76 research outputs found

    A new VRPPD model and a hybrid heuristic solution approach for e-tailing

    Get PDF
    We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW

    An Adaptive Tabu Search Heuristic for the Location Routing Pickup and Delivery Problem with Time Windows with a Theater Distribution Application

    Get PDF
    The time constrained pickup and delivery problem (PDPTW) is a problem of finding a set of routes for a fleet of vehicles in order to satisfy a set of transportation requests. Each request represents a user-specified pickup and delivery location. The PDPTW may be used to model many problems in logistics and public transportation. The location routing problem (LRP) is an extension of the vehicle routing problem where the solution identifies the optimal location of the depots and provides the vehicle schedules and distribution routes. This dissertation seeks to blend the PDPTW and LRP areas of research and formulate a location scheduling pickup and delivery problem with time windows (LPDPTW) in order to model the theater distribution problem and find excellent solutions. This research utilizes advanced tabu search techniques, including reactive tabu search and group theory applications, to develop a heuristic procedure for solving the LPDPTW. Tabu search is a metaheuristic that performs an intelligent search of the solution space. Group theory provides the structural foundation that supports the efficient search of the neighborhoods and movement through the solution space

    Tabu Search: A Comparative Study

    Get PDF

    The Pickup and Multiple Delivery Problem

    Get PDF
    This thesis presents my work on the pickup and multiple delivery problem, a real-world vehicle routing and scheduling problem with soft time windows, working time and last-in-first-out constraints, developed in collaboration with Transfaction Ltd., who conduct logistics analysis for several large retailers in the UK. A summary of relevant background literature is presented highlighting where my research fits into and contributes to the broader academic landscape. I present a detailed model of the problem and thoroughly analyse a case-study data set, obtaining distributions used for further research. A new variable neighbourhood descent with memory hyper-heuristic is presented and shown to be an effective technique for solving instances of the real-world problem. I analyse strategies for cooperation and competition amongst haulage companies and quantify their effectiveness. The value of time and timely information for planning pickup and delivery requests is investigated. The insights gained are of real industrial relevance, highlighting how a variety of business decisions can produce significant cost savings

    Ambulance routing problems with rich constraints and multiple objectives

    Get PDF
    Humanitäre non-profit Organisationen im Bereich des Patiententransports sehen sich dazu verpflichtet alle möglichen Einsparungs- und Optimierungspotentiale auszuloten um ihre Ausgaben zu reduzieren. Im Gegensatz zu Notfalleinsatzfahrten, bei denen ein Zusammenlegen mehrerer Transportaufträge normalerweise nicht möglich ist, besteht bei regulären Patiententransporten durchaus Einsparungspotential. Diese Tatsache gibt Anlass zur wissenschaftlichen Analyse jener Problemstellung, welche die täglich notwendige Planung regulärer Patiententransportaufträge umfasst. Solche Aufgabenstellungen werden als Dial-A-Ride-Probleme modelliert. Eine angemessene Service-Qualität kann entweder durch entsprechende Nebenbedingungen gewährleistet oder durch eine zusätzliche Zielfunktion minimiert werden. Beide Herangehensweisen werden hier untersucht. Zuerst wird eine vereinfachte Problemstellung aus der Literatur behandelt und ein kompetitives heuristisches Lösungsverfahren entwickelt. Diese vereinfachte Problemstellung wird in zwei Richtungen erweitert. Einerseits wird, zusätzlich zur Minimierung der Gesamtkosten, eine zweite benutzerorientierte Zielfunktion eingeführt. Andererseits werden eine heterogene Fahrzeugflotte und unterschiedliche Patiententypen in die Standardproblemstellung integriert. Letztendlich wird das reale Patiententransportproblem, basierend auf Informationen des Roten Kreuzes, definiert und gelöst. Neben heterogenen Fahrzeugen und unterschiedlichen Patienten, werden nun auch die Zuordnung von Fahrern und sonstigem Personal zu den verschiedenen Fahrzeugen, Mittagspausen und weitere Aufenthalte am Depot berücksichtigt. Alle eingesetzten exakten Methoden, obwohl sie auf neuesten Erkenntnissen aus der Literatur aufbauen, können Instanzen von realistischer Größe nicht lösen. Dieser Umstand macht die Entwicklung von passenden heuristischen Verfahren nach wie vor unumgänglich. In der vorliegenden Arbeit wird ein relativ generisches System basierend auf der Variable Neighborhood Search Idee entwickelt, das auf alle behandelten Einzielproblemversionen angewandt werden kann; auch für die bi-kriterielle Problemstellung, in Kombination mit Path Relinking, werden gute Ergebnisse erzielt.Humanitarian non-profit ambulance dispatching organizations are committed to look at cost reduction potentials in order to decrease their expenses. While in the context of emergency transportation cost reduction cannot be achieved by means of combined passenger routes, this can be done when dealing with regular patients. This research work is motivated by the problem situation faced by ambulance dispatchers in the field of patient transportation. Problems of this kind are modeled as dial-a-ride problems. In the field of patient transportation, the provision of a certain quality of service is necessary; the term “user inconvenience” is used in this context. User inconvenience can either be considered in terms of additional constraints or in terms of additional objectives. Both approaches are investigated in this book. The aim is to model and solve the real world problem based on available information from the Austrian Red Cross. In a first step, a competitive heuristic solution method for a simplified problem version is developed. This problem version is extended in two ways. On the one hand, besides routing costs, a user-oriented objective, minimizing user inconvenience, in terms of mean user ride time, is introduced. On the other hand, heterogeneous patient types and a heterogeneous vehicle fleet are integrated into the standard dial-a-ride model. In a final step, in addition to heterogeneous patients and vehicles, the assignment of drivers and other staff members to vehicles, the scheduling of lunch breaks, and additional stops at the depot are considered. All exact methods employed, although based on state of the art concepts, are not capable of solving instances of realistic size. This fact makes the development of according heuristic solution methods necessary. In this book a rather generic variable neighborhood search framework is proposed. It is able to accommodate all single objective problem versions and also proves to work well when applied to the bi-objective problem in combination with path relinking

    Vehicle routing problem with vendor selection, intermediate pick-ups and deliveries

    Get PDF
    Online shopping is becoming nowadays more indispensable to many people in their daily lives with a growing service range for a wide variety of goods. In this thesis, we study a distribution planning model for online retailers to fulfill the diverse consumer demands especially for premium goods, i.e. goods with a high potential to create additional income such as organic food, electronic materials, special gifts etc., without increasing inventory related costs. We refer to the related distribution planning problem as the Vehicle Routing Problem with Vendor Selection, Intermediate Pick-ups and Deliveries (VRPVSIPD). The VRPVSIPD is based on a distribution network where premium goods are acquired from a proper set of external vendors at multiple locations in the supply network and delivered to customers. In order to solve the VRPVSIPD, we present an improved Adaptive Large Neighborhood Search (ALNS) heuristic by introducing new removal, insertion and vendor selection/allocation algorithms. To investigate the performance of the proposed methodology, we conduct an extensive computational study using both the well-known Solomon instances for Vehicle Routing Problem with Time Windows and newly generated benchmark instances for the VRPVSIPD. Our results reveal that the proposed methodology is effective in terms of both the solution quality and computational time

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Effects of distribution planning systems on the cost of delivery in unique make-to-order manufacturing

    Get PDF
    This thesis investigates the effects of simulation through the use of a distribution planning system (DPS) on distribution costs in the setting of unique make-to-order manufacturers (UMTO). In doing so, the German kitchen furniture industry (GKFI) serves as an example and supplier of primary data. On the basis of a detailed market analysis this thesis will demonstrate that this industry, which mostly works with its own vehicles for transport, is in urgent need of innovative logistics strategies. Within the scope of an investigation into the current practical and theoretical use of DPS, it will become apparent that most known DPS are based on the application of given or set delivery tour constraints. Those constraints are often not questioned in practice and in theory nor even attempted to be omitted, but are accepted in day-to-day operation. This paper applies a different approach. In the context of this research, a practically applied DPS is used supportively for the removal of time window constraints (TWC) in UMTO delivery. The same DPS is used in ceteris paribus condition for the re-routing of deliveries and hereby supports the findings regarding the costliness of TWC. From this experiment emerges an overall cost saving of 50.9% and a 43.5% reduction of kilometres travelled. The applied experimental research methodology and the significance of the resulting savings deliver the opportunity to analyse the removal of delivery time window restrictions as one of many constraints in distribution logistics. The economic results of this thesis may become the basis of discussion for further research based on the applied methodology. From a practical point of view, the contributions to new knowledge are the cost savings versus the change of demand for the setting of TWC between the receiver of goods and the UMTO supplier. On the side of theoretical knowledge, this thesis contributes to filling the gap on the production – distribution problem from a UMTO perspective. Further contributions to knowledge are delivered through the experimental methodology with the application of a DPS for research in logistics simulation
    • …
    corecore