  Thus, class separability is directly proportional to SB and inversely 

proportional to SW, as captured by the objective function in Eq. B.3.  
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Fig. 101  Illustration of the between class-scatter SB, and within class-scatter 1
WS , 2

WS  for a two-

class problem. 
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